Как от 380 подключить 220 схема: Как подключить трехфазный электродвигатель в сеть 220 В: подключаем самостоятельно по схеме трехфазный электродвигатель в сеть | Денис Прокошенков

Схема подключения трехфазного электродвигателя 380в на 220в через конденсатор

электродвигатель электродвигатель

Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

В связи с этим двигатель желательно иметь помощнее.

Важно! Подключая двигатель, будьте предельно осторожны. Делайте все не спеша. Меняя схему, отключайте электропитание и разряжайте конденсатор электролампой. Работы производите как минимум вдвоем.

Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

Важно! Какой бы емкости ни были конденсаторы, их рабочее напряжение должно быть не ниже 400в, в противном случае они долго не проработают и могут взорваться.

Содержание

Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

трехфазный двигательтрехфазный двигатель

трехфазный двигательтрехфазный двигатель

 

 

 

 

 

Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд.  Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

схема подключениясхема подключения

Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

Рис. 1                                                                                             

рис 1

рис 1

электродвигательэлектродвигатель

На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

 

 

 

На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

электродвигательэлектродвигатель

Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

электродвигательэлектродвигатель

Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

Расчет конденсаторов. Емкость рабочего конденсатора.

Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

Емкость пускового конденсатора.

Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

Особенности подбора конденсаторов.

Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.

Реверс.

Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».

Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Более подробно можно увидеть на рисунке.

схемасхема

Важно! Существуют электродвигатели трехфазные на 220в. У них каждая обмотка рассчитана на 127в и при подключении в однофазную сеть по схеме «треугольник» ― двигатель просто сгорит. Чтобы этого не произошло, такой мотор в однофазную сеть следует подключать только по схеме — «звезда».

 

 

 

 

О подключении трехфазных электродвигателей в сеть 220в: схема подключения

Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт. Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку. Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

Подключение промышленного двигателя к однофазной сети

Подключение промышленного двигателя к однофазной сети

Принцип действия трёхфазного асинхронного электродвигателя

Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.

При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.

Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.

При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.

Начала и концы обмоток

В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.

Важно! В электросхемах начало катушек отмечается точкой.

Соединение катушек при подключении трехфазного двигателя к сети 220В

Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены “звездой”. Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.

При включении в сеть с линейным напряжением 220В применяется соединение “треугольник”. При этом начало следующей обмотки подключается к концу предыдущей.

Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются “треугольником”.

Как подключить трехфазный электродвигатель в сеть 220в

Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

Соединение звездой

При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение “звезда”. К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

Соединение треугольником

Самая распространенная  схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

Подключение звездой и треугольником

Подключение звездой и треугольником

Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник

Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.

Изменение соединений на клеммнике

При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.

Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

Соединение выводов на клеммнике звездой и треугольником

Соединение выводов на клеммнике звездой и треугольником

Сборка треугольника, согласно маркировке выводов

Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.

Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.

Что делать, если есть только три вывода

Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:

  1. разобрать электродвигатель;
  2. найти внутри место соединения обмоток и рассоединить его;
  3. к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
  4. собрать аппарат;
  5. попарно вызвонить вывода катушек;
  6. соединить старый вывод одной катушки с новым проводом следующей;
  7. операцию повторить ещё два раза.

Соединение при отсутствии маркировки

Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:

  1. Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
  2. В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
  3. Соединить отмеченную обмотку последовательно с другой парой проводов;
  4. Подключить к соединённым катушкам напряжение ~12-36В;
  5. Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
  6. Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
  7. Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.

После определения начала и концов во всех обмотках, они соединяются треугольником.

Подключение фазосдвигающих конденсаторов

Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

Выбор номинала рабочего конденсатора

Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

Важно! Рабочие конденсаторы применяются для переменного напряжения не меньше 300В.

Выбор и подключение пусковых конденсаторов

Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен. Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В. Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

  • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
  • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
  • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии “Пуск” замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку “Стоп” отключает зафиксированные контакты.
Кнопка ПНВС

Кнопка ПНВС

Как переделать схему вращения в реверсивную

Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

Реверс конденсаторного двигателя

Реверс конденсаторного двигателя

Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В

Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.

Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:

  • Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
  • Рабочий, или номинальный;
  • Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.

Преимущества инвертора 220 в 380:

  • подключение не переделанных трёхфазных электромашин на 220 вольт;
  • получение полной мощности и момента электромашины без потерь;
  • экономия электроэнергии;
  • плавный запуск и регулировка оборотов.
Инвертор 220 в 380

Инвертор 220 в 380

Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.

Видео

Схемы Подключения Электродвигателей 220 380

Первая группа делится на следующие виды: Коллекторные. Сюда добавляются диоды и резисторы, что усложняет схему.


Пример подбора конденсаторов по емкости Вводные данные: Схема подключения — треугольник. Ещё один момент по пусковым конденсаторам.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.
Определение начала и конца обмоток трехфазного электродвигателя (простой способ)

Обычно в этом случае я предлагаю такой выход — сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей что будет доступнее.

Существуют электродвигатели трехфазные на в. Гораздо чаще электродвигатели пускают с пультов с кнопками без фиксации.

Номинальное напряжение 3хВ — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть В, но стоит попробовать, возможно работать будет!

Главным образом это потому, что схема очень сложная, и на мощных предприятиях просто нет смысла организовывать такое трудоемкое соединение. Использование магнитного пускателя Для того, чтобы иметь возможность обеспечить в одной схеме непрерывную работу, пуск, остановку, реверсный режим и защиту обмоток двигателя и самой цепи, придется использовать коммутационное устройство — магнитный пускатель.

Выбираем конденсаторы Существует формула, по которой емкость можно рассчитать. Двигатели с 6 проводами позволяют переключать обмотки для разных питающих напряжений.

Как подключить электродвигатель на 220 вольт.

Сообщить об опечатке

Принципиальную разницу между этими двумя типами двигателей постоянного тока можно проследить на следующей иллюстрации: Отличия коллекторного двигателя от бесколлекторного Кроме отсутствия ЩКУ, во втором варианте обмотки располагаются на полюсах статора, а постоянные магниты — на роторе. Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на в. Кстати на советских пускателях и контакторах были совмещенные блок-контакты, то есть один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть пары дополнительных контактов как раз для этих целей. В первом случае двигатели делят на синхронные частоты вращения полей статора, ротора равны и асинхронные частота вращения ротора меньше.


Но если Ваш электродвигатель производит большую мощность, то нужно в схему ввести еще пусковой конденсатор.

Самый распространенный способ, как запустить двигатель: это фазосдвигающий конденсатор.

Как видно, напряжение в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение.

Но данная ситуация — палка о двух концах.

Что касается емкости пускового конденсатора, то он должен быть в 2,,0 раза больше, чем у рабочего.

Классификация этих машин более разветвленная, учитывающая частоты вращения магнитного поля статора и ротора, а также фазную структуру тока.
Подключение однофазного электродвигателя ПРОМЭЛЕКТРО 220 вольт

Рекомендуем: Составление смет на электромонтажные работы пособие

Выбираем конденсаторы

В данном случае процесс сопровождается трансформацией кинетической энергии в электрическую.

Нужно два контакта конденсатора подключить к нулю и третьему выходу электродвигателя. В распред.


Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на в. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя.

Как подключить электродвигатель с на Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Это делается для того, чтобы проверить направление вращения устройства.

Поэтому связка из нескольких изделий — достаточно большая, что неудобно во всех отношениях. Расположение магнитов или статора на корпусе ДПТ радиальное, кольцевое, тангенциальное , позволяет разделить его на отдельные подвиды; На электромагнитах. Оба элемента в схему вставляются параллельно. Главным и действенным способом подключения без потери мощности является использование частотника.

Что такое звезда и треугольник у электродвигателя


Ёмкость пускового кондера должна превышать рабочую в Главную функцию берут на себя рабочие конденсаторы.

Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше в. Чтобы подключить ЭД на В с помощью конденсаторов, действуйте следующим образом: Соедините емкости между собой как упоминалось выше, соединение должно быть параллельным. С конденсатором дополнительная упрощенная — для схемы треугольник.

Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения. Фото — схема подключения звезда треугольник К первому пускателю, который обозначен К1, с одной стороны подключается электрический ток, а к другому присоединяется обмотка статора. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй.
Как подключить двигатель 380 на 220 через конденсаторы — How to connect the motor 380 220

Как еще можно подключить электродвигатель

Подключая их в схему, производится запуск движка, который должен работать корректно.

Двигатели постоянного тока ДПТ Принцип действия подобных электромашин базируется на Законе Фарадея для магнитной индукции.

Так как в процессе пуска, тем более под нагрузкой, величина тока сильно возрастает, то и емкость пускового конденсатора должна быть раза в три больше конденсатора рабочего. Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться. Это контактор, дополненный вспомогательными механизмами, например, тепловым реле.

В неё выведены провода от обмоток и закреплены на клеммниках. Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Поэтому стоит продумать ситуацию, для чего можно просто снизить емкость установленного блока конденсаторов.

Конечно, это самое простое решение, но в тоже время Вы сразу получите резкое снижение мощности электродвигателя. Здесь есть два варианта: Номинальное напряжение 3хВ — вам повезло, и используйте приведенные выше схемы.

Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. При этом емкость пускового прибора будет находиться в диапазоне мкФ. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Тип конденсаторов Какие же конденсаторы используются при подключении электродвигателя на вольт? Как видно, напряжение в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение.

При таком раскладе электродвигатели подключаются правильно по схеме звезда или треугольник. Статор имеет специальные пазы углубления , в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло градусов. Когда требуется отключить питание, включается К1. Этого достаточно для запуска электродвигателя; Рабочий, или номинальный; Перегрузочный.

Необходимо посмотреть на бирке двигателя, на какое напряжение рассчитаны его обмотки, есть возможность соединения обмоток звездой и треугольником. При таком раскладе электродвигатели подключаются правильно по схеме звезда или треугольник. Из электродвигателя торчат три провода.
Как быстро и просто подключить трехфазный двигатель в однофазную сеть DuMA8819

Как из 220 Вольт сделать 380 В: обзор методик и способов

Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?

Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.

Теория

На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.

В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.

Структура трёхфазного токаРис. 1. Структура трёхфазного тока

Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.

Преобразователь напряженияРис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор.  преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Использование электродвигателя

Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.

Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.

Пример подключения фазосдвигающего конденсатора см. на рис. 3.

Подключение пускового конденсатораРис. 3. Подключение пускового конденсатора

Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.

Трёхфазный ток от электромотораРис. 4. Трёхфазный ток от электромотора

Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.

Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.

Электродвигатель в качестве генератора

Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).

Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для  этого необходимо вращать вал с угловой скоростью 1500 об/мин.

Трёхфазный двигатель в качестве генератораРис. 5. Трёхфазный двигатель в качестве генератора

В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.

Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.

Выводы

Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:

  • стабильные параметры тока;
  • безопасная эксплуатация;
  • обеспечение заявленной выходной мощности;
  • компактность установки.

Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
- зачем шесть контактов в двигателе?
- а почему контактов всего три?
- что такое «звезда» и «треугольник»?
- а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
- а как измерить ток в обмотках?
- что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

Напряжение в трехфазной сети переменного тока

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.


Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы - C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая - C2 и C5, а третья - C3 и C6.

Система маркировки обмоток трехфазных двигателей

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Схема подключения звезда


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.


Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Схема подключения треугольник


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).


Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):



Двигатель для однофазной сети 220ВДвигатель для трехфазной сети 220В/380В

Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380ВДвигатель для трехфазной сети 380В/660В

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)

Автомат защиты двигателя


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
- использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Автомат защиты двигателя 2Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

- использование пускателя
Автомат защиты двигателя 2
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:

Схема подключения двигателя с пускателем
При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса


Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).


Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).
Встроенный вентилятор электродвигателя
Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

- регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
- при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
- при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Винтовые насосы с дополнительными вентиляторами


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор
ООО "Насосы Ампика"
Моисеев Юрий.


Как подключить трёхфазный электродвигатель к сети 220В и 380В по схеме

Автор Петр Андреевич На чтение 7 мин. Просмотров 376

Подключить обычный двухфазный электроприбор к питающей сети сможет любой человек, имеющий самые начальные представления об электротехнике. Гораздо сложнее подключение трёхфазного двигателя. Здесь потребуются более глубокие познания о принципе его работы, порядке соединения питающих жил, учесть параметры электросети. В данной статье рассмотрим, как подключить электродвигатель с тремя фазами самостоятельно, не обращаясь за помощью к специалистам.

Что нужно знать о двигателе перед подключением

Трёхфазный двигатель, как понятно из названия, создан для работы от электросети, имеющей три фазы. В быту подобные устройства встречаются намного реже, чем однофазные электромоторы. Однако, у них есть одно существенное преимущество – лучший показатель КПД. Поэтому трёхфазную схему обычно применяют для изготовления мощных двигателей, используемых в промышленных установках. В быту такой мотор может применяться в различных станках домашней мастерской, системах вентиляции, водоподачи.

Трёхфазный электродвигатель бывает по способу работы двух типов:

  1. Синхронный имеет повышенные скорости работы, но требует для своего разгона дополнительных затрат энергии. Изначально он работает в асинхронном режиме, пока не достигает требуемых оборотов, и не переходит в синхронную стадию. Синхронные моторы позволяют постепенно снижать или наращивать обороты. Однако, они сложны в изготовлении, вследствие чего имеют большую себестоимость. Это обусловило их небольшое распространение, по сравнению с асинхронными вариантами трёхфазных электромоторов.
  2. Асинхронный электродвигатель не допускает регулировки оборотов в процессе работы. Максимальная скорость его вращения также несколько ниже. Но подобные моторы более просты по своей конструкции, не такие дорогие, и отличаются большей надёжностью и ремонтопригодностью. Благодаря этим преимуществам, они используются гораздо чаще, как в промышленных производствах, так и в быту.

Трёхфазные моторы, выпускаемые современной промышленностью, имеют различные эксплуатационно-технические характеристики. Вся необходимая информация указывается на корпусе устройства:

  • Тип – синхронный или асинхронный.
  • Напряжение и частота питающей сети.
  • Максимальная мощность мотора.
  • Число развиваемых оборотов за минуту.

Более подробная информация относительно технических параметров даётся в прилагаемом к электродвигателю техпаспорте. Конструктивно устройство состоит из следующих основных элементов:

  • Корпус, служащий основой для крепления остальных деталей.
  • Статор.
  • Ротор, отделённый от статора воздушным пространством.
  • Обмотка, состоящая из трёх проводников, располагающихся по окружности под углом 120о.
  • Шкив вала, служащий для передачи крутящего момента внешним рабочим механизмам.

Концы всех трёх обмоток двигателя выведены в распредкоробку, расположенную в верхней части корпуса. Трёхфазные электромоторы бывают рассчитанными только на одно напряжение, например, на 380В, либо на два – на 220 и на 380 вольт. Для устройств, работающих с двумя типами напряжения, в распредкоробку выводятся сразу шесть концов, а для моторов, предназначенных только для одного типа напряжения – три. На внутренней поверхности крышки коробки наносится схема подсоединения выводов к питающей электросети.

Две схемы подключения трёхфазного двигателя

Подключение двигателя должно производиться чётко по схеме, очень важно не перепутать концы и начала обмоток. Все они должны работать одинаково, когда ток по ним двигается в одном направлении. Если же у одной любой обмотки выход и вход при подключении перепутаются, то создаваемое ей электромагнитное поле будет иметь обратное направление, чем у двух оставшихся. Мотор потеряет треть своей установленной мощности, будет постоянно перегреваться. Как результат – повышенный износ и скорый выход из строя.

Схема включения трёхфазного электродвигателя на 220В

Трёхфазные моторы предназначаются для подключения к сети, имеющей также три выхода фаз. При работе от однофазного питания, выдаваемая агрегатом мощность будет на 30% ниже установленной. Кроме того, далеко не каждый трёхфазник подходит для однофазной цепи. Имеются также и различия в схемах включения таких электромоторов в 220-вольтную сеть. Но в быту далеко не всегда имеется возможность запитать мотор от трёхфазной проводки. Непосредственно к жилым домам и в квартиры, согласно стандартам СНиП, обычно не подводится 380В.

Электродвигатели с возможностью подключения и к двум типам электрической цепи, имеют различные технические характеристики, касающиеся рабочего напряжения. От этого зависит схема их подключения к 220В, и показатели потери рабочих мощностей. Установить, как подключить определённый тип мотора, можно по обозначению на шильдике корпуса:

ОбозначениеТип подключенияПотери мощности
127/220«звезда»30%
220/380«треугольник», «звезда»30%
380/660«треугольник»70%

В последнем случае, при подключении трёхфазного двигателя к однофазной цепи потеря составит 2/3 от установленной мощности. Поэтому, моторы, с обозначением 380/660 запитывать от 220 вольт, хотя и возможно, но абсолютно нецелесообразно. Для подключения двигателя к однофазной цепи используются два варианта:

  1. С помощью преобразователя частот. Данный прибор способен преобразовывать одну фазу, имеющуюся в сети 220-вольтовой сети, в три фазы с таким же напряжением. Однако, вследствие высокой стоимости преобразователя, в быту такой вариант используется редко.
  2. Посредством конденсатора. Такой метод более распространён из-за своей простоты и доступности. Именно его подробнее рассмотрим далее.

Подключение трёхфазного электродвигателя потребует использования конденсаторов для переменного тока. Без них электричество от одной фазы будет проходить по обмоткам, но вращения ротора не происходит. Чтобы создать смещение фазы, получить крутящий момент магнитного поля, к одной из обмоток подключаются конденсаторы. Важный момент – использовать конденсаторы постоянного тока для переменной сети нельзя, из-за высокой вероятности их взрыва в процессе работы.

Всего в схеме присутствуют два их типа: С1 – пусковой, и С2 – рабочий. Номинальное напряжение у каждого из них должно быть не менее 300В. В идеале, лучше взять устройства с ещё большим показателем – свыше 350В. В продаже можно встретить конденсаторы, специально предназначаемые для запуска электродвигателя. Они имеют соответствующее обозначение, и использовать их как рабочие запрещено. Минимально необходимая ёмкость конденсаторов зависит от мощности электродвигателя, и показана в таблице в микрофарадах:

Мощность двигателя0,4 кВт0,6 кВт0,8 кВт1,1 кВт1,5 кВт2,2 кВт
Ёмкость С1 (пускового) в номинальном режиме80120160200250300
Ёмкость С1 (пускового) в недогруженном режиме2035456080100
Ёмкость С2 (рабочего) в номинальном режиме406080100150230
Ёмкость С2 (рабочего) в недогруженном режиме25406080130200

Сама схема подключения трёхфазных электродвигателей с использованием конденсаторов, как в варианте «звезды», так и «треугольника», будет выглядеть весьма просто:

Схема подключения трёхфазного двигателяСхема подключения трёхфазного двигателя

Для управления пусковым конденсатором, предназначенного для страгивания с места и разгона 3-х фазного двигателя, используют выключатель. На схеме, представленной выше, он обозначен словом «Разгон». После набора мотором необходимых оборотов и выхода его на рабочий режим, кнопка управления отключается. При наличии достаточных навыков в обращении с электротехникой, ручное управление можно заменить на автоматическое реле, либо на таймер отключения.

Подключение трёхфазного двигателя на 380В

Схема подключения трёхфазного электродвигателя к сети 380 вольт ещё проще. В наличии имеем три вывода обмотки, расположенных в распредкоробке корпуса, и также три фазы питающей электросети. Для двигателя, имеющего обозначение 220/380, выводы его обмоток соединяются «звездой», а подключение нуля не требуется. Сменить направление вращения вала двигателя 380В можно, просто поменяв своими местами две обмотки, какие конкретно – значения не имеет. Как видим, подключить трёхфазный мотор можно и к сети в 220, и в 380 вольт. Сделать это не представит особых трудностей для человека, имеющие начальные навыки обращения с электроприборами.

Полезное видео: как подключить к сети электродвигатель

ПолезноБесполезно

Как подключить электродвигатель от 380 до 220: цепи

Существуют ситуации, когда оборудование рассчитано на 380 вольт, вам необходимо подключиться к домашней сети на 220 В. Поскольку двигатель не запускается, вам необходимо изменить в нем некоторые детали. Это легко сделать самостоятельно. Хотя эффективность несколько снижается, такой подход оправдан.

Трехфазные и однофазные двигатели

Чтобы понять, как подключить электродвигатель от 380 до 220 вольт, мы выясним, что такое источник питания на 380 вольт.

Трехфазные двигатели имеют много преимуществ по сравнению с бытовыми однофазными. Поэтому их использование в промышленности обширно. И дело не только в мощности, но и в коэффициенте полезного действия. Они также включают пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. Например, защитное реле запуска холодильника отслеживает, сколько обмоток обрезано. И в трехфазном двигателе этот элемент больше не нужен.

Это достигается тремя фазами, во время которых электромагнитное поле вращается внутри статора.

Почему 380 В?

Когда поле внутри статора вращается, ротор также перемещается. Обороты не совпадают с пятьдесят герц сети из-за того, что больше обмоток, число полюсов отлично, и по разным причинам происходит проскальзывание. Эти индикаторы используются для регулирования вращения вала двигателя.

Все три фазы имеют значение 220 В. Однако разница между любыми двумя из них в любое время будет отличаться от 220. Таким образом, получится 380 Вольт.То есть двигатель использует 220 В для работы с фазовым сдвигом в сто двадцать градусов.

Поэтому, как напрямую подключить электродвигатель 380 к 220В невозможно, нужно использовать хитрости. Конденсатор считается самым простым способом. Когда контейнер проходит фазу, последний изменяется на девяносто градусов. Хотя он не достигает ста двадцати, этого достаточно для запуска и эксплуатации трехфазного двигателя.

Как подключить электродвигатель от 380 В к 220 В

Чтобы понять задачу, необходимо понять, как устроены намотки.Обычно корпус защищен кожухом, а под ним расположена проводка. Убрав его, нужно изучить содержимое. Часто схему подключения можно найти здесь. Для подключения электродвигателя к сети 380-220 используется коммутация в форме звезды. Концы обмоток находятся в общей точке, называемой нейтральной. Фазы подаются на противоположную сторону.

«Звезда» должна быть изменена. Для этого обмотка двигателя должна быть соединена в другую форму - в форме треугольника, совмещая их на концах друг с другом.

Как подключить электродвигатель от 380 до 220: цепи

Диаграмма может выглядеть следующим образом:

  • Напряжение сети подается на третью обмотку;
  • ,
  • , тогда первое напряжение обмотки будет проходить через конденсатор с фазовым сдвигом в девяносто градусов;
  • вторая обмотка будет зависеть от разности напряжений.

Понятно, что фазовый сдвиг составит девяносто и сорок пять градусов. Из-за этого вращение не является равномерным.Кроме того, форма фазы на второй обмотке не будет синусоидальной. Поэтому после подключения трехфазного электродвигателя к 220 вольт это будет возможно, это невозможно реализовать без потери мощности. Иногда вал даже залипает и перестает вращаться.

Работоспособность

После набора оборотов, пусковая мощность больше не будет необходима, так как сопротивление движению станет незначительным. Чтобы уменьшить емкость, она сокращается до сопротивления, через которое ток больше не проходит.Для правильного выбора рабочей и пусковой емкости необходимо прежде всего учитывать, что напряжение на рабочем конденсаторе должно существенно перекрывать 220 вольт. Как минимум должно быть 400 В. Также необходимо обратить внимание на провода, чтобы токи были рассчитаны на однофазную сеть.

Если рабочая емкость слишком низкая, вал заклинивает, поэтому для него используется начальное ускорение.

Работоспособность также зависит от следующих факторов:

  • Чем мощнее двигатель, тем больше номинальная емкость.Если значение составляет 250 Вт, то достаточно нескольких десятков мкФ. Однако если мощность выше, то номинальное значение можно считать сотнями. Конденсаторы лучше покупать пленочные, потому что электрические придется дополнительно комплектовать (они рассчитаны на постоянный, не переменный ток и без переделки могут взорваться).
  • Чем выше частота вращения двигателя, тем выше рейтинг. Если вы возьмете двигатель при 3000 об / мин и мощности 2,2 кВт, то для батареи потребуется от 200 до 250 мкФ.И это огромная ценность.

Эта мощность также зависит от нагрузки.

Заключительный этап

Известно, что электродвигатель 380 В при 220 В будет работать лучше, если напряжения получаются с равными значениями. Для этого не следует прикасаться к обмотке, соединяющей сеть, но потенциал измеряется на обеих других.

Асинхронный двигатель имеет собственное реактивное сопротивление. Необходимо определить минимум, при котором он начинает вращаться.После этого номинал постепенно увеличивается, пока все обмотки не выровняются.

Но когда двигатель раскручивается, может оказаться, что равенство нарушено. Это связано с уменьшением сопротивления. Поэтому перед подключением двигателя от 380 до 220 вольт и его фиксацией необходимо сравнить значения, даже когда устройство работает.

Напряжение может быть выше 220 В. Обратите внимание, чтобы обеспечить стабильную стыковку контактов, и не было потери питания или перегрева. Наилучшее переключение выполняется на специальных клеммах с фиксированными болтами.После подключения электродвигателя от 380 до 220 вольт получилось с необходимыми параметрами, кожух снова надевается на агрегат, а провода пропускаются через боковые стенки через резиновое уплотнение.

Что еще может случиться и как решить проблемы

Часто после сборки обнаруживается, что вал вращается не в том направлении, в котором это необходимо. Направление должно быть изменено.

Для этого третья обмотка подключается через конденсатор к резьбовой клемме второй обмотки статора.

Бывает, что из-за длительной работы с током появляется шум двигателя. Однако этот звук совершенно другого типа по сравнению с гулом при неправильном подключении. Это происходит со временем и вибрацией двигателя. Иногда вам даже приходится вращать ротор с силой. Это обычно вызвано износом подшипника, который вызывает слишком большие зазоры и шум. Со временем это может привести к заклиниванию, а позже - к повреждению деталей двигателя.

Лучше не допускать этого, иначе механизм станет непригодным для использования.Подшипники легче заменить новыми. Тогда электродвигатель прослужит еще много лет.

,Измеритель частоты переменного тока

220/380 В с Arduino

В этом проекте показано, как измерить частоту источника переменного тока с помощью платы Arduino UNO, где значения частоты и периода напечатаны на ЖК-экране 1602.
Этот частотомер может легко измерять частоту линий переменного тока с напряжениями 110/220/380 В - 50/60 Гц.

Гарантия на данный проект не предоставляется, делайте это на свой страх и риск!

Частота - это количество циклов (полных оборотов) в 1 секунду. Основной единицей измерения является Герц (Гц).
Период - это время, необходимое для завершения 1 цикла (оборота), его основной блок - второй.
Частота = 1 / Период.

Частота переменного тока в доме составляет 50 или 60 Гц, в большинстве стран используется 50 Гц.
Для частоты 50 Гц период составляет 20 миллисекунд, а для 60 Гц период составляет 16,67 миллисекунды.

Необходимое оборудование:
Это список всех компонентов, необходимых для создания этого проекта.

  • Arduino UNO board —-> Atmega328P технические данные
  • ЖК-экран 16 × 2
  • 330 Ом резистор
  • 10 кОм, переменный резистор или потенциометр
  • PC817 оптопара —-> спецификация
  • резистор 120 кОм -2 Вт
  • 10 кОм
  • 1N4007 диод (или эквивалент)
  • макет
  • Перемычки

Arduino frequency counter with 230/400V 50Hz system

Схема частотомер Arduino:
Схема проекта показана ниже.

ЖК-экран 16 × 2 (2 строки и 16 столбцов) используется для отображения значений частоты и периода входного напряжения, где:
RS -> Arduino digital pin 3
E -> Arduino digital pin 4
D4 -> Цифровой вывод Arduino 5
D5 -> Цифровой вывод Arduino 6
D6 -> Цифровой вывод Arduino 7
D7 -> Цифровой вывод Arduino 8
VSS, RW, D0, D1, D2, D3 и K подключены к заземлению Arduino,
VEE на выход переменного резистора (или потенциометра) 10 кОм,
VDD на Arduino 5V и A на Arduino 5V на резистор 330 Ом.

Вывод

VEE используется для управления контрастностью ЖК-дисплея. A (анод) и K (катод) - это светодиодные контакты задней подсветки.

Arduino frequency meter circuit 220V 380V

Вход переменного тока подключен к схеме, как показано, где диод 1N4007 используется для устранения отрицательных полупериодов, поскольку максимальное обратное напряжение оптопары PC817 составляет 6 В.

Оптопара подключена к сети переменного тока через резистор 120 кОм (а также диод 1N4007), который ограничивает ток, который проходит через светодиод оптопары (I F ).
С резистором 120 кОм и источником 220 В пиковый прямой ток равен (без учета напряжения на диоде):
220x√2 / 120k = 2,59 мА и среднеквадратичный ток (полуволна) = 2,59 / 2 = 1,3 мА.

Выход оптопары PC817 подключен к Arduino следующим образом:
Эмиттер подключен к Arduino GND,
Коллектор подключен к цифровому выводу Arduino 2. Этот вывод также предназначен для внешнего прерывания 0.
Коллектор подключен к Arduino + 5V контакт через подтягивающий резистор 10 кОм.

Когда светодиод оптопары смещен в прямом направлении, его выход (транзисторный коллектор) подключен к GND (логика 0). Во время отрицательных циклов сигнала выход PC817 является логическим 1.
Сторона высокого напряжения оптопары изолирована от стороны низкого напряжения.

Код измерителя частоты Arduino:
В этом проекте я использовал внешнее прерывание 0, чтобы обнаружить падение (переход от высокого к низкому) выхода оптопары. Это прерывание инициализируется, как показано ниже:

EIFR | = 1; // сбросить флаг INT0

attachInterrupt (0, timer1_get, FALLING); // включить внешнее прерывание (INT0)

При возникновении прерывания Arduino напрямую выполняет функцию timer1_get ().
Измерение частоты очень просто. Модуль Timer1 используется для измерения времени между двумя последовательными прерываниями, что означает, что у нас есть время между двумя последовательными падающими событиями. Когда вызывается функция timer1_get (), она сохраняет значение Timer1 в переменной с именем: tmr1.

Модуль

Timer1 настроен на увеличение на 2 каждую 1 микросекунду (prescaler = 8), и его прерывание по переполнению включено для сброса переменной tmr1 (помогает при удалении сигнала).
При предварительном масштабировании = 8 тактовый вход модуля Timer1 равен: Timer1_CLK = 16 МГц / 8 = 2 МГц.

При такой конфигурации самая низкая частота, которую может измерить Arduino, составляет около 31 Гц.

Период сигнала:
Период (в нас) = Timer1_Value / Timer1_CLK = Timer1_Value / 16000000/8
Период (в нас) = 8 x Timer1_Value / 16000000
Период (в мс) = 8 x Timer1_Value / 16000

Частота сигнала:
Частота = 1 / Период
Частота (в Гц) = 16000000 / (8 x Timer1_Value)

Полный код Arduino:

1

2

3

4

5

6

7

8

9

10

11

12

13

160004

14000000

14000000

160004

160004

160004

14000000

18

19

20

21

22

23

24

25

26

27

28

29

30

000

30

000

30

000

30

000000 34

35

36

37

38

39

40

41

42

43

44

45

46

47

47

47

47

47

000

51

52

53

54

55

56

57

58

59

60

61

62

63

9 0002 64

65

66

67

68

69

70

71

/ *********************************************** **************************

*

* Частотомер Arduino.

* Это бесплатное программное обеспечение без ГАРАНТИИ.

* ИСПОЛЬЗУЙТЕ НА СВОЙ СТРАХ И РИСК!

* https://simple-circuit.com/

*

*************************************** ********************************************** /

#include // включает библиотеку Arduino LCD

// Соединения модулей LCD (RS, E, D4, D5, D6, D7)

LiquidCrystal lcd (3, 4, 5, 6, 7, 8);

void setup (void) {

lcd.начало (16, 2); // устанавливаем количество столбцов и строк на ЖК-дисплее

lcd.setCursor (0, 0);

lcd.print ("Freq =");

lcd.setCursor (0, 1);

lcd.print ("Peri =");

// Конфигурация модуля таймера 1

TCCR1A = 0;

TCCR1B = 2; // включить модуль Timer1 с прескалером 1/8 (2 тика каждые 1 раз)

TCNT1 = 0; // Установить значение предварительной нагрузки Timer1 на 0 (сброс)

TIMSK1 = 1; // включить прерывание по переполнению Timer1

EIFR | = 1; // сбросить флаг INT0

attachInterrupt (0, timer1_get, FALLING); // включить внешнее прерывание (INT0)

}

uint16_t tmr1 = 0;

период плавания, частота;

void timer1_get () {

tmr1 = TCNT1;

TCNT1 = 0; // Сброс Timer1

}

ISR (TIMER1_OVF_vect) {// Процедура обслуживания прерывания от Таймера 1 (ISR)

tmr1 = 0;

}

// основной цикл

void loop () {

// сохранение текущего значения Timer1

uint16_t value = tmr1;

// вычисляем период сигнала в миллисекундах

// 8.0 - прескалер Таймера 1 и 16000 = MCU_CLK / 1000

период = 8,0 * значение / 16000;

// вычислить частоту сигнала = 1 / период; или = MCU_CLK / (Prescaler * Timer_Value)

if (значение == 0)

частота = 0; // деление на ноль

, иначе

частота

= 16000000.0 / (значение 8UL *);

lcd.setCursor (7, 0);

lcd.print (частота);

lcd.print ("Гц");

// период печати

жк.setCursor (7, 1);

lcd.print (период);

lcd.print («мс»);

задержка (500);

}

// конец кода.

На видео ниже показана схема прототипа проекта:

Связанный проект:
Arduino Frequency Counter | Arduino Projects

,
Как подключить VFD с R S T к 220-ти фазной однофазной сети?

Хорошо, я проверю документацию YL600 в понедельник 4/3 и предоставлю ответ здесь.

Дополнительная информация:

Дополнительная информация:
Я также получил один из них, и ярлыки кнопок даже не соответствуют инструкциям по программированию, указанным в вашем веб-наборе. Пожалуйста, предоставьте обновленную инструкцию для соответствия поставляемой модели с правильными названиями кнопок для нажатия в процессе программирования.

Дополнительная информация:
15.07.17 - У меня точная проблема.Я не вижу решение опубликовано ???

Дополнительная информация:
Mine - это 2,2 кВт YL-620, подключенный к шпинделю 1,5 кВт.

Кодовый адрес Функция Набор Диапазон и функция Объяснение Заводская настройка Пользовательский набор Поставщик, предлагаемый в виде десятичного кода адреса
P00.00 0 Основная частота 0-120 Гц (400 Гц) 50.0 Гц 400 60 399,6 P00.0 0
P00.01 1 Источник команды пуска / останова 0: Плата оператора 0 0 0 P00.1 1
1 : С внешнего концевого управления Электрооборудование, панель управления, кнопка СТОП действует
2 : С внешнего торца управления Электрооборудование, панель управления STOP недействительна
3 : от (Modbus Rs485) управление электротехникой
4 : Пользовательское приложение управления программой Электрооборудование
P00.02 2 Зарезервировано 0 0 P00.2 2
P00.03 3 Режим останова 0 : Останов замедления 0 0 1 P00.3 3
1: остановка 10
2 : DC остановка тормоза 0,2
P00.04 4 VF: максимальная выходная частота 1,0-120,0 Гц (400 Гц) 50,0 Гц 400 60 400 P00,4 4
P00.05 5 VF: максимальная выходная частота напряжения 5,0-120,0 Гц (400 Гц) 50,0 Гц 400 60 400 P00,5 5
P00.06 6 VF: максимальное выходное напряжение 10,0% -150,0% 100,00% 100,00% 100,00% 100 P00,6 6
P00.07 7 VF: средняя частота 1.0-120.0HZ (400 Гц), 3,0 Гц 3,5 Гц 3,0 Гц 3,5 P00.7 7
P00.08 8 VF: среднее напряжение 10,0% -100,0% 10% 20% 10% 10 P00,8 8
P00.09 9 VF: минимальная частота 0-120,0 Гц (400 Гц) 0,2 Гц 0,2 Гц 0,2 Гц 0,2 P00,9 9
P00.10 10 VF: минимальное напряжение 0% -100,0% 5% 10,00% 5,00% 5 P00.10 10
P00.11 11 Количество аналоговых входов 1 Регулирование Многоступенчатая скорость 0% -100% 100 100 100 100 P00.11 11
P00.12 12 VF: настройка кривой 0-4 0 0 P00.12 12
P00.13 13 Блокировка параметра 0: недействительно 0 0 P00.13 13
1: Действителен
10: восстановление заводских настроек. Другие функции отсутствуют.
P00.14 14 Зарезервировано 0 0 P00.14 14
P00.15 15 Запрет на включение питания Внешний конечный сын Пуск 0: Время включения питания, допустимый эффективный уровень на входе внешнего конца, запуск Электрооборудование 0 0 P00.15 15
1: время включения, не разрешено
P00.16 16 0: FWD (X5) да, положительный результат 0 P00.16 16
1: REV (X6) Определить направление: открыто Да
2: X_EF = EF, X_REV (X5) _DIR = DIR, FWD (X6) =
3: Стоп, FWD (X5) мгновенно выключается
4: FWD (X5) мгновенно отключается
5: FWD (X5) мгновенно отключается
6: Стоп, FWD (X5) мгновенно выключается
7: REV (X6) При открытии FWD (X5) Запуск
P00.17 17 Многие функции ввода X1 функции Выбор ####################################### ### #################################### 1 1 P00.17 17
P00.18 18 Многофункциональный вход Функция X2 Выбор 1,0 Гц 1 P00.18 18
P00.19 19 Многофункциональный вход Функция X3 Выбор 1 P00.19 19
P00.20 20 Многофункциональный вход Функция X4 Выбор 1 P00.20 20
P00.21 21 Повышение / замедление внешнего терминала 0-120 Гц (400 Гц) 1,0 Гц 1 P00.21 21
P00.22 22 Интервал подъема / замедления внешнего терминала 0.2 0,2 ​​P00.22 22
P00.23 23 Отображение физических величин Коэффициент постоянной 0-999,9% 100,00% 100 P00,23 23
P00.24 24 После подачи питания, отобразить выбор проекта 0: Показать текущую целевую частоту 0 0 P00.24 24
1: Индикация частоты работы электрооборудования.
2: Индикация тока работы электрооборудования.
3: отображение входного напряжения переменного тока
4: Показать напряжение материнской линии
5: Показать выходное напряжение
6: Отображение абзаца скорости Номер SP x
7: Показать температуру инвертора t xx
8: отображение входного сигнала X1-X3 / выходного сигнала
9: Показать переменную пользователя
10: Показать значение счетчика пользователя
11: Показать временную переменную отладки
12: Показать шаг и время автоматического многосегментного прогона
P00.25 25 Показать проект автоматически Задержка возврата (10 / S) 0: Нет, автоматический возврат; 1-6 с задержкой 10-60S Назад Возврат 1 1 P00.25 25
P01.00 256 REV Выбор поворота 0: Обороты вращения включены 0 0 P01.0 256
1: Rev Run запрещена 0
P01.01 257 Электрооборудование Ожидание заднего хода 0 P01.1 257
P01.02 258 Настройка защиты от перенапряжения от превышения напряжения (%) 130 130 P01.2 258
P01.03 259 Настройка максимальной токовой защиты при ускорении (%) 130 130 P01.3 259
P01.04 260 Настройка максимального тока (%) 200 200 P01.4 260
P01.05 261 Защита от перегрузки Настройка (%) 130 130 P01.5 261
P01.06 262 Время защиты от перегрузки Настройка 120 120 P01.6 262
P01.07 263 Защита от пониженного напряжения Настройка (%) 80 80 P01.7 263
P01.08 264 Настройка защиты от перенапряжения (%) 150 150 P01.8 264
P01.09 265 После выключения запустить постоянное напряжение настройки тормоза (%) 15 15 P01,9 265
P01.10 266 После отключения завершить настройку напряжения торможения постоянным током (%) 0 0 P01.10 266
P01.11 267 После отключения установлено время торможения постоянным током 2 2 P01.11 267
P01.12 268 После выключения начальная частота торможения постоянным током установлена ​​0,6 0,6 P01.12 268
P01.13 269 Перед запуском установить входное напряжение торможения (%) 20 20 P01.13 269
P01.14 270 Перед запуском, End DC Задание напряжения тормоза (%) 15 15 P01.14 270
P01.15 271 Перед запуском установлено время торможения постоянным током 3 3 P01.15 271
P01.16 272 Прямой старт Начальная частота (улучшение пускового момента) 100 100 P01.16 272
P01.17 273 Прямой запуск Начальная частота Время удержания 0 0 P01.17 273
P01.18 274 снижение частоты сбоев питания 80 80 P01.18 274
P01.19 275 Скорость снижения частоты пониженного напряжения 5 5 P01.19 275
P01.20 276 Перезапуск Без нагрузки 10 10 P01.20 276
P01.21 277 Перезапустить время нарастания напряжения 200 200 P01.21 277
P02.00 512 При увеличении ускоряющего момента 100 100 100 60 P02.0 512
P02.01 513 Время замедления - повышение крутящего момента 100 100 100 60 P02.1 513
P02.02 514 Ускорение кривой Выбор 0 0 P02.2 514
P02.03 515 Кривая замедления Выбор 0 0 P02.3 515
P02.04 516 Избегайте использования 1 20 400 P02.4 516
P02.05 517 Избегать фокуса 2 30 30 P02.5 517
P02.06 518 Избегать фальсификации 3 40 40 P02.6 518
P02.07 519 Избегайте ширины 0 0 P02,7 519
P02.08 520 Частота окна 1 45 45 P02,8 520
P02.09 521 Частота окна 2 50 50 P02.9 521
P02.10 522? 400 P02.10 522
P03.00 768 RS485 Скорость передачи данных 0: 1200 бит / с 5 4 P03.0 768
1: 2400 бит / с
2: 4800 бит / с
3: 9600 бит / с
4: 19200 бит / с
5: 38400 бит / с
6: 57600 бит / с
P03.01 769 RS485 Адреса связи 1-254 10 10 P03.1 769
P03.02 770 0: 8-битные данные, 1 стоповый бит, нечетная четность 2 2 P03.2 770
1: 8-битные данные, 1 стоповый бит, проверка на четность
2: 8-битные данные, 1 стоповый бит, без контроля четности
3: 8-битные данные, 2 стоповых бита, нечетная четность
4: 8-битные данные, 2 стоповых бита, проверка на четность
5: 8-битные данные, 2 стоповых бита, без контроля четности
P03.03 771 Обработка ошибок связи 0 P03.3 771
P03.04 772 Время устойчивости к ошибкам связи 20 P03.4 772
P03.05 773 4-20 мА Время обнаружения обрыва 0 P03.5 773
P03.06 774 Потенциометр панели, нижний предел нормы AD 3 P03.6 774
P03.07 775 Потенциометр панели, верхний предел спецификации AD 1020 1015 1015 P03.7 775
P03.08 776 Потенциометр панели, заданная частота нижнего предела 0.0HZ 0 0 P03.8 776
P03.09 777 Потенциометр панели, заданная частота верхнего предела 0-120 Гц (400 Гц) 60.0 Гц 400 60 Гц 400 P03,9 777
P03.10 778 Аналоговый вход 1 AD нижний предел 0-1023 3,0 Гц 60 Гц 3 P03.10 778
P03.11 779 Аналоговый вход 1 AD Верхний предел 0-1023 1020 1010 1010 P03.11 779
P03.12 780 Аналоговый вход 1 частота с учетом нижнего предела 0,0 Гц 0 P03.12 780
P03.13 781 Аналоговый вход 1 частота с учетом верхнего предела 60,0 Гц 400 400 P03.13 781
P03.14 782 Аналоговый вход 2 AD, нижний предел 3,0 Гц 3 P03.14 782
P03.15 783 Аналоговый вход 2 AD Верхний предел 1020 1010 1010 P03.15 783
P03.16 784 Частота аналогового ввода 2 с заданным нижним пределом 0,0 Гц 0 P03.16 784
P03.17 785 Аналоговая входная частота 2 с учетом верхнего предела 60,0 Гц 60 P03.17 785
P03.18 786 Корреляция аналогового выхода 0 0 P03.18 786

P03.19 787 Настройка усиления аналогового выхода 100 100 P03.19 787
P04.00 1024 Mo аналоговый множитель умножитель выходной частоты 10 10 P04.0 1024
P04.01 1025 Mo1 Функции Опции 0 0 P04.1 1025
P04.02 1026 Mo2 Функции Опции 1 1 P04.2 1026
P04.03 1027 Многофункциональное реле 1 Выбор функции 0: отказ Да Электрический, в противном случае сбой питания 0 2 2 2 P04.3 1027
P04.04 1028 Многофункциональное реле 2 Выбор функции 1: Работает Да Электрический, в противном случае сбой питания 3 3,0 Гц 3 P04,4 1028
2: зарезервировано
3: Время прихода произвольной частоты, есть электрический, относится к настройкам P02-10
4:, время простоя, есть электрический
5:, время низкого напряжения, есть электрический
6:, время перенапряжения, есть электрический
7: Время перегрузки по току, есть электрический
8: ненулевая скорость Времени
9 :, Время торможения постоянным током, есть электрический
10: превышение крутящего момента, электрический
11: Время ошибки внешнего прерывания, есть
12: время вперед, есть электрический
13: время разворота, электрический
14: Время хода, есть электрический
15: время ускорения
16: время замедления, есть электрический
17: постоянная скорость времени, электрический
18: X1 закрыть время, есть электрический
19: X2 Время закрытия, есть электрический
20: X3 закрыть время, есть электрический
21: X4 закрыть время, есть электрический
22: Время закрытия X5, есть электрический
23: X6 время закрытия, есть электрический
24: прямое и шинное напряжение более 400 В, есть электрический
25: обратное напряжение и напряжение шины более 400 В, есть электрический
P04.05 1029 Многофункциональное реле 1 Действие замыкание с задержкой 0-65,5 S 0 0 P04,5 1029
P04.06 1030 Многофункциональное реле 1, задержка отключения, действие 0-65.5 S 0 0 P04.6 1030
P04.07 1031 Многофункциональное реле 1 Действие замыкания с задержкой 0-65,5 S 0 0 P04,7 1031
P04.08 1032 Многофункциональное реле 1, задержка отключения, действие 0-65.5 S 0 0 P04.8 1032
P04.09 1033 Время обнаружения остановочного ротора 0-65,5 S 1 1 P04,9 1033
P04.10 1034 Время выборки величины Di (0) 0-1000 мСм 8 24 24 P04.10 1034
P04.11 1035 Режим останова 0: замедление останова 0 0 P04.11 1035
1: остановка уезда
P05.00 1280 PID Выход Верхний предел частоты 50 50 P05.0 1280
P05.01 1281 PID Выходной нижний предел частоты 25 25 P05.1 1281
P05.02 1282 PID Источник данных 0 0 P05.2 1282
P05.03 1283 Приведены значения PID 0.2 0.2 P05.3 1283
P05.04 1284 PID Выходная характеристика (FOR / REV) 0 0 P05.4 1284
P05.05 1285 PID Выходная характеристика (FOR / REV) 0 0 P05.5 1285
P05.06 1286 PID Пропорциональное усиление 0-100.0 50 50 P05.6 1286
P05.07 1287 Время интеграции ПИД Ti 0-100.0 0-100.0 50 50 P05.7 1287
P05.08 1288 Время получения PID Td 0-100.0 0-100.0 50 50 P05.8 1288
P05.09 1289 Предел отклонения PID 0-50.0 5 5 P05.9 1289
P05.10 1290 PID Интегральный верхний предел 50 50 P05.10 1290
P05.11 1291 PID с учетом времени изменения 0-600.0 1 1 P05.11 1291
P05.12 1292 Время фильтра обратной связи ПИД 0 0 P05.12 1292
P06.00 1536 Время ускорения 0 0 P06.0 1536
P06.01 1537 Accel.Time 1 0.1-6553.5 5.0 9 5.0 5 P06.1 1537
P06.02 1538 Decel. Время 1 0,1-6553,5 5,0 8,6 5,0 5 P06,2 1538
P06.03 1539 Accel.Time 2 0.1-6553.5 0.1-6553.5 2 2 P06.3 1539
P06.04 1540 Decel. Время 2 0,1-6553,5 0,1-6553,5 2 2 P06,4 1540
P06.05 1541 Accel.Time 3 0.1-6553.5 0.1-6553.5 2 2 P06.5 1541
P06.06 1542 Decel. Время 3 0,1-6553,5 0,1-6553,5 2 2 P06.6 1542
P06.07 1543 Accel.Time 4 0.1-6553.5 0.1-6553.5 2 2 P06.7 1543
P06.08 1544 Decel. Время 4 0,1-6553,5 0,1-6553,5 2 2 P06,8 1544
P06.09 1545 Accel.Time 5 0.1-6553.5 0.1-6553.5 2 2 P06.9 1545
P06.10 1546 Decel. Время 5 0,1-6553,5 0,1-6553,5 2 2 P06.10 1546
P06.11 1547 Accel.Time 6 0,1-6553,5 0,1-6553,5 2 2 P06.11 1547
P06.12 1548 Decel. Время 6 0,1-6553,5 0,1-6553,5 2 2 P06.12 1548
P06.13 1549 Accel.Time 7 0.1-6553.5 0.1-6553.5 2 2 P06.13 1549
P06.14 1550 Decel. Время 7 0,1-6553,5 0,1-6553,5 2 2 P06.14 1550
P06.15 1551 Accel.Time 8 0.1-6553.5 0.1-6553.5 2 2 P06.15 1551
P06.16 1552 Decel. Время 8 0,1-6553,5 0,1-6553,5 2 2 P06.16 1552
P06.17 1553 Время ускорения Jog 0,1-6553,5 0,1-6553,5 2 2 P06.17 1553
P06.18 1554 Время замедления Jog 0,1-6553,5 0,1-6553,5 2 2 P06.18 1554
P07.00 1792 Частота 1 0-120 Гц (400 Гц) 50 Гц 50 50 P07.0 1792
P07.01 1793 Частота 2 50 Гц 45 45 P07.1 1793
P07.02 1794 Частота 3 50 Гц 40 40 P07.2 1794
P07.03 1795 Частота 4 50 Гц 35 35 P07.3 1795
P07.04 1796 Частота 5 50 Гц 30 30 P07.4 1796
P07.05 1797 Частота 6 50 Гц 25 25 P07,5 1797
P07.06 1798 Частота 7 50 Гц 20 20 P07.6 1798
P07.07 1799 Частота 8 50 Гц 15 15 P07.7 1799
P07.08 1800 Выбор источника частоты 1 0: Плата оператора (параметр: P03.06 ~ P03.09) 0 0 P07.8 1800
P07.09 1801 Выбор источника частоты 2 1: предварительно установленная частота, P00.00 Установка значения частоты, клавиатура панели управления, может быть установлена ​​непосредственно 2 2 P07.9 1801
P07.10 1802 Выбор источника частоты 3 2: Нет. Частота X абзаца P07.00 ~ P07.07 2 2 P07.10 1802
P07.11 1803 Выбор источника частоты 4 3: Аналоговый вход. : P03.10 ~ P03.13) 2 2 P07.11 1803
P07.12 1804 Выбор источника частоты 5 4: величина внешнего моделирования 2 (VI2) 2 2 P07.12 1804
P07.13 1805 Выбор источника частоты 6 5: (Modbus Rs485) Заданная частота 2 2 P07.13 1805
P07.14 1806 Выбор источника частоты 7 6: прикладная программа пользователя, заданная частота 2 2 P07.14 1806
P07.15 1807 Выбор источника частоты 8 7 🙁 Pid) Выходная частота 2 2 P07.15 1807
Другое: зарезервировано
Примечание: три метода управления (P07.08) 1808 1. Скорость двигателя контролируется панелью управления P07.16 1808
2. Управление скоростью двигателя с помощью внешних клемм (потенциометр 10K).P00.01 установлен на 1, P07.08 установлен на 3
3. Управление скоростью двигателя с помощью внешних клемм. P00.01 установлен на 1, P07.08 установлен на 1.
P07.16 1809 Частота бега вперед 0-120 Гц (400 Гц) 15.0 Гц 15 P07.17 1809
P07.17 2048 Частота пробега REV 0-120 Гц (400 Гц) 15,0 Гц 13,0 Гц 13 P08,0 2048
P08.00 2049 Автоматический много параграфов Работа: направление движения Бинарный формат данных для задания направления операции, см. (Автоматическая многосегментная операция, операция таблицы задания направления) 0 0 P08.1 2049
P08.01 2050 Автоматический много параграфов Запуск: режим Выбор 0: Недопустимая автоматическая многосегментная операция; 0 0 P08.2 2050
1: после завершения выполнения остановите;
2: после завершения выполнения сохранить последнее состояние выполнения, продолжение работы;
3: после завершения выполнения, повторное выполнение.
P08.02 2051 Автоматический много параграфов Время выполнения Единицы: S / M 0: S; 1: M 0 0 P08.3 2051
P08.03 2052 Автоматический много параграфов Запуск: Нет.1 параграф Время работы Автоматическое время многосекционной работы, Настройка времени работы секции секций unitsВременные единицы определяются P08.02 Решение。Набор прогонов равен 0, Указывает, что эта секция не выполнена. 10 1 1 P08.4 2052
P08.04 2053 Автоматическая многогранная работа: No.2 параграф Продолжительность 10 1,5 1,5 P08,5 2053
P08.05 2054 Автоматическая многогранная работа: No.3 параграф Продолжительность 10 1 1 P08.6 2054
P08.06 2055 Автоматическая обработка многих параграфов: № 4 параграфа Продолжительность 10 1.5 1.5 P08.7 2055
P08.07 2056 Автоматическая многогранная работа: № 5 параграф Продолжительность 10 1 1 P08.8 2056
P08.08 2057 Автоматическая многогранная работа: No.6 параграф Продолжительность 10 1.5 1.5 P08.9 2057
P08.09 2058 Автоматическая многогранная работа: No.7 параграф Продолжительность 10 1 1 P08.10 2058
P08.10 2304 Автоматический много параграфов Запуск: № 8 параграфа Продолжительность 10 1,5 1,5 P09,0 2304
P09.00 2305 Диапазон частот (%) 0-200% 0 0 P09.1 2305
P09.01 2306 Частота волны Диапазон (%) 0-400% 200 30 30 P09.2 2306
P09.02 2307 частота Время нарастания (S) 0,1-999,9 S 6,0 S 6 P09,3 2307
P09.03 2560 Время спада частоты (S) 0,1-999,9 S 5,0 S 5 P10,0 2560
P10.00 2561 Счетчик перезагрузки, значение 1000 1000 P10.1 2561
P10.01 2562 Значение тока счетчика 0 0 P10.2 2562
P10.02 2563 Перезагрузка таймера, значение 1000 1000 P10.3 2563
P10.03 2816 Текущее значение таймера 0 0 P11.0 2816
P11.00 2817 Состояние выхода 1 1 P11.1 2817
P11.01 2818 Выходное напряжение (В) 0 0 P11.2 2818
P11.02 2819 Выходной ток (А) 5 5 P11.3 2819
P11.03 2820 Выходная частота (Гц) 50 50 P11.4 2820
P11.04 3072 Текущая температура радиатора 25 25 P12.0 3072
P12.00 3073 Номинальный ток двигателя 5 5 P12.1 3073
P12.01 3074 Номинальное напряжение двигателя 220 220 P12.2 3074
P12.02 3075 Полюс двигателя № 2-100 2 2 P12.3 3075
P12.03 3076 Ток холостого хода двигателя 10 10 P12.4 3076
P12.04 3077 Время обнаружения тока холостого хода двигателя (S) 10 10 P12.5 3077
P12.05 3078 Номинальный ток преобразователя (A) 5 5 P12.6 3078
P12.06 3079 Преобразователь номинального напряжения (В) 220 220 P12.7 3079
P12.07 3080 Выходное напряжение шины постоянного тока% 140 130 P12.8 3080
P12.08 3081 Радиатор защиты от перегрева 70 75 P12.9 3081
P12.09 3082 Конфигурация датчика температуры оребрения 1 1 P12.10 3082
P12.10 3083 Аномальное время ожидания агрегата сброса 120 120 P12.11 3083
P12.11 3084 Шаблон функции вентилятора 0: двигатель работает с зубцом, запускается вентилятор; 1 1 P12.12 3084
1: При превышении рабочей температуры вентилятора (P12.12), Мгновенный запуск вентилятора; Когда температура ниже точки температуры вентилятора, задержите примерно на 1 минуту, чтобы закрыть вентилятор;
2: безусловный принудительный запуск вентилятора;
3: не работает вентилятор;
P12.12 3085 Рабочая температура охлаждающего вентилятора 55 45 50 P12.13 3085
P12.13 3086 Проверка вентилятора 0 0 P12.14 3086
P12.14 3087 Обнаружение замкнутого реле байпаса 0 0 P12.15 3087
P12.15 3088 Время задержки байпасного реле 1,5 1 P12.16 3088
P12.16 3089 Начальное значение таймера задержки включения (S) 50 50 P12.17 3089
P12.17 3090 Датчик электрического тока Для настройки 1 1 P12.18 3090
P12.18 3091 Автоматическая функция стабильного давления Выбор 1 1 P12.19 3091
P12.19 3092 PWM Частота 2,0-15,0 кГц (110 В13.0 кГц 220 В 11,0 кГц 380 В 6,0 кГц) 8,0 кГц 13,0 кГц 13 P12,20 3092
P12.20 3328 SVPWM Pattern 0: Трехфазный асинхронный двигатель, 0 0 P13.0 3328
1: двухфазный асинхронный двигатель (однофазный двигатель, разность фаз 90 градусов, пусковой конденсатор)
P13.00 3329 103 P13.1 3329
P13.01 3330 600 P13.2 3330
P13,02 3331 1 P13,3 3331
P13.03 3332 16.24 P13.4 3332
P13.04 3333 1 P13.5 3333
P13,05 3584 0 P14.0 3584
P14,00 3585 35 P14,1 3585
P14.01 3586 0,2 P14.2 3586
P14.02 3587 1 P14.3 3587
P14.03 3588 0 P14.4 3588
P14.04 3589 0 P14.5 3589
P14.05 3590 100 P14.6 3590
P14.06 3591 1900 P14.7 3591
P14.07 3592 2000 P14.8 3592
P14,08 3593 59999 P14,9 3593
P14.09 3594 5 P14.10 3594
P14.10 3595 20 P14.11 3595
P14.11 3596 0 P14.12 3596
P14.12 3597 0 P14.13 3597
P14.13 3598 0 P14.14 3598
P14.14 3599 0 P14.15 3599

Дополнительная информация:
Извините, это вставка из электронной таблицы, вам, возможно, придется выполнить некоторое форматирование или вставить ее в электронную таблицу, чтобы лучше ее увидеть ...

Дополнительная информация:
Я обязательно сделаю это. Большое спасибо за предоставление информации!

Дополнительная информация:
У меня также есть эта проблема с yl620.Есть ли решение?

Дополнительная информация:
Имеется ли схема подключения для устройств 110В. Мой пришел с буклетом 220 вольт.

Дополнительная информация:
мое устройство также поставляется с инструкциями для 220 устройства. Мне нужна схема подключения 110.

Дополнительная информация:
Эти инструкции в лучшем случае неэффективны, мой друг заказал одну из них для установки на измельчитель ножей, который я для него изготовил, и я приступил к настройке устройства, после подключения его к двигателю, оно работает двигатель, но охота на более низких скоростях, и нужной мне настройки нет в списке, есть некоторые настройки в 14-х, которые не говорят, для чего, может кто-нибудь помочь?

Нажмите на ссылку, чтобы ответить:
Я получил VFD 110 В yl600-2s-2k20 p 110 В с инструкциями 220 В, также разъемы на VFD дозе не соответствуют ни одной конфигурации проводки, которая у вас есть.

Схема цепи

бестрансформаторного источника питания

Генерация постоянного тока низкого напряжения от сети переменного тока 220 В или 110 В очень полезна и необходима в области электроники. Низкое напряжение постоянного тока, например, 5 В, 6 В, 9 В, 12 В, используется в электронных схемах, светодиодных лампах, игрушках и многих других бытовых электронных приборах. Обычно для их питания используются батареи, но их необходимо время от времени заменять, что неэффективно с точки зрения затрат, а также требует нашего времени и энергии. Таким образом, альтернатива состоит в том, чтобы генерировать постоянный ток из сети переменного тока, для которого доступно много адаптеров переменного тока, но какие схемы они используют внутри?

Простой и понятный подход заключается в использовании понижающего трансформатора для снижения переменного тока, но недостатки использования трансформатора заключаются в том, что они дороги по стоимости, тяжелы по весу и имеют большие размеры.Мы уже рассмотрели этот тип преобразования переменного тока в постоянный, используя Transformer в этой статье. И да, мы также можем преобразовать высокое напряжение переменного тока в низкое напряжение постоянного тока, без использования трансформатора, это называется Бестрансформаторный источник питания . Основным компонентом схемы бестрансформаторного источника питания является конденсатор с понижением напряжения или конденсатор с номинальным напряжением X , которые специально разработаны для сети переменного тока. Этот конденсатор с номинальным значением X подключен последовательно к фазной линии переменного тока для снижения напряжения.Этот тип трансформаторного блока питания называется Capacitor Power Supply .

X-Rated Capacitor

Как уже упоминалось, они соединены последовательно с фазовой линией переменного тока для понижения напряжения, они доступны в 230 В, 400 В, 600 В переменного тока или выше.

x rated capacitors

Ниже приведена таблица для выходного тока и выходного напряжения (без нагрузки), различных значений конденсаторов с номинальной характеристикой X:

Код конденсатора

Значение конденсатора

Напряжение

Текущий

104k

0.1 мкФ

4 в

8 мА

334k

0,33 мкФ

10 В

22 мА

474k

0,47 мкФ

12 В

25 мА

684k

0,68 мкФ

18 v

100 мА

105к

1 мкФ

24 В

40 мА

225к

2.2 мкФ

24 В

100 мА

Выбор конденсатора падения напряжения важен, он основан на реактивном сопротивлении конденсатора и величине тока, который необходимо отвести. Реактивное сопротивление конденсатора определяется по формуле:

X = 1 / 2¶fC

X = Реактивное сопротивление конденсатора

f = частота переменного тока

C = Емкость X номинального конденсатора

Мы использовали 474k означает 0.Конденсатор на 47 мкФ и частота AV-сети составляют 50 Гц, поэтому Reactance X составляет:

X = 1/2 * 3,14 * 50 * 0,47 * 10 -6 = 6776 Ом (приблизительно)

Теперь мы можем рассчитать ток (I) в цепи:

I = V / X = 230/6775 = 34 мА

Так вот как рассчитывается реактивное сопротивление и ток.

Описание схемы

Цепь проста, конденсатор сброса напряжения 0,47 мкФ подключен последовательно с фазной линией переменного тока, это неполяризованные конденсаторы, поэтому он может быть подключен с любой стороны.Резистор на 470 кОм подключен параллельно конденсатору, чтобы разрядить накопленный ток в конденсаторе, когда цепь отключена, что предотвращает поражение электрическим током. Это сопротивление называется Сопротивление Bleeder .

Дополнительный мостовой выпрямитель (комбинация из 4 диодов) был использован для удаления отрицательной половины компонента переменного тока. Этот процесс называется Исправление . И конденсатор 1000 мкФ / 50 В был использован для фильтрации , означает удаление пульсаций в полученной волне.И, наконец, стабилитрон 6,2 В / 1 Вт используется в качестве регулятора напряжения. Как мы знаем, эта схема обеспечивает ок. Выход 12 В (см. Таблицу выше), поэтому этот стабилитрон регулирует его до прибл. Напряжение 6,2 В и обратный ток. Также можно использовать другое значение стабилитрона для требуемого напряжения, например, 5,1 В, 8 В и т. Д. Светодиод подключен для индикации и тестирования. R3 (100 Ом) используется в качестве ограничителя тока.

Используйте номинальный резистор мощностью 1 Вт или выше (5 Вт), особенно резистор R4.В противном случае он сгорит через некоторое время. Они обычно толще обычного резистора. Ниже приведена схема для резисторов разного типа:

Преимущества этого бестрансформаторного источника питания по сравнению с трансформаторным источником питания заключаются в следующем: он экономичен, легче и меньше.

Примечания

  • Сделайте это на свой страх и риск, крайне опасно работать с сетью переменного тока без надлежащего опыта и мер предосторожности.Будьте предельно осторожны при построении этой схемы.
  • Не заменяйте конденсатор X-Rated обычным, иначе он разорвется.
  • Если требуется большее выходное напряжение и выходной ток, используйте другое значение конденсатора X-Rated в соответствии с таблицей.
  • Используйте только номинальный резистор мощностью 1 Вт или выше (5 Вт) и стабилитрон.
  • Предохранитель на 1 ампер также можно использовать перед конденсатором с номинальным напряжением Х, последовательно с фазовой линией, в целях безопасности.
  • Регулятор напряжения
  • IC также может использоваться вместо стабилитрона для регулирования напряжения.
.

Отправить ответ

avatar
  Подписаться  
Уведомление о