Как мегаомметром проверить сопротивление изоляции: Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Содержание

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметрАналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметрЭлектронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

 Упрощенная схема электромеханического мегаомметра
Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм

2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
    Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Подборка видео по теме

Проверка изоляции кабеля мегаомметром

измерение изоляции кабеля мегаомметромСопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности. Если вы купили кабель, и он у вас хранился некоторое время на складе, не думайте что изоляция его будет такой же, как и при покупке. Изоляция может ухудшаться как при неудовлетворительных условиях хранения, так и в процессе работы и монтажа. Для того, чтобы выявить все возможные проблемы и осуществляется проверка изоляции кабеля мегаомметром.

Причины плохой изоляции кабеля

Есть несколько факторов влияющих на изоляционные свойства кабелей:

  • атмосферные условия
    Зимой изоляция может внезапно улучшиться, т.к. имеющаяся внутри влага попросту превратится в лед.
  • процесс укладки кабеля
    излом кабеля при прокладкеНеосторожные движения при монтаже могут вызвать излом или повредить оболочку.
  • физический износ с течением времени
  • физический износ кабелявоздействие агрессивной среды
  • агрессивная среда прокладки кабелязавышенное напряжение при эксплуатации

Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

мегаомметр М4100и нового образца – электронные:

электронный мегаомметр UnitРассмотрим работу этих устройств.

Правила безопасности

Проверка изоляции кабеля мегаомметром производится только на отключенном и обесточенном оборудовании.

Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

  • работать с прибором имеет право персонал с 3-й группой по электробезопасности
  • третья группа по электробезопасностипри испытании удалите всех посторонних от испытуемого кабеля
  • перед работой прибора внимательно осмотрите его корпус, провода и измерительные щупы. Они не должны иметь сколы, повреждения;
  • проводить замеры изоляции кабеля рекомендуется при положительных температурах
  • температура измерения изоляциине прикасайтесь к проводам прибора при измерениях

не прикасайся к проводам при измерениях

Подготовительные работы

Испытуемый кабель перед проверкой необходимо подготовить.

подготовка кабеля для измерения мегаомметромДля этого:

  • проверяете отсутствие напряжения на жилах кабеля
  • на длинных кабелях может быть наведенное или остаточное напряжение
    Поэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
  • отсоединяете кабель от подключенного оборудования.
    Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля. Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Работа с мегаомметром М4100

  1. первым делом проверяете отсутствие напряжения на кабеле
  2. заземляете все жилы
  3. прибор размещаете на ровную поверхность
  4. при замере изоляции жилы на “землю” один из щупов присоединяется к проводу, другой к броне или заземляющему устройству. После чего снимаете заземление только с измеряемой жилы;
  5. равномерно вращаете ручку в течение 60 секунд. Скорость вращения – два оборота в секунду. На 60 секунде отмечайте показания прибора;
  6. после каждого замера снимайте остаточный заряд с жилы и с проводов мегаомметра, путем их прикосновения к заземлению.

порядок работы с мегаомметром

Бытовые сети и домашние проводки достаточно испытывать напряжением 500 Вольт. Минимальное значение, которое должна показать проверка изоляции кабеля мегаомметром в этом случае — 0,5мОм.

В промышленных эл.сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

Работа с электронным мегаомметром

 

Как часто проводится проверка изоляции кабеля мегаометром?

  1. Первый замер делается на заводе изготовителе
  2. Перед монтажом на объекте
  3. После монтажа перед подачей напряжения
  4. В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.

Советы по работе с мегаомметром:

  • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
  • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
  • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
  • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
  • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
  • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
  • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.

Статьи по теме

Измерение сопротивления изоляции кабельных линий мегаомметром

Вот и отпуску конец... Сегодня рассмотрим тему взаимоотношения силового электрического кабеля и мегаомметра. Здесь будет присутствовать два вопроса: прозвонка и проверка сопротивления изоляции. В зависимости от вида мегаомметра (стрелочный или цифровой) будет отличаться и порядок действий.

Для чего проверяют сопротивление изоляции кабеля?

Для чего вообще производят эти измерения? Ток у нас течет по проводнику, которым является медная или алюминиевая жила (или много жил). И между токопроводящей жилой и окружающей средой находится изоляция - пластмассовая, резиновая, ПВХ, бумажная, масляная.

Изоляция защищает жилу от соприкосновения с другой жилой, с окружающей средой, с человеком. Характеристикой качества изоляции, кроме прочих, является сопротивление изоляции. Эта характеристика измеряется в омах и их производных (кило, мега, гига).

Сопротивление - это величина обратная проводимости, то есть она показывает способность не пропускать электрический ток. Чем слабее изоляция, тем больше вероятность, что ток найдет путь и распространится из кабеля через токопроводящие поверхности и материалы. То есть произойдет пробой изоляции кабеля на поверхность какую-нибудь.

Изоляция может ухудшаться по следующим причинам:

  • старение изоляции в течении времени
  • увеличенная влажность
  • механические повреждения
  • воздействие агрессивной среды

Допустимые значения сопротивления изоляции

Величины сопротивления изоляции (Rx) кабелей различных типов должны быть выше допустимых значений. Допустимые значения определяются в ГОСТах, технических условиях, нормах и объемах испытания электрооборудования. Если брать нормы по испытанию сопротивления изоляции силовых кабельных линий, то тут всё просто:

  • испытываются мегаомметром на 2500В на протяжении 1 минуты
  • значение Rх должно быть больше 0,5 МОм для кабелей до 1кВ включительно
  • для кабелей напряжением выше 1кВ значение сопротивления изоляции не нормируется, а факторами, определяющими пригодность является величина тока утечки при высоковольтных испытаниях и отсутствие пробоев

Порядок проверки сопротивления изоляции кабеля мегаомметром

Приходишь на объект, и видишь например следующую картину.

Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:

  • жилы кабеля прозвонены и промаркированы (о прозвонке читайте тут)
  • на жилах кабеля, куда будем подавать напряжение нет грязи, нагори, краски (на жиле кабеля такого нет, но это может быть на заземлении, которое окрашивают или же оно может быть покрыто слоем ржавчины, тогда надо отскрести отверткой или ножом)
  • на другом конце кабеля никто не работает и кабель отсоединен от нагрузки и источника питания (не стоит подавать напряжение на монтажника, который может разделывать кабель с другой стороны, или замерять Rx кабеля с нагрузкой, также стоит проследить, чтобы мы не подали высокое напряжение на вторичные цепи и элементы, которые могут от 2500В прийти в негодность, поэтому иногда их просто мегерят на 500В)
  • кабель обесточен и предусмотрены меры, не допускающие случайную подачу напряжения на испытуемый кабель (замки, плакаты, выкачены ячейки)
  • если мегер-тест (измерение сопротивления изоляции) идет в комплексе с высоковольтными испытаниями, то нужно убедиться, что на втором конце кабеля (второй конец - противоположный от места испытания) выставлен человек или помещение заперто и огорожено с вывешенными плакатами
  • мегаомметр находится в исправном состоянии и годен к эксплуатации (клеймо поверки на корпусе и концы прибора испытаны)
  • вы имеете право и квалификацию работать с мегаомметром и производить данный вид работ (3 группа по электробезопасности и не просроченная проверка специальных знаний, плюс медосмотр)
  • провода мегаомметра должны иметь высокую изоляцию (тут можно еще сделать следующее: свести два провода мегаомметра и подать напряжение - значение должно быть нулевым, так как изоляции между проводами нет, а если развести - то бесконечность - так как сопротивление воздуха велико)

После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!

Измерение сопротивления изоляции кабеля мегаомметром

Порядок действий следующий (!!!КАБЕЛЬ ОБЕСТОЧЕН!!!):

  1. Один конец мегаомметра на время проведения испытания подключен к заземлению (это может быть заземленная шина, заземляющий болт или переносное заземление)
  2. Если есть оболочка, экран, броня - их следует также заземлять на время измерения сопротивления изоляции и высоковольтного испытания
  3. На испытуемую жилу кабеля вешаем заземление (этим мы снимаем возможный остаточный заряд на кабеле)
  4. Вешаем на испытуемую жилу второй конец мегаомметра, по которому будет подаваться напряжение 2500В
  5. Снимаем с испытуемой жилы провод заземления
  6. Подаем прибором на испытуемую жилу напряжение 2500В в течение 60 секунд. Записываем значение сопротивления изоляции на 15-ой и 60-ой секундах испытания (в случае электронного прибора с памятью значения можно не записывать)
  7. На испытанную жилу кабеля вешаем заземление, для того, чтобы разрядить кабель. Чем длиннее кабель, тем дольше надо держать провод заземления на жиле.
  8. Снимаем второй конец мегаомметра с испытанной жилы, далее переходим на другую жилу кабеля и идем от пункта 2). Затем аналогично и для третьей жилы. В конце отключаем прибор от электроустановки

Если у нас трехжильных кабель, то мы должны получить значения сопротивлений изоляции фаза-ноль и фаза-фаза. Итого 6 измерений. В реальности делают не три измерения, а одно - объединяют три жилы и подают напряжение от мегаомметра к ним. В случае, если значение сопротивления изоляции удовлетворяет, то всё хорошо. В случае, если Rx неудовлетворительно, то производится измерение каждой жилы по-отдельности.

Фиксируют показания на 15 и 60-ой секундах для определения коэффициента абсорбции (Ka). Этот коэффициент численно равен отношению значений сопротивления R60/R15. Показывает степень увлажненности. Также существует понятие коэффициента поляризации или индекса поляризации (PI) - он равен отношению R600/R60 и характеризует степень старения изоляции. В нормах определены следующие значения:

Предельное значение говорит о том, что кабель непригоден к эксплуатации. Индекс поляризации замеряется на кабелях с бумажной пропитанной изоляцией вместе с Ka. У кабелей с пластмассовой, ПВХ, изоляцией из сшитого полиэтилена индекс поляризации определять нет необходимости.

Сейчас существуют различные цифровые и электронные мегаомметры. В цифровых сразу можно увидеть после измерения значения коэффициента абсорбции, R60, R15, отдельные приборы позволяют измерять и PI. Кроме того у моделей sonel можно нажать кнопку старт, затем другой кнопкой ее зафиксировать и не держать минуту палец на кнопке. Работают приборы от аккумуляторов. Это упрощает жизнь.

В стрелочных приборах в основе источника постоянного напряжения (а испытания мегаомметром - это испытания постоянным напряжением) лежит или генератор, или кнопка (модели ЭСО).

Тут уже придется либо крутить ручку прибора со скоростью 2 об/c, либо искать розетку. А кроме этого еще надо производить отсчет по секундомеру и записывать результаты. Трудности вызывают и шкалы отдельных приборов. Но мегаомметры различных производителей - это тема отдельной большой статьи.

В общем, не забывайте разряжать кабель после испытания, снимая накопившийся заряд заземлением. А уже затем снимайте конец прибора с испытуемой жилы. И чем длиннее кабель, тем больше времени держите заземление.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока
Как пользоваться мегаомметром и его помощью замерить сопротивление изоляции

Многие начинающие электрики задаются вопросом, как пользоваться мегаомметром и что собой представляет этот измерительный электроприбор. О том, какие параметры имеет аппарат, каков принцип его работы, область применения и другое далее.

Что это такое

Мегаомметр является специальным измерительным прибором, используемым профессиональными электриками, для того чтобы вычислять электросети и электроприборы. Отличается от омметра работой с высоким напряжением. Напряжение генерируется самостоятельным образом встроенным механическим генератором или батареей. Величина его равна 100-2500 вольт. Выпускается в двух вариантах — в виде индукторного и безындукторного аппарата.

Мегаомметр в помощь электрикам

Он является универсальным переносным электродвигательным устройством, который бывает как ручным, цифровым, аналоговым или электронным, так и механическим и высоковольтным.

Обратите внимание! Стоит указать, что первая модель была изобретена с ручкой. Сегодня самыми стильными являются электронные измерительные модели.

Полное понятие из области электродинамики

Технические характеристики

Современный измерительный мегаомметр состоит из электромеханического генератора, имеющего ручной привод, или из электронного инвертора с частью выпрямителя, который питается от того, что в прибор встроен аккумулятор или у него есть сменные гальванические элементы. Как индикатор используется стрелочный логометр или жки.

Что касается диапазона измерений, есть модели от 0 до 200 кОм. Масса колеблется от 1 до 2,2 килограммов. Габариты примерно такие: длина 210-220, ширина 140-156, а высота — 61-250 миллиметров.

Стоит отметить, что точные параметры у каждого прибора разные из-за отличного внешнего и внутреннего исполнения. В некоторых моделях есть табло со школой и механической стрелкой, где-то имеется аккумуляторная батарея или блок питания.

Технические характеристики цифрового электроприбора Мегом 300

Принцип работы

Работает измерительный аппарат очень просто. Напряжение попадает на испытуемый электросетевой участок, чтобы проверить, как произолированы кабели. В зависимости от того, какая номинальная нагрузка у устройства, используется конкретная энергия. До испытания выбирается прибор, подходящий к сети.

То есть, работа с мегаомметром выполняется на законе Ома. Он подает ток на кабельный участок для проверки изоляции. Показатели того, что утечка происходит, возвращаются на прибор. Согласно этим данным делается вывод о том, нормально ли работает кабель или есть проблемы. При большом значении утечки, изоляция повреждена. Тогда может произойти короткое замыкание. Стоит отметить, что неисправность лучше убрать сразу, поскольку в любой момент может произойти кабельное возгорание при отсутствии работы автоматики контактного отключения.

Принцип работы устройства

Правила работы

Мегаомметр — травмоопасный аппарат из-за высокого напряжения. Работать с ним может только тот человек, который имеет знания и опыт.

Начинать работу с мегаомметром можно только обученным людям и знающим технику безопасности. Работа в электрических установках, где напряжение больше 1000 вольт, производится с разрешительной документацией, то есть наряд-допуском. При этом выдача документа для нескольких работ не разрешается. Также выполнение трудовой деятельности при подобном сетевом напряжении разрешается людям, которые имеют третью и четвертую группу электробезопасности.

Обратите внимание! До начала необходимо проверить целостность аппарата. В момент работы с устройством необходимо использовать диэлектрические перчатки и ни в коем случае не прикасаться к токоведущим элементам. После деятельности, необходимо снимать остаток заряда заземлением.

Соблюдение техники безопасности как одно из главных правил работы с электроприбором

Где используется

Изоляция, подобно любому материалу, со временем и в связи с погодными условиями портится и изнашивается. Чтобы своевременно обнаружить изоляционный дефект, применяется мегаомметр. Он нужен, чтобы измерять изоляционное сопротивление силового кабеля, электроразъема, трансформаторной межобмотки, электромашины. Также он необходим, чтобы измерять поверхностные и объемные диэлектрики. Достоинство прибора в полной автономности, независимости от источников питания и автоматическом вычислении абсорбционного и резисторного процесса.

Применение в условиях промышленности как основная сфера

Как подключить

Каждая модель устройства имеет свою выходную величину напряжения, по этой причине для эффективного испытания изоляции либо замера ее сопротивления, необходим правильный подбор мегаомметра.

Чтобы проверить кабельную изоляцию, необходимо сформировать случай, при котором на участок энергия будет подана выше номинальной, но в пределе, описанной в техническом документе. К примеру, если напряжение подается в количестве 500, то необходимо немного превысить эту величину.

Длительность измерения сопротивления изоляции мегаомметром, обычно должна быть не более 30 секунд. Это нужно, чтобы точно можно было выявить дефекты, а также исключить их последующее появление при сетевых перепадах.

Основой измерений является подготовка с выполнением и финальным этапом. На каждом этапе происходят свои манипуляции, которые нужны, чтобы достигнуть поставленную цель.

Обратите внимание! Подготавливая работу, нужно понимать действия, изучить электрическую установку в схематичном виде для исключения возможной поломки и обеспечения безопасности.

Делая начало работы, следует осуществить проверку прибора на исправность. Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения.

На финальном этапе восстанавливаются разобранные цепочки, снимаются шунты и закоротки, а также подготавливаются схемы для рабочего режима. Позднее документируются результаты измерений слоя изоляции в проверочном изоляционном акте

Профессиональное подключение мегаомметра по инструкции

Как пользоваться

Чтобы правильно проводить испытания важно сделать правильное выставление измерительных диапазонов и тестовой энергии. Самый простой метод этого выполнения, использовать специальные таблицы с указанием параметров для разных тестируемых объектов.

Важно понимать, что во время тестирования необходимо использование диэлектрических перчаток. Также необходимо убрать посторонних с вывешиванием соответствующих предупреждающих плакатов. Во время подключения щупов, необходимо только касаться тех частей, которые заизолированы. До измерения следует сделать переносной вид заземления для отключения контрольных кабелей. При этом сами измерения нужно проводить при сухой изоляции до превышения допустимых пределов влажности.

Использование аппарата по руководству к эксплуатации как возможность его правильной работы и отсутствия поломок

Как прозвонить кабель

Проверить одножильный кабель можно несколькими манипуляциями, выставив тестовый вид напряжения. Первый щуп должен быть прицеплен на часть жилы, а второй должен быть прицеплен на броню. После этого будет подано напряжение. Если не имеется брони, то необходима земляная жила. При нахождении показаний до 0,5 мОм, значит кабель неизношен и его можно использовать дальше и не заменять.

Обратите внимание! Прозванивая многожильный кабель, нужно осуществлять проверку каждой жили, а из остальных полупроводников сделать сбор единого жгута. Чтобы получить достоверные результаты, необходимо обеспечение хорошего контакта.

Правильный прозвон кабеля путем аппарата

Проверка изоляции

Проверка изоляции — еще одна функция измерительного прибора. Изоляция позволяет защитить жилу от соприкосновения с другой жилой. Характеристика изоляционного качества — сопротивление. Это измеряется в омах с производными. Сопротивление является величиной, которая обратна производимости. То есть она может показать возможность непропуска электротока.

Чем меньше изоляция, тем больше возможность нахождение тока пути и распространение из кабеля к токопроводящим поверхностям и материалам. То есть может быть изоляционный кабельный пробой. Важно понимать, что изоляция стареет, ухудшается из-за влажности и механического повреждения. Также ухудшается из-за воздействия агрессивной внешней среды.

Проверка изоляции как одно из условий использования

Как проверить мегаомметр на исправность

Осуществить проверку мегаомметра на исправность необходимо по следующему способу. К выводам устройства сделать подключение проводов и закоротить выходы. Потом подать энергию и проследить за результатами. Исправный прибор покажет ноль. Потом разъединить и попробовать заново. Во второй раз должна появиться бесконечность. Это показатель — воздушный промежуток.

Неисправности мегаомметра

Неисправности заключаются в отсутствии горения индикаторного табло измерительных результатов в момент включения омметра питания. Также они заключаются в нестабильности измерительных результатов. Причина этих явлений в перегорании предохранителя, неисправности кабеля сетевого питания, ненадежном заземлении и ненадежном контактировании с измерительным объектом.

Неправильная эксплуатация прибора и заводской брак как неисправность

Ремонт мегаомметра

Ремонт заключается в замене предохранителя, устранении неисправности кабельного повреждения, восстановления надежного заземления и достижения надежного контакта для измерительного объекта. Стоит отметить, что техническое обслуживание является лучшей профилактикой для бесперебойной работы. Также оно нужно, чтобы поддержать эксплуатационную надежность и повысить эффективность омметра.

Обратите внимание! В случае обнаружения брака, следует сделать замену оборудования или обратиться в сервисный центр для оказания профессиональной помощи.

Необходимость обращения к мастерам для ремонта оборудования

Что следует выполнить после окончания измерения мегаомметром

Сразу после выполнения измерений, необходимо сделать три главные вещи. Нужно внесение в протокол измерительных результатов, приведения в порядок рабочего места с инструментами и приспособлениями, а дальше снятие с токоведущих частей остаточного заряда кратковременным заземлением.

Важно отметить, что по требованию охраны труда, в конце работы должна быть отключена измерительная аппаратура, разряжена цепь, которая находится под мегаомметровым воздействием. Далее нужно сделать отсоединение приборных проводов от тока, записать измерительные результаты в ведомость. Потом сообщить лицу, который ответственен за производственные работы. Обо всех недостатках, которые были замечены в процессе деятельности, нужно доложить, чтобы были приняты меры.

Правильное отключение как залог сохранения работоспособности прибора

В целом, мегаомметр — измерительный прибор, позволяющий изучить показания сопротивления электросетевых и приборных обмоток. Отличается от других аппаратов работой на высоком напряжении. Напряжение генерируется самим устройством благодаря встроенной батареи. Область применения его обширна: обычно используется во всех видах промышленности, где есть высокое напряжение. Использовать несложно, главное — изучить инструкцию по применению мегаомметра эс0202 2г и соблюдать технику безопасности. В противном случае, возможна поломка и, как следствие, необходимость ремонта.

Проверка сопротивления изоляции мегаомметром - Всё о электрике

Проверка сопротивления изоляции кабеля мегаомметром

Вот и отпуску конец. Сегодня рассмотрим тему взаимоотношения силового электрического кабеля и мегаомметра. Здесь будет присутствовать два вопроса: прозвонка и проверка сопротивления изоляции. В зависимости от вида мегаомметра (стрелочный или цифровой) будет отличаться и порядок действий.

Для чего проверяют сопротивление изоляции кабеля?

Для чего вообще производят эти измерения? Ток у нас течет по проводнику, которым является медная или алюминиевая жила (или много жил). И между токопроводящей жилой и окружающей средой находится изоляция – пластмассовая, резиновая, ПВХ, бумажная, масляная.

Изоляция защищает жилу от соприкосновения с другой жилой, с окружающей средой, с человеком. Характеристикой качества изоляции, кроме прочих, является сопротивление изоляции. Эта характеристика измеряется в омах и их производных (кило, мега, гига).

Сопротивление – это величина обратная проводимости, то есть она показывает способность не пропускать электрический ток. Чем слабее изоляция, тем больше вероятность, что ток найдет путь и распространится из кабеля через токопроводящие поверхности и материалы. То есть произойдет пробой изоляции кабеля на поверхность какую-нибудь.

Изоляция может ухудшаться по следующим причинам:

  • старение изоляции в течении времени
  • увеличенная влажность
  • механические повреждения
  • воздействие агрессивной среды

Допустимые значения сопротивления изоляции

Величины сопротивления изоляции (Rx) кабелей различных типов должны быть выше допустимых значений. Допустимые значения определяются в ГОСТах, технических условиях, нормах и объемах испытания электрооборудования. Если брать нормы по испытанию сопротивления изоляции силовых кабельных линий, то тут всё просто:

  • испытываются мегаомметром на 2500В на протяжении 1 минуты
  • значение Rх должно быть больше 0,5 МОм для кабелей до 1кВ включительно
  • для кабелей напряжением выше 1кВ значение сопротивления изоляции не нормируется, а факторами, определяющими пригодность является величина тока утечки при высоковольтных испытаниях и отсутствие пробоев

Порядок проверки сопротивления изоляции кабеля мегаомметром

Приходишь на объект, и видишь например следующую картину.

Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:

  • жилы кабеля прозвонены и промаркированы (о прозвонке читайте тут)
  • на жилах кабеля, куда будем подавать напряжение нет грязи, нагори, краски (на жиле кабеля такого нет, но это может быть на заземлении, которое окрашивают или же оно может быть покрыто слоем ржавчины, тогда надо отскрести отверткой или ножом)
  • на другом конце кабеля никто не работает и кабель отсоединен от нагрузки и источника питания (не стоит подавать напряжение на монтажника, который может разделывать кабель с другой стороны, или замерять Rx кабеля с нагрузкой, также стоит проследить, чтобы мы не подали высокое напряжение на вторичные цепи и элементы, которые могут от 2500В прийти в негодность, поэтому иногда их просто мегерят на 500В)
  • кабель обесточен и предусмотрены меры, не допускающие случайную подачу напряжения на испытуемый кабель (замки, плакаты, выкачены ячейки)
  • если мегер-тест (измерение сопротивления изоляции) идет в комплексе с высоковольтными испытаниями, то нужно убедиться, что на втором конце кабеля (второй конец – противоположный от места испытания) выставлен человек или помещение заперто и огорожено с вывешенными плакатами
  • мегаомметр находится в исправном состоянии и годен к эксплуатации (клеймо поверки на корпусе и концы прибора испытаны)
  • вы имеете право и квалификацию работать с мегаомметром и производить данный вид работ (3 группа по электробезопасности и не просроченная проверка специальных знаний, плюс медосмотр)
  • провода мегаомметра должны иметь высокую изоляцию (тут можно еще сделать следующее: свести два провода мегаомметра и подать напряжение – значение должно быть нулевым, так как изоляции между проводами нет, а если развести – то бесконечность – так как сопротивление воздуха велико)

После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!

Измерение сопротивления изоляции кабеля мегаомметром

Порядок действий следующий (. КАБЕЛЬ ОБЕСТОЧЕН. ):

  1. Один конец мегаомметра на время проведения испытания подключен к заземлению (это может быть заземленная шина, заземляющий болт или переносное заземление)
  2. Если есть оболочка, экран, броня – их следует также заземлять на время измерения сопротивления изоляции и высоковольтного испытания
  3. На испытуемую жилу кабеля вешаем заземление (этим мы снимаем возможный остаточный заряд на кабеле)
  4. Вешаем на испытуемую жилу второй конец мегаомметра, по которому будет подаваться напряжение 2500В
  5. Снимаем с испытуемой жилы провод заземления
  6. Подаем прибором на испытуемую жилу напряжение 2500В в течение 60 секунд. Записываем значение сопротивления изоляции на 15-ой и 60-ой секундах испытания (в случае электронного прибора с памятью значения можно не записывать)
  7. На испытанную жилу кабеля вешаем заземление, для того, чтобы разрядить кабель. Чем длиннее кабель, тем дольше надо держать провод заземления на жиле.
  8. Снимаем второй конец мегаомметра с испытанной жилы, далее переходим на другую жилу кабеля и идем от пункта 2). Затем аналогично и для третьей жилы. В конце отключаем прибор от электроустановки

Если у нас трехжильных кабель, то мы должны получить значения сопротивлений изоляции фаза-ноль и фаза-фаза. Итого 6 измерений. В реальности делают не три измерения, а одно – объединяют три жилы и подают напряжение от мегаомметра к ним. В случае, если значение сопротивления изоляции удовлетворяет, то всё хорошо. В случае, если Rx неудовлетворительно, то производится измерение каждой жилы по-отдельности.

Фиксируют показания на 15 и 60-ой секундах для определения коэффициента абсорбции (Ka). Этот коэффициент численно равен отношению значений сопротивления R60/R15. Показывает степень увлажненности. Также существует понятие коэффициента поляризации или индекса поляризации (PI) – он равен отношению R600/R60 и характеризует степень старения изоляции. В нормах определены следующие значения:

Предельное значение говорит о том, что кабель непригоден к эксплуатации. Индекс поляризации замеряется на кабелях с бумажной пропитанной изоляцией вместе с Ka. У кабелей с пластмассовой, ПВХ, изоляцией из сшитого полиэтилена индекс поляризации определять нет необходимости.

Сейчас существуют различные цифровые и электронные мегаомметры. В цифровых сразу можно увидеть после измерения значения коэффициента абсорбции, R60, R15, отдельные приборы позволяют измерять и PI. Кроме того у моделей sonel можно нажать кнопку старт, затем другой кнопкой ее зафиксировать и не держать минуту палец на кнопке. Работают приборы от аккумуляторов. Это упрощает жизнь.

В стрелочных приборах в основе источника постоянного напряжения (а испытания мегаомметром – это испытания постоянным напряжением) лежит или генератор, или кнопка (модели ЭСО).

Тут уже придется либо крутить ручку прибора со скоростью 2 об/c, либо искать розетку. А кроме этого еще надо производить отсчет по секундомеру и записывать результаты. Трудности вызывают и шкалы отдельных приборов. Но мегаомметры различных производителей – это тема отдельной большой статьи.

В общем, не забывайте разряжать кабель после испытания, снимая накопившийся заряд заземлением. А уже затем снимайте конец прибора с испытуемой жилы. И чем длиннее кабель, тем больше времени держите заземление.

Сохраните в закладки или поделитесь с друзьями

Как проверить изоляцию кабеля мегаомметром

Сопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности. Если вы купили кабель, и он у вас хранился некоторое время на складе, не думайте что изоляция его будет такой же, как и при покупке. Изоляция может ухудшаться как при неудовлетворительных условиях хранения, так и в процессе работы и монтажа. Для того, чтобы выявить все возможные проблемы и осуществляется проверка изоляции кабеля мегаомметром.

Причины плохой изоляции кабеля

Есть несколько факторов влияющих на изоляционные свойства кабелей:

  • ⚡атмосферные условия
    Зимой изоляция может внезапно улучшиться, т.к. имеющаяся внутри влага попросту превратится в лед.
  • ⚡процесс укладки кабеля
    Неосторожные движения при монтаже могут вызвать излом или повредить оболочку.
  • ⚡физический износ с течением времени
  • ⚡воздействие агрессивной среды
  • ⚡завышенное напряжение при эксплуатации

Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

и нового образца – электронные:

Рассмотрим работу этих устройств.

Правила безопасности

Проверка изоляции кабеля мегаомметром производится только на отключенном и обесточенном оборудовании.

Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

  • ⚡работать с прибором имеет право персонал с 3-й группой по электробезопасности
  • ⚡при испытании удалите всех посторонних от испытуемого кабеля
  • ⚡перед работой прибора внимательно осмотрите его корпус, провода и измерительные щупы. Они не должны иметь сколы, повреждения;
  • ⚡проводить замеры изоляции кабеля рекомендуется при положительных температурах
  • ⚡не прикасайтесь к проводам прибора при измерениях

Подготовительные работы

Испытуемый кабель перед проверкой необходимо подготовить.

Для этого:

  • ⚡проверяете отсутствие напряжения на жилах кабеля
  • ⚡на длинных кабелях может быть наведенное или остаточное напряжение
    Поэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
  • ⚡отсоединяете кабель от подключенного оборудования.
    Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля. Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • ⚡подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • ⚡вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • ⚡замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • ⚡на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • ⚡Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • ⚡После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Работа с мегаомметром М4100

  1. первым делом проверяете отсутствие напряжения на кабеле
  2. заземляете все жилы
  3. прибор размещаете на ровную поверхность
  4. при замере изоляции жилы на “землю” один из щупов присоединяется к проводу, другой к броне или заземляющему устройству. После чего снимаете заземление только с измеряемой жилы;
  5. равномерно вращаете ручку в течение 60 секунд. Скорость вращения – два оборота в секунду. На 60 секунде отмечайте показания прибора;
  6. после каждого замера снимайте остаточный заряд с жилы и с проводов мегаомметра, путем их прикосновения к заземлению.

Бытовые сети и домашние проводки достаточно испытывать напряжением 500 Вольт. Минимальное значение, которое должна показать проверка изоляции кабеля мегаомметром в этом случае — 0,5мОм.

В промышленных эл.сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

Измерение сопротивления изоляции мегаомметром

Хотя мегаомметр относится к приборам, используемым преимущественно в промышленных условиях, бывают ситуации, когда он окажется полезным в домашнем хозяйстве. Один из таких случаев – необходимость измерить параметры повредившейся электропроводки трансформатора, двигателя или иного устройства. Тем, кто работает с такими приборами, необходимо знать, как производится правильное измерение сопротивления изоляции мегаомметром.

Устройство и принцип работы

Вопрос о том, как прозвонить кабель мегаомметром, встает в связи с невозможностью корректно измерять этот показатель посредством обычного мультиметра. Последний не дает возможности оценить наличие повреждений у кабельного изоляционного слоя и нарушений его целостности: даже в случае достаточно большого номинального напряжения ток утечки слишком мал, чтобы измеряться мультиметром.

Мегаомметр дает возможность определять сопротивление изоляционного материала, разделяющего кабельные жилы, обмотки электродвигателя, иные конструкции в электроинструментах.

Важно! Данные приборы выпускаются в разных вариантах исполнения. Чтобы выбрать, какой измеритель приобрести, стоит опираться на особенности их функционирования, а также учитывать сметы и расценки.

Электромеханический мегаомметр

Это самая ранняя конфигурация данного прибора. Она включает в себя генератор тока, работающий от вращения ручки, сопротивления, амперметр со шкалой, а также клеммы, к которым при определении нужных параметров подсоединяются проводки: заземление, линия и экран. Аппарат можно описать как обладающий простой конструкцией и не зависящий от внешних источников тока. Есть и ряд минусов: высокая погрешность шкалы, необходимость поддержания неподвижности корпуса прибора для получения максимально точных измерений.

Электронный мегаомметр

В таких приборах испытательное напряжение формирует электросхема, замер реализуется посредством измерителя аналогового типа. Таким образом, можно проверять сопротивление без необходимости крутить ручку. Он также позволяет замерить показатель абсорбции, описывающий содержание влаги в изоляционном материале.

Микропроцессорные мегаомметры

Основными плюсами таких приборов являются компактное исполнение и наличие цифрового табло. Это позволяет совместить разные функции (оценку сопротивления заземления, фазно-нулевой петли и иные) в одном корпусе, что избавляет от необходимости носить с собой много устройств.

Измерения мегаомметром

Приступая к проверке изоляции кабеля мегаомметром, нужно определить, к какому типу относится обследуемый провод. Описание последовательности работ для разных типов кабелей имеет схожий вид, но для каждой группы существуют определенные нюансы.

Измерение высоковольтных линий

Сюда относятся провода с напряжением более тысячи вольт. Согласно нормам, изоляция таких изделий должна иметь сопротивление, превышающее 1000 МОм. Прибор, которым производят замеры, должен быть рассчитанным на 2500 В (аналогично и для низковольтных кабелей).

Испытание низковольтных кабелей

Для таких кабелей показатель должен быть не ниже 0,5 МОм. Сначала прибор ставят между жилами фаз, затем – между фазами и нулем, после этого (если у провода пять жил) – между фазами и заземлением, в самом конце – между заземлительной и нулевой жилами (последнюю перед этим надо отсоединить от шины).

Испытание контрольных кабельных систем

Здесь используются приборы на 500-2500 В. Итоговый результат должен быть больше 1 МОм. Вывод прибора ставят на одну жилу, оставшиеся соединяются и помещаются на землю. Второй вывод кладется на какую-либо жилу, не подлежащую измерению в данный момент. Произведя измерения, жилку кладут к другим и начинают тестировать следующую.

Подготовка к работе

Перед тем, как проверить сопротивление любого кабеля, необходимо обязательно убедиться в том, что на нем нет напряжения. Для высоковольтных линий применяется индикатор высокого напряжения, для низковольтных – защитные средства для манипуляций в электрических установках. Также необходимо вывесить предупреждающие плакаты.

Изучение проверяемой схемы измерения

Перед тем, как замерить сопротивление кабельной изоляции мегаомметром, нужно рассмотреть схему электроцепи, где производятся измерения. Она может включать в себя электроприборы, не заточенные под производимое измерительным устройством выходное напряжение. Этим приборам нужно обеспечить защиту от напряжения, выключив их из цепи или произведя операции по заземлению.

Правила безопасности при работе с мегаомметром

Поскольку данные приборы могут генерировать очень высокое напряжение, измерительные операции должны производиться парой работников, хотя бы у одного из них должна быть четвертая группа допуска по электрической безопасности. Без соответствующей подготовки использовать такое оборудование опасно – пользователя может ударить током.

Подключение мегаомметра к тестируемой линии

В гнездовые разъемы, соответствующие линии и заземлению, вставляют щупы с одиночными наконечниками. Бинарный щуп применяют, когда требуется ликвидировать токи утечки: один конец ставят в гнездо линии, а другой, помеченный как «Э», – в экранное.

С линией прибор соединяют с помощью клемм. С целью узнать сопротивление изоляционного материала оба щупа помещают на голые участки проводов.

Измерения

При выполнении измерений мастер не должен прикасаться к незащищенным участкам проводов и других компонентов цепи, а также к выходным клеммам измерительного прибора. Нельзя выполнять работы без предварительной проверки отсутствия напряжения на кабельных жилках (ее можно осуществить специальным тестером).

Важно! Ни в коем случае нельзя выполнять работы без предварительной ликвидации остаточного заряда с оборудования. Делают ее посредством портативного заземления, прикладывая его к токоведущим компонентам. Остаточный заряд нужно убирать также после каждого измерения.

Как померить сопротивление изоляции кабеля

Проверка одножильного провода наиболее проста и занимает около минуты. Щупы помещают на броню и на жилку, пускают напряжение. При отсутствии брони щуп ставят на заземлительную клемму. Показания менее 0,5 МОм указывают на пробивание изоляционного материала. Такой кабель к эксплуатации не годен.

У многожильных элементов проверке подлежит каждая жилка. Пока проверяется один провод, остальные кладутся вместе в жгут. При необходимости протестировать заземление в жгут помещают и соединенный с заземляющей шиной провод. Броня, если она присутствует, также присоединяется к жгутовой конфигурации.

Измерение изоляции асинхронного двигателя мегаомметром

Если двигатель функционирует на напряжении менее 1000 В, тестировать его надлежит значением в 500 в. Перед замерами его надо отсоединить от питания. Один щупик соединяют с корпусом, другой – последовательно ставят на все выводы. Помимо этого, тестируют отсутствие нарушений в обмоточных соединениях. В этом случае щупики подключают к парам обмоток.

Тестирование показателя изоляционного сопротивления позволяет установить, пригоден ли кабель к дальнейшей эксплуатации. Выполняется эта процедура мастерами, прошедшими необходимое обучение основам электробезопасности.

Видео

{SOURCE}

Как пользоваться мегаомметром: измерение, подключение, видео

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье. 

Устройство и принцип действия

Содержание статьи

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект. Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

    Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Один из вариантов современных мегаомметров

Один из вариантов современных мегаомметров

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях). Как пользоваться мегаомметром: правила электробезопасности

    Как пользоваться мегаомметром: правила электробезопасности

  3.  Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
  4. После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
  5. После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
  6. Работать в перчатках.

Правила не очень сложные, но от их выполнения зависит ваша безопасность.

Как подключать щупы

На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

  • Э — экран;
  • Л- линия;
  • З — земля;

Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.

Щупы для мегаомметра

Щупы для мегаомметра

На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

  • К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
  • К жиле и «земле», если проверяем «пробой на землю». Есть буква "Э" - этот конец вставляется в гнездо с такой же буквой

    Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой

Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

Процесс измерения

Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей.  Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

Наименование элементаНапряжение мегаомметраМинимально допустимое сопротивление изоляцииПримечания
Электроизделия и аппараты с напряжением до 50 В100 ВДолжно соответствовать паспортным, но не менее 0,5 МОмВо время измерений полупроводниковые приборы должны быть зашунтированы
тоже, но напряжением от 50 В до 100 В250 В
тоже, но напряжением от 100 В до 380 В500-1000 В
свыше 380 В, но не больше 1000 В1000-2500 В
Распределительные устройства, щиты, токопроводы1000-2500 ВНе менее 1 МОмИзмерять каждую секцию распределительного устройства
Электропроводка, в том числе осветительная сеть1000 ВНе менее 0,5 МОмВ опасных помещениях измерения проводятся раз в год, в друих - раз в 3 года
Стационарные электроплиты1000 ВНе менее 1 МОмИзмерение проводят на нагретой отключенной плите не реже 1 раза в год

Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

Как проводить измерения мегаомметром

Как проводить измерения мегаомметром

После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля - можно не скручивать, а перемерять все пары

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

"<yoastmark

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Проверить сопротивление изоляции электродвигателя

Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

Как проверить изоляцию кабеля и ее сопротивление прибором мегаомметром

Хотя мегаомметр относится к приборам, используемым преимущественно в промышленных условиях, бывают ситуации, когда он окажется полезным в домашнем хозяйстве. Один из таких случаев – необходимость измерить параметры повредившейся электропроводки трансформатора, двигателя или иного устройства. Тем, кто работает с такими приборами, необходимо знать, как производится правильное измерение сопротивления изоляции мегаомметром.

Фарфоровая изоляция проводки утюга

Фарфоровая изоляция проводки утюга

Устройство и принцип работы

Вопрос о том, как прозвонить кабель мегаомметром, встает в связи с невозможностью корректно измерять этот показатель посредством обычного мультиметра. Последний не дает возможности оценить наличие повреждений у кабельного изоляционного слоя и нарушений его целостности: даже в случае достаточно большого номинального напряжения ток утечки слишком мал, чтобы измеряться мультиметром.

Мегаомметр дает возможность определять сопротивление изоляционного материала, разделяющего кабельные жилы, обмотки электродвигателя, иные конструкции в электроинструментах.

Важно! Данные приборы выпускаются в разных вариантах исполнения. Чтобы выбрать, какой измеритель приобрести, стоит опираться на особенности их функционирования, а также учитывать сметы и расценки.

Электромеханический мегаомметр

Это самая ранняя конфигурация данного прибора. Она включает в себя генератор тока, работающий от вращения ручки, сопротивления, амперметр со шкалой, а также клеммы, к которым при определении нужных параметров подсоединяются проводки: заземление, линия и экран. Аппарат можно описать как обладающий простой конструкцией и не зависящий от внешних источников тока. Есть и ряд минусов: высокая погрешность шкалы, необходимость поддержания неподвижности корпуса прибора для получения максимально точных измерений.

Электромеханический прибор

Электромеханический прибор

Электронный мегаомметр

В таких приборах испытательное напряжение формирует электросхема, замер реализуется посредством измерителя аналогового типа. Таким образом, можно проверять сопротивление без необходимости крутить ручку. Он также позволяет замерить показатель абсорбции, описывающий содержание влаги в изоляционном материале.

Микропроцессорные мегаомметры

Основными плюсами таких приборов являются компактное исполнение и наличие цифрового табло. Это позволяет совместить разные функции (оценку сопротивления заземления, фазно-нулевой петли и иные) в одном корпусе, что избавляет от необходимости носить с собой много устройств.

Микропроцессорный мегаомметр

Микропроцессорный мегаомметр

Измерения мегаомметром

Приступая к проверке изоляции кабеля мегаомметром, нужно определить, к какому типу относится обследуемый провод. Описание последовательности работ для разных типов кабелей имеет схожий вид, но для каждой группы существуют определенные нюансы.

Измерение высоковольтных линий

Сюда относятся провода с напряжением более тысячи вольт. Согласно нормам, изоляция таких изделий должна иметь сопротивление, превышающее 1000 МОм. Прибор, которым производят замеры, должен быть рассчитанным на 2500 В (аналогично и для низковольтных кабелей).

Испытание низковольтных кабелей

Для таких кабелей показатель должен быть не ниже 0,5 МОм. Сначала прибор ставят между жилами фаз, затем – между фазами и нулем, после этого (если у провода пять жил) – между фазами и заземлением, в самом конце – между заземлительной и нулевой жилами (последнюю перед этим надо отсоединить от шины).

Испытание контрольных кабельных систем

Здесь используются приборы на 500-2500 В. Итоговый результат должен быть больше 1 МОм. Вывод прибора ставят на одну жилу, оставшиеся соединяются и помещаются на землю. Второй вывод кладется на какую-либо жилу, не подлежащую измерению в данный момент. Произведя измерения, жилку кладут к другим и начинают тестировать следующую.

Подготовка к работе

Перед тем, как проверить сопротивление любого кабеля, необходимо обязательно убедиться в том, что на нем нет напряжения. Для высоковольтных линий применяется индикатор высокого напряжения, для низковольтных – защитные средства для манипуляций в электрических установках. Также необходимо вывесить предупреждающие плакаты.

Изучение проверяемой схемы измерения

Перед тем, как замерить сопротивление кабельной изоляции мегаомметром, нужно рассмотреть схему электроцепи, где производятся измерения. Она может включать в себя электроприборы, не заточенные под производимое измерительным устройством выходное напряжение. Этим приборам нужно обеспечить защиту от напряжения, выключив их из цепи или произведя операции по заземлению.

Правила безопасности при работе с мегаомметром

Поскольку данные приборы могут генерировать очень высокое напряжение, измерительные операции должны производиться парой работников, хотя бы у одного из них должна быть четвертая группа допуска по электрической безопасности. Без соответствующей подготовки использовать такое оборудование опасно – пользователя может ударить током.

Подключение мегаомметра к тестируемой линии

В гнездовые разъемы, соответствующие линии и заземлению, вставляют щупы с одиночными наконечниками. Бинарный щуп применяют, когда требуется ликвидировать токи утечки: один конец ставят в гнездо линии, а другой, помеченный как «Э», – в экранное.

С линией прибор соединяют с помощью клемм. С целью узнать сопротивление изоляционного материала оба щупа помещают на голые участки проводов.

Измерения

При выполнении измерений мастер не должен прикасаться к незащищенным участкам проводов и других компонентов цепи, а также к выходным клеммам измерительного прибора. Нельзя выполнять работы без предварительной проверки отсутствия напряжения на кабельных жилках (ее можно осуществить специальным тестером).

Важно! Ни в коем случае нельзя выполнять работы без предварительной ликвидации остаточного заряда с оборудования. Делают ее посредством портативного заземления, прикладывая его к токоведущим компонентам. Остаточный заряд нужно убирать также после каждого измерения.

Как померить сопротивление изоляции кабеля

Проверка одножильного провода наиболее проста и занимает около минуты. Щупы помещают на броню и на жилку, пускают напряжение. При отсутствии брони щуп ставят на заземлительную клемму. Показания менее 0,5 МОм указывают на пробивание изоляционного материала. Такой кабель к эксплуатации не годен.

У многожильных элементов проверке подлежит каждая жилка. Пока проверяется один провод, остальные кладутся вместе в жгут. При необходимости протестировать заземление в жгут помещают и соединенный с заземляющей шиной провод. Броня, если она присутствует, также присоединяется к жгутовой конфигурации.

Замер изоляционного сопротивления

Замер изоляционного сопротивления

Измерение изоляции асинхронного двигателя мегаомметром

Если двигатель функционирует на напряжении менее 1000 В, тестировать его надлежит значением в 500 в. Перед замерами его надо отсоединить от питания. Один щупик соединяют с корпусом, другой – последовательно ставят на все выводы. Помимо этого, тестируют отсутствие нарушений в обмоточных соединениях. В этом случае щупики подключают к парам обмоток.

Тестирование показателя изоляционного сопротивления позволяет установить, пригоден ли кабель к дальнейшей эксплуатации. Выполняется эта процедура мастерами, прошедшими необходимое обучение основам электробезопасности.

Видео

Как измерить сопротивление изоляции двигателя

Сопротивление изоляции обмотки

Если двигатель не вводится в эксплуатацию сразу по прибытии, важно защитить его от внешних факторов , таких как влажность, высокая температура и загрязнения, чтобы избежать повреждения изоляции. Перед вводом двигателя в эксплуатацию после длительного хранения необходимо измерить сопротивление изоляции обмотки.

How to measure insulation resistance of a motor How to measure insulation resistance of a motor Как измерить сопротивление изоляции двигателя (фото предоставлено: электр.cc.oita-u.ac.jp)

Если двигатель находится в месте с высокой влажностью, необходимо периодически проверять .

Практически невозможно определить правила для фактического минимального значения сопротивления изоляции двигателя, поскольку сопротивление варьируется в зависимости от метода изготовления, состояния используемого изоляционного материала, номинального напряжения, размера и типа. На самом деле, многолетний опыт определяет, готов ли двигатель к работе или нет.

Общее эмпирическое правило составляет 10 МОм или более.

Значение сопротивления изоляции Уровень изоляции
2 МОм или меньше Плохо
2-5 МОм Критическое
5-10 МОм Ненормальный
10-50 МОм хорошо
50-100 МОм Очень хорошо
100 МОм или более Отлично

Измерение сопротивления изоляции осуществляется с помощью мегомметра - омметра с высоким сопротивлением.Вот как работает тест: постоянного тока напряжением 500 или 1000 В подается между обмотками и землей двигателя.

Ground insulation test of a motor Ground insulation test of a motor Испытание заземления двигателя

Во время измерения и сразу после него некоторые клеммы имеют опасное напряжение, и НЕ ДОЛЖНЫ БЫТЬ ПРИКЛЮЧЕНЫ .

В этой связи стоит упомянуть три момента: Сопротивление изоляции, Измерение и проверка.


1.Сопротивление изоляции


2. Измерение

  • Минимальное сопротивление изоляции обмотки на землю измеряется при 500 В пост. Тока . Температура обмотки должна быть 25 ° C ± 15 ° C .
  • Максимальное сопротивление изоляции должно измеряться при 500 В постоянного тока с обмотками при рабочей температуре 80 - 120 ° C в зависимости от типа двигателя и КПД.

3. Проверка

  • Если сопротивление изоляции нового, очищенного или отремонтированного двигателя, которое хранилось в течение некоторого времени, меньше 10 МОм , причина может заключаться в том, что обмотки влажные и их необходимо высушить.
  • Если двигатель работал в течение длительного периода времени, минимальное сопротивление изоляции может упасть до критического уровня . Пока измеренное значение не падает ниже расчетного значения минимального сопротивления изоляции, двигатель может продолжать работать.

    Однако, если он падает ниже этого предела, двигатель должен быть немедленно остановлен , чтобы избежать травм людей из-за высокого напряжения утечки.

Ссылка: Grudfos - Motor Book

,
Что нужно и что нельзя делать при измерении сопротивления изоляции трансформатора

Измерение сопротивления изоляции

Этот тест проводится при номинальном напряжении или выше, чтобы определить, имеются ли пути с низким сопротивлением к земле или между обмоткой к обмотке в результате повреждения изоляции .

Do Что нужно и что нельзя делать при измерении сопротивления изоляции трансформатора (фото предоставлено sonel.pl)

На значения тестовых измерений влияют такие переменные, как температура, влажность, тестовое напряжение и размер трансформатора.

Этот тест должен быть проведен до и после ремонта или когда выполняется обслуживание . Данные испытаний должны быть записаны для будущих сравнительных целей. Тестовые значения должны быть нормализованы до 20 ° C для целей сравнения.

Общее практическое правило, которое используется для приемлемых значений безопасного питания, составляет 1 МОм на 1000 В приложенного испытательного напряжения плюс 1 МОм . Примерные значения сопротивления хороших систем изоляции приведены в таблице 1.

ТАБЛИЦА 1 - Типичные значения сопротивления изоляции для силовых и распределительных трансформаторов

Напряжение обмотки трансформатора (кВ) Обмотка заземления (МОм)
22 ° C 30 ° C 40 ° C 50 ° C 60 ° C
6,6 400 200 100 50 25
6,6 - 19 800 400 200 100 50
22 - 45 1000 500 250 125 65
≥ 66 1200 600 300 100 75

Процедуры испытаний //

Процедуры испытаний следующие:

  1. Не отсоединяйте заземление от бака трансформатора и сердечника.Убедитесь, что бак трансформатора и сердечник заземлены.
  2. Отключите все высоковольтные, низковольтные и нейтральные соединения, грозовые разрядники, системы вентиляторов, счетчики или любые низковольтные системы управления, которые подключены к обмотке трансформатора.
  3. Перед началом испытания соедините вместе все высоковольтные вводы, убедившись, что перемычки свободны от всех металлических и заземленных частей. Также соедините все втулки низкого напряжения и нейтрали, убедившись, что на перемычках нет металлических и заземленных частей.
  4. Используйте мегомметр с минимальной шкалой 20000 МОм .
  5. Затем проводятся измерения сопротивления между каждым набором обмоток и землей. Измеряемая обмотка должна быть удалена, чтобы измерить сопротивление изоляции.
  6. Показания мегомметра должны поддерживаться в течение 1 мин. . Сделайте следующие показания для двухобмоточных трансформаторов:
    1. Высоковольтная обмотка к низковольтной обмотке и заземлению
    2. Высоковольтная обмотка на землю
    3. Низковольтная обмотка к высоковольтной обмотке и заземлению
    4. Низковольтная обмотка на землю
    5. Высоковольтная обмотка к низковольтной обмотке

Соединения для этих испытаний показаны на рисунках 1a-e и 2a-e для однофазных и трехфазных трансформаторов соответственно.Показания мегомметра должны быть записаны вместе с температурой испытания (° C).

Показания должны быть с поправкой на 20 ° C с помощью поправочных коэффициентов , показанных в таблице 1.

ПРИМЕЧАНИЕ! Если скорректированные значения полевого испытания составляют или более половины от заводских показаний изоляции или 1000 МОм , в зависимости от того, что меньше, то система изоляции трансформатора считается безопасной для испытания с высоким потенциалом .

Test connections for insulation resistance of a single-phase transformer. Note: In figure (e) reverse the L and E leads to measure from high-winding to low-winding Test connections for insulation resistance of a single-phase transformer. Note: In figure (e) reverse the L and E leads to measure from high-winding to low-winding Рисунок 1 - Испытательные соединения для сопротивления изоляции однофазного трансформатора.Примечание: на рисунке (e) поменяйте местами L и E, чтобы измерить от сильной обмотки до слабой.

Для трехобмоточных трансформаторов испытание должно быть выполнено следующим образом //

  • Высокий к низкому, третичный и наземный (H-LTG)
  • Высшее, низкое и земное (T-HLG)
  • Низкий до высокого, третичный и заземленный (L-HTG)
  • Высокий, низкий и третичный к земле (HLT-G)
  • Высокий и третичный к низкому и заземленному (HT-LG)
  • Низкий и третичный в высоту и землю (LT-HG)
  • Высокий и низкий к третичному и заземленному (HL-TG)
Не проводите испытания в мегомах обмотки трансформатора без жидкости трансформатора , поскольку значения сопротивления изоляции в воздухе будут намного меньше, чем в жидкости.

Кроме того, не проводите испытания сопротивления изоляции трансформатора, когда он находится под вакуумом, из-за возможности пробоя на землю.

Чаще всего используются тестовые соединения, показанные на рис. 2a, c и e. Тестовые соединения на рисунке 2b и d дают более точные результаты . Показания, полученные в соединениях на рисунках 2a и b, практически равны показаниям в испытательных соединениях на рисунках 2c и d соответственно.

Test connections for insulation resistance of a three-phase transformer Test connections for insulation resistance of a three-phase transformer Рисунок 2 - Испытательные соединения для сопротивления изоляции трехфазного трансформатора

Где:

  1. Соединение для сильной намотки на слабую намотку на землю;
  2. Соединение для защиты от сильной намотки и заземления;
  3. Соединение для слабой обмотки к сильной обмотке к земле;
  4. Соединение для защиты от слабой обмотки и заземления;
  5. Соединение для сильной и слабой намотки.

Допустимые значения сопротивления изоляции для сухих и составных трансформаторов должны быть сопоставимы со значениями для вращающихся машин класса A, хотя стандартных минимальных значений не имеется.

Масляные трансформаторы

или регуляторы напряжения представляют особую проблему в том, что состояние масла оказывает заметное влияние на сопротивление изоляции обмоток .

При отсутствии более надежных данных предлагается следующая формула:

IR = CE / √ кВА

где //

  • IR - это минимальное сопротивление изоляции 1 мин. 500 В пост.
  • C является константой для измерений 20 ° C
  • E - номинальное напряжение тестируемой обмотки, кВА - номинальная мощность тестируемой обмотки
Значения С при 20 ° С
60 Гц 50 Гц
Резервуар маслонаполненный тип 1.5 1,0
Необработанный маслонаполненный тип 30,0 20,0
Сухой или составной тип 30,0 20,0

Эта формула предназначена для однофазных трансформаторов. Если испытываемые трансформаторы относятся к одному трехфазному типу, а три отдельные обмотки испытываются как одна, то:

  • E - это номинальное напряжение одной из однофазных обмоток (фаза-фаза для блоков, соединенных треугольником, и фаза-нейтраль или соединенных звездой блоков)
  • кВА - номинальная мощность завершенной испытываемой трехфазной обмотки.

Тестирование силового трансформатора (ВИДЕО)

Измерение сопротивления обмотки постоянного тока и проверка устройства РПН.

Ссылка // Техническое обслуживание и тестирование электрооборудования от Paul Gill (Покупка печатной копии у Amazon)

,

Испытание сопротивления изоляции мегомметра

Хорошее сопротивление изоляции?

Как вы знаете, хорошая изоляция имеет высокое сопротивление, а плохая изоляция - относительно низкое сопротивление. Фактические значения сопротивления могут быть выше или ниже в зависимости от таких факторов, как температура или содержание влаги в изоляции (сопротивление снижается при изменении температуры или влажности).

Megger Insulation Resistance Test Megger Insulation Resistance Test Помните, что хорошая изоляция имеет высокое сопротивление; плохая изоляция, относительно низкое сопротивление. Фактические значения сопротивления могут быть выше или ниже в зависимости от таких факторов, как температура или содержание влаги в изоляции (сопротивление снижается при изменении температуры или влажности).

Однако, ведя небольшой учет и руководствуясь здравым смыслом, вы можете получить хорошее представление о состоянии изоляции из значений, которые являются только относительными.

Измеритель изоляции Megger - это небольшой портативный прибор, который дает прямое показание сопротивления изоляции в омах или мегоммах . Для хорошей изоляции сопротивление обычно читается в диапазоне МОм .

Измеритель изоляции Megger, по сути, представляет собой измеритель сопротивления высокого диапазона (омметр) со встроенным генератором постоянного тока.Этот измеритель имеет специальную конструкцию с катушками тока и напряжения, что позволяет считывать истинные омы напрямую, независимо от фактического приложенного напряжения.

Этот метод неразрушающий; то есть это не вызывает ухудшения изоляции.

Figure 2 - Typical Megger test instrument hook-up to measure insulation resistance. Figure 2 - Typical Megger test instrument hook-up to measure insulation resistance. Рисунок 2 - Типичное подключение измерительного прибора Megger для измерения сопротивления изоляции.

Генератор может быть запущен вручную или работать от сети для создания высокого постоянного напряжения, которое вызывает небольшой ток через и над поверхностями испытываемой изоляции ( Рис.2 ). Этот ток (обычно при приложенном напряжении 500 В или более) измеряется омметром, который имеет шкалу индикации.

На рис. 3 показана типичная шкала, которая показывает увеличение значений сопротивления слева направо до бесконечности или слишком высокое сопротивление для измерения.


Что такое «хорошая» изоляция?

Каждый электрический провод на вашем предприятии, будь то двигатель, генератор, кабель, выключатель, трансформатор и т. Д., Тщательно покрыт какой-либо электрической изоляцией.Сам провод обычно медный или алюминиевый, который, как известно, является хорошим проводником электрического тока, который питает ваше оборудование. Изоляция должна быть противоположна проводнику: она должна сопротивляться току и удерживать ток на своем пути вдоль проводника.

Чтобы понять тестирование изоляции, вам не нужно углубляться в математику электричества, но одно простое уравнение - закон Ома - может быть очень полезно для оценки многих аспектов. даже если вы уже сталкивались с этим законом, было бы неплохо рассмотреть его в свете испытаний изоляции.

Цель теста мегомметра

Назначение изоляции вокруг проводника во многом похоже на назначение трубы, несущей воду, и закон электричества Ома легче понять по сравнению с потоком воды. В Рисунок 1 мы показываем это сравнение. Давление на воду из насоса вызывает поток вдоль трубы ( , рис. 1а ). Если бы в трубе возникла утечка, вы бы потеряли воду и потеряли бы давление воды. С электричеством напряжение подобно давлению насоса, заставляя электричество течь вдоль медного провода ( Рис.1б ).

Как и в водопроводной трубе, существует некоторое сопротивление потоку, но оно намного меньше вдоль провода, чем через изоляцию.

Figure 1 - Comparison of water flow (a) with electric current (b) Figure 1 - Comparison of water flow (a) with electric current (b) Рисунок 1 - Сравнение потока воды (а) с электрическим током (б)

Здравый смысл говорит нам, что чем больше у нас напряжения, тем больше будет ток. Также, чем ниже сопротивление провода, тем больше ток при том же напряжении. На самом деле, это закон Ома, который выражается так в форме уравнения:

e = I x R

где
e = напряжение в вольтах
I = ток в амперах
R = сопротивление в омах

Обратите внимание, однако, что ни одна изоляция не является идеальной (то есть имеет бесконечное сопротивление), поэтому некоторое электричество течет вдоль изоляции или через нее к земле.Такой ток может составлять только одну миллионную ампер (один микроампер), но он является основой оборудования для испытаний изоляции. обратите внимание также, что более высокое напряжение имеет тенденцию вызывать больший ток через изоляцию.

Этот небольшой ток, конечно, не повредит хорошей изоляции, но будет проблемой, если изоляция ухудшится. Теперь, чтобы подвести итог нашего ответа на вопрос «что такое« хорошая »изоляция?»

Мы видели, что, по сути, «хорошо» означает относительно высокое сопротивление току.Используемый для описания изоляционного материала, «хороший» также будет означать «способность поддерживать высокое сопротивление». Таким образом, подходящий способ измерения сопротивления может сказать вам, насколько «хорошая» изоляция. Кроме того, если вы проводите измерения через регулярные периоды, вы можете проверить тенденции к его ухудшению (подробнее об этом позже).


Что делает изоляцию испортиться?

Когда ваша электрическая система и оборудование вашего завода новые, электрическая изоляция должна быть на высшем уровне. Кроме того, производители проводов, кабелей, двигателей и т. Д. Постоянно совершенствуют свою изоляцию для услуг в промышленности.тем не менее, даже сегодня изоляция подвержена многим эффектам, которые могут привести к ее разрушению - механическим повреждениям, вибрации, чрезмерному нагреву или холоду, грязи, маслам, едким парам, влаге от процессов или просто влажности в душный день.

В различной степени эти враги изоляции со временем работают - в сочетании с существующими электрическими напряжениями. По мере образования штифтовых отверстий или трещин влага и посторонние вещества проникают сквозь поверхности изоляции, обеспечивая низкое сопротивление току утечки.

После запуска разные враги стремятся помогать друг другу, пропуская избыточный ток через изоляцию . Иногда падение сопротивления изоляции происходит внезапно, например, при затоплении оборудования. Обычно, однако, он падает постепенно, давая много предупреждений, если проверяется периодически. Такие проверки позволяют провести плановое восстановление до отказа в обслуживании.

Если нет проверок, например, двигатель с плохой изоляцией может не только опасно прикасаться при подаче напряжения, но и подвергаться выгоранию.То, что было хорошей изоляцией, стало частичным проводником.

Ресурс: Справочник Megger

,

Измерители Изоляции | Instrumart

Мегомметры, иногда называемые тестерами изоляции или, неофициально, мегомметрами, представляют собой электрические счетчики, используемые для определения состояния изоляции. на проводах и обмотках двигателя. Мегомметры вводят заряд высокого напряжения и постоянного тока (постоянного тока) и измеряют сопротивление для определения тока утечка и выявление неисправной или поврежденной изоляции, которая может привести к дуговым повреждениям, разрывам цепей и риску поражения электрическим током и / или пожара.Обычно используя Мегомметр для проверки изоляции как в новых установках, так и в рамках программы технического обслуживания - разумный способ обеспечить безопасность ваших цепей.

Изоляция проводов, кабелей и обмоток двигателя служит для защиты провода и отделения его от других проводов. Случайное касание двух проводников провода могут привести к повреждению дуги. Изоляция, однако, начинает ухудшаться с того момента, как она изготовлена, и с возрастом ее изоляционные свойства снижаются.Воздействие экстремальных условий окружающей среды и / или химического загрязнения ускоряет этот процесс. Мегомметры позволяют быстро и легко проверить определить повреждение изоляции до того, как оно приведет к условиям, которые могут повредить дорогое оборудование, привести к незапланированному отключению или создать угрозу личной безопасности.

Как работают мегомметры

Мегомметры - это просто омметры большой емкости, способные создавать постоянное напряжение от внутренней батареи.Уровень сопротивления, необходимый для испытания изоляции и обмотки двигателя намного выше, чем обычно на мультиметрах или стандартных омметрах. В зависимости от стандартов, допустимых сопротивление изолятора значения обычно составляют от 1 до 10 МОм (миллионы Ом).

Мегомметры должны иметь возможность генерировать напряжения в диапазоне от 50 до 15 000 вольт для точного измерения таких высоких сопротивлений. Небольшой внутренний генератор, либо ручной коленчатый или с внутренним двигателем, используется для создания этого напряжения.Напряжение подается при очень слабом токе, чтобы не повредить чувствительное оборудование или быть опасным для тестера.

При испытаниях с помощью мегомметра низкие значения сопротивления указывают на утечку тока, что свидетельствует о нарушении изоляции.

Хотя ценные инструменты, мегомметры также имеют ограничения. При использовании мегомметров важно помнить следующее:

  • Высокое напряжение, создаваемое этими приборами, следует всегда учитывать при испытании электрооборудования.
  • Испытательное напряжение мегомметра не должно превышать рабочее напряжение испытываемого оборудования с слишком большим запасом, поскольку это может привести к необратимому повреждению.
  • Несмотря на то, что они выявляют проблемы с изоляцией, мегомметры не указывают точное место утечки тока.
  • Никогда не используйте тестер изоляции, если обмотки двигателя находятся под вакуумом.

Использование мегомметра

Проверка сопротивления изоляции дает числовое значение для представления состояния изоляции проводника и внутренней изоляции электрооборудования.Но как мы можем прийти к этому значению и что означает это число?

Во время тестирования высокое постоянное напряжение, генерируемое мегомметром, приведет к тому, что небольшой ток протечет через проводник и изоляцию. Количество тока зависит от величины приложенного напряжения, емкости системы, общего сопротивления и температуры материала. В общем, чем выше ток, чем ниже сопротивление. Значение сопротивления изоляции, отображаемое на счетчике, является функцией следующих трех независимых субтоков.

1. Ток проводящей утечки: Ток проводимости - это небольшое количество тока, которое обычно протекает через изоляцию, между проводниками или от проводник на землю. Этот ток увеличивается по мере разрушения изоляции и становится преобладающим после исчезновения тока поглощения. Потому что это довольно устойчиво и не зависит от времени, это наиболее важный ток для измерения сопротивления изоляции.

2. Ток утечки емкостной зарядки: Когда два или более проводника идут параллельно друг другу, они действуют как конденсатор.Из-за этого емкостного В результате ток утечки протекает через изоляцию проводника. Этот ток длится всего несколько секунд, когда подается постоянное напряжение, и падает после изоляция заряжена до полного испытательного напряжения. В оборудовании с низкой емкостью емкостный ток выше, чем ток утечки, но это рассеивается очень быстро. При использовании оборудования с высокой емкостью ток утечки при емкостной зарядке может длиться очень долго. По этой причине важно позволить чтению уладиться перед записью.

3. Ток утечки при поляризации поглощения: Ток поглощения вызван поляризацией молекул в диэлектрическом материале. В оборудование с низкой емкостью, ток высокий в течение первых нескольких секунд и медленно уменьшается почти до нуля. При работе с оборудованием с высокой емкостью или мокрым и загрязненная изоляция, не будет никакого снижения тока поглощения в течение длительного времени

Мегомметр Тесты

Мегомметры обычно используются для тестирования как после установки, так и в рамках программы профилактического обслуживания.Проверочные испытания проводятся для новых установки для обеспечения правильной установки и целостности проводников. Это быстрый и простой тест, часто называемый тестом «go / no go», так как он тестирует кабель системы для ошибок обслуживания, неправильной установки, серьезной деградации или загрязнения. Установка проходит проверку, если не происходит поломка.

Проверочные испытания включают подачу одного напряжения, обычно от 500 до 5000 вольт, в течение примерно одной минуты. Идея состоит в том, чтобы подчеркнуть изоляцию выше нормальной работы напряжения для того, чтобы обнаружить тонкие слабые места в изоляции.Обычно это составляет от 60 до 80% заводского испытательного напряжения. Пробные испытания могут выполняться на оборудовании любой емкости.

Тесты на профилактическое обслуживание выполняются на существующем оборудовании и предоставляют важную информацию о настоящем и будущем состоянии проводников, генераторов, трансформаторы и моторы. Как и в случае любого режима профилактического технического обслуживания, сравнение результатов, полученных с течением времени, поможет при планировании диагностических и ремонтных работ, что сократит время простоя от непредвиденных сбоев.

Ниже перечислены наиболее часто применяемые диагностические тесты технического обслуживания, выполняемые с помощью мегомметра:

Испытание сопротивления изоляции (ИК)

Испытание сопротивления изоляции является самым простым испытанием, проводимым с помощью мегомметра. Это кратковременное испытание, при котором испытательное напряжение подается в течение примерно одного минута. Величина приложенного напряжения рассчитывается по формулам испытательного напряжения постоянного тока.

При интерпретации результатов испытаний оборудование, рассчитанное на напряжение 1000 В или ниже, должно иметь показание 1 МОм или более.Для оборудования с номиналом выше 1000 вольт ожидается сопротивление должно увеличиться до одного МОм на 1000 вольт. Пожалуйста, проконсультируйтесь с производителем оборудования для приемлемых значений и процедур испытаний.

По сравнению с результатами предыдущих испытаний ожидается, что сопротивление изоляции будет немного ниже, чем ранее записанные значения. Это нормальный признак старение изоляции. Более резкие нижние значения будут указывать на нарушение изоляции или предупреждение о проблемах в будущем.Любые значения ниже стандартных минимумов или внезапные отклонения от предыдущих значений должны быть исследованы.

Важно отметить, что испытание на сопротивление изоляции является чувствительным к температуре. Когда температура повышается, ИК снижается, и наоборот. Сравнивать новые показания с предыдущими показаниями, они должны быть скорректированы до базовой температуры, обычно, 20 ° C или 40 ° C. Таблицы доступны для коррекции температуры. Общее эмпирическое правило заключается в том, что ИК изменяется в два раза при каждом изменении на 10 ° C.

Тест ступенчатого напряжения

Шаговое тестирование напряжения включает тестирование сопротивления при различных настройках напряжения. Испытательное напряжение подается на некоторое время, около минуты, при увеличении шаги и тестовое значение записывается. Если изоляция в хорошем состоянии, значение сопротивления должно оставаться примерно постоянным при увеличении напряжения. Если изоляция повреждена и проколоты, трещины или другие физические повреждения или загрязнения, он будет испытывать увеличение тока, особенно при более высоких напряжений.Это проявится в снижении сопротивления изоляции. Если тестирование обнаруживает значительное падение значений сопротивления, скажем, выше 25%, возраст следует ожидать ухудшения или повреждения изоляции.

Тесты ступенчатого напряжения не зависят от материала изоляции, емкости оборудования и влияния температуры. Тест идеально подходит для выявления проблем, которые были идентифицированные по испытанию сопротивления изоляции.

Испытание на диэлектрическое поглощение / сопротивление времени

Тест на диэлектрическое поглощение, также называемый испытанием на временную стойкость, сравнивает

.

Отправить ответ

avatar
  Подписаться  
Уведомление о