Как обозначается реостат на схемах: Page not found — 7gear.ru

Содержание

Устроен реостат. Реостат – это управляющий прибор, способный изменять силу тока и напряжение

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — подводящий к реостату провод, зеленый — скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо — увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка — то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат — достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение. Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R . Если изменять сопротивление проводника R , тогда будет меняться сила тока.

Сопротивление зависит от длины L , от площади поперечного сечения S и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Разберем цепь, состоящую из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов
Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение

Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:

  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.

Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:

  • Воздушные.
  • Жидкостные.

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

На практике часто приходится менять силу тока в цепи, делая ее то больше, то меньше. Так, изменяя силу тока в динамике радиоприемника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Во многих случаях для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включенного в цепь участка АС. При этом будет меняться сопротивление цепи, а, следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением, а для того чтобы длинная проволока не мешала ее наматывают спиралью.

Один из реостатов (ползунковый реостат) изображен на рисунке а), а его условное обозначение в схемах — на рисунке б).


В этом реостате никелиновая проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки.

Электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим 1. С помощью этого зажима и зажима 2, соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь.

Стрелками указано как протекает электрический ток через реостат

Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь. То есть мы увеличиваем или уменьшаем количество витков по которым протекает электрический ток (чем больше витков, тем больше сопротивление).

Каждый реостат рассчитан на определенное сопротивление (чем больше проволоки намотано, тем большее сопротивление может дать такой реостат) и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате (см. рисунок а ).

[Значения 6Ω и 3 А означают что данный реостат способен изменять свое сопротивление с 0 до 6 Ом, и ток с силой больше чем 3 Ампера пропускать по нему не стоит. ]

Теперь самое время перейти от теории к практике!

Часть 1. Регулировка силы тока в лампочке.

На видео видно, как передвигая ползунок реостата вправо и влево, лампочка горит ярче или тусклее.

Понять принцип опыта можно взглянув на схему (см. рисунок 4).


На рисунке указана схема цепи, которую мы собирали в видео. Полное сопротивление цепи состоит из сопротивления R л лампочки и сопротивления включенной в цепь части проволоки (на рисунке заштрихована) реостата. Незаштрихованная часть проволоки в цепь не включена. Если изменить положение ползунка, то изменится длина включенной в цепь части проволоки, что приведет к изменению силы тока.

Так, если передвинуть ползунок в крайнее правое положение (точка С), то в цепь будет включена вся проволока, сопротивление цепи станет наибольшим, а сила тока — наименьшей, поэтому нить лампочки будет гореть тускло или совсем не будет гореть (так как эл. ток такой силы не может разогреть спираль лампочки до свечения).

Если же передвинуть ползунок реостата в положение А, то электрический ток совсем не будет идти по проволоке реостата и, следовательно, сопротивление реостата будет равно нулю. Весь ток будет расходоваться на горение лампы, и она будет светить максимально ярко.

Часть 2. Включение лампочки от карманного фонаря в сеть 220 В.

Внимание! Не повторяйте этот опыт самостоятельно. Напоминаем, что поражение электрическим током осветительной сети может привести к смерти.

Что произойдет, если включить лампочку от фонарика в осветительную сеть напряжением 220 В? Понятно, что лампочка, рассчитанная на работу от батареек с суммарным напряжением 3,5 Вольт (3 пальчиковых батарейки), не способна выдержать напряжение в 63 раза большее — она сразу перегорит (может и взорваться).

Как тогда это сделать? На помощь придет уже известный нам прибор — реостат.

Нам нужен такой реостат, который способен был задержать бурный поток электрического тока, идущего от осветительной сети, и превратить его в тоненький ручеек электричества, который будет питать нашу хрупкую лампочку не нанося ей вреда.

Мы взяли реостат с сопротивлением 1000 (Ом). Это значит, что если эл. ток будет проходить по всей проволоке этого реостата, то на выходе из него получится ток с силой всего лишь 0,22 Ампер.

I=U/R=220 В / 1000 (Ом) = 0, 22 А

Для питания же нашей лампочки нужно даже более сильное электричество (0,28 А). То есть реостат не пропустит достаточное количество тока, чтобы зажечь нашу маленькую лампочку.

Это мы и наблюдаем во второй части видео, где в крайнем положении ползунка лампочка не горит, а при передвижении его вправо лампочка начинает загораться все ярче и ярче (подвигая ползунок мы запускаем все больше тока).

В определенный момент (на определенном положении ползунка реостата) лампочка перегорает, потому что реостат (при данном положении ползунка) пропустил слишком много электричества, которое и пережгло нить накаливания лампочки.

Так можно ли включить низковольтную лампочку в осветительную сеть? Можно! Только следует задержать все лишнее электричество реостатом с достаточно большим сопротивлением.

Часть 3. Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть 220 В.

Мы взяли лампу мощностью 60 Вт, рассчитанную на напряжение 220 В, и лампочку от карманного фонарика на 3,5 В и силу тока 0,28 А.

Что произойдет, если включить эти лампочки в осветительную сеть напряжением 220 В? Понятно, что 60-ти ваттная лампочка будет гореть нормально (она на это и предназначена), а вот лампочка от карманного фонарика немедленно перегорит при включении ее в сеть (т.к. рассчитана работать от батареек только на 3,5 Вольта).

Но в опыте видно, как при подключении лампочек друг за другом (последовательно) и включении их в сеть 220 В обе лампы горят нормальным накалом и даже не думают перегорать. Даже когда ползунок реостата в крайнем положении (т.е. он не создает никакого сопротивления току) маленькая лампочка не перегорает.

Почему так? Почему даже при выключенном реостате (при его нулевом сопротивлении) лампа не перегорает? Что не дает ей перегореть при таком большом напряжении? И действительно ли напряжение на маленькой лампочке такое большое? Будет ли работать маленькая лампа если заменить лампу мощностью 60 Вт на стоваттную лампочку (100 Вт)?

Вы уже сможете ответить на большинство вопросов, если внимательно следили за ходом рассуждений в предыдущей части статьи. В этом опыте маленькой лампочке не дает перегорать большая лампочка. Она выступает в роли реостата с большим сопротивлением и берет на себя почти всю нагрузку.

Давайте попробуем разобраться как такое может происходить, что маленькая лампочка не перегорает благодаря лампочке в 60 Вт и доказать расчетным методом, что для нормального накала обеих лампочек необходимо одна и та же сила тока.

На помощь в решении этого вопроса нам придет физика, а конкретно ее раздел электричество (изучается в 8 классе).

Для того чтобы создать электрический ток, необходимо составить замкнутую электрическую цепь из электрических приборов.
Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Самая простая электрическая цепь состоит из:
1. источника тока
2. потребителя электроэнергии — (лампа, электроплитка, электродвигатель, электробытовые приборы)
3. замыкающего и размыкающего устройства — (выключатель, кнопка, рубильник)
4. соединительных проводов

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами.
На электрических схемах все элементы электрической цепи имеют условные обозначения.

1 — гальванический элемент
2 — батарея элементов
3 — соединение проводов
4 — пересечение проводов на схеме без соединения
5 — зажимы для подключения
6 — ключ
7 — электрическая лампа
8 — электрический звонок
9 — резистор (или иначе сопротивление)
10- нагревательный элемент
11 — предохранитель

Существуют сопротивления, величину которых можно плавно изменять.
Это могут быть переменные резисторы или сопротивления, называемые реостатами.

Таким образом, реостаты — это приборы, сопротивление которых можно регулировать.
Они применяются тогда, когда необходимо менять силу тока в цепи.
Реостат отличается от переменного резистора своей конструкцией и большой мощностью.

На электрической схеме реостат имеет своё условное обозначение:

С помощью перемещаемого движка (2) можно увеличивать или уменьшать величину сопротивления (между контактами 1 и 2), включаемого в электрическую цепь.

Попробуй, глядя на рисунок, выяснить для себя в какую сторону надо перемещать движок, чтобы:
а) увеличить сопротивление, включенное в цепь?
б) уменьшить сопротивление?
Умение пользоваться реостатом пригодится тебе для проведения лабораторных работ.
Приготовься к этому заранее!

ИНТЕРЕСНО

В электрических схемах применяются символические изображения входящих в нее элементов и устройств. Физические величины также принято обозначать буквенными символами.
Немецкий профессор Г.К. Лихтенберг из Геттенгена первый предложил ввести электрические символы, обосновал их практическое применение и использовал в своих работах!
Благодаря ему, в электротехнике появляются математические знаки плюс и минус для обозначения электрических зарядов. Символы, предложенные Г.К. Лихтенбергом, прижились и известны теперь даже школьникам.
Г.К Лихтенберг родился в Германии и в 1769 году стал профессором физики. Многочисленные работы по математике, метеорологии, геодезии и электричеству способствовали избранию Лихтенберга Почетным членом Петербургской Академии наук.
В 1769 году в Геттингене он установил первый в Германии громоотвод на университетской библиотеке.

ЗНАЕШЬ ЛИ ТЫ

В 1881 году в Париже на электротехнической выставке впервые демонстрировалось самое современное для того времени изобретение. Это был обычный для нас выключатель. Публика была в восторге!

Английский ученый со смешной фамилией Кавалло, живший на рубеже 18-19 веков, первым предложил конструкцию электрических проводов. Он предлагал натянутую отожженную медную или латунную проволоку нагревать в пламени свечи или просто куском раскаленного железа, покрывать смолой и обматывать полотняной лентой, также равномерно покрытой смолой. Изолированную таким способом проволоку следовало защищать чехлом из шерсти. Ну чем не основные элементы современного кабеля: токопроводящая жила, изоляция, защитный покров. Провод предполагалось изготовлять отрезками по 6–9 м, а места соединения отрезков тщательно обматывать промасленным шелком.

А НУ-КА, СООБРАЗИ

Если у вас есть электрозвонок, питающийся от батарейки, источник тока, провода, то как соединить провода, чтобы замыкание цепи вызвало только один удар молоточка звонка?

Не забывайте выключать свет!

Как обозначается реостат. Для чего нужен реостат, принцип его работы в цепи

Для того чтобы создать электрический ток, необходимо составить замкнутую электрическую цепь из электрических приборов.
Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Самая простая электрическая цепь состоит из:
1. источника тока
2. потребителя электроэнергии — (лампа, электроплитка, электродвигатель, электробытовые приборы)
3. замыкающего и размыкающего устройства — (выключатель, кнопка, рубильник)
4. соединительных проводов

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами.
На электрических схемах все элементы электрической цепи имеют условные обозначения.

1 — гальванический элемент
2 — батарея элементов
3 — соединение проводов
4 — пересечение проводов на схеме без соединения
5 — зажимы для подключения
6 — ключ
7 — электрическая лампа
8 — электрический звонок
9 — резистор (или иначе сопротивление)
10- нагревательный элемент
11 — предохранитель

Существуют сопротивления, величину которых можно плавно изменять.
Это могут быть переменные резисторы или сопротивления, называемые реостатами.

Таким образом, реостаты — это приборы, сопротивление которых можно регулировать.
Они применяются тогда, когда необходимо менять силу тока в цепи.
Реостат отличается от переменного резистора своей конструкцией и большой мощностью.

На электрической схеме реостат имеет своё условное обозначение:

С помощью перемещаемого движка (2) можно увеличивать или уменьшать величину сопротивления (между контактами 1 и 2), включаемого в электрическую цепь.

Попробуй, глядя на рисунок, выяснить для себя в какую сторону надо перемещать движок, чтобы:
а) увеличить сопротивление, включенное в цепь?
б) уменьшить сопротивление?
Умение пользоваться реостатом пригодится тебе для проведения лабораторных работ.
Приготовься к этому заранее!

ИНТЕРЕСНО

В электрических схемах применяются символические изображения входящих в нее элементов и устройств. Физические величины также принято обозначать буквенными символами.
Немецкий профессор Г.К. Лихтенберг из Геттенгена первый предложил ввести электрические символы, обосновал их практическое применение и использовал в своих работах!
Благодаря ему, в электротехнике появляются математические знаки плюс и минус для обозначения электрических зарядов. Символы, предложенные Г.К. Лихтенбергом, прижились и известны теперь даже школьникам.
Г.К Лихтенберг родился в Германии и в 1769 году стал профессором физики. Многочисленные работы по математике, метеорологии, геодезии и электричеству способствовали избранию Лихтенберга Почетным членом Петербургской Академии наук.
В 1769 году в Геттингене он установил первый в Германии громоотвод на университетской библиотеке.

ЗНАЕШЬ ЛИ ТЫ

В 1881 году в Париже на электротехнической выставке впервые демонстрировалось самое современное для того времени изобретение. Это был обычный для нас выключатель. Публика была в восторге!

Английский ученый со смешной фамилией Кавалло, живший на рубеже 18-19 веков, первым предложил конструкцию электрических проводов. Он предлагал натянутую отожженную медную или латунную проволоку нагревать в пламени свечи или просто куском раскаленного железа, покрывать смолой и обматывать полотняной лентой, также равномерно покрытой смолой. Изолированную таким способом проволоку следовало защищать чехлом из шерсти. Ну чем не основные элементы современного кабеля: токопроводящая жила, изоляция, защитный покров. Провод предполагалось изготовлять отрезками по 6–9 м, а места соединения отрезков тщательно обматывать промасленным шелком.

А НУ-КА, СООБРАЗИ

Если у вас есть электрозвонок, питающийся от батарейки, источник тока, провода, то как соединить провода, чтобы замыкание цепи вызвало только один удар молоточка звонка?

Не забывайте выключать свет!

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — подводящий к реостату провод, зеленый — скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо — увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка — то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат — достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

Реостатом называют электрическое устройство используемое для ограничения и регулировки тока или напряжения в электрической схеме.

По своему внутреннему устройству реостаты делятся на проволочные и не проволочные. Основной частью любого проволочного реостата является керамическая трубка, на которую намотана особая высокоомная проволока. На направляющем металлическом стержне закреплен ползунок, свободно передвигающийся вдоль проволоки, намотанной на керамие.

Итак, любой реостат состоит из нескольких основных частей:


Керамического цилиндра
Металлическая проволока — которая наматывется на трубку из керамики, концы проволоки выведены на контакты (зажимы), расположенные на противоположных концах трубки с обоих сторон;
Металлическая штанга — установлена чуть выше трубки, на одной стороне которой имеется контактная клемма;
Движущийся контакт — закреплен на штанге, который иногда называют ползун.

Реостат подсоединен в цепь через две зажимные клеммы: нижнюю непосредственно с обмотки и верхнюю клемму с движущегося контакта. При подключении реостата в электрическую цепь, ток от нижней клеммы течет по виткам из металлической проволоки, а затем проходит через скользящий контакт, затем по металлическому стержню и на верхний контакт.

Т.е, в схеме будет задействована только часть реостатной обмотки. В тот момент, когда ползунок двигается, изменяется сопротивление обмотки, т.к меняется ее длина, а соответственно сопротивление и сила тока в электрической цепи.

Необходимо отметить, что ток следует по каждому витку обмотки, а не поперек них. Это происходит потому, что витки обмотки изолированы друг от друга.

Так на рисунке А – движущийся контакт находится посередине. Поэтому ток будет протекать только через половину устройства. На позиции Б — токовый проводник используется полностью поетому, его длина максимальная, как и сопротивление, а в соответствии с сила тока снижается. На третьем рисунке все наоборот: снижается сопротивление, растут амперы.

На электрических схемах реостат обозначен следующим образом:


Реостат в схему включается всегда последовательно. При этом один из контактов подсоединен к ползуну, с помощью которого и регулируется количество ампер в цепи. Но необходимо добавить, что этот прибор можно применять и для регулировки напряжения. Здесь может быть применено несколько схем с одним или двумя сопротивлениями. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Обычно этот электронный компонент включается в электрическую схему для регулирования величины тока, пример подключения показан на рисунке ниже.


При перемещении движка изменяется длина токопроводящего слоя, а следовательно, и величина сопротивления реостата, включаемого последовательно в схему, что в вызывает некоторое изменение величины силы тока в цепи и перераспределение напряжения между реостатом и нагрузкой.

Когда движок перемещается к контакту, величина сопротивления реостата сильно снижается,а ток в в цепи наоборот возрастает, тогда меньшая часть напряжения будет гасится на приборе и сильнее возрастет напряжение на подключенной к нагрузке.

Если движок перемещать к противоположному контакту, сопротивление реостата возрастает, а ток в цепи снижается, падение напряжение на реостате будет увеличиваться, а на нагрузке снижаться.

Расчет представленной выше схемы, аналогичен расчету гасящего сопротивления. Величина сопротивления реостата вычисляется по формуле:

R реост =U реост /I

Падение напряжения находится по формуле ниже:

U реост =U ист -U потр

У реостата имеется всего два вывода, а у его родственника , целых три. Поэтому больше не путайте их между собой.

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — подводящий к реостату провод, зеленый — скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо — увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка — то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат — достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

Обычно редко кто задумывается, каким образом в различных приборах регулируется уровень звука. Во многих электрических приборах регулировка громкости звука осуществляется за счет изменения силы тока. Для этого чаще всего применяется специальный аппарат, разработанный Иоганном Христианом Поггендорфом, который регулирует силу тока и напряжение электрической сети, он получил название – реостат.

Итак, реостат представляет собой прибор, основная задача которого заключается в регулировке напряжения и силы тока. Этот элемент электрической сети весьма распространен, его применяют в физике, радиотехнике, электронике.

Устройство реостата

Устройство реостата для опытного физика не вызывает трудностей и представляет собой керамический полый цилиндр с металлической обмоткой, концы которой выведены на специальные контакты, получившие название клеммы, расположенные с обеих сторон керамического цилиндра. В качестве обмотки применяется материал, обладающий большим удельным сопротивлением, за счет этого даже небольшое изменение длины отражает изменение и сопротивления. Вдоль цилиндра расположен металлический шланг, на котором закреплен движущийся контакт, который получил название ползунок.

Керамический цилиндр внутри пуст для того, чтобы происходило охлаждение прибора при прохождении через него электроэнергии. Для безопасности ряд приборов имеют специальный кожух, скрывающий все внутренности механизма.

Принцип работы

Вне зависимости от типа реостата, принцип работы у всех примерно аналогичен. Например, ползунковый реостат работает следующим образом:

  • Подключение к сети происходит через клеммы, расположенные с обеих сторон цилиндра;
  • Ток проходит по всей длине, в зависимости от места расположения ползунка. Так, если ползунок находится в центре прибора, то ток проходит только до середины; если ползунок находится в конце прибора, тогда ток проходит целиком, соответственно напряжение максимальное.

Чаще всего задействована в работе только часть прибора, т.е. ползунок не доходит до края реостата. Изменение места расположения бегунка прямо пропорционально изменению силы тока. Подключение реостата к электрической сети осуществляется последовательно.

Виды реостатов

Разновидность реостатов зависит от их основного назначения:

  • Пусковые реостаты предназначены для запуска электродвигателей с постоянным или переменным током;
  • Пускорегулирующие реостаты не только предназначены для запуска двигателей с постоянным током, но и для регулировки силы тока;
  • Балластные реостаты, еще получили название нагрузочные, поглощают энергию, которая необходима для регулирования нагрузки на электрогенераторах, т.е. создают нужное сопротивление в электрической сети;
  • Реостаты возбуждения применяются в электрических машинах для регулировки постоянного и переменного тока, они поглощают лишнюю энергию;
  • В особорую группу выделяют реостаты, предназначенные для деления напряжения, их называют потенциометрами. Они позволяют применять в одном приборе различные напряжения, не используя дополнительные приспособления, такие как трансформаторы и блоки питания. В этом случае реостат имеет 3 клеммы, где нижние клеммы используются для входа тока, а верхняя и одна нижняя – в качестве выхода. Регулировка напряжения осуществляется при движении ползунка.

Благодаря применению в электрических приборах и машинах реостатов, происходит уменьшение снижения скачков электрического тока и перегрузок двигателя, это, в свою очередь, увеличивает срок службы электрических приборов.

Реостат на электрической схеме имеет свое особое обозначение.

Виды реостатов по материалу их изготовления

Главным элементом, определяющим принцип работы реостата, является материал, из которого он изготовлен. Кроме того, при прохождении через прибор тока должно происходить его охлаждение: воздушное или жидкостное. Воздушное охлаждение происходит благодаря полому цилиндру и применимо во всех приборах. Жидкостное охлаждение используется только для реостатов, изготовленных из металла. Охлаждение происходит за счет полного погружения в жидкость или отдельных частей прибора. Жидкостные реостаты могут быть водными или масляными.

Можно выделить следующие реостаты по материалу изготовления:

  • Металлические реостаты с воздушным типом охлаждения наиболее распространены, поскольку применимы в различных сферах и для различных приборов, сопротивление в них может быть постоянным или ступенчатым. Достоинством подобных конструкций являются компактные размеры, достаточно простая конструкция, доступная ценовая стоимость. Металлические жидкостные реостаты представляют собой сосуд, наполненный жидкостью. В качестве материала изготовления могут быть использованы сталь, чугун, хром, никель, железо и др.;
  • Жидкостные реостаты применимы для регулировки силы тока;
  • Керамические – применимы при относительно небольших нагрузках;
  • Угольные на сегодняшний день применяются только в промышленной сфере и представляют собой ряд шайб из угля, сжатых друг с другом при помощи пружин. Изменение сопротивления данного типа реостата происходит при помощи изменения силы сжатия пружин.

Задаваясь вопросом, зачем в повседневной жизни нужен данный прибор, можно получить банальный ответ: ни один современный телевизор не обходится без реостата. Благодаря этому прибору, происходит регулировка уровня громкости, также он связан с возможностью переключения каналов.

Как видно, это действительно универсальный и незаменимый компонент. Стоит подчеркнуть, что разновидностей реостатов весьма много, в зависимости от их основного предназначения. На сегодняшний день реостат применяется в промышленной сфере, в автомобилестроении, в современной электронной технике. Он широко применим в радиотехнике и различных типах электродвигателей. Выход из строя реостата способен вывести из строя всю систему электросети.

Видео

Использование резисторов и реостатов в электрических цепях. Что такое реостат? Виды и их назначение

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — подводящий к реостату провод, зеленый — скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо — увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка — то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат — достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

Реостатом называется аппарат, состоящий из набора резисторов и устройства, с помощью которого можно регулировать сопротивление включенных резисторов и благодаря этому регулировать переменный и постоянный ток и напряжение.

Различают реостаты с воздушным и жидкостным (масляным или водяным) охлаждением . Воздушное охлаждение может применяться для всех конструкций реостатов. Масляное и водяное охлаждение используется для металлических реостатов, резисторы могут либо погружаться в жидкость, либо обтекаться ею. При этом следует иметь в виду, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Металлические реостаты с воздушным охлаждением получили наибольшее распространение. Их легче всего приспособить к различным условиям работы как в отношении электрических и тепловых характеристик, так и в отношении различных конструктивных параметров. Реостаты могут выполняться с непрерывным или со ступенчатым изменением сопротивления.

Переключатель ступеней в реостатах выполняется плоским. В плоском переключателе подвижный контакт скользит по неподвижным контактам, перемещаясь при этом в одной плоскости. Неподвижные контакты выполняются в виде болтов с плоскими цилиндрическими или полусферическими головками, пластин или шин, располагаемых по дуге окружности в один или два ряда. Подвижный скользящий контакт, называемый обычно щеткой, может выполняться мостикового или рычажного типа, самоустанавливающимся или несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду частого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высокая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Достоинствами плоского переключателя ступеней реостата являются относительная простота конструкции, сравнительно небольшие габариты при большом числе ступеней, малая стоимость, возможность установки на плите переключателя контакторов и реле для отключения и защиты управляемых цепей. Недостатки — сравнительно малая мощность переключения и небольшая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность применения для сложных схем соединения.

Металлические реостаты с масляным охлаждением обеспечивают увеличение теплоемкости и постоянной времени нагрева за счет большой теплоемкости и хорошей теплопроводности масла. Это позволяет при кратковременных режимах резко увеличивать нагрузку на резисторы, а следовательно, сократить расход резистивного материала и габариты реостата. Погружаемые в масло элементы должны иметь как можно большую поверхность, чтобы обеспечить хорошую теплоотдачу. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия окружающей среды в химических и других производствах. Погружать в масло можно только резисторы или резисторы и контакты.

Отключающая способность контактов в масле повышается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле возрастает, но одновременно улучшаются условия охлаждения. Кроме того, за счет смазки можно допустить большие контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для длительных и повторно-кратковременных режимов работы реостаты с масляным охлаждением непригодны ввиду малой теплоотдачи с поверхности бака и большой постоянной времени охлаждения. Они применяются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редких пусках.

Наличие масла создает и ряд недостатков: загрязнение помещения, повышение пожарной опасности.

Рис. 1. Реостат с непрерывным изменением сопротивления

Пример реостата с практически непрерывным изменением сопротивления приведен на рис. 1. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню или кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый при помощи изолированного стержня 8, на конец которого надевается изолированная рукоятка (на рисунке рукоятка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластины 7 — для внешнего присоединения.

Реостаты могут включаться в схему как переменный резистор (рис. 1, а) или как (рис. 1,6). Реостаты обеспечивают плавное регулирование сопротивления , а следовательно, и тока или напряжения в цепи и находят широкое применение в лабораторных условиях в схемах автоматического управления.

Схемы включения пусковых и регулировочных реостатов

На рисунке 2 показана схема включения с помощью реостата двигателя постоянного тока небольшой мощности.


Рис. 2 . Схема включения реостата: Л — зажим, соединенный с сетью, Я — зажим, соединенный с якорем; М — зажим, соединенный о цепью возбуждения, О — холостой контакт, 1 — дуга, 2 — рычаг, 3 — рабочий контакт.

Перед включением двигателя необходимо убедиться в том, что рычаг 2 реостата находится на холостом контакте 0. Затем включают рубильник и рычаг реостата переводят на первый промежуточный контакт. При этом двигатель возбуждается, а в цепи якоря появляется пусковой ток, величина которого ограничена всеми четырьмя секциями сопротивления Rп. По мере увеличения частоты вращения якоря пусковой ток уменьшается и рычаг реостата переводят на второй, третий контакт и т. д., пока он не окажется на рабочем контакте.

Пусковые реостаты рассчитаны на кратковременный режим работы, а поэтому рычаг реостата нельзя длительно задерживать на промежуточных контактах : в этом случае сопротивления реостата перегреваются и могут перегореть.

Прежде чем отключить двигатель от сети, необходимо рукоятку реостата перевести в крайнее левое положение. При этом двигатель отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В противном случае могут появиться большие перенапряжения в обмотке возбуждения в момент размыкания цепи.

При пуске в ход двигателей постоянного тока регулировочный реостат в цепи обмотки возбуждения следует полностью вывести для увеличения потока возбуждения.

Для пуска двигателей с последовательным возбуждением применяют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием толь ко двух зажимов — Л и Я.

Реостаты со ступенчатым изменением сопротивления (рис. 3 и 4 ) состоят из набора резисторов 1 и ступенчатого переключающего устройства.

Переключающее устройство состоит из неподвижных контактов и подвижного скользящего контакта и привода. В пускорегулирующем реостате (рис. 3 ) к неподвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от элементов сопротивлений, пусковых и регулировочных, согласно разбивке по ступеням и другие управляемые реостатом цепи. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, а также всех других управляемых реостатом цепей. Привод реостата может быть ручной (при помощи рукоятки) и двигательный.

Рис. 3 R пк — резистор, шунтирующий катушку контактора в отключенном положении реостата, R огр — резистор, ограничивающий ток в катушке, Ш1, Ш2 — параллельная обмотка возбуждения электродвигателя постоянного тока, С1, С2 — последовательная обмотка возбуждения электродвигателя постоянного тока.

Рис. 4 R пр — сопротивление предвключенное, ОВ — обмотка возбуждения электродвигателя постоянного тока.

Реостаты по типу приведенных на рис. 2 и 3 нашли широкое распространение. Их конструкции обладают, однако, некоторыми недостатками, в частности большим числом крепежных деталей и монтажных проводов, особенно в реостатах возбуждения, которые имеют большое число ступеней.

Схема включения маслонаполненного реостата серии РМ , предназначенный для пуска асинхронных двигателей с фазным ротором, приведен на рис. 5. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10 000 операций, механическая — 45 000. Реостат допускает 2 — 3 пуска подряд.

Рис. 5

Реостат состоит из встроенных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали элементов и крепятся к крышке бака. Переключающее устройство — барабанного типа, представляет собой ось с закрепленными на ней сегментами цилиндрической поверхности, соединенными по определенной электрической схеме. На неподвижной рейке укреплены соединенные с резисторными элементами неподвижные контакты. При повороте оси барабана (маховиком или двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те или иные неподвижные контакты и тем самым меняют значение сопротивления в цепи ротора.

Прибор был разработан учёным Иоганном Христианом Поггендорфом. Так что же такое реостат и для чего он необходим?

Что такое реостат

Реостат имеет достаточно простую конструкцию

Реостатом называют электрический аппарат, состоящий из резисторов и устройства, с помощью которого осуществляется регулирование сопротивления всех включённых резисторов. Данный прибор является универсальным: он способен не только управлять силой тока и напряжением, но и устанавливать громкость звука в телевизорах.

Устройство реостата

Керамический цилиндр обматывается металлическим проводником, называемым обмоткой. Его концы выводятся к клеммам. Это небольшие по размеру зажимы, к которым крепится верхний стержень, выполненный из металла. Вдоль этого стержня и обмотки перемещается скользящий контакт, который специалисты зовут ползунком. Благодаря данным элементам и осуществляется работа реостата.

Стоит отметить, что керамический цилиндр полый. Эта особенность позволяет аппарату охлаждаться, предотвращает перегревы, делая прибор более безопасным.

Для чего он нужен

Реостат является лучшим способом контроля и регулирования силы тока. Аппарат меняет сопротивление, способен изменять напряжение в электрической цепи, что позволяет регулировать функционирование электродвигателя в швейной машине, громкость радиоприёмника, телевизора.

Реостат позволяет регулировать и менять силу тока и напряжение

Реостат активно применяется при создании электрических приборов. Благодаря такому элементу силу тока и напряжения можно контролировать, преотвращая перегревы.

Реостатом называется аппарат, состоящий из набора резисторов и устройства, с помощью которого можно регулировать сопротивление включенных резисторов.

В зависимости от назначения различают следующие основные виды реостатов:

пусковые — для пуска электродвигателей постоянного или переменного тока;

пускорегулирующие — для пуска и регулирования частоты вращения электродвигателей постоянного тока;

реостаты возбуждения — для регулирования тока в обмотках возбуждения электрических машин постоянного и переменного тока;

нагрузочные или балластные — для поглощения электроэнергии регулирования нагрузки генераторов при испытании самих генераторов или их первичных двигателей.

Одним из основных элементов, определяющих общее конструктивное выполнение реостата, является материал, из которого изготовлены его резисторы. В зависимости от этого различают реостаты металлические, жидкостные, угольные и керамические. В резисторах электрическая энергия превращается в теплоту, которая должна от них отводиться. Различают реостаты с воздушным и жидкостным (масляным или водяным) охлаждением. Воздушное охлаждение может применяться для всех конструкций реостатов. Масляное и водяное охлаждение используется для металлических реостатов, резисторы могут либо погружаться в жидкость, либо обтекаться ею. При этом следует иметь в виду, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Металлические реостаты. Металлические реостаты с воздушным охлаждением получили наибольшее распространение. Их легче всего приспособить к различным условиям работы как в отношении электрических и тепловых характеристик, так и в отношении различных Конструктивных параметров. Реостаты могут выполняться с непрерывным или со ступенчатым изменением сопротивления.

Переключатель ступеней в реостатах выполняется плоским.

В плоском переключателе подвижный контакт скользит по неподвижным контактам, перемещаясь при этом в одной плоскости. Неподвижные контакты выполняются в виде болтов с плоскими цилиндрическими или полусферическими головками, пластин или шин, располагаемых по дуге окружности в один или два ряда. Подвижный скользящий контакт, называемый обычно щеткой, может выполняться мостикового или рычажного типа, самоустанавливающимся или несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду частого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высокая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Достоинствами плоского переключателя ступеней являются относительная простота конструкции, сравнительно небольшие габариты при большом числе ступеней, малая стоимость, возможность установки на плите переключателя контакторов и реле для отключения и защиты управляемых цепей. Недостатки — сравнительно малая мощность переключения и небольшая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность применения для сложных схем соединения.

Металлические реостаты с масляным охлаждением обеспечивают увеличение теплоемкости и постоянной времени нагрева за счет большой теплоемкости и хорошей теплопроводности масла. Это позволяет при кратковременных режимах резко увеличивать нагрузку на резисторы, а следовательно, сократить расход резистивного материала и габариты реостата. Погружаемые в масло элементы должны иметь как можно большую поверхность, чтобы обеспечить хорошую теплоотдачу. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия окружающей среды в химических и других производствах. Погружать в масло J можно только резисторы или резисторы и i контакты.

Рис. 7-3. Реостат с непрерывным изменением сопротивления.

Отключающая способность контактов , в масле повышается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле возрастает, но одновременно улучшаются условия охлаждения. Кроме того, за счет смазки можно допустить большие контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для длительных и повторно-кратковременных режимов работы реостаты с масляным охлаждением непригодны ввиду малой теплоотдачи с поверхности бака и большой постоянной времени охлаждения. Они применяются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редких пусках.

Наличие масла создает и ряд недостатков; загрязнение помещения, повышение пожарной опасности.

Пример реостата с практически непрерывным изменением сопротивления приведен на рис. 7-3. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню или кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый при помощи изолированного стержня 8, на конец которого надевается изолированная рукоятка (на рисунке рукоятка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластины 7 — для внешнего присоединения.

Реостаты могут включаться в схему как переменный резистор (рис. 7-3, а) или как потенциометр (рис. 7-3,б). Они обеспечивают плавное регулирование сопротивления, а следовательно, и тока или напряжения в цепи и находят широкое применение в лабораторных условиях в схемах автоматического управления.

Рис. 7-4. Пускорегулирующий реостат: б — схема включения Rпк — резистор, шунтирующий катушку контактора в отключенном положении реостата; Rогр — резистор, ограничивающий ток в катушке; Ш1, Ш2 — параллельная обмотка возбуждения; С/, С2 — последовательная обмотка возбуждения

Рис. 7-5. Реостат возбуждения: б — одна из схем включения Rпр — сопротивление предвключенное; OВ — обмотка возбуждения

Рис. 7-6. Маслонаполненный реостат серии РМ: а – общий вид; б – схема.

Реостаты со ступенчатым изменением сопротивления (рис. 7-4 и 7-5) состоят из набора резисторов I и ступенчатого переключающего устройства.

Переключающее устройство состоит из неподвижных контактов 2 и 3, подвижного скользящего контакта 4 и привода 5. В пускорегулирующем реостате (рис. 7-4) к неподвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от элементов сопротивлений, пусковых Яд и регулировочных Яр, согласно разбивке по ступеням и другие управляемые реостатом цепи (контакторы 6; реле РМ}. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, а также всех других управляемых р еостатом цепей. Привод реостата может быть ручной (при помощи рукоятки) и двигательный.

Реостаты по типу приведенных на рис. 7-4 и 7-5 нашли широкое распространение. Их конструкции обладают, однако, некоторыми недостатками, в частности большим числом крепежных деталей и монтажных проводов, особенно в реостатах возбуждения, которые имеют большое число ступеней.

Маслонаполненный реостат серии РМ, предназначенный для пуска асинхронных двигателей с фазным ротором, приведен на рис. 7-6. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10000 операций, механическая — 45 000. Реостат допускает 2-3 пуска подряд.

Реостат состоит из встроенных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали элементов и крепятся к крышке бака. Переключающее устройство — барабанного типа, представляет собой ось с закрепленными на ней сегментами цилиндрической поверхности, соединенными по определенной электрической схеме. На неподвижной рейке укреплены соединенные с резисторными элементами неподвижные контакты. При повороте оси барабана (маховиком или двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те или иные неподвижные контакты и тем самым меняют значение сопротивления в цепи ротора.

Для того чтобы создать электрический ток, необходимо составить замкнутую электрическую цепь из электрических приборов.
Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Самая простая электрическая цепь состоит из:
1. источника тока
2. потребителя электроэнергии — (лампа, электроплитка, электродвигатель, электробытовые приборы)
3. замыкающего и размыкающего устройства — (выключатель, кнопка, рубильник)
4. соединительных проводов

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами.
На электрических схемах все элементы электрической цепи имеют условные обозначения.

1 — гальванический элемент
2 — батарея элементов
3 — соединение проводов
4 — пересечение проводов на схеме без соединения
5 — зажимы для подключения
6 — ключ
7 — электрическая лампа
8 — электрический звонок
9 — резистор (или иначе сопротивление)
10- нагревательный элемент
11 — предохранитель

Существуют сопротивления, величину которых можно плавно изменять.
Это могут быть переменные резисторы или сопротивления, называемые реостатами.

Таким образом, реостаты — это приборы, сопротивление которых можно регулировать.
Они применяются тогда, когда необходимо менять силу тока в цепи.
Реостат отличается от переменного резистора своей конструкцией и большой мощностью.

На электрической схеме реостат имеет своё условное обозначение:

С помощью перемещаемого движка (2) можно увеличивать или уменьшать величину сопротивления (между контактами 1 и 2), включаемого в электрическую цепь.

Попробуй, глядя на рисунок, выяснить для себя в какую сторону надо перемещать движок, чтобы:
а) увеличить сопротивление, включенное в цепь?
б) уменьшить сопротивление?
Умение пользоваться реостатом пригодится тебе для проведения лабораторных работ.
Приготовься к этому заранее!

ИНТЕРЕСНО

В электрических схемах применяются символические изображения входящих в нее элементов и устройств. Физические величины также принято обозначать буквенными символами.
Немецкий профессор Г.К. Лихтенберг из Геттенгена первый предложил ввести электрические символы, обосновал их практическое применение и использовал в своих работах!
Благодаря ему, в электротехнике появляются математические знаки плюс и минус для обозначения электрических зарядов. Символы, предложенные Г.К. Лихтенбергом, прижились и известны теперь даже школьникам.
Г.К Лихтенберг родился в Германии и в 1769 году стал профессором физики. Многочисленные работы по математике, метеорологии, геодезии и электричеству способствовали избранию Лихтенберга Почетным членом Петербургской Академии наук.
В 1769 году в Геттингене он установил первый в Германии громоотвод на университетской библиотеке.

ЗНАЕШЬ ЛИ ТЫ

В 1881 году в Париже на электротехнической выставке впервые демонстрировалось самое современное для того времени изобретение. Это был обычный для нас выключатель. Публика была в восторге!

Английский ученый со смешной фамилией Кавалло, живший на рубеже 18-19 веков, первым предложил конструкцию электрических проводов. Он предлагал натянутую отожженную медную или латунную проволоку нагревать в пламени свечи или просто куском раскаленного железа, покрывать смолой и обматывать полотняной лентой, также равномерно покрытой смолой. Изолированную таким способом проволоку следовало защищать чехлом из шерсти. Ну чем не основные элементы современного кабеля: токопроводящая жила, изоляция, защитный покров. Провод предполагалось изготовлять отрезками по 6–9 м, а места соединения отрезков тщательно обматывать промасленным шелком.

А НУ-КА, СООБРАЗИ

Если у вас есть электрозвонок, питающийся от батарейки, источник тока, провода, то как соединить провода, чтобы замыкание цепи вызвало только один удар молоточка звонка?

Не забывайте выключать свет!

Резисторы | Физика

Более половины деталей, используемых в современных радиоэлектронных устройствах, составляют резисторы.

Резистором (от лат. resisto — сопротивляюсь) называют выпускаемую промышленностью деталь, обеспечивающую заданное (номинальное) электрическое сопротивление цепи. Сопротивление резистора указывают на его корпусе либо в виде числового значения, либо в закодированной форме (например, в виде определенных цветных полосок). Условное обозначение резистора приведено в таблице 2 (см. § 9).

В зависимости от материала, из которого изготовлена токопроводящая часть резистора, различают металлические, углеродистые, керамические и другие резисторы. Для защиты от пыли, влаги и механических повреждений снаружи их покрывают стеклоэмалью или каким-либо другим твердым материалом (рис. 34, а).

Лабораторные резисторы, используемые в школе, имеют вид проволочных спиралей, помещенных в углубление пластмассовой колодки (рис. 34, б).

В школьных экспериментах применяют также демонстрационные магазины сопротивлений, состоящие из нескольких резисторов в виде проволочных спиралей, рассчитанных на 1, 2 и 5 Ом (рис. 34, в).

Существуют резисторы как с постоянным сопротивлением, так и с переменным. К последним относятся реостаты. Условное обозначение реостата приведено в таблице 2.

Действие реостатов основано на зависимости сопротивления проводника от его длины. Конструкция реостатов позволяет изменять длину участка, по которому идет ток. При увеличении этой длины сопротивление реостата возрастает, при уменьшении убывает.

Различают рычажные и ползунковые реостаты.

Рычажный реостат изображен на рисунке 35. Передвигая рычаг реостата от одного контакта к другому, можно вводить в цепь большее или меньшее число проволочных спиралей и тем самым скачком (ступенчато) изменять сопротивление цепи.

Ползунковый реостат изображен на рисунке 36. Его сопротивление можно изменять плавно. Для этого реостат снабжен скользящим контактом (ползунком). Перемещая его, мы постепенно включаем большую или меньшую часть обмотки реостата, и его сопротивление плавно изменяется.

Путем изменения сопротивления цепи можно влиять на силу тока в ней. От нее, в свою очередь, зависят действия, оказываемые током в различных устройствах. Реостаты позволяют эти действия как усиливать, так и ослаблять.

??? 1. Что такое резистор? Как он обозначается на схемах? 2. Что такое реостат? 3. Какие виды реостатов вы знаете? Чем они отличаются друг от друга? 4. Как обозначается реостат на схемах? 5. Зачем нужны реостаты? 6. В какую сторону следует передвинуть рычаг реостата, изображенного на рисунке 35, чтобы его сопротивление уменьшилось? 7. В какую сторону следует переместить ползунок реостата, изображенного на рисунке 36, чтобы его сопротивление увеличилось?

Урок 30. Лабораторная работа № 07. Изучение закона Ома для участка цепи.

Тема: «Изучение закона Ома для участка цепи»

   Цель работы: установить на опыте зависимость силы тока от напряжения и сопротивления.

   Оборудование: амперметр лабораторный, вольтметр лабораторный, источник питания, набор из трёх резисторов сопротивлениями 1 Ом, 2 Ом, 4 Ом, реостат, ключ замыкания тока, соединительные провода.

Ход работы.

Краткие теоритические сведения

   Электрический ток — упорядоченное движение заряженных частиц

   Количественной мерой электрического тока служит сила тока I

   Сила тока — скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

 

   В Международной системе единиц СИ сила тока измеряется в амперах [А].

   [1A=1Кл/1с]

   Прибор для измерения силы тока Амперметр. Включается в цепь последовательно

   На схемах электрических цепей амперметр обозначается .

   Напряжение – это физическая величина, характеризующая действие электрического поля на заряженные частицы, численно равно работе электрического поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2

   U12 = φ1 – φ2             

   U – напряжение

   Aработа тока

   qэлектрический заряд

   Единица напряжения – Вольт [В]

   [1B=1Дж/1Кл]

   Прибор для измерения напряжения – Вольтметр. Подключается в цепь параллельно тому участку цепи, на котором измеряется разность потенциалов.

   На схемах электрических цепей амперметр обозначается .

   Величина, характеризующая противодействие электрическому току в проводнике, которое обусловлено внутренним строением проводника и хаотическим движением его частиц, называется электрическим сопротивлением проводника.

   Электрическое сопротивление проводника зависит от размеров и формы проводника и от материала, из которого изготовлен проводник.

   

   S – площадь поперечного сечения проводника

   lдлина проводника

   ρ – удельное сопротивление проводника

   В СИ единицей электрического сопротивления проводников служит ом [Ом].

   Графическая зависимость силы тока I от напряжения Uвольт-амперная характеристика

   Закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.


   Назван в честь его первооткрывателя Георга Ома.

Практическая часть

   1. Для выполнения работы соберите электрическую цепь из источника тока, амперметра, реостата, проволочного резистора сопротивлением 2 Ом и ключа. Параллельно проволочному резистору присоедините вольтметр (см. схему).

   

   2. Опыт 1. Исследование зависимости силы тока от напряжения на данном участке цепи. Включите ток. При помощи  реостата доведите напряжение на зажимах проволочного резистора до 1 В, затем до 2 В и до 3 В. Каждый раз при этом измеряйте силу тока и результаты записывайте в табл. 1.

   Таблица 1Сопротивление участка 2 Ом

Напряжение, В

     

Сила тока, А

     

   3. По данным опытов постройте график зависимости силы тока от напряжения. Сделайте вывод.

   4. Опыт 2Исследование зависимости силы тока от сопротивления участка цепи при постоянном напряжении на его концах. Включите в цепь по той же схеме проволочный резистор сначала сопротивлением 1 Ом, затем 2 Ом и 4 Ом. При помощи реостата устанавливайте на концах участка каждый раз одно и то же напряжение, например, 2 В. Измеряйте при этом силу тока, результаты записывайте в табл 2.

   Таблица 2. Постоянное напряжение на участке 2 В

Сопротивление участка, Ом

     

Сила тока, А

     

   5. По данным опытов постройте график зависимости силы тока от сопротивления. Сделайте вывод.

   6. Ответьте на контрольные вопросы.

Контрольные вопросы

1. Что такое электрический ток?

2. Дайте определение силы тока. Как обозначается? По какой формуле находится?

3. Какова единица измерения силы тока?

4. Каким прибором измеряется сила тока? Как он включается в электрическую цепь?

5. Дайте определение напряжения. Как обозначается? По какой формуле находится?

6. Какова единица измерения напряжения?

7. Каким прибором измеряется напряжение? Как он включается в электрическую цепь?

8. Дайте определение сопротивления. Как обозначается? По какой формуле находится?

9. Какова единица измерения сопротивления?

10. Сформулируйте закон Ома для участка цепи.

Вариант выполнения измерений.

Опыт 1. Исследование зависимости силы тока от напряжения на данном участке цепи. Включите ток. При помощи  реостата доведите напряжение на зажимах проволочного резистора до 1 В, затем до 2 В и до 3 В. Каждый раз при этом измеряйте силу тока и результаты записывайте в табл. 1.

 Таблица 1Сопротивление участка 2 Ом

Напряжение, В

1

2

3

Сила тока, А

0,5

1,0

1,5

По данным опытов постройте график зависимости силы тока от напряжения. Сделайте вывод.

Опыт 2. Исследование зависимости силы тока от сопротивления участка цепи при постоянном напряжении на его концах. Включите в цепь по той же схеме проволочный резистор сначала сопротивлением 1 Ом, затем 2 Ом и 4 Ом. При помощи реостата устанавливайте на концах участка каждый раз одно и то же напряжение, например, 2 В. Измеряйте при этом силу тока, результаты записывайте в табл 2.

Таблица 2. Постоянное напряжение на участке 2 В

Сопротивление участка, Ом

1

2

4

Сила тока, А

2,0

1,0

0,5

По данным опытов постройте график зависимости силы тока от сопротивления. Сделайте вывод.

 

Презентация: «Лабораторная работа: «Изучение закона Ома для участка цепи» .

 

{edocs}fizpr/lr7f.pptx,800,600{/edocs}

Реостат

Мощный тороидный реостат
Реоста́т

(
потенциометр
,
переменное сопротивление
,
переменный резистор
; от др.-греч. ῥέος «поток» и στατός «стоя́щий») — электрический аппарат, изобретённый Иоганном Христианом Поггендорфом, служащий для регулировки силы тока и напряжения в электрической цепи[1] путём получения требуемой величины сопротивления. Как правило, состоит из проводящего элемента с устройством регулирования электрического сопротивления. Изменение сопротивления может осуществляться как плавно, так и ступенчато.

Изменением сопротивления цепи, в которую включён реостат, возможно достичь изменения величины тока или напряжения. При необходимости изменения тока или напряжения в небольших пределах реостат включают в цепь параллельно или последовательно. Для получения значений тока и напряжения от нуля до максимального значения применяется потенциометрическое включение реостата, являющего в данном случае регулируемым делителем напряжения.

Использование реостата возможно как в качестве электроизмерительного прибора, так и прибора в составе электрической или электронной схемы.

Основные типы реостатов

  1. Проволочный реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, натянутой на раму. Проволока проходит через несколько контактов. Соединяя с нужным контактом, можно получить нужное сопротивление.
  2. Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве. При перемещении ползунка с присоединённым к нему контактом слой окалины соскабливается, и электрический ток протекает из проволоки на ползунок. Чем больше витков от одного контакта до другого, тем больше сопротивление. Такие реостаты применяются в учебном процессе. Разновидностью ползункового реостата является агометр
    , в котором роль ползунка выполняет колёсико из проводящего материала, двигающееся по поверхности диэлектрического барабана с намотанной на него проволокой.
  3. Жидкостный реостат, представляющий собой бак с электролитом, в который погружаются металлические пластины. Обеспечивается плавное регулирование. Величина сопротивления реостата пропорциональна расстоянию между пластинами и обратно пропорциональна площади части поверхности пластин, погруженной в электролит[2].
  4. Ламповый реостат[3]. Состоит из набора параллельно включённых ламп накаливания. Изменением количества включённых ламп изменялось сопротивление реостата. Недостатком лампового реостата является зависимость его сопротивления от степени разогрева нитей ламп.

По терминологии, используемой в ГОСТ 21414-75 «Резисторы. Термины и определения»:

  • Переменный резистор
    — резистор, электрическое сопротивление которого между его подвижным контактом и выводами резистивного элемента можно изменить механическим способом.
  • Регулировочный резистор
    — переменный резистор, предназначенный для многократной регулировки параметров электрической цепи.
  • Подстроечный резистор
    — переменный резистор, предназначенный для подстройки параметров электрической цепи, у которого число перемещений подвижной системы значительно меньше, чем у регулировочного резистора[4].


Назначение и устройство балластного реостата

Для формирования крутопадающей вольтамперной характеристики рабочего тока во время сварки, балластный реостат должен выполняет две функции: дискретно регулировать силу тока, и компенсировать его постоянную составляющую, которая возникает при питании сварочного поста от трансформатора.

Эффективность балластного реостата определяется числом его рабочих секций, каждая из которых представляет собой последовательную электрическую цепь из резистора с определённым сопротивлением и рубильника, механически разрывающего эту цепь. Соединение секций – параллельное, что создаёт наилучшие возможности для комбинированного включения в работу каждой из них. В результате регулировка тока может выполняться с шагом 5…10 А, чего в большинстве случаев бывает вполне достаточно. В общую цепь сварочного поста балластный реостат подключается последовательно источнику тока.

Конструктивно балластный реостат представляет собой агрегат, состоящий из:

  1. Закрытого обдуваемого корпуса.
  2. Нескольких плат из нихромовых или константановых лент.
  3. Прерывателей, число которых соответствует числу ступеней регулирования.
  4. Клемм, к которым подключаются кабеля сварочного аппарата.
  5. Блока включения нужного сварочного диапазона.

Все элементы управления выводятся на одну из внешних панелей корпуса. В наиболее современных конструкциях балластных реостатов в корпус встраиваются вентиляторы, устраняющие перегрев аппарата при длительной работе на больших токах (в противном случае для этого приходится последовательно подключать несколько балластных реостатов), а также конденсаторные батареи, которые компенсируют постоянную составляющую тока, возникающую при специальных процессах сварки, в частности, алюминия.

Линейка РБ наиболее распространённых балластных реостатов, выполненных по вышеописанной схеме, включает в себя следующие типоразмеры:

  • РБ-201 – регулирует ток в пределах от 10 до 200 А;
  • РБ-300 – регулирует ток в пределах от 10 до 300 А;
  • РБ-302 – регулирует ток в пределах от 10 до 315 А;
  • РБ-306 – регулирует ток в пределах от 6 до 315 А;
  • РБ-501 – регулирует ток в пределах от 10 до 500 А.


Принцип работы реостата

Принцип действия прибора основан на ступенчатом или плавном изменении сопротивления. Эта функция достигается за счет изменения положения ползункового контакта, включающего в цепь необходимую часть высокоомного материала. Отличным наглядным примером является учебный реостат. В нем нихромовая проволока намотана на горизонтальный керамический стержень. Сверху на токопроводящей штанге расположен подвижный ползунок с контактными пластинками, касающимися обмотки. В начальном положении вся проволока включена в цепь и сопротивление реостата находится в максимальном режиме. Перемещая ползунок, часть проволоки исключается из цепи, так как ток проходит путь через часть проволоки, а затем по наименьшему пути сопротивления через контактные пластины и токопроводящую штангу. Таким образом, реостат в электрической цепи позволяет изменять сопротивление, делая его меньше или больше.

Применяемые в электротехнике реостаты имеют более компактную кольцевую конструкцию, то есть обмотка выполняется на кольцевом основании, а ползунок в виде поворотного механизма (движка) закреплен в центре кольца. Переменные резисторы со ступенчатым переключением представляют собой набор постоянных резисторов, включенных в цепь последовательно. При этом в схему добавлен переключатель, который, в зависимости от положения, снимает ток с определенного контакта между резисторами.

Общие сведения

Электрическим током называется движение свободных заряженных частиц под воздействием электромагнитного поля. Любое вещество состоит из атомов, которые образуют кристаллическую решетку при помощи ковалентных связей. При протекании электрического тока по проводнику происходит взаимодействие его частиц с узлами кристаллической решетки. Носители заряда обладают кинетической энергией (Ek), которая зависит от массы частицы (m) и ее скорости (V3). Она определяется по формуле: Ek = m * sqr (V3) / 2.

При столкновении частиц с узлами кристаллической решетки происходит полная или частичная передача энергии атому.

Однако энергетический потенциал свободного носителя заряда восстанавливается, поскольку на него постоянно воздействует электромагнитное поле. Процесс взаимодействия частиц с атомами повторяется определенное количество раз, пока не прекратится воздействие электромагнитного поля или частица не пройдет полностью через проводник. Это физическое явление называется электрическим сопротивлением или проводимостью. Последняя величина является обратной сопротивлению. Сопротивление обозначается литерой «R», а проводимость — «G».

Единицей измерения сопротивления является Ом. Рассчитывается при помощи определенных формул или измеряется электронно-измерительным прибором, который называется омметром.

Физическая зависимость

Величина R зависит от количества свободных носителей заряда, число которых определяется исходя из электронной формулы вещества. Ее можно определить из периодической таблицы химических элементов Д. И. Менделеева. Вещества классифицируются по проводимости следующим образом: проводники, полупроводники и изоляторы (непроводники).

К проводникам относятся все металлы, электролиты и ионизированные газы.

В металлах носителями заряда являются свободные электроны, в электролитах — анионы и катионы, а в ионизированных газах — электроны и ионы. Полупроводники способны проводить электрический ток при определенных условиях. В полупроводниках свободные электроны и дырки являются носителями заряда. Изоляторы или диэлектрики не способны проводить электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда.

Величина, определяющая тип материала и способность его к проводимости, называется удельным сопротивлением (p). Существует и обратная величина относительно удельного сопротивления. Она называется удельной проводимостью (σ) и связана с p следующей формулой: p = 1 / σ. При выполнении расчетов необходимо учитывать зависимость электрического сопротивления материала и от других физических величин или факторов, к которым относятся следующие:

  • геометрические составляющие;
  • электрические величины;
  • температурные показатели.

Эти три группы факторов необходимо учитывать при изготовлении реостатов, резисторов и других элементов резистивной нагрузки. Во время ремонта и проектирования устройств следует также рассматривать все факторы, поскольку неверные расчеты могут привести к выходу радиоаппаратуры из строя.

Вам это будет интересно Особенности катушки Тесла

Геометрия материала

К геометрии проводника (полупроводника) относятся его длина (L) и площадь поперечного сечения (S). Величину S можно вычислить по абстрактному алгоритму, который подойдет для всех форм проводников и полупроводников. Он имеет следующий вид:

  1. Визуально определить форму фигуры поперечного сечения (окружность, прямоугольник или квадрат).
  2. Найти в справочной литературе или интернете формулу поиска площади поперечного сечения фигуры.
  3. Измерить необходимые геометрические параметры (например, диаметр) и подставить их в формулу.
  4. Произвести математические вычисления.

Если проводник является многожильным (состоит из множества проводников), то следует вычислить площадь сечения одного проводника, а затем произвести ее умножение на количество проводников. Исходя из всего, можно вывести зависимость величины сопротивления от типа вещества, длины и площади сечения проводника: R = p * L / S.

Физический смысл зависимости следующий: электрический ток движется по проводнику, тип которого определяется параметром р, и его частицы проходят через определенную длину L с сечением S (при малой площади сечения происходят более частые столкновения электронов с узлами кристаллической решетки).

Однако геометрические параметры — не единственные факторы, влияющие на значение проводимости материала.

Влияние параметров электричества

Для того чтобы учитывать влияние силы тока и напряжения на R, следует обратить внимание на закон Ома. У него существует две формулировки, применяемые для расчетов: для полной цепи или ее участка. Закон Ома для полной цепи показывает зависимость величины тока (i) от электродвижущей силы (e) и величины R, состоящей из суммы внутреннего (Rвнут) и внешнего (Rвнеш) сопротивлений.

Переменная Rвнут является внутренним сопротивлением источника питания (генератора, аккумулятора, трансформатора и т. д. ). Rвнеш — сопротивление всех потребителей электрической энергии и соединительных проводов. Закон Ома для полной цепи связывает все эти величины таким соотношением: i = e / (Rвнеш + Rвнут). Величина Rвнеш определяется по формуле: Rвнеш = (e / i) — Rвнут.

Для участка цепи соотношение для нахождения сопротивления упрощено, поскольку не учитывается ЭДС и Rвнут. Этот закон показывает прямо пропорциональную зависимость силы тока (I) от напряжения (U), а также обратно пропорциональную от величины сопротивления R: I = U / R. В некоторых случаях для точных вычислений этих факторов может быть недостаточно, поскольку существует еще одна зависимость — температурные показатели материала.

Влияние температуры на проводимость

Удельное сопротивление влияет на проводимость материала, однако оно зависит от температуры. Для доказательства этой гипотезы нужно собрать электрическую цепь, состоящую из следующих компонентов: лампы накаливания, источника питания (12 В), куска нихромовой проволоки и амперметра. Источник питания можно подобрать любой.

Вам это будет интересно Назначение и функция устройства защитного отключения (УЗО)

Важно чтобы величина напряжения не была выше, чем номинальное значение разности потенциалов лампы, т. е. аккумулятор 12 В, и лампа тоже должна быть на 12 В. Элементы цепи соединяются последовательно. Кусок проволоки рекомендуется разместить на огнеупорном кирпиче, поскольку, при протекании электротока через нихром, произойдет его нагревание.

Амперметр нужен для мониторинга значений силы тока, которые будут изменяться с течением времени. Лампа является световым «сигнализатором», позволяющим визуально наблюдать за увеличением сопротивления. Яркость ее свечения будет постепенно угасать. При протекании тока по цепи происходит визуальное подтверждение закона Ома для участка цепи. При увеличении R ток уменьшается. Зависимость удельного сопротивления р зависит от следующих переменных величин:

  1. Табличного значения удельного сопротивления (р0), рассчитанного при температуре +20 градусов по шкале Цельсия.
  2. Температурного коэффициента «а», который для металлов считается больше 0 (а > 0), а для электролитов — меньше 0 (a < 0).

Табличное значение р0 можно выяснить из специальных электротехнических справочников или из интернета. Описывается зависимость р от температуры таким соотношением: p = p0 * [1 + a * (t — 20)]. Можно при необходимости произвести подстановку р в формулу зависимости R от длины и сечения: R = p0 * [1 + a * (t — 20)] * L / S.



Не имеет смысла выполнять точные расчеты сопротивления, но эти особенности следует учитывать при изготовлении и ремонте различных устройств.

Сопротивление нужно измерять омметром, однако радиолюбители-профессионалы рекомендуют использовать мультиметр. Он является комбинированным и позволяет измерять не только сопротивление, а также величину тока и напряжения. Существуют модели, которые могут измерять частоту, проверять полупроводниковые приборы и т. д.

Л.р №1 Закон Ома для участка цепи


С этим файлом связано 5 файл(ов). Среди них: будующие вокзалов.doc, Л.р №2.doc, Л.Р №5 Определение КПД.docx, Методичка по прикладной.docx, КОС прикладная.doc.
Показать все связанные файлы
Подборка по базе: Клетка проверка органоиды урок2.pptx, л р изучение закона сохранения механической энергии.docx, эд поворение и проверка знаний.doc, 11 класс Н-НН проверка.docx, Курсовая по теме _Аудиторская проверка операций по учету финансо, Незнание закона не освобождает от ответственности.docx, Справка проверка тетрадей по математике контр. раб..docx, Преснякова А. Проверка подлинности банковских карт и штрих-кодов, письменная проверка знаний по физике.docx, Тема- Проверка действия пневматического оборудования под давлени

Лабораторная работа №1

Тема: «Экспериментальная проверка закона Ома для участка электрической цепи»

   Цель работы: установить на опыте зависимость силы тока от напряжения и сопротивления.

   Оборудование: амперметр лабораторный, вольтметр лабораторный, источник питания, набор из трёх резисторов сопротивлениями 1 Ом, 2 Ом, 4 Ом, реостат, ключ замыкания тока, соединительные провода.

Ход работы.

Краткие теоритические сведения

   Электрический ток — упорядоченное движение заряженных частиц

   Количественной мерой электрического тока служит сила тока I

   Сила тока  – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

 

   В Международной системе единиц СИ сила тока измеряется в амперах [А].

   [1A=1Кл/1с]

   Прибор для измерения силы тока Амперметр. Включается в цепь последовательно

   На схемах электрических цепей амперметр обозначается  .

   Напряжение – это физическая величина, характеризующая действие электрического поля на заряженные частицы, численно равно работе электрического поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2

   U12 = φ1 – φ2             

   U – напряжение

   A – работа тока

   q – электрический заряд

   Единица напряжения – Вольт [В]

   [1B=1Дж/1Кл]

   Прибор для измерения напряжения – Вольтметр. Подключается в цепь параллельно тому участку цепи, на котором измеряется разность потенциалов.

   На схемах электрических цепей амперметр обозначается  .

   Величина, характеризующая противодействие электрическому току в проводнике, которое обусловлено внутренним строением проводника и хаотическим движением его частиц, называется электрическим сопротивлением проводника.

   Электрическое сопротивление проводника зависит от размеров и формы проводника и от материала, из которого изготовлен проводник.

   

   S – площадь поперечного сечения проводника

   l – длина проводника

   ρ – удельное сопротивление проводника

   В СИ единицей электрического сопротивления проводников служит ом [Ом].

   Графическая зависимость силы тока I от напряжения U — вольт-амперная характеристика

   Закон Ома для однородного участка цеписила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

   Назван в честь его первооткрывателя Георга Ома.

Практическая часть

   1. Для выполнения работы соберите электрическую цепь из источника тока, амперметра, реостата, проволочного резистора сопротивлением 2 Ом и ключа. Параллельно проволочному резистору присоедините вольтметр (см. схему).

   

   2. Опыт 1. Исследование зависимости силы тока от напряжения на данном участке цепи. Включите ток. При помощи  реостата доведите напряжение на зажимах проволочного резистора до 1 В, затем до 2 В и до 3 В. Каждый раз при этом измеряйте силу тока и результаты записывайте в табл. 1.

   Таблица 1Сопротивление участка 2 Ом


Напряжение, В

 

 

 

Сила тока, А

 

 

 

   3. По данным опытов постройте график зависимости силы тока от напряжения. Сделайте вывод.

   4. Опыт 2Исследование зависимости силы тока от сопротивления участка цепи при постоянном напряжении на его концах. Включите в цепь по той же схеме проволочный резистор сначала сопротивлением 1 Ом, затем 2 Ом и 4 Ом. При помощи реостата устанавливайте на концах участка каждый раз одно и то же напряжение, например, 2 В. Измеряйте при этом силу тока, результаты записывайте в табл 2.

   Таблица 2. Постоянное напряжение на участке 2 В


Сопротивление участка, Ом

 

 

 

Сила тока, А

 

 

 

   5. По данным опытов постройте график зависимости силы тока от сопротивления. Сделайте вывод.

   6. Ответьте на контрольные вопросы.

Контрольные вопросы

1. Что такое электрический ток?

2. Дайте определение силы тока. Как обозначается? По какой формуле находится?

3. Какова единица измерения силы тока?

4. Каким прибором измеряется сила тока? Как он включается в электрическую цепь?

5. Дайте определение напряжения. Как обозначается? По какой формуле находится?

6. Какова единица измерения напряжения?

7. Каким прибором измеряется напряжение? Как он включается в электрическую цепь?

8. Дайте определение сопротивления. Как обозначается? По какой формуле находится?

9. Какова единица измерения сопротивления?

10. Сформулируйте закон Ома для участка цепи.

Вариант выполнения измерений.

Опыт 1. Исследование зависимости силы тока от напряжения на данном участке цепи. Включите ток. При помощи  реостата доведите напряжение на зажимах проволочного резистора до 1 В, затем до 2 В и до 3 В. Каждый раз при этом измеряйте силу тока и результаты записывайте в табл. 1.

 Таблица 1Сопротивление участка 2 Ом


Напряжение, В

1

2

3

Сила тока, А

0,5

1,0

1,5

По данным опытов постройте график зависимости силы тока от напряжения. Сделайте вывод.

Опыт 2. Исследование зависимости силы тока от сопротивления участка цепи при постоянном напряжении на его концах. Включите в цепь по той же схеме проволочный резистор сначала сопротивлением 1 Ом, затем 2 Ом и 4 Ом. При помощи реостата устанавливайте на концах участка каждый раз одно и то же напряжение, например, 2 В. Измеряйте при этом силу тока, результаты записывайте в табл 2.

Таблица 2. Постоянное напряжение на участке 2 В


Сопротивление участка, Ом

1

2

4

Сила тока, А

2,0

1,0

0,5

По данным опытов постройте график зависимости силы тока от сопротивления. Сделайте вывод.

Как обозначается реостат на электрической схеме. Реостат – это управляющее устройство, которое может изменять ток и напряжение.

Устройство, способное справиться с изменением сопротивления, называется реостатом. Конструктивно он представлен набором резисторов, соединенных друг с другом ступенчато, и может обеспечивать непрерывное изменение сопротивления. В отдельную категорию выделены устройства, осуществляющие плавное регулирование без разрыва сети. Чтобы определить, для чего нужен реостат, нужно более подробно рассмотреть его особенности и принцип действия.

Описываемые устройства универсальны в применении. В зависимости от прямого назначения их принято делить на следующие виды:

Важно! Реостаты применяют в качестве ограничителей тока в обмотках возбуждения электрических машин постоянного тока.

Таким образом нивелируются сильные перепады электрического тока, а также динамические перегрузки, выводящие из строя привод и весь связанный с ним механизм. Обеспечение правильного сопротивления при запуске продлит срок службы коллектора и щеток.

Потенциометры выделены в отдельную группу. Представляют собой делители напряжения на переменных резисторах. Такие устройства позволяют использовать в электронных схемах разное напряжение без дополнительных источников питания, трансформаторов. Регулирование тока с помощью реостата часто используется в области радиотехники. Ярким примером тому является изменение громкости в динамиках.

Описываемые устройства аналогичны по своему функциональному назначению. Конструктивно и визуально наиболее простым считается реостат ползункового типа.Он подключается к цепи с помощью верхней и нижней клемм. Устройство сконструировано таким образом, что ток течет по всей длине провода, а не в поперечном направлении витков. Это связано с надежной изоляцией проводников.

Важно! В большинстве положений ползунка используется только часть реостата. При изменении длины проводника регулируют силу электрического тока в рабочей цепи. Для предотвращения преждевременного износа катушек ползунок снабжен скользящим контактом (колесо или графитовый стержень).

Часто для управления цепью используется реостат вместо потенциометра. В этом случае он подключается с помощью трех клемм. В нижней части два из них являются входными, подключенными к источнику напряжения. В качестве выхода используется одна нижняя клемма и верхняя свободная клемма. Когда ползунок перемещается, напряжение легко регулируется.

Реостат имеет тенденцию работать в балластном режиме, что может быть необходимо при создании активной нагрузки при потреблении энергии. В такой ситуации рекомендуется учитывать рассеивающие способности используемого блока.При избыточном нагреве устройство выходит из строя. При подключении к сети необходимо правильно рассчитать рассеиваемую мощность реостата, при необходимости создать достаточное и правильное охлаждение.

Большой популярностью пользуются реостаты

с внешним оформлением в виде тора. Основная сфера их применения – электротранспорт (трамваи), промышленная отрасль. Регулировка осуществляется перемещением ползунка по кругу. Движение такой детали осуществляется по обмоткам, которые расположены тороидально.

Устройство, выполненное по принципу тора, изменяет сопротивление практически без разрыва цепи. Его противоположностью является узел рычажного типа. Принцип действия такого реостата основан на том, что резисторы закреплены на специальной рамке, они подбираются с помощью специального рычага. При любом переключении происходит разрыв цепи.

Схемы, в которых используется рычажное устройство, не имеют плавной регулировки сопротивления. Любое переключение влечет за собой прогрессивное изменение показателей в сети.Что касается ступенчатого разрешения, то оно зависит от диапазона регулировки и количества резисторов, присутствующих на корпусе.

Еще одна разновидность – вставные реостаты, с помощью которых осуществляется ступенчатая регулировка сопротивления. Основное отличие заключается в изменении параметров внутри сети без предварительного разрыва цепи. Когда вилка приложена к перемычке, большая часть тока протекает без сопротивления. Ток перенаправляется на резистор путем выдергивания штекера.

Жидкостные и ламповые светильники являются особыми типами реостатов. Ввиду наличия определенных недостатков имеют узкую, специализированную область применения:

  1. Жидкостные устройства используются во взрывоопасных зонах в качестве элементов управления двигателем.
  2. Ламповые изделия
  3. отличаются низкой точностью и надежностью. Часто используется в учебных заведениях на уроках физики, в лабораториях, научных центрах.

Определив, для чего предназначены реостаты, следует более подробно рассмотреть их составную часть. В зависимости от материала, используемого в производстве, выделяют следующие параметры:

  • керамический – особенность заключается в использовании при малых мощностях;
  • металл
  • – нашли широкое применение в разных сферах деятельности человека;
  • Уголь марки
  • — их основное применение в промышленности.

Важно! Тепло отводится маслом, водой или воздухом. Если нет возможности отвода тепла от рабочей поверхности, включается жидкостное охлаждение. Тепловыделение можно увеличить, используя вентилятор и радиатор.

Напряжение, ток в рабочей цепи, положение ползунка в реостате и оказываемое им сопротивление находятся в прямой зависимости. Эта функция лежит в основе датчика угла поворота. В таком устройстве определенной электрической величине соответствует определенное положение ротора.

В настоящее время такие датчики заменяются усовершенствованными оптическими и магнитными аналогами. Причиной этого является нестабильность зависимости сопротивления и угла по отношению к температурному воздействию. Постепенная замена датчиков реостатного типа также связана с переходом на цифровые, более удобные системы. Сегодня резистивные измерители используются в цепях, где присутствуют аналоговые сигналы.

Зная, для чего нужны реостаты электрического типа, можно легко объяснить их широкое применение в автомобилестроении, машиностроении и промышленности.Сопротивления необходимы для работы радиотехники, при пуске электродвигателей применимы в виде активной нагрузки. Выход из строя небольшого устройства может привести к отказу всей системы. В этом важность реостатов.

Устройство было разработано ученым Иоганном Кристианом Поггендорфом. Так что же такое реостат и зачем он нужен?

Что такое реостат

Реостат имеет довольно простую конструкцию.

Реостат — электрический аппарат, состоящий из резисторов и устройства, регулирующего сопротивление всех включенных резисторов.Это устройство универсально: оно способно не только управлять током и напряжением, но и задавать громкость звука в телевизорах.

Реостатное устройство

Керамический цилиндр обернут металлическим проводником, называемым обмоткой. Его концы выведены на клеммы. Это небольшие хомуты, к которым крепится верхний стержень, выполненный из металла. По этому стержню и обмотке движется скользящий контакт, который специалисты называют ползунком. Благодаря этим элементам осуществляется работа реостата.

Следует отметить, что керамический цилиндр полый. Эта функция позволяет устройству охлаждаться, предотвращает перегрев, делая устройство более безопасным.

Для чего это нужно

Реостат — лучший способ контролировать и регулировать ток. Прибор изменяет сопротивление, способен изменять напряжение в электрической цепи, что позволяет регулировать работу электродвигателя в швейной машине, громкость радио, телевизора.

Реостат позволяет регулировать и изменять ток и напряжение

Реостат активно используется при создании электроприборов.Благодаря этому элементу можно контролировать ток и напряжение, предотвращая перегрев.

Соберем схему, показанную на рисунке. Ток в цепи измеряют амперметром, напряжение вольтметром. Зная напряжение на концах проводника и силу тока в нем, по закону Ома можно определить сопротивление каждого из проводников.

В цепь источника тока будем по очереди включать различные проводники, например, никелевые провода одинаковой толщины, но разной длины.Проведя эти опыты, мы найдем, что из двух никелиновых проволок одинаковой толщины большее сопротивление имеет более длинная проволока.
В следующем эксперименте мы будем поочередно включать никелевые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения). Установим, что из двух никелевых проводов одинаковой длины большее сопротивление имеет провод меньшего сечения.
В третьем опыте будем включать по очереди никелевую и нихромовую проволоку одинаковой длины и толщины.Установим, что никелевая и нихромовая проволоки одного сечения имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого сделан проводник, впервые была изучена Омом в опытах. Он установил:

Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

Внимание!

Сопротивление проводника прямо пропорционально его длине, т.е.е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем меньше его сопротивление, и, наоборот, чем тоньше проводник, тем больше его сопротивление.

Чтобы лучше понять эту взаимосвязь, представьте себе две пары сообщающихся сосудов, одна пара которых имеет тонкую соединительную трубку, а другая — толстую. Понятно, что при заполнении водой одного из сосудов (каждой пары) ее переход в другой сосуд по толстой трубке будет происходить значительно быстрее, чем по тонкой, т.е.е. более толстая трубка будет оказывать меньшее сопротивление потоку воды. Точно так же электрическому току легче проходить по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Причиной наличия сопротивления в проводнике является взаимодействие движущихся электронов с ионами кристаллической решетки проводника. Из-за различия строения кристаллической решетки проводников из разных веществ их сопротивления отличаются друг от друга.Для характеристики материала вводится величина, которая называется удельным сопротивлением.

Удельное сопротивление – физическая величина, определяющая сопротивление проводника из данного вещества длиной \ (1\) м и площадью поперечного сечения \ (1\) м².

Введем буквенные обозначения: \(ρ\) — удельное сопротивление проводника, \(l\) — длина проводника, \(S\) — площадь его поперечного сечения. Тогда сопротивление проводника \(R\) выражается формулой:

R = ρ ι S .

Другие величины могут быть выражены по этой формуле:

ι = RS ρ , S = ρ ι R , ρ = RS ι .

Из последней формулы можно определить единицу удельного сопротивления. Поскольку единицей сопротивления является \(1\) Ом, единицей площади поперечного сечения является \(1\) м², а единицей длины является \(1\) м, то единица удельного сопротивления будет:

1 Ом ⋅ 1 м 2 1 м = 1 Ом ⋅ 1 м, т.е. Ом ⋅ м

Площадь поперечного сечения проводника удобнее выражать в квадратных миллиметрах, так как чаще всего небольшой.Тогда единица удельного сопротивления будет:

1 Ом ⋅ 1 мм 2 1 м, т.е. Ом ⋅ мм 2 м.

В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.

Внимание!

Удельное сопротивление изменяется в зависимости от температуры.

Опытным путем установлено, что, например, в металлах удельное сопротивление увеличивается с повышением температуры.

Внимание!

Из всех металлов серебро и медь имеют самое низкое удельное сопротивление. Поэтому серебро и медь являются лучшими проводниками электричества.

При разводке электрических цепей применяют алюминиевые, медные и железные провода.
Во многих случаях необходимы устройства с высоким сопротивлением. Их изготавливают из специально созданных сплавов — веществ с высоким удельным сопротивлением. Например, как видно из таблицы, сплав нихрома имеет удельное сопротивление почти в 40 раз больше, чем алюминий.

Внимание!

Стекло и дерево обладают таким высоким удельным сопротивлением, что почти совсем не проводят электричество и являются изоляторами.

На практике часто возникает необходимость изменить силу тока в цепи, сделав ее либо больше, либо меньше. Итак, изменяя силу тока в динамике магнитолы, мы регулируем громкость звука. Изменяя силу тока в электродвигателе швейной машины, можно регулировать скорость его вращения.

Для регулирования силы тока в цепи применяют специальные устройства — реостаты.

Простейшим реостатом может быть проволока из материала с высоким удельным сопротивлением, например никеля или нихрома.Включив такой провод в цепь источника электрического тока через контакты А и С и переместив подвижный контакт С, можно уменьшить или увеличить длину участка переменного тока, включаемого в цепь. При этом изменится сопротивление цепи, а следовательно, и сила тока в ней, это покажет амперметр.

Применяемые на практике реостаты имеют более удобную и компактную форму. Для этого используется провод с высоким удельным сопротивлением.Один из реостатов (ползунковый реостат) показан на рисунке.

В этом реостате никелевая проволока намотана на керамический цилиндр. Провод покрыт тонким слоем непроводящей окалины, поэтому его витки изолированы друг от друга. Над обмоткой расположен металлический стержень, по которому может двигаться бегунок. Своими контактами он прижимается к виткам обмотки. От трения ползунка о витки слой накипи под его контактами стирается, и электрический ток в цепи проходит с витков провода на ползун, а через него на стержень, имеющий зажим\( 1\) в конце.С помощью этого зажима и зажима \(2\), соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подключают к цепи. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь.

Во многих электронных устройствах для управления громкостью звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять ток и напряжение.Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R . Если изменить сопротивление проводника R на , то изменится и сила тока.

Сопротивление зависит от длины L , от площади поперечного сечения S и от материала проводника — удельное сопротивление. Для того чтобы изменить сопротивление проводника, нужно изменить длину, толщину или материал.Очень удобно менять длину проводника.

Разберем цепь, состоящую из источника тока, ключа, амперметра и проводника в виде резистора переменного тока из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этому проводу, можно изменить длину проводника, который задействован в цепи, тем самым изменив сопротивление, а значит и силу тока. Поэтому можно создать устройство с переменным сопротивлением, с помощью которого можно менять силу тока.Такие устройства называются реостатами.

Реостат представляет собой устройство переменного сопротивления, которое регулирует ток и напряжение.

Устройство реостатное

Металлический проводник намотан на керамический цилиндр, изготовленный из материала с высоким удельным сопротивлением. Это сделано для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется потому, что намотан на керамический цилиндр.

Концы обмотки подводятся к зажимам, которые называются клеммами.В верхней части реостата находится металлический стержень, который также заканчивается клеммами. Скользящий контакт, называемый ползунком, может перемещаться как по металлическому стержню, так и по обмотке. Поскольку скользящий контакт имеет такое название, такой реостат называется ползунковым реостатом.

Принцип работы

Ползунковый реостат подключается к цепи через два вывода: нижний вывод от обмотки и верхний вывод, где находится металлический стержень. При подключении к цепи, таким образом, ток через нижний вывод проходит по виткам обмотки, а не по виткам.Далее ток проходит через скользящий контакт, затем по металлическому стержню и снова в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. При движении ползунка изменяется сопротивление той части обмотки реостата, которая находится в цепи. Изменяются длина обмотки, сопротивление и сила тока в цепи.

Следует отметить, что ток в той части реостата, через которую он проходит, идет через каждый виток обмотки, а не через них.Это достигается тем, что витки обмотки изолированы друг от друга тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок перемещается по ее верхнему слою, имеющему на пути следования ползуна зачищенный участок изоляции. Так осуществляется контакт между ползунком и витком обмотки. Катушки изолированы друг от друга.

На схеме показана цепь с источником тока, переключателем, амперметром и скользящим реостатом.При перемещении ползунка реостата изменяется его сопротивление и сила тока в цепи.

Выдвижной реостат можно подключить к цепи с помощью двух выводов: верхнего и нижнего. А вот реостаты подключаются по-другому.

Реостат можно подключить через три клеммы. Два нижних вывода подключаются к концам обмотки, а один провод от верхнего вывода. Напряжение прикладывается ко всей обмотке, а снимается напряжение только с части обмотки.Ползунок делит реостат на два последовательно соединенных резистора.

Общее напряжение равно сумме напряжений каждого резистора. Следовательно, выходное напряжение меньше входного значения. Выходное напряжение меньше входного во столько раз, во сколько сопротивление части обмотки меньше сопротивления всей обмотки. То есть реостат делит напряжение, и называется делителем напряжения или потенциометром.

Типы и особенности реостатов
Реостат в виде тора

Два крайних зажима являются концами обмотки, а средний зажим соединен с ползунком.Вращая ползунок вдоль обмотки, можно изменять сопротивление и силу тока в цепи.

Реостаты рычажные

Такое название получили потому, что в нижней его части находится переключатель — рычаг. С его помощью можно включать разные части спирали резистора. На рисунке показан принцип действия рычажного реостата.

Рычажный реостат изменяет силу тока ступенчато, ползунковый реостат изменяет силу тока плавно.Если в цепи присутствует резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет изменяться ток и напряжение на концах резистора.

Вставной

Такие устройства состоят из блока сопротивления.

Это набор различных сопротивлений. Их называют спиральными резисторами. С помощью штекера можно включать или выключать различные спиральные резисторы. Когда штекер находится в перемычке, больший ток протекает через перемычку, а не через резистор.Таким образом, резистор выключается. С помощью вилки можно получить разное сопротивление.

Материалы и охлаждение

Основным элементом в устройстве реостата является материал изготовления, по типу которого реостаты делятся на несколько видов:

  • Уголь.
  • Металл.
  • Жидкость.
  • Керамика.

Электрический ток в сопротивлениях преобразуется в тепловую энергию, которую нужно как-то от них отводить.Поэтому реостаты также делятся по типу охлаждения:

Жидкостные реостаты делятся на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяют только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружаются. Нельзя забывать, что охлаждающая жидкость тоже должна охлаждаться.

Металлические реостаты

Реостат с воздушным охлаждением. Такие модели завоевали популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции.Они бывают с плавной или ступенчатой ​​регулировкой сопротивления.

Устройство имеет подвижный контакт, скользящий по неподвижным контактам, расположенным в одной плоскости. Неподвижные контакты выполнены в виде винтов с плоской головкой, пластин или стержней. Подвижный контакт называется щеткой. Это может быть мост или рычаг.

Такие типы реостатов делятся на самоустанавливающиеся и несамоустанавливающиеся. Последний тип имеет простую конструкцию, но ненадежен в использовании, так как часто нарушается контакт.

Масляный

Агрегаты с масляным охлаждением увеличивают теплоемкость и время прогрева благодаря хорошей теплопроводности масла. Это дает возможность кратковременно увеличивать нагрузку, уменьшает расход резистивного материала и габариты корпуса реостата.

Детали, погруженные в масло, должны иметь большую площадь поверхности для хорошего рассеивания тепла. В масле увеличивается возможность отключения контактов. Это является преимуществом этого типа реостатов.Из-за смазки контактов могут быть приложены повышенные усилия. К недостаткам можно отнести риск возгорания и загрязнения места установки.

В уроке рассматривается устройство под названием реостат, сопротивление которого можно изменять. Подробно рассмотрено устройство реостата и принцип его работы. Показано обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приведены примеры использования реостата в быту.

Тема: Электромагнитные явления

Урок: Реостаты

В предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но и так называемые органы управления. Одним из важных элементов управления является реостат или любое другое устройство, основанное на его действии. В реостате используется проводник из заранее известного материала определенной длины и сечения, а значит, мы можем узнать его сопротивление.Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, мы можем регулировать ток и напряжение в электрических цепях.

Рис. 1. Реостатное устройство

На рис. 1 показан реостат без оболочки. Это сделано для того, чтобы вы могли видеть все его части. На керамическую трубку (1) намотана проволока (2). Его концы выведены на два контакта (3а). Также имеется стержень, на конце которого находится контакт (3б).По этому стержню перемещается скользящий контакт (4), так называемый «ползун».

Если разместить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если сдвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, увеличится его длина, увеличится сопротивление, а ток уменьшится. Если передвинуть «ползунок» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, а сила тока в цепи возрастет.

Рис. 2. Реостат

Внутренняя часть реостата полая. Это необходимо потому, что при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда изображаем цепь (чертеж электрической цепи), то каждый элемент обозначается определенным символом. Обозначается реостат следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — провод, ведущий к реостату, зеленый — скользящий контакт.При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата будет уменьшаться, а при движении вправо — увеличиваться. Также можно использовать следующее изображение реостата (рис. 4):

Рис. 4. Еще изображение реостата

Прямоугольник указывает на сопротивление, а стрелка указывает на то, что его можно изменить.

В электрической цепи реостат включен последовательно. Ниже представлена ​​одна из схем включения (рис.5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Клеммы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или розетка). Стоит отметить, что второй контакт необходимо подключить к подвижной части реостата, что позволяет изменять сопротивление. Если увеличить сопротивление реостата, то накал лампочки (3) уменьшится, а значит, и ток в цепи уменьшится.И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях света для управления интенсивностью освещения.

Реостат также можно использовать для регулирования напряжения. Ниже приведены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом как бы регулируем напряжение.При этом необходимо точно знать все параметры проводника, чтобы правильно отрегулировать напряжение. В случае реостата (рис. 6б) ситуация заметно упрощается, так как мы можем плавно регулировать его сопротивление, а значит и изменять снимаемое напряжение.

Реостат — довольно универсальное устройство. Помимо регулировки тока и напряжения, его также можно использовать в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов на телевизоре тоже как-то связано с использованием реостатов.Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

В этом уроке мы рассмотрели устройство и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Библиография

  1. Генденштейн Л.Э., Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Образовательный центр «Обучающие технологии» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Страница 108-110: Вопросы 1-5. Перышкин А.Т. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли сопротивление уменьшается при перемещении ползунка реостата вправо?
  4. В чем причина использования керамической трубки в реостате?

Подробная концепция, работа, конструкция и применение

В наши дни объем всей технологии вращается вокруг электрических устройств, машин и цепей. Для всех них электричество выступает в качестве фундаментального компонента.Усовершенствование и развитие нескольких фаз в электричестве способствовало развитию многих электрических устройств. Из многих устройств одно, которое привлекает внимание многих клиентов для внедрения в свои отрасли, — это «Реостат». Находясь в оптимизации с последними тенденциями и технологиями, это устройство хорошо подходит для многих требований и желаний. Итак, эта статья дает четкое представление о концепции реостата, его работе и многом другом.

Что такое реостат?

Реостат Определение: представляет собой устройство переменного сопротивления, которое используется для регулирования тока.Когда возникает ситуация, когда нужно изменить значения сопротивления в цепи, этот переменный резистор может справиться с проблемами, не вызывая проблем. Либо увеличивать, либо уменьшать уровни сопротивления, насколько хорошо он работает и показывает точные результаты. Поскольку мы знаем, что протекание тока определяется приложенным напряжением и сопротивлением, более важно знать, как этот реостат функционирует и управляет .

Когда устройство размещено в цепи, можно легко управлять уровнями тока.Это устройство может до некоторой степени регулировать ток, но оно не обладает полной способностью препятствовать прохождению тока. В практических приложениях не существует возможности препятствовать полному протеканию тока.

Конструкция реостата

Подобно конструкции потенциометра, реостат также сконструирован. Это устройство состоит из трех клемм с именами A, B и C. Операция выполняется только с двумя клеммами (A и B или B и C). Дорожка — это соединение, в котором соединены клеммы A и C, и это фиксированные клеммы, тогда как клемма B — сменная клемма, и она имеет соединение с ползунком или скользящим стеклоочистителем.Движение скребка в цепи определяет значение сопротивления на реостате. Этот резистивный компонент изготовлен либо из тонкой углеродной пленки, либо из проволочной катушки. Для намотки используется либо керамический сердечник, либо нихромовые проволоки. Поскольку эти материалы являются теплоизоляторами, они не проводят тепло. Диаграмма показана ниже:

Схема реостата

Реостат рабочий

A на соединение реостата принцип работы этого устройства можно объяснить следующим образом:

Сценарий 1

Значения сопротивления в устройстве известны по резистивной длине дорожки, по которой протекает ток.Когда клеммы A и B используются для работы в устройстве, выходная мощность будет меньше, когда движок перемещается к клемме A, где длина резистивного пути уменьшается. Из-за этого будет минимальное блокирование тока и большее количество тока, проходящего через устройство.

Таким же образом, когда движок перемещается к клемме C, выходной сигнал будет максимальным там, где длина резистивного пути больше. Из-за этого будет минимальное количество тока, проходящего через устройство, и большее количество тока через устройство.

Сценарий 2

Когда клеммы B и C используются для работы в устройстве, выходной сигнал будет меньше, когда очиститель перемещается к клемме C, поскольку длина резистивного пути уменьшается. Из-за этого будет минимальное блокирование тока и большее количество тока, проходящего через устройство.

Таким же образом, когда движок перемещается к клемме A, выходной сигнал будет максимальным там, где длина резистивного пути больше. Из-за этого будет минимальное количество тока, проходящего через устройство, и большее количество тока через устройство.

Итак, следует отметить, что нет использования ни резистивной трассы, ни провода, только на основе резистивной трассы происходит изменение значений выходного сопротивления.

Символ

Символ реостата может быть изображен следующим образом:

В соответствии с американским стандартом символ устройства отображается в виде зигзагообразных линий вместе с изображением трех клемм и похож на

Американский стандарт-of -реостат

Принимая во внимание, что в соответствии с международным стандартом символ устройства показан в виде прямоугольника с изображением трех клемм и похож на

международный-символ-реостата

Применение реостата

Реостат в основном используется в ситуациях, когда требуется максимальный ток и напряжение.

  • Основное применение этих устройств — изменение уровня яркости света. Он работает по сценарию, когда сопротивление увеличивается, ток, протекающий в свете, уменьшается, и, следовательно, уменьшается интенсивность. Точно так же, когда сопротивление уменьшается, ток, протекающий в свете, увеличивается, и, следовательно, увеличивается интенсивность.
  • Вероятно, они используются для устройств с регулируемой мощностью, таких как регулирование скорости двигателей, печей, газовых колонок и обогревателей.
  • Поскольку это устройство имеет минимальный КПД, большинство приложений, требующих регулировки мощности, не будут использовать его, но будут использовать в той или иной степени.
  • Реализован в схемах, требующих настройки из-за неравномерного сопротивления наряду с калибровкой. Устройства переделываются в тех случаях, когда схема не настроена в процессе изготовления.

Разница между реостатом и потенциометром

Основное различие, которое необходимо отметить, заключается в том, что потенциометр используется для определения неизвестных значений ЭДС, таким образом, регулируя напряжение электронной цепи, тогда как реостат используется для регулирования тока.

Rheostat

Потенциометр

В этом текущий поток может быть регулироваться путем изменения значений сопротивления путем сравнения с неизвестным уровнем напряжения, неизвестное значение EMF может быть определено
Он относится к классу переменных резисторов Он относится к классу датчиков .

Реостат регулирует подачу тока

Потенциометр имеет 3 клеммы, концы которых соединены вместе с грязесъемником и цепью.

Потенциометр регулирует поток напряжения

Реостат используется для приложений, которые используют большую мощность.

 

Потенциометр в основном используется для приложений с низким энергопотреблением
Реостат изготовлен из металлической ленты или угольных дисков.

 

Потенциометр изготовлен из графита
Реостат последовательно соединен с цепью.

 

Потенциометр подключен параллельно цепи

В целом, оба устройства имеют лишь незначительные отличия, и каждое из них имеет свои преимущества и области применения. На основании требования и реализации выбирается устройство.

Часто задаваемые вопросы

1). Из чего состоит реостат?

Как правило, реостаты изготавливаются из тонких углеродных листов или обмотаны нихромовой проволокой по всему изоляционному керамическому материалу.

2). В чем разница между реостатом и потенциометром?

Основное различие, которое следует отметить, заключается в том, что потенциометр используется для определения неизвестных значений ЭДС, таким образом, регулируя напряжение электронной схемы, тогда как реостат используется для регулирования тока.

3). Изменяет ли реостат напряжение?

Когда реостат расположен близко к источнику напряжения, ток будет изменяться, а напряжение будет постоянным.

4). Какой провод используется в реостате?

В конструкции реостата в основном используется нихромовая проволока

5). Почему реостат используется в законе Ома?

В соответствии с принципом закона Ома, благодаря этому можно узнать соотношение между напряжением и током в реостате.

Итак, это все о теории реостата. В этой статье представлен подробный сценарий о том, как работает реостат, каков его принцип работы, его подключение, схема и все такое.Из-за его использования и преимуществ он широко используется во многих областях.

Ресурсы

Резисторы

Резисторы — это устройства, которые изготавливаются с заданным значением сопротивления. Они изготавливаются различных форм и размеров и из различных материалов, включая:

  • уголь
  • металлическая пленка
  • нихром.

Угольный резистор и электрический символ

Резистор можно использовать в цепи для ограничения величины протекающего тока или уменьшения напряжения.

Цветовые коды

Цветные полосы на углеродных и металлопленочных резисторах используются для обозначения значения сопротивления (в омах) и допуска (точность в процентах) резистора. Цветовые полосы значений сопротивления смещены к одному концу резистора, а последняя полоса соответствует допуску.

  • Четыре цветных полосы имеют три цветных полосы значений, а затем четвертую для допуска. У некоторых нет четвертой полосы допуска, поэтому резистор имеет допуск плюс-минус 20.
  • Пять цветных полос имеют четыре цветные полосы значений, а затем пятую полосу для допуска.

Следующая таблица может использоваться для определения номинала резистора. Читать таблицу:

  • сверху вниз для четырехполосного резистора
  • снизу вверх для пятиполосного резистора.

 

Цветовые коды для идентификации значений сопротивления
Прочтите таблицу сверху вниз для четырехполосного резистора

Цвет

1 ст лента

2 полоса

 

Множитель

Полоса допуска

Цвет

Черный  

0

0

0

1

   
Коричневый  

1

1

1

10

± 1%

  Коричневый
Красный  

2

2

2

100

± 2%

  Красный
Оранжевый  

3

3

3

   
Желтый  

4

4

4

10к

   
Зеленый  

5

5

5

100 тыс.

± 0.5%

  Зеленый
Синий  

6

6

6

± 0,25%

  Синий
Фиолетовый  

7

7

7

10 м

± 0.10%

  Фиолетовый
Серый  

8

8

8

 

± 0,05%

  серый
Белый  

9

9

9

       
         

± 5%

  Золото
         

± 10%

  Серебро
         

± 20%

(Нет)

Цвет

1 ст лента

2 полоса

3 рд лента

Множитель

Полоса допуска

Цвет

Прочтите таблицу снизу вверх для пятиполосного резистора

 

Пример

Показанный резистор имеет четыре полосы.Использование таблицы позволяет нам вычислить значение.

Четырехполосный резистор.

  1. Первая полоса коричневая, поэтому первая цифра равна единице.
  2. Вторая полоса черная, поэтому вторая цифра равна нулю. Если сложить двойку и ноль, получится десять.
  3. Третья полоса, которая является множителем, коричневая, поэтому ее значение равно единице. Это означает, что к значению будет добавлен один дополнительный ноль.
    Резистор рассчитан на сто Ом.
  4. Четвертая полоса — золотая, что указывает на то, что резистор имеет допуск плюс-минус пять процентов.

Резистор рассчитан на 100 Ом, но фактическое сопротивление должно быть в пределах от 95 Ом до 105 Ом.

 

Переменные резисторы

Как следует из названия, переменный резистор — это устройство, которое позволяет пользователю изменять величину сопротивления. Примером этого является регулятор громкости на радио. Переменные резисторы бывают разных форм, размеров и пропускной способности по току.Они имеют три клеммы, и одна соединена с грязесъемником, который можно перемещать по резистивному материалу.

 

Два типа переменного резистора и соответствующий символ

 

Переменные резисторы:

  • Потенциометр – используется для регулировки напряжения
  • реостат – используется для изменения тока.

Они показаны на следующих принципиальных схемах.

Цепи потенциометра и реостата

Сопротивление в движении: что нужно знать о переменных резисторах

Регулировка регулятора громкости на аудиосистеме, определение положения пальца на сенсорном экране и знание того, что кто-то находится в машине — это лишь несколько примеров того, где вы сталкиваетесь с переменными резисторами в повседневной жизни. Возможность изменять сопротивление означает способность взаимодействовать, и поэтому устройства с переменным сопротивлением используются во многих вещах.

Принципы те же, но есть много способов разделить вольт. Давайте посмотрим, что входит в состав вращающихся потенциометров, реостатов, мембранных потенциометров, резистивных сенсорных экранов, чувствительных к силе резисторов, а также датчиков изгиба и растяжения.

Потенциометр

Потенциометры, или потенциометры, в основном представляют собой делители напряжения: метод деления заданного напряжения на более низкий уровень. Как показано на схеме, потенциометр (серый) имеет три точки подключения. Средняя точка соединения является регулируемой (обозначена стрелкой) и соприкасается с резистивным материалом внутри в точке где-то по длине материала.

Напряжение между регулируемой точкой и одной из других точек (концами резистивного материала) определяется сопротивлением между этими двумя точками. Если подключены только две точки, то это считается переменным резистором или реостатом.

Схема потенциометра

Потенциометр в усилителе

Потенциометр

На фото кастрюля с цилиндрическим валом, который вы поворачиваете. Пластмассовая ручка громкости на вашей звуковой системе скрывает один из этих горшков.Обратите внимание на три точки подключения (клеммы), средняя из которых подключена к регулируемой точке. На фото новый, не установленный горшок. Вот пример того, как я использовал потенциометр для регулировки громкости на усилителе из банки с арахисовым маслом (кстати, это было освещено на Hackaday).

Как изменяется сопротивление потенциометра

График линейного и логарифмического конусных потенциометров

Потенциометры могут иметь линейный диапазон сопротивлений или логарифмический диапазон. Линейный означает, что когда вы поворачиваете вал, значения сопротивления, которые вы получаете, изменяются линейно.Поверните его на четверть, и сопротивление изменится на четверть полного диапазона. Поверните его наполовину, и сопротивление изменится на половину полного диапазона.

Но для регулятора громкости звук будет звучать так, как будто он изменяется слишком быстро; это связано с тем, как наш мозг интерпретирует то, что слышат наши уши. Поэтому для ручки громкости лучше всего использовать потенциометр, сопротивление которого изменяется логарифмически при повороте ручки. На графике показано, как изменяется громкость при повороте или вращении ручки как для линейного, так и для логарифмического измерения.Обратите внимание, что некоторые логарифмические банки являются только псевдологарифмическими и дешевле, чем настоящие логарифмические. Они состоят из двух линейных участков с разной скоростью изменения и встречаются на 50% их вращения. Они также показаны на графике.

Это логарифмическое поведение иногда достигается за счет того, что резистивный элемент внутри имеет коническую форму; его ширина меняется от одного конца к другому. По этой причине горшки часто называют либо линейными коническими горшками, либо логарифмическими коническими горшками.

Потенциометры другой формы бывают триммерами или триммерами. Они меньше, чем указанные выше, и используются на печатных платах. Обычно они настраиваются только один раз (или очень редко) для калибровки электронной схемы.

Триммеры

Эквалайзер с ползунками

Однако не все потенциометры

являются вращающимися компонентами. Они также могут быть ползунками, как показано на фото эквалайзера на клавиатуре. Они склонны к попаданию грязи внутрь и нарушению работы механизма, как в случае с изображенным на фото (я знаю, потому что он мой, и некоторые из них немного трудно двигаются).

Реостат

Как я уже говорил выше, когда к потенциометру подключены только две клеммы, его часто называют реостатом. Реостаты обычно рассчитаны на более высокую мощность, чем типы потенциометров, изображенные выше, и, конечно же, на большую мощность, чем регулятор громкости.

Чтобы справиться с более высокой мощностью, они обычно изготавливаются путем намотки провода сопротивления на изолированный сердечник, а затем по проводу скользит грязесъемник, создавая легкий контакт везде, где он касается провода.Вспомните электрический символ потенциометра из начала статьи, где используются три клеммы. Поскольку вы подключаетесь только к двум клеммам реостата, символ отличается; символ резистора с расположенной через него угловой стрелкой (которая не соединяется). Ниже вы можете увидеть как стандартную версию IEEE с зигзагообразной линией, так и прямоугольную версию IEC здесь.

Внутренние элементы реостата

Электрические символы реостата

Мембранный потенциометр

Резистивная мембрана

Мембранный потенциометр состоит из гибкой изолирующей и часто прозрачной мембраны с прикрепленной под ней резистивной полосой.Ниже расположено основание, поверх которого напечатана токопроводящая дорожка. Когда палец или другой предмет надавливает на гибкую мембрану ее резистивной полосой, создается электрическое соединение с токопроводящим путем. Это приводит к напряжению на клемме резистивной полосы. Напряжение меняется в зависимости от места соединения с токопроводящей дорожкой. Обратите внимание, что это та же схема, что и на первой схеме потенциометра в начале этой статьи.

Сопротивление одного из Sparkfun, называемого SoftPot, линейно изменяется от 100 Ом до 10 кОм при мощности 1 Вт.

Если соединение присутствует не всегда, например, когда для соединения используется палец, то должен присутствовать подтягивающий резистор (например, 100 кОм). Однако в некоторых мембранных потенциометрах магнит или грязесъемник всегда оказывают давление на мембрану, что обеспечивает постоянное соединение.

Резистивный сенсорный экран

Как работает резистивный сенсорный экран

Резистивный сенсорный экран похож на мембранный потенциометр, за исключением того, что оба слоя имеют резистивный материал, и этот материал прозрачен.Передняя мембрана гибкая, а также прозрачная, так что палец или стилус могут нажимать на нее для создания соединения. Подумайте о недорогих КПК десятилетней давности или о некоторых детских игрушках, которые все еще существуют сегодня. Эта технология все еще используется, но революция смартфонов была основана на емкостных сенсорных экранах, которые не требуют гибкой мембраны.

Для 4-проводного резистивного сенсорного экрана напряжение сначала подается на верхний слой, а значение считывается с нижнего слоя, чтобы получить значение X.Затем к нижнему слою прикладывается напряжение, в то время как значение считывается с верхнего слоя, чтобы получить значение Y. Все это делается за миллисекунды, и экран постоянно сканируется на наличие этих значений.

Все расчеты выполняются вспомогательным контроллером. Резистивные сенсорные экраны не так отзывчивы, как емкостные сенсорные экраны, и часто для достижения требуемой точности требуется стилус. Они используются в бюджетных смартфонах.

Резистор, чувствительный к силе

Датчик силы, Sparkfun [CC BY-SA 3.0] Резисторы, чувствительные к силе, состоят из проводящего полимера, содержащего как проводящие, так и непроводящие частицы. Этот полимер расположен над двумя проводниками, которые переплетаются, но не имеют прямого электрического контакта друг с другом. Прижатие полимера к проводникам создает электрический контакт между ними. Увеличение давления или области, которая прижимается, увеличивает проводимость между двумя переплетенными проводниками, одновременно уменьшая сопротивление. При непрессованном полимере сопротивление может быть больше 1 МОм.Точность обычно составляет около 10%. Но точности достаточно для использования в музыкальных инструментах, протезах, датчиках присутствия в автомобиле и портативной электронике.

Датчики изгиба и растяжения

Гибкий датчик представляет собой резистивный материал, например углерод, нанесенный на гибкую мембрану. Когда датчик сгибается, это заставляет материал растягиваться, увеличивая его сопротивление в соответствии с радиусом изгиба. Согласно одному техническому описанию сопротивление в плоском состоянии составляет 10 кОм, но может быть в два раза больше, чем при изгибе на 180 градусов с двумя концами, сжатыми вместе.Популярный пример его использования — пальцы игровых перчаток, таких как оригинальная перчатка Nintendo Power Glove (вот одна из них взломана для управления квадрокоптером). Сгибание пальца регистрируется как изменение сопротивления, указывающее, насколько сильно согнут палец.

Датчик растяжения проводящей резины, Adafruit

Датчик растяжения работает по тому же принципу, за исключением того, что вы растягиваете его, чтобы увеличить сопротивление. И, например, резиновый шнур, пропитанный сажей, очень похожий на банджи-шнур.Возьмем один пример из Adafruit, если у вас есть 6-дюймовая длина, равная 2,1 кОм, и вы растягиваете ее до 10-дюймовой длины, тогда сопротивление увеличивается до 3,5 кОм. Другим примером является проводящая пряжа, состоящая из стальных волокон, смешанных с полиэстером, а также другие, имеющие форму лент или ремней.

Сопротивление теперь сведено к минимуму

Это отличная коллекция регулируемых вручную резисторов, которые вы найдете в использовании в наши дни. Возможно, мы пропустили один или два, и если это так, сообщите нам и всем остальным в комментариях ниже.

Если вы хотите узнать о резисторах, номиналы которых не меняются, ознакомьтесь с моей предыдущей статьей о резисторах с фиксированным номиналом (ну, они немного меняются из-за температуры, влажности и других факторов, если мы поговорим об этом).

Добавить комментарий

Ваш адрес email не будет опубликован.