Элементная база блоков питания | Ремонт торговой электронной техники
В блоках питания помимо использования обыкновенных резисторов используются два типа специализированных резисторов - Варистор и Термистор.
Также, кроме обыкновенных конденсаторов используются специализированные помехоподавляющие конденсаторы: конденсаторы типа Y и конденсаторы типа X (их еще называют конденсаторы класса защиты X/Y)
В качестве примера приведем кусок реальной схемы до выпрямительного мостика, хочется повторится – схема реальная, хотя впечатление такое, что этот шедевр - сборище пассивных элементов защиты от ВЧ помех со страниц какого то учебника по борьбе с помехами.
Рис. Пример реального участка схемы блока питания - фильтра от ВЧ помех.
Варистор
Варистор – полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Основная задача варистора в блоках питания – защита цепей от перенапряжения.
Рис. Принцип работы варистора в блоках питания, увеличение скорости срабатывания предохранителя или защита от импульсных бросков напряжения.
Варистор включается параллельно входному напряжению 220В, и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал. В случае возникновения выброса по напряжению, сопротивление варистора резко падает и шунтирует защищаемые цепи, ток в этом состоянии может достигать нескольких тысяч ампер. Несмотря на свою эффективность варистор в блоках питания АТХ довольно редкий гость, чаще его можно увидеть в сетевых фильтрах или в некомпьютерных блоках питания.

Рис. Для увеличения скорости срабатывания защиты, предохранитель и варистор объеденяют вместе.
Обозначение варистора на плате.
Обозначение варистора на схеме.
Рис. Условное обозначение варистора на схеме
Особенности применения варисторов.
- Варисторы являются безинерционным элементом. Полностью восстанавливает свои свойства мгновенно, в результате чего чрезвычайно эффективен при борьбе с импульсными выбросами напряжения.
- Количество импульсов прикладываемых к варистору ограничено, фактически это значит, что со временем варистор теряет свои свойства.
Терморезистор
Терморезистор – полупроводниковый резистор, сопротивление которого изменяется при изменении температуры.
Различают два вида терморезисторов
Термистор (NTC-термистор) - сопротивление терморезистора с повышением температуры уменьшается.
Позистор (PTC-позистор) - сопротивление терморезистора с повышением температуры увеличивается
Применение терморезисторов в блоках питания
Рис. Принцип работы NTC-термистора в блоках питания, мягкий пуск.
Основная задача термистора в блоках питания - ограничение пускового тока. При включении блока питания термистор имеет температуру окружающей среды и сопротивление в несколько Ом. Конденсатор выпрямителя в момент включения представляет из себя короткозамкнутую нагрузку, в цепи происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока через термистор, последний разогревается и его сопротивление падает почти до десятых долей Ома, и далее он не влияет на работу устройства. Происходит так называемый мягкий пуск.
Обозначение термистора на плате.
Обозначение термистора на схеме.
Рис. Условное обозначение терморезистора на схеме
На практике может встречаться комбинация состоящая, из двух или более приведенных обозначений.
Рис. Пример комбинации при обозначении терморезистора
- Термисторы являются инерционным элементом. Полностью восстанавливает свои свойства только через 5-10 мин. Фактически при кратковременном отключении питания, при повторном пуске термистор не работает как элемент защиты.
- Выводы термистора являются радиаторами, необходимо оставлять выводы как можно длиннее.
- Температура термистора в состоянии сопротивления близкого к нулю может доходить до 250 градусов, нежелательно устанавливать корпус термистора в непосредственной близости от других элементов.
Помехоподавляющие конденсаторы
Помехоподавляющие конденсаторы делятся на два типа X и Y, для подавления синфазной и противофазной составляющей помехи. Каждый тип для своего типа помехи.
![]() |
Как практик, могу сказать, название помехи не играет большой роли на принцип борьбы с помехой. Как теоретик, лично я, всегда путаю термины синфазной и противофазной помехи между собой, поэтому дальше обе помехи мы будем разделять по принципу возникновения. |
Конденсатор X типа
Конденсатор X типа – конденсатор для подавления помехи возникающей между фазой и нулем (не путать с заземлением). Задача Х конденсатора не пропускать помеху из внешней сети в блок питания, а так же не выпускать помеху созданную блоком питания во внешнюю сеть.
Рис. Принцип работы Х конденсатора.
Обозначение X конденсатора на плате.
![]() |
![]() |
|
Cx | С |
Обосначается как обычный конденсатор, с суффиксом x, например Cx
Рис. Обозначение Х конденсатора на схеме .
Особенности применения Х конденсаторов.
- Конденсатор невозгораемый при любых условиях
- Неисправность конденсатора не приведет к поражению электрическим током.
- Емкость Х конденсатора, чем больше - тем лучше.
- X2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 2.5кВ.
- Какая бы не была емкость Х конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.
Конденсатор Y типа
Конденсатор Y типа – конденсатор для подавления помехи возникающей между
- фазой и землей (не путать с нулем)
- нулем и землей.
Рис. Принцип работы Y конденсатора.
Обозначение Y конденсатора на плате.
Нет изображения | Нет изображения | |
CY | С |
Обозначение Y конденсатора на схеме.
Обозначается как обычный конденсатор, с суффиксом Y, например Cy рядом с номиналом может стоять напряжение.
Рис. Обозначение Y конденсатора на схеме .
Особенности применения Y конденсаторов.
- Конденсатор в случае пробоя уходит в обрыв
- Неисправность конденсатора может привести к поражению электрическим током.
- Емкость Y конденсатора, чем меньше - тем лучше.
- Y2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 5кВ.
- Y конденсатор можно применять вместо X конденсатора, наоборот нет.
- Какая бы не была емкость Y конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.
Быстродействующие диоды.
В блоках питания используются два типа выпрямительных диодов – общего назначения и импульсные. Импульсные диоды можно отнести к быстродействующим.
Iпр.макс., А | Наименование | Корпус | Uобр., В | Uпад., В | tвосст., нс |
1 | 1N4933...1N4937 | DO-41 | 50 - 600 | 1,2 | 200 |
1 | FR101...FR107 | DO-41 | 50 - 1000 | 1,2 | 150-500 |
Например FR107 1000в, 1А 0,500мкс
zipstore.ru
Варистор — Википедия
Материал из Википедии — свободной энциклопедии

Вари́стор (лат. vari(able) - переменный (resi)sto — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины[1]. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).
Изготовление
Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.
Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.
Видео по теме
Свойства
Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.
Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:
- λ=RRd=UI:dUdI≈const{\displaystyle \lambda ={\frac {R}{R_{d}}}={\frac {U}{I}}:{\frac {dU}{dI}}\approx const},
где U - напряжение, I - ток варистора
Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.
Температурный коэффициент сопротивления (ТКС) варистора — отрицательная величина.
Применение
Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.
Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.
Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.
Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.
Материалы варисторов
Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.
Параметры
При описании характеристик варисторов в основном используются следующие параметры[1]:
- Классификационное напряжение Un — напряжение при определённом токе (обычно 1 мА), условный параметр для маркировки изделий;
- Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
- Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
- Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
- Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
- Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.
Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.
См. также
Примечания
Литература
- В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков. Основы промышленной электроники: Учебник для вузов / Под ред. В. Г. Герасимова. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
- Электроника: Энциклопедический словарь / В. Г. Колесников (главный редактор). — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2.
- И. П. Шелестов. Полезные схемы. Книга 5. — М.: СОЛОН-Р, 2002. — 240 с. — (Радиолюбителям). — 7000 экз. — ISBN 5-93455-167-1.
wiki2.red
Обозначение резисторов и их виды
В данной статье мы наглядно посмотрим основные виды резисторов и их обозначения на схеме. Резисторы бывают постоянными, переменными, подстроечными, термисторы, варисторы, фоторезисторы.
Постоянные резисторы. Самый распространенный вид, используемый в электронике.
Обозначаются на схеме следующим образом:
Выглядят постоянные резисторы так:
Данные элементы могут отличаться мощностью, которая на схеме тоже может быть указана следующим образом:
Вот наглядные примеры резисторов различной мощности:
На 0.125 Вт резисторы у нас не продают в городе, так как они в корпусе 0.25 Вт и с виду их не различить. Привожу пример зарубежных резисторов, так как, элементы времен СССР уже в большинстве случаев не применяются. Резисторы могут быть и более 2 Ватт, и 10, и 25 Ватт, вот например на 7 Ватт:
Данные сопротивления я использовал для измерения мощности импульсного блока питания.
Пример постоянных сопротивлений на плате:
Высокоточные сопротивления, с погрешностью 0.25%:
Также есть чип резисторы, еще их называют SMD резисторами, они применяются в поверхностном монтаже. Они различаются по размерам и рассеиваемой мощностью.
Переменные резисторы. Резисторы, изменяющие свое сопротивление, при вращении рукоятки называются переменными. На схеме они отображаются следующим образом:
Так же переменники могут выполнять две роли, роль реостата и потенциометра, все зависит от соединения:
В роли потенциометра, резистор работает как делитель напряжения, а в роли реостата как делитель тока.
Выглядят переменные резисторы вот так:
Подстроечные резисторы. Они похожи на переменные, могут быть потенциометрами, либо реостатами. Отличаются размерами и тем , что у подстроечных резисторов вместо рукояти пазы под отвертку, шестигранник и так далее. Хотя есть и с рукоятью, но с пазом под отвертку.
На схеме обозначаются следующим образом:
Выглядят так:
Варистор. Является полупроводниковым резистором, который изменяет свое сопротивление от приложенного к нему напряжения. Изменение сопротивления происходит нелинейно. Например, варистор, рассчитанный на напряжение 275 Вольт, при скачке напряжение более 275 Вольт, сопротивление варистора будет резко (нелинейно) уменьшаться, от сотни МОм до нескольких Ом.
Обозначаются на схеме варисторы следующим образом:
Выглядят так:
Применяются варисторы в основном для защиты цепей от перенапряжения. Варистор ставят параллельно в цепь, а до варистора в цепи ставят последовательно предохранитель. При скачке напряжения, сопротивление варистора падает до десятков Ом, тем самым варистор замыкает цепь, вследствие короткого замыкания (К.З.), сгорает предохранитель.
Термистор. Также является резистором на основе полупроводниковых материалов, сопротивление которого зависит от температуры полупроводника. Одним из важных параметров термисторов является- тепловой коэффициент сопротивления (ТКС). ТКС может быть положительным и отрицательным. У термисторов с отрицательным ТКС, при увеличении температуры, сопротивление падает, называют такие термисторы – термисторами. У термисторов с положительным ТКС, при увеличении температуры, сопротивление увеличивается и такие термисторы называют – позисторами.
Термисторы NTC (Negative Temperature Coefficient) и позисторы PTC (Positive Temperature Coefficient) на схеме обозначаются следующим образом:
Выглядит термистор так:
Фоторезистор. Является полупроводниковым элементом, который изменяет свое сопротивление при попадании на него лучей света, в том числе искусственных. Фоторезисторы можно увидеть в видеокамерах с инфракрасной подсветкой, среди инфракрасных светодиодов стоит один фоторезистор, который является датчиком света, управляющий реле. Реле в свою очередь включает подсветку, когда видеокамера в темноте.
Так же фоторезистор может использоваться в автоматах ночного освещения, регуляторах мощности фар автомобиля, фотоэлектронном контроле оборотов, датчиках дыма и других электронных устройствах.
На схеме отображаются следующим образом:
Внешне выглядят так:
Резисторная сборка. Это сборка из нескольких постоянных резисторов. Вот пример резисторной сборки на 15 кОм с общим выводом:
Теперь вы имеете представление о том, как выглядят различные сопротивления.
Похожие статьи
audio-cxem.ru
ВАРИСТОРЫ
Цель данной работы определение зависимости сопротивления варисторов от приложенного напряжения. Приборы и принадлежности: варистор, миллиамперметр, вольтметр, источник питания ВУП-2.
Краткая теория о варисторах
Варистор – это разновидность нелинейного полупроводникового резистора, сопротивление которого зависит от приложенного напряжения. Его вольтамперная характеристика носит сильно нелинейный характер. Сопротивление варистора сильно уменьшается при достижении порогового напряжения. Благодаря этому варисторы широко используются для защиты от импульсных перенапряжений. Обычно варистор включается параллельно защищаемой нагрузке, при этом он должен быть рассчитан на номинальное напряжение питания данной нагрузки.
Если пороговое напряжение на варисторе не превышено он фактически является изолятором. Если порогового значения напряжения превышено, то сопротивление варистора резко падает. При этом варистор шунтирует нагрузку защищая ее от воздействия недопустимо высокого напряжения питания.
Как правило, в качестве порогового напряжения варистора указывается напряжение, при котором через него протекает ток в 1 мА. Когда пороговое напряжение превышено через варистор может протекать очень большой ток. Если перенапряжение в защищаемой цепи будет носить длительный характер, то варистор выйдет из строя. При длительном падении сопротивления варистора в цепи возникает короткое замыкание, что должно вызвать срабатывание предохранителя.
Описание экспериментальной установки
Измерительная цепь питается от источника постоянного регулируемого напряжения ВУП-2. Ток через терморезистор измеряется микроамперметром.
Рис.1. Электрическая принципиальная схема установки
Порядок выполнения работы
- Собрать экспериментальную установку по рисунку 1. При выполнении, данном лабораторной работы используется лабораторный блок питания ВУП-2 (ВУП-1, ВУП-2М). Этот блок питания предназначен для питания ламповых электронных схем. На выходных клеммах блока питания ВУП-2 присутствует опасное для жизни постоянное напряжение до 350 В. Следует неукоснительно соблюдать правила техники безопасности. Все изменения в электрической схеме следует производить только при полностью обесточенной установке. Прикасаться к неизолированным токоведущим проводникам запрещается. При обесточивании установки не следует довольствоваться только отключением тумблера на передней панели блока питания. Следует извлечь штепсельную вилку блока питания из электрической розетки.
- Снять зависимость сопротивления варистора от приложенного напряжения. Пороговое напряжение для используемого в лабораторной работе варистора составляет 120 В. Во избежание перегрузки блока питания и выхода из строя исследуемого варистора превышать это напряжение запрещается.
- По результатам измерений построить вольтамперную характеристику варистора.
Практическая работа
Данная лабораторная работа посвящена варистору. В ней используется варистор на номинальное напряжение 120 В. Проще всего в продаже найти варисторы, рассчитанные на напряжение близкое к 220 В. В данном случае по соображениям безопасности использован варистор на минимальное напряжение (из тех, что удалось найти в продаже).
Варистор закреплен на панели из оргстекла, затрудняющей случайное прикосновение к токоведущим частям.
Изменение сопротивления варистора отслеживается при помощи амперметра и вольтметра. В качестве источника высокого напряжения использован блок питания ВУП-2М, предназначенный для питания схем на электронных лампах.
Видно, что при напряжении около 100 В ток через варистор равен нулю.
Но уже при 115 В сопротивление варистора начинает снижаться.
Варистор плохо переносит длительную работу при напряжении близком к номинальному. После нескольких лабораторных работ подряд прибор явно деградировал. При этом варистор стал заметно проводить ток уже при напряжении 60-80 В. Материал предоставил Denev.
Форум по теории
Обсудить статью ВАРИСТОРЫ
radioskot.ru
Принцип работы варистора
Сейчас рассмотрим, принцип работы варистора и важные моменты, связанные с его применением и использованием.
Доброго времени! Уважаемые читатели сайта energytik.net, сегодня поговорим об уникальном элементе электронной цепи. Этот радиоэлемент схемы одновременно является и полупроводником и многоразовым предохранителем.
Изучать электронику и её ремонт с обслуживанием, правильно начинать с теоретических данных. Примите этот совет за основное правило, ко всей учебе.
Название элемента варистора, происходит от английского языка, впрочем, как и подавляющее большинство радиоэлементов. Дословно, можно перевести как, переменный резистор. На языке С. Джобса, пишется variable resistor, просто взяли из первого слова, первые четыре буквы, а из второго последние, вот и получилось слово, варистор.
Отличительным чертой и параметром сего изделия, является его ВАХ, проще выражаясь, вольт – амперная характеристика. Она у варистора, является не линейной, другими словами, резко меняется сопротивление, при подаче на него, большего, чем необходимого, для правильной работы аппаратуры напряжения.
Принцип работы варистора в электрической схеме
Начнём с того что, по сути он является резистором, и в нормальном режиме работы электроники, он имеет огромное, омическое сопротивление. Практически всегда, оно равняется порядка нескольких сотен мега Ом (МОм). Как только, на концах его выводов, напряжение достигает необходимого для защиты уровня, его сопротивление, резко уменьшается. После этого, его сопротивление не составляет и сотни Ом.
Когда сопротивление варистора, достигает совсем низкого значения и примерно равняется нулю, происходит короткое замыкание. В результате чего, перегорает предохранитель, который перед варистором в цепи фазы или нуля. Выходом из строя, предохранитель размыкает электрическую цепь и оставляет схему без напряжения. Самое приятное, что после пропажи напряжения, варистор снова восстанавливается и готов к работе. Меняем предохранитель в схеме, и если вам сильно повезло, электронное устройство начинает полноценно и правильно функционировать. В схему, он включается параллельно источнику питания. На примере источника питания для компьютера, его ставят параллельно фазы и нуля, у варистора, всего два вывода.
Как выглядит и обозначается варистор на схеме
Графическое обозначение варисторов на принципиально электрической схеме, очень напоминает простой резистор. Через этот прямоугольник, проходит диагональная линия, на одном конце которой, располагается английская буква U, которая и обозначает напряжение. На схеме, буквенное обозначение варистора выполняется на английском языке и выглядит следующим образом RU.
Применение варисторов на практике.
Как вы уже поняли, задача варистора, сводится к защите электронике от высокого и скачкообразного напряжения в сети домашней электропроводки. Основное место установки варисторов, это первичные цепи электрооборудования. Вы их сразу можете увидеть в блоках питания компьютеров, пусковых системах для ламп дневного освещения, в народе именуемых, балластами. В схемах, они принимают участие в стабилизации токов и напряжений, а так же их токов. Подобные аппараты, применяются и в линиях воздушных электропередачи, там их называют разрядниками, у них рабочие напряжение, составляет 20 000 вольт, прочтите статью по ссылки, расширите свой кругозор. Рабочий диапазон работы варисторов, достигает 200 вольт, начинается с совсем незначительного значения, равняется трём вольтам. Диапазон по токам, от 0,1 до 1 ампера, это касается низковольтных деталей. Прочтите следующие статью про маркировку и проверку варисторов.
energytik.net
A | Separable assembly or sub-assembly (e.g. printed circuit assembly) | Отдельный модуль или устройство |
AE | Aerial | Антенна |
ANT | Antenna | Антенна |
AR | Amplifier (other than rotating), repeater | Усилитель, повторитель |
AT | Attenuator, inductive termination, resistive termination | Аттенюатор, индуктивная оконечная нагрузка, резистивная оконечная нагрузка |
B | Bead Ferrite | Ферритовый фильтр |
B | Battery | Батарея |
B | Motor | Электродвигатель |
BR | Bridge rectifier | Диодный мост |
BT | Battery | Батарея |
BT | Photovoltaic transducer, solar cell | Фотогальванический преобразователь, солнечная батарея |
C | Capacitor | Конденсатор |
CB | Circuit Board | Монтажная плата |
CB | Circuit breaker | Автоматический выключатель |
CN | Capacitor network | Конденсаторная сборка |
CP | Connector adapter, junction (coaxial or waveguide) | Переходник, cоединение (коаксиала или волновода) |
CR | Diode (TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor overvoltage absorber) | Диод (лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения) |
CRT | Cathode ray tube | Электронно-лучевая трубка |
D | Diode (LED, TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor overvoltage absorber) | Диод (светодиод, лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения) |
DC | Directional coupler | Направленный соединитель |
DL | Delay line | Линия задержки |
DS | Display, alphanumeric display device, annunciator, signal lamp | Дисплей, алфавитно-цифровой индикатор, световой индикатор, сигнальная лампа |
DSP | Digital signal processor | Цифровой сигнальный процессор |
E | Electrical contact, antenna, binding post, cable termination, electrical contact brush, electrical shield, ferrite bead rings, hall element, insulator, lightning arrester, magnetic core, permanent magnet, short circuit (termination), telephone protector, vibrating reed, miscellaneous electrical part | Электрический контакт, электрод, антенна, клемма, кабельный наконечник, электрическая щётка, электрический экран, ферритовое кольцо, элемент на эффекте холла, изолятор, искровой разрядник, магнитный сердечник, постоянный магнит, перемычка, громполоса, вибрирующий пружинный контакт, прочие радиодетали |
EP | Earphone | Головные телефоны |
EQ | Equalizer | Эквалайзер |
F | Fuse | Предохранитель |
FB | Ferrite bead | Ферритовый фильтр |
FD | Fiducial | Точка выравнивания |
FEB | Ferrite bead | Ферритовый фильтр |
FET | Field-effect transistor | Полевой транзистор |
FL | Filter | Фильтр |
G | Generator or oscillator, electronic chopper, interrupter vibrator, rotating amplifier, telephone magneto | Электрогенератор или осциллятор, электронный чоппер, вибропреобразователь, электромашинный усилитель, телефонный индуктор |
GDT | Gas-discharge lamp | Газоразрядная лампа |
GN | General network | Общая сеть |
H | Hardware, e.g., screws, nuts, washers | Крепёжные элементы (винты, гайки, шайбы) |
HP | Hydraulic part | Деталь гидравлики |
HR | Heater, heating lamp, heating resistor, infrared lamp, thermomechanical transducer | Нагревательный элемент, нагревательная лампа, нагревательный резистор, инфракрасная лампа, термомеханический преобразователь |
HS | Handset, operator's set | Телефонная трубка, телефонная гарнитура |
HT | Earphone | Головной телефон, наушники |
HY | Circulator or directional coupler | Циркулятор или направленный ответвитель |
I | Lamp | Лампа накаливания |
IC | Integrated Circuit | Микросхема, интегральная схема |
J | Jack, Receptacle, Terminal Strip, connector | Гнездо, розетка, патрон, клеммник, коннектор |
J | Wire link, jumper | Джампер |
J | Jumper chip | Резистор нулевого сопротивления (перемычка или SMD-предохранитель) |
JFET | Junction gate field-effect transistor | Однопереходный полевой транзистор |
JP | Jumper (Link) | Джампер |
K | Relay, contactor | Реле, контактор, электромагнитный пускатель |
L | Inductor, choke, electrical solenoid, field winding, generator field, lamp ballast, motor field, reactor | Катушка индуктивности, дроссель, соленоид, обмотка электромагнита, обмотка возбуждения генератора, индуктивный балласт, обмотка возбуждения электродвигателя, реактивная катушка |
LA | Lightning arrester | Молниезащита |
LCD | Liquid-crystal display | ЖК-дисплей |
LDR | Light Dependent Resistor, | Фоторезистор |
LED | Light-emitting diode | Светодиод |
LS | Loudspeaker or buzzer, audible alarm, electric bell, electric horn, siren, telephone ringer, telephone sounder | Громкоговоритель или зуммер, звуковая сигнализация, электрический колокол, ревун, сирена, телефонный звонок, телефонный капсюль |
M | Motor | Электродвигатель |
M | Meter, electric timer, electrical counter, oscilloscope, position indicator, thermometer | Измеритель (обобщённый), электрический таймер, электрический счётчик, осциллограф, датчик положения, термометр |
MCB | Miniature circuit breaker | Миниатюрный автоматический выключатель |
MG | Dynamotor, motor-generator | Динамотор, моторгенератор |
MIC | Microphone | Микрофон |
MK | Microphone | Микрофон |
MOSFET | Metal-oxide-semiconductor field-effect transistor | МОП-транзистор |
MOV | Metal oxide varistor | Варистор на базе оксида металла |
MP | Mechanical part (including screws and fasteners) | Механическая деталь (в том числе крепёж) |
MT | Accelerometer | Акселерометр |
N | Neon Lamp | Неоновая лампа |
NE | Neon Lamp | Неоновая лампа |
OP | Operational amplifier | Операционный усилитель |
P | Plug | Штекер, штепсельная вилка |
PC | Photocell | Фотоэлемент |
PCB | Printed circuit board | Печатная плата |
PH | Earphone | Головные телефоны |
PLC | Programmable logic controller | Программируемый логический контроллер |
PS | Power supply, кectifier (complete power-supply assembly) | Вторичный источник электропитания, выпрямитель тока |
PU | Pickup, head | Звукосниматель, передающая телевизионная трубка, магнитная головка |
Q | Transistor, semiconductor controlled rectifier, semiconductor controlled switch, phototransistor (3 terminal), thyratron (semiconductor device) | Транзистор, полупроводниковый преобразователь, полупроводниковый ключ, фототранзистор трёхконтактный, тиратрон полупроводниковый |
R | Resistor, function potentiometer, instrument shunt, magnetoresistor, potentiometer, relay shunt, rheostat | Резистор, функциональный потенциометр, измерительный шунт, магниторезистор, потенциометр, шунт обмотки реле, реостат |
RE | Radio receiver | Радиоприёмное устройство |
RFC | Radio frequency choke | Высокочастотный дроссель |
RJ | Resistor Joint | Резисторная сборка |
RLA | Relay | Реле |
RN | Resistor Network | Резисторная сборка |
RT | Thermistor, ballast lamp, ballast tube, current-regulating resistor, thermal resistor | Терморезистор, термистор, электровакуумный стабилизатор тока, газоразрядный стабилитрон, токорегулирующий резистор, терморезистор |
RV | Varistor, symmetrical varistor, voltage-sensitive resistor | Варистор, варистор с симметричной вах, резистор управляемый напряжением |
RY | Relay | Реле |
S | Switch, contactor (manually, mechanically or thermally operated), flasher (circuit interrupter), governor (electrical contact type), telegraph key, telephone dial, thermal cutout (circuit interrupter) (not visual), thermostat | Переключатель, выключатель, кнопка, пускатель (ручной, механический, термический), прерыватель цепи, регулятор контактного типа, телеграфный ключ, номеронабиратель, термовыключатель, тепловое реле |
SCR | Silicon controlled rectifier | Однонаправленный управляемый тиристор |
SPK | Speaker | Громкоговоритель |
SQ | Electric squib | Электровоспламенитель |
SR | Rotating contact, slip ring | Вращающийся контакт, контактное кольцо |
SUS | Silicon unilateral switch | Пороговый тринистор |
SW | Switch | Переключатель, выключатель, кнопка |
T | Transformer | Трансформатор |
TB | Connecting strip, test block | Клеммная колодка, тест-блок |
TC | Thermocouple | Термопара |
TFT | Thin-film-transistor display | TFT-дисплей |
TH | Thermistor | Терморезистор, термистор |
TP | Test point | Контрольная (измерительная) точка |
TR | Transistor | Транзистор |
TR | Radio transmitter | Радиопередатчик |
TUN | Tuner | Тюнер |
U | Integrated Circuit | Микросхема, интегральная схема |
U | Photon-coupled isolator | Оптопара |
V | Vacuum tube, valve, ionization chamber, klystron, magnetron, phototube, resonator tube (cavity type), solion, thyratron (electron tube), traveling-wave tube, voltage regulator (electron tube) | Радиолампа, ионизационная камера, клистрон, магнетрон, вакуумный фотоэлемент, полостной вакуумный резонатор, хемотронный датчик, тиратрон (радиолампа), лампа бегущей волны, регулятор напряжения (радиолампа) |
VC | Variable capacitor | Переменный конденсатор |
VDR | Voltage Dependent Resistor | Варистор; резистор, управляемый напряжением |
VFD | Vacuum fluorescent display | Вакуумно-люминесцентный индикатор |
VLSI | Very-large-scale integration | СБИС — сверхбольшая интегральная схема |
VR | Variable resistor (potentiometer or rheostat) | Переменный резистор (потенциометр или реостат) |
VR | Voltage regulator | Регулятор (стабилизатор) напряжения |
VT | Voltage transformer | Трансформатор напряжения |
W | Wire, bus bar, cable, waveguide | Провод, шина, кабель, волновод |
WT | Wiring tiepoint | Точка примыкания |
X | Solar cell | Солнечный элемент |
X | Other converters | Преобразователи, не включаемые в другие категории |
X | Ceramic resonator | Керамический резонатор, кварцевый генератор |
X_ | Socket connector for another item | Разъём для элементов. Вторая буква соответствует подключаемому элементу |
XA | Socket connector for printed circuit assembly connector | Разъём для печатных плат |
XDS | Socket connector for light socket | Разъём для патрона |
XF | Socket connector for fuse holder | Разъём для предохранителя |
XL | Lampholder | Ламповый патрон |
XMER | Transformer | Трасформатор |
XTAL | Crystal | Кварцевый генератор |
XU | Socket connector for integrated circuit connector | Разъём для микросхемы |
XV | Socket connector for vacuum tube socket | Разъём для радиолампы |
Y | Crystal or oscillator | Кварцевый резонатор или осциллятор |
Z | Zener diode | Стабилитрон |
Z | Balun, coupled tunable resonator, directional phase shifter (non-reciprocal), gyrator, mode suppressor, multistub tuner, phase shifter, resonator (tuned cavity) | Симметрирующий трансформатор, связанный перестраиваемый резонатор, направленный фазовращатель (не обратный), гиратор, фильтр нежелательных типов волн, многошлейфовый согласователь, фазовращатель, объёмный резонатор |
ZD | Zener Diode | Стабилитрон |
ZSCT | Zero sequence current transformer, also called a window-type current transformer | Трансформатор тока нулевой последовательности, трансформатор тока с проёмом для первичной цепи |
wiki.yola.ru
мир электроники - Варистор
материалы в категории
Варистор
Варистор- это одна из разновидностей резисторов. Основное свойство варистора- он изменяет свое сопротивление под воздействием приложенного к нему напряжения.
Отсюда и название варистор- от английского словосочетания vari(able) (resi)stor — переменный резистор.
Обозначение варисторов на схемах
На схеме варистор обозначается так:
Основные параметры варисторов
К основным параметрам варисторов можно отнести:
- Классификационное напряжение, В — напряжение при определённом токе (обычно изготовители указывают при 1 мА), практической ценности не представляет.
- Рабочее напряжение (Operating voltage) В (для пост. тока Vdc и Vrms — для переменного) — диапазон — от нескольких В до нескольких десятков кВ; данное напряжение должно быть превышено только при перенапряжениях.
- Рабочий ток (Operating Current), А — диапазон — от 0,1 мА до 1 А
- Максимальный импульсный ток (Peak Surge Current), А
- Поглощаемая энергия (Absorption energy), Дж
- Коэффициент нелинейности
- Температурные коэффициенты (статич. сопротивления, напряжения, тока) — для всех типов варисторов не превышает 0,1 % на градус.
Вольт-Амперная характеристика варисторов
Вольт-Амперная характеристика варисторов отражена на диаграмме ниже.
Небольшое пояснение: ВАХ варисторов зависят от материала из которого они изготавливаются: синий график — на основе ZnO, красный график — на основе SiC
Из чего изготавливаются варисторы
Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника ( преимущественно порошкообразного карбида кремния SiC или оксида цинка ZnO), и связующего вещества (глина, жидкое стекло, лаки,смолы и др.). Далее поверхность полученного элемента металлизируют и припаивают к ней выводы.
Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы.
Варисторы бывают даже и переменные- применялись для регулировки фокуса в отечественных телевизорах.
radio-uchebnik.ru