Как обозначается дроссель на схеме: Как обозначается катушка индуктивности на схеме. Маркировка дросселей в электрике

Содержание

Применение катушек индуктивности - ООО «УК Энерготехсервис»

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

  • Что такое индуктивность?  Если через  провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:
  • где
  • В – магнитное поле, Вб
  • I – сила тока, А
  • А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение
  • И у нас получится вот такая картина с магнитными силовыми линиями:
  • Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с  Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется

ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки.

Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

  1. где
  2. I – сила тока в катушке , А 
  3. U – напряжение в катушке, В 
  4.  R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть  в разы больше, чем было до размыкания  цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и  немагнитным сердечником. Снизу  на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-).  Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным  сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин.

Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

  • Для катушек средней индуктивности используются ферритовые сердечники:
  • Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств.

Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов).

На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

  1. Имеется ферритовый сердечник
  2. Начинаю вводить катушку в сердечник на самый край
  3. LC-метр  показывает 21 микрогенри.
  4. Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод,

самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

  • где
  • 1 – это каркас катушки
  • 2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

  1. Индуктивность стала почти 50 микрогенри!
  2. А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод:

чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

  • Давайте поэкспериментируем с ферритовым кольцом.
  • Замеряем индуктивность
  • 15 микрогенри
  • Отдалим витки катушки друг от друга
  • Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

  1. Замеряем

Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек индуктивности

  • При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.
  • А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате.

Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Катушка индуктивности. Параметры. Виды. Обозначение на схемах

Здравствуйте, уважаемые читатели сайта sesaga.ru. Катушка индуктивности относится к числу элементов, без которых не получится построить приемник, телевизор, радиоуправляемую модель, передатчик, генератор сигналов, модемный преобразователь, сетевой фильтр и т. п.

Катушку индуктивности или просто катушку можно представить в виде нескольких витков провода намотанного в спираль. Ток проходя по каждому витку спирали создает в них магнитное поле, которое пересекаясь с соседними витками наводит в них э.д.с самоиндукции. И чем провод длиннее и большее число витков он образует, тем самоиндукция больше.

Индуктивность

По своей сути индуктивность является электрической инерцией и ее основное свойство состоит в том, чтобы оказывать сопротивление всякому изменению протекающего тока. Если через катушку пропускать определенный ток, то ее индуктивность будет

противодействовать как уменьшению, так и увеличению протекающего тока.

В отличие от конденсатора, который пропускает переменный и не пропускает постоянный ток, катушка индуктивности свободно пропускает постоянный ток и оказывает сопротивление переменному току, потому что он изменяется быстрее, чем может изменяться магнитное поле.

И чем больше индуктивность катушки и чем выше частота тока, тем оказываемое сопротивление сильнее. Это свойство катушки применяют, например, в приемной аппаратуре, когда требуется в электрической цепи преградить путь переменному току.

Индуктивность измеряется в генри (Гн), миллигенри (1мГн = 10ˉ3 Гн), микрогенри (1мкГн = 10ˉ6 Гн), наногенри (1нГн = 10ˉ9 Гн) и обозначается латинской буквой L.

Общие свойства катушек индуктивности

В зависимости от требуемой индуктивности и частоты, на которой катушка будет работать, она может иметь самые различные исполнения.

Для высоких частот это может быть простая катушка состоящая из нескольких витков провода или же катушка с сердечником из ферромагнитного материала и иметь индуктивность от нескольких наногенри до нескольких десятков миллигенри. Такие катушки применяются в радиоприемной, передающей, измерительной аппаратуре и т.п.

Катушки, работающие на высоких частотах, можно разделить на катушки контуров, катушки связи и дроссели высокой частоты. В свою очередь катушки контуров могут быть с постоянной индуктивностью и переменной индуктивностью (вариометры).

По конструктивному признаку высокочастотные катушки разделяются на однослойные и многослойные, экранированные и неэкранированные, катушки без сердечников и катушки с магнитными и немагнитными сердечниками, бескаркасные, цилиндрические плоские и печатные.

Для работы в цепи переменного тока низкой частоты, на звуковых частотах, во входных фильтрах блоков питания, в цепях питания осветительного электрооборудования применяются катушки с достаточно большой индуктивностью. Их индуктивность достигает десятки и даже сотни генри, а в обмотках могут создаваться большие напряжения и протекать значительные токи.

Для увеличения индуктивности при изготовлении таких катушек применяют магнитопроводы (сердечники), собранные из отдельных тонких изолированных пластин сделанных из специальных магнитных материалов – электротехнических сталей, пермаллоев и др.

Применение наборных магнитопроводов обусловлено тем, что под действием переменного магнитного поля в сплошном магнитопроводе, который можно рассматривать как множество короткозамкнутых витков, образуются вихревые токи, которые нагревают магнитопровод, бесполезно потребляя часть энергии магнитного поля. Изоляция же между слоями стали оказывается на пути вихревых токов и значительно снижает потери.

Катушки с магнитопроводами из изолированных пластин можно разделить на дроссели и трансформаторы.

Основные параметры катушек индуктивности

Свойства катушек могут быть охарактеризованы четырьмя основными параметрами: индуктивностью, добротностью, собственной емкостью и стабильностью.

1. Индуктивность

Индуктивность (коэффициент самоиндукции) является основным электрическим параметром и характеризует величину энергии, запасаемой катушкой при протекании по ней электрического тока. Чем больше индуктивность катушки, тем больше энергии она запасает в своем магнитном поле.

Индуктивность зависит от размеров каркаса, формы, числа витков катушки, диаметра и марки провода, а также от формы и материала магнитопровода (сердечника).

В радиолюбительских схемах, как правило, величину индуктивности не указывают, так как радиолюбителя интересует не эта величина, а количество витков провода в катушке, диаметр и марка провода, способ намотки (внавал, виток к витку, крест на крест, секционная намотка) и размеры каркаса катушки.

2. Добротность

Добротность (Q) характеризуется качеством работы катушки индуктивности в цепях переменного тока и определяется как отношение реактивного сопротивления катушки к ее активному сопротивлению потерь.

Активное сопротивление включает в себя сопротивление провода обмотки катушки; сопротивление, вносимое диэлектрическими потерями в каркасе; сопротивление, вносимое собственной емкостью и сопротивления, вносимые потери в экраны и сердечники.

Чем меньше активное сопротивление, тем выше добротность катушки и ее качество. В большинстве случаев добротность катушки определяют резонансные свойства и к.п.д. контура. Современные катушки средних размеров имеют добротность около 50 – 300.

3. Собственная емкость

Катушки индуктивности обладают собственной емкостью, которая увеличивается по мере увеличения числа витков и размеров катушки. Между соседними витками существует межвитковая емкость, из-за которой некоторая часть тока проходит не по проводу, а через емкость между витками, отчего сопротивление между выводами катушки уменьшается.

Все дело в том, что общее напряжение, приложенное к катушке, разделяется на межвитковые напряжения из-за чего между витками образуется электрическое поле, вызывающее скопление зарядов.

Витки, разделенные слоями изоляции, образуют обкладки множества маленьких конденсаторов, через которые протекает часть тока, из общей емкости которых и складывается собственная емкость катушки.

Таким образом катушка обладает не только индуктивными но и емкостными свойствами.

Собственная емкость является вредным параметром и ее стремятся уменьшить применением специальных форм каркаса и способом намотки провода.

4. Стабильность

Стабильность катушки характеризуется изменением ее параметров под воздействием температуры, влажности и во времени.

Изменение индуктивности под влиянием температуры характеризуют температурным коэффициентом индуктивности (ТКИ), равным относительному изменению индуктивности при изменении температуры на 1°С. ТКИ катушки определяется способом намотки и качеством диэлектрика каркаса.

Влажность вызывает увеличение собственной емкости и диэлектрических потерь, а также понижает стабильность катушки. Для защиты от действия влажности применяется герметизация или пропитка и обволакивание обмотки негигроскопичными составами.

Такие катушки обладают более низкой добротностью и большой собственной емкостью, но при этом они более устойчивы к воздействию влаги.

Катушки индуктивности с магнитопроводами

Для получения малогабаритных катушек различного назначения применяют магнитопроводы (сердечники), которые изготавливают из магнитодиэлектриков и ферритов. Катушки с магнитопроводами имеют меньшее число витков при заданной индуктивности, малую длину провода и небольшие размеры.

Ценным свойством катушек с магнитопроводами является возможность их подстройки, т.е. изменения индуктивности в небольших пределах путем перемещения внутри катушки специального цилиндрического подстроечника, состоящего из феррита с напрессованной на него резьбовой втулкой.

Магнитодиэлектрики представляют собой измельченное вещество, содержащее в своем составе железо (ферромагнетик), частицы которого равномерно распределены в массе диэлектрика (бакелита или аминопласта). Наиболее широко применяют магнитопроводы из альсифера (сплав алюминия, кремния и железа) и карбонильного железа.

Ферриты представляют собой твердые растворы окислов металлов или их солей, прошедшие специальную термическую обработку (обжиг). Получающееся при этом вещество – полупроводниковая керамика – обладает очень хорошими магнитными свойствами и малыми потерями даже на очень высоких частотах.

Основным достоинством ферритов является высокая магнитная проницаемость, которая позволяет существенно уменьшить размеры катушек.

В старых принципиальных схемах магнитопроводы из магнитодиэлектриков и ферритов обозначались одинаково – утолщенной штриховой линией (рис. а).

Впоследствии стандарт ЕСКД оставил этот символ для магнитопроводов из магнитодиэлектрика, а для ферритовых ввел обозначение, ранее применявшееся только для магнитопроводов низкочастотных дросселей и трансформаторов – сплошную жирую линию (рис. б).

Однако согласно последней редакции ГОСТ 2.723.68 (март 1983г.) магнитопроводы катушек изображают линиями нормальной толщины (рис. в).

Катушки, индуктивность которых можно изменять с помощью магнитопровода, на электрических схемах указываются при помощи знака подстроечного регулирования, который вводится в ее условное обозначение.

Изменение индуктивности обозначают двумя способами: либо знаком подстроечного регулирования пересекающим обозначения катушки и магнитопровода (рис. а), либо только пересечением магнитопровода с изображением его над катушкой (рис. б).

Экранированные катушки индуктивности

Для устранения паразитных связей, обусловленных внешним электромагнитным полем катушки и влияния на катушку окружающего пространства, ее экранируют, т.е. помещают в замкнутом металлическом экране.


Однако под влиянием экрана изменяются основные электрические параметры катушки: уменьшаются индуктивность и добротность, увеличивается сопротивление и собственная емкость.

Изменение параметров катушки тем больше, чем ближе к ее виткам расположен экран, т.е. изменение параметров зависит от соотношения между размерами катушки и размерами самого экрана.

Для высокочастотных катушек экраны выполняются в виде круглых или прямоугольных стаканов из алюминия, меди или латуни с толщиной стенок 0,3 – 0,5 мм.

Чтобы на схемах обозначить экранированную катушку, ее условное обозначение помещают в знак экранирования, который соединяют с корпусом.

Также необходимо отметить, что экранировать необходимо лишь катушки большого размера, диаметр которых составляет более 15 – 20 мм.

Катушки диаметром не более 4 – 5 мм создают магнитное поле в относительно небольшом пространстве и при удалении таких катушек от других деталей на расстояние в 4 – 5 раз больше их диаметра опасных связей, как правило, не возникает, поэтому они не нуждаются в специальном экранировании.

Обозначение катушек с отводами и начала обмотки

В радио и электротехнической аппаратуре, например, в приемниках или импульсных преобразователях напряжения, иногда используют не всю индуктивность катушки, а только некоторую ее часть. Для таких случаев катушки изготавливают с отводом или отводами.

При разработке некоторых конструкций иногда необходимо строго соблюсти начало и конец обмотки катушки или трансформатора. Чтобы указать, какой из концов обмотки является началом, а какой – концом, у вывода начала обмотки ставят жирную точку.

Для подстройки катушек на частотах свыше 15…20 МГц часто применяют магнитопроводы из немагнитных материалов (меди, алюминия и т.п.). Возникающие в таком магнитопроводе под действием магнитного поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается.

Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен. На рисунке изображен подстроечник, изготовленный из меди.

Вот и все, что хотел рассказать о катушках индуктивности.
Удачи!

Литература:
1. В. А. Волгов «Детали и узлы радиоэлектронной аппаратуры».
2. В. В. Фролов «Язык радиосхем».

3. М. А. Сгут «Условные обозначения и радиосхемы».

Катушка индуктивности

Радиоэлектроника для начинающих

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.

Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение.

Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.

Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.

Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»).

Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10-3 и 10-6 Генри.

Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.

Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным.

 То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник.

Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так.

Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.

Катушка с подстроечным сердечником вживую выглядит так.

Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.

Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.

В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.

Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.

На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.

В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций.

Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор.

Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.

После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.

Фильтр состоит из двух дросселей (катушек индуктивности) L1 и L2 и двух конденсаторов С1 и С2. на старых схемах дроссели могут обозначаться как Др1 и Др2. Сейчас это редкость. Катушки индуктивности намотаны проводом ПЭЛ-0,5 – 1,5 мм.

на каркасе диаметром 5 миллиметров и содержат по 30 витков каждая. Очень хорошо параллельно сети 220V подключить варистор. Тогда защита от бросков сетевого напряжения будет практически полной.

В качестве конденсаторов лучше не использовать керамические, а поискать старые, но надёжные МБМ на напряжение не менее 400V.

Вот так выглядит дроссель входного фильтра компьютероного блока питания ATX.

Как видно, он намотан на кольцеобразном сердечнике. На схеме он обозначается следующим образом. Точками отмечены места начала намотки провода. Это бывает важно, так как это влият на направление магнитного потока.

Выходные выпрямители современного импульсного блока питания всегда конструируют по двухполупериодным схемам.

Широко известный выпрямительный диодный мост, у которого большие потери практически не используют. В двухполупериодных выпрямителях используют сборки из двух диодов Шоттки.

Самая важная особенность выпрямителей в импульсных блоках питания это фильтры, которые начинаются с дросселя (индуктивности).

Напряжение, снимаемое с выхода выпрямителя обладающего индуктивным фильтром, зависит кроме амплитуды ещё и от скважности импульсов, поэтому очень легко регулировать выходное напряжение, регулируя скважность входного. Процесс регулирования скважности импульсов называют широтно-импульсной модуляцией (ШИМ), а в качестве управляющей микросхемы используют ШИМ контроллер.

Поскольку амплитуда напряжения на входах всех выпрямителей изменяется одинаково, то стабилизируя одно напряжение, ШИМ контроллер стабилизирует все. Для увеличения эффекта, дроссели всех фильтров намотаны на общем магнитопроводе.

Именно таким образом устроены выходные цепи компьютерного блока питания формата AT и ATX. На его печатной плате легко обнаружить дроссель с общим магнитопроводом. Вот так он выглядит на плате.

Как уже говорилось, этот дроссель не только фильтрует высокочастотные помехи, но и играет важную роль в стабилизации выходных напряжений +12, -12, +5, -5. Если выпаять этот дроссель из схемы, то блок питания будет работать, но вот выходные напряжения будут «гулять» причём в очень больших пределах – проверено на практике.

Так магнитопровод у такого дросселя общий, а катушки индуктивности электрически не связаны, то на схемах такой дроссель обозначают так.

Здесь цифра после точки (L1. 1; L1.2 и т.д.) указывает на порядковый номер катушки на принципиальной схеме.

Ещё одно очень хорошо известное применение катушки индуктивности это использование её в системах зажигания транспортных средств. Здесь катушка индуктивности работает как импульсный трансформатор. Она преобразует напряжение 12V с аккумулятора в высокое напряжение порядка нескольких десятков тысяч вольт, которого достаточно для образования искры в свече зажигания.

Когда через первичную обмотку катушки зажигания протекает ток, катушка запасает энергию в своём магнитном поле. При прекращении прохождения тока в первичной обмотке пропадающее магнитное поле индуцирует во вторичной обмотке мощный короткий импульс напряжением 25 – 35 киловольт.

Импульсный трансформатор из тех же катушек индуктивности является основным узлом хорошо известного устройства для самообороны как электорошокер. Схем может быть несколько, но принцип один: преобразование низкого напряжения от небольшой батарейки или аккумулятора в импульс слабого тока, но очень высокого напряжения. У серьёзных моделей напряжение может достигать 75 – 80 киловольт.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Катушка индуктивности

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника.  Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна 

Где  ψ — потокосцепление, µ0 = 4π*10-7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах. Цели применения различны:

— сглаживание уровня пульсаций;- накопление энергетического потенциала;- ограничение токов переменной частоты;- построение резонансных колебательных контуров;- фильтрация частот в цепях прохождения электрического сигнала;- формирование области магнитного поля;

— построение линий задержек, датчиков и т.д.

Энергия магнитного поля катушки индуктивности

Электрический ток способствует накоплению энергии в магнитном поле катушки. Если отключить подачу электричества, накопленная энергия будет возвращена в электрическую цепь. Значение напряжения при этом в цепи катушки возрастает многократно.

Величина запасаемой энергии в магнитном поле равна примерно тому значению работы, которое необходимо получить, чтобы обеспечить появление необходимой силы тока в цепи.

Значение энергии, запасаемой катушкой индуктивности можно рассчитать с помощью формулы.

Реактивное сопротивление

  • При протекании переменного тока, катушка обладает кроме активного, еще и реактивным сопротивлением, которое находится по формуле 
  • По формуле видно, что в отличие от конденсатора, у катушки с увеличением частоты, реактивное сопротивление растет, это свойство применяется в фильтрах частот.
  • При построении векторных диаграмм важно помнить, что в катушке, напряжения опережает ток на 90 градусов.

Добротность катушки

Еще одним важным свойством катушки является добротность. Добротность показывает отношение реактивного сопротивления катушки к активному. 

  1. Чем выше добротность катушки, тем она ближе к идеальной, то есть она обладает только главным своим свойством – индуктивностью.
  2. Конструкции катушек индуктивности

Индуктивность катушки можно изменять,  добавляя в конструкцию катушки ферромагнитный сердечник. Внедрение сердечников отражается на подавлении помех.

Поэтому практически все дроссели, предназначенные для подавления высокочастотных помех, как правило, имеют ферродиэлектрические сердечники, изготовленные на основе феррита, флюкстрола, ферроксона, карбонильного железа.

Низкочастотные помехи хорошо сглаживаются катушками на пермалоевых сердечниках или на сердечниках из электротехнической стали.

1 1 1 1 1 1 1 1 1 1 3.80 (10 Голоса)

Дроссель, катушка индуктивности — Принцип работы. Математическая модель. Типы, виды, категории, классификация

Катушка индуктивности, дроссель в электронных схемах. Принцип работы. Применение. Свойства. Классификация. (10+)

Дроссель, катушка индуктивности — Принцип работы. Математическая модель. Типы, виды, категории, классификация

Оглавление :: ПоискТехника безопасности :: Помощь

Катушка индуктивности способна накапливать энергию в своем магнитном поле. Это проявляется в том, что при приложении к ней напряжения в ней постепенно нарастает ток, а при смене полярности — постепенно убывает.

Резко изменить силу тока в катушке индуктивности (дросселе) невозможно. Она будет сопротивляться этому путем формирования напряжения самоиндукции на своих выводах.

Это напряжение может быть очень большим и обеспечит прохождение тока путем пробоя изоляции.

Работа дросселя проявляется во времени. Без рассмотрения изменения силы тока во времени понимание работы катушки индуктивности невозможно.

Главной характеристикой дросселя является индуктивность. Индуктивность — коэффициент, определяющий зависимость скорости изменения электрического тока от напряжения на катушке.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Математическая модель катушки индуктивности. Обозначение

Катушка индуктивности (дроссель) может иметь несколько выводов — отводов от частей обмотки и два вывода от начала и от конца обмотки.

Работу катушки описывает следующее соотношение, которое и определяет ее применение в электронных схемах.

[Сила тока через катушку в момент T] = [Сила тока через катушку в начальный момент T0] + интеграл от [T0] до [T] ([Напряжение на катушке] / [Индуктивность катушки]) по [Времени].

Более привычно эта формула выглядит так:

В случае, если к катушке приложено постоянное напряжение, то формула приобретает более простой вид: [Сила тока через катушку индуктивности в момент T] = [Сила тока через катушку индуктивности в начальный момент T0] + [Напряжение на катушке] * ([T1] — [T0]) / [Индуктивность катушки]

Индуктивность измеряется в генри. Через дроссель индуктивностью 1 Гн за 1 с при напряжении 1 вольт пойдет ток 1 ампер. Обычно в схемах используются индуктивности от 1 микрогенри до 100 миллигенри.

Физически катушка индуктивности состоит из одного или нескольких витков провода, которые могут быть просто размещены в воздухе, а могут быть намотаны на сердечник из какого-либо материала. Сердечник намагничивается и, тем самым, накапливает в себе энергию.

Расчет индуктивности катушки в общем случае представляет серьезную сложность. С уверенностью можно утверждать только, что индуктивность пропорциональна квадрату числа витков. 2

На идеальном дросселе тепловая энергия не выделяется, хотя через него может проходить ток. Дело в том, что сначала дроссель накапливает энергию, потом отдает ее в цепи питания, не рассеивая.

На схемах катушка индуктивности обозначается, как показано на рисунке.

Идеальный дроссель

Идеальный дроссель имеет строго фиксированную индуктивность, соответствующую расчетной или надписи на корпусе, не зависящую от тока, напряжения и внешних условий, например, температуры. Он не имеет паразитной емкости и внутреннего сопротивления, потерь на перемагничивание.

Идеальный дроссель выдерживает любой ток, имеет нулевые размеры, не занимает место на плате. Он не шумит. Ток через него строго зависит от напряжения и времени, без посторонних помех.

Реальные дроссели. Классификация, виды, типы

Если бы дроссели на самом деле были идеальными, то нужен был бы всего один тип дросселя — ПИД (просто идеальный дроссель). Его можно было бы применять во всех схемах. Но, как это часто бывает в жизни, идеала не существует. Для разных применений можно подобрать дроссели с определенными свойствами, пожертвовав другими, менее важными для данной схемы.

Главная проблема дросселя — омическое сопротивление провода, которым он намотан. Это сопротивление ухудшает параметры катушки индуктивности, приводит к нагреву, ограничивает максимальный ток. Снижение этого сопротивления требует снижения длины обмотки и увеличения толщины провода.

Снизить длину обмотки, сохранив требуемую индуктивность, можно, применив сердечник из ферромагнитного материала.

Такой сердечник намагничивается, накапливает в себе энергию, значительно (иногда, в десятки тысяч раз) увеличивая индуктивность одного витка, а значит, сокращая число витков, необходимых для получения требуемой индуктивности. Наилучшим в этом смысле сердечником является мягкое трансформаторное железо.

Однако, применение сердечника, снижая омическое сопротивление катушки, порождает сразу ряд новых проблем. Во-первых, у сердечника есть определенный уровень магнитной индукции насыщения, выше которого сердечник уже не может намагнититься и не будет накапливать энергию. Дроссель (за исключением ряда специальных схем) должен применяться в условиях, исключающих насыщение.

Во-вторых, под действием переменного электрического тока в сердечнике возникают потери, вызванные наведенными электрическими токами и нагревом от перемагничивания сердечника.

Для борьбы с наведенными токами используются специальные технологии изготовления сердечника, исключающие большие контура в нем, по которым могут течь такие токи (например, слоеный сердечник с изоляцией между слоями или порошковое железо), или применение специальных материалов (ферритов), которые вообще не проводят электрический ток.

Ферриты не проводят электрический ток, но с точки зрения своих магнитных свойств намного уступают железу. Поэтому их применяют в высокочастотных схемах (от 10 кГц), а для низкочастотных эффективнее применять трансформаторное железо.

Заказать партию дросселей с нужными параметрами не составляет труда, но в большинстве случаев подобрать дроссель промышленного производства для экспериментальной схемы не удается. Его приходится делать самостоятельно.

(читать дальше…) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Возможности применения катушек индуктивности

Возможными
вариантами применения катушки
индуктивности, в частности, являются:

  1. Компактная катушка индуктивности цепи постоянного тока (DC) с малыми пульсациями переменного тока (конструкция с ограниченным размером окна)

  2. Крупногабаритная катушка индуктивности цепи постоянного тока (конструкция с ограничением насыщения)

  3. Катушка индуктивности с сильным переменным током (конструкция с ограничением потерь в сердечнике)

Каждый
из трех вариантов характеризуется
специфическими требованиями к конструкции.
В компактной катушке индуктивности
цепи постоянного тока ограничительный
фактор определяется в большей степени
доступным размером окна сердечника,
нежели площадью поперечного сечения
сердечника.

Окно сердечника должно быть
достаточно большим для того, чтобы
расположить в нем количество витков
провода, достаточное для получения
требуемой индуктивности. В крупногабаритной
катушке индуктивности цепи постоянного
тока ограничительным фактором часто
является точка насыщения сердечника.

Сердечник должен иметь достаточно
крупные габариты и достаточно малую
магнитную проницаемость, чтобы избежать
насыщения (или смещения величины
индуктивности ниже минимального
требуемого уровня).

Эти факторы требуют
увеличения числа витков и длины медных
проводов, что вызывает проблему в виде
потерь в проводах. Основным ограничительным
фактором для катушки индуктивности с
сильным переменным током являются
потери в сердечнике.

Поскольку потери
в сердечнике зависят от колебаний
потока, создаваемого переменным током,
а не уровнем индукции, создаваемой
постоянным током, потери в сердечнике
становятся доминирующим фактором,
определяющим выбор конструкции.

Перестраиваемая индуктивность

Катушка
индуктивности является одним из
распространенных пассивных элементов,
используемых при создании различных
электронных схем.

Специфика применения
катушки в современных электронных
приборах с высокой степенью интеграции
заключается в том, что она плохо поддается
как миниатюризации, так и реализации в
интегральном исполнении.

В отличие от
резисторов и конденсаторов, выполняемых
в виде участков полупроводникового
кристалла с заданной проводимостью и
обратносмещенных p-n-переходов,
катушки индуктивности реализуют либо
схемотехнически в виде их гираторных
аналогов, либо в форме плоских спиралей
или отрезков передающих линий методами
планарной и гибридно-интегральной
технологий . Гираторы, представляющие
собой по сути активные схемы электронных
усилителей с выраженными частотно-зависимыми
характеристиками, используются в
диапазоне сравнительно низких частот
и применяются, в основном, в
частотно-избирательных схемах различных
фильтров. Катушки, выполненные как в
форме плоской спирали или отрезков
передающих линий, так и в ином миниатюрном
исполнении , успешно применяются в ВЧ-
и СВЧ-диапазоне, но имеют общий недостаток,
заключающийся в том, что изменение
значения их индуктивности возможно
преимущественно механическим способом.

Гиратор

электрическая
цепь, которая осуществляет преобразование
импеданса.
Другими словами, эта схема заставляет
ёмкостные цепи проявлять индуктивные
свойства,
полосовой
фильтр
будет
вести себя как режекторный фильтр
и
т. п.

Рис.3.
Схема гиратора

Основное
применение гираторов заключается в
создании участков цепи, имитирующих
индуктивность.
Поскольку
катушки
индуктивности
далеко
не всегда могут применяться в электрических
цепях (например в
микросхемах),
использование гираторов позволит
обходиться без катушек. Для этого
используется цепь, состоящая из
конденсатора,
операционного
усилителя
или
транзисторов
и
резисторов.

Назначение
гиратора — поменять знак
комплексного
сопротивления цепи, а на приведённой
схеме — инвертировать действие
конденсатора. Желаемый импеданс цепи,
который мы хотим получить, можно описать
как

То
есть это последовательно соединённые
индуктивность
L
и
сопротивление
RL.
Из схемы видно, что импеданс имитированной
индуктивности соединён параллельно с
импедансом
C
и
R.

В
случае, когда
R
много
больше, чем
RL,
то это выражение принимает вид

Таким
образом, мы получаем последовательно
соединённые сопротивление

и
индуктивность
.

Основное отличие от истинной индуктивности
здесь проявляется в том, что присутствует
параллельное
,
и в том, что

png» width=»24″>
обычно
значительно больше, чем в реальных
катушках.

Для
достаточно длинного соленоида длиной
l
и площадью сечения виткаS
с общим числом витков
N
индуктивность
равна

  • ????
    — относительная
    магнитная проницаемость среды;
  • n
    — число витков на единицу длины,;
  • V
    объем соленоида,V=Sl.

Отметим,
что значение индуктивности прямо
пропорционально квадрату числа витков,
занимаемому объему и магнитной
проницаемости среды. Формулы для
вычисления индуктивности катушек другой
формы более сложны и могут не иметь
аналитического вида, но основные
пропорции для указанных параметров
сохраняются.

Изменение этих параметров
традиционно используют для управления
величиной индуктивности путем механической
перестройки катушки (переключения
секций катушки, изменения взаимного
расположения витков, введения в катушку
сердечника, выполненного из магнетика).

Переключение секций катушки посредством
интегрального коммутатора позволяет
управлять значением индуктивности
электронным способом, но параметр
катушки при этом можно изменять лишь
дискретно. Известен способ электронного
управления индуктивностью, заключающийся
в подмагничивании ферромагнитного
сердечника катушки.

Однако при этом в
конструкцию катушки вводится дополнительная
подмагничивающая обмотка, что не
способствует миниатюризации изделия
в целом.

Предлагаемый
в настоящей работе способ электронного
управления индуктивностью пассивной
катушки заключается во введении в ее
конструкцию специфического сердечника,
свойства которого изменяются под
воздействием приложенного электрического
поля, оказывая при этом влияние на
индуктивность. В качестве такого
сердечника используется кремниевая
структура n-i-p-i-n-типа,
обладающая протяженными i-областями.

Если
объект помещается внутрь катушки, то
первичное переменное магнитное поле
вызывает в нем вихревые токи.
Электромагнитное поле катушки при этом
изменится под действием поля вихревых
токов.

Это изменение поля вызывает такой
эффект, какой получился бы, если изменить
характеристики самой катушки.

Анализ
изменения свойств катушки под влиянием
объекта, особенно если он имеет
неоднородную структуру и параметры,
изменяющиеся под воздействием внешнего
смещения, чрезвычайно сложен.

В
общем случае на индуктивность оказывают
влияние физические характеристики
материала объекта — электрические и
магнитные свойства, определяемые его
составом и структурой: электропроводность,
магнитная проницаемость, геометрические
размеры, наличие неоднородностей.

Для
проверки возможности создания индуктивного
элемента с электронной перестройкой
изготовлена
двухсекционная катушка,
сердечниккоторой
представляет собой кремниевуюn-i-p-i-n
структуру
с толщиной i-областей
200 мкм.

В качестве такой структуры
использовался выпускаемый промышленностью
бескорпусный диод типа 2А505, конструктивно
объединяющий в себе двеp-i-nструктуры
с общей p-областью,
имеющей гибкий соединительный вывод.
Контакты n-областей
диода имеют вид металлических площадок
из материала с хорошей проводимостью.

Диод, длина которого вместе с контактами
составляет примерно 0,8 мм, размещался
между двумя секциями катушки, намотанными
виток к витку в форме плоской спирали
на оправке диаметром 0,9 мм, причем
изолированный вывод p-области
пропускался наружу между плоскостями
секций, аp-i-n-структуры
заполняли области внутри секций. Сам
диод центрировался по оси катушки с
помощью тонкой изолирующей диэлектрической
прокладки.

Обе
секции содержали по три витка медного
провода в лаковой изоляции диаметром
0,5 мм. Электрический контакт с n-областями
диода осуществлялся с помощью прижимных
электродов, не оказывающих влияние на
индуктивность катушки.

Таким
образом, магнитное поле изготовленной
катушки сосредоточено во внутреннем
объеме секций, преобладающую часть
которого занимали протяженные i-области
(базы) диода, размер которых значительно
превышал размерыp
и n-областей.
В отсутствие прямого смещения базовые
областиp-i-n-структур
представляют собой по сути диэлектрик
с магнитной проницаемостью ????=1.

Добротность
катушки при введении в нееn-i-p-i-n-структуры
без смещения снижалась, значение
индуктивности уменьшалось.

При
подаче наp-i-n-диод
напряжения прямого смещения происходит
процесс инжекции носителей заряда в
высокоомную i-область
диода, в результате чего концентрация
носителей заряда в базе возрастает на
несколько порядков и, соответственно,
увеличивается проводимость базы. В
таком случае говорят, что база диода
«заливается» носителями заряда или
«металлизируется».

  1. Диод,
    находящийся в магнитном поле исследуемой
    катушки индуктивности, представляет
    собой объект, проводимость которого
    изменяется в широком диапазоне в
    зависимости от величины приложенного
    напряжения.
  2. Зависимость
    параметров катушки от величины напряжения
    прямого смещения, прикладываемого к
    n-i-p-i-n-структуре,
    выполняющей роль управляемого
    электрическим полем сердечника,
    позволяющего определить резонансным
    методом как значение индуктивности,
    так и величину потерь.
  3. Добротность
    начинает заметно снижаться непосредственно
    с появлением тока черезn-i-p-i-nструктуру.

Уменьшение
добротности с ростом приложенного кn-i-p-i-n-структуре
напряжения может быть объяснено
увеличением мощности потерь, связанным
с ростом числа инжектированных носителей
заряда. При диаметре намоточного провода
1 мм зависимость индуктивности от
напряжения смещения выражена весьма
слабо.

Большое значение имеет также
выбор конкретного экземпляра
n-i-p-i-n-структуры.
Как показала практика, диоды имеют
значительный разброс характеристик в
пределах партии, причем возможна заметная
неидентичность характеристикp-i-n-диодовотдельно
выбраннойn-i-p-i-n-структуры.

Не последнюю роль, оказывающую влияние
на величину как индуктивности, так и
добротности, играет качество изготовления
самой катушки.

В
связи с этим для изготовления управляемой
катушки индуктивности можно рекомендовать
материалы, обладающие хорошей
проводимостью, что повысит начальное
значение добротности и позволит выбрать
диаметр намоточного провода, сравнимый
с размерами i-областей
диода. Геометрия индуктивного элемента
определяется преимущественно размерами
используемого диода и должна обеспечивать
концентрацию магнитного поля катушки
в объеме p-i-n-структуры.

В
резонансном контуре применена катушка
индуктивности описанной выше конструкции.
Принципиальная электрическая схема
разработанного устройства приведена
на
рис.4.

Рис.4.
Принципиальная электрическая схема
разработанного устройства

Катушка
индуктивности L
и включенный параллельно ей конденсатор
С1 представляли собой колебательный
контур, резонансная характеристика
которого определяла частоту ВЧ-несущей.
К катушке подключался источник питания.
Напряжение на входе регулировалось
подстроечным резистором R1
СП-04.

Так же был подключен вольтметр для
контроля напряжения на входе. С помощью
генератора высоких частот и осциллографа
была найдена резонансная частота.
Изначальный резонанс наблюдался на
частоте .
Значение индуктивности L1
при

png»>
было равно L1=414
нГн. После увеличения напряжения до
0.5V
частота уменьшилась до .
Значение индуктивности L1
при
возросло до 422 нГн.

При увеличении
входного напряжения, регулируемого
подстроечным резистором R1,
резонансная частота сдвинулась на 60
кГц в сторону уменьшения.

Значение
индуктивности было рассчитано по
формуле:

Диапазон
изменения величины индуктивности можно
весьма просто увеличить, изготовив
многосекционную катушку, поскольку
геометрия n-i-p-i-n-
структуры позволяет это сделать без
значительных конструктивных трудностей.
Катушки индуктивности предложенной
конструкции удобны для изготовления в
планарной форме, когда витки формируются
напылением или травлением материала
поверхности вокруг n-i-p-i-n-структуры.

Дроссель - низкая частота - Большая Энциклопедия Нефти и Газа, статья, страница 1

Линейный дроссель

Линейный дроссель ЛД и конденсатор К2 в схеме корректора служат для компенсации влияния изменения частоты на работу корректора. Изменение напряжения на выходе генератора осуществляется при помощи сопротивления СУ на входе корректора.

Различают линейные дроссели ( вязкостного сопротивления) и нелинейные.

В линейных дросселях движению жидкости препятствует сопротивление трения жидкости о стенки канала. Для получения больших сопротивлений диаметр канала уменьшают, а длину увеличивают.

Линейный регулируемый дроссель.

В линейных дросселях, или дросселях вязкостного сопротивления, потерн давления определяются в основном трением жидкости в канале.

Линейный регулируемый дроссель.

Основным недостатком линейных дросселей, ограничивающим сферу их применения, является нестабильность характеристики дросселя при изменении температуры рабочей жидкости, обусловленная зависимостью вязкости рабо-чей жидкости от температуры.

Обмоточные данные линейного дросселя: первичная обмотка — Wi 160 витков с ответвлениями от 40, 50, 60 и 70 витков, провод марки ПБД диаметром 1 68 мм; вторичная обмотка — w2 30 витков с ответвлениями от 25 витков, провод марки ПБД диаметром 1 0 мм.

Возможность применения линейных дросселей с большими проходными сечениями и меньшей длиной при работе приборов в низком диапазоне давлений позволяет избежать засорения дросселей и сделать их более компактными. Значительно упрощается и конструкция постоянных регулирующих дросселей.

Схема ИП с комбинированной коммутацией.

ТРК, линейного дросселя Дрк и дросселя насыщения Дрн, объединенных в один контур, показана на рис. 10.12. Такую схему можно называть схемой с комбинированной коммутацией. При комбинированной коммутации обеспечива-ются преимущества обоих рассмотренных ранее ИП. Данная схема более экономична, так как используемые в ней дроссель насыщения и тиристор ТРХ имеют меньшую мощность, чем в предыдущих. Введение дополнительного вентиля Вк не приводит к удорожанию устройства. Вентиль Вк отсекает обратный ток через дроссель Дрк, предотвращая срыв колебаний в 0 коммутирующем узле схемы.

Эскизы дросселей стабилизатора на сердечниках стержневого и.

Индукция сердечников линейных дросселей стабилизатора всегда может быть выбрана такой, чтобы нагрев их катушек с учетом температуры окружающей среды не превышал допустимых значений установленной изоляции, поэтому для линейных дросселей ( в том числе дросселей фильтров) стабилизатора, как правило, не требуются специальные меры охлаждения.

Камера с линейными дросселями может выполнять роль простейшего сумматора. На рис. 44 6 представлена пневматическая камера, содержащая га линейных дросселей, причем через некоторые из них воздух втекает в камеру, а через другие — вытекает. Пусть через т линейных дросселей воздух втекает в камеру, а через п — т дросселей воздух вытекает из камеры.

Винтовой дроссель.| Игольчатый дроссель.| Щелевой дроссель.

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь. В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение. Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.

Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ. металлогалогеновых лампочек CDM.

В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат. установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.

Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.

Где применяется изделие?

Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!

Будет интересно прочитать:

Наглядное сравнение, объясняющее принцип работы

Теоретическая часть вопроса

Стабилизаторы

Классификация

В глобальном смысле стабилизаторы напряжения делят на два класса:

  • Параметрические.
  • Компенсационные.

Первые обычно опираются на некий эталон. К примеру, простейшим параметрическим стабилизатором становится единственный стабилитрон. Но при этом нельзя добиться высокого выходного напряжения, и ток станет делиться, уходя впустую. Высокие потери, необходимость охлаждения… Это попытались преодолеть в компенсированных стабилизаторах, где в цепь заложена обратная связь. Смысл: сравнить с эталоном не входное напряжение, а выходное и по результатам «теста» провести корректировку коэффициента усилительного каскада.

Электронный дроссель намеренно сделан без обратной связи, чтобы параметры плавали и не мешали полезному сигналу проходить на выход. Электронный дроссель не является параметрическим стабилизатором непосредственно, но представляет намеренно ухудшенный его вариант. Ухудшенный с точки зрения стабильности. Выходной характеристикой идеального считается прямая, не подразумевающая музыки. Вывод:

Простейшие схемы стабилизаторов

Выше приводилось упрощённое толкование вопроса – да простят нас истинные радиолюбители. В действительности электронный дроссель использует каскад сравнения из компенсационного стабилизатора. Причём наипростейший из имеющихся, из единственного транзистора. Изложим кратко теорию.

Итак, простейшим параметрическим стабилизатором становится разновидность твердотельного диода – стабилитрон. При превышении напряжением некого порога происходит резкое падение сопротивления p-n-перехода. Стабилитрон, вразрез с обычным диодом, всегда включается навстречу току. На катод нтребуется подать плюс. Значение порога легко изменяется включением между стабилитроном и схемной нейтралью диодов в прямом направлении. На каждом кремниевом p-n-переходе падает 0,5 В. Это порой бывает предпринято для температурной компенсации.

Усложнением схемы является транзисторная, где стабилитрон служит эталоном, а триод занимается стабилизацией. На выходе включается эмиттерный повторитель для улучшения согласования с нагрузкой, а включение по схеме с общей базой стабилизирует ток. Но пора посмотреть на схемы компенсационных стабилизаторов, откуда электронный дроссель кое-что взял.

На рисунке показаны регулирующие элементы из составных транзисторов. Это каскад, на который подаётся петля обратной связи для сравнения с эталоном. Одно из сравниваемых напряжений поступает на эмиттер – от стабилитрона, второе – на базу – из цепи обратной связи. С коллектора снимается сигнал. Транзистор считается симметричным, за исключением мелких деталей, описанных в соответствующей теме (см. биполярный транзистор), допустимо для сравнения использовать базу и коллектор, как в схеме электронного дросселя, приведённой выше.

Исключение — цепь обратной связи из конструкции выкушена. Зато включён вместо эталона конденсатор, заведомо не выдающий постоянное напряжение, радуя радиолюбителя. Постоянная времени берётся такой, чтобы успевал изменяться сигнал согласно полезной частоте (до 20 кГц), а повышенные частоты сглаживались. И хотя меломаны против твердотельной электроники, конструкция вправе существовать.

Для температурной компенсации и увеличения чувствительности возможно создавать сравнительные элементы из нескольких транзисторов и добиваться частичного усиления. В частности, это достигается применением дифференциальной пары (см. операционные усилители). Созданы прочие полезные схемы, читатели найдут примеры самостоятельно в поучительной книге под редакцией Г.С. Найвельта.

Осталось добавить, что электронный дроссель собирается и на полевом транзисторе (MOSFET). Тогда стабилизирующие свойства ухудшаются, а каскад добавляет в цепь тот шум, с которым борется. Карпов добавляет, что жёсткость электронного фильтра намного больше за счёт накопленной в конденсаторе энергии, допустимой к использованию в любой момент, и меньшего активного сопротивления. Электронный дроссель отлично фильтрует напряжение 50 Гц и применяется в маломощных источниках питания. Однако шум устройство подавляет хуже, нежели традиционный полосовой LC-фильтр. Следовательно, питаемая аппаратура не должна быть критична к уровню шумов.

Дроссель — низкая частота

Дроссели низкой частоты предназначены для уменьшения пульсаций выпрямительного напряжения и входят в состав сглаживающих и низкочастотных LC-фильтров. Сопротивление дросселя постоянному току мало. Конструктивно их выполняют на магнитных сердечниках, но с одной обмоткой. Дроссели насыщения, используемые в стабилизаторах напряжения, работают по принципу постоянства сопротивления магнитной цепи при выборе рабочей точки в области насыщения петли гистерезиса. В управляемых дросселях, наоборот, используется сопротивление переменному току при изменении положения рабочей точки на кривой намагничивания.

Дроссели низкой частоты наиболее часто применяют в фильтрах выпрямителей, где вместе с другими элементами они уменьшают пульсации, получающиеся после выпрямления переменного тока.

Дроссели низкой частоты применяют в фильтрах выпрямителей для сглаживания пульсаций выпрямленного тока, а также в качестве анодных нагрузок усилительных ламп.

Дроссели низкой частоты применяются в фильтрах выпрямителей для сглаживания пульсаций выпрямленного тока.

Дроссели низкой частоты широко применяют в фильтрах выпрямителей для сглаживания пульсаций выпрямленного тока, а также в усилителях низкой частоты в качестве анодных нагрузок усилительных ламп в тех случаях, когда требуется усиление узкой полосы частот.

Дроссели низкой частоты широко применяют в фильтрах выпрямителей для сглаживания пульсаций выпрямленного тока, а также в качестве анодных нагрузок радиоламп в тех случаях, когда требуется усиление узкой полосы частот.

Конструкции трансформаторов. а — с обмоту кой на трубчатом каркасе, сердечник стянут обжимной скобой. б — с обмоткой, уложенной в каркас-шпулю, сердечник стянут накладками с помощью винтов. в — герметизированный трансформатор.

Дроссели низкой частоты применяются в фильтрах выпрямителей для сглаживания пульсаций выпрямленного тока, а также в качестве анодных нагрузок усилительных ламп в тех случаях, когда требуется получение усиления в узкой полосе частот.

Трансформаторы низкой частоты.

Дроссели низкой частоты предназначены для сглаживания пульсаций выпрямленного тока в фильтрах выпрямителя и служат в качестве анодных нагрузок усилительных ламп усилителей низкой частоты при усилении узкой полосы частот.

Дроссель низкой частоты. а — схемное обозначение. 6 — внешний вид.

Дроссель низкой частоты ( НЧ) характеризуется значительной индуктивностью ( L), порядка нескольких генри или десятков генри, и обладает большим индуктивным сопротивлением уже при сравнительно низких частотах.

Дроссели низкой частоты, используемые в фильтрах, не пропускающих переменных токов с частотой 50 — 10 000 гц, обычно выполняются с сердечниками из листовой стали. При этом катушка работает на верхнем загибе кривой намагничивания, вследствие чего она является нелинейным элементом. Чтобы избежать насыщения сердечника и уменьшения индуктивности катушки для переменной составляющей тока, в сердечнике дросселя оставляют воздушный зазор 0 2 — 0 5 мм.

Конструктивно дроссели низкой частоты выполняют на магнито-проводах указанных выше форм и материалов, но с одной обмоткой. Дроссели насыщения, используемые в стабилизаторах напряжения, работают по принципу постоянства сопротивления магнитной цепи при выборе рабочей точки в области насыщения петли гистерезиса. Изменения входного сигнала в этой области практически не меняют величины выходного тока стабилизатора. В управляемых дросселях, наоборот, используется свойство магнитного материала изменять свое сопротивление переменному току при изменении рабочей точки магнитной характеристики.

Индуктивность дросселя низкой частоты зависит от величины тока подмагничивания, величины и частоты переменной составляющей тока. Поэтому величину индуктивности дросселя проверяют посредством установок, имитирующих работу испытуемого дросселя в схеме устройства, для которого он предназначен, и позволяющих измерить индуктивность в этих условиях.

Параметрические стабилизаторы электронные дроссели

Идея использования стабилизаторов вместо фильтров основана не на пустом месте. Суть заключается в желании научиться фильтровать помехи, пока полезный сигнал проходит беспрепятственно. Известно, что дроссель хорошо пропускает низкие частоты. На этом основано его применение в виде фильтра в звукозаписи и воспроизведении мелодий. Слышимые ухом частоты обнаруживают верхний предел в области 15 кГц, хотя отдельные люди слышат до 20 кГц. Если сообщить колебания костям черепа, пределы слышимости распространяются до 220 кГц. Утверждается, что человек через пломбы в зубах способен принимать вещание в сверхнизком диапазоне. Но оставим для спецслужб их игры с разумом и вернёмся к аудиозаписи.

Дроссели здесь используются, чтобы срезать частоты выше 20 кГц. Их ставят перед динамиками для удаления известного радиолюбителям «белого шума». Простые люди звук называют шипением, он навязчив, легко различим даже на фоне громкой музыки. Меломаны стали думать, как избавиться от напасти. Среди них попадались радиолюбители, и кто-то предложил использовать амплитудно-частотную (передаточную) функцию каскада для срезания «белого шума». Эффект основывается на том, что полезного сигнала выше 20 кГц нет, а там лежит значительная часть спектра шипения.

Попробовали сделать и немедленно отметили частичное улучшение. Технологию пустили в ход, единственным недостатком оказались большие габариты дросселя. А среди меломанов ходит легенда – и авторы лично слышали – что в электронных блоках не предполагается твердотельной электроники (транзисторы, тиристоры и пр.). Даже диоды использовать нежелательно. Поэтому люди не согласились бы использовать параметрические стабилизаторы в аппаратуре. Но большой размер дросселя вызывает необходимость заменить его электроникой.

Твердотельный стабилизатор

Возможные неисправности

Так как устройство данного элемента очень простое, то возможных поломок может быть только две: обрыв цепи и межвитковое замыкание. При обрыве цепи деталь полностью выходит из строя и не выполняет своих функций; её следует заменить.

При межвитковом замыкании часть обмотки выходит из строя, элемент сохраняет, как правило, свою работоспособность, но меняются его рабочие параметры. Такая неисправность более опасна, так как сразу ее диагностировать без тестера не всегда возможно. А долгое использование лампы с таким дросселем может привести к поломке всего оборудования.

Для чего нужен стартер и дроссель в схемах включения люминесцентных ламп

Основными элементами схемы включения люминесцентной лампы с электромагнитным ПРА являются дроссель и стартер. Стартер это миниатюрная неоновая лампа, один или оба электрода которой выполнены из биметалла. При возникновении тлеющего разряда внутри стартера биметаллический электрод нагревается и, затем изгибаясь, накоротко смыкается со вторым электродом.

После подачи напряжения на схему ток через люминесцентную лампу не течет, так как газовый промежуток внутри лампы это изолятор, и для пробоя его нужно напряжение, превышающее напряжение питающей сети. Поэтому загорается только лампочка стартера, напряжение зажигания которой ниже сетевого. Ток величиной 20 – 50 мА течет по дросселю, электродам люминесцентной лампы, неоновой лампе стартера.

Стартер состоит стеклянного баллона, наполненного инертным газом. В баллон впаяны металлический неподвижный и биметаллический электроды, имеющие выводы, проходящие через цоколи. Баллон заключен в металлический или пластмассовый корпус с отверстием в верхней части.

Схема устройства стартера тлеющего разряда: 1 — выводы, 2 – металлический подвижный электрод, 3 — стеклянный баллон, 4 — биметаллический электрод, 6 — цоколь

Стартеры для включения люминесцентных ламп в сеть выпускаются на напряжение 110 и 220 В.

Под воздействием тока электроды стартера разогреваются и замыкаются. После замыкания по цепи течет ток, превышающий в 1,5 раза номинальный ток лампы. Величина этого тока ограничена в основном сопротивлением дросселя, так как электроды стартера замкнуты, а электроды ламп имеют незначительное сопротивление.

Элементы схемы с дросселем и стартером: 1 – зажимы сетевого напряжения; 2 – дроссель; 3, 5 – катоды лампы, 4 – трубка, 6, 7 – электроды стартера, 8 – стартер.

За 1 – 2 с электроды лампы разогреваются до 800 – 900 °С, вследствие этого увеличивается электронная эмиссия и облегчается пробой газового промежутка. Электроды стартера остывают, так как разряда в нем нет.

При остывании стартера электроды возвращаются в исходное состояние и разрывают цепь. В момент разрыва цепи стартером возникает э. д. с. самоиндукции в дросселе, величина которой пропорциональна индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700 – 1000 В) импульсом прикладывается к лампе, подготовленной к зажиганию (электроды разогреты). Происходит пробой, и лампа начинает светиться.

К стартеру, который включен параллельно лампе, прикладывается приблизительно половина напряжения сети. Этой величины недостаточно для пробоя неоновой лампочки, поэтому она больше не зажигается. Весь период зажигания длится меньше 10 с.

Рассмотрение процесса зажигания лампы позволяет уточнить назначение основных элементов схемы.

Стартер выполняет две важные функции:

1) замыкает накоротко цепь для того, чтобы повышенным током разогреть электроды лампы и облегчить зажигание,

2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения, обеспечивающего пробой газового промежутка.

Дроссель выполняет три функции:

1) ограничивает ток при замыкании электродов стартера,

2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера,

3) стабилизирует горение дугового разряда после зажигания.

Схема импульсного зажигания люминесцентной лампы в работе:

Математическая модель катушки индуктивности. Обозначение.

Катушка индуктивности (дроссель) может иметь несколько выводов — отводов от частей обмотки и два вывода от начала и от конца обмотки. Работу катушки описывает следующее соотношение, которое и определяет ее применение в электронных схемах. [Сила тока через катушку в момент T] = [Сила тока через катушку в начальный момент T0] + интеграл от [T0] до [T] ([Напряжение на катушке] / [Индуктивность катушки]) по [Времени].

Более привычно эта формула выглядит так:

В случае, если к катушке приложено постоянное напряжение, то формула приобретает более простой вид: [Сила тока через катушку индуктивности в момент T] = [Сила тока через катушку индуктивности в начальный момент T0] + [Напряжение на катушке] * ([T1] — [T0]) / [Индуктивность катушки]

Индуктивность измеряется в генри. 2

На идеальном дросселе тепловая энергия не выделяется, хотя через него может проходить ток. Дело в том, что сначала дроссель накапливает энергию, потом отдает ее в цепи питания, не рассеивая.

На схемах катушка индуктивности обозначается, как показано на рисунке.

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель —  это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала —  металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником  и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения —  признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Что такое дроссель и для чего он нужен

11.03.2016 нет комментариев 38 317 просмотров

В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.

Электронная педаль газа

На современных автомобилях вместо обычного тросикового привода управления дроссельной заслонкой устанавливается так называемая «электронная педаль газа». В таких авто положением дроссельной заслонки управляет электроника. Когда вы нажимаете или отпускаете педаль газа, информация об этом идёт в блок управления (ЭБУ) и только после обработки и корректировки уже даётся команда в модуль дроссельной заслонки. О плюсах и минусах такой системы, а также о признаках неисправностей и пойдёт речь в данной статье.

Для тех, кто привык к механическим приводам, где нажатие на педаль газа напрямую вызывает перемещение дроссельной заслонки, будет непривычным и неизвестным управление автомобилем с электронной системой. Чтобы разобраться, нужно понять принцип работы «электронной педали» и её отличие от обычной механической.

Педаль газа с механическим управлением дросселем

В механическом приводе управления дроссельной заслонкой к педали газа прикреплён тросик, который идёт напрямую из салона в подкапотное пространство и другим концом прикручивается к приводу управления дросселем (полукруглая железная деталь рядом с дросселем). При нажатии на педаль тросик натягивается и тянет на себя эту деталь, которая напрямую соединена с дроссельной заслонкой и находится обычно с ней на одной оси вращения. Заслонка приоткрывает или закрывает трубопровод, по которому в двигатель подаётся воздух. Остальное делает электроника. Чтобы добиться нужного крутящего момента, электронный блок изменяет момент зажигания и момент впрыска топлива в камеру сгорания. Тем самым регулируется топливно-воздушная смесь и достигается требуемая величина крутящего момента.

Педаль газа с электронным управлением дросселем

Здесь всю работу на себя берёт электроника. На педальном механизме установлены датчики положения педали газа. Информация с этих датчиков поступает в электронный блок управления, в котором анализируются все необходимые параметры для оптимального изменения величины крутящего момента. Эти параметры анализируются постоянно, непрерывно и при нажатии на педаль газа, после совершения нужных рассчётов электроника подаёт команду в модуль управления дроссельной заслонкой. Команда — это сигнал изменения положения заслонки на определённую величину угла.

Получив такую команду, модуль управления выполняет перемещение дроссельной заслонки. Для этого используется электродвигатель. Положение заслонки меняется, также при необходимости меняются момент зажигания и впрыска, достигается нужный крутящий момент и автомобиль трогается с места или ускоряется.

В модуле управления расположены угловые датчики положения дроссельной заслонки, информация с них поступает также в электронный блок, тем самым происходит обратная связь и электроника «узнаёт», в каком положении сейчас находится заслонка, выполнилась ли команда на изменение угла и т.п. Данная информация со всех датчиков поступает в блок управления постоянно. При изменении какого-либо параметра мгновенно принимаются меры для оптимального изменения других важных параметров. Благодаря этому достигается оптимальная работа двигателя, нужный крутящий момент, оптимальный расход топлива, а также устойчивая работа двигателя на холостых оборотах.

Крутящий момент

Чтобы изменить величину крутящего момента, электронный блок управления может изменить один или несколько параметров:

  • угол открытия дроссельной заслонки
  • давление наддува (если двигатель с турбонаддувом)
  • момент зажигания
  • момент впрыска топлива
  • включение/отключение цилиндров

Величина крутящего момента постоянно корректируется и зависит от следующих факторов:

  • условия запуска двигателя
  • устойчивые обороты холостого хода
  • содержание O2 в отработавших газах
  • ограничения по мощности и количеству оборотов
  • АКПП (при переключении передач)
  • контроль тяги при торможении
  • принудительный холостой ход при торможении
  • работа оборудования (климат-контроль, кондиционер)
  • круиз-контроль (включен ли режим)

Кратко об обычных дросселях

Дроссель аналогичен катушке индуктивности, но демонстрирует специфическое назначение и ряд обмоток. Без углубления в тему скажем, что предложил свернуть проволоку спиралью Лаплас, потом действие проделали Швейггер, Ампер, Фарадей и прочие учёные. Так на свет, предположительно, в 1820 году появилась катушка индуктивности.

Ключевым свойством, обнаруженным далеко не сразу, стало наличие реактивного сопротивления. Его называли – индуктивностью. Особенность: ток на таком элементе не способен повыситься сразу, значит, срезается и сглаживается его фронт, становится пологим. Это соответствует на уровне спектра фильтрации нижних частот, что применяется меломанами для уменьшения мощности шипения.

Колонка, как правило, включает ряд динамиков. К примеру, три. И шипит самый маленький, предназначенный для воспроизведения высоких частот, к примеру, тонкого пения скрипки. Если аккуратно прикрыть динамик ладонью, «белый шум» пропадает. Это сродни механической фильтрации при помощи руки.

Назначение дросселя

Сам термин «дроссель» происходит из немецкого языка. В вольном переводе он означает «фильтр», или «ограничитель». Именно такую функцию и выполняет дроссель для ламп дневного света. Газоразрядные лампы в момент пробоя и стабильного горения газового разряда имеют существенные различия в своих параметрах.

В момент включения этот элемент ведет себя как дополнительное оборудование к стартеру, создавая импульс напряжения для зажигания тлеющего разряда. Потом стартер отключается, а дроссель поддерживает горение лампы и сглаживает пульсацию переменного тока.

Катушка индуктивности. Параметры. Виды. Обозначение на схемах

Здравствуйте, уважаемые читатели сайта sesaga.ru. Катушка индуктивности относится к числу элементов, без которых не получится построить приемник, телевизор, радиоуправляемую модель, передатчик, генератор сигналов, модемный преобразователь, сетевой фильтр и т. п.

Катушку индуктивности или просто катушку можно представить в виде нескольких витков провода намотанного в спираль. Ток проходя по каждому витку спирали создает в них магнитное поле, которое пересекаясь с соседними витками наводит в них э.д.с самоиндукции. И чем провод длиннее и большее число витков он образует, тем самоиндукция больше.

Индуктивность

По своей сути индуктивность является электрической инерцией и ее основное свойство состоит в том, чтобы оказывать сопротивление всякому изменению протекающего тока. Если через катушку пропускать определенный ток, то ее индуктивность будет противодействовать как уменьшению, так и увеличению протекающего тока.

В отличие от конденсатора, который пропускает переменный и не пропускает постоянный ток, катушка индуктивности свободно пропускает постоянный ток и оказывает сопротивление переменному току, потому что он изменяется быстрее, чем может изменяться магнитное поле.

И чем больше индуктивность катушки и чем выше частота тока, тем оказываемое сопротивление сильнее. Это свойство катушки применяют, например, в приемной аппаратуре, когда требуется в электрической цепи преградить путь переменному току.

Индуктивность измеряется в генри (Гн), миллигенри (1мГн = 10ˉ3 Гн), микрогенри (1мкГн = 10ˉ6 Гн), наногенри (1нГн = 10ˉ9 Гн) и обозначается латинской буквой L.

Общие свойства катушек индуктивности

В зависимости от требуемой индуктивности и частоты, на которой катушка будет работать, она может иметь самые различные исполнения.

Для высоких частот это может быть простая катушка состоящая из нескольких витков провода или же катушка с сердечником из ферромагнитного материала и иметь индуктивность от нескольких наногенри до нескольких десятков миллигенри. Такие катушки применяются в радиоприемной, передающей, измерительной аппаратуре и т.п.

Катушки, работающие на высоких частотах, можно разделить на катушки контуров, катушки связи и дроссели высокой частоты. В свою очередь катушки контуров могут быть с постоянной индуктивностью и переменной индуктивностью (вариометры).

По конструктивному признаку высокочастотные катушки разделяются на однослойные и многослойные, экранированные и неэкранированные, катушки без сердечников и катушки с магнитными и немагнитными сердечниками, бескаркасные, цилиндрические плоские и печатные.

Для работы в цепи переменного тока низкой частоты, на звуковых частотах, во входных фильтрах блоков питания, в цепях питания осветительного электрооборудования применяются катушки с достаточно большой индуктивностью. Их индуктивность достигает десятки и даже сотни генри, а в обмотках могут создаваться большие напряжения и протекать значительные токи.

Для увеличения индуктивности при изготовлении таких катушек применяют магнитопроводы (сердечники), собранные из отдельных тонких изолированных пластин сделанных из специальных магнитных материалов – электротехнических сталей, пермаллоев и др.

Применение наборных магнитопроводов обусловлено тем, что под действием переменного магнитного поля в сплошном магнитопроводе, который можно рассматривать как множество короткозамкнутых витков, образуются вихревые токи, которые нагревают магнитопровод, бесполезно потребляя часть энергии магнитного поля. Изоляция же между слоями стали оказывается на пути вихревых токов и значительно снижает потери.

Катушки с магнитопроводами из изолированных пластин можно разделить на дроссели и трансформаторы.

Основные параметры катушек индуктивности

Свойства катушек могут быть охарактеризованы четырьмя основными параметрами: индуктивностью, добротностью, собственной емкостью и стабильностью.

1. Индуктивность.

Индуктивность (коэффициент самоиндукции) является основным электрическим параметром и характеризует величину энергии, запасаемой катушкой при протекании по ней электрического тока. Чем больше индуктивность катушки, тем больше энергии она запасает в своем магнитном поле.

Индуктивность зависит от размеров каркаса, формы, числа витков катушки, диаметра и марки провода, а также от формы и материала магнитопровода (сердечника).

В радиолюбительских схемах, как правило, величину индуктивности не указывают, так как радиолюбителя интересует не эта величина, а количество витков провода в катушке, диаметр и марка провода, способ намотки (внавал, виток к витку, крест на крест, секционная намотка) и размеры каркаса катушки.

2. Добротность.

Добротность (Q) характеризуется качеством работы катушки индуктивности в цепях переменного тока и определяется как отношение реактивного сопротивления катушки к ее активному сопротивлению потерь.

Активное сопротивление включает в себя сопротивление провода обмотки катушки; сопротивление, вносимое диэлектрическими потерями в каркасе; сопротивление, вносимое собственной емкостью и сопротивления, вносимые потери в экраны и сердечники.

Чем меньше активное сопротивление, тем выше добротность катушки и ее качество. В большинстве случаев добротность катушки определяют резонансные свойства и к.п.д. контура.
Современные катушки средних размеров имеют добротность около 50 – 300.

3. Собственная емкость.

Катушки индуктивности обладают собственной емкостью, которая увеличивается по мере увеличения числа витков и размеров катушки. Между соседними витками существует межвитковая емкость, из-за которой некоторая часть тока проходит не по проводу, а через емкость между витками, отчего сопротивление между выводами катушки уменьшается.

Все дело в том, что общее напряжение, приложенное к катушке, разделяется на межвитковые напряжения из-за чего между витками образуется электрическое поле, вызывающее скопление зарядов. Витки, разделенные слоями изоляции, образуют обкладки множества маленьких конденсаторов, через которые протекает часть тока, из общей емкости которых и складывается собственная емкость катушки. Таким образом катушка обладает не только индуктивными но и емкостными свойствами.

Собственная емкость является вредным параметром и ее стремятся уменьшить применением специальных форм каркаса и способом намотки провода.

4. Стабильность.

Стабильность катушки характеризуется изменением ее параметров под воздействием температуры, влажности и во времени.

Изменение индуктивности под влиянием температуры характеризуют температурным коэффициентом индуктивности (ТКИ), равным относительному изменению индуктивности при изменении температуры на 1°С. ТКИ катушки определяется способом намотки и качеством диэлектрика каркаса.

Влажность вызывает увеличение собственной емкости и диэлектрических потерь, а также понижает стабильность катушки. Для защиты от действия влажности применяется герметизация или пропитка и обволакивание обмотки негигроскопичными составами.

Такие катушки обладают более низкой добротностью и большой собственной емкостью, но при этом они более устойчивы к воздействию влаги.

Катушки индуктивности с магнитопроводами

Для получения малогабаритных катушек различного назначения применяют магнитопроводы (сердечники), которые изготавливают из магнитодиэлектриков и ферритов. Катушки с магнитопроводами имеют меньшее число витков при заданной индуктивности, малую длину провода и небольшие размеры.

Ценным свойством катушек с магнитопроводами является возможность их подстройки, т.е. изменения индуктивности в небольших пределах путем перемещения внутри катушки специального цилиндрического подстроечника, состоящего из феррита с напрессованной на него резьбовой втулкой.

Магнитодиэлектрики представляют собой измельченное вещество, содержащее в своем составе железо (ферромагнетик), частицы которого равномерно распределены в массе диэлектрика (бакелита или аминопласта). Наиболее широко применяют магнитопроводы из альсифера (сплав алюминия, кремния и железа) и карбонильного железа.

Ферриты представляют собой твердые растворы окислов металлов или их солей, прошедшие специальную термическую обработку (обжиг). Получающееся при этом вещество – полупроводниковая керамика – обладает очень хорошими магнитными свойствами и малыми потерями даже на очень высоких частотах.

Основным достоинством ферритов является высокая магнитная проницаемость, которая позволяет существенно уменьшить размеры катушек.

В старых принципиальных схемах магнитопроводы из магнитодиэлектриков и ферритов обозначались одинаково – утолщенной штриховой линией (рис. а). Впоследствии стандарт ЕСКД оставил этот символ для магнитопроводов из магнитодиэлектрика, а для ферритовых ввел обозначение, ранее применявшееся только для магнитопроводов низкочастотных дросселей и трансформаторов – сплошную жирую линию (рис. б). Однако согласно последней редакции ГОСТ 2.723.68 (март 1983г.) магнитопроводы катушек изображают линиями нормальной толщины (рис. в).

Катушки, индуктивность которых можно изменять с помощью магнитопровода, на электрических схемах указываются при помощи знака подстроечного регулирования, который вводится в ее условное обозначение.

Изменение индуктивности обозначают двумя способами: либо знаком подстроечного регулирования пересекающим обозначения катушки и магнитопровода (рис. а), либо только пересечением магнитопровода с изображением его над катушкой (рис. б).

Экранированные катушки индуктивности

Для устранения паразитных связей, обусловленных внешним электромагнитным полем катушки и влияния на катушку окружающего пространства, ее экранируют, т.е. помещают в замкнутом металлическом экране.

Однако под влиянием экрана изменяются основные электрические параметры катушки: уменьшаются индуктивность и добротность, увеличивается сопротивление и собственная емкость.

Изменение параметров катушки тем больше, чем ближе к ее виткам расположен экран, т.е. изменение параметров зависит от соотношения между размерами катушки и размерами самого экрана.

Для высокочастотных катушек экраны выполняются в виде круглых или прямоугольных стаканов из алюминия, меди или латуни с толщиной стенок 0,3 – 0,5 мм.

Чтобы на схемах обозначить экранированную катушку, ее условное обозначение помещают в знак экранирования, который соединяют с корпусом.

Также необходимо отметить, что экранировать необходимо лишь катушки большого размера, диаметр которых составляет более 15 – 20 мм.

Катушки диаметром не более 4 – 5 мм создают магнитное поле в относительно небольшом пространстве и при удалении таких катушек от других деталей на расстояние в 4 – 5 раз больше их диаметра опасных связей, как правило, не возникает, поэтому они не нуждаются в специальном экранировании.

Обозначение катушек с отводами и начала обмотки

В радио и электротехнической аппаратуре, например, в приемниках или импульсных преобразователях напряжения, иногда используют не всю индуктивность катушки, а только некоторую ее часть. Для таких случаев катушки изготавливают с отводом или отводами.

При разработке некоторых конструкций иногда необходимо строго соблюсти начало и конец обмотки катушки или трансформатора. Чтобы указать, какой из концов обмотки является началом, а какой – концом, у вывода начала обмотки ставят жирную точку.

Для подстройки катушек на частотах свыше 15…20 МГц часто применяют магнитопроводы из немагнитных материалов (меди, алюминия и т.п.). Возникающие в таком магнитопроводе под действием магнитного поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается.

Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен. На рисунке изображен подстроечник, изготовленный из меди.

Вот и все, что хотел рассказать о катушках индуктивности.
Удачи!

Литература:
1. В. А. Волгов «Детали и узлы радиоэлектронной аппаратуры».
2. В. В. Фролов «Язык радиосхем».
3. М. А. Сгут «Условные обозначения и радиосхемы».

Катушка индуктивности | Виды катушек, практические опыты

Что такое катушка индуктивности

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

Что такое индуктивность?  Если через  провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В – магнитное поле, Вб

I – сила тока, А

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с  Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

где

I – сила тока в катушке , А 

U – напряжение в катушке, В 

 R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

[quads id=1]

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть  в разы больше, чем было до размыкания  цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и  немагнитным сердечником. Снизу  на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-).  Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным  сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр  показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

где

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

[quads id=1]

Давайте поэкспериментируем с ферритовым кольцом.

Замеряем индуктивность

15 микрогенри

Отдалим витки катушки друг от друга

Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Замеряем

Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Как проверить дроссель тестером - Инженер ПТО

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

В широком понимании слова, дроссель является специальным ограничительным элементом.

Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.

Конструктивные особенности

Мягкость свечения светового потока обуславливается специально подобранным газовым составом, поэтому осветительный прибор может генерировать источник света:

  • в желтоватых тонах;
  • в холодных белых тонах;
  • в теплых белых тонах.

Полностью безопасная эксплуатация люминесцентной лампы обеспечивается наличием в конструкции осветительного прибора специального элемента, называемого дросселем. По своим внешним характеристикам такое устройство имеет схожесть с катушкой индуктивности, дополненной сердечником на основе ферримагнитных сплавов.

Cиловые дроссели EPCOS AG

В процессе работы источника света, наличие дросселя эффективно стабилизирует генерируемое осветительным прибором свечение, что исключает негативное воздействие мерцания. Таким образом, неисправность дроссельного элемента становится основной причиной пульсации светового потока.

Особенности дросселя

Вне зависимости от конструкции, назначение дросселя люминесцентных источников света представлено:

  • защитой от перепадов в показателях напряжения;
  • разогревом катода;
  • созданием напряжения достаточного уровня для запуска светильника;
  • ограничением силовых показателей электрического тока непосредственно после запуска;
  • стабилизацией процессов работы осветительного прибора.

Экономически обоснованным является подключение одного дроссельного устройства сразу на пару осветительных приборов. Стандартное электромагнитное пускорегулирующее устройство, помимо дросселя, представлено стартером и парой конденсаторов.

Характеристики ЭмПРА

Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:

  • пульсирующим световым потоком, вызывающим усталость органов зрения;
  • порядка 10-15% потери электрической энергии;
  • шумностью работы в пусковой момент;
  • недостаточно устойчивым запуском в низкотемпературных условиях;
  • большими размерами и ощутимым весом;
  • продолжительным запуском источника света.

Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.

Характеристики электронного балласта

Электронные балласты относятся к категории современных устройств, в которых практически полностью нивелированы недостатки электромагнитного дросселя. Схематично, такой элемент является единым блоком, производящим запуск осветительного прибора и поддерживающим процесс горения посредством образования определенной последовательности в изменении уровня напряжения.

Преимущества электронного балласта представлены:

  • любой скоростью запуска;
  • отсутствием необходимости устанавливать стартер;
  • исключено проявление мерцания;
  • максимальными показателями световой отдачи;
  • компактными размерами и небольшим весом устройства;
  • оптимальными условиями функционирования.

Так выглядит электронный балласт

Электронные балласты стоят на порядок выше электромагнитных устройств, что обуславливается сложностью схемы с наличием фильтров, корректирующих коэффициент мощности моментов, инвертора и балласта. Некоторые модели электронного устройства дополняются системой защиты от включения осветительного прибора без лампы.

Удобство эксплуатации электронных балластов в лампах дневного света энергосберегающего типа, обусловлено установкой источников света непосредственно в цокольную часть стандартных патронов.

Самые часты неисправности

Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:

  • наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда;
  • темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками;
  • перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.

Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.

Как проверить дроссель лампы дневного света мультиметром

Самым износостойким элементом в конструкции светильников с лампами дневного света является дроссель, поломка которого встречается достаточно редко. Неисправность такого элемента может быть представлена обрывом или обмоточным перегоранием, нарушениями межвитковой изоляции в электропроводах.

Обе неисправности могут быть выявлены при подключении тестера в виде мультиметра к дроссельным выводам на замеры сопротивления. Об обрыве и перегорании свидетельствует наличие бесконечного сопротивления.

Стартер и дроссель для люминесцентных ламп

Как правило, перегорание сопровождается появлением неприятного запаха, исходящего от пришедшей в негодность детали.

Любые описанные выше процессы проверки являются справедливыми исключительно в случае применения электромагнитных пускорегулирующих устройств, так как электронные балласты исключают наличия в схеме стартера.

Как проверить стартер люминесцентной лампы

Процесс проверки осветительных приборов люминесцентного типа предполагает не только контроль спиральной целостности внутри колбы, но также работоспособности дроссельной и стартерной системы.

  • конденсаторы, которые не должны быть вздутыми, деформированными или лопнувшими под воздействием избыточного напряжения в электрической сети;
  • колба источника света, которая не должна быть почерневшей.

Конденсаторная целостность проверяется посредством мультиметра в режиме омметра с максимально возможными пределами измерения сопротивления.

Если показатели на тестере составляют меньше 2,0 МОм, то, можно предположить наличие в конденсаторе недопустимой токовой утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ, станет полноценная замена всех пришедших в негодность элементов (стартера и дросселя), новыми устройствами аналогичного типа.

Видео на тему

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.

Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.

Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.

Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

Создан раздел "Каталог гидравлических схем"

Уажаемые посетитель сайта!   

Создан раздел "Каталог гидравлических схем"  https://ivkran.ru/ru/informatsiya/katalog-gidravlicheskikh-skhem

 

Гидравлическая схема представляет собой элемент технической документации, на котором с помощью условных обозначений показана информация об элементах гидравлической системы, и взаимосвязи между ними.

Согласно нормам ЕСКД гидравлические схемы обозначаются в шифре основной надписи литерой «Г» (пневматические схемы — литерой «П»).

 

Как видно из определения, на гидравлической схеме условно показаны элементы, которые связаны между собой трубопроводами - обозначенными линиям. Поэтому, для того, чтобы правильно читать гидравлическую схему нужно знать, как обозначается тот или иной элемент на схеме. Условные обозначения элементов указаны в ГОСТ 2.781-96. Изучите этот документ, и вы сможете узнать как обозначаются основные элементы гидравлики.

Обозначения гидравлических элементов на схемах

Рассмотрим основные элементы гидросхем.

Трубопроводы

Трубопроводы на гидравлических схемах показаны сплошными линиями, соединяющими элементы. Линии управления обычно показывают пунктирной линией. Направления движения жидкости, при необходимости, могут быть обозначены стрелками. Часто на гидросхемах обозначают линии - буква Р обозначает линию давления, Т - слива, Х - управления, l - дренажа.

Соединение линий показывают точкой, а если линии пересекаются на схеме, но не соединены, место пересечения обозначают дугой.

 

Бак

Бак в гидравлике - важный элемент, являющийся хранилищем гидравлической жидкости. Бак, соединенный с атмосферой показывается на гидравлической схеме следующим образом.

Закрытый бак, или емкость, например гидроаккумулятор, показывается в виде замкнутого контура.

Фильтр

В обозначении фильтра ромб символизирует корпус, а штриховая линия фильтровальный материал или фильтроэлемент.

Насос

На гидравлических схемах применяется несколько видов обозначений насосов, в зависимости от их типов.

Центробежные насосы, обычно изображают в виде окружности, в центр которой подведена линия всасывания, а к периметру окружности линия нагнетания:

Объемные (шестеренные, поршневые, пластинчатые и т.д) насосы обозначают окружностью, с треугольником-стрелкой, обозначающим направление потока жидкости.

Если на насосе показаны две стрелки, значит этот агрегат обратимый и может качать жидкость в обоих направлениях.

Если обозначение перечеркнуто стрелкой, значит насос регулируемый, например, может изменяться объем рабочей камеры.

Гидромотор

Обозначение гидромотора похоже на обозначение насоса, только треугольник-стрелка развернуты. В данном случае стрелка показывает направление подвода жидкости в гиромотор.

Для обозначения гидромотра действую те же правила, что и для обозначения насоса: обратимость показывается двумя треугольными стрелками, возможность регулирования диагональной стрелой.

На рисунке ниже показан регулируемый обратимый насос-мотор.

Распределитель

Распределитель на гидросхеме показывается набором, квадратных окон, каждое из которых соответствует определенному положению золотника (позиции). Если распределитель двух позиционный, значит на схеме он будет состоять из двух квадратных окон, трех позиционный - из трех. Внутри каждого окна показано как соединяются линии в данном положении.

Рассмотрим пример.

На рисунке показан четырех линейный (к распределителю подведено четыре линии А, В, Р, Т), трех позиционный (три окна) распределитель. На схеме показано нейтральное положение золотника распределителя, в данном случае он находится в центральном положении (линии подведены к центральному окну). Также, на схеме видно, как соединены гидравлические линии между собой, в рассматриваемом примере в нейтральном положении линии Р и Т соединены между собой, А и В - заглушены.

Как известно, распределитель, переключаясь может соединять различные линии, это и показано на гидравлической схеме.

Рассмотрим левое окно, на котором показано, что переключившись распределитель соединит линии Р и В, А и Т. Этот вывод можно сделать, виртуально передвинув распределитель вправо.

Оставшееся положение показано в правом окне, соединены линии Р и А, В и Т.

 

Понимая принцип работы распределителя, вы легко сможете читать гидравлические схемы, включающие в себя этот элемент.

Устройства управления

Для того, чтобы управлять элементом, например распределителем, нужно каким-либо образом оказать на него воздействие.

Ниже показаны условные обозначения: ручного, механического, гидравлического, пневматического, электромагнитного управления и пружинного возврата.

Эти элементы могут компоноваться различным образом.

На следующем рисунке показан четырех линейный, двухпозиционный распределитель, с электромагнитным управлением и пружинным возвратом.

Клапан

Клапаны в гидравлике, обычно показываются квадратом, в котором условно показано поведение элементов при воздействии.


Предохранительный клапан

На рисунке показано условное обозначение предохранительного клапана. На схеме видно, что как только давление в линии управления (показана пунктиром) превысит настройку регулируемой пружины - стрелка сместиться в бок, и клапан откроется.


Редукционный клапан

Также в гидравлических и пневматических системах достаточно распространены редукционные клапаны, управляющим давлением в таких клапанах является давление в отводимой линии (на выходе редукционного клапана).

Пример обозначения редукционного клапана показан на следующем рисунке.

Обратный клапан


Часто на схемах обратного клапана изображают пружину под шариком, обеспечивающую предварительное поджатие.Назначение обратного клапана - пропускать жидкость в одном направлении, и перекрывать ее движение в другом. Это отражено и на схеме. В данном случае при течении сверху вниз шарик (круг) отойдет от седла, обозначенного двумя линиями. А при подаче жидкости снизу - вверх шарик к седлу прижмется, и не допустит течения жидкости в этом направлении.

Дроссель

Дроссель - регулируемое гидравлическое сопротивление.

Гидравлическое сопротивление или нерегулируемый дроссель на схемах изображают двумя изогнутыми линями. Возможность регулирования, как обычно, показывается добавлением стрелки, поэтому регулируемый дроссель будет обозначаться следующим образом:

Устройства измерения

В гидравлике наиболее часто используются следующие измерительные приборы: манометр, расходомер, указатель уровня, обозначение этих приборов показано ниже.

Реле давления


Гидравлическая линия подводится к закрашенному треугольнику. Переключающий контакт и настраиваемая пружина, также присутствуют на схеме.Данное устройство осуществляет переключение контакта при достижении определенного уровня давления. Этот уровень определяется настройкой пружины. Все это отражено на схеме реле давления, которая хоть у чуть сложнее, чем представленные ранее, но прочитать ее не так уж сложно.

Объединения элементов

Довольно часто в гидравлике один блок или аппарат содержит несколько простых элементов, например клапан и дроссель, для удобства понимания на гидросхеме элементы входящие в один аппарат очерчивают штрих-пунктирой линией.

Для того, чтобы правильно читать гидравлическую схему нужно знать условные обозначения элементов, разбираться в принципах работы и назначении гидравлической аппаратуры, уметь поэтапно вникать в особенности отдельных участков, и правильно объединять их в единую гидросистему.

Для правильного оформления гидросхемы нужно оформить перечень элементов согласно стандарту. 

Ниже показана схема гидравлического привода, позволяющего перемещать шток гидроцилиндра, с возможностью зарядки гидроаккумулятора.

ПРИНЦИПИАЛЬНАЯ СХЕМА

   Одним из обязательных умений радиолюбителя, как впрочем и любого человека, непосредственно связанного с ремонтом или обслуживанием электрической и электронной техники, является умение читать принципиальные электрические схемы. Что же такое принципиальная схема? 


   Это схема, в которой каждая деталь обозначается графически, и после изучения которой, нам становится ясно, каким образом они все соединяются между собой. Принципиальные схемы являются важнейшими из схем, так как они позволяют понять, как функционирует устройство в целом. Вы не найдете на принципиальных схемах изображения самого устройства, с клеммами или выводами, к которым паяются или зажимаются под винтовое соединение провода, для этого служат монтажные схемы. На рисунке ниже изображена монтажная схема подключения электросчетчика:


   Как нам известно, из школьного курса физики, соединение на схеме, в месте пересечения проводов обозначается жирной точкой.


   Такое же пересечение проводов без точки означает, что соединения в данном месте нет. Есть ряд правил, по которым составляются принципиальные схемы, например входные части в устройстве, принято располагать в левой части схемы, а выходные в правой части. Это можно видеть на примере простейшего усилителя на одном транзисторе, части входных цепей у нас выделены красным, а выходных зеленым:


   Таким обозначением, как на рисунке ниже обозначается, любой источник питания постоянного тока. Это может быть как батарейки, так и сетевой блок питания. Длинной чертой обозначается при этом положительный полюс источника питания или плюс, а короткой отрицательный полюс или минус. 


   Такое обозначение на схемах обозначает батарею из нескольких соединенных последовательно гальванических элементов (батареек).


   На следующем рисунке мы можем видеть обозначение, которое может, в зависимости от того, в какой схеме используется, означать как кнопку с фиксацией или без фиксации, однополосный тумблер, или клавишный выключатель, так и контакт какого либо устройства, например реле.


   Контакты реле могут быть, как свободно замкнутыми, так и свободно разомкнутыми. Поясню, что свободно разомкнутые контакты, это контакты которые находятся в разомкнутом состоянии при отсутствии напряжения на катушке реле. На рисунке ниже приведены примеры свободно разомкнутого и свободно замкнутого контактов:  


   Следующее обозначение обозначает спаренные контакты, которые механически соединены между собой и включаются или отключаются одновременно. Это могут быть, как контакты реле, так и контакты переключателя или рубильника: 


   Как всем известно, у диода два вывода, катод и анод, обозначение диода можно видеть на рисунке ниже. Вершина треугольника, направленная к черточке, показывает своим направлением прямое включение диода, когда он проводит ток, от анода к катоду, от плюса к минусу. 


   В биполярных транзисторах, которые, как всем известно, имеют три вывода базу, эмиттер, коллектор, выводом со стрелкой обозначают эмиттер, основание транзистора является базой, а оставшийся вывод, обозначающийся просто черточкой будет коллектором. 


   Причем с помощью стрелки обозначающей эмиттер и указывающей внутрь, либо наружу транзистора, обозначают структуру транзистора. Эта стрелка символизирует собой (также, как и в диоде) p-n переход, и направлена также от плюса к минусу или от положительного электрода к отрицательному. 


   Транзистор у нас представляет собой, условно говоря, два диода соединенных между собой либо катодами, либо анодами. Соответственно, если базовый электрод у нас отрицательный, то это будет транзистор p-n-p структуры, а если положительный, то n-p-n структуры.

   В тиристорах есть три электрода, это уже знакомые нам по диоду и имеющие такое же обозначение катод и анод, плюс управляющий электрод. Его обозначение можно увидеть на рисунке ниже:

   Конденсаторы у нас обозначаются на схемах двумя параллельными полосками, которые подразумевают собой 2 обкладки конденсатора. 


   У полярного электролитического конденсатора в обозначении добавлен знак плюс, указывающий на положительный электрод конденсатора, который нужно подключать строго в соответствии со схемой. 


   Переменные и подстроечные конденсаторы обозначаются как и обычные конденсаторы, но имеют в своем обозначении косую черту, в знак того, что они могут изменять свою емкость. Если эта черта заканчивается стрелкой, то это конденсатор переменой емкости рассчитанный при работе на многократное изменение положения обкладок или говоря другими словами на частое изменение емкости. Если же косая черта заканчивается поперечной черточкой, то это подстроечный конденсатор, такой конденсатор обычно регулируют только один раз, при сборке устройства.


   На рисунке выше мы можем видеть изображение на схемах постоянных резисторов. Они имеют постоянное сопротивление, и два вывода. Переменные имеют три вывода и позволяют регулировать сопротивление, между центральным и крайними выводами, от нуля до номинального сопротивления резистора.


   Светодиоды обозначаются как диод (иногда в круге, иногда без него) с двумя стрелками, направленными от диода. Иногда диод обводят кружочком.


   На рисунке ниже изображено обозначение трансформатора, в данном случае трансформатор взят с несколькими вторичными обмотками:


   Дроссель (катушка с сердечником), как он изображается на схемах, на рисунке ниже под цифрой два, изображение катушки под цифрой один:


   И катушка с подстраиваемым сердечником изображена на рисунке три. Изображение разъемов, применяемое в электротехнике можно видеть на рисунке ниже, в данном случае изображена колодка разъемов, или говоря другими словами, несколько штук спаренных между собой.


   На следующей принципиальной схеме изображено реле:


   Показана катушка реле (слева) и две группы контактов, которые могут работать как на замыкание, так и на размыкание. Далее изображен диодный мост так, как он обозначается на схемах, причем в ходу оба изображения одного и того же моста.


   Здесь изображено обозначение на схемах динамической головки, или говоря по другому - обычного динамика:


   А тут мы можем видеть общее обозначение микрофона:


   Уверен, теперь вы без труда сможете самостоятельно расшифровать принципиальную электрическую схему любого устройства - телевизора, холодильника, ресивера и так далее. А чтоб закрепить пройденный материал, попробуйте расшифровать схему кота 🙂

   Конечно это лишь небольшая, хоть и основная часть условных обозначений элементов на схемах, но этого для начала вам вполне хватит. Урок подготовил - AKV.

   Форум по радиоэлектронике для начинающих

   Форум по обсуждению материала ПРИНЦИПИАЛЬНАЯ СХЕМА

Choke - обзор | Темы ScienceDirect

5 Обсуждение

Узкие проходы, образованные в высоких широтах в результате разделения континентов Южного полушария и Антарктиды, и в тропиках через Индонезийский архипелаг, обеспечивают естественные места для наблюдений и мониторинга межокеанских обменов. Действительно, было предпринято много согласованных усилий по поддержанию долгосрочных программ мониторинга в этих регионах, хотя в прошлом географическая (Южный океан) и материально-техническая (Индонезия) изоляция этих экстремальных мест затрудняла это.Тем не менее, в последние десятилетия многие текущие программы наблюдений наряду с измерениями с помощью дистанционного зондирования успешно предоставили ценную информацию об изменчивости в различных временных масштабах межокеанского обмена через эти узкие точки и их важности для глобальной климатической системы.

В Южном океане быстроходный ACC обеспечивает эффективное выравнивание межокеанских свойств, уменьшая контрасты между каждым из основных океанических бассейнов в Южном полушарии.Тем не менее, энергичные водовороты в районе Агульяс противодействуют сильному течению АЦТ на восток и нагнетают соленую воду Индийского океана, которая прослеживается через Южную Атлантику и потенциально влияет на МОЦ. В то время как сильное взаимодействие между воздухом и морем, приливное и ветровое перемешивание в индонезийских морях значительно изменяет водные массы источников Тихого океана, которые составляют термохалинный профиль МФТ, который входит в Индийский океан, его характерная черта, по-видимому, в значительной степени подавляется, возможно, более соленой RSOW из-за время достижения индонезийскими водами западной границы Индийского океана.

Как и в случае межокеанских обменов, обмены между океанами и прилегающими к ним морями имеют разный вес в зависимости от их значимости для вариаций глобального МОЦ и климата. Арктическое море и Лабрадорское море являются наиболее важными участками, оказывающими сильное влияние на изменения в МОЦ. Закачка пресной воды из этих субарктических окраинных морей будет противодействовать вкладу более соленых вод из системы Агульяс, а также из Средиземного моря, и впоследствии окажет конкурирующее влияние на стабилизацию МОЦ в Северной Атлантике.Другие окраинные моря влияют на среднюю океаническую циркуляцию, но, видимо, не на ее вариации. Однако они предоставляют важные маркеры свойств водных масс, которые можно использовать для определения изменений в переносах между атмосферой и океаном, а также в балансах тепла, соли, углерода, питательных веществ и других свойств. Несмотря на открытый вопрос о путях MOW, очевидно, что отток через Средиземное море приводит к сильным сигналам собственности в Северной Атлантике и в части Южной Атлантики, выше или как часть NADW.Точно так же сток из Красного и Охотского морей оказывает сильное влияние на свойства водных масс на промежуточных глубинах в Индийском и Северном Тихом океане, соответственно. Однако в десятилетних масштабах времени было показано, что изменения свойств источника в MOW были слишком малы, чтобы оказать значительное влияние на открытую Атлантику. Это также может быть связано с десятилетними изменениями в водах Красного и Охотского морей, влияющими на их прилегающие бассейны. Тем не менее, все эти маргинальные морские притоки можно рассматривать как индикаторы климатических изменений, затрагивающих более крупные регионы.

Глубоководные океанические проходы между соседними океаническими бассейнами позволяют перетекать глубинные и придонные воды из одного бассейна в другой. Глубокие проходы также являются узкими проходами, которые из-за их ограниченной протяженности потенциально обеспечивают относительно простой участок для мониторинга амплитуды и изменчивости свойств глубинной ветви МОЦ. Мы сосредоточили наше обсуждение на глубоких проходах, которые контролируют распространение НАДВ в Атлантическом океане и НАДВ в Мировом океане, и мы рассмотрели характеристики этих потоков.Эти глубокие проходы представляют значительный интерес, так как они являются местом высокого уровня турбулентности, сильного изменения водной массы и влияют на динамику бассейна выше по течению (Whitehead, 1998). Перемешивание интенсивное (~ 10 - 2 м 2 с - 1 ) в глубоких проходах из-за нестабильности сильно сдвиговых потоков. За критической точкой поток становится сверхкритическим, и перемешивание может быть еще более интенсивным (значения до 10 - 1 м 2 с - 1 сообщали Ferron et al., 1998 для области гидравлического прыжка в зоне разлома Романше). Это улучшенное перемешивание сильно влияет на свойства глубоководных и придонных вод нижележащих бассейнов. Точное моделирование этих областей интенсивного перемешивания в моделях общей циркуляции (МОЦ) остается проблемой (Legg et al., 2009).

Как описано в других частях Мирового океана, в последнее время произошли значительные поддающиеся измерению изменения как в свойствах, так и в потоках в местах обмена между океанами и бассейнами. Примечательно, что все примеры, обсуждаемые в этой главе, за исключением стока из Красного моря, указывают на повышение температуры в последние десятилетия, тем самым убедительно предполагая реакцию Мирового океана на глобальное потепление.Долгосрочные изменения в тропических пассатах Тихого океана привели к изменениям в транспорте МФТ (Wainwright et al., 2008). В то время как модельные исследования показывают, что сдвиг к полюсу и усиление западных ветров Южного океана привели к увеличению утечки в Агульяс (Biastoch et al., 2009), влияние этих ветровых изменений на сам перенос АЦТ остается менее очевидным. Хотя в последнее время появилось много свидетельств того, что изменения свойств произошли в глубинах океана (например, Fukasawa et al., 2004; Johnson and Doney, 2006; Kawano et al., 2006; Джонсон и Грубер, 2007; Ринтул, 2007; Зенк, Морозов, 2007; McKee et al., 2011), к сожалению, в настоящее время нет данных о долговременных измерениях переноса в глубоких проходах. Чрезвычайная сложность абиссальной топографии наряду с технологическими проблемами проведения долгосрочных наблюдений за относительно небольшими сигналами при низких температурах и огромном давлении в удаленных местах усложняет нашу способность поддерживать оптимальный набор проб в глубинах океана. Гарцоли и др. (2010) рекомендовали установку устойчивых измерений в глубоких проходах, которые еще не оборудованы инструментами (например,г., Вема Шанель, зона разлома Романче, Самоанский пролив и пролив Амиранте). Действительно, наблюдаемые изменения подчеркивают необходимость долгосрочного мониторинга во всех межбассейновых узлах, которые в конечном итоге соединяют систему MOC. Такие измерения имеют решающее значение для мониторинга климата и валидации GCM.

Как проверить воздушную заслонку на карбюраторном двигателе

Дроссельная заслонка - это пластина в карбюраторе, которая открывается и закрывается, чтобы больше или меньше воздуха попадало в двигатель. Подобно дроссельной заслонке, дроссельная заслонка поворачивается из горизонтального положения в вертикальное, открывая проход и позволяя проходить большему количеству воздуха.Дроссельная заслонка расположена перед дроссельной заслонкой и регулирует общее количество воздуха, поступающего в двигатель.

Дроссель используется только при запуске холодного двигателя. При холодном пуске заслонка должна быть закрыта, чтобы ограничить количество поступающего воздуха. Это увеличивает количество топлива в цилиндре и помогает двигателю работать, пока он пытается прогреться. Как только двигатель прогреется, пружина датчика температуры медленно открывает воздушную заслонку, позволяя двигателю полностью дышать.

Если у вас возникли проблемы с запуском машины утром, проверьте воздушную заслонку на вашем двигателе. Он может не закрываться полностью при холодном запуске, в результате чего в цилиндр попадает слишком много воздуха, что, в свою очередь, мешает правильной работе на холостом ходу. Если после прогрева автомобиля воздушная заслонка не открывается полностью, ограничение в воздухе может привести к снижению мощности.

Часть 1 из 1: Осмотрите воздушную заслонку

Необходимые материалы

Шаг 1. Дождитесь утра, чтобы проверить воздушную заслонку .Проверьте воздушную заслонку и посмотрите, закрыта ли она при холодном двигателе.

Шаг 2: Снимите воздушный фильтр . Найдите и снимите воздушный фильтр двигателя и корпус, чтобы получить доступ к карбюратору.

Для этого может потребоваться использование ручных инструментов, однако часто воздушный фильтр и корпус крепятся только барашковой гайкой, которую часто можно снять без использования каких-либо инструментов.

Этап 3. Проверьте воздушную заслонку . Дроссельная заслонка будет первой дроссельной заслонкой, которую вы увидите при снятии воздушного фильтра.Этот клапан должен быть закрыт, потому что двигатель холодный.

Шаг 4: Несколько раз нажмите на педаль газа . Несколько раз нажмите педаль газа, чтобы закрыть клапан.

Если в вашем автомобиле есть воздушная заслонка с ручным управлением, попросите кого-нибудь переместить рычаг вперед и назад, пока вы смотрите и видите, движется ли и закрывается ли воздушная заслонка.

Шаг 5: Попробуйте слегка сдвинуть клапан пальцами . Если клапан отказывается открываться или закрываться, то он может каким-то образом застрять в закрытом состоянии либо из-за накопления грязи, либо из-за неправильно работающего регулятора датчика температуры.

Шаг 6: Используйте очиститель карбюратора . Распылите средство для чистки карбюратора на воздушную заслонку, а затем протрите ее тряпкой, чтобы удалить грязь.

Очиститель может безопасно входить в двигатель, поэтому не беспокойтесь о том, чтобы вытереть все до последней капли.

После закрытия воздушной заслонки снова установите воздушный фильтр и корпус на карбюратор.

Шаг 7: Дайте двигателю поработать, пока он не прогреется. . Включите зажигание вашей машины. Когда двигатель прогреется, вы можете снять воздушный фильтр и проверить, открыта или закрыта заслонка.В этот момент воздушная заслонка должна быть открыта, чтобы двигатель мог дышать полностью.

  • Предупреждение : Никогда не запускайте и не ускоряйте двигатель со снятым воздухоочистителем в случае обратного возгорания.

При осмотре воздушной заслонки у вас также есть возможность заглянуть внутрь карбюратора. Если он грязный, вы можете подумать о том, чтобы очистить весь узел, чтобы двигатель работал бесперебойно.

Если у вас возникли проблемы с определением причины неисправности двигателя, обратитесь к сертифицированному специалисту YourMechanic для осмотра двигателя и определения причины проблемы.

Объяснение основ дульных насадок и когда их использовать.

Ружья

- невероятно универсальный инструмент как для охотников, так и для спортивных стрелков. Одна из вещей, которые делают их такими полезными, - это их дульные насадки.
Чоковые стволы предназначены для изменения схемы выстрела, производимого при выстреле из ружья. Заменив трубку в передней части ствола, стрелок может увеличить дальность стрельбы или точность.
Заменив дульную насадку, охотник может настроить свое огнестрельное оружие на определенные виды охоты.Правильный выбор воздушной заслонки может иметь огромное значение, когда дело доходит до успеха охоты. Например, охота на индейку требует другого порядка выстрела и расстояния, чем охота на голубя.

Существует 4 основных типа штуцеров: модифицированные, цилиндрические, улучшенные и полные. Каждая дульная насадка служит разным целям. Помимо основных дросселей существует несколько специализированных типов. Они часто предназначены для стрельбы из определенного вида игры или для отличия с определенными типами боеприпасов.

Дроссель цилиндра:

Эти типы дульных сужений не имеют сужения, что означает, что их схемы полета являются наиболее открытыми, а эффективная дальность стрельбы является самой короткой. Открытые дульные сужения используются в основном с дробовиком и картечью на коротких дистанциях. Они выпускают широко распространенный рисунок, который уничтожает цели на коротких дистанциях. Лучше всего они работают на 15-25 ярдах.

Улучшенный дроссель цилиндра:

Улучшенные дроссели цилиндров все еще используются на коротких дистанциях. Они увеличивают плотность выстрела ружья примерно на 10% на короткой дистанции.Это изменение может показаться незначительным, но в зависимости от ситуации эти 10% могут иметь решающее значение между убийственным выстрелом и промахом.
При стрельбе пули рекомендуется использовать этот тип чока, поскольку сужение не настолько велико, чтобы ограничить проход пули. Этот удушающий прием наиболее эффективен на дистанции 20-30 ярдов.

Модифицированный дроссель:

Это дроссельная заслонка среднего диапазона, имеющая большее сужение, чем дроссельная заслонка улучшенного цилиндра. Хотя из пистолета все еще можно стрелять пулями, это не рекомендуется для долговременного здоровья чока.Охотники предпочитают этот чок из-за его универсальности.
Он наиболее эффективен на дистанции от 30 до 40 ярдов, что дает охотникам сокрушительную защиту на коротких и средних дистанциях.

Полный дроссель:

Полный штуцер используется в основном на больших расстояниях. Это значительно увеличивает сужение дроби, что означает, что пули перемещаются дальше, прежде чем разлетятся. Тем не менее, этот штуцер требует значительно большей точности, чтобы быть эффективным на коротких дистанциях, и может плохо работать на близком расстоянии.

Обычно, чем сильнее сужение дульной насадки, тем меньше количество выемок на передней части. Модифицированные штуцеры обычно имеют три выемки, а полный штуцер - только один. Количество насечек может различаться у разных производителей, поэтому всегда важно дважды проверять, какая дульная насадка у вас установлена, прежде чем устанавливать ее в оружие.

Дополнительная информация:

В дополнение к четырем наиболее распространенным дросселям существуют другие более специализированные дроссели.Они используются в определенных обстоятельствах, таких как удушение индейкой при охоте на индейку или удушение по тарелочкам при стрельбе по тарелочкам. Когда дело доходит до выбора дросселя, существует множество вариантов, и каждый из них имеет свой рисунок. Прежде чем брать удушение на охоте, найдите время, чтобы посетить полигон и выяснить диапазон и рисунок вашего конкретного чока. Типы боеприпасов также могут изменить способ стрельбы дульной насадки. Стальная дробь стреляет значительно плотнее, чем свинцовая дробь. Нарезные чоки изменят то, как летит пуля-саботаж.

Стрелок должен знать об уровне сужения внутри чока, но чоки бывают разных стилей, таких как переносные и внешние. Эти дополнительные стили также могут влиять на звук, дальность или характер выстрела. Некоторые чоки разработаны специально для стальной дроби, а все чоки предназначены для использования с конкретными марками и моделями огнестрельного оружия. Люди все еще спорят о том, насколько эффективны некоторые из этих других типов дросселей, но важно то, каково это, когда вы стреляете ими. В конце концов, важно выяснить, что лучше всего подходит вам и вашему стилю охоты.

FAQ | Ружья и винтовки Benelli

Что означают насечки на штуцерах?

Насечки указывают на сужение штуцера. Меньшее количество надрезов означает большее сужение (более плотное). Чем больше надрезов, тем меньше сужение.

  • 1 ступень = полная
  • 2 метки = улучшенный модифицированный
  • 3 метки = модифицированный
  • 4 метки = улучшенный цилиндр
  • 5 меток = цилиндр

Каковы характеристики шаблона дробовика?

Наши характеристики точки удара:

  • До 2 дюймов слева или справа от точки прицеливания
  • До 5 дюймов над целью
  • На 2 дюйма ниже прицельной точки

Если вы решили создать образец своего ружья с неподвижного упора, мы рекомендуем вам следовать тем же техническим требованиям, которые используются на нашем заводе.Дробовики Benelli испытываются на шаблонной доске в 20 ярдах от дула с использованием метода, показанного ниже. Наложите переднюю бусину (красный кружок на иллюстрации) и среднюю бусину (маленькая черная точка на иллюстрации). Верх переднего борта должен находиться внизу центра мишени.

Ружья Benelli сконструированы таким образом, чтобы больший процент выстрела находился немного выше точки прицеливания. Такой узор на протяжении десятилетий доказал свою смертельную опасность для водоплавающих, горных птиц и глин и дает охотникам преимущество в виде более открытого обзора.Чем меньше ствол закрывает цель, тем лучше видимость. По замыслу, это означает, что центр общей схемы выстрела находится на несколько дюймов выше точки прицеливания.

Есть способы отрегулировать точку удара. Варианты могут включать в себя регулировку регулировочных шайб или переход на больший передний борт. Если у вас возникнут дополнительные вопросы, мы рекомендуем вам обратиться в наш отдел обслуживания клиентов.

Какие чоки рекомендуются для стальной дроби?

Эти штуцеры рекомендуются для стальной дроби:

  • 3 метки = модифицированный
  • 4 метки = улучшенный цилиндр
  • 5 меток = цилиндр

Большинство людей считают, что

  • Модифицированный чок лучше всего подходит для паса
  • Улучшенные цилиндрические и цилиндрические дроссели хорошо работают при отлове птиц

Стрельба через чок более плотный, чем модифицированный, не дает никаких преимуществ, и мы не рекомендуем этого делать.

Какое обслуживание мне нужно выполнить с моим огнестрельным оружием Benelli?

Техническое обслуживание может варьироваться в зависимости от количества выпущенных выстрелов, типа пороха в снарядах и типа охоты, для которой используется ружье. Вот общие рекомендации.

  • Диаметр отверстия и внешние поверхности - Очищать и смазывать маслом после каждого выхода на улицу
  • Болт крепления направляющих и плунжер отдачи в сборе - Масло в конце дня
  • Болт и спусковой механизм - При необходимости очистите порошковые загрязнения и мусор; частота будет варьироваться в зависимости от типа используемых боеприпасов
  • Пистолет, включая блок отдачи - Детальная полоска, очистка и смазка в конце сезона или в любое время, когда оружие погружено в воду

Когда мне следует снимать цевье моего полевого дробовика Benelli M2, тактического дробовика M2 или дробовика Super Black Eagle II?

Рекомендуется оставлять на трубке тонкий слой масла для предотвращения коррозии.Ружье Benelli отличается от других ружей, представленных сегодня на рынке. Под цевьем нет движущихся частей, которые нужно чистить или смазывать. Есть только трубка магазина.

Какие дроссели рекомендуются для пробок?

Эти штуцеры рекомендуются для пули:

  • 4 метки = улучшенный цилиндр
  • 5 меток = цилиндр

Цилиндровый чок рекомендуется для стрельбы нарезными пулями из гладкоствольного ствола. Пули Sabot должны стрелять только через наши стволы с полностью нарезными пулями.

Стрелять пулями через штуцеры более тугие, чем указанные здесь, небезопасно.

Что делать, если мое огнестрельное оружие Benelli не работает?

Соберите как можно больше информации о неисправности. Например, точно отметьте, какую нагрузку вы снимали, и была ли неисправность спорадической или постоянной (например: всегда третий выстрел). Чем больше вы расскажете нам о проблеме, тем легче нам будет диагностировать неисправность.

Позвоните в отдел обслуживания клиентов Benelli USA по телефону (301) 283-6981 (вариант 2) или (800) 264-4962 (вариант 2) с 8:00 до 17:00. ET.

Почему я не могу стрелять сталью через улучшенные модифицированные и полные чоки?

Сужение этих дросселей очень плотное. Поскольку сталь не сжимается, она может повредить ствол и вызвать дросселирование при прохождении заряда дроби.

Для схем со стальной дробью мы рекомендуем использовать удлиненные штуцеры Benelli для водоплавающих птиц для более плотных схем.

Можно ли заменить предохранитель на дробовике Benelli на леворукий?

Да. Оружейник может поменять предохранители на всем огнестрельном оружии Benelli на левую. Из соображений безопасности эту работу должен выполнять только оружейник.

Чтобы запросить работы у оружейников Benelli, выполните простые действия на странице запроса на ремонт на этом веб-сайте.

Как лучше всего чистить блок отдачи ружья Benelli?

Для ружей Super Vinci или Vinci…

  1. Используйте руководство по продукту Super Vinci или руководство по продукту Vinci в качестве руководства.
  2. Снимите весь болт в сборе с затвора.
  3. Очистить растворителем для очистки пистолета.
  4. Дать высохнуть.
  5. Смажьте оружейным маслом.

Для всех остальных моделей…

  1. Вынуть затыльник и приклад из ствольной коробки ружья.
  2. Если стопорный винт стандартной гайки выглядит, как на рисунке A, переходите к шагу 3. Если он не похож на рисунок A, пропустите шаг 3 и перейдите к шагам с 4 по 7.
  3. Используя гаечный ключ на 17 мм, отверните стопорный винт гайки приклада.Будьте осторожны, потому что он находится под давлением возвратной пружины. После снятия выньте возвратную пружину и плунжер. Очистите обе детали и трубку, нанесите тонкий слой масла на все детали и снова соберите. Теперь вы закончили.
  4. Снимите спусковой механизм. Держите оружие над газетами или полотенцами. Удерживая затвор в полуоткрытом положении, распылите очищающий растворитель на трубку возвратной пружины в задней части ствольной коробки, где находится рычаг затвора. Вращайте затвор взад и вперед, чтобы растворитель попал в возвратную трубку.Повторяйте, пока растворитель пистолета не начнет выходить чистым.
  5. Дайте устройству отдачи высохнуть в течение 5 минут.
  6. Повторите тот же процесс с оружейным маслом.
  7. Установите на место приклад и затыльник.

Какие типы проблем не покрываются гарантией?

Список того, на что не распространяется гарантия, см. На странице «Гарантия» этого веб-сайта.

Как мне найти дилера Benelli?

Посетите страницу дилеров на нашем веб-сайте, чтобы найти дилера Benelli.

Где я могу получить руководство или схему моего пистолета?

Загрузите руководство со страницы руководств этого веб-сайта. Если руководства для вашего продукта нет, свяжитесь с нами.

Могу ли я стрелять пулями через бочку Benelli?

Да, при условии, что вы используете нарезные пули и не используете дроссель более плотный, чем улучшенный цилиндр.

Куда и как отправить пистолет на гарантийный ремонт?

Для получения гарантийного обслуживания выполните действия, указанные на странице «Гарантия» этого веб-сайта.

Как я могу стать дилером Benelli?

Если у вас есть магазин с обычным графиком работы и вы хотите хранить огнестрельное оружие Benelli, свяжитесь с нами.

Где я могу купить запчасти?

Воспользуйтесь функцией поиска дилеров, чтобы найти ближайшего к вам дилера Benelli. Или посетите наш интернет-магазин.

Решение демпфирования колебаний для проверки нанокристаллического сердечника синфазного дросселя

Растущее использование технологии выпрямления приводит к значительному увеличению взаимных электромагнитных помех.Обычно в качестве универсального решения проблемы используются входные ВЧ дроссели, то есть синфазные дроссели. Типичным материалом для таких применений в настоящее время являются различные ферриты.

И материал феррита MnZn с высокой проницаемостью является предпочтительным для искажения проводимости, тогда как материал с низкой проницаемостью для искажения излучения. В последние десятилетия сердечник с намоткой из нанокристаллической ленты демонстрирует свои технологические преимущества и уже успешно заменяет ряд ферритовых конструкций, особенно для сильноточных приложений, таких как приводы двигателей, которые работают в суровых условиях и при высоких температурах окружающей среды.Соответственно, навыки проектирования сердечников из нанокристаллической ленты хорошо проиллюстрированы в книге VAC [1].

Синфазные жилы

являются эффективным средством снижения синфазных помех, и их можно легко установить поверх кабелей питания любой приводной системы. Синфазный ток, протекающий через паразитные емкости кабелей двигателя и корпуса двигателя, можно уменьшить за счет значительного использования этих сердечников. Эффект фильтрации можно легко улучшить, установив несколько синфазных сердечников, что увеличивает время насыщения и сохраняет низкую паразитную индуктивность.Но есть общая проблема с точки зрения проверки сердечника с ленточной намоткой для применения в синфазном дросселе.

Рисунок 1: Принцип работы синфазного дросселя, нанокристаллическая и ферритовая конструкция

Прежде всего, давайте посмотрим на конструктивные характеристики синфазных дросселей по всему частотному спектру, индуктивность намагничивания отвечает за источник шума (<150 кГц), а индуктивность рассеяния - за затухание на высоких частотах, т.е.е. > 10 МГц. Таким образом, жесткость резонансного пика и соответствующее влияние температуры, зависящее от индуктивности намагничивания и конденсаторов, являются ключевыми конструктивными параметрами для эффективного поглощения гармоник. Что касается применения сердечников с нанокристаллической лентой, то высокая плотность потока насыщения обеспечивает потенциально высокую способность к шумопоглощению за счет компактного размера дросселя, а высокая проницаемость дает возможность достичь заданного значения индуктивности с меньшим числом витков, что следовательно, смещение резонансного пика намного меньше, чем у ферритовой конструкции из-за меньшей паразитной емкости.Кроме того, индуктивность насыщения / рассеяния поддерживается на ярко выраженном низком уровне, действуя как идеальный магнитный переключатель при высоком состоянии переключения. Наконец, высокая температура Кюри обеспечивает термостабильность для применения в приводе с большой рассеиваемой мощностью.

Таким образом, преимущества материала убедительны, но проверка, проведенная для конструкции дросселя, все еще встречает большую неопределенность, когда геометрические параметры играют важную роль для дифференциации с точки зрения потоковой связи и индуктивности, а не плотности потока и проницаемости.Эта геометрия является параметром обработки, который практически является технологическим ноу-хау производителей. (в этом предложении сложно уловить суть, возможно, его перефразируют) Приведено только типичное значение, бесполезное для определения предельного значения, что делает валидацию очень сложной для разработчика фильтров и их требовательных клиентов.

В этой статье представлено решение демпфирования колебаний с подробным описанием принципа и техническим обсуждением для решения проблем валидации сердечников из нанокристаллической ленты.Также представлены примеры решения и обсуждение результатов, чтобы продемонстрировать предлагаемое измерительное решение.

Описание статус-кво

Спецификация ферритового материала описана в стандарте IEC 62044-2 (слабосигнальное возбуждение), ограничено в пределах + -20%, в то время как значение AL намотанного сердечника из нанокристаллической ленты обычно измеряется иначе. Исходя из стандарта, начальная проницаемость и соответствующее значение AL (индуктивности) измеряются при комнатной температуре 23 ° C, 10 кГц и <0,25 мТл.Как показано в типовой таблице данных, приложенной [2], единственное магнитное свойство значения сердечника-AL указано как номинальное значение, и два значения настройки описаны для двух разных частот 10 кГц и 100 кГц, в то время как Ieff XN = 40 мА, что соответствует проницаемости при 2,5 мА / см.

эфф x N = 40 мА

f = 10 кГц

Заданное значение: 13,1 мкГн

для обеспечения очень ограниченного значения для магнитного сердечника.Кроме того, допуск в качестве предельного значения соответствует -15% + 45% при 10 кГц и -50% + 35% при 100 кГц

Это постепенное отклонение затрудняет сравнительный анализ конструкции дросселя и еще больше затрудняет сравнение сердечников с нанокристаллической лентой, намотанных из разных источников. Измерение слабого сигнала важно и необходимо, но его недостаточно для описания характеристик синфазного дросселя, поскольку оно теряет точность при большой амплитуде тока.

Следовательно, необходим лучший и практичный метод для широкого распространения нанокристаллической технологии, и BsT-Pulse предлагает простое, легкое и прозрачное решение этой проблемы.

(а)
б)
Рисунок 2: Продемонстрированные результаты измерений, полученные от импульса Bs & T: (a) Спад времени полного затухания колебаний (b) Расширяющийся график для самого начала периода затухания; Образец: 2 уложенных друг на друга ленточно-намотанных сердечника V144 и намотанных рабочей лентой 0,5 м на 3 витка)

BsT и оценка технологий и данных

Модифицированный стандарт IEEE 389, соответствующий методу затухающих колебаний, представляет собой решение для магнитной проверки с переходной большой амплитудой тока, которое обеспечивает сильное возбуждение.Его полный реверсивный ток обеспечивает дальнейшее завершение пути повторного намагничивания, а Bs&T Pulse Micro (<1 кВ) представляет собой устройство интеграции аппаратного / программного обеспечения с методом затухающих колебаний. Основной принцип работы BS&T Pulse micro изложен в [2]. Во время затухающих колебаний начальная накопленная в конденсаторе энергия может быть полностью разряжена для намагничивания синфазного дросселя, и это обеспечивает сильное возбуждение из-за высокой скорости переключения тиристора.Иллюстрация исходных данных измерения временной диаграммы напряжения и тока показана на рисунке 2. В импульсном решении Bs&T всю форму волны можно отследить как необработанные данные для последующего анализа.

(а)
б)
Рисунок 3: Измерение дифференциальной индуктивности в зависимости от тока намагничивания (a) и магнитной связи (b) методом демпфирующих колебаний

Описание синфазного дросселя

Тестируемое устройство представляет собой синфазный дроссель, сердцевину которого составляют два сердечника с ленточной намоткой, намотанный лабораторным кабелем (полметра, Rdc около 10 мОм) с 3 витками, RAC около 34 мОм и подключенный непосредственно к клеммам BsT-pulse .BsT-pulse micro оснащен внутренним конденсатором емкостью 430 мкФ, так что нелинейный синфазный дроссель и большой накопительный конденсатор образуют LC-резонанс.

Индуктивность (намагничивание)

Дифференциальная индуктивность может быть непосредственно считана из кривой напряжения и тока по времени вокруг первой пиковой амплитуды тока, либо в зависимости от амплитуды тока импульса намагничивания в (a), либо в зависимости от магнитной связи (b)

Кривая забойного давления

С заданными параметрами, т.е.е. номинальное значение для эффективной магнитной длины и поперечного сечения и количества витков, нелинейная кривая BH может быть подтверждена на рисунке 4 (a) как униполярное и (b) биполярное возбуждение.

Дифференциальная индуктивность примерно равна 270 мкГн, что соответствует результатам, показанным на Рисунке 3, а также нелинейности по отношению к току и потокосцеплению.

Биполярное возбуждение указывает на способность поглощения шума.

(а)
б)
Рисунок 4: Кривая намагничивания униполярного (а) и биполярного (б) возбуждения

Индуктивность насыщения и утечки

Индуктивность насыщения / рассеяния рассчитывается как полусинусоидальная кривая. Рисунок 5 [7]

Это значение подтверждается расчетом с µr ~ 1 Коэффициент демпфирования рассчитывается следующим образом [8]

До сих пор полностью соответствует характеристика этого дросселя общего режима с нанокристаллическим материалом:

Слабый сигнал, обозначенный µ3 при 10 кГц и 100 кГц, кроме того

  • Большой сигнал обеспечивает производительность дросселя
  • Дифференциальная индуктивность vs.ток и потокосцепление Рисунок 3 (а) (б)
  • Индуктивность утечки для фазы насыщения, временной интервал полусинусоидальной формы Рисунок 5
  • Коэффициент демпфирования и соответствующая резонансная частота
  • Плотность потока после геометрической нормализации показала типичные значения Bs нанокристалла 1,2 Тесла, как показано на рисунке 4

Рисунок 5: Оценка индуктивности рассеяния для интервала насыщения, полусинусоидального временного интервала

, потому что для демонстрации магнитных свойств необходимо учитывать только падение напряжения на индуктивной части.Точное измеренное значение сопротивления переменному току, являющееся побочным продуктом импульсного измерения, имеет большое значение для этого конкретного приложения в отношении потерь, в основном омических потерь, в течение периода времени насыщения.

Следует отметить, что сердечники, намотанные на нанокристаллическую ленту, в основном заключены в пластиковый корпус, и с точки зрения производства трудно стабилизировать коэффициент упаковки из-за толщины ленты (~ 22 мкм).

Трудно получить точные данные, но с помощью Bs & T-Pulse с заданным производителем параметром их можно легко проверить.

Теоретическая модель импульсного намагничивания. Самая классическая модель вихревых токов предполагает постоянную магнитную проницаемость по однородному магнитному сечению, которая не зависит от возбуждения. [4] На самом деле два основных требования к классической вихретоковой модели не предъявляются. Модель фронта намагничивания [5] [6] различает динамическую скорость намагничивания дБ / dt и дает разумный результат для динамической дифференциальной проницаемости, которая пропорциональна удельному сопротивлению; Кроме того, доступная потоковая передача в секундах напряжения, которая обратно пропорциональна толщине ленты и скорости намагничивания дБ / dt [Т / мкс], указывает на то, что разная энергия импульса будет формировать разное затухание напряжения и тока и, как следствие, кривую BH из-за разных дБ / dt скорость условия намагничивания.

Рис. 6. Затухание затухающих колебаний напряжения и тока с одним и тем же ИУ, но при другом уровне разрядного напряжения, т.е. дБ / дт

Рисунок 6 демонстрирует разницу для двух спадов напряжения и тока с одним и тем же ИУ (отожженный под напряжением сердечник из нанокристаллической ленты, намотанный полуметровой рабочей полосой ½ метра, с 8 витками. Один и тот же потокосцепление имеет разную высоту напряжения (50 В vs. 220 В) и длительность импульса, а график зависимости тока от времени существенно отличается (200 А vs.1800A) соотношение связано с энергоемкостью конденсатора, поскольку индуктивность рассеяния при насыщении, очевидно, одинакова для той же конструкции дросселя.

Удельное сопротивление, толщина ленты (процесс быстрого затвердевания) и флюсовая связь (процесс после отжига) - это свойства материала, которые зависят от химического состава и способа обработки на заводе-изготовителе. Однако скорость намагничивания сильно зависит от приложений. Поскольку синфазные дроссели выдерживают импульсное намагничивание, индуцированное влияние можно сенсибилизировать с помощью различного разрядного напряжения, чтобы проиллюстрировать различные значения дБ / dt импульсными результатами от Bs и T-импульса, которые обеспечивают общую производительность сердечника в отношении способности магнитной связи для поглощения шума энергия.Результаты, полученные с использованием Bs & T-Pulse, являются единственной подходящей методологией проверки, которая обеспечивает базовую производительность для приложений общего режима. Полный анализ индуктивности в зависимости от тока размагничивания и потокосцепления представлен на рисунке 3 (a) (b), а дельта B в зависимости от дельты H на рисунке 4a, с заданной геометрией обмотки и количеством витков.

Зависимость дифференциальной индуктивности от тока от пути размагничивания также важна, потому что первый пик тока устраняет неопределенность состояния тестируемого компонента из-за остаточной намагниченности, и это измерение обеспечивает прямое сравнение.Индуктивность насыщения имеет существенное значение с точки зрения эффективной передачи энергии в состоянии насыщения и максимальной амплитуды тока, индуктивность насыщения может быть рассчитана как L sat = (τ / π) 2 / C, где τ - ширина импульса тока, C - величина внутреннего конденсатора, частота импульса тока во время насыщения может быть определена как fsat = 1 / 2τ [7]

Стоит отметить, что релаксационные потери в сердечнике, не зависящие от дБ / dt, могут быть дополнительно изучены с другим разрядным напряжением, нелинейность релаксационных потерь не связана с условиями возбуждения, т.е.е. Амплитуда частоты и плотности потока очень сильно зависит от конкретного временного интервала, где dB / dt ~ 0, в то время как амплитуда тока достигает своего полусинусоидального пика.

Заключение

Нанокристаллические сердечники с ленточной намоткой, обладающие высокой проницаемостью, высокой температурой Кюри и разнообразием возможностей производственного процесса (полевой отжиг и отжиг под напряжением), все больше привлекают внимание разработчиков. Однако обычное измерение слабого сигнала не может удовлетворить требования спецификации только с предельным значением.Обсуждается сложность валидации, и компания BS&T Pulse предлагает убедительное решение для валидации компонентов как для основного производителя, так и для производителя компонентов, и, наконец, для конечных пользователей. Дальнейшее исследование может быть выполнено с различной скоростью намагничивания dB / dt, то есть разрядным напряжением, начиная с нескольких десятков напряжений Bs и T-импульсных микро до нескольких десятков кВ, с помощью макросов Bs и T-импульсов.

Номер ссылки

[1] Магнитные материалы Hilzinger Chapter 17

[2] V144 https: // vacuumschmelze.de / Assets / 144-01-V% 281% 29.pdf

[3] Hanna Curve, перезагрузка с Bs & T-pulse March Bodopower Yi Dou, JC Sun

[4] Über die Wirbelstromverzögerung magnetischer Schaltvorgänge W. Wolann and H.Kaden Zeitschrift f. техн. Физик 1932

[5] Dynamische Hystereschelifen von Rechteck-Ferriten Frequenz Bd. Штегмайер 17 1963

[6] Рост магнита. домены Дж. Бишоп и П. Уильямс 1977

[7] Моделирование трехступенчатого МПК с использованием заказных характеристик магнитопровода J.Цой 2007

[8] Конструкция индуктора с порошковым сердечником H.Skarrie 2001

Об авторе

JC Sun является основателем Bs&T Frankfurt am Main GmbH, компании, расположенной на севере мегаполиса Франкфурт-на-Майне и специализирующейся на разработке и производстве интегрированных систем измерения петли гистер. Он проработал два десятилетия инженером-разработчиком в области силовой электроники; занимался разработкой различных магнитомягких материалов и руководил проектами в различных компаниях.

Расход жидкости в регулирующих клапанах - поток с дросселированием, кавитация и мигание

Поток с дросселированием

Основное уравнение размера жидкости, показанное в верхнем левом углу рисунка 1, говорит нам, что расход жидкости через регулирующий клапан пропорционален квадрату корень падения давления. Это простое соотношение графически показано зеленой частью графика на рисунке 1. (Обратите внимание, что масштаб горизонтальной оси - это квадратный корень из перепада давления.) Эта линейная зависимость не всегда верна.Поскольку падение давления увеличивается за счет снижения давления на выходе, поток достигает точки, где он больше не увеличивается. Как только это происходит, дополнительное увеличение падения давления на клапане не приводит к дополнительному потоку, и говорят, что поток перекрывается. Здесь мы будем называть это ограничение или дросселирование перепада давления ΔP , дроссель , чтобы соответствовать последним версиям стандартов IEC и ISA по уравнениям размеров регулирующих клапанов. (Оба стандарта технически идентичны.) До выпуска 2011 года выпуска стандарта IEC по уравнению размера клапана и версии 2012 года стандарта ISA уравнения размера клапана не было официального названия разделительной линии между потоком без дросселирования и перекрыл поток, поэтому производители клапанов придумали собственные названия.Некоторые из наиболее распространенных из них перечислены на рисунке 1.

Рисунок 1. Расход жидкости в регулирующем клапане в зависимости от перепада давления на клапане.
Давайте посмотрим, что происходит внутри клапана, что вызывает перекрытие потока. Когда поток потока проходит через контрактную вену (точка, в которой площадь поперечного сечения потока минимальна), скорость потока достигает максимума. Сохранение энергии диктует, что, поскольку кинетическая энергия в контрактной вене увеличилась до максимума, потенциальная энергия в виде статического давления должна уменьшиться до минимума.Это проиллюстрировано графически в нижнем левом углу рисунка 2. Обратите внимание, что на рисунке ΔP меньше, чем ΔP с дроссельной заслонкой и поток не перекрывается.
Рис. 2. Профиль скорости и давления в регулирующем клапане без засорения потока .
Когда жидкость находится в состоянии покоя, снижение давления окружающей среды до давления пара жидкости приведет к тому, что жидкость начнет испаряться. Поскольку любая конкретная группа молекул жидкости находится в контрактной вене в течение очень короткого времени, эксперименты показали, что давление в контрактной вене должно фактически упасть немного ниже давления пара жидкости, прежде чем начнется испарение.Величина ниже давления пара, до которой должно упасть давление в вене, чтобы началось парообразование и поток к дроссельной заслонке, в стандартах IEC и ISA приблизительно соответствует коэффициенту критического давления жидкости , F F . На рисунке 2 показано уравнение ISA и IEC, которое используется для расчета F F . Таким образом, в уравнении ISA / IEC, которое вычисляет значение ΔP в заслонке , давление пара жидкости умножается на F F или, как это записано в уравнении для ΔP в заслонке : «F F . Р В .Следует отметить, что очень часто в учебниках и литературе производителей не упоминается фактор критического отношения давления жидкости, но, по мнению автора, очень небольшое увеличение сложности здесь оправдано, чтобы дать читателю понять более полное понимание предмета расхода жидкости в регулирующих клапанах.

Если поток увеличивается до такой степени, что давление в контракте вены падает до F F P V , пузырьки пара образуются в контракте вены.Любое дополнительное снижение давления ниже по потоку вызывает образование большего количества пузырьков, но давление в сокращенной вене не падает ниже F F P V . Здесь стоит отметить, что поток через регулирующий клапан зависит от разницы давлений между P 1 и P vc (давление в контрактной вене), и поскольку давление в контракте не снижается ниже F . F P V , поток не увеличивается, в результате чего поток перекрывается.На рисунке 3 показан процесс дросселирования вместе с кавитацией, обсуждаемой в следующем абзаце. Обратите внимание, что на рисунке ΔP больше, чем ΔP на дросселе ; и поток задушен.

Кавитация

По мере того, как пузырьки движутся вниз по потоку, площадь поперечного сечения потока увеличивается, скорость уменьшается, а давление растет. Теперь у нас есть пузырьки с внутренним давлением, равным давлению пара, окруженные более высоким давлением. Пузыри схлопываются сами по себе.Эта комбинация образования пузырьков и возникающего в результате закупоривания потока вместе с схлопыванием пузырьков ниже по потоку называется КАВИТАЦИЕЙ. Когда пузыри схлопываются, они издают хлопок. В результате через клапан проходит шум, похожий на звук гравия. Этот шум может быть достаточно громким, чтобы сильно раздражать, и даже достаточно громким, чтобы повредить слух человека, который подвергается его длительному воздействию. Кроме того, когда пузырьки схлопываются, они создают ударные волны, которые могут серьезно повредить клапан. Кавитационные повреждения выглядят грубо, как шлак.(См изображения глобуса плунжера клапана в верхней правой части рисунка 3.) Это повреждение может произойти очень быстро, иногда в качестве лишь через несколько недель или месяцев. Поскольку кавитационное повреждение происходит так быстро, мы стараемся избегать кавитации любой ценой. Очень твердые материалы дают некоторое улучшение, но обычно улучшенных характеристик недостаточно, чтобы оправдать затраты.

Рис. 3. Профиль скорости и давления в регулирующем клапане при засорении потока и кавитации.

Мигает

Если мы продолжим уменьшать давление на выходе, мы достигнем точки, где давление на выходе клапана меньше, чем давление пара жидкости, и мы получим ситуацию, показанную на рисунке 4.

Рис. 4. Профиль скорости и давления в регулирующем клапане с засорением потока и миганием.
Теперь, вместо того, чтобы схлопнуться, пузырьки становятся больше и очень скоро переходят из жидкости с пузырьками в пар с небольшими каплями жидкости в нем. Это называется МИГАЕТ. Появление мигающих повреждений сильно отличается от кавитационных повреждений и выглядит как гладкие, блестящие реки и долины. (См картины шарового клапана пробки в верхней правой части фиг.4.) Механизм повреждения - эффект пескоструйной обработки. После контрактуры вены поток состоит из большого объема пара с множеством крошечных капель жидкости. Поскольку объем значительно увеличивается при испарении жидкости, скорость вниз по потоку может составлять несколько сотен футов в секунду, и капли жидкости с высокой скоростью могут размывать часть клапана. Повреждение, вызванное миганием, обычно не происходит так быстро, как вызванное кавитацией. Использование твердых или устойчивых к эрозии материалов часто может довести ущерб до допустимых пределов.Детали трима, изготовленные из твердых нержавеющих сталей, таких как 17-4 ph, выдерживают довольно хорошо, а корпуса из нержавеющей стали 316ss или хромомолибденовой стали работают намного лучше, чем углеродистая сталь. Существование условий мигания определяется системой (P 2 меньше, чем P v ), и выбор клапана не вызывает и не предотвращает мигание. Шум, вызываемый миганием, обычно ниже 85 дБА, и, насколько известно автору, метода для расчета шума мигания не существует.

Реальная ситуация

Рис. 1 и связанное с ним обсуждение потока жидкости с дросселированием являются классическим обсуждением и подразумевают внезапный переход от потока без дросселирования к потоку с полным дросселированием.В действительности, при приближении перепада давления, но ниже расчетного значения ΔP дросселирования обычно происходит некоторое образование пузырьков пара и некоторая степень кавитации. На рисунке 5 показано, что на самом деле происходит при переходе потока от потока без дросселирования к потоку с полностью заблокированным потоком. На рисунке 5 показано, что на самом деле происходит при переходе потока от потока без дросселирования к потоку с полностью заблокированным потоком.

Рисунок 5. Фактический переход между потоком без дросселирования и потоком с дросселированием.
Длина перехода зависит от формы первичного сужения в клапане.Многие поворотные клапаны имеют участки неправильного поперечного сечения потока, что может привести к значительному количеству дросселирования и кавитации при более низких перепадах рабочего давления, которые могут начинаться в одной локальной области и постепенно распространяться на все ограничение по мере увеличения перепада давления на клапане и увеличения потока полностью подавился. Ограничение в большинстве шаровых клапанов довольно симметрично, что приводит к более короткому переходу. Текущие методы определения размеров регулирующих клапанов ISA и IEC не включают метод расчета того, где начинается и заканчивается переход от потока без дросселирования к потоку с полным дросселированием, и дают только формулы для расчета красной и зеленой линий на рисунках 1 и 5.Рисунок 5 также показывает, что шумовое и кавитационное повреждение может начаться даже до того, как кривая потока начнет отклоняться от прямой линии. Эти первые стадии кавитации начинаются, когда среднее давление в струе основного потока в контракте вены все еще выше F F P V . В точках резкого увеличения площади проходного сечения линии тока, прикрепленные к физическим границам клапана, могут разделиться, и когда они это сделают, они образуют вихри или завихрения. Скорость вращения в вихрях может быть достаточно высокой, чтобы местное давление внутри вихря упало ниже давления пара и образовались пузырьки пара.Когда скорость вращения вихря уменьшается, давление вокруг пузырьков пара увеличивается, и пузырьки схлопываются, вызывая как шум, так и повреждения.

Величина ΔP заслонка является функцией как условий процесса (P 1 , давление перед клапаном и P v , давление пара жидкости), так и внутренней геометрии клапана, представленной экспериментально определен коэффициент восстановления давления жидкости, F L . Типичные значения F L показаны на рисунке 6.Обратите внимание, что F L зависит как от типа клапана, так и от процента открытия клапана. Более высокие значения F L связаны с клапанами, которые имеют более низкий потенциал для закупоривания потока и кавитации, а меньшие значения F L связаны с клапанами, которые имеют больший потенциал для закупоривания потока и кавитации.

Существует несколько методов увеличения значения ΔP , дросселирование и, таким образом, уменьшения потенциала кавитации и связанных с этим шума и повреждений: регулирующий клапан в место выше по потоку или в место на более низкой высоте.(2) Давление пара можно уменьшить, установив клапан там, где температура жидкости ниже, например, на холодной стороне теплообменника. (3) Можно выбрать тип клапана с более высоким значением F L . Интересно отметить, что в целом по мере роста F L цена клапана увеличивается. Существуют специальные приспособления для защиты от кавитации для многих типов клапанов, которые имеют более высокие значения F L , чем показанные на рисунке 6, но которые сохраняют другие желательные особенности этого типа.


Рисунок 6. Типичные значения коэффициента восстановления давления жидкости, FL.
Перед покупкой регулирующего клапана всегда полезно спросить производителя или его представителя относительно вашего выбора.

Более подробное обсуждение расхода жидкости в регулирующих клапанах можно найти в главе 4 книги Valin Corporation «Технология применения регулирующих клапанов».

Вот ссылки на официальные документы, которые могут быть интересны:

Давление в Vena Contracta с потоком жидкости в регулирующем клапане
Установленное усиление как критерий выбора регулирующего клапана
Аэродинамический шум в регулирующих клапанах
Снижение аэродинамического шума клапана Стратегии
Определение перепада давления, которое будет использоваться при расчете размеров регулирующего клапана
Размер имеет значение: Размер регулирующего клапана 101

Содержание этих официальных документов - лишь малая часть того, что вы узнаете в Dr.Книга Монсена: Технология применения регулирующих клапанов

Вы бы предпочли учиться непосредственно у доктора Монсена и иметь возможность задавать ему вопросы? Возьмите один или несколько его вебинаров:


Mass Flow Choking

Сохранение массы - фундаментальная понятие физики. В некоторой проблемной области количество массы остается постоянным; масса не создается и не уничтожается. В масса любого объекта - это просто объем, который объект занимает раз больше плотности объекта.Для жидкости (жидкость или газ) плотность, объем и форма объекта могут изменяться в пределах домен со временем и массой может перемещаться по домену.

сохранение массы (непрерывность) говорит нам, что массовый расход mdot через трубку - постоянная и равным произведению плотности r , скорость V и проходное сечение A :

Уравнение # 1:

mdot = r * V * A

Рассматривая уравнение массового расхода, оказывается, что для данного площади и фиксированной плотности, мы могли бы неограниченно увеличивать массовый расход на просто увеличивая скорость.Однако в реальных жидкостях плотность не остается фиксируется при увеличении скорости из-за эффекты сжимаемости. Мы должны учитывать изменение плотности, чтобы определить массовый расход скорость на более высоких скоростях. Если мы начнем с приведенного выше уравнения массового расхода и воспользуемся изэнтропический поток отношения и уравнение состояния, мы можем получить сжимаемая форма уравнения массового расхода.

Начнем с определения число Маха M , г. и скорость звука a :

Уравнение # 2:

V = M * a = M * sqrt (гамма * R * T)

где гамма - это удельная теплоемкость, R - это газовая постоянная, и T - это температура.Теперь подставьте уравнение №2 в уравнение №1:

Уравнение # 3:

mdot = r * A * M * sqrt (гамма * R * T)

Уравнение состояния:

Уравнение 4:

г = р / (R * T)

где p - это давление. (гам / (гам-1))

где pt - полное давление, а Tt - полная температура.- [(гамма + 1) / (гамма - 1) / 2]

Это уравнение показано в красной рамке на этом слайде и связывает массу расход в проходное сечение A , полное давление pt и температура Tt потока, число Маха M , соотношение удельных теплоемкостей газа гамма , а газовая постоянная R . Во многих приложениях нас интересует массовый расход , который представляет собой массовый расход, умноженный на гравитационную постоянную (32.2 в метрических единицах). Уравнение можно дополнительно упростить, чтобы получить функция массового расхода это зависит только от числа Маха.

Уравнение массового расхода довольно "запутанное", поэтому вот калькулятор на JavaScript. который решает уравнение массового расхода как для массового, так и для массового расхода:

Выход

Массовый расход

Вес Расход

На этой странице показан интерактивный Java-апплет, который вычисляет массовый расход. скорость для ввода числа Маха, гаммы, полного давления, общей температуры и площадь.

Чтобы изменить входные значения, щелкните поле ввода (черный на белом), пробел над входным значением, введите новое значение. Затем нажмите кнопку красная кнопка COMPUTE для выполнения расчета. Вы увидите, что поле вывода (желтый на черном) изменит значение. Вы можете использовать британские или метрические единицы. используя красную на белую кнопку меню. Просто нажмите кнопку меню и выберите свой выбор. Вы также можете загрузить свою собственную копию программы для автономной работы, нажав на эту кнопку:

Влияние сжимаемости на массовый расход имеет некоторые неожиданные результаты.Мы можем увеличить массовый расход через трубку за счет увеличение площадь, увеличение общая давление, или при уменьшении на общей температуры. Но эффект увеличения скорости (числа Маха) выяснить немного сложнее. Если бы мы зафиксировали площадь, общее давление и температуру, а график изменение массового расхода в зависимости от числа Маха, мы бы обнаружили, что предельное максимальное значение возникает при числе Маха, равном единице. 2 = 1 / (D * (2 * C - 1))

Мы можем оценить правую часть этого уравнения, используя уравнения № 12 и № 13:

Уравнение 18:

D * (2 * C - 1) =.- [(гамма + 1) / (гамма - 1) / 2]

Число Маха, равное единице, называется условием звука . потому что скорость равна скорости звука и обозначим область звукового состояния специальным символом "A *", выраженный "Звезда". Если у нас есть трубка с изменяемой областью, например сопло показано на слайде, максимальный массовый расход через систему возникает, когда поток перекрывается на самой маленькой площади. Эта Расположение называется горловиной сопла.Сохранение массы означает, что массовый расход через сопло постоянен. Если тепло не добавляется и в сопле нет потерь давления, общее давление и температура также постоянны. Подставив звуковой условия в уравнение массового расхода в коробке, и выполнение некоторой алгебры, мы можем связать число Маха M в любом месте сопла к соотношению между область A в этом месте и область горла A * .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *