Как найти косинус фи – Косинус фи (cos φ) или Коэффициент мощности

Содержание

Косинус фи (cos φ) или Коэффициент мощности

На шильдиках двигателей и некоторых других устройств можно видеть непонятный параметр косинус фи (cos φ). Что этот параметр означает, в данной статье коротко объясняется, что это такое.
Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока.
Иногда для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Условные обозначения

P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.

Что такое Косинус фи (cos φ) — «Коэффициент мощности»

Косинус фи (cos φ) это косинус угла между фазой напряжения и фазой тока.
При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А как мы знаем cos0=1. То есть при активной нагрузке коэффициент мощности равен 1 или 100%.

Активная нагрузка

Фаза тока и напряжения совпадают косинус фи = 1

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз».

При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.
При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения
А почему тогда косинус фи (cos φ) это тоже самое что коэффициент мощности, да потому что S=U*I.
Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Емкостная нагрузка

Сдвиг фаз то отстает от напряжения

Индуктивная нагрузка

Сдвиг фаз, фаза тока опережает фазу напряжения

Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю.
Получается что полезная, активная мощность равна 0(нулю).

Коэффициент мощности это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.

Треугольник мощностей

Сдвиг фаз, фаза тока опережает фазу напряжения

Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.

P=U x I x cos φ

Q =U x I x sin φ

Сдвиг фаз, фаза тока опережает фазу напряжения

На практике. Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить тоже есть, при этом ни какой полезной работы не совершается. Соответственно активная мощность минимальна.
Если на двигателе увеличить нагрузку то сдвиг фаз начнет уменьшаться и соответственно косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.

К счастью счетчики активной мощности фиксируют соответственно только активную мощность. И нам не приходится переплачивать за полную мощность.

Однако у реактивной мощности есть большой минус она создает бесполезную нагрузку на электрическую сеть из-за этого образуются потери.

www.elektroceh.ru

Коэффициент мощности cos φ: определение, назначение, формула

Коэффициент мощности cos φ1 Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.

Математически cos φ

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.

Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.

Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Коэффициент мощности cos φ2

Короткое видео о кратким объяснением, что такое коэффициент мощности:

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

  1. снижение потерь электроэнергии;
  2. рациональное использование цветных металлов на создание электропроводящей аппаратуры;
  3. оптимальное использование установленной мощности трансформаторов, генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.

Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.

Коэффициент мощности cos φ: определение, назначение, физический смысл

Основные способы коррекции cos φ

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Подробное видео с объяснением, что такое cosφ :

pue8.ru

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.

На шильдиках многих электромоторов (электродвигателей и др. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. Что тут к чему см. ниже.

Подразумеваем,что переменное напряжение в сети синусоидальное - обычное, хотя все рассуждения ниже верны и для всех гармоник по отдельности других периодических напряжений.

Полная, или кажущаяся мощность S (apparent power) измеряется в вольт-амперах (ВА или VA) и определяется произведением переменных напряжения и тока системы. Удобно считать, что полная мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой.

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.
  • угол φ -это угол между фазой напряжения и фазой тока, называемый еще сдвигом фаз, при этом, если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает его, то отрицательным
  • величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до -90° является отрицательной величиной
  • если sin φ>0, то нагрузка имеет активно-индуктивный характер (электромоторы, трансформаторы, катушки...) - ток отстает от напряжения
  • если sin φ<0, нагрузка имеет активно-ёмкостный характер - (конденсаторы...) - ток опережает напряжение
  • Все соотношения между P, S и Q определяются теоремой Пифагора и элементарными тригонометрическими тождествами для прямоугольного треугольника

Активная мощность P (active power = real power =true power) измеряется в ваттах (Вт, W) и это та мощность, которая потребляется электрическим сопротивлением системы на тепло и полезную работу. Для сетей переменного тока:

  • P=U*I*cosφ, где U и I - действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

Реактивная мощность Q (reactive power) измеряется в вольт-амперах реактивных (вар, var) и это электромагнитная мощность, которая запасается и отдается обратно в сеть колебательным контуром системы. Реактивная мощность в идеале не выполняет работы, т.е. название вводит в заблуждение. Легко догадаться глядя на рисунок, что:

  • P=U*I*sinφ, где U и I - действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

Сама концепция активной и реактивной мощности актуальна для устройств (приемников) переменного тока. Она малоактуальна=никогда не упоминатеся для приемников постоянного тока в силу малости (мизерности) соответствующих эффектов, связанных только с переходными процессами при включении/выключении.

Любая система, как известно, имеет емкость и индуктивность = является неким колебательным контуром. Переменный ток в одной фазе накачивает электромагнитное поле этого контура энергией а в противоположной фазе эта энергия уходит обратно в генератор ( в сеть). Это вызывает в РФ 3 проблемы (для поставщика энергии!)

    • Хотя теоретически, при нулевых сопротивлениях передачи, на выработку реактивной мощности не тратится мощность генератора, но практически для передачи реактивной мощности по сети требуется дополнительная, активная мощность генератора (потери передачи).
    • Сеть должна пропускать и активные и реактивные токи, т.е иметь запас по пропускным характеристикам.
    • Генератор мог бы, выдавая те же ток и напряжение, поставлять потребителю электроэнергии больше активной мощности.

попробуем догадаться, что делает поставщик электроэнергии? Правильно, пытается навязать Вам различные тарифы для разлиных значений cos φ. Что можно сделать: можно заказать компенсацию реактивной мощности ( т.е. установку неких блоков конденсаторов или катушек), которые заставят реактивную нагрузку колебаться внутри Вашего предприятия/устройства. Стоит ли это делать? Зависит от стоимости установки, наценок за коэффициент мощности и очень даже часто не имеет экономического смысла. В некоторых странах качество питающего напряжения тоже может пострадать от избытка реактивной мощности, но в РФ проблема неактуальна в силу изначально очень низкго качества в питающей сети.

Естественно, хотелось бы ввести величину, которая характеризовала бы степень линейности нагрузки. И такая величина вводится под названием коэффициент мощности ("косинус фи", power factor, PF), как отношение активной мощности к полной, естественно сразу в 2-х видах, в РФ это:

  • λ=P/S*100% - то есть, если в %, то это лямбда, P в (Вт), S в (ВА)
  • cosφ=P/S - более распространенная величина , P в (Вт), S в (ВА)

 

Коэффициент мощности для трехфазного асинхронного (обычного) электродвигателя.

cosφ = P / (√3*U*I)

где

cosφ = косинус фи

√3 = квадратный корень из трех

P = активная мощность (Вт)

U = Напряжение (В)

I = Ток (А)

tehtab.ru

Коэффициент мощности, формула и примеры

Определение и формула коэффициента мощности

Средняя мощность переменного электрического тока , выражаемая через действующие значения силы тока (I) и напряжение (U) равна:

   

где — действующее (эффективное) значение силы тока, — амплитуда силы тока, — действующее (эффективное) значение напряжения, — амплитуда напряжения.

Коэффициент мощности используют для характеристики потребителя переменного тока как реактивную составляющую нагрузки. Величина этого коэффициента отражает сдвиг фазы () переменного тока, который течет через нагрузку, по отношению к приложенному к нагрузке напряжению. Из выражения (1) видно, что по величине коэффициент мощности равен косинусу от этого сдвига. Если сила тока отстает от напряжения, то сдвиг фаз считают большим нуля, если обгоняет, то

Практическое значение коэффициента мощности

На практике коэффициент мощности стараются сделать максимально большим. Так как при малом для выделения в цепи необходимой мощности надо пропускать ток большой силы, а это приводит к большим потерям в подводящих проводах (см. закон Джоуля — Ленца).

Коэффициент мощности учитывают при проектировании электрических сетей. Если коэффициент мощности является низким, это приводит к росту части потерь электрической энергии в общей сумме потерь. Для увеличения данного коэффициента применяют компенсирующие устройства.

Ошибки при расчетах коэффициента мощности ведут к повышенному потреблению электрической энергии и уменьшению коэффициента полезного действия оборудования.

Коэффициент мощности измеряют фазометром.

Способы расчета коэффициента мощности

Коэффициент мощности рассчитывают как отношение активной мощности (P) к полной мощности (S)

   

где — реактивная мощность.

Коэффициент мощности для трехфазного асинхронного двигателя вычисляют при помощи формулы:

   

Коэффициент мощности можно определить, используя, например треугольник сопротивлений (рис.1а) или треугольник мощностей (рис.1b).

Треугольники на рис. 1(a и b) подобны, так как из стороны пропорциональны.

Единицы измерения

Коэффициент мощности — безразмерная физическая величина.

Примеры решения задач

ru.solverbook.com

Что такое коэффициент мощности в электротехнике

Дата публикации: .
Категория: Освещение.

Допустим, вы купили компрессор для полива растений или электродвигатель для циркулярной пилы. В инструкции по эксплуатации помимо основных технических характеристик (таких, как потребляемый ток, рабочее напряжение, частота вращения) вы можете обнаружить такой непонятный показатель, как косинус фи (cos ϕ). Данная информация может быть указана и на пластинке (шильдике), закрепленной на корпусе прибора. В нашей статье мы постараемся объяснить простым и доступным языком  всем, даже пользователям далеким от электротехнических тонкостей, как тригонометрическая функция (знакомая нам со школьной скамьи) влияет на работу всем нам привычных электробытовых приборов, и почему ее называют коэффициентом мощности.

Косинус фи

Важно! Все нижесказанное касается только сетей переменного тока.

Далекий от электротехники, но весьма наглядный пример

Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

Тележка на рельсах

Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

Угол приложения усилий

Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

Сдвиг фаз между напряжением и током

При использовании энергии переменного тока происходит приблизительно то же самое. При активной нагрузке (например, при включении электрочайника или лампы накаливания) переменные напряжение (U) и ток (I) полностью совпадают по фазе и одновременно достигают своих максимальных значений. В данном случае мощность потребителя электроэнергии можно рассчитать по формуле P=U•I.

Активная нагрузка

Для сети переменного тока работающий электродвигатель, имеющийся, например, в стиральной машине, является комплексной нагрузкой, включающей в себя активную и индуктивную составляющие. При подаче напряжения на такой прибор оно появляется на обмотках, практически, мгновенно. А вот ток (из-за влияния индуктивности) запаздывает. То есть между ними образуется так называемый сдвиг фаз, который мы и называем ϕ.

Индуктивная нагрузка

При активно-емкостной нагрузке, наоборот, переменный ток сразу начинает течь через конденсатор, а напряжение отстает от него по фазе на величину ϕ.

Емкостная нагрузка

Треугольник мощностей

Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

Треугольник мощностей

Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи - это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду. Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток. На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

Усредненные значения коэффициента мощности

Лампы накаливания и электрические нагревательные элементы, хотя и имеют в своих конструкциях спирали, намотанные с помощью специального провода, считаются чисто активной нагрузкой для сетей переменного тока. Так как индуктивность этих элементов настолько мала, что ею, как правило, просто пренебрегают. Для таких приборов cos ϕ (или коэффициент мощности) принимают равным 1.

В разнообразных электрических ручных инструментах (дрелях, перфораторах, лобзиках и так далее) индуктивная составляющая мощности достаточно мала. Для них принято считать cos ϕ≈0,96÷0,97. Этот показатель достаточно близок к единице, поэтому его, практически, никогда не указывают в технических характеристиках.

Для мощных электродвигателей, люминесцентных ламп и сварочных трансформаторов cos ϕ≈0,5÷0,82. Этот коэффициент мощности необходимо учитывать, например, при выборе диаметра питающих проводов, чтобы они не нагрелись, и не сгорела их изоляция.

Сварочный аппарат

На что влияет низкий коэффициент мощности

К чему могут привести низкие показатели коэффициента мощности:

  • При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8  I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
  • Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
  • Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).

В заключении

Смело можно утверждать, что чем ближе значение PF к единице, тем эффективнее используется электроэнергия. В некоторых мощных приборах производители устанавливают специальные приспособления, которые позволяют осуществлять коррекцию коэффициента мощности.

artillum.ru

Коэффициент мощности

Дата публикации: .
Категория: Электротехника.

Коэффициентом мощности, или "косинусом фи" (cos φ), цепи называется отношение активной мощности к полной мощности.

Коэффициентом мощности

В общем случае активная мощность меньше полной мощности, то есть у этой дроби числитель меньше знаменателя, и поэтому коэффициент мощности меньше единицы.

Только в случае чисто активной нагрузки, когда вся мощность является активной мощностью, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.

Реактивная энергия потребляется нагрузкой и, если не принимать специальных мер, она будет загружать линию, идущую от генератора к нагрузке. Нельзя лишить реактивной энергии цепь, содержащую индуктивную нагрузку, но разгрузить генератор от реактивной мощности необходимо.

Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице. Задача состоит в том, чтобы заставить протекать по линии к потребителю только минимально необходимую величину реактивной энергии.

Из треугольника мощностей (смотрите рисунок 1, в статье "Треугольник мощностей") получаем:

Коэффициентом мощности

Cos φ, или коэффициент мощности, измеряется особым прибором фазометром.

Пример 1. Амперметр показывает ток 10 А, вольтметр – 120 В, ваттметр – 1 кВт. Определить cos φ потребителя.

S = I × U = 10 × 120 = 1200 ВА,

Коэффициентом мощности

Пример 2. Определить активную мощность, отдаваемую генератором однофазного переменного тока в сеть, если вольтметр на щите генератора показывает 220 В, амперметр – 20 А и фазометр 0,8.

P = I × U × cos φ = 20 × 220 × 0,8 = 3520 Вт = 3,52 кВт.

Полная мощность.

S = I × U = 20 × 220 = 4400 ВА = 4,4 кВА.

Пример 3. Вольтметр, установленный на щитке электродвигателя показывает 120 В, амперметр – 450 А, ваттметр – 50 кВт. Определить z, r, xL, S, cos φ, Q.

Коэффициентом мощности

Так как P = I2 × r, то

Коэффициентом мощности

Коэффициентом мощности

S = I × U = 450 × 120 = 54000 ВА = 54 кВА ,

Коэффициентом мощности

Коэффициентом мощности

Из построения треугольников сопротивлений, напряжений и мощностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти "косинус фи" цепи, как показано на рисунке 1. Этим можно воспользоваться для решения самых разнообразных задач.

Пример 4. Определить z, xL, U, Uа, UL, S, P, Q, если I = 6 А, r = 3 Ом, cos φ = 0,8 и ток отстает от по фазе от напряжения.

Из треугольника сопротивлений известно, что

Коэффициентом мощности

отсюда

Коэффициентом мощности

U = I × z = 6 × 3,75 = 22,5 В .

Коэффициентом мощности

Коэффициентом мощности

Uа = I × r = 6 × 3 =18 В .

UL = I × xL = 6 × 2,24 = 13,45 В .

S = I × U = 6 × 22,5 = 135 ВА .

P = I2 × r = 36 × 3 = 108 Вт

или

P = I × U × cos φ = 6 × 22,5 × 0,8 = 108 Вт .

Q = I × UL = 6 × 13,45 = 81 вар

или

Коэффициентом мощности

или

Q = I2 × xL = 62 × 2,24 = 81 вар .

Источник: Кузнецов М. И., "Основы электротехники" - 9-е издание, исправленное - Москва: Высшая школа, 1964 - 560 с.

www.electromechanics.ru

Коэффициент мощности, что это такое?

Коэффициент мощности (cos φ — косинус фи) — это отношение активной мощности к полной. Чем ближе это значение к единицы, тем лучше, так как при значении cos φ = 1 — реактивная мощность равна нулю следовательно меньшая потребляемая мощность в целом.

cos φ = P/S

Активная мощность (P)

Измеряется в ваттах Вт

Активная (средняя) мощность — это среднее значение мощности за период.. Активная мощность используется только на активные сопротивления, то есть на выполнения полезной работы.

P = I*U*cos φ 

Активное сопротивление

Как известно сопротивление проводника при переменном токе больше чем при постоянном, в следствии явлений поверхностного эффекта, эффекта близости, возникновение вихревых токов и излучение электромагнитной 

Резистор

Резистор

энергии в пространство. Именно поэтому сопротивление  проводника в постоянных цепях называют омическим, а в переменного тока называют активным сопротивлением.

Реактивная мощность (Q)

Измеряется в вар (вольт ампер реактивный)

Реактивная мощность является мерой потребления (или выработки реактивного тока). То есть это мощность которая сначала накапливается во внешней электрической цепи (в индуктивности и ёмкости), а потом отдаваемая обратно в сеть на протяжения 1/4 периода.

Реактивная мощность может быть как положительной так и отрицательной.

Появление реактивной мощности связанно с наличием в цепях индуктивной и ёмкостной нагрузки.

Q = I*U*sin φ 

Реактивная мощность в отличии от активной не расходуется на прямые нужды (преобразование электрической энергии в другие виды энергии). Она как бы не несёт полезной нагрузки, но без неё невозможно осуществление полезной работы. В  настоящий момент прилагается много усилий на уменьшение затрачиваемой реактивной мощности, так как это приводит к уменьшению потребления активной мощности.

Полная мощность (S)

Измеряется в вольт-амперах (BA)

Полная мощность (S) — это произведение действующего напряжения и тока на зажимах цепи. То есть полная мощность это вся мощность затраченная в электрической цепи. Полная мощность складывается из геометрической суммы активной и реактивной мощности.

S = I*U

формула

формула

electrikam.com

Отправить ответ

avatar
  Подписаться  
Уведомление о