Как проверить индуктивный датчик мультиметром: Как проверить датчик коленвала? Три способа проверки датчика коленвала (ДПКВ)

Содержание

Как проверить датчик холла на скутере: фото и видео инструкция

Скутеровский индуктивный датчик

Датчик холла (ДХ) получил обширное распространение в автопромышленности, ведь благодаря этому контролеру удалось разом решить несколько задач. Датчик холла сегодня устанавливается и на 2-колесные транспортные средства, такие как скутер.

ДХ скутера

Следует знать, что ДХ скутера представляет собой прибор, оснащенный магнитом. Взаимодействуя с ним, ДХ посылает импульс на коммутатор транспортного средства, а тот, в свою очередь, воздействует на другие элементы системы зажигания (бабину и т. д.).

На 2-колесных транспортных средствах ДХ – это просто магнитик с проводами, идущими на коммутатор. Датчик находится вот здесь, под крышкой.

Местоположение датчика холла на скутере

По защитному каналу провод его протянут прямиком на коммутатор.

Некоторые считают — чтобы максимально точно проверить ДХ, его нужно снять. С другой стороны, на 2-колесных машинах делать это вовсе не обязательно, так как проверка мультиметром осуществима и так.

Легче всего проверить датчик холла прозвонкой. Для этого следует вооружиться мультиметром, и поставить прибор на режим прозвона.

Мультиметр в режиме прозвона

Вот, что надо сделать конкретно:

  • поставить мультиметр в режим прозвона;
  • концы прибора соединить с проводами датчика холла.

Если на шкале мультиметра появятся какие-либо значения, пусть даже они будут скакать – ДХ рабочий. Если же он молчит и ничего не происходит – он неисправен.

Можно также установить прибор в режим сопротивления. И проверка будет аналогична. Если значения на шкале мультиметра будут меняться, ДХ в порядке.

Проверка с помощью мультиметра индуктивного датчика может быть проведена и так: прибор ставится в положение 2000.

Внимание. При работе с сопротивлением рекомендуется держать вблизи мануал. В нем бывает указано, какие значения должны показываться.

К примеру, что касается индуктивного датчика холла, то в мануале черным по белому прописано, что значения его должны быть равны:

  • воздушный зазор – 0,4-0,5 мм;
  • сопротивление – 380-570 Ом.

Воздушный зазор датчика – это расстояние от датчика до воротка, который собственно и вращается.

После подготовки мультиметра:

  • концы датчика со штепселем вынимаются из коммутатора;
  • щупы прибора вставляются в штепсель.

Если значения мультиметра в пределах 380-570 Ом, датчик холла считается рабочим.

Как устроена система зажигания скутера

Система зажигания скутера – это один из важнейших компонентов средства передвижения. Если она выходит из строя, то доехать до места назначения без ремонта можно только на буксире, ведь мотор никак не заведется без ценной искры.

Система зажигания скутера

Во всех мотодвигателях задача системы зажигания одна – зажечь смесь горючего в цилиндрах. Поджигание смеси происходит за счет искры от свечи.

Состоит система зажигания скутера и других мотосредств из следующих компонентов.

  1. Ключ зажигания (Ignition switch).
  2. Свеча (Spark plug).
  3. Высоковольтные провода.
  4. Катушка или бабина (Ignition Coul).
  5. Генератор (Generator).
  6. Датчик холла (Sensor).
  7. Выпрямитель (Rectifler).
  8. Блок управления или коммутатор (CDI).

Контакты, клеммники и штекеры тоже входят в систему зажигания скутера.

Схема простая:

Генератор вырабатывает электроэнергию, но она переменная, а не постоянная. Выпрямитель энергию генератора нормализует и раздает в систему.

Генератор соединен напрямую с выпрямителем, замком зажигания и АКБ (аккумуляторной батареей).

Замок зажигания соединен также с коммутатором и катушкой.

Коммутатор скутера и его схема

Бабина — со свечой и генератором.

Таким образом, получается круговая схема, в которой элементы зажигания поддерживаются между собой.

Важные моменты.

  • От свечи зажигания до бабины идет главный высоковольтный провод.
  • Бабина всегда должна быть расположена в радиусе 40 см от двигателя и на расстоянии 30 см от свечи.
  • Коммутатор – это черная коробочка с белыми колодками проводов. Может располагаться как в передней части скутера, так и в задней.
  • От выпрямителя идут несколько проводов, как правило, 7. Как и коммутатор, он может располагаться как впереди, так и сзади.
  • Индукционный датчик на скутерах располагается так, что при вращении генератора, он задействуется. Представить себе это можно так: на колесе генератора имеется прилив, который при вращении входит с прорезью датчика в контакт.
  • Как только датчик холла входит в контакт, он подает сигнал на коммутатор. Последний в обычном режиме бывает закрыт, после получения команды от ДХ открывается.
  • Через коммутатор заряженный конденсатор подает напряжение прямиком на катушку. Последняя оснащена 2-я выводами: на землю и на коммутатор.
  • У бабины имеются 2 обмотки. На первичную обмотку намотано мало витков, на вторичную – много. Таким образом, как в любом трансформаторе, здесь образуется высокое напряжение, передающееся на свечу.
  • На свечу поступает порядка 20 Квт.

Если пропала искра на скутере

Итак, зная о работе системы зажигания, можно легко определить слабое звено. Например, если пропала искра в системе, скутер остановился и не едет дальше, путем логических вычислений можно найти причину, которая частенько связана бывает именно с датчиком холла.

Элементы системы зажигания скутера

Как и в автомобильных системах, проверку следует всегда начинать со свечи (свечей). Она выкручивается и подвергается осмотру:

  • чересчур белый электрод свечи говорит о перегреве;
  • желтый – о перебоях в зажигании;
  • черный – об обогащенной топливной смеси.

Процесс проверки можно значительно облегчить, если иметь под рукой резервную и исправную свечу. Она вставляется на место старой, и проверяется наличие искры в зазоре свечи. Делается это путем легкого прикосновения свечой, вдетой в провод, к массе и одновременного запуска двигателя.

Внимание. Работать следует обязательно в защитных перчатках, так как 20 квт тока – это не шутки. Прикасаться к кузову (массе) или свече в этот момент голыми руками запрещается.

Поиски продолжаются, если на свече не появляется искра. Другими словами, высокое напряжение от бабины в свечу не поступает. Под сомнение попадает бронепровод и собственно, сама бабина.

Рекомендуется проверять бронепровод на концах его, в местах соединения со свечой и бабиной. Выводы катушки рекомендуется «оживить» (если она рабочая) путем снятия и вдевания проводов массы и плюса.

Следующий элемент системы зажигания, подвергаемый проверке – коммутатор. Крепится на скутерах он благодаря резинке, так что снять его будет несложно. На коммутатор скутера идет 5 (6) проводов: 2/3 на одну колодку и 3 – на другую.

Как проводится проверка и ремонт системы зажигания скутера

Датчик подвергается осмотру в том случае, если в порядке свеча, бабина и коммутатор. К ДХ идет один провод от коммутатора напрямик, минуя другие элементы системы. Располагается датчик возле генератора. Подробнее о том, как проверять его, написано выше.

Замена датчика (ДХ) на скутере

Замена индуктивного датчика на скутере производится следующим образом:

  • провода мотоцикла, предназначенные для соединения датчика холла, очищаются ножиком;
  • провода нового датчика соединяются;
  • проверяется свеча, есть ли искра.

Проверка свечи на искру

Все в порядке? Можно заводить любимый скутер и вперед.

Предлагаем в конце статьи посмотреть интересное видео на тему «Если не заводится скутер»

Признаки неисправности датчика коленвала. Как проверить ДПКВ

Датчик положения коленчатого вала двигателя или сокращенно ДПКВ отслеживает состояние его шкива по двум отсутствующим зубьям. Их специально не разместили, чтобы прибор "чувствовал", как вращается вал. В других случаях используются магниты для меток на валу. Далее информация передается по кабелю в электронный блок управления двигателем для обработки. Это помогает ЭБУ синхронизировать работу коленвала и системы зажигания, обеспечив своевременную подачу искры и впрыск топлива в двигателе. Какие бывают признаки неисправности датчика коленвала и как его проверить, рассмотрим ниже.

Устройство и где находится датчик положения коленвала

Электродатчик играет важную роль в исправной работе силовой установки, поэтому все производители авто размещают его в легкой доступности для проверки и ремонта. ДПКВ расположен с правой стороны двигателя сбоку от маховика в районе блока цилиндров. Искать нужно выше поддона, ближе к стартеру и патрубкам выхода охлаждающей жидкости.

Расположение датчика положения коленчатого вала

Обычно он крепится одним или двумя болтами (в зависимости от модификации) и имеет небольшой провод с фишкой контакта. Элемент покрыт эластичным полимером, устойчивым к маслам и высоким температурам

Положение ДПКВ относительно метки

Определение положения вала фиксируется по двум отсутствующим зубьям или выделенному контрольному (зависит от вида маховика). ДПКВ "замечает" это визуально и при помощи электромеханических процессов. Различают три разновидности контроллера.

С датчиком Холла

Работает с магнитом, установленным на маховике. Всякий раз, когда он проходит мимо сенсора, в ДПКВ возбуждается постоянный ток. Это фиксируется синхронизирующим диском, и информация передается в блок управления двигателем.

ДПКВ с датчиклм Холла

Оптический

Имеет в устройстве светодиод. Работает в паре с приемником. Луч всегда уходит и отражается. Когда свечение прерывается, это означает, что мимо контроллера прошел контрольный зуб. По нему и определяется положение коленчатого вала.

Оптический ДПКВ

Индуктивный

Содержит внутри намагниченную катушку, реагирующую на электромагнитное поле. При изменениях показателей регистрируется отметка, означающая конкретное положение шкива на валу.

Индуктивный ДПКВ

Последний тип распространен больше всего и устанавливается на все современные автомобили с инжекторной системой впрыска топлива в двигатель. Кроме положения коленвала он способен определять скорость вращения, поэтому более функционален.

Признаки неисправности

Чтобы понять, какие признаки неисправности могут относиться к ДПКВ, рассмотрим коротко его участие в работе двигателя. Несимметричные выступы на коленчатом валу последовательно воздействуют на шатуны, толкая поршни в цилиндрах. Последние сжимают воздух и нагнетаю компрессию. Параллельно ГРМ через ГБЦ подает нужное количество воздуха в цилиндры.

Система управления двигателем "понимает" положение всех участников, исходя из данных ДПКВ (при условии правильной установки привода ГРМ), и открывает форсунки для выпуска бензина. От катушек зажигания подается искра на свечи, и воздушно-топливная смесь воспламеняется. Двигатель работает ровно и не дергается.

При неисправности датчика коленвала нарушается синхронизация процесса. ЭБУ двигателя не знает, в какой момент подавать бензин, что сказывается на работе ДВС.

Найти причину поломки поможет диагностика, но об этом чуть ниже.

Среди признаков неисправности, указывающих на возможную поломку ДПКВ встречаются:

При окончательной неисправности датчика коленвала двигатель невозможно завести совсем. Но установить это можно только путем проверки, где диагностика покажет состояние других участников системы зажигания.

Способы проверки

Вышеописанные симптомы могут быть признаками неисправности не только датчика коленвала. Такие симптомы относятся также к свечам зажигания, смещенным меткам в узле ГРМ, высоковольтным проводам, катушке зажигания. Здесь важно знать, как проверить контроллер.

Проверка ДПКВ поможет убедиться, что неисправность именно в нем, а не в перескочившем ремне ГРМ или грязной дроссельной заслонке двигателя.

Существует несколько способов диагностики. Поскольку большинство ДПКВ индуктивные, мы рассмотрим проверку именно такого контроллера на валу.

Гаечным ключом

Если двигатель не заводится, а поблизости нет измерительных приборов и СТО, проверку датчика положения можно выполнить гаечным ключом. Для этого способа хорошо иметь второго человека в помощники:

  1. Откройте капот и открутите фиксирующий болт датчика.
  2. Достаньте ДПКВ наружу и очистите его от грязи.
  3. Включите зажигание.
  4. Снимите подушку на втором ряду сидений, чтобы лучше было слышно работу бензонасоса в баке.
  5. Не извлекая фишку контакта, приложите к торцевой части датчика гаечный ключ.
  6. Второй человек должен в этот момент услышать включение бензонасоса.

Такая проверка ключом провоцирует срабатывание индукционной катушки и имитирует прохождение шкива. Если бензонасос включается каждый раз при прикладывании металлического предмета, значит контроллер реагирует на положение вала. Если насос не слышно, то симптом точно укажет на поломку.

Осциллографом

Проверка датчика коленвала осциллографом выполняется двумя способами и дает более точное представление о реакции контроллера на положение вала. В первом случае действие происходит на заглушенном моторе, но при включенном зажигании.

Датчик вынимается со своего места, а к его контактам прикладываются щупы осциллографа. Полярность здесь значения не имеет. Далее перед торцевой частью сенсора проводят металлическим предметом (можно тем же гаечным ключом). Катушка должна сработать на металл, но вместо того, чтобы снимать заднее сиденье и прислушиваться к звуку бензонасоса, реакция будет видна на экране осциллографа.

Проверка ДПКВ осцилографом

Более точно выполнить проверку можно на работающем двигателе, подключив осциллограф параллельно выводам ДПКВ. Тогда программа покажет не только реакцию, но и полную картину работы контроллера. На экране отобразится амплитуда электромагнитного поля. Она должна быть с ровными верхними и нижними границами, а также равными разделительными интервалами, указывающими на прохождение контрольного участка. Если таких пауз больше или края осциллограммы не ровные, значит у маховика обломаны или сильно стерты некоторые зубья. Это ведет к некорректной реакции сенсора. Тогда дело не в неисправности датчика коленвала, а в механической части. Потребуется замена венца маховика.

Мультиметром

Проверка датчика коленвала мультиметром выполняется в режиме измерения сопротивления. Для этого ступенчатый переключатель устанавливается в соответствующее положение. ДПКВ извлекается наружу, а щупы мультиметра вставляются в контакты.

Проверка датчика мультиметром

Большинство датчиков имеет диапазон сопротивления катушки в пределах 500-700 Ом (точнее можно узнать из характеристик конкретной модели и данных производителя). Поэтому прибор нужно установить на верхнее значение в 2000 Ом. Если тестер показывает меньшие значения, значит нарушена изоляция обмотки катушки. Такая неисправность требует замены датчика. Отсутствие показаний на тестере означает, что цепь оборвана и ДПКВ непригоден для эксплуатации.

Кроме сопротивления некоторые мультиметры способны проверять индуктивность. У датчика положения коленчатого вала этот показатель должен быть 200-400 мГн. Сильное отклонение от указанного диапазона доказывает неисправность контроллера.

Диагностическим сканером

Те, кто более профессионально подходят к ремонту своего автомобиля имеют в наборе инструментов диагностический сканер. Он помогает проверить не только датчик, но и другие параметры работы бензинового двигателя. Среди товаров корейского происхождения большой популярностью пользуются сканеры OBD-2 Scan Tool Pro.

Диагностический сканер

Прибор вставляется в штатный разъем авто и связывается с ЭБУ. При помощи ноутбука, телефона или ПК происходит сопряжение по Bluetooth или сети Wi-Fi. Потребуется специальная программа. На экран выводятся собранные ошибки. Среди кодов неисправностей, относящихся к датчику положения коленвала: Р0336 и Р0335. Проверка сканером заключается в наличие сигнала с датчика положения и способности определять задающую метку для синхронизации последующей работы двигателя.

Проверка омметром

Если под рукой нет мультиметра, но есть омметр, то он тоже подойдет. Потребуется на заглушенном моторе снять электродатчик коленвала и прикоснуться выводами прибора к контактам в разъеме. Рабочие параметры ДПКВ должны находиться в пределах 500-700 Ом. Если сопротивление сильно высокое, значит где-то есть помехи для прохода электрического тока. В случае слишком низкого показателя нарушена целостность обмотки.

Устранение неисправностей

Проверка может показать неспособность электродатчика зафиксировать состояние коленчатого вала. В таком случае, при подтверждении выхода из строя ДПКВ, понадобится его замена на новый. Но если поломка случилась в пути и до ближайшего автомагазина или станции техобслуживания далеко, можно попробовать найти и устранить неполадки самостоятельно. Иногда проблема кроется не в катушке индукционного устройства, а в контактах.

Чистка от грязи

Например, распространенной проблемой является загрязнение рабочей части смазкой от маховика. Последняя летит на сенсор и покрывает его толстым слоем грязи. Сверху налипает пыль и песок, а также металлическая стружка. Все это создает помехи для работы элемента. В таком случае понадобится выкрутить один или два удерживающих болта, извлечь ДПКВ наружу и хорошо протереть его выступающий после упора корпус. Затем верните прибор назад и попытайтесь завести двигатель снова.

Грязный датчик ПКВ

Обрыв контакта

Еще одной распространенной неполадкой бывает обрыв провода. Он случается часто перед фишкой контакта. В этом месте провода изгибаются, что приводит к постепенному преломлению. Визуально нарушение целостности проводника может быть незаметно, поскольку наружная изоляция остается целой.

Для устранения неполадки снимите разъем и потяните контактные штыри легонько на себя. Оборванный выйдет наружу и останется у вас в руках.

Ремонт потребует зачистить изоляцию и связать оголенные концы. Затем участок изолируется (можно использовать кембрик или изоленту). Но эта мера временная и потребует последующей пайки.

Загрязнение контактов

Хотя разъем защищен резиновым уплотнителем, он постепенно теряет эластичность и герметичность. Из-за этого внутрь проникает влага, пыль. Начинается процесс коррозии. Контакты окисляются и цепь прерывается. В результате исправный ДПКВ перестает определять состояние коленвала и мотор глохнет.

Грязь на контактах ДПКВ

Для решения проблемы попробуйте почистить штифты контактов. Они находятся в углублениях и добраться до них можно тонким надфилем или наждачной бумагой, свернутой в трубочку. Выдуйте собравшуюся внутри пыль, восстановите соединение и попытайтесь запустить мотор.

Связанные проблемы

Если ДПКВ "прозванивается" и нет нарушения в целостности контактов, поломка может быть связана с отсутствующими зубьями на маховике. Электродатчик просто "запутывает" ЭБУ, срабатывая на дополнительные образовавшиеся "метки". Это сможет определить только механик на СТО. Для ремонта понадобится замена венца маховика.

ДМРВ (определяет массовый расход воздуха) тоже влияет на работу ДПКВ и вызывает отклонения в показаниях. Проблема диагностируется в сервисе.

Изгиб маховика "восьмёркой" способен ввести электродатчик коленвала "в заблуждение", и здесь потребуется снятие коробки и замена деформированной детали.

Датчики положения (индуктивный датчик, датчик Холла)

Датчики положения (индуктивный датчик, датчик Холла)

Для измерения скорости вращения и определения положения различных узлов двигателя используются датчики положения. К ним относятся: датчик положения коленчатого вала (ДПКВ), датчик положения распределительного вала (ДПРВ) или датчик фазы (ДФ), датчик скорости (ДС), датчики ABS.
Сигнал ДПКВ используется для определения частоты вращения КВ, а также его мгновенного положения. Т.к. частоты вращения распределительного и коленчатого валов соотносятся как 1:2, то только по сигналу ДПКВ невозможно однозначно определить находится ли поршень двигателя, движущийся к ВМТ, на такте сжатия или выпуска. Фазный датчик на распределительном валу передает эту информацию в блок управления.
В качестве примера приведен сигнал с авто ВАЗ.


Сигналы ДПКВ (синий) и ДПРВ (зеленый)

К наиболее распространенным типам этих датчиков относятся: индуктивный (электромагнитный) датчик и датчик Холла.

Индуктивный датчик

Этот тип датчика наиболее распространен в качестве ДПКВ. Датчик монтируется поблизости от подвижного элемента, называемого маркерным диском. Этот элемент представляет собой стальной диск с зубьями, который жестко зафиксирован на коленчатом валу (может находиться как со стороны ременной передачи, так и непосредственно на маховике КВ).


Расположение ДПКВ
1. ДПКВ
2. Маркерный диск
3. Разъем датчика

Датчик состоит из обмотки с сердечником из постоянного магнита. Когда зуб проходит перед датчиком, это приводит к усилению магнитного потока, проходящего через обмотку. Напротив, увеличение зазора ослабляет этот поток. Происходит изменение магнитного поля, которое вызывает появление индукционного тока в обмотке. Амплитуда напряжения переменного тока сильно возрастает по мере повышения частоты вращения маркерного диска (от нескольких мВ до значений более 100 В).


Конструкция индуктивного датчика
1. Обмотка
2. Метка на маркерном диске в виде пропущенных зубьев
3. Постоянный магнит

Маркерный диск может иметь как пропуски зубьев, так и более широкие зубья.

Кол-во зубьев маркерного диска зависит от его назначения и модели авто. В качестве маркерного диска для КВ наиболее распространенным является диск с 60-ю зубьями, при этом два зуба пропущены. Зазор с пропущенными зубьями предназначен для отметки определенного положения коленчатого вала и служит как установочная метка для синхронизации блока управления.
На маркерных дисках системы ABS пропуск зубьев отсутствует, т.к. в данной системе положение колеса не принципиально, имеет значение только скорость вращения.


Пример сигнала индуктивного датчика ABS

В варианте исполнения для ДПРВ, маркерный диск может иметь всего один зуб, т.к. в данном случае нет необходимости измерять скорость вращения, нужно определить только положение РВ для определения фазы работы двигателя.

Для дальнейшего анализа электронный блок производит преобразование аналогового сигнала в цифровой. Амплитуда напряжения сигнала пропорциональна скорости прохождения подвижной детали перед датчиком. Напряжение также в значительной степени зависит от расстояния между вершинами зубьев и поверхностью датчика, как правило, зазор составляет 1±0,5 мм. Подсчитывая число импульсов в течение заданного промежутка времени, электронный блок может определить скорость вращения КВ.
Индуктивный датчик подключается к контроллеру экранированной парой проводов с заземлением экранирующей оплетки на кузов автомобиля.


Пример схемы подключения ДПКВ

Для записи осциллограммы индуктивного датчика, необходимо подключиться измерительным щупом непосредственно к сигнальному выходу датчика либо к разъему со стороны ЭБУ.


Подключение мотор-тестера к ДПКВ (цветовая маркировка проводов указана в качестве примера)

Датчик Холла

В таких датчиках использован эффект Холла. Интегральная схема датчика Холла располагается между маркерным диском и постоянным магнитом.
Когда зуб маркерного диска проходит у элемента датчика, то он изменяет величину магнитного поля, пронизывающего элемент Холла. За счет этого возникает сигнал напряжения, который находится в милливольтновом диапазоне и не зависит от относительной скорости между датчиком и маркерным диском. Оценивающая электронная схема, встроенная в интегральную схему, вырабатывает сигнал в форме прямоугольных импульсов.


Датчик Холла
1. Постоянный магнит
2. Интегральная схема Холла.
3. Маркерный диск
4. Разъем датчика

Как правило, датчик Холла имеет три вывода: питание +5В (+12В), «земля», сигнальный выход.


Пример схемы подключения ДПРВ

Для записи осциллограммы датчика Холла, необходимо подключиться измерительным щупом непосредственно к сигнальному выходу датчика либо к разъему ЭБУ.


Подключение мотор-тестера к ДПРВ (цветовая маркировка проводов указана в качестве примера)

Для записи сигнала ДПКВ рекомендуется использовать 2ой аналоговый канал мотор-тестера, для сигнала ДПРВ - 3ий канал. При наличии нескольких ДПРВ, можно использовать любой свободный аналоговый канал.


Настройка аналогового канала для индуктивного датчика


Настройка аналогового канала для датчика Холла

Дополнительные возможности ПО:
Автоподстройка линейки по любому «стандартному ДПКВ» (тема на форуме)

Одновременный анализ сигналов ДПКВ и ДПРВ позволяет проверить работу этих датчиков, а также правильность установки КВ и РВ (соответствие меток ГРМ).

автор: Евгений Куришко

Схемы включения индуктивных датчиков приближения – СамЭлектрик.ру

Как проверить датчик АБС тестером

Итак, у вас загорелась лампа ABS на панели приборов, что же делать? В первую очередь важно понимать, что данный тип датчика проверяется по двум параметрам:

  1. Сопротивление;
  2. Напряжение.


На специализированных станциях проверка датчика ABS производится путем подключения осциллографа. При этом колеса проворачивается в ручном режиме, а на экране прибора видна синусоида. Она показывает зависимость частоты сигнала от мощности колебательных импульсов. Порой некоторые мастера производят замеры с использованием прибора Ц-20. На нем проверяющий может увидеть отклонения стрелки, а если прибор цифрового типа – то увеличение значения напряжения.

Диаграмма сигнала датчика АБС на осциллографе

В домашних условиях для испытания датчика ABS можно сделать специальное устройство, которое будет состоять из резистора от 900 Ом до 1,2 кОм, а также пары проводов. На концах проводов нужно разместить зажимы, которая смогут быть подключены к контактной группе самого датчика.

После этого нужно проверить каждое колесо. Вывернуть колеса в одну сторону, а потом в другую. При этом подсоединять наше сопротивление на датчики, включать зажигание и наблюдать за поведением сигнальной лампочки панели приборов. В тех случаях, когда лампочка погаснет при подключенном сопротивлении, то можно считать данный датчик неисправным. Согласитесь, данный способ весьма интересен, но трудоемкий, поэтому идем дальше.

Для проверки датчика АБС тестером, вам понадобиться любой мультиметр современного типа. В первую очередь проводим замеры сопротивления, которое для каждого автомобиля и его датчика может быть разным. Именно поэтому сперва нужно отыскать нормативные показания сопротивления для вашего автомобиля. Основная масса датчиков АБС вписывается в диапазон от 1,2 до 1,8 кОм. Когда тестер подключен к датчику и проводит замер сопротивления, попробуйте пошатать провода, идущие на сам датчик. При этом показания прибора не должны отклоняться, а если это происходит, то имеет место быть обрыв цепи.

Проверка датчика АБС

После этих замеров, отключайте контакты мультитестера и переводите его в режим измерения напряжения. Теперь нужно раскрутить колесо машины примерно до 40-50 оборотов в минуту. Далее следим за показаниями датчика, который будет производить напряжение. На всех датчиках оно равняется 2-м вольтам.

Конечно же, в идеальных условиях проверять датчик нужно подключением специального программного обеспечения, которое может указать на более точные параметры работы АБС и его неисправности.

Проверка с помощью амперметра

Для проведения контрольных замеров лучше всего подойдет обычный мультиметр со встроенной функцией измерения силы тока. Цена простейшей бытовой модели сопоставима со стоимостью подобной услуги на станции техобслуживания, поэтому проще купить приборчик – он пригодится для дальнейшего обслуживания машины и в домашнем хозяйстве.

Чтобы проверить утечку тока на автомобиле мультиметром, следуйте такому алгоритму:

  1. Откройте крышку капота.
  2. Полностью воссоздайте условия, при которых оставляете транспортное средство на стоянке – отключите зажигание и все электроприборы, извлеките ключ и закройте центральный замок. Противоугонную сигнализацию не активируйте – сделаете это после подсоединения мультиметра.
  3. Открутите болт «плюсовой» клеммы аккумулятора и снимите контакт. Установите на мультиметре режим измерения силы постоянного тока, максимальное значение – 20 ампер.
  4. «Минусовый» зажим амперметра подсоедините к снятому контакту, положительный – к клемме аккумулятора.
  5. Активируйте охранную сигнализацию и обождите 1–2 минуты, затем снимайте показания прибора.

Примечание. В различных моделях мультиметров максимальная измеряемая величина силы тока может составлять 10–50 А. Выберите режим, на котором прибор покажет целые, десятые и сотые доли ампера.

Если проверка утечки тока дала результат в пределах 0,05 А (50 мА), неполадку следует искать в другом направлении – батарея разряжается вследствие износа либо неисправности регулятора напряжения зарядки. В противном случае переходите к поиску потребителя энергии, руководствуясь представленной ниже инструкцией.

Рекомендуем: Компьютерная диагностика двигателя — какие ошибки можно выявить?

Чтобы не снимать клемму с батареи и таким способом не обнулять память контроллера, магнитолы и прочих устройств, воспользуйтесь другим методом подключения амперметра:

  1. Тонким надфилем зачистите клемму аккумулятора под контактом от окисла.
  2. Отыщите неизолированный медный провод, просуньте под контакт, сделайте петлю и плотно затяните вокруг «плюсовой» клеммы.
  3. К медному проводнику подключите положительный зажим мультиметра, к съемному контакту – отрицательный.
  4. Открутите болт, отсоедините контакт от клеммы и выполняйте замеры. Электрическая цепь не разорвется – амперметр пропустит напряжение через себя и память контроллера не очистится.


Проверка датчика коленвала мультиметром

Датчик положения коленвала – это один из самых важных датчиков без которого ваш автомобиль попросту не заведется или движение на нем будет невозможным. Основная задача этого устройства – обеспечить синхронизацию между подачей топлива и моментом загорания искры на свечах.

Датчик коленвала

Итак, вы подозреваете неисправность ДПКВ. Первым делом вам нужно найти информацию по сопротивлению этого датчика для вашего автомобиля. После этого снять датчик и запомнить его положение по специальным меткам. Визуально оцените состояние рабочей части датчика. Она должна быть чистой и без механический повреждений. Если таковы имеются, то возможно отсутствует смысл в дальнейших действиях и датчик попросту нужно заменить.

Проверка датчика коленвала

После визуального осмотра проводите замеры сопротивления тестером. Для этого подключите его к рабочим контактам датчика и снимите показания. При исправном ДПКВ на экране прибора будут отображаться значения от 550 до 750 Ом. Настоятельно рекомендуем выяснить какие значения являются нормальными для вашего автомобиля.

Проверка датчика коленвала



Как найти утечку тока в автомобиле

Проверять дополнительное электрическое оборудование на предмет утечки тока лучше всего последовательно, методом исключения.

В первую очередь, следует проверить те приборы, которые устанавливались самостоятельно или в случайных автосервисах, не специализирующихся на установке электрического дополнительного оборудования – магнитолу, видеорегистратор, всяческие другие электронные «игрушки». Делать это лучше всего методом исключения – подсоединив мультиметр к АКБ вышеуказанным способом, отключайте устройства по одиночке. Если при отключении какого-либо из них значение тока утечки снизилось – то вы нашли «виновника». Далее действуйте по обстоятельствам – либо просто оставьте прибор отключенным, либо, если уверены в своих силах, пытайтесь его починить. К сожалению, сигнализацию таким способом проверить не удастся – она связана со многими другими элементами электрооборудования, «вычислить» неисправности которых можно лишь по косвенным признакам или проверяя точки подключения модуля сигнализации по отдельности.

Концевой выключатель в дверке автомобиля

Электрические цепи зажигания, стартера, и генератора не имеют предохранителей и утечку тока следует проверять в местах их подключения.

Косвенными признаками возможной утечки через сигнализацию могут быть грязь на концевых выключателях, их малый ход включения-выключения; также может быть замыкание в самом модуле из-за влаги, попавшей внутрь корпуса. Модуль в таком случае можно аккуратно вскрыть и обильно смочить спиртом – так, чтобы грязь и вода стекли с платы. Разумеется, эту процедуру необходимо производить при снятой клемме АКБ. Если нет спирта, можно воспользоваться средством вроде WD 40, но учтите, что в дальнейшем на плате может образоваться слой грязи – из-за налипшей пыли. Если вы не обнаружили утечки через дополнительное оборудование, приступайте к проверке штатной бортовой сети автомобиля. Проще всего проверку осуществлять, замеряя ток между контактами, предназначенными для предохранителя в монтажном блоке – можно изготовить самодельный адаптер из перегоревшего предохранителя, для подключения щупов мультиметра. Действуйте так же – методом исключения, проверяя различные цепи поодиночке. Но не всё электрооборудование можно проверить на предмет утечки таким способом – некоторые цепи предохранителями не защищаются. Как правило, это цепи зажигания, стартера и генератора. Сделано это с целью обеспечения бесперебойной работы этих систем. Поэтому проверку утечки тока в автомобиле, скажем, через генератор, нужно производить «на месте» – в местах подключения к нему проводов.

Рекомендуем: Подвеска автомобиля. Виды и типы подвесок автомобиля.



Как проверить кислородный датчик

Кислородный датчик – современный прибор, который проверяет наличие остаточного кислорода в отработавших газах выпускного коллектора.

Проверка этого элемента сводится к двум действиям:

  1. Внешний осмотр;
  2. Замер тестером.

Визуально вы легко можете оценить повреждения и дефекты датчика кислорода. На нем не должно быть нагара или механических повреждений. Также смотрите подводную проводку, дабы она не имела замыкания проводом или их оплавление.

Исправный датчик кислорода

После того, как визуальным осмотром вам не удалось найти неисправности датчика, переходите к замерам сопротивления и напряжения на нем. Лямбда-зонд (кислородный датчик) отправляем на его рабочее место. Далее проводим знакомство с подводной колодкой, которая имеет четыре контакта. Назначение каждого из контакта смотрите на рисунке ниже.

Колодка датчика кислорода

Далее вставляем с обратной стороны колодки скрепки на которые будем подключать измерительные концы тестера. Первым делом вставляем скрепку в гнездо под первым номером. Вторая скрепка отправляется в гнездо номер два. Теперь подключаем вольтметр, а его положительный контакт к первой скрепке. Отрицательный соответственно на вторую скрепку.

Проверка сигнального напряжения ДК

Теперь нужно завести автомобиль и наблюдать за показаниями прибора. При пуске двигателя и первом времени его работы показания будут равны 0,1-0,2 вольта. После прогрева двигателя показания увеличатся до 0,9 вольт. Если же этого не произошло, то можно считать датчик неисправным.

Проверка нагревателя ДК

Допустим напряжение на датчике поднялось. Далее нужно проверить нагреватель. Снимаем скрепки и проверяем сопротивление на третьей и четвертой клеммах. Диапазон нормального сопротивления равен 10-40 Ом.

Проверка питания нагревателя ДК

Теперь можно проверить питание цепи нагревателя. Включаем зажигание, но не заводим двигатель. Контакт вольтметра ставим на четвертую клемму, а отрицательный контакт на вторую клемму. На экране мультитестера должно показывать напряжение равное напряжению аккумулятора авто. Если этого не произошло, то цепь питания неисправна.



Принцип подключения потребителей к бортовой сети авто

Электрическая схема подключения фар

Протекание электрического тока по проводнику возможно лишь в том случае, когда тем или иным образом замкнута электрическая цепь.

Протекание электрического тока по проводнику возможно лишь в том случае, когда тем или иным образом замкнута электрическая цепь. То есть, в случае «штатного» расходования электроэнергии цепь: клемма АКБ «плюс» – потребитель – клемма «минус» должна не иметь разрывов. Конечно, это максимально упрощенная схема цепи. В автомобиле большинство потребителей подключается по более сложной схеме, в связи с чем неподготовленному человеку трудно разобраться в ней. Для того, чтобы не вести поиск неисправности вслепую, возьмём для наглядности схему, представленную на рисунке выше. Как видите, лампы и клемма 85 реле имеют общий «минус» – на авто он соединён зачастую с кузовом – «массой». Положительный же провод «разрывается» выключателем. При замыкании контактов выключателя ток проходит через катушку реле, подключенную к контактам 86 и 85. Катушка, благодаря электромагнитному полю, замыкает контакты 87 и 30 и ток проходит через лампы.

Перед проверкой утечки тока мультиметр ставят в режим амперметра

Рекомендуем: Обзор подходящих герметиков для системы охлаждения двигателя

Мысленно разделите множество объединённых цепей на небольшие схемы и ведите поиск места утечки тока целенаправленно, ничего не пропуская.

Практически все электроприборы автомобиля работают по схожей схеме – только, как правило, их цепи размыкаются ещё одним выключателем – замком зажигания, а в положительный провод «врезается» плавкий предохранитель. Реле и предохранители для удобства объединены в монтажный блок (или даже два). Всё это говорится здесь для того, чтобы вы не растерялись при виде массы жгутов проводки и для того, чтобы, мысленно разделив множество объединённых цепей на небольшие схемы, вели поиск места утечки тока целенаправленно, ничего не пропуская. Естественно, что некоторые приборы объединены в общие сети, но, тем, не менее несложно представить их множество как один потребитель – но несколько «расширенный» в пространстве. Причинами же утечки тока в автомобиле могут стать нежелательные «подключения» различных цепей либо друг к другу, либо к «массе» автомобиля из-за повреждённой изоляции проводов или из-за грязи, образующей «мостики» для тока.


Как проверить датчик детонации мультиметром

Датчик детонации топливной смеси представляет собой неразборный элемент внутри которого имеется пьезоэлектрический компонент. Когда в момент сгорания топлива происходит детонация, то она сопровождается некоторой ударной волной. Именно её засекает датчик детонации. В результате детонации на концах датчика появляется некоторый потенциал.

Строение датчика детонации

Данный тип датчика можно проверить на внутреннее сопротивление и напряжение. Сопротивление таких типов приборов равняется мегаомами. Следовательно вам нужно раздобыть книгу по эксплуатации вашего авто и найти нужные вам показания, а потом подключить омметр тестера на контакты и выяснить реальные данные.

Для проверки напряжение датчик полностью снимается с авто. Тестер переводится на режим милливольтов. Положительный щуп тестера подключаем на сигнальный провод, а отрицательный кладем на массу датчика в районе крепежного болта. После этого нужно аккуратно, с небольшим усилием ударить датчиком например об стол. В момент удара вольтметр зафиксирует наличие напряжение. Как правило, это 30-40 милливольт.

Датчик температуры на автомобиле

Один из важных приборов любого автомобиля, который показывает температуру охлаждающей жидкости в системе. Устанавливается непосредственно в головке блока цилиндров. Когда датчик неисправен, на приборной панели загорается специальный индикатор. Вот основные признаки, которые будут указывать на неисправность температурного датчика:

  • Двигатель постоянно перегреваетс.
  • При повышении температуры двигателя снижается управляемость авто.
  • Повышенный расход топлива.
  • Состав выхлопа значительно ухудшается.

Как проверить датчики температуры на авто? Необходимо измерить сопротивление между клеммами в зависимости от температуры двигателя. Чем выше температура, тем ниже должен быть показатель сопротивления. Необходимо будет отодвинуть резиновый кожух, который закрывает контакты. Далее «плюс» прибора для измерения подключается к проводнику сигнального контакта, а «минус» к заземлению. Затем мотор автомобиля заводится и прогревается до определенных температур. Для каждого авто есть специальная таблица с показаниями сопротивления в зависимости от температуры.

Индуктивные датчики уровня воды стиральных машин

Бытовая техника

Главная Ремонт электроники Бытовая техника

Как известно, во всех стиральных машинах (СМ) используются датчики уровня воды (прессостаты). На самом деле они измеряют давление воздуха в трубке, которая подключена к воздушной камере бака СМ, поэтому показания подобных датчиков пропорциональны уровню воды в баке. Такой простой способ измерения уровня воды используется еще и потому, что высокая точность при измерении не требуется. Сигналы с датчиков уровня в дальнейшем используются системой управления СМ при выполнении различных программ (в процессе стирки, отжима), а также для обработки нештатных режимов (перелив воды в баке и др.).

В СМ используются два типа датчиков — электромеханические и электронные.

В электромеханическом датчике давление воздуха воздействует на диафрагму датчика, которая, в свою очередь, меняет положение электрического переключателя, что соответствует различным уровням воды в баке.

Рис. 1. Внешний вид датчиков давления серии MPX5010xxxxx

Что же касается электронных датчиков, они имеют несколько разновидностей. Неизменной во всех типах подобных датчиков остается только диафрагма. Но, в отличие от электромеханических датчиков, она уже воздействует на встроенные в датчик электронные элементы (катушка, конденсатор, потенциометр и др. ), вследствие чего на выходе схемы формируются соответственно напряжение, частота (после преобразования в электронной схеме) или меняются параметры пассивных элементов (индуктивность, сопротивление).

В качестве примера датчиков-преобразователей «давление/напряжение» можно привести приборы семейства MPX5010xxxxx компании FREESCALE SEMICONDUCTOR. Они имеют малые габариты, достаточно высокую точность измерения и работают в диапазоне давлений 0…10 кПа. Диапазон напряжений на выходе подобных датчиков составляет 0,2…4,7 В. Внешний вид этих датчиков показан на рис 1.

Подобные датчики пока широкого распространения не получили, они только начинают применяться в составе новых моделей стиральных машин.

Наиболее широкое распространение в настоящее время получили индуктивные датчики. Из их названия ясен тип датчика — это преобразователь «давление/индуктивность». Подключение индуктивного датчика уровня и его конструкцию поясняет рис. 2, а его внешний вид показан на рис. 3.

Рис. 2. Подключение индуктивного датчика уровня и его конструкция

Рис. 3. Внешний вид индуктивного датчика уровня

Конструктивно индуктивный датчик уровня состоит из катушки и подпружиненного магнитного сердечника, который может перемещаться вдоль оси катушки при деформации диафрагмы, воспринимающей изменение давления. Изменение положения сердечника приводит к изменению индуктивности L катушки датчика.

Исходя из того, что данные датчики включены во времязадающую цепь LC-генератора, его собственная частота f определяется формулой:

где С — емкость конденсатора (в составе датчика),

L — индуктивность катушки датчика.

Зависимость частоты генератора от уровня воды в баке условно показана на рис. 4: малому уровню воды соответствует высокая частота f, и наоборот. В зависимости от типа датчика уровня, а также параметров схемы генератора, верхнему уровню воды может соответствовать частота 15.21 кГц, нижнему уровню — 25.30 кГц. Относительно большая индуктивность датчика (соответственно, низкая частота генератора) выбрана не случайно. Это связано с тем,чтобы длин

ные соединительные провода датчика имели минимальное влияние на частоту генератора (электронные компоненты генератора обычно размещены на плате электронного модуля).

Принципиальная электрическая схема генератора с индуктивным датчиком уровня на примере СМ «LG WD-1020W» показана на рис. 5. Схема представляет собой простейший генератор с обратной связью (ОС). В цепи ОС включены катушка L, конденсаторы C1, C2 (все входят в состав датчика уровня) и резисторы R1, R2, R4 (входят в состав электронного модуля).

Рис. 4. Характер зависимости частоты генератора от уровня воды в баке

Частота f этого генератора выражается формулой:

где С1, С2 — емкости конденсаторов (в составе датчика), L — индуктивность катушки датчика.

Эта схема не требует подробного описания. Перечислим назначение основных элементов схемы (рис. 5):

IC1.1, IC1.2, L, C1, C2 — элементы контура LC-генератора;

IC1.3 — буферный усилитель;

С3, С4 — фильтрующие конденсаторы;

D1-D4 — ограничительные диоды.

На рис. 6 показаны принципиальные схемы генераторов на основе индуктивных датчиков, используемых в бытовой технике Electrolux (Zanussi, AEG), а также графики зависимости частоты генерации от уровня воды в баке.

Следует отметить особенность одного из генераторов(справа на рис. 6) для аппаратной платформы СМ EWM2000 — в его выходную цепь включен делитель частоты на основе последовательного счетчика 74HC4040. В отличие от общепринятых решений, на вход системы управления СМ (после счетчика) поступают импульсы с частотой почти в 1000 раз ниже (частотный диапазон 36,128.45 Гц).

Рис. 5. Принципиальная электрическая схема генератора на основе индуктивного датчика уровня (на примере СМ LG WD-1020W)

Принципиальная электрическая схема генератора на основе индуктивного датчика, которая применяется в СМ «LG WD-80160», приведена рис. 7.

Примечание. Контакты соединителя NA6 электронного модуля LG (ELAN PJT6870EC9090A-1 2002.10.21), к которым подключен индуктивный датчик уровня, в технической документации на данный тип СМ имеют другую цоколевку.

Рис. 6. Принципиальная электрическая схема генераторов на основе индуктивных датчиков уровня (Electrolux, Zanussi, AEG). Графики зависимости частоты генерации от уровня воды в баке

Проверка индуктивных датчиков уровня

Проверку работоспособности данного типа датчиков можно выполнить следующими способами:

1. При выполнении сервисного теста СМ

В некоторых СМ с дисплеем (LG) при выполнении одного из шагов сервисного теста (на этапе залива воды) на дисплее отображается условный цифровой код, соответствующий уровню воды в баке в данный момент времени. Если значения этого кода выйдут за рамки допустимых, необходима проверка (замена) датчика уровня и связанных с ним цепей.

2. Индикация соответствующих кодов ошибок СМ При отображении на передней панели СМ различных

кодов ошибок, связанных с процессами, которые контролирует датчик уровня (залив/слив воды, рассогласованность показаний датчиков уровня) не всегда ошибки указывают на неисправность именно этого датчика.

В большинстве случаев приходится проверять работоспособность клапанов залива воды, помпы и их цепей.

3. Непосредственный контроль частоты генерации на выводах датчика или в соответствующих контрольных точках на электронном модуле СМ

Подобную проверку можно выполнить с помощью

частотомера. Уровни воды в баке (или изменение давления воздуха на диафрагму датчика) можно сымитировать различными способами.

4. Внешний осмотр

В первую очередь проверяют надежность соединения датчика с пластиковой трубкой, а также целостность самой трубки. Также необходимо проверить электрический соединитель датчика.

Рис. 7. Принципиальная электрическая схема генератора на основе индуктивного датчика уровня (на примере СМ LG WD-80160, электронный модуль ELAN PJT6870EC9090A-1 2002.10.21)

Рис. 8

5. Измерение индуктивности датчика при разных величинах давления на его диафрагме

Эту проверку можно выполнить, например, с помощью измерителя иммитанса. Уровни воды в баке (или изменение давления воздуха на диафрагму датчика) можно также сымитировать различными способами.

Отметим, что при неправильной работе данного типа датчиков в первую очередь необходимо убедиться в том, что причиной ошибки (дефекта) является именно он, а не другие конструктивные или электронные элементы СМ (например, нарушение герметизации пластиковой трубки, отсутствие контакта в соединителях датчика, неисправность электронного модуля).

На индуктивных датчиках имеется регулировочный винт, который залит фиксирующей краской — см. рис. 8 (показан стрелкой). Этим винтом регулируется начальное положение диафрагмы датчика, а, следовательно, и положение сердечника катушки, которое определяет значение L0 катушки. Положение винта калибруется в заводских условиях и в дальнейшем регулировки не требует.

При отказе работоспособности датчика регулировать этот винт нежелательно, так как чаще всего нештатное изменение индуктивности его катушки связано с повреждением диафрагмы. В подобных случаях лучше всего заменить сам датчик.

Автор: Максим Новоселов (п. Усть-Абакан, Республика Хакасия)

Источник: Ремонт и сервис

Дата публикации: 03. 01.2014

Мнения читателей
  • Андрей / 08.10.2019 — 16:34 Спасибо Вам за эту статью. Очень помогли.
  • Андрей / 12.06.2019 — 06:16 Максим Новосёлов большое спасибо.
  • Артур / 30.05.2019 — 21:33 Олег ! это не картинки а схемы , большое спасибо автору
  • Артур / 29.05.2019 — 19:30 машинка самсунг , ошибка 1Е постоянно сливает воду при этом больше не каких операций не делает , в самом датчике уровня воды плата на которой два конденсатора С1 и С2 и все это подсоеденяется к катушке как показано выше только без микросборки , начал прозваневать цепь и был удивлен кондюки замкнуты тупа звенят, на контакте 1 2.5 вольта . Вопрос ! разве такое может быть ?
  • Владимир / 04.04.2019 — 04:36 Электронный прессостат сма haier модель hw50-12866me постонно сигналит модулю о пустом баке и солиноидное убл открывает люк-стирка не возможна…Вопрос:неисправен прессостат или другой узел? Как ведёт себя такой прессостат в работе?
  • Олег / 23.09.2018 — 16:56 Статья ни о чем. картинки можно самому нарисовать, а больше информации полезной и нет
  • Жан / 29.01.2018 — 12:33 Можно проверить с помощью осциллографа если знать где какие выводы у датчика

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

Как устроена система зажигания скутера

Система зажигания скутера – это один из важнейших компонентов средства передвижения. Если она выходит из строя, то доехать до места назначения без ремонта можно только на буксире, ведь мотор никак не заведется без ценной искры.


Система зажигания скутера

Во всех мотодвигателях задача системы зажигания одна – зажечь смесь горючего в цилиндрах. Поджигание смеси происходит за счет искры от свечи.

Состоит система зажигания скутера и других мотосредств из следующих компонентов.

  1. Ключ зажигания (Ignition switch).
  2. Свеча (Spark plug).
  3. Высоковольтные провода.
  4. Катушка или бабина (Ignition Coul).
  5. Генератор (Generator).
  6. Датчик холла (Sensor).
  7. Выпрямитель (Rectifler).
  8. Блок управления или коммутатор (CDI).

Контакты, клеммники и штекеры тоже входят в систему зажигания скутера.

Схема простая:

Генератор вырабатывает электроэнергию, но она переменная, а не постоянная. Выпрямитель энергию генератора нормализует и раздает в систему.

Генератор соединен напрямую с выпрямителем, замком зажигания и АКБ (аккумуляторной батареей).

Замок зажигания соединен также с коммутатором и катушкой.


Коммутатор скутера и его схема

Бабина — со свечой и генератором.

Таким образом, получается круговая схема, в которой элементы зажигания поддерживаются между собой.

Важные моменты.

  • От свечи зажигания до бабины идет главный высоковольтный провод.
  • Бабина всегда должна быть расположена в радиусе 40 см от двигателя и на расстоянии 30 см от свечи.
  • Коммутатор – это черная коробочка с белыми колодками проводов. Может располагаться как в передней части скутера, так и в задней.
  • От выпрямителя идут несколько проводов, как правило, 7. Как и коммутатор, он может располагаться как впереди, так и сзади.
  • Индукционный датчик на скутерах располагается так, что при вращении генератора, он задействуется. Представить себе это можно так: на колесе генератора имеется прилив, который при вращении входит с прорезью датчика в контакт.
  • Как только датчик холла входит в контакт, он подает сигнал на коммутатор. Последний в обычном режиме бывает закрыт, после получения команды от ДХ открывается.
  • Через коммутатор заряженный конденсатор подает напряжение прямиком на катушку. Последняя оснащена 2-я выводами: на землю и на коммутатор.
  • У бабины имеются 2 обмотки. На первичную обмотку намотано мало витков, на вторичную – много. Таким образом, как в любом трансформаторе, здесь образуется высокое напряжение, передающееся на свечу.
  • На свечу поступает порядка 20 Квт.

Если пропала искра на скутере

Итак, зная о работе системы зажигания, можно легко определить слабое звено. Например, если пропала искра в системе, скутер остановился и не едет дальше, путем логических вычислений можно найти причину, которая частенько связана бывает именно с датчиком холла.


Элементы системы зажигания скутера

Как и в автомобильных системах, проверку следует всегда начинать со свечи (свечей). Она выкручивается и подвергается осмотру:

  • чересчур белый электрод свечи говорит о перегреве;
  • желтый – о перебоях в зажигании;
  • черный – об обогащенной топливной смеси.

Процесс проверки можно значительно облегчить, если иметь под рукой резервную и исправную свечу. Она вставляется на место старой, и проверяется наличие искры в зазоре свечи. Делается это путем легкого прикосновения свечой, вдетой в провод, к массе и одновременного запуска двигателя.

Внимание. Работать следует обязательно в защитных перчатках, так как 20 квт тока – это не шутки. Прикасаться к кузову (массе) или свече в этот момент голыми руками запрещается.

Поиски продолжаются, если на свече не появляется искра. Другими словами, высокое напряжение от бабины в свечу не поступает. Под сомнение попадает бронепровод и собственно, сама бабина.

Рекомендуется проверять бронепровод на концах его, в местах соединения со свечой и бабиной. Выводы катушки рекомендуется «оживить» (если она рабочая) путем снятия и вдевания проводов массы и плюса.

Следующий элемент системы зажигания, подвергаемый проверке – коммутатор. Крепится на скутерах он благодаря резинке, так что снять его будет несложно. На коммутатор скутера идет 5 (6) проводов: 2/3 на одну колодку и 3 – на другую.


Как проводится проверка и ремонт системы зажигания скутера

Датчик подвергается осмотру в том случае, если в порядке свеча, бабина и коммутатор. К ДХ идет один провод от коммутатора напрямик, минуя другие элементы системы. Располагается датчик возле генератора. Подробнее о том, как проверять его, написано выше.

Как проверить датчик АБС тестером на работоспособность

Исправность антиблокировочной системы тормозов – основа безопасной езды на автомобиле, особенно в условиях сложной дорожной обстановки. Если в процессе управления транспортным средством на приборной панели загорелся индикатор неисправности системы ABS, следует немедленно принять меры по ее устранению.

Даже, если один из датчиков АБС работает некорректно, это приводит к полному отказу антиблокировочной, противобуксовочной систем, неисправности системы курсовой устойчивости, если они установлены на автомобиле.

Диагностика системы ABS

Перед тем, как приступить к проверке датчика АБС, следует определить, какой из них не передает сигнал. Проще всего это сделать с помощью компьютерной диагностики.

Для автомобилей после 2000-х годов выпуска это не представляет труда. OBD-сканеры четко определяют какой из них не дает информации о состоянии вращательного движения колеса.

Но далеко не всегда эта информация свидетельствует о неисправности самого датчика. Наоборот, как правило, сам датчик  АБС исправен, а неисправность заключается в проводке, идущей к нему либо считывающему устройству вращения колеса.

Принцип работы датчика АБС

Датчик ABS – электромагнитный. То есть в него встроены индуктивность и магнитный сердечник, которые реагируют на сигнал, поступающий при вращении колес.

Автолюбители со стажем знают, что при торможении на скользкой дороге на педаль тормоза следует нажимать прерывисто, чтобы исключить блокировку колес, следовательно, что может привести к неуправляемости  автомобиля.

В принципе, такую функцию выполняет блок ABS. Он не дает заблокировать колеса. Если диагностика показала на неисправность датчика АБС, сначала следует убедиться в его работоспособности.

Конкретно компьютерная диагностика может показать неисправности «обрыв или короткое замыкание» или «отсутствие сигнала». И в том и в другом случае может быть виноват датчик ABS.

Как тестером проверить датчик АБС на работоспособность

Его работоспособность можно проверить с помощью мультиметра. Для этого необходимо перевести  мультиметр в положение «диод». Почему? Большинство датчиков ABS в схеме имеют защиту в виде диода, последовательно включенного в цепь схемы. То есть обычная прозвонка может привести к неправильным сведениям.

Его необходимо «прозвонить» в обоих направлениях. Обычно сопротивление датчика АБС составляет от нескольких сотен Ом до 2 килоОм.

Однако, прозвонка датчика непосредственно от его разъема не дает полной информации о прохождении его сигнала до блока ABS.

Во многих случаях повреждение имеет кабель, соединяющий разъем датчика с блоком ABS. Особенно часто такие неисправности встречаются для датчиков ABS задних колес, так как длина кабеля может составлять более 3-х метров, и не всегда производители грамотно конструируют его трассировку.

В процессе ремонта систем ABS имеются случаи до трех переломов либо протираний кабелей датчиков антиблокировочной системы.

Для того, чтобы проверить датчик от блока управления ABS, необходимо найти в справочниках либо Интернете распиновку (подключение) разъема. Далее следует отсоединить разъем от блока и прозвонить датчики АБС непосредственно от контактов разъема, как показано на примере:

Еще раз напоминаем, вид разъема ABS и контакты датчиков для каждой модели автомобиля будет различен, следует пользоваться справочными данными. На блоках ABS (их легко найти под капотом по большому количеству подходящих к ним тормозным трубкам) обычно наносят их классификацию, например BOSCH 5.2.

Если в результате проверки мультиметром датчик АБС прозванивается в одном или обоих направлениях, это еще не свидетельство об его исправности.

Конструктивно он выполнен в виде катушки индуктивности, помещенной в магнитный сердечник. Катушка имеет большое  количество (до нескольких тысяч) витков очень тонкого изолированного провода.

Часто внутрь датчика попадает влага, а это весьма вероятно, так как он расположен в наиболее подверженной коррозии зоне в непосредственной близости колес. Вода, особенно солевой раствор, могут вызвать межвитковые замыкания. В таком случае сопротивление обмотки изменится незначительно, а вот добротность падает в десятки раз. Это приводит к уменьшению уровня сигнала датчика АБС и его неработоспособности.

Очень часто в процессе эксплуатации, особенно после замены элементов ступицы, колес, начинает гореть лампочка неисправности ABS. Компьютерная диагностика показывает отсутствие сигнала датчика АБС, например, правого переднего колеса.

Владелец производит его замену, основываясь на показания диагностики, но система ABS остается все равно неисправной. Иногда после удаления ошибки сканером, лампочка неисправности потухает, но стоит проехать несколько сотен метров, произвести пару торможений, загорается вновь.

Здесь дело не в датчике, а в конструктивных особенностях формирования сигнала (индуцирования) датчика вращения колес.

Конструктивные особенности

На рисунке выше был показан случай, когда в качестве индуцирующего элемента используется гребенчатое кольцо, располагающееся на ступице. Торец датчика находится в непосредственной близости от гребенки из магнитомягкого материала. Расстояние зазора обычно от 0,2 до 0,8 миллиметров.

Иногда в зону зазора попадает грязь, мелкие камешки. Это может привести к тому, что зазор увеличится (датчик оттолкнется, либо разрушится его наконечник).  Сигнал резко уменьшится. Иногда к этому приводит даже засорение гребенки.

Поэтому перед заменой датчика следует почистить гребенку, лучше с использованием растворителя или дизтоплива (но не бензина, это может привести к возгоранию).

Затем с помощью щупа проконтролировать величину зазора, она должна быть не более 1 мм. Если нет набора щупов, можно визуально проверить, нет ли видимых разрушений элементов его конструкции. Для большей точности можно сравнить с его элементами противоположного колеса.

Если имеются разрушения металлической конструкции гребенки колеса, следует ее заменить.

В некоторых автомобилях индуцирующий элемент выполнен в виде резинового кольца, в которое вмонтированы магнитные вставки.

В процессе ремонта неопытные механики, не осознавая назначение этих колец, просто их не одевают, что приводит к неисправности системы ABS .

В настоящее время часто используются ленты, состоящие из микромагнитных элементов.

В процессе ремонта ступицы эту ленту иногда повреждают, даже не замечая этого. В таком случае датчик АБС также будет работать некорректно.

При замене подшипников ступицы следует обратить внимание, нет ли на нем индуцирующего кольца. На рисунке изображен подшипник с полуразрушенным кольцом. На уцелевшей части видны сегменты магнитных элементов.

При самостоятельном ремонте ступиц колес следует обязательно обращать внимание на конструктивные элементы, расположенные вблизи датчиков ABS.

Советы

Чтобы неисправности датчиков АБС случались как можно реже, следует:

  • стараться избегать движения по местности с низкорослым кустарником, чтобы не повредить кабель ABS;
  • периодически чистить мягкой щеткой место зазора между ним и металлической гребенкой;
  • ремонт ступиц колес, рычагов подвески доверять механикам, имеющим представление о работе системы ABS.

Простая схема самодельного зарядного устройства для автомобильного аккумулятора выручающего в крайних случаях.

Как проверить сопротивление высоковольтных проводов мультиметром.

Почему закипает аккумулятор https://voditeliauto.ru/poleznaya-informaciya/avtoustrojstva/akb/kipit-akkumulyator-na-mashine.html на автомобиле.

Видео — как проверить какой датчик АБС не работает на BMW e32/34:

Может заинтересовать:


Сканер для самостоятельной диагностики автомобиля

Добавить свою рекламу


Сравнить стоимость ОСАГО для своего авто

Добавить свою рекламу


Выбрать видеорегистратор: незаменимый гаджет для водителя

Добавить свою рекламу


Некоторые водители предпочитают видеорегистратор в виде зеркала

Добавить свою рекламу

Как проверить датчик АБС тестером.

Видео проверки на работоспособность датчика ABS мультиметром

Датчик ABS в антиблокировочной системе тормозов предназначен для фиксации разницы скорости вращения колес. Рассмотрим, как проверить датчик АБС. Правильная диагностика поможет найти причину, из-за которой на приборной панели загорелась индикация неисправности помощника в торможении.

Разновидности конструкции

Для расчета угловой скорости вращения колеса могут использоваться 2 типа устройства датчиков АБС:

  • на основе индуктивного элемента. Еще их называют пассивными, так чувствительный элемент не нуждается во внешнем питании, а сам принцип работы основывается на эффекте электромагнитной индукции. Несмотря на простоту конструкции и надежность, на современных автомобилях такие устройства встречаются все реже. Главный недостаток конструкции – на низкой скорости движения авто невозможно адекватно рассчитать скорость вращения колес;
  • датчики на основе эффекта Холла. Их еще называют активными, так как чувствительный элемент нуждается в питании – опорном напряжении. Вырабатываемый такими датчиками скорости сигнал позволяют ЭБУ точнее рассчитать скорость вращения колес.

Устройство, принцип работы индуктивных датчиков ABS

Благодаря принципу действия электромагнитной индукции, прохождение вблизи железного сердечника зубьев гребенки, установленной на корпусе ШРУСа, провоцирует скачки напряжения. Благодаря вращению колеса, на выводах датчика АБС фиксируется синусоидальное колебание напряжения; частота переменного напряжения прямо пропорциональная угловой скорости вращения колеса.

Блок управления антиблокировочной системой тормозов регистрирует и сравнивает аналоговые сигналы со всех чувствительных элементов, что позволяет рассчитать разницу угловых скоростей вращения колес.

Метод проверки мультиметром

Если вы знаете, как пользоваться мультиметром, то проверить датчик АБС пассивного действия можно с помощью даже самого дешевого универсального измерителя. Соответствие возможных неисправностей и методы их диагностики:

  • обрыв цепи обмотки катушки. Переведите мультиметр в режим прозвонки диодов. Если прибор покажет бесконечное сопротивление, значит, в цепи присутствует обрыв;
  • отпаивание контактов обмотки катушки. Характер поломки такой же, как и при обрыве;
  • короткое замыкание. Для проверки переведите мультиметр в режим измерения сопротивления – омметр, диапазон измерений – до 20 кОм. Предварительно измерьте сопротивление заранее исправного датчика либо узнайте нормативное значение из технической документации. Обычно сопротивление исправных элементов колеблется от 0,7 до 2,5 кОм. При этом важно учитывать, что сопротивление исправных датчиков на передней и задней осях может значительно отличаться.

Если датчик АБС снят с автомобиля, то сымитировать вращение задающего диска можно любым предметом из магнитного металла.

Из-за агрессивности среды установки, датчики АБС на мотоциклах могут иметь вместо постоянного магнита электромагнит, что обязательно нужно учитывать при проверке без демонтажа (должно быть включено зажигание).

Как облегчить поиски

Чтобы не осуществлять проверку тестером на каждом из колес по отдельности, снимите разъем блока управления АБС. На видео показано, что разобравшись в распиновке, вы сможете быстро найти, в какой из цепей короткое замыкание либо обрыв.

Применение эффекта Холла

Принцип работы датчика Холла базируется на эффекте возникновения поперечной разницы потенциалов при помещении проводника с постоянным током в магнитное поле. Изменение магнитного поля при прохождении зубчатого колеса вблизи чувствительного элемента провоцирует возникновение скачков напряжение прямоугольной формы. Частота импульсов позволяет блоку управления ABS рассчитать фактическую скорость вращения колес.

Метод диагностики

Поскольку принцип работы датчика АБС основывается на эффекте Холла, его самостоятельная проверка схожа с диагностикой датчика скорости, использующегося в работе спидометра, ДПКВ. Полноценную проверку корректности сигнала можно осуществить только осциллографом, но для простейшей диагностики подойдет и обычный мультиметр.

Для проверки необходимо перевести тестер в режим измерения постоянного напряжения. Подключите измерительные щупы к сигнальным контактам датчика, предварительно подав питание через дополнительное сопротивление (резистор номиналом от 480 Ом до 1.2 кОм) и подключив контакт «массы» к неокрашенной части кузова автомобиля. Если элемент полностью неисправен, вращающийся вместе со ШРУСом маркерный диск не спровоцирует смену высокого и низкого уровня напряжения.

Автономная проверка

Для работы чувствительному элементу необходимо опорное питание, поэтому без внешнего источника ЭДС, способного выдать 9-12 В, проверить датчик АБС мультиметром не получится. Также в цепь необходимо будет включить дополнительный резистор (в случае с тормозной системой Opel Vectra C, как показано на видео, достаточно будет элемента с номиналом 680 Ом). Распиновку разъема можно найти в руководстве по ремонту и эксплуатации вашего авто.

Поскольку чувствительный элемент будет снят с автомобиля, имитировать вращение маркерного диска можно перемещением магнита вблизи чувствительного элемента.

Общие рекомендации по диагностике системы ABS

При обрыве цепи самодиагностика системы АБС обязательно зафиксирует факт уменьшения сопротивления в цепи датчиков и зажжет лампочку неисправности ABS на приборной панели. Некоторые системы способны не только регистрировать факт ошибки, но и вычислять, на каком из колес произошла поломка. Поэтому при возможности первым делом имеет смысл провести компьютерную диагностику. На многих автомобилях при поломке более 1 датчика система зажигает не только лампочку неисправности ABS, но и индикацию включения стояночного тормоза, после чего АБС выключается.

Перед началом диагностики мультиметром убедитесь, что воздушный зазор между датчиком и задающим диском выставлен правильно, а сами полости маркерного диска не имеют плотных грязевых, коррозийных отложений.

Будьте крайне аккуратны при демонтаже датчика. Часто они прикипают, но удары либо иное применение грубой силы может привести к повреждению пластикового корпуса. При установке следите за тем, чтобы между задающим диском и чувствительным элементом был корректный воздушный зазор.

Датчик коленвала ваз 2110, 2114, приора: признаки неисправности

Автомобили с автоматической системой управления двигателем в большинстве своем работают с установленным и важным датчиком положения коленчатого вала (ДПКВ) для обеспечения синхронизации механического движения поршней с системой зажигания и топливоподачей.

Рассмотрим на примере как работает датчик коленвала ВАЗ 2110, а также 2105, 2107, 2108, 2109, 21099, 2111, 2117, 2112, 2113, Приора, Нива, Шевроле Нива, Калина 1117, 2114, 2115.

Что такое датчик положения коленвала на вазе

Датчик положения коленчатого вала индукционного типа устанавливается рядом со специальным диском, расположенным совместно с приводным шкивом коленчатого вала. Специальный диск называют реперным или задающим. Вместе с ним обеспечивает угловую синхронизацию работы блока управления. Пропуск двух зубьев из 60 на диске позволяет системе определить ВМТ 1-ого или 4-ого цилиндра. 19-й зуб после пропуска должен смотреть на стержень ДПКВ, а метка на распредвале должна стоять против загнутого кронштейна отражателя. Зазор между датчиком и вершиной зуба диска находится в пределах 0,8-1,0 мм. Сопротивление обмотки датчика 880-900 Ом. Для снижения уровня помех проводник датчика коленчатого вала экранирован.

 

 

 

 

 

 

 

 

 

 

После включения зажигания управляющая программа блока находится в режиме ожидания сигнала импульсов синхронизации с датчика положения коленчатого вала. При вращении коленвала сигнал синхроимпульсов поступает мгновенно в блок управления, который, в соответствии с их частотой коммутирует на «массу» электрическую цепь форсунок и каналы катушки зажигания.

Алгоритм программы блока управления работает по принципу считывания проходящих мимо магнитного сердечника ДПКВ 58-ми зубьев с пропуском двух. Пропуск двух зубьев является опорной меткой для определения поршня первого (четвертого) цилиндра в положении верхней мертвой точке, с которой блок анализирует и распределяет по рабочим тактам двигателя коммутационные сигналы, управляющие открытием форсунок и искрой на свечах зажигания.

Блок управления выявляет кратковременный сбой в системе синхронизации и пытается пересинхронизировать процесс управления. В случае невозможности восстановления режима синхронизации (отсутствие контакта на разъеме ДПКВ, обрыв кабеля, механические повреждения или излом задающего диска) система выдает на панель приборов сигнал об ошибке, зажигая аварийную лампу Check Engine. Двигатель при этом заглохнет и запустить его будет невозможно.

Датчик положения коленчатого вала является надежным устройством и редко выходит из строя, но иногда встречаются неисправности, связанные с невнимательным или халатным отношением специалистов, обслуживающих двигатель.

Например, на ВАЗ-2112 установлен двигатель 21124 (16 клапанов где кабель ДПКВ находится очень близко к выпускному коллектору) и проблема возникает обычно после ремонта, когда фишка на кабеле не закреплена на скобе. Соприкасаясь с горячей трубой кабель плавится, разрушая схему соединения и автомобиль глохнет.

 

 

 

 

 

 

 

 

 

 

 

 

Другим примером может оказаться некачественно изготовленный задающий диск, резиновая муфта которого может проворачиваться по внутреннему соединению.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Электронный блок управления, получая единственный сигнал от ДПКВ, определяет положение относительно коленчатого вала в каждый момент времени, рассчитывая частоту его вращения и угловую скорость.

На основе синусоидальных сигналов, выданных датчиком положения коленчатого вала, решается широкий круг задач:

  • Определение в данный момент времени положения поршня первого (или четвертого) цилиндра.
  • Управление моментом впрыска топлива и длительностью открытого состояния форсунок.
  • Управление системой зажигания.
  • Управление системой изменения фаз газораспределения;
  • Управление системой абсорбирования паров топлива;
  • Обеспечение работы других дополнительных систем, связанных с частотой вращения вала двигателя (например, электроусилитель руля).

Таким образом, ДПКВ обеспечивает функционирование силового агрегата, с высокой точностью определяя работу его двух основных систем — зажигания и впрыска топлива.

Прежде, чем приобретать ДПКВ для его замены, необходимо уточнить о типе устройства, установленного на двигателе.

Типы датчиков коленвала

Индуктивный (магнитный) ДПКВ

В основе устройства лежит намагниченный сердечник, помещенный в катушку. В состоянии покоя магнитное поле постоянно и в его обмотке отсутствует ЭДС самоиндукции. Когда перед магнитным сердечником проходит вершина металлического зуба задающего диска магнитное поле вокруг сердечника изменяется, что приводит к индукции тока в обмотке. При вращении диска на выходе возникает переменный ток, при этом частота тока изменяется в зависимости от частоты вращения вала. Работа основана на эффекте электромагнитной индукции.

Особенностью этого датчика является его не сложная конструкция, работающая без подачи дополнительного питания.

Датчик на основе эффекта Холла 

Тип этих датчиков работает на микросхеме, помещенный в корпус с магнитопроводом, а задающий диск создает движущееся магнитное поле намагниченными зубьями.

Датчик обеспечивает высокую точность выдачи сигналов во всех заданных режимах вращения коленвала. Датчик, работающий на основе эффекта Холла требует подключения постоянного напряжения.

Оптические датчики 

В основу заложено физическое явление фотоэффекта. Конструктивно он представляет собой источник света с приемником (фотодиодом). Вращаясь между источником и приемником перфорированный диск периодически закрывает и открывает путь источнику света, в результате фотодиод выдает импульсный ток, поступающий в виде аналогового сигнала в блок управления (система имеет ограниченное применение и ранее устанавливалась в трамблеры инжекторных автомобилей, например, Матиз).

Немного о задающих дисках

Задающие диски для индуктивных датчиков изготавливаются из стали, иногда заодно со шкивом коленвала (например, автомобиль Опель).

Диски для датчиков Холла изготавливаются из пластика, а в их зубьях запрессованы постоянные магниты.

Как проверить датчик коленвала ВАЗ

 Вазовский датчик коленвала индуктивного типа проверяется мультиметром на предмет обрывов внутри катушки и заданного сопротивления, величина которого находится в диапазоне 600-900 Ом. Обязательной так же является проверка проводки ДПКВ.

Проверка может быть осуществлена измерением индуктивности, для этого необходимо иметь три прибора: вольтметр, трансформатор и измеритель индуктивности. Метод не сложный, но громоздкий и эффективнее купить новый датчик с целью проверки работоспособности двигателя.

Проверку ДПКВ также осуществить стартерной прокруткой, наблюдая за показаниями тахометра. Диодной контролькой можно проверить наличие импульсов на разъеме форсунок.

Где находится датчик коленвала ВАЗ 2110

Блоки двигателей 1117, 21124, 21126, 2111, 2170 независимо 16 клапанные или 8 кл, конструктивно одинаковые и различны только головками блока. 16 клапанные имеют два распредвала и по ширине превосходят почти в два раза 8 клапанные головки.

ВАЗ-2110, эксплуатируется как с 8 кл. двигателями, так и 16 кл., но расположение ДПКВ неизменно и крепится в нижней части двигателя.

Замена датчика коленвала

Лада Калина, Веста, Гранта, 21214 или классическое авто 2107 – принцип замены ДПКВ одинаковый. Достаточно открутить удерживающий болт с кронштейна, отключить разъем со жгута проводов и снять датчик.

Признаки неисправности ДПКВ

Неисправность в датчике положения коленчатого вала приводит к подергиваниям автомобиля на разных режимах, к провалам и тяжелому запуску двигателя. Эти неисправности могут возникать и по другим многочисленным причинам, выявить которые возможно диагностическими приборами. Но основные признаки неисправности ДПКВ на инжекторном автомобиле — это продолжительный запуск двигателя или отсутствие запуска.

Замена фишки и распиновка ДПКВ ВАЗ 2110

С течением времени происходит износ проводов, идущих на фишку ДПКВ. Расположен в нижней части двигателя и недалеко от переднего колеса, в результате на ДПКВ и его фишку попадает и оседает грязь, снег, масло, химические агрессивные среды в виде соли, что ведет к медленному окислению проводов на фишке и в последствии к их обрыву. Так как провода от фишки совмещены в единый жгут, то при его замене предусмотрена ремонтная фишка с выступающими двумя проводами длиной 15 см. Удалив поврежденную фишку, устанавливают новую на «скрутку». Точки скрутки изолируют использованием термоусадки или изоленты.

Из приведенной ниже схемы видно, что распиновка их не сложная и два провода непосредственно соединяются с контактами входа сигнала в блоке управления, проходя по всей длине жгута. Полярность соединения сигнальных проводов датчика с блоком управления должна соблюдаться. При обратной полярности система синхронизации работать не будет. Для восстановления работы ДПКВ необходимо просто поменять местами провода и проверить работоспособность, запустив двигатель.

Осциллограмма ДПКВ ВАЗ

Для точной диагностики работы ДПКВ применяется осциллограф. Подключив щупы осциллографа на экране монитора отобразится осциллограмма работы ДПКВ, на которой можно четко различить точку пропуска зубьев и измерить величину сигнала в вольтах по максимальной амплитуде 58-ми зубьев, расположенных между точками пропуска.

Можно ли завести машину без датчика коленвала

Датчик коленвала является главным звеном в цепи управления двигателем. Синхронизируя механическое движение валов и определяя относительное положение поршней посредством ДПКВ блок управления в нужный момент времени производит коммутацию, включая топливные форсунки и катушку зажигания. Без датчика коленчатого вала запуск двигателя не возможен.

Устранение неисправностей бесконтактного переключателя с помощью мультиметра и осциллографа

Цифровой мультиметр - это опора для поиска и устранения неисправностей в электрических системах, а также инструмент, к которому большинство из нас обращается в первую очередь. В разделе «Помимо мультиметра» мы рассмотрим пять примеров того, как следующий осциллограф может сделать поиск и устранение неисправностей более быстрым, простым и эффективным.

Рис. 1. Оптический датчик приближения на конвейерной системе.

Часть 4 описывает поиск и устранение неисправностей неустойчивой работы конвейерной системы с помощью цифрового мультиметра и осциллографа.По мере увеличения скорости процесса синхронизация и переходы сигналов становятся все более важными для надежной работы, и поддержание надежной работы коммутаторов становится приоритетной задачей.

Бесконтактные переключатели

Бесконтактные переключатели (см. Рисунок 1 ) распространены на заводах и производственных предприятиях, где они используются для управления положением и потоком товаров в процессе производства.

Существует три типа бесконтактных переключателей:

  • Оптические переключатели - активируются, когда объект прерывает луч света
  • Магнитные переключатели - используют магнитное поле для замыкания или размыкания контакта
  • Механические переключатели - активируется физическим контактом с объектом

Контакты механического переключателя со временем изнашиваются.Они подвержены механическому износу, а искрение может вызвать точечную коррозию контактных поверхностей. Обычно эти проблемы возникают медленно и постепенно усугубляются до того, как переключатель полностью выйдет из строя. Устранение неисправностей механического переключателя, который полностью вышел из строя - «серьезная неисправность» - часто можно выполнить с помощью простого визуального осмотра или простых измерений, выполненных с помощью цифрового мультиметра. Обычно головные боли вызывают постепенные или периодические отказы переключателей.

Рисунок 2. Мультиметр, отображающий управляющие импульсные напряжения в состояниях «включено» и «выключено».

Устранение неисправностей с помощью цифрового мультиметра

В этом примере неисправный механический датчик приближения вызывает неустойчивую работу конвейерной системы.

Когда мультиметр подключен к выходу контроллера конвейерной ленты (который получает входной сигнал от бесконтактного переключателя), показания «Максимальное пиковое напряжение» и «Минимальное пиковое напряжение» показывают, что переключатель включается и выключается, как ожидалось. (см. Рисунок 2 ).

Цифровой мультиметр с измерением частоты также может определять скорость, с которой переключатель меняет состояние (см. Рисунок 3 ).

Рисунок 3. Мультиметр отображает частоту управляющих импульсов.

Однако эта информация не помогает диагностировать проблему.

На этом этапе мы могли бы поменять контроллер и надеяться на лучшее, или мы можем копнуть немного глубже.

Поиск и устранение неисправностей с помощью осциллографа

Современный цифровой осциллограф может предоставить вам много той же числовой информации, что и цифровой мультиметр, включая данные о импульсном напряжении и частоте, показанные выше.Но с помощью осциллографа вы также можете просматривать информацию о сигнале визуально. Это позволяет вам видеть синхронизацию состояния включения / выключения и временные отношения между источником и выходным сигналом (переключатель и выход контроллера в примере, показанном в следующем примере).

Рисунок 4. Осциллограф , отображающий выходные импульсы от контроллера. Рисунок 5. Осциллограф , отображающий выходной импульс контроллера (верхняя кривая) и сигнал от бесконтактного переключателя (нижняя кривая). Рисунок 6. «Увеличение» формы сигнала за счет увеличения скорости развертки осциллографа. Переключатель "дребезг контактов" на нижней диаграмме делает выход нестабильным (верхняя диаграмма)

Когда осциллограф подключен к выходу контроллера, он не обнаруживает ничего необычного в выходных импульсах контроллера. Формы импульсов хорошо сформированы и не содержат электрических «шумов». ( Рисунок 4 )

А как насчет времени? Затем мы подключаем осциллограф, чтобы он регистрировал сигналы от бесконтактного переключателя на первом канале и выходной импульс от контроллера на втором канале (, рис. 5, ).Когда мы изучаем результат, сразу становится ясно, что что-то не так. Нижняя кривая (выход бесконтактного переключателя) нестабильна по отношению к верхней кривой (выход контроллера).

Осциллограф отображает переменные напряжения в виде линии (называемой «кривой»), которая движется слева направо по экрану. Если эта линия проведена быстрее (то есть, если мы увеличим скорость развертки осциллографа), мы сможем увидеть более подробное представление о том, как напряжение изменяется момент за моментом (или миллисекунды за миллисекундами).

«Увеличение» сигналов таким образом ( Рисунок 6 ) показывает, что выходной сигнал бесконтактного переключателя (нижняя кривая) не меняется с выключенного на включенное за один переход (красный кружок). Вместо этого неисправные переключающие контакты включаются и выключаются в течение примерно пяти миллисекунд, прежде чем выходной сигнал стабилизируется. Контроллер не может правильно считывать это скачкообразное напряжение, поэтому его выходной сигнал сильно различается (во временном диапазоне, показанном красными полосами на верхнем графике). Это то, что вызывает беспорядочное поведение.

Итоги

Цифровой мультиметр может показывать точные измерения амплитуды и времени, а также может показать, когда переключатель не открывается или закрывается, но когда дело доходит до малозаметных или прерывистых событий, осциллограф может предоставить вам дополнительную информацию. для диагностики проблемы. Картинка действительно стоит тысячи слов!

Как проверить, имеет ли датчик выход типа PNP или NPN с помощью мультиметра

Если вы заменяете 3-проводной датчик, работающий от постоянного напряжения, важно знать, является ли выход датчика типом PNP или NPN. Часто эта информация печатается на самом датчике, но нередко ее соскребают в течение длительного периода времени.

Установите мультиметр на постоянное напряжение. Это обозначается буквами «VDC» или «DCV» или символом, который выглядит как 3 пунктирные линии на сплошной линии. Обычно существует несколько уровней настройки постоянного напряжения. Выберите уровень «600».

Для выполнения этого теста необходимо включить питание, поэтому будьте осторожны при выполнении следующих действий. Подключите два провода датчика к источнику питания.Если цветовая комбинация проводов синяя, черная и коричневая, то обычно синий провод подключается к 0 В, а коричневый провод подключается к положительному напряжению. Коснитесь черным щупом измерительного прибора к проводу 0 В датчика. Подключите красный щуп измерителя к проводу вывода сигнала датчика. Этот провод обычно черный. Счетчик должен показывать «0».

Принудительный вывод датчика. Если это фотоэлектрический датчик, заблокируйте фотоэлектрический луч. Если это индуктивный датчик приближения, поместите небольшой кусок металла перед датчиком.Для ультразвукового датчика или емкостного датчика вы можете просто использовать свою руку, чтобы сделать выходной сигнал датчика. Убедитесь, что датчик обнаруживает объект. Многие датчики имеют небольшой светодиод, который загорается, когда датчик обнаруживает цель.

Наблюдайте за дисплеем измерителя, когда вы заставляете датчик работать. Если показание изменится на число от 10 до 30, то выходной сигнал датчика имеет тип PNP, также известный как «источник». Если показания счетчика остаются на «0», то выходной сигнал датчика имеет тип NPN, также известный как «опускание».«

Если вы считаете, что датчик является NPN-датчиком, для подтверждения можно провести дополнительный тест. Снимите измерительные щупы с проводов. Теперь поместите красный измерительный щуп на провод датчика положительного напряжения, обычно это коричневый провод. Прикоснитесь черным зондом измерителя к выходному сигнальному проводу датчика, обычно черного цвета. Когда датчик не обнаруживает цель, дисплей измерителя должен показывать от 10 до 30. Когда датчик обнаруживает объект, на дисплее должно отображаться «0». . »Это подтвердит, что датчик имеет выход типа NPN.

% PDF-1.2 % 1 0 obj > endobj 3 0 obj > endobj 4 0 obj > endobj 5 0 obj > / Ж 6 0 Р >> endobj 8 0 объект > endobj 9 0 объект > endobj 10 0 obj > endobj 11 0 объект > endobj 12 0 объект > endobj 13 0 объект > endobj 14 0 объект > endobj 15 0 объект > endobj 16 0 объект > endobj 17 0 объект > endobj 18 0 объект > endobj 19 0 объект > endobj 20 0 объект > endobj 21 0 объект > endobj 22 0 объект > endobj 23 0 объект > endobj 24 0 объект > endobj 25 0 объект > endobj 26 0 объект > endobj 27 0 объект > endobj 28 0 объект > endobj 29 0 объект > endobj 30 0 объект > endobj 31 0 объект > endobj 32 0 объект > endobj 33 0 объект > endobj 34 0 объект > endobj 35 0 объект > endobj 36 0 объект > endobj 37 0 объект > endobj 38 0 объект > endobj 39 0 объект > endobj 40 0 obj > endobj 41 0 объект > endobj 42 0 объект > endobj 43 0 объект > endobj 44 0 объект > endobj 45 0 объект > endobj 46 0 объект > endobj 47 0 объект > endobj 48 0 объект > endobj 49 0 объект > endobj 50 0 объект > endobj 51 0 объект > endobj 52 0 объект > endobj 53 0 объект > endobj 54 0 объект > endobj 55 0 объект > endobj 56 0 объект > endobj 57 0 объект > endobj 58 0 объект > endobj 59 0 объект > endobj 60 0 obj > endobj 61 0 объект > endobj 62 0 объект > endobj 63 0 объект > endobj 64 0 объект > endobj 65 0 объект > endobj 66 0 объект > endobj 67 0 объект > endobj 68 0 объект > endobj 69 0 объект > endobj 70 0 объект > endobj 71 0 объект > endobj 72 0 объект > endobj 73 0 объект > endobj 74 0 объект > endobj 75 0 объект > endobj 76 0 объект > endobj 77 0 объект > endobj 78 0 объект > endobj 79 0 объект > endobj 80 0 объект > endobj 81 0 объект > endobj 82 0 объект > endobj 83 0 объект > endobj 84 0 объект > endobj 85 0 объект > endobj 86 0 объект > endobj 87 0 объект > endobj 88 0 объект > endobj 89 0 объект > endobj 90 0 объект > endobj 91 0 объект > endobj 92 0 объект > endobj 93 0 объект > endobj 94 0 объект > endobj 95 0 объект > endobj 96 0 объект > endobj 97 0 объект > endobj 98 0 объект > endobj 99 0 объект > endobj 100 0 объект > endobj 101 0 объект > endobj 102 0 объект > endobj 103 0 объект > endobj 104 0 объект > endobj 105 0 объект > endobj 106 0 объект > endobj 107 0 объект > endobj 108 0 объект > endobj 109 0 объект > endobj 110 0 объект > endobj 111 0 объект > endobj 112 0 объект > endobj 113 0 объект > endobj 114 0 объект > endobj 115 0 объект > endobj 116 0 объект > endobj 117 0 объект > endobj 118 0 объект > endobj 119 0 объект > endobj 120 0 объект > endobj 121 0 объект > endobj 122 0 объект > endobj 123 0 объект > endobj 124 0 объект > endobj 125 0 объект > endobj 126 0 объект > endobj 127 0 объект > endobj 128 0 объект > endobj 129 0 объект > endobj 130 0 объект > endobj 131 0 объект > endobj 132 0 объект > endobj 133 0 объект > endobj 134 0 объект > endobj 135 0 объект > endobj 136 0 объект > endobj 137 0 объект > endobj 138 0 объект > endobj 139 0 объект > endobj 140 0 объект > endobj 141 0 объект > endobj 142 0 объект > endobj 143 0 объект > endobj 144 0 объект > endobj 145 0 объект > endobj 146 0 объект > endobj 147 0 объект > endobj 148 0 объект > endobj 149 0 объект > endobj 150 0 объект > endobj 151 0 объект > endobj 152 0 объект > endobj 153 0 объект > endobj 154 0 объект > endobj 155 0 объект > endobj 156 0 объект > endobj 157 0 объект > endobj 158 0 объект > endobj 159 0 объект > endobj 160 0 объект > endobj 161 0 объект > endobj 162 0 объект > endobj 163 0 объект > endobj 164 0 объект > endobj 165 0 объект > endobj 166 0 объект > endobj 167 0 объект > endobj 168 0 объект > endobj 169 0 объект > endobj 170 0 объект > endobj 171 0 объект > endobj 172 0 объект > endobj 173 0 объект > endobj 174 0 объект > endobj 175 0 объект > endobj 176 0 объект > endobj 177 0 объект > endobj 178 0 объект > endobj 179 0 объект > endobj 180 0 объект > endobj 181 0 объект > endobj 182 0 объект > endobj 183 0 объект > endobj 184 0 объект > endobj 185 0 объект > endobj 186 0 объект > endobj 187 0 объект > endobj 188 0 объект > endobj 189 0 объект > endobj 190 0 объект > endobj 191 0 объект > endobj 192 0 объект > endobj 193 0 объект > endobj 194 0 объект > endobj 195 0 объект > endobj 196 0 объект > endobj 197 0 объект > endobj 198 0 объект > endobj 199 0 объект > endobj 200 0 объект > endobj 201 0 объект > endobj 202 0 объект > endobj 203 0 объект > endobj 204 0 объект > endobj 205 0 объект > endobj 206 0 объект > endobj 207 0 объект > endobj 208 0 объект > endobj 209 0 объект > endobj 210 0 объект > endobj 211 0 объект > endobj 212 0 объект > endobj 213 0 объект > endobj 214 0 объект > endobj 215 0 объект > endobj 216 0 объект > endobj 217 0 объект > транслировать HWcgWT︊XE + CKe & ˾B «

Проверка и замена ABS и датчиков скорости вращения колес

Усложнение дорожной обстановки на наших дорогах предъявляет повышенные требования к водителям автомобилей.Системы помощи водителю снижают нагрузку на водителя и повышают безопасность дорожного движения. В результате современные системы помощи при вождении теперь входят в стандартную комплектацию практически всех новых европейских автомобилей. Это также означает, что перед мастерскими стоят новые задачи.

В настоящее время электроника автомобиля играет ключевую роль во всем оборудовании для обеспечения комфорта и безопасности. Оптимальное взаимодействие между сложными электронными системами гарантирует, что автомобиль работает без проблем, а это, в свою очередь, повышает безопасность дорожного движения.
Интеллектуальная передача данных между электронными системами автомобиля поддерживается датчиками. Когда дело доходит до безопасности вождения, датчики скорости играют особенно важную роль, и это отражается в их разнообразном использовании в различных системах автомобиля
.

Они используются блоками управления в системах помощи при вождении, таких как ABS, TCS, ESP или ACC, для определения скорости вращения колес.

Информация о скорости вращения колес также передается в другие системы (двигатель, трансмиссия, навигация и системы управления шасси) по линиям данных от блока управления ABS.

Благодаря разнообразному использованию датчики скорости непосредственно влияют на динамику движения, безопасность движения, комфорт вождения, снижение расхода топлива и выбросов. Датчики скорости вращения колес часто также называют датчиками ABS, поскольку они впервые использовались в транспортных средствах, когда была представлена ​​ABS.

Датчики скорости вращения колес могут быть выполнены как активные или пассивные, в зависимости от того, как они работают. Ясный и точный способ их различения или категоризации не определен.

Таким образом, следующая стратегия оказалась полезной в повседневной работе мастерской:

  • Если датчик «активируется» только при подаче напряжения питания, а затем генерирует выходной сигнал, это «активный» датчик.
  • Если датчик работает без дополнительного напряжения питания, это «пассивный» датчик.

Датчик положения коленчатого вала индуктивный, эталонный, напряжение при проворачивании коленчатого вала

Дополнительные указания

Датчик положения коленчатого вала (CKP) обеспечивает модуль управления двигателем (ECM) своим первичным опорным сигналом синхронизации двигателя.Контроллер ЭСУД использует сигнал для расчета частоты вращения и положения двигателя для точного управления впрыском и зажиганием. Сигнал также используется для обнаружения аномалий оборотов двигателя из-за пропусков зажигания и т. Д.

Индуктивный датчик CKP состоит из цепи с проволокой, намотанной вокруг магнита. Датчик сопровождается импульсным колесом, обычно расположенным по окружности маховика. Колесо импульсов проходит сквозь магнитное поле датчика и нарушает его, вызывая напряжение цепи. Наведенное напряжение зависит от частоты вращения двигателя: чем быстрее вращается колесо импульсов, тем больше возмущение магнитного поля.

Когда центры зубцов или зазоров совмещены с датчиком, возникает равное и противоположное возмущение магнитного поля, и напряжение не индуцируется. И наоборот, когда передняя или задняя кромка зуба совмещается с датчиком, возмущение магнитного поля и индуцированное напряжение являются наибольшими.

Положительное напряжение создается, когда передняя кромка зуба находится ближе, чем его задняя кромка, а отрицательное напряжение создается в противоположном случае.

Отсутствующий зуб на импульсном колесе является основной временной контрольной меткой.Когда зазор проходит через магнитное поле, возникает период уменьшения возмущений и напряжения. Кроме того, задняя и передняя кромки зубьев, которые непосредственно предшествуют зазору и следуют за ним, расположены дальше друг от друга, поэтому они создают большее суммарное возмущение магнитного поля и индуцированное напряжение.

Сигнал датчика положения коленчатого вала критически важен для работы контроллера ЭСУД, и он не запустит или запустит двигатель, если сигнал отсутствует или неисправен. Следовательно, датчик может вызвать проворачивание двигателя, но не запуск, или симптомы отключения двигателя.

Возможные неисправности:

  • Короткое замыкание или разрыв цепи и высокое сопротивление в катушке или цепи датчика.
  • Пониженный выходной сигнал датчика из-за чрезмерного загрязнения и детрита на корпусе датчика или импульсном колесе.
  • Неправильная установка или работа компонентов датчика или коленчатого вала, причина:
  • чрезмерный зазор между датчиком и импульсным колесом
  • повреждение корпуса датчика или импульсного колеса
  • Чрезмерное движение или вибрация кривошипа или маховика

Двухконтактный датчик положения коленчатого вала и цепь ECM могут быть скомпонованы двумя способами:

  • постоянная ссылка, не плавающее, напряжение к одной стороне датчика и выходной сигнал датчика на другом; или
  • - плавающее напряжение с зеркальными выходными сигналами на каждой стороне датчика.
Принцип работы индуктивного датчика

Определения:

НЕТ (нормально разомкнутый): Релейный выход, запрещающий разомкнуть ток, когда привод отсутствует и закрывается, позволяя текущий поток при наличии исполнительного механизма.

NC (нормально замкнутый): Релейный выход, который замкнут, позволяя протекание тока при отсутствии привода и запрещение открывания текущий поток при наличии исполнительного механизма.

НПН Выход: Транзисторный выход, который переключает общий или отрицательное напряжение на нагрузку. Нагрузка подключается между положительное питание и выход. Текущие потоки из нагрузка через выход на землю, когда выход переключателя на. Также известен как снижение тока или отрицательное переключение.

PNP Выход: Транзисторный выход, переключающий положительное напряжение к нагрузке.Нагрузка подключается между выходом и общим. Ток течет от выхода устройства через нагрузку к заземление при включенном выходе переключателя. Также известен как текущий источник или положительное переключение.

Операционная Distance (Sn): Максимальное расстояние от датчика до квадратный кусок железа (Fe 37) толщиной 1 мм со сторонами = до диаметр чувствительной поверхности, который вызовет изменение на выходе датчика.Расстояние уменьшится для других материалы и формы. Испытания проводятся при 20ºC с источник постоянного напряжения. Это расстояние действительно включает ± Допуск изготовления 10%.

Мощность Supply: Диапазон напряжения питания, в котором будет работать датчик в.

Макс Коммутируемый ток: Допустимая величина постоянного тока протекать через датчик, не вызывая повреждения датчика.Это максимальное значение.

Мин. Ток переключения: Это минимальное значение тока, которое должен протекать через датчик, чтобы гарантировать работу.

Макс Пиковый ток: Максимальный пиковый ток указывает на максимум текущее значение, которое датчик может выдержать в течение ограниченного периода времени времени.

Остаточный Ток: Ток, протекающий через датчик при он находится в открытом состоянии.

Мощность Сток: Сила тока, необходимая для работы датчика.

Напряжение Падение: Падение напряжения на датчике при движении максимальная загрузка.

Короткий Защита цепи: Защита от повреждения датчика если нагрузка закорочена.

Операционная Частота: Максимальное количество циклов включения / выключения, которое устройство способно за одну секунду. Согласно EN 50010, этот параметр измеряется динамическим методом, показанным на инжир. 1 с датчиком в положениях (a) и (b). S - рабочий расстояние, а м - диаметр датчика. Частота дается формулой на рис.2.

Повторяемость (% Sn): Разница между любыми значениями рабочего расстояния Измеряется за 8 часов при температуре от 15 до 15 до 30ºC и напряжения питания с отклонением <= 5%.

Гистерезис (% Sn): Расстояние между точкой «включения» приближение исполнительного механизма и точка «выключения» привод отступает.Это расстояние снижает количество ложных срабатываний. Его значение выражается в процентах от рабочего расстояния. или расстояние. См. Рис.3

Промывка Монтаж: Для монтажа рядом с моделями для скрытого монтажа см. рис. 4а. Модели без скрытого монтажа можно встраивать в металл согласно рис. 4б. бок о бок см. на рис. 4c. Sn = рабочее расстояние.

Защита Степень: Степень защиты корпуса согласно IEC (Международная электротехническая комиссия):
IP 65: пыленепроницаемость. Защита от водяных струй.
IP 67: пыленепроницаемый. Защита от воздействия погружения

Как проверить датчик положения дроссельной заслонки с помощью вольтметра

Как проверить датчик положения дроссельной заслонки с помощью вольтметра

Датчик положения дроссельной заслонки (TPS) используется электронным модулем управления (ЕСМ) для определения частоты вращения двигателя.Когда вы нажимаете кнопку TPS, ECM считывает сигнал TPS и другие датчики, чтобы определить, сколько топлива нужно впрыснуть в цилиндр. Наиболее часто используемым TPS является потенциометр, который выводит переменное напряжение в зависимости от положения дроссельной заслонки. Если ЕСМ обнаруживает проблему с сигналом дроссельной заслонки, он регистрирует диагностический код дроссельной заслонки P0121.

Осмотрите жгут двигателя и убедитесь, что все соединения затянуты и надежны. Осмотрите жгут двигателя на предмет повреждений, истирания или коррозии.Чтобы временно отремонтировать сломанный или поврежденный провод, оберните оголенный провод изолентой. Удалите коррозию с помощью пищевой соды, воды и металлической щетки.

Найдите датчик положения дроссельной заслонки. Это может быть внутри моторного отсека, на впускном коллекторе или на педали газа. Осмотрите проводку дроссельной заслонки от датчика до электронного модуля управления. Убедитесь, что провода не имеют истирания, повреждений и коррозии. Осмотрите соединения рычажного механизма и монтажное оборудование. Тяга должна двигаться свободно, а датчик дроссельной заслонки должен быть надежно закреплен на кронштейне или педали дроссельной заслонки.

Отсоединить разъем датчика дроссельной заслонки. Просмотрите схему двигателя и найдите соединение + V дроссельной заслонки и заземление. Включите зажигание в положение «Вкл.». Установите вольтметр для измерения напряжения. Поместите положительный щуп на клемму + V или +5, а отрицательный щуп на землю. Напряжение должно быть примерно 5 вольт. Если напряжение неправильное, возможно, проблема с питанием датчика ECM.

Поверните зажигание в положение «Выкл.». Обратитесь к схеме и найдите соединение + V дроссельной заслонки и заземление на ECM.Иногда заземляющее соединение называется «Общий датчик». Установите вольтметр для измерения сопротивления. Поместите положительный датчик на провод + V на разъеме датчика, а отрицательный датчик на соединение + V на контроллере ЭСУД. Покачайте ремень во время измерения, чтобы выявить периодически открывающееся состояние. Сопротивление должно быть менее 5 Ом. Поместите положительный датчик на провод заземления на разъеме датчика, а отрицательный датчик на массу или общий провод датчика на контроллере ЭСУД.Покачайте ремень во время измерения, чтобы выявить периодически открывающееся состояние. Сопротивление должно быть менее 5 Ом. Если сопротивление больше 5 вольт, в проводе есть разрыв. Заменить провод и повторить тест.

[соотв.]

Обратитесь к схеме и найдите сигнал дроссельной заслонки на контроллере ЭСУД. Поместите положительный датчик на сигнальный провод на разъеме датчика, а отрицательный датчик на сигнальный провод датчика на контроллере ЭСУД. Покачайте ремень во время измерения, чтобы выявить периодически открывающееся состояние.Сопротивление должно быть менее 5 Ом. Если сопротивление больше 5 вольт, в проводе есть разрыв. Заменить провод и повторить тест.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *