Как из постоянного тока сделать переменный схема: Способы преобразования постоянного напряжения в переменное

Содержание

Способы преобразования постоянного напряжения в переменное

Эйси в диси и диси в эйси) - преобразования постоянного тока в переменный и наоборот.

Источники тока и напряжения - это розетки или батарейки на бытовом уровне. На более продвинутым уровне познания электричества для получения тока и напряжения применяются другие варианты.

И для определенных целей может пригодится как ток постоянной величины, так и ток переменной величины. Поэтому важно уметь преобразовывать один во второй без существенных потерь.

Для преобразования постоянного тока в переменный используется инвертор - устройство, предназначенное для получения из постоянного тока одной величины переменный ток другой величины.

Для преобразования переменного тока в постоянный используется выпрямление формы синусоиды до пульсирующего значения, или до формы прямой. Для этих целей служат - выпрямительные диоды, выпрямители, схемы выпрямления, диодные мосты - как бы это всё об одном и том же, но есть нюансы.

Выпрямительный диод - полупроводник, принцип которого на википедии сравнивают с действием обратного клапана (обратный клапан кстати встречается в аквариумистике в схеме компрессора), "амперка" же сравнивает данный радиокомпонент с ниппелем (как у камеры авто или велосипеда). Так вышеприведенные системы пропускают в одном направлении воду или воздух, выпрямительные же диоды работают с потоком электронов.

Назначение выпрямительного диода в преобразовании переменного тока в постоянный (выпрямлении).

Выпрямитель - устройство, преобразующее переменный ток в постоянный пульсирующий. Может быть однополупериодный, двухполупериодный; однофазный, трехфазный, многофазный; диодный (мостовой), тиристорный (используется для изменения величины мощности выпрямленного сигнала).

Схемы выпрямления - различные схемы, на входе у которых переменный ток, а на выходе различный выпрямленный. Самыми популярными являются: схема Ларионова, схема Греца, схема Миткевича. И опять же 1-,2-х полупериодные; 1-, 3-х фазные и их сочетания.

Диодный мост - специальное устройство, состоящее из диодов, которые собраны в определенной последовательности. Можно сделать своими руками, предварительно рассчитав, или же купить готовый по требуемым параметрам.

Также особо важную роль в выпрямлении берут на себя сглаживающие фильтры - различные индуктивные и емкостные фильтры, используемые в схемах выпрямления для получения из тока пульсирующего ток постоянный.

Вот такие основные способы преобразования постоянки в переменку и наоборот. Далее у меня в планах более подробно описать изложенное в этом материале, но в других статьях.

Сделай сам простейший инверт без транзисторов своими руками

Вам нужно всего два компонента, чтобы собрать простейший инвертор, преобразующий постоянный ток 12 В в 220 В переменного тока.

Абсолютно никаких дорогих или дефицитных элементов или деталей. Все можно собрать за 5 минут! Даже паять не надо! Скрутил проволокой и все.

Что понадобиться для инвертора?


  • Трансформатор от приемника, магнитофона, центра и т.п. Одна обмотка сетевая на 220 В, другая на 12 В.
  • Реле на 12 В. Такие много где используются.
  • Провода для подключения.
  • Нагрузка в виде лампочки.



Сборка инвертора


Все сводиться к тому, чтобы подключить реле и трансформатор следующим образом. Первым делом на сетевую обмотку трансформатора накидываем нагрузку в виде светодиодной лампочки - это будет выход инвертора.
Затем низковольтную обмотку подключаем параллельно реле. Теперь один контакт идет на питание к аккумулятору, а второй подключаем к другому контакту аккумулятора, но только через замкнутый контакт реле. Плюс или минус значения не имеет.



Все! Ваш инвертер готов! Супер просто!
Подключаем к аккумулятору - он у нас в роли источника на 12 В и лампа на 220 В начинает светиться. При этом вы слышите писк реле.


Как же работает этот инвертер?


Все очень просто: когда вы подключаете питание все напряжение идет через замкнутые контакты на реле. Реле срабатывает и контакты размыкаются. В результате питание реле отключается и оно приводит контакты обратно на замкнутые. В результате чего цикл повторяется. А так как параллельно реле подключен повышающий трансформатор, мощные импульсы постоянного включения-выключения подаются ему и преобразуются в переменный высоковольтный ток. Частота такого преобразователя колеблется в пределах 60-70 Гц.
Конечно, такой инвертор не долговечен - рано или поздно реле выйдет из строя, но не жалко - оно стоит копейки или вообще бесплатно, если взять старое. А выходное напряжение по роду тока и разбросу просто ужасно. Но этот простейший преобразователь может вас выручить в какой-нибудь серьезной ситуации.

Смотрите видео изготовления инвертора


Как получить постоянное напряжение из переменного

Осциллограмма постоянного напряжения

Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток)  –  это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в  однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный  трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.

Но как же   нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор.

  А вот так он должен подключаться к диодному мосту:

В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Зависимость пульсаций напряжения от емкости конденсатора

Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:

Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр. Его емкость 25,5 наноФарад или 0,025микроФарад.

Цепляем его к диодному мосту по схеме выше

И цепляемся осциллографом:

Смотрим осциллограмму:

Как вы видите, пульсации все равно остались.

[quads id=1]

Ну что же, возьмем конденсатор емкостью побольше.

Получаем 0,226 микрофарад.

Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.

А вот собственно и осциллограмма

 

Не… почти, но все равно не то. Пульсации все равно видны.

Берем наш третий конденсатор. Его емкость 330 микрофарад.  У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.

Цепляем его к диодному мосту снимаем с него осциллограмму.

А вот собственно и она

Ну вот. Совсем ведь другое дело!

Итак, сделаем небольшие выводы:

 – чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.

 – чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд?  Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт?  А вот и не угадали!  Со вторичной обмотки трансформатора мы будем получать действующее напряжение.

где

UД – действующее напряжение, В

Umax – максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Кстати,  у меня получился 17 Вольтовый источник постоянного напряжения, так как у  трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Ну и напоследок, чтобы лучше запомнилось:

 

Показываем на примере в видео:

Простой преобразователь постоянного напряжения 12В в переменное 220В

Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть.

Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (или по западной терминологии DC-AC преобразователь). На рис.1 и 2 показаны две основные схемы таких преобразователей.

Принципиальная схема

В схеме на рис.1 используются четыре мощных транзистора VT1...VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4.

Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4.

Рис. 1. Принципиальная схема преобразователя постоянного напряжения 12В в переменное 220В.

Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2.

В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.

Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе.

На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8.

От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго - через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1...VT4 использовать транзисторы с высоким коэффициентом передачи тока ("супербета"), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.

В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку.

Рис. 2. Схема выходной части импульсного преобразователя напряжения на двух мощных транзисторах.

Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.

Рис. 3. Схема сигнализатора разряда аккумуляторной батареи.

Детали и налаживание

Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:

Т(ч) = (0,7WU)/P

где W - емкость аккумулятора, Ач; U - номинальное напряжение аккумулятора, В; Р - мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85...0,9.

Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы составит 10...12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.

Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.

В таблице: S - площадь сечения магнитопровода; W1, W2 - количество витков первичной и вторичной обмоток; D1, D2 - диаметры проводов первичной и вторичной обмоток.

Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.

Если использовать в качестве мощных транзисторов VT1...VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее.

Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора.

При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность - 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.

Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках.

Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит.

Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром).

Этот конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ.

При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U.

Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02...0,05, поэтому КПД преобразователя снижается примерно на 2...5%.

Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3.

Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает.

Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает "пищать". Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.

После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В.

Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.

В. Д. Панченко, г.Киев, Украина.

Преобразование переменного тока в постоянный

Электрический ток протекает в различных средах: металлах, полупроводниках, жидкостях и газах. При этом он может быть постоянным или переменным. В статье рассмотрим отдельно постоянный и переменный ток, а также преобразование переменного тока в постоянный.

Постоянный ток и его источники

У постоянного тока величина и направление не изменяются с течением времени. На современных приборах он обозначается буквами DC — сокращением от английского Direct Current (в дословном переводе – прямой ток). Его графическое обозначение:

Источниками постоянного тока являются батарейки и аккумуляторы. На нем работают все полупроводниковые электронные устройства: мобильные телефоны, компьютеры, телевизоры, спутниковые системы. Для питания этих устройств от сети переменного тока в их входят блоки питания. Они понижают напряжение сети до нужной величины и преобразуют переменный ток в постоянный. Зарядные устройства для аккумуляторов тоже питаются от сети переменного тока и выполняют те же функции, что и блоки питания.

Переменный ток и его параметры

У переменного тока направление и величина циклически изменяются во времени. Цикл одного полного изменения (колебания) называется периодом (T), а обратная ему величина – частотой (f). Буквенное обозначение переменного тока – АС, сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:

̴

После этого знака указывается напряжение, иногда – частота и количество фаз.

Переменный ток характеризуется параметрами:

ХарактеристикаОбозначениеЕдиница измеренияОписание
Число фазОднофазный
Трехфазный
НапряжениеUвольтМгновенное значение
Амплитудное значение
Действующее значение
Фазное
Линейное
ПериодТсекундаВремя одного полного колебания
ЧастотаfгерцЧисло колебаний за 1 секунду

Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.

Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3).

Графики напряжений трехфазного переменного тока

Напряжение между фазами называется линейным, а между фазой и нулем – фазным, оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.

Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением. Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения. Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.

Характеристики трехфазного тока

Достоинства и недостатки переменного напряжения

Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?

При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:

Мощность, которую передается по линии, равна:

Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.

Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.

Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.

Преобразование переменного тока в постоянный и наоборот

Процесс получения из переменного тока постоянного называется выпрямлением, а устройства – выпрямителями. Основная деталь выпрямителя – полупроводниковый диод, проводящий ток только в одном направлении. В результате выпрямления получается пульсирующий ток, меняющий со временем свою величину, но не изменяющий знак.

Затем пульсации устраняют при помощи фильтров, простейшим из них является конденсатор. Полностью пульсации устранить невозможно, а их конечный уровень зависит от схемы выпрямителя и качества фильтра. Сложность и стоимость выпрямителей зависит от величины пульсаций на выходе и от максимальной мощности на выходе.

Схема простейшего выпрямителяГрафики работы выпрямителя

Для преобразования в переменный ток используются инверторы. Принцип их работы состоит в генерации переменного напряжения с формой, максимально приближенной к синусоидальной. Пример такого устройства – автомобильный инвертор для подключения к бортовой сети бытовых приборов или инструмента.

Чем качественнее и дороже инвертор, тем больше его мощность или точнее выдаваемое им напряжение приближается к синусоиде.

Оцените качество статьи:

Преобразователь напряжения своими руками. Как сделать простой преобразователь напряжения своими руками. Виды преобразователей напряжения. Как сделать инвертор и выпрямитель своими руками.

Высокая продуктивность переменного тока, в отличие от постоянного, подтверждается на протяжении длительного времени не только теоретическим способом, но и практическим. Однако иногда возникают некоторые трудности, когда есть доступ к постоянному току, а переменный добыть невозможно. Именно в таких ситуациях возникает идея о создании преобразователя напряжения для дома.

Типы электрического тока, их отличие

По сути, электрический ток – это направленное перемещение электрически заряженных частичек, спровоцированное влиянием электрического поля. В электролитах они называются ионами (анионы и катионы), в проводниках и полупроводниках такими частичками являются электроны.

Среди общего понимания сути электричества выделяют отдельное направление, которое называется ток смещения. Его ход определяется в процессе заряда емкости, иначе говоря, в трансформации разницы потенциалов между обкладками. Ток проходит сквозь конденсатор, однако в этом месте никакого перемещения частиц не происходит.

В природе существует 2 вида тока:

  • во время действия постоянного тока происходит колебание его величины, но при этом он не видоизменяет своего знака на протяжении длительного времени;
  • переменный ток может время от времени изменяться по своей величине и по своему знаку. В этом виде тока следует вычленить два полупериода – отрицательный и положительный. Все, что выше нулевого уровня принадлежит к положительному полупериоду, а ниже – к отрицательному.

Что такое преобразователь напряжения, его назначение, функция

Преобразователем электрической энергии называется электротехнический прибор, который рассчитан на преобразование величин электрического тока (частоты, напряжение, количество фаз, виды сигнала). Для конструкции преобразователя широко применяются полупроводниковые приборы, так как они гарантируют высокий коэффициент полезного действия.

Преобразователи напряжения появились почти одновременно с генераторами электрического тока, так как сразу стало понятно, что следует использовать разные параметры напряжений для определенного типа устройства.

С помощью трансформатора происходит преобразование переменного тока, поэтому существуют повышающие и понижающие преобразователи. Этот процесс выполняется по причине промежуточной конверсии постоянного напряжения в переменное.

Виды преобразователя напряжения

Преобразователи напряжения делятся на два основных вида – это выпрямители и инверторы. Соответственно первые переменный ток преобразуют в постоянный, а вторые – постоянный ток в переменный.

В быту преобразователи используются практически повсеместно, начиная от дросселей, зажигающих ДРЛ, ДРИТ, ДНАТ и подобные им лампы уличного или тепличного освещения.

Также устройства обратного действия применяются для того, чтобы была возможность использовать бытовые приборы, которые работают от сети переменного тока, при отсутствии постоянного его источника (например, автомобильный инвертор). Ниже вы сможете узнать о том, как сделать преобразователь напряжения.

Характеристика видов преобразователя напряжения:

  1. Инвертор – это прибор для изменения постоянного тока в переменный с последующим повышением напряжения или без него. Как правило, инвертор представляет собой распределитель периодического тока, который по внешнему виду приближен к синусоиде. При этом на выходе можно принимать ток с разными параметрами, но это только в теории. Тем не менее тип электричества на выходе совершенно не зависит от того, что на входе. С помощью этого преобразователя можно получить ток разного напряжения и разной частоты, так как он автоматически устанавливает уровень от нуля до максимума.
    Мощность преобразователя напряжения измеряется в ваттах или киловаттах. Для него определяется исходная мощность, когда он работает в обычном режиме, и максимальная, которая больше в 2 раза, в пусковом режиме. Также очень важно, чтобы это устройство имело защитную функцию от короткого замыкания, перегрузки, перенапряжения и перегрева. В качестве дополнения инвертор должен иметь встроенный экран, розетки и приспособления для подзарядки аккумуляторов от сети. Помимо этого, подобный трансформатор, который выполняет роль преобразователя, создает полную изоляцию между входящими и выходящими цепями. Это содействует повышению электрической безопасности, а значит сокращает наличие проблем во время планирования систем.
  2. Выпрямитель – это полупроводниковый прибор для изменения энергии переменного потока электричества в постоянный. Необходимость применения выпрямителя встает в том случае, когда для потребителя постоянного тока нужно временное питание от ресурса с переменным током, например, в бытовой сети. Тогда его ставят в качестве проводника от переменного к постоянному. Чаще всего этот вид преобразователя применяется в зарядных устройствах для ноутбуков и телефонов, в блоках питания для стационарного компьютера, на подстанциях для электрического транспорта, в приборе бесперебойного питания и т.д. Выпрямитель, в разных вариантах устройства, отделяет или переворачивает одну из волн переменного тока, создавая поток однотипным. Схемы конструкции выпрямителя напряжения можно разделить на однофазные, трёхфазные.

Преобразователи напряжения своими руками

При наличии правильных схем в домашних условиях можно собрать любое устройство, в том числе выпрямитель и инвертор. В этом случае нужно грамотно применить все полученные знания и сделать преобразователь напряжения своими руками.

Создание простого преобразователя напряжения своими руками

Для повышающего преобразователя напряжения вам понадобятся несколько доступных по цене компонентов.

Рекомендации для создания инвертора:

  1. Используйте обычный мультивибратор в качестве распределителя. В отличие от других современных высокоточных распределителей на основе микросхем, мультивибратор находится на несколько ступеней ниже, т.е. слабее. Однако для применения инвертора среди широких масс, он вполне подходит. Функционирование мультивибратора является стабильным, поэтому довольно редко случаются неполадки при входном напряжении, а также при жестких погодных условиях.
  2. Приобретайте уже собранный трансформатор от UPS, объем сердечника которого дает возможность сбросить около 300 ватт входной мощности.
  3. Этот трансформатор состоит из двух исходных обмоток, каждая на 7 В, а также сетевую обмотку на 220 В. Провод первичной обработки должен составлять не больше 2,5 мм. Схема преобразователя напряжения представлена ниже.

Единственным недостатком этой схемы является отсутствие защиты на входе и выходе электрического тока, поэтому при возникновении короткого замыкания и перезагрузки, полевые ключи могут начать перегреваться, и длиться это будет до тех пор, пока они не выйдут из строя.

Однако достоинств в ней достаточно много:

  • нетрудный ремонт;
  • минимальные финансовые затраты;
  • небольшой размер платы;
  • функционирование даже при плохой погоде;
  • широкое наличие используемых элементов;
  • 50 Гц на выходе.

Создание простого выпрямителя напряжения своими руками

Схема абсолютно любого понижающего преобразователя напряжения (выпрямитель) состоит из 3 главных компонентов:

  1. выпрямительный элемент, который имеет только одну ограниченную проводимость. Она служит для изменения напряжения из переменного в импульсный;
  2. силовой трансформатор является прибором для повышения и понижения напряжения сети, к которой он подключен, и электрической развязки сети от аппаратуры;
  3. устройство для фильтрации импульсного напряжения.

Рекомендации для создания выпрямителя:

  1. Как правило, основой для всех подобных приборов является трансформатор. Он бывает переносным и стационарным (огромная постройка для стабилизации высокого напряжения, которое подается с электростанции). В основе любого трансформатора лежат две катушки для создания индуктивной электромагнитной связи. Если объяснять этот процесс простыми словами, то ток дается сначала на 1 из 2-х катушек, заряжая ее, после этого возникает нужное электромагнитное поле, передающее заряд на 2 катушку, откуда электричество идет дальше.
  2. Для корректировки напряжения используйте устройство, которое называется реостат.
  3. Настраивать его своими руками несподручно, поэтому лучше поставить к нему небольшую микросхему, которая способна стабилизировать напряжение. На ней будет фиксироваться направление движения тока после того, как он выйдет из трансформатора.
  4. Приобретите 12-16 конденсаторов равной вместимости для выведения тока из трансформатора. Они собирают ток в одном месте и выдают его более равномерным.
  5. Присоедините конденсаторы к реостату. Для получения более мягкого выравнивания следует установить несколько реостатов в параллели.
  6. После объединения в один поток на этапе конденсаторов, разделите цепь на несколько отдельных веток, которые подключаются к реостату. Для этого используйте формулу R/количество реостатов, согласно которой каждый реостат имеет сопротивление в определенное количество Ом.
  7. После этого цепь объединяется заново в один поток и отводится на диод, который подключен к обычной домашней розетке.
  8. Все заданные действия принадлежат к проводу с фазой, его нужно просто подсоединить к розетке.

Этот способ сборки обычного выпрямителя является достаточно устарелым, поэтому для повышения эффективности существует прибор с функцией защитного отключения (УЗО). В нем ток также идет от трансформатора на УЗО, а ноль соответственно подключается к нему. В том случае, если произойдет скачок напряжения, то УЗО автоматически отсоединит цепь, и бытовая техника не получит никаких повреждений. После исправления неполадок в сети, трансформатор будет продолжать работать дальше в обычном режиме.

Если вы хотите собрать понижающий преобразователь напряжения, то вам понадобится обычный трансформатор, вторая катушка которого обмотана более толстой медной проволокой. В противном случае трансформатор выйдет из строя сразу же.

В случаях слишком высокого напряжения необходимо использовать понижающий трансформатор. Собрать его можно по аналогии, за тем исключением, что обмотку на второй катушке следует сделать из более толстой проволоки, иначе все устройство сгорит. Существуют также универсальные приборы понижающе-повышающего типа.

Самодельные преобразователи напряжения может сделать даже школьник. Это простые устройства недорогой, но качественной сборки. Однако не стоит забывать о мерах безопасности в работе с электричеством.

Напряжение преобразование постоянного в переменное


    Метод преобразования постоянного напряжения в переменное сравнительно прост и является наиболее современным методом измерения слабых токов. Простейшим преобразователем постоянного напряжения в переменное является ручное переключение. Такой метод применяют в компенсационных баллистических схемах (рис. IX.6). Конденсатор попеременно заряжают от измеряемого источника и разряжают через сеточное сопротивление [c.288]

    Назначением нуль-индикатора сигнализатора является сигнализация момента изменения полярности входного сигнала, т. е. момента, когда величина сигнала проходит через нуль. Таким образом нуль-индикатор является фазочувствительным устройством с высокоомным входом и релейным выходом. Применяют две разновидности схем электронных нуль-индикаторов схемы, построенные по принципу усиления постоянного тока, II схемы с преобразованием постоянного напряжения в переменное и последующим усилением. [c.155]

    Система контроля и зажигания пламени. Состоит из термоэлемента, зажигающего элемента и усилителя. На входе усилителя стоит реле РП-4 для преобразования постоянного напряжения от термопары в переменное. Зажигание пламени водорода производится тумблером включено , а контроль пламени по загоранию сигнальных лампочек да , нет , [c.180]

    Электронные нуль-индикаторы, построенные по принципу преобразования постоянного напряжения в переменное с последующим усилением при помощи обычных усилителей переменного тока, обладают большими преимуществами и получили весьма широкое распространение. Основные их достоинства-отсутствие дрейфа нулевой точки, простота наладки и регулировки, надежность, возможность замены ламп без дополнительной регулировки. [c.155]

    Анализ рассмотренных характеристик позволяет сделать вывод о возможности применения усилителя постоянного тока для изме--рений слабых световых потоков. На практике наибольшее распространение получили электрометрические усилители прямого усиления (в частности, многокаскадные усилители с коррекцией в цепи, отрицательной и положительной обратной связи) и с преобразованием постоянного напряжения в переменное [85].[c.55]

    Предварительное преобразование постоянного напряжения рассогласования в переменное электромеханическим преобразователем с дальнейшим усилением ламповым усилителем переменного тока применено в регуляторах как периодического действия [27], так и непрерывного действия [28]. Аналогичное преобразование, но с применением транзисторного усилителя переменного тока, использовано при разработке регулятора непрерывного действия [28]. [c.109]

    Усилитель, используемый для усиления термо-э. д. с. дифференциальной термопары, собран по схеме преобразования постоянного напряжения в переменное (рис. 3). Частота преобразования 30 гц. Второй и третий каскады усилителя избирательные. Полоса пропускания усилителя —1 гц, чувствительность —- 1 мкв. В качестве преобразователей постоянного напряжения в переменное и обратно используются поляризованные реле типа РП-5. Благодаря высокой избирательности и частоте преобразования, не кратной 50 гц, усилитель мало чувствителен к наводкам от электрической сети. Реле усилителя приводится в действие переменным напряжением, подаваемым от R генератора, схема которого приведена на рис. 4. [c.23]


    Мощные преобразовательные агрегаты типа двигатель—генератор постоянного и импульсного напряжения вытесняются статическими преобразователями, использующими полупроводниковые вентили — селеновые или кремниевые. Статические преобразователи состоят из силового трансформатора, выпрямительного блока, пускорегулирующей и защитной аппаратуры. С помощью силового трансформатора обеспечиваются необходимое число фаз и заданная величина напряжения. Выпрямительный блок производит преобразование переменного напряжения в постоянное,. Пускорегулирующая и защитная аппаратура позволяет включать и выключать источник, получать необходимые вольт-амперные [c.157]

    Основным элементом потенциостата является усилитель постоянного тока с преобразованием постоянного тока в переменный на входе и обратным преобразованием на выходе усилителя. Преобразование на входе осуществляется генератором (транзистор Ti), колебательный контур которого состоит из катушки индуктивности Li и емкостей стабилитронов (Дг—Дз), работающих как электрически управляемые конденсаторы-вари-конды. Напряжение разбаланса изменяет емкость стабилитронов и амплитуду генерируемого транзистором напряжения. Таким образом, на входе усилителя происходит преобразование сигнала рассогласования в соответствующее значение амплитуды генерируемого напряжения. Входное сопротивление преобразователя не ниже 10 ом. Усиление напряжения генерации про- [c.213]

    Для преобразования постоянного напряжения небаланса измерительной схемы в переменное напряжение частотой 50 гц служит преобразовательный каскад, схематически изображенный на фиг. 44. [c.92]

    Производственные автоматические рН-метры требуют очень большого усиления напряжения небаланса, и в них применяются более совершенные принципы усиления импульсов и преобразования постоянного напряжения в переменное.[c.505]

    Преобразование постоянного напряжения небаланса в переменное производится непрерывным подключением слюдяного конденсатора в цепи стеклянного электрода то к диагонали измерительной мостовой схемы, то к сетке лампы Л. В первом положении конденсатор заряжается напряжением небаланса измерительной схемы, пропорциональным измеряемой величине Е , во втором разряжается на сопротивление утечки сетки При этом на сопротивлении [c.505]

    К электродам электрофильтра должен подаваться ток высокого напряжения и постоянного направления. Для преобразования переменного тока низкого напряжения в постоянный ток высокого напряжения устанавливают специальные повыситель-но-выпрямительные электроагрегаты. Такой электроагрегат представляет собой трансформатор переменного тока, скомплектованный с механическим выпрямителем. [c.227]

    В основу прибора положена обычная компенсационная схема измерения с преобразованием постоянного напряжения разбаланса в переменное с помощью вибропреобразователя. Применяемый в данной схеме вибропреобразователь должен обладать высоким сопротивлением изоляции контактов относительно земли . Измерительным инструментом служит электронный нуль-индикатор с электронно-оптическим индикатором на выходе (рис. IX.23). [c.305]

    Датчик с усилителем. В процессе исследований был проверен вариант измерения падения напряжения на токоподводящем тросе в момент касания анода и катода с преобразованием постоянного сигнала в переменный с последующим усилением (рис. 30). В качестве преобразователя был [c.95]

    Определение электропроводности. Для определения электропроводности растворов применяют схему мостика Уитстона в специальном видоизменении Кольрауша, изображенную на рис. 10. На этом рисунке А — аккумулятор с напряжением в 4 в / — индукционная катушка для преобразования постоянного тока в переменный (постоянный ток неприменим вследствие поляризации электродов, погруженных в раствор электролита) г — сосуд с электродами (платиновыми пластинками) и с раствором, сопротивление которого г надо определить Я — известное сопротивление О — контакт, скользящий по никелиновой струне АВ, [c. 68]

    В основу прибора положена обычная компенсационная схема измерения с преобразованием постоянного напряжения разбаланса в переменное с помощью вибропреобразователя. Применяемый в дан- [c.260]

    Преобразование постоянного напряжения в переменное может быть произведено и с помощью динамиче- [c.290]

    Преобразование постоянного напряжения в переменное может быть произведено и с помощью динамического конденсатора. Емкость [c.250]

    Преобразование постоянного тока в переменный (инвертирование) может осуществляться при помощи электрических вентилей, проводимостью которых можно управлять. Для этой цели используются тиристоры. Как было показано, выпрямитель е фазовым управлением и ведомый сетью инвертор (инвертор, частота тока в котором соответствует частоте сети и > Р н) работают одинаково и любой из этих режимов может быть осуществлен в одной и той же схеме. При работе как выпрямитель устройство передает энергию в нагрузку постоянного тока. Когда оно работает как инвертор, источник постоянного напряжения нужен, чтобы создать ток в устройстве и передать мощность на сторону переменного тока, инверторный режим наступает при а = 90 -i- 180° эл. (рис. 124). Ведомый сетью (неавтономный) инвертор используется при реостатных испытаниях тепловозов с рекуперацией энергии. Подобные установки о каждым годом находят все большее распространение. [c.141]


    Важнейшим типом преобразователя энергии является автономный (независимый) инвертор, служащий для преобразования постоянного тока в переменный с заданным числом фаз, с регулируемой частотой и напряжением. Автономный инвертор — основное звено электропривода переменного тока, а следовательно, и тепловозной электрической передачи с машинами переменного тока. [c.141]

    Питание индукционного датчика 6 осуществляется от генератора 8 током определенной частоты. Преобразователь 7 служит для преобразования сигнала переменного тока, получаемого от датчика уровня 6, в сигнал постоянного тока и передачи его к потенциометру 9. Питание генератора 8 и потенциометра 9 стабилизированным напряжением осуществляется от стабилизатора 10. [c.221]

    Трудности, возникающие при создании ламповых электрометров, значительно уменьшаются, если применяется преобразование постоянных сигналов в переменные и используются усилители переменного напряжения или тока с отрицательной связью. Такие электрометры более сложны в изготовлении, но позволяют измерять токи до 10 а. Электрометры ламповые можно использовать для измерения кратковременных токов (до 0,01 сек) 143, 150]. [c.108]

    Долгое время в качестве преобразователя использовали набор калиброванных резисторов, часто называемых токоизмерительными (см. рис. 34, 38,6). Для преобразования постоянного тока выбирают в пределах от десятков Ом до десятка МОм, для преобразования переменного и импульсного тока-не более 10 кОм. В противном случае преобразователь, вносит существенный вклад в поворот суммарной фазы напряжения, и потенциостат теряет устойчивость. Эти резисторы подсоединяют в цепь ячейки подвешен-но относительно земли, тогда ИЭ соединяется с землей (см. рис. 34), либо резисторы соединяют с земляной шиной, а ячейка оказывается подвешенной относительно земли (см. рис. 38,6). Схема с заземленной ячейкой предпочтительнее с точки зрения уменьшения внешних наводок на ячейку. Схема с заземленным таким свойством не обладает. Однако при применении первой схемы усложняется задача считывания падения напряжения с токоизмерительного резистора. [c.53]

    В качестве источника питания применяются сухие элементы с напряжением 4,5у и с силой тока 150—200 тА. Для преобразования постоянного тока в переменный служит вибропреобразователь типа В-5, вторая пара контактов которого работает на выпрямление измеряемого гальванометром тока. Прибор имеет четыре поддиапазона измерений в омах  [c.152]

    Предназначен для преобразования сетевого переменного напряжения 220 В, 50 Гц в постоянное стабилизированное напряжение от 22,5 до 28,5 В с гальванической изоляцией от сети питания.[c.16]

    Для стабилизации работы электронных силоизмерителен применяются различные способы работа усилителей стабилизуется применением обратной связи вследствие нестабильности усиления малых напряжений постоянного тока (медленное изменение постоянной составляющей выходного напряжения усилителя со временем при неизменном входном напряжении, или дрейф нуля ) применяется усиление с преобразованием постоянного напряжения в переменное и усиление с помощью усилителя переменного тока изменение характеристик элемента датчика при изменении температуры помещения исключается термостатированием датчика применением компенсационной измерительной схемы для уменьшения искажающего влияния способа закрепления упругих элементов подбираются специальные конструкции опор и т. д. [c.137]

    Питание дефектоскопа производится от аккумуляторной батареи 6 в. Преобразование постоянного напряжения в переменное происходит в генераторе, собранном на германиевых триодах.[c.109]

    С помощью выпрямителей осуществляется преобразование энергии переменного тока в энергию постоянного тока. В промышленных установках применяют различные схемы выпрямления переменного тока в постоянный, каждая из которых имеет свои достоинства и недостатки. При сравнении различных схем выпрямления учитывают следующие их технические характеристики число полупроводниковых приборов, коэффициент пульсаций выпрямленного напряжения, габаритную мощность трансформатора. [c.145]

    Выпрямленное напряжение (рис. 5.6, в) имеет постоянную составляющую [/преобразовании переменного тока в постоянный переменная составляющая равна нулю. Важным показателем работы выпрямителя служит отношение амплитуды переменной составляющей к выпрямленному напряжению, называемое коэффициентом пульсации выпрямленного напряжения [c.146]

    Рассматривая вопрос об использовании топливных элементов для производства дешевой электроэнергии в больших объемах, необходимо учитывать, что в этих элементах генерируется постоянный ток низкого напряжения, преобразование которого в переменный связано с некоторыми дополнительными потерями энергии.[c.256]

    Чувствительность и стабильность нуля в электрометрических усилителях может быть повышена при использовании схем с преобразованием постоянного напряжения в переменное. С этой целью применяют электромеханические, электрическце и модуляторные преобразователи. Наиболее высокие входные сопротивления имеют -схемы с емкостным вибрационным преобразователем, его полупроводниковым аналогом — варикапом, диэлектрическим преобразователем и преобразователем на полевых транзисторах. Применение других преобразователей ограничено сравнительно невысоким входным сопротивлением и узкой полосой пропускания. [c.56]

    Пряжение. Последовательно в цепь каждой ячейки включен модулятор, преобразующий постоянный ток ячейки в переменное напряжение с частотой в 1 кгц (рис. 5-5). Полученные напряжения суммируются в про-тивофазе, и сигнал разности после соответствующего усиления по переменному току поступает на фазовый детектор. Применение единого генератора подъема напряжения и усиление разности токов ячеек после преобразования в переменное напряжение позволяют уменьшить влияние дрейфа, характерного для методов измерения на постоянном токе.[c.103]

    Разновидностью датчиков этого тина являются электростатические генераторы без подвижных частей [31, 32]. Металлическая измерительная пластинка такого датчика покрыта сегнетоэлектри-ком. Диэлектрическая проницаемость последнего периодически меняется под воздействием специального генератора переменного напряжения, и таким образом осуществляется преобразование постоянного измеряемого поля в переменное, под воздействием которого периодически меняется поляризация металлической измерительной пластины. Амплитуда тока второй гармоники в цепи нагрузки определяется величиной измеряемой напряженности поля. В такой конструкции мощность на выходе электростатического генератора поставляется за счет электрических сил, меняющих поляризацию сегнетоэлектрика [3]. [c.184]

    Генератор имеет силовой трехфазный трансформатор / типа ЗГМ-75/10 с первичным напряжением 220/380 в и вторичным линейным напряжением Уаслин.) = 8000 в. Для преобразования подводимого от трансформатора переменного тока высокого напряжения в постоянный ток высокого напряжения служит высоковольтный газотронный выпрямитель 2, собранный по двухполупериодной трехфазной схеме. В процессе преобразования переменного тока по данной схеме значение выпрямленного напряжения возрастает до 1/г=1,35 У2(лин). В генераторе ГЛ-60 установлены две включенные параллельно лампы типа Г-431. Для предотвращения возможности прохождения высокочастотных колебаний в цепь питания имеется анодный стопорный дроссель 3, емкость 7 и индуктивность И анодного контура. [c.89]

    Схемы высокочастотных установок для индукционного нагрева с электромашинными и ламповыми генераторами приведены на рис. 11.13. Установка с ламповым высокочастотным генератором состоит из блока трехфазного анодного трансформатора 1, ловышающего напряжение 220 и 380 В до 7,5—10 кВ, блока газотронов и тиратронов 2 для преобразования переменного тока в постоянный напряжением до 10—15 кВ, генераторного блока 3 преобразования постоянного тока в высокочастотные колебания с лампой Л, колебательного контура 4, состоящего из конденсаторной батареи С1, воздушного трансформатора к и индуктора И. Перед включением газотронов (тиратронов) на полное напряжение создается выдержка времени при помощи реле времени. [c.56]

    Сигнал от сосуда 3 поступает в электронный регулирующий милливольтметр 4, от которого нужная команда подается на двигатель РД-09 через редуктор, приводящий в движение ползунок ЛАТР а 5. Электрический ток, измененный ЛАТРюм по величине и преобразованный из переменного в постоянный выпрямителем 7, изменяет индуктивное сопротивление дросселя в нужную сторону и выравнивает напряжение первичной сети. [c.97]

    Преобразование постоянного напряжения в переменное может осуществляться с использованием всех типов силовых полупроводниковых ключей. За последние годы в области средних и больших мощностей до 1000 кВт начинают широко применяться инверторы на IGBT. Несмотря на более высокую стоимость по сравнению с традиционными тиристорами, они представляют разработчикам более широкие возможности формирования напряжения и тока. [c.155]


20,5: Переменный ток в сравнении с постоянным

Переменный ток

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения. Как только ток установлен, он также становится постоянным. Постоянный ток (DC) - это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) - это поток электрического заряда, который периодически меняет направление.Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке \ (\ PageIndex {1} \) показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рисунок \ (\ PageIndex {1} \): (a) Напряжение и ток постоянного тока постоянны во времени после установления тока.(b) График зависимости напряжения и тока от времени для сети переменного тока частотой 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.

На рисунке \ (\ PageIndex {2} \) показана схема простой схемы с источником переменного напряжения. Напряжение между выводами колеблется, как показано на рисунке: напряжение переменного тока определяется как \ [V = V_ {0} sin 2 \ pi ft, \ label {20.6.1} \], где \ (V \) - напряжение на время \ (t \), \ (V_ {0} \), \ (V_ {0} \) - пиковое напряжение, а \ (f \) - частота в герцах.Для этой простой цепи сопротивления \ (I = V / R \), поэтому переменного тока равно

.

\ [I = I_ {0} sin 2 \ pi ft, \ label {20.6.2} \]

, где \ (I \) - ток в момент времени \ (t \), а \ (I_ {0} = V_ {0} / R \) - пиковый ток. В этом примере считается, что напряжение и ток находятся в фазе, как показано на рисунке \ (\ PageIndex {1b} \).

Рисунок \ (\ PageIndex {2} \): разность потенциалов \ (V \) между выводами источника переменного напряжения колеблется, как показано. Математическое выражение для \ (V \) дается как \ (V = V_ {0} sin 2 \ pi ft \).

Ток в резисторе меняется взад и вперед, как и напряжение возбуждения, поскольку \ (I = V / R \). Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и тускнеет 120 раз в секунду, когда ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помахаете рукой вперед и назад между вашим лицом и флуоресцентным светом, вы увидите стробоскопический эффект, свидетельствующий о переменном токе. Тот факт, что световой поток колеблется, означает, что мощность колеблется.{2} 2 \ pi ft \), как показано на рисунке \ (\ PageIndex {3} \).

Рисунок \ (\ PageIndex {3} \): мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до \ (I_ {0} V_ {0} \). Средняя мощность равна \ (\ left (1/2 \ right) I_ {0} V_ {0} \).

Установление соединений: домашний эксперимент - светильники переменного / постоянного тока

Помашите рукой между лицом и люминесцентной лампочкой. Вы наблюдаете то же самое с фарами своей машины? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет.

Чаще всего нас интересует средняя мощность, а не ее колебания - например, у лампочки 60 Вт в настольной лампе средняя потребляемая мощность 60 Вт. Как показано на Рисунке 3, средняя мощность \ (P_ {ave} \) равна \ [P_ {ave} = \ frac {1} {2} I_ {0} V_ {0}. \ label {20.6.3} \] Это видно из графика, поскольку области выше и ниже линии \ (\ left (1/2 \ right) I_ {0} V_ {0} \) равны, но также можно доказать с помощью тригонометрических тождеств.Точно так же мы определяем средний или действующий ток \ (I_ {rms} \), а среднее значение или действующее напряжение \ (V_ {rms} \), соответственно, равным

\ [I_ {rms} = \ frac {I_ {0}} {\ sqrt {2}} \ label {20.6.4} \]

и

\ [V_ {rms} = \ frac {V_ {0}} {\ sqrt {2}}. \ Label {20.6.5} \]

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Теперь \ [P_ {ave} = I_ {rms} V_ {rms}, \ label {20.6.6} \], что дает

\ [P_ {ave} = \ frac {I_ {0}} {\ sqrt {2}} \ cdot \ frac {V_ {0}} {\ sqrt {2}} = \ frac {1} {2} I_ {0} V_ {0}, \ label {20.6.7} \]

, как указано выше. Стандартная практика - указывать \ (I_ {rms} \), \ (V_ {rms} \) и \ (P_ {ave} \), а не пиковые значения. Например, большая часть бытовой электроэнергии составляет 120 В переменного тока, что означает, что \ (V_ {среднеквадратичное значение} \) равно 120 В. Обычный автоматический выключатель на 10 А прерывает постоянный \ (I_ {среднеквадратичное значение} \) более 10 А.Ваша микроволновая печь мощностью 1,0 кВт потребляет \ (P_ {ave} = 1,0 кВт \) и так далее. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи.

Подводя итог, при работе с переменным током закон Ома и уравнения для мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения. Таким образом, для переменного тока записан закон Ома

\ [I_ {rms} = \ frac {V_ {rms}} {R}. \ Label {20.6.8} \]

Различные выражения для мощности переменного тока \ (P_ {ave} \):

\ [P_ {ave} = I_ {rms} V_ {rms}, \ label {20.{2} _ {rms} R. \ label {20.6.11} \]

Пример \ (\ PageIndex {1} \): пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети переменного тока 120 В?

Стратегия

Нам говорят, что \ (V_ {rms} \) составляет 120 В, а \ (P_ {ave} \) - 60,0 Вт. Мы можем использовать \ (V_ {rms} = \ frac {V_ {0}} {\ sqrt { 2}} \), чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение
Решая уравнение \ (V_ {rms} = \ frac {V_ {0}} {\ sqrt {2}} \) для пикового напряжения \ (V_ {0} \) и подставляя известное значение для \ (V_ {rms} \) дает \ [V_ {0} = \ sqrt {2} V_ {rms} = 1.414 \ влево (120 В \ вправо) = 170 В. \]

Обсуждение

Это означает, что напряжение переменного тока меняется от 170 В до \ (- 170 В \) и обратно 60 раз в секунду. Эквивалентное постоянное напряжение составляет 120 В.

(b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Решение

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом, \ [P_ {0} = I_ {0} V_ {0} = 2 \ left (\ frac {1} {2} I_ {0} V_ {0} \ right) = 2P_ {ave}. \] Мы знаю, что средняя мощность 60.0 Вт, и поэтому \ [P_ {0} = 2 \ left (60,0 Вт \ справа) = 120 Вт. \]

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

Зачем использовать переменный ток для распределения электроэнергии?

Большинство крупных систем распределения электроэнергии - это переменный ток. Кроме того, мощность передается при гораздо более высоком напряжении, чем 120 В переменного тока (240 В в большинстве частей мира), которые мы используем дома и на работе. Благодаря эффекту масштаба строительство нескольких очень крупных электростанций обходится дешевле, чем строительство множества небольших.Это требует передачи энергии на большие расстояния, и, очевидно, важно минимизировать потери энергии в пути. Как мы увидим, высокие напряжения могут передаваться с гораздо меньшими потерями мощности, чем низкие напряжения. (См. Рис. 4.) В целях безопасности напряжение у пользователя снижено до знакомых значений. Решающим фактором является то, что намного легче увеличивать и уменьшать напряжение переменного тока, чем постоянного, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.

Рисунок \ (\ PageIndex {4} \): Мощность распределяется на большие расстояния при высоком напряжении, чтобы уменьшить потери мощности в линиях передачи.Напряжение, генерируемое на электростанции, повышается пассивными устройствами, называемыми трансформаторами (см. Трансформаторы), до 330 000 вольт (или более в некоторых местах по всему миру). В момент использования трансформаторы снижают напряжение

Пример \ (\ PageIndex {2} \): потери мощности меньше для высоковольтной передачи

(a) Какой ток необходим для передачи мощности 100 МВт при 200 кВ?

Стратегия

Нам дано \ (P_ {ave} = 100 MW \), \ (V_ {rms} = 200 kV \), а сопротивление линий равно \ (R = 1.{2} \ left (1.00 \ Omega \ right) = 250 кВт. \]

(c) Какой процент мощности теряется в линиях электропередачи?

Решение

Процент потерь - это отношение этой потерянной мощности к общей или входной мощности, умноженное на 100: \ [% loss = \ frac {250 кВт} {100 МВт} \ times 100 = 0,250%. \]

Обсуждение

Четверть процента - приемлемая потеря. Обратите внимание, что если бы мощность 100 МВт была передана при 25 кВ, то потребовался бы ток 4000 А.Это приведет к потере мощности в линиях на 16,0 МВт, или 16,0%, а не 0,250%. Чем ниже напряжение, тем больше требуется тока и тем больше потери мощности в линиях передачи с фиксированным сопротивлением. Конечно, можно построить линии с меньшим сопротивлением, но для этого потребуются более крупные и дорогие провода. Если бы сверхпроводящие линии можно было бы экономично производить, в линиях передачи вообще не было бы потерь. Но, как мы увидим в следующей главе, в сверхпроводниках тоже есть предел.Короче говоря, высокое напряжение более экономично для передачи энергии, а напряжение переменного тока намного легче повышать и понижать, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.

Широко признано, что высокое напряжение представляет большую опасность, чем низкое. Но на самом деле некоторые высокие напряжения, например, связанные с обычным статическим электричеством, могут быть безвредными. Таким образом, опасность определяется не только напряжением. Не так широко признано, что разряды переменного тока часто более вредны, чем аналогичные разряды постоянного тока.Томас Эдисон считал, что электрические разряды более опасны, и в конце 1800-х годов создал систему распределения электроэнергии постоянного тока в Нью-Йорке. Были ожесточенные бои, в частности, между Эдисоном и Джорджем Вестингаузом и Николой Тесла, которые выступали за использование переменного тока в ранних системах распределения энергии. Преобладал переменный ток в значительной степени благодаря трансформаторам и более низким потерям мощности при передаче высокого напряжения.

ФЕТ ИССЛЕДОВАНИЯ: ГЕНЕРАТОР

Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику этих явлений, исследуя магниты и узнавая, как с их помощью загорается лампочка.

Рисунок \ (\ PageIndex {5} \): Генератор

Метод генерации постоянного тока | Matsusada Precision

Электронное устройство работает от постоянного тока

Как правило, электронные устройства работают на постоянном токе. Это характерно для бытовой техники, такой как смартфоны, ПК, телевизоры, холодильники и кондиционеры, а также для автомобильных устройств и промышленных роботов, работающих на заводах. Однако не только эти электронные устройства работают при разных напряжениях, но и внутри одного электронного устройства необходимое напряжение варьируется в зависимости от схемы.Значит, необходимо не только преобразовать переменный ток розетки в постоянный, но и преобразовать его в необходимое напряжение и подать в цепь.

Кроме того, переменный ток изменяет напряжение со временем. Преобразование переменного тока в постоянный вызовет нестабильность цепи из-за колебаний напряжения, поэтому преобразование в стабильное напряжение становится важным.

Преобразование переменного тока в стабильный постоянный

Что ж, мы представляем, как получить стабильное напряжение постоянного тока.Чтобы преобразовать мощность переменного тока, поступающую из энергосистемы компании, в мощность постоянного тока, преобразуйте напряжение с помощью трансформатора, а затем преобразуйте переменный ток в постоянный ток с помощью схемы выпрямителя. Однако, поскольку выходной сигнал схемы выпрямителя имеет форму синусоидальной волны и есть колебания напряжения, необходимо дополнительно пропустить схему сглаживания, чтобы преобразовать ее в стабильный источник питания постоянного тока.

Основные шаги для получения стабильного напряжения постоянного тока показаны на рисунке. Однако получить полностью стабильное напряжение постоянного тока невозможно.Чтобы получить стабильное напряжение постоянного тока из коммерческого источника питания, требуются дополнительные действия, и есть два способа. Один - это линейный источник питания, а другой - импульсный.

Линейный источник питания

Первый - это линейный блок питания. Резистор используется для снятия и стабилизации избыточного напряжения путем сравнения нестабильного постоянного напряжения, извлекаемого из промышленного источника питания, с опорным напряжением. Хотя это можно реализовать дешево и просто, используя только резисторы, дополнительное напряжение выделяется в виде тепла, поэтому очень важно контролировать тепло в цепи.Кроме того, его нельзя использовать в термочувствительных цепях.

Импульсный источник питания

Другой - импульсный блок питания. Ширина импульса изменяется с помощью схемы переключения, высокочастотного трансформатора, схемы выпрямителя, схемы сглаживания без резистора при сравнении нестабильного постоянного напряжения, извлекаемого из промышленного источника питания, с опорным напряжением. Хотя выделение тепла можно подавить, не используя резистор, возникает шум, поэтому его необходимо удалить.Импульсные блоки питания отличаются низким энергопотреблением по сравнению с линейными блоками питания. Это источник энергии, изначально созданный НАСА в результате космических разработок. Космический корабль не может тратить энергию в космос, где трудно отдавать тепло. Он был разработан как источник энергии для использования энергии без отходящего тепла для спутников и космических кораблей, работающих в космосе.

Основы линейного источника питания

Как было сказано в предыдущем абзаце, линейный источник питания - это метод выработки постоянного тока с одновременным снятием лишнего напряжения с источника переменного тока.Таким образом, вы можете получить только напряжение ниже оригинального. Линейные источники питания стабилизируются путем прохождения схемы управления после схемы сглаживания. В этой части он стабилизируется за счет высвобождения дополнительного текущего напряжения, которое не может быть уравновешено в сглаживающей схеме в виде тепла. В этой схеме есть два пути. Один представляет собой шунтирующий регулятор, а другой - последовательный регулятор.

Шунтирующий стабилизатор состоит из резистора (R1) и стабилитрона в качестве диода стабилизатора напряжения (ZD), включенных параллельно.Когда напряжение постоянного тока на выходе изменяется, шунтирующий регулятор сначала преобразует его в напряжение, которое должно выводиться через резистор, чтобы стабилизировать напряжение, и разбивает его на ток на выходе и избыточный ток. Избыточный ток течет к стабилитрону, где он расходуется в виде тепла. Когда входное напряжение колеблется, значение тока, выходящего из резистора, колеблется. Изменяя значение сопротивления диода постоянного напряжения, стабилизация достигается за счет того, что значение выходного тока остается постоянным.

С другой стороны, в последовательном регуляторе ток протекает через транзистор (Tr), который является элементом преобразования энергии. Колеблющееся напряжение изменяется постоянным напряжением в этом транзисторе. Он называется последовательным стабилизатором, потому что транзистор последовательно подключен к выходной стороне. В этом случае требуется опорное напряжение, чтобы транзистор колебался, чтобы поддерживать постоянное напряжение. Следовательно, схема управления подключена параллельно транзистору, который имеет ту же конфигурацию схемы, что и шунтирующий стабилизатор, как вы можете видеть на рисунке.Разница в том, что это просто транзистор, который стабилизирует напряжение путем выделения тепла.

Регуляторы серии

имеют преимущество в более низком уровне шума, пульсаций и стабильности по сравнению с шунтирующими регуляторами. В любом случае линейный источник питания имеет простую конфигурацию схемы и имеет недостаток выделения тепла, но он может недорого производить напряжение постоянного тока.

Основы импульсного источника питания

Импульсный источник питания был разработан для решения проблемы, заключающейся в том, что конструкция была простой, но при этом выделялся большой нагрев по сравнению с линейным источником питания.В структуре импульсного источника питания используется электромагнитная индукция за счет трансформатора (две катушки), который преобразует напряжение в частоту выше, чем у промышленного источника питания. Это делается путем подачи импульсов тока путем замыкания и размыкания цепи переключателем (S).

Есть два способа сделать этот импульс: ШИМ (широтно-импульсная модуляция) и ЧИМ (частотно-импульсная модуляция). ШИМ - это метод управления путем изменения ширины импульса в соответствии с величиной постоянного напряжения при сохранении постоянной частоты.Хотя пульсации меньше выходного напряжения, потребление энергии увеличивается. Также он отличается высокой отзывчивостью к нагрузке.

С другой стороны, потребление энергии может быть ниже на низких частотах, и PFM может быть выгодным, но когда реакция на колебания нагрузки медленная, пульсации будут больше. Эти характеристики обычно оцениваются, и ШИМ в основном используется в импульсных источниках питания, но ШИМ используется при небольшой нагрузке. Ну, есть два типа импульсных источников питания: управление неизолированным прерывателем и управление изолированным трансформатором.Управление прерывателем сначала преобразует нестабильное напряжение постоянного тока в напряжение переменного тока (высокой частоты) от нескольких десятков кГц до нескольких МГц, что является частотой, намного превышающей коммерческое напряжение переменного тока. С момента отключения питания он получил название «управление чоппером».

При управлении чоппером как повышение, так и понижение поддерживаются за счет использования характеристик дроссельной катушки (за счет самоиндукции), а затем стабильное напряжение постоянного тока получается за счет включения схемы управления и схемы сглаживания.

С другой стороны, при управлении трансформатором взаимная индукция высокочастотного трансформатора играет ту же роль, что и дроссельная катушка системы прерывателя.

Соответствующие технические знания

Рекомендуемые товары

Продукты

Matsusada могут использоваться во всех типах аккумуляторных батарей и конденсаторов для разработки, оценки и тестирования.

Ссылка (японский сайт)

Переменный ток и постоянный ток и его применение

И переменный ток, и постоянный ток описывает два типа тока, протекающего в цепи.В постоянном токе электрический заряд или ток течет в одном направлении. В переменном токе электрический заряд периодически меняет направление. Напряжение в цепях переменного тока также иногда меняется на противоположное, потому что ток меняет направление. Большая часть цифровой электроники, которую вы создаете, используя постоянный ток. Тем не менее, некоторые концепции переменного тока легко понять. Большинство домов подключены к сети переменного тока, поэтому, если у вас есть идея подключить свой проект мелодии Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. У переменного тока также есть некоторые полезные свойства, такие как возможность преобразовывать уровни напряжения с помощью одного компонента, например, трансформатора, поэтому изначально мы должны выбрать средства переменного тока для передачи электроэнергии на большие расстояния.


Что такое переменный ток (AC)

Переменный ток означает поток заряда, который периодически меняет направление. В результате уровень напряжения также меняется на противоположный вместе с током. Переменный ток используется для электроснабжения домов, зданий, офисов и т. Д.

Генерация переменного тока

переменного тока может быть произведен с помощью устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенного для выработки переменного тока.

Генерация переменного тока

Проволочная петля вращается внутри магнитного поля, которое индуцирует ток по проводу.Вращение провода происходит от различных ресурсов, таких как паровая турбина, ветряная турбина, проточная вода и так далее. Поскольку провод периодически поворачивается и меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот небольшая анимация, демонстрирующая этот принцип:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы подключаем механические характеристики поршня, который перемещает воду в трубах вперед и назад (наш «переменный» ток).

Формы сигналов

AC может иметь несколько форм сигналов, если ток и напряжение чередуются.Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения, в течение длительного времени мы можем увидеть несколько различных форм сигналов. Синусоидальная волна - наиболее распространенный тип переменного тока. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.

Синусоидальная волна

Другие формы переменного тока включают прямоугольную волну и треугольную волну. Прямоугольные волны часто используются в цифровой и переключающей электронике, а также используются для тестирования их работы.


Прямоугольная волна

Треугольная волна полезна для тестирования линейной электроники, такой как усилители.

Треугольная волна
, описывающая синусоидальную волну

Нам часто нужно описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: частоты, амплитуды и фазы.

Рассматривая только напряжение, мы можем описать математическое уравнение синусоиды:

В (t) = Vp sin (2πft + Ø)

В (t) - это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени.

ВП - амплитуда. Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, означает, что наше напряжение может быть + VP вольт, -VP вольт.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

2π - это константа, которая преобразует частоту из циклов или герц в угловую частоту (радиан в секунду).

f указывает частоту синусоидальной волны.Это указывается в герцах или единицах в секунду.

t - наша зависимая переменная: время (измеряется в секундах). Со временем меняется и форма нашего сигнала.

φ описывает фазу синусоидальной волны. Фаза - это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360, которое измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °.Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем подставить эти числа в нашу формулу, чтобы получить уравнение

В (t) = 170 sin (2π60t)

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos.

Приложения

Розетки для дома и офиса почти всегда используются в сети переменного тока. Это связано с тем, что создание и транспортировка переменного тока на большие расстояния относительно просты. При высоком напряжении, например, более 110 кВ, при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовать из высокого напряжения с помощью трансформаторов.

AC также может приводить в действие электродвигатели.Двигатели и генераторы - это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую. Это полезно для многих крупных бытовых приборов, таких как холодильники, посудомоечные машины и т. Д., Которые работают от сети переменного тока.

Что такое постоянный ток (DC)

Постоянный ток означает однонаправленный поток электрического заряда. Он производится из таких источников, как батареи, источники питания, солнечные элементы, термопары или динамо-машины. Постоянный ток может течь в проводнике, таком как провод, но также может течь через изоляторы, полупроводники или вакуум, как в электронных или ионных пучках.

Генерация постоянного тока

DC может быть сгенерирован несколькими способами

  • Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток
  • Преобразование переменного тока в постоянный с помощью устройства, называемого «выпрямителем»
  • Батареи вырабатывают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой еще раз, DC подобен резервуару с водой со шлангом на конце.

Генерация DC

. Бак может выталкивать воду только в одном направлении: из шланга.Как и в случае с нашей батареей постоянного тока, когда резервуар опустеет, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; и ток течет только в одном направлении. Напряжение и ток могут изменяться в течение длительного времени, поэтому направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, батарея обеспечивает 1,5 В, что можно описать математическим уравнением как:

В (t) = 1.5 В

Если мы построим график с течением времени, мы увидим постоянное напряжение

График DC

Приведенный выше график означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. На самом деле батарея будет медленно разряжаться, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Все проекты электроники и запчасти для продажи на SparkFun работают на DC. Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока.Примеры электроники постоянного тока включают:

  • Сотовые телефоны
  • Фонари \
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который преобразуется в постоянный ток)
  • Гибридные и электромобили

Таким образом, это все о том, что такое переменный ток, постоянный ток и их применения. Мы надеемся, что вы лучше понимаете эту концепцию. Кроме того, любые сомнения относительно этой концепции или любых электрических и электронных проектов, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже.Вот вам вопрос, в чем разница между переменным током и постоянным током ?

Фото:

ПЕРЕМЕННЫЙ ТОК - прикладное промышленное электричество

Переменный ток

Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), то есть электричества, протекающего в постоянном направлении и / или обладающего напряжением с постоянной полярностью. Постоянный ток - это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.

Переменный ток против постоянного

Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества. Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени. Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):

Рисунок 4.1 Постоянный и переменный ток

В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер. Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током. В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток для получения желаемого тепла (рассеивание мощности).Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью. Чтобы объяснить подробности того, почему это так, необходимы некоторые базовые знания о AC.

Генераторы переменного тока

Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, то в соответствии с законом электромагнитной индукции Фарадея на катушках с проволокой будет создаваться переменное напряжение.Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока :

Рисунок 4.2 Работа генератора переменного тока

Обратите внимание, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита. При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.

Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока. В генераторе постоянного тока катушка с проволокой установлена ​​на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу. Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:

Рисунок 4.3 Работа генератора постоянного тока

Генератор, показанный выше, будет производить два импульса напряжения на один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, периодически контактирующих с щетками. Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.

Проблемы, связанные с замыканием и разрывом электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью.Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше. Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.

Двигатели переменного тока

Преимущества переменного тока по сравнению с постоянным током с точки зрения конструкции генератора также отражены в электродвигателях. В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками провода, двигатели переменного тока этого не делают.Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки провода для вращения вращающегося магнита. вокруг его вала, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).

Трансформаторы

Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока обычно проще, чем генераторы постоянного тока и двигатели постоянного тока.Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть. Существует эффект электромагнетизма, известный как взаимная индукция , , при котором две или более катушки провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой. Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке.При использовании в таком виде это устройство известно как трансформатор :

. Рисунок 4.4 Трансформатор «преобразует» переменное напряжение и ток.

Основное значение трансформатора - его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обмотанной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки. Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки умножается на соотношение первичных и вторичных витков.Это соотношение имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:

Рисунок 4.5 Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.

Если передаточное число обмоток изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «увеличивает» напряжение от уровня источника до более высокого уровня на нагрузке:

Рисунок 4.6 Редукторная передача увеличивает крутящий момент и снижает скорость. Повышающий трансформатор увеличивает напряжение и уменьшает ток.

Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже. При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток для промышленность, бизнес или потребительское использование.

Рисунок 4.7 Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.

Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистему для чего угодно, кроме использования на близком расстоянии (не более нескольких миль).

Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током. Поскольку явление взаимной индуктивности основано на изменении магнитных полей на , а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.Конечно, постоянный ток может прерываться (пульсировать) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но Импульсный постоянный ток не так уж отличается от переменного тока. Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.

  • DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
  • AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление, соответственно.
  • Электромеханические генераторы переменного тока
  • , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
  • Конструкция двигателей переменного и постоянного тока
  • очень точно соответствует принципам конструкции генератора.
  • Трансформатор - это пара взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой.Часто количество витков в каждой катушке устанавливается так, чтобы создать увеличение или уменьшение напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
  • Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
  • Вторичный ток = первичный ток (первичные витки / вторичные витки)

Измерения величины переменного тока

На данный момент мы знаем, что переменное напряжение меняется по полярности, а переменный ток - по направлению.Мы также знаем, что переменный ток может изменяться множеством различных способов, и, отслеживая изменение во времени, мы можем построить его в виде «формы волны». Мы можем измерить скорость чередования, измерив время, необходимое для развития волны, прежде чем она повторится («период»), и выразить это как количество циклов в единицу времени или «частоту». В музыке частота такая же, как и высота звука , что является важным свойством, отличающим одну ноту от другой.

Однако мы сталкиваемся с проблемой измерения, если пытаемся выразить, насколько велика или мала величина переменного тока.С постоянным током, где величины напряжения и тока обычно стабильны, у нас нет проблем с выражением того, сколько напряжения или тока у нас есть в любой части цепи. Но как дать единичное измерение величины чему-то, что постоянно меняется?

Способы выражения величины сигнала переменного тока

Один из способов выразить интенсивность или величину (также называемую амплитудой ) величины переменного тока - это измерить высоту его пика на графике формы сигнала.Это известно как пик или пик сигнала переменного тока:

Рисунок 4.8 Пиковое напряжение формы сигнала.

Другой способ - измерить общую высоту между противоположными вершинами. Это известно как значение размах сигнала (P-P) для сигнала переменного тока:

Рис. 4.9. Размах напряжения сигнала.

К сожалению, любое из этих выражений амплитуды сигнала может вводить в заблуждение при сравнении двух разных типов волн. Например, прямоугольная волна с пиком 10 вольт, очевидно, представляет собой большее количество напряжения в течение большего времени, чем треугольная волна с пиком 10 вольт.Влияние этих двух напряжений переменного тока, питающих нагрузку, будет совершенно различным:

Рисунок 4.10 Прямоугольная волна дает больший эффект нагрева, чем такая же треугольная волна пикового напряжения.

Один из способов выразить амплитуду различных форм волны более эквивалентным способом - это математически усреднить значения всех точек на графике формы волны до единого совокупного числа. Это измерение амплитуды известно как среднее значение сигнала.Если мы усредним все точки на осциллограмме алгебраически (то есть рассмотрим их знак , положительный или отрицательный), среднее значение для большинства сигналов технически будет равно нулю, потому что все положительные точки компенсируют все отрицательные точки на протяжении полный цикл:

Рисунок 4.11 Среднее значение синусоиды равно нулю.

Это, конечно, будет верно для любой формы волны, имеющей участки равной площади выше и ниже «нулевой» линии графика. Однако, как практическая мера совокупного значения формы волны , «среднее» обычно определяется как математическое среднее абсолютных значений всех точек за цикл.Другими словами, мы вычисляем практическое среднее значение сигнала, рассматривая все точки на волне как положительные величины, как если бы форма сигнала выглядела так:

Рис. 4.12 Форма волны, измеренная измерителем «среднего отклика» переменного тока.

Нечувствительные к полярности движения механического счетчика (счетчики, рассчитанные на одинаковую реакцию на положительные и отрицательные полупериоды переменного напряжения или тока) регистрируются пропорционально (практическому) среднему значению формы сигнала, поскольку инерция стрелки по отношению к напряжению пружина естественным образом усредняет силу, создаваемую изменяющимися значениями напряжения / тока с течением времени.И наоборот, чувствительные к полярности движения измерителя бесполезно вибрируют при воздействии переменного напряжения или тока, их стрелки быстро колеблются около нулевой отметки, указывая истинное (алгебраическое) среднее значение нуля для симметричной формы волны. Когда в этом тексте упоминается «среднее» значение формы сигнала, предполагается, что подразумевается «практическое» определение среднего значения, если не указано иное.

Другой метод получения совокупного значения амплитуды сигнала основан на способности сигнала выполнять полезную работу при приложении к сопротивлению нагрузки.К сожалению, измерение переменного тока, основанное на работе, выполняемой осциллограммой, не совпадает со «средним» значением этой формы сигнала, потому что мощность , рассеиваемая данной нагрузкой (работа, выполняемая в единицу времени), не прямо пропорциональна величине ни того, ни другого. приложенное к нему напряжение или ток. Напротив, мощность пропорциональна квадрату напряжения или тока, приложенного к сопротивлению (P = E 2 / R и P = I 2 R). Хотя математика такого измерения амплитуды может быть непростой, польза от этого есть.

Рассмотрим ленточную пилу и лобзик, две части современного деревообрабатывающего оборудования. Пилы обоих типов режут дерево с помощью тонкого зубчатого металлического полотна с моторным приводом. Но в то время как ленточная пила использует непрерывное движение полотна для резки, лобзик использует возвратно-поступательное движение. Сравнение переменного тока (AC) с постоянным током (DC) можно сравнить со сравнением этих двух типов пил:

Рис. 4.13. Аналогия постоянного и переменного тока ленточной пилой и лобзиком.

Проблема попытки описать изменяющиеся величины переменного напряжения или тока в одном совокупном измерении также присутствует в этой аналогии с пилой: как бы мы могли выразить скорость полотна лобзика? Полотно ленточной пилы движется с постоянной скоростью, подобно тому, как проталкивает постоянное напряжение или постоянный ток движется с постоянной величиной.С другой стороны, полотно лобзика движется вперед и назад, скорость его полотна постоянно меняется. Более того, возвратно-поступательное движение любых двух лобзиков может быть неодинаковым, в зависимости от механической конструкции пил. Один лобзик может двигать лезвие синусоидальным движением, а другой - треугольником. Оценка лобзика на основе его максимальной скорости пика была бы ошибкой при сравнении одного лобзика с другим (или лобзика с ленточной пилой!). Несмотря на то, что эти разные пилы перемещают свои полотна по-разному, они равны в одном отношении: все они режут древесину, и количественное сравнение этой общей функции может служить общей основой для оценки скорости полотна.

Представьте себе лобзик и ленточную пилу бок о бок, оснащенные одинаковыми лезвиями (одинаковым шагом зубьев, углом и т. Д.), Одинаково способными резать одинаковую толщину одного и того же вида древесины с одинаковой скоростью. Можно сказать, что эти две пилы были эквивалентны или равны по своей режущей способности. Можно ли использовать это сравнение, чтобы приписать «эквивалентную» скорость полотна ленточной пилы возвратно-поступательному движению полотна лобзика; связать эффективность лесозаготовки одного с другим? Это общая идея, используемая для присвоения измерения «эквивалента постоянного тока» любому переменному напряжению или току: независимо от величины постоянного напряжения или тока, будет происходить такое же количество рассеивания тепловой энергии через равное сопротивление:

Рисунок 4.14 Среднеквадратичное напряжение вызывает тот же эффект нагрева, что и такое же напряжение постоянного тока.

Как среднеквадратичное значение (СКЗ) соотносится с переменным током?

В двух схемах, приведенных выше, у нас одинаковое сопротивление нагрузки (2 Ом), рассеивающее одинаковое количество энергии в виде тепла (50 Вт), одна питается от переменного тока, а другая от постоянного тока. Поскольку изображенный выше источник переменного напряжения эквивалентен (с точки зрения мощности, подаваемой на нагрузку) 10-вольтовой батарее постоянного тока, мы бы назвали это «10-вольтовым» источником переменного тока. Более конкретно, мы бы обозначили его значение напряжения как 10 вольт RMS .Квалификатор «RMS» означает Среднеквадратичное значение , алгоритм, используемый для получения значения эквивалента постоянного тока из точек на графике (по сути, процедура состоит из возведения в квадрат всех положительных и отрицательных точек на графике формы сигнала, усреднения этих квадратов значений. , а затем извлечение квадратного корня из этого среднего, чтобы получить окончательный ответ). Иногда вместо «среднеквадратичного значения» используются альтернативные термины эквивалент или постоянный ток , но количество и принцип одинаковы.

Измерение амплитуды

RMS - лучший способ связать величины переменного тока с величинами постоянного тока или другими величинами переменного тока различной формы сигнала при измерении электрической мощности. По другим соображениям лучше всего использовать измерения от пика до пика. Например, при определении правильного размера провода (допустимой нагрузки) для передачи электроэнергии от источника к нагрузке лучше всего использовать измерение среднеквадратичного тока, поскольку основная проблема с током - это перегрев провода, который является функцией рассеивание мощности, вызванное током через сопротивление провода.Однако при оценке изоляторов для работы в высоковольтных системах переменного тока измерения пикового напряжения являются наиболее подходящими, поскольку здесь основной проблемой является «пробой» изолятора, вызванный кратковременными скачками напряжения независимо от времени.

Инструменты, используемые для измерения амплитуды сигнала

Измерения пиков и размаха лучше всего выполнять с помощью осциллографа, который может захватывать пики формы сигнала с высокой степенью точности благодаря быстрому срабатыванию электронно-лучевой трубки в ответ на изменения напряжения.Для измерений RMS будут работать аналоговые измерительные приборы (D’Arsonval, Weston, железная лопасть, электродинамометр), если они были откалиброваны в значениях RMS. Поскольку механическая инерция и демпфирующие эффекты движения электромеханического измерителя делают отклонение стрелки естественным образом пропорциональным среднему значению переменного тока, а не истинному среднеквадратичному значению, аналоговые измерители должны быть специально откалиброваны (или откалиброваны неправильно, в зависимости от как вы на это смотрите), чтобы указать напряжение или ток в единицах RMS.Точность этой калибровки зависит от предполагаемой формы волны, обычно синусоидальной волны.

Электронные счетчики, специально разработанные для измерения среднеквадратичных значений, лучше всего подходят для этой задачи. Некоторые производители инструментов разработали хитроумные методы определения среднеквадратичного значения любой формы волны. Один из таких производителей производит измерители True-RMS с крошечным резистивным нагревательным элементом, питаемым напряжением, пропорциональным измеряемому. Эффект нагрева этого элемента сопротивления измеряется термически, чтобы получить истинное среднеквадратичное значение без каких-либо математических расчетов, только законы физики в действии в соответствии с определением среднеквадратичного значения.Точность этого типа измерения RMS не зависит от формы волны.

Взаимосвязь пика, размаха, среднего и среднеквадратичного значения

Для «чистых» сигналов существуют простые коэффициенты преобразования для приравнивания значений пикового, разностного, среднего (практического, а не алгебраического) и среднеквадратичного значений друг к другу:

Рисунок 4.15 Коэффициенты преобразования для распространенных сигналов.

В дополнение к измерениям RMS, среднего, пика (пика) и размаха сигнала переменного тока существуют соотношения, выражающие пропорциональность между некоторыми из этих фундаментальных измерений.Пик-фактор сигнала переменного тока, например, представляет собой отношение его пикового (пикового) значения, деленного на его среднеквадратичное значение. Форм-фактор сигнала переменного тока - это отношение его среднеквадратичного значения к его среднему значению. Сигналы прямоугольной формы всегда имеют пик и коэффициент формы, равные 1, поскольку пик такой же, как среднеквадратичное и среднее значения. Синусоидальные сигналы имеют среднеквадратичное значение 0,707 (величина, обратная квадратному корню из 2) и форм-фактор 1,11 (0,707 / 0,636). Сигналы треугольной и пилообразной формы имеют среднеквадратичное значение 0.577 (величина, обратная квадратному корню из 3) и форм-фактор 1,15 (0,577 / 0,5).

Имейте в виду, что константы преобразования, показанные здесь для пиковых, среднеквадратичных и средних амплитуд синусоидальных, прямоугольных и треугольных волн, справедливы только для чистых форм этих форм волны. Среднеквадратичные и средние значения искаженных форм волн не связаны одним и тем же соотношением:

Рис. 4.16. Сигналы произвольной формы не имеют простого преобразования.

Это очень важная концепция, которую необходимо понимать при использовании аналогового движения измерителя Д’Арсонваля для измерения переменного напряжения или тока.Аналоговый механизм Д’Арсонваля, откалиброванный для индикации среднеквадратичной амплитуды синусоидальной волны, будет точным только при измерении чистых синусоидальных волн. Если форма волны измеряемого напряжения или тока не является чистой синусоидальной волной, показание измерителя не будет истинным среднеквадратичным значением формы волны, потому что степень отклонения стрелки в аналоговом движении измерителя Д'Арсонваля равна пропорционально среднему значению сигнала, а не среднеквадратичному значению. Калибровка измерителя RMS получается путем «перекоса» диапазона измерителя так, чтобы он отображал небольшое кратное среднему значению, которое будет равно среднеквадратичному значению для определенной формы волны и только для определенной формы волны .

Поскольку форма синусоидальной волны является наиболее распространенной в электрических измерениях, она является формой волны, принятой для калибровки аналогового измерителя, а малое кратное, используемое при калибровке измерителя, составляет 1,1107 (коэффициент формы: 0,707 / 0,636: отношение среднеквадратичных значений деленное на среднее значение для синусоидального сигнала). Любая форма волны, отличная от чистой синусоидальной волны, будет иметь другое соотношение среднеквадратичных и средних значений, и, таким образом, измеритель, откалиброванный для синусоидального напряжения или тока, не будет показывать истинное среднеквадратичное значение при считывании несинусоидальной волны.Имейте в виду, что это ограничение применяется только к простым аналоговым измерителям переменного тока, не использующим технологию True-RMS.

  • Амплитуда сигнала переменного тока - это его высота, изображенная на графике во времени. Измерение амплитуды может принимать форму пика, размаха, среднего или среднеквадратичного значения.
  • Пиковая амплитуда - это высота сигнала переменного тока, измеренная от нулевой отметки до самой высокой положительной или самой низкой отрицательной точки на графике.Также известен как гребень амплитуда волны .
  • Полная амплитуда - это общая высота сигнала переменного тока, измеренная от максимальных положительных до максимальных отрицательных пиков на графике. Часто обозначается как «П-П».
  • Средняя амплитуда - это математическое «среднее» всех точек сигнала за период одного цикла. Технически, средняя амплитуда любой формы волны с участками равной площади выше и ниже «нулевой» линии на графике равна нулю.Однако в качестве практической меры амплитуды среднее значение сигнала часто рассчитывается как математическое среднее абсолютных значений всех точек (принимая все отрицательные значения и считая их положительными). Для синусоиды среднее значение, вычисленное таким образом, составляет примерно 0,637 от его пикового значения.
  • «RMS» означает среднеквадратическое значение и является способом выражения величины переменного напряжения или тока в терминах, функционально эквивалентных постоянному току. Например, среднеквадратичное значение 10 вольт переменного тока - это величина напряжения, при которой через резистор заданного значения рассеивается такое же количество тепла, как и у источника питания постоянного тока на 10 вольт.Также известен как «эквивалент» или «эквивалент постоянного тока» для переменного напряжения или тока. Для синусоидальной волны среднеквадратичное значение составляет примерно 0,707 от его пикового значения.
  • Пик-фактор сигнала переменного тока - это отношение его пика (пика) к его среднеквадратичному значению.
  • Форм-фактор сигнала переменного тока - это отношение его среднеквадратичного значения к его среднему значению.
  • Аналоговые, электромеханические движения счетчика реагируют пропорционально среднему значению переменного напряжения или тока.Когда требуется индикация среднеквадратичного значения, калибровка измерителя должна быть соответственно «искажена». Это означает, что точность показаний RMS электромеханического измерителя зависит от чистоты формы волны: от того, точно ли она совпадает с формой волны, используемой при калибровке.

Рис. 4.17. Принципиальная схема однофазной системы электропитания мало что говорит о разводке практической силовой цепи.

На рисунке выше изображена очень простая цепь переменного тока. Если бы рассеиваемая мощность нагрузочного резистора была значительной, мы могли бы назвать это «цепью питания» или «системой питания», а не рассматривать ее как обычную цепь.Различие между «силовой цепью» и «обычной цепью» может показаться произвольным, но с практической точки зрения это определенно не так.

Анализ практических схем

Одной из таких проблем является размер и стоимость проводки, необходимой для подачи питания от источника переменного тока к нагрузке. Обычно мы не особо задумываемся об этом, если мы просто анализируем цепь ради изучения законов электричества. Однако в реальном мире это может стать серьезной проблемой.Если мы дадим источнику в приведенной выше схеме значение напряжения, а также дадим значения рассеиваемой мощности для двух нагрузочных резисторов, мы сможем определить потребности в проводке для этой конкретной схемы:

С практической точки зрения, проводка для нагрузок 20 кВт при 120 В перем. Тока довольно значительна (167 А).

[латекс] I = \ frac {P} {E} [/ латекс]

[латекс] I = \ frac {10кВт} {120V} [/ латекс]

[латекс] I = 83,33A \ text {(для каждого нагрузочного резистора)} [/ латекс]

[латекс] I_ {total} = I_ \ text {load # 1} + I_ \ text {load # 2} [/ latex]

[латекс] P_ {total} = (10 кВт) + (10 кВт) [/ латекс]

[латекс] I_ {total} = (83.33 A) + (83,33 A) [/ латекс]

[латекс] P_ {total} = (20кВт) [/ латекс]

[латекс] \ pmb {I_ {total} = 166,67 A} [/ латекс]

Из приведенного выше примера, 83,33 ампера для каждого нагрузочного резистора на рисунке выше в сумме дают 166,66 ампера полного тока цепи. Это немалое количество тока, и для него потребуются медные проводники сечением не менее 1/0 калибра. Такая проволока имеет диаметр более 1/4 дюйма (6 мм) и весит более 300 фунтов на тысячу футов.Учтите, что медь тоже не дешевая! В наших интересах найти способы минимизировать такие затраты, если мы проектируем энергосистему с проводами большой длины.

Один из способов сделать это - увеличить напряжение источника питания и использовать нагрузки, рассчитанные на рассеивание 10 кВт каждая при этом более высоком напряжении. Нагрузки, конечно, должны иметь более высокие значения сопротивления, чтобы рассеивать ту же мощность, что и раньше (по 10 кВт каждая) при более высоком напряжении, чем раньше. Преимущество будет заключаться в меньшем потреблении тока, что позволит использовать меньший, более легкий и дешевый провод:

[латекс] I = \ frac {P} {E} [/ латекс]

[латекс] I = \ frac {10kW} {240V} [/ latex]

[латекс] I = 41.67 A \ text {(для каждого нагрузочного резистора)} [/ latex]

[латекс] I_ {total} = I_ \ text {load # 1} + I_ \ text {load # 2} [/ latex]

[латекс] P_ {total} = (10 кВт) + (10 кВт) [/ латекс]

[латекс] I_ {total} = (41,67 A) + (41,67 A) [/ латекс]

[латекс] P_ {total} = (20кВт) [/ латекс]

[латекс] \ pmb {I_ {total} = 83,33 A} [/ латекс]

Теперь наш общий ток цепи равен 83.33 ампера, вдвое меньше, чем было раньше. Теперь мы можем использовать проволоку калибра 4, которая весит меньше половины того, что проволока калибра 1/0 на единицу длины. Это значительное снижение стоимости системы без снижения производительности. Вот почему разработчики систем распределения электроэнергии предпочитают передавать электроэнергию с использованием очень высоких напряжений (многие тысячи вольт): чтобы извлечь выгоду из экономии за счет использования меньшего, более легкого и более дешевого провода.

Опасности повышения напряжения источника

Однако это решение не лишено недостатков.Еще одна практическая проблема, связанная с силовыми цепями, - опасность поражения электрическим током от высокого напряжения. Опять же, обычно это не то, на чем мы сосредотачиваемся при изучении законов электричества, но это очень серьезная проблема в реальном мире, особенно когда имеют дело с большими объемами энергии. Повышение эффективности, достигаемое за счет увеличения напряжения в цепи, представляет повышенную опасность поражения электрическим током. Электрораспределительные компании решают эту проблему, протягивая свои линии электропередач вдоль высоких опор или башен и изолируя линии от несущих конструкций с помощью больших фарфоровых изоляторов.

В точке использования (потребителя электроэнергии) все еще остается вопрос, какое напряжение использовать для питания нагрузок. Высокое напряжение обеспечивает большую эффективность системы за счет уменьшения тока в проводнике, но не всегда целесообразно держать силовую проводку вне досягаемости в точке использования, как это можно сделать в распределительных системах. Этим компромиссом между эффективностью и опасностью разработчики европейских энергосистем решили рискнуть, поскольку все их домашние хозяйства и бытовая техника работают при номинальном напряжении 240 вольт вместо 120 вольт, как в Северной Америке.Вот почему туристы из Америки, посещающие Европу, должны носить с собой небольшие понижающие трансформаторы для своих портативных приборов, чтобы понижать мощность 240 В переменного тока (вольт переменного тока) до более подходящих 120 В переменного тока.

Решения для подачи напряжения потребителям

Понижающие трансформаторы в конечной точке энергоснабжения

Есть ли способ одновременно реализовать преимущества повышения эффективности и снижения угрозы безопасности? Одним из решений может быть установка понижающих трансформаторов в конечной точке энергопотребления, как это должен делать американский турист, находясь в Европе.Однако это было бы дорого и неудобно для чего угодно, кроме очень малых нагрузок (где трансформаторы можно построить дешево) или очень больших нагрузок (где стоимость толстых медных проводов превысила бы стоимость трансформатора).

Две нагрузки низкого напряжения в серии

Альтернативным решением может быть использование источника более высокого напряжения для подачи питания на две последовательно соединенные нагрузки с более низким напряжением. Этот подход сочетает в себе эффективность высоковольтной системы с безопасностью низковольтной системы:

Рисунок 4.18 Последовательно подключенные нагрузки 120 В перем. Тока, приводимые в действие источником 240 В перем. Тока при общем токе 83,3 А.

Обратите внимание на обозначения полярности (+ и -) для каждого показанного напряжения, а также на однонаправленные стрелки для тока. По большей части я избегал обозначать «полярности» в цепях переменного тока, которые мы анализировали, даже несмотря на то, что обозначения действительны для обеспечения системы отсчета для фазы. В следующих разделах этой главы фазовые отношения станут очень важными, поэтому я введу эти обозначения в начале главы для вашего ознакомления.

Ток через каждую нагрузку такой же, как и в простой 120-вольтовой цепи, но токи не складываются, потому что нагрузки включены последовательно, а не параллельно. Напряжение на каждой нагрузке составляет всего 120 вольт, а не 240, поэтому запас прочности выше. Имейте в виду, у нас все еще есть полные 240 вольт на проводах системы питания, но каждая нагрузка работает при пониженном напряжении. Если кто-то и будет шокирован, скорее всего, это произойдет из-за контакта с проводниками конкретной нагрузки, а не из-за контакта с основными проводами энергосистемы.

Модификации конструкции с двумя сериями нагрузок

У этой конструкции есть только один недостаток: последствия отказа одной нагрузки разомкнутой или выключенной (при условии, что каждая нагрузка имеет последовательный переключатель включения / выключения для прерывания тока) не благоприятны. В случае последовательной цепи, если бы одна из нагрузок разомкнулась, ток остановился бы и в другой нагрузке. По этой причине нам необходимо немного изменить дизайн:

Рисунок 4.19 Добавление нейтрального проводника позволяет управлять нагрузками индивидуально.\ circ [/ латекс] [латекс] I_1 = \ frac {P_1} {E_1} [/ латекс] [latex] = \ frac {10kW} {120V} [/ latex] [латекс] I_1 = 83,33 А [/ латекс] [латекс] I_2 = \ frac {P_2} {E_2} [/ латекс] [latex] = \ frac {10kW} {120V} [/ latex] [латекс] I_2 = 83,33 А [/ латекс] [латекс] P_ {всего} = (10кВт) + (10кВт) [/ латекс] [латекс] = (20кВт) [/ латекс]

Двухфазная система питания

Вместо одного 240-вольтового источника питания мы используем два 120-вольтовых источника (в фазе друг с другом!), Последовательно для получения 240 вольт, а затем подводим третий провод к точке соединения между нагрузками, чтобы справиться с возможностью одного загрузочное отверстие.Это называется системой питания с расщепленной фазой . Три провода меньшего размера по-прежнему дешевле, чем два провода, необходимые для простой параллельной конструкции, поэтому мы все еще впереди по эффективности. Проницательный наблюдатель заметит, что нейтральный провод должен нести только разницы тока между двумя нагрузками обратно к источнику. В приведенном выше случае при идеально «сбалансированных» нагрузках, потребляющих одинаковое количество энергии, нейтральный провод пропускает нулевой ток.

Обратите внимание на то, как нейтральный провод подключен к заземлению со стороны источника питания.Это обычная особенность в энергосистемах, содержащих «нейтральные» провода, поскольку заземление нейтрального провода обеспечивает минимально возможное напряжение в любой момент времени между любым «горячим» проводом и заземлением.

Важным компонентом системы с расщепленной фазой является двойной источник переменного напряжения. К счастью, спроектировать и построить его нетрудно. Поскольку большинство систем переменного тока в любом случае получают питание от понижающего трансформатора (понижая напряжение с высоких уровней распределения до напряжения пользовательского уровня, такого как 120 или 240), этот трансформатор может быть построен с вторичной обмоткой с центральным отводом:

Рисунок 4.20 Американское питание 120/240 В переменного тока поступает от сетевого трансформатора с центральным ответвлением.

Если питание переменного тока поступает непосредственно от генератора (генератора переменного тока), катушки могут быть аналогичным образом с центральным отводом для того же эффекта. Дополнительные расходы на включение центрального отвода в обмотку трансформатора или генератора минимальны.

Вот где действительно важны обозначения полярности (+) и (-). Это обозначение часто используется для обозначения фазировки нескольких источников переменного напряжения , поэтому ясно, помогают ли они («повышают») друг друга или противостоят («компенсируют») друг друга.Если бы не эта маркировка полярности, фазовые отношения между несколькими источниками переменного тока могли бы быть очень запутанными. Обратите внимание, что на схеме источники с расщепленной фазой (каждый 120 В ± 0 °) с отметками полярности (+) - (-), как и батареи с последовательным подключением, в качестве альтернативы могут быть представлены как таковые:

Рисунок 4.21. Источник 120/240 В переменного тока с разделенной фазой эквивалентен двум последовательным источникам переменного тока 120 В переменного тока.

Чтобы математически рассчитать напряжение между «горячими» проводами, мы должны из вычесть напряжений, потому что их отметки полярности показывают, что они противоположны друг другу:

Полярный

[латекс] \ begin {align} & 120 \ angle 0 \ text {°} \\ - & 120 \ angle 180 \ text {°} \\ = & \ pmb {120 \ angle 0 \ text {°}} \ конец {align} [/ latex]

Прямоугольный

[латекс] \ begin {align} & 120 + \ text {j} 0 \ text {V} \\ - & (- {120} + \ text {j} 0) \ text {V} \\ = & \ pmb {240 + \ text {j} 0 \ text {V}} \ end {align} [/ latex]

Если мы отметим общую точку подключения двух источников (нейтральный провод) одинаковым знаком полярности (-), мы должны выразить их относительные фазовые сдвиги как разнесенные на 180 °.В противном случае мы бы обозначили два источника напряжения, прямо противоположных друг другу, что дало бы 0 вольт между двумя «горячими» проводниками. Почему я трачу время на уточнение отметок полярности и фазовых углов? В следующем разделе будет больше смысла!

Системы электропитания в американских домах и легкой промышленности чаще всего бывают двухфазными, обеспечивая так называемое питание 120/240 В переменного тока. Термин «разделенная фаза» просто относится к источнику питания с разделенным напряжением в такой системе. В более общем смысле этот тип источника питания переменного тока называется однофазным, , потому что обе формы сигнала напряжения синфазны или синхронизированы друг с другом.

Термин «однофазный» противопоставляется другому типу энергосистемы, называемому «многофазный», который мы собираемся изучить подробно. Приносим извинения за длинное введение, приведшее к заглавной теме этой главы. Преимущества многофазных систем питания становятся более очевидными, если сначала хорошо разбираться в однофазных системах.

  • Однофазные системы питания определяются наличием источника переменного тока только с одной формой волны напряжения.
  • Двухфазная система питания - это система с несколькими (синфазными) источниками переменного напряжения, подключенными последовательно, которые подают питание на нагрузки с более чем одним напряжением и более чем двумя проводами. Они используются в первую очередь для достижения баланса между эффективностью системы (низкие токи в проводниках) и безопасностью (низкие напряжения нагрузки).
  • Источники переменного тока с разделенной фазой можно легко создать, отводя от средней точки обмотки катушек трансформаторов или генераторов переменного тока.

Фаза переменного тока

Все начинает усложняться, когда нам нужно связать два или более переменного напряжения или тока, которые не совпадают друг с другом.Под «несоответствием» я подразумеваю, что две формы сигнала не синхронизированы: их пики и нулевые точки не совпадают в одни и те же моменты времени. График на рисунке ниже иллюстрирует это.

Рис. 4.22. Формы волн вне фазы

Две волны, показанные выше (A и B), имеют одинаковую амплитуду и частоту, но они не совпадают друг с другом. Технически это называется фазовым сдвигом . Ранее мы видели, как можно построить «синусоидальную волну», вычислив тригонометрическую синусоидальную функцию для углов от 0 до 360 градусов, то есть полного круга.Начальной точкой синусоидальной волны была нулевая амплитуда при нулевом градусе, прогрессирующая до полной положительной амплитуды при 90 градусах, нуля при 180 градусах, полной отрицательной при 270 градусах и возврата к начальной точке нуля при 360 градусах. Мы можем использовать эту угловую шкалу вдоль горизонтальной оси нашего графика формы волны, чтобы выразить, насколько далеко одна волна отличается от другой:

Рис. 4.23. Волна A опережает волну B на 45 °.

Сдвиг между этими двумя формами волны составляет около 45 градусов, причем волна «A» опережает волну «B».Выборка различных фазовых сдвигов представлена ​​на следующих графиках, чтобы лучше проиллюстрировать эту концепцию:

Рисунок 4.24 Примеры фазовых сдвигов.

Поскольку формы сигналов в приведенных выше примерах имеют одинаковую частоту, они будут отклоняться от шага на одинаковую угловую величину в каждый момент времени. По этой причине мы можем выразить фазовый сдвиг для двух или более сигналов одной и той же частоты как постоянную величину для всей волны, а не просто выражение сдвига между любыми двумя конкретными точками вдоль волн.То есть можно с уверенностью сказать что-то вроде: «Напряжение« А »сдвинуто по фазе на 45 градусов с напряжением« В »». Какая бы форма волны ни развивалась впереди, считается, что опережает , а следующая - , отстает от . Фазовый сдвиг, как и напряжение, всегда является измерением относительно двух вещей. На самом деле не существует такой вещи, как форма волны с абсолютным измерением фазы , потому что не существует известного универсального эталона для фазы. Обычно при анализе цепей переменного тока форма волны напряжения источника питания используется в качестве эталона для фазы, это напряжение указано как «xxx вольт при 0 градусах».”Любое другое переменное напряжение или ток в этой цепи будет иметь фазовый сдвиг, выраженный в терминах относительно этого напряжения источника. Это то, что делает расчеты цепей переменного тока более сложными, чем вычисления постоянного тока. При применении закона Ома и закона Кирхгофа величины переменного напряжения и тока должны отражать фазовый сдвиг, а также амплитуду. Математические операции сложения, вычитания, умножения и деления должны оперировать этими величинами фазового сдвига, а также амплитуды. К счастью, существует математическая система величин, называемая комплексными числами , идеально подходящая для этой задачи представления амплитуды и фазы.Поскольку комплексные числа так важны для понимания цепей переменного тока, следующая глава будет посвящена только этому предмету.

  • Фазовый сдвиг - это когда две или более формы сигналов не совпадают друг с другом.
  • Величина фазового сдвига между двумя волнами может быть выражена в градусах, как определено в градусах на горизонтальной оси графика формы волны, используемой при построении тригонометрической синусоидальной функции.
  • Форма волны , опережающая , определяется как одна форма волны, которая опережает другую в своем развитии.Сигнал , отстающий от , - это сигнал, который отстает от другого. Пример:
  • Расчеты для анализа цепей переменного тока должны учитывать как амплитуду, так и фазовый сдвиг форм сигналов напряжения и тока, чтобы быть полностью точными. Это требует использования математической системы под названием комплексных чисел .

Что такое двухфазные системы питания?

Двухфазные энергосистемы достигают высокого КПД проводников. и - низкий риск безопасности за счет разделения общего напряжения на меньшие части и питания нескольких нагрузок с этими меньшими напряжениями, потребляя токи на уровнях, типичных для системы полного напряжения.Между прочим, этот метод работает так же хорошо для систем питания постоянного тока, как и для однофазных систем переменного тока. Такие системы обычно называют трехпроводными системами , , а не , расщепленными фазами, , потому что понятие «фаза» ограничивается переменным током.

Но из нашего опыта работы с векторами и комплексными числами мы знаем, что напряжения переменного тока не всегда складываются, как мы думаем, если они не совпадают по фазе друг с другом. Этот принцип, применяемый к энергосистемам, может быть использован для создания энергосистем с еще более высоким КПД проводников и меньшей опасностью поражения электрическим током, чем с расщепленной фазой.

Два источника напряжения, не совпадающих по фазе на 120 °

Предположим, что у нас есть два источника переменного напряжения, подключенных последовательно, как в системе с расщепленными фазами, которую мы видели раньше, за исключением того, что каждый источник напряжения сдвинул фазу на 120 ° друг с другом: (рисунок ниже)

Пара источников 120 В перем. Тока, фазированных под углом 120 °, аналогично разделенной фазе.

Поскольку каждый источник напряжения составляет 120 вольт, и каждый нагрузочный резистор подключен непосредственно параллельно своему соответствующему источнику, напряжение на каждой нагрузке должно также составлять 120 вольт.Учитывая ток нагрузки 83,33 А, каждая нагрузка все равно должна рассеивать 10 киловатт мощности. Однако напряжение между двумя «горячими» проводами не составляет 240 вольт (120 ∠ 0 ° - 120 ∠ 180 °), потому что разность фаз между двумя источниками не равна 180 °. Вместо этого напряжение:

[латекс] E_ {total} = (120 \ text {V} \ angle \ text {0 °}) - (120 \ text {V} \ angle \ text {120 °}) [/ latex]

[латекс] \ pmb {E_ {total} = 207,85 \ text {V} \ angle \ text {-30 °}} [/ латекс]

Условно мы говорим, что напряжение между «горячими» проводниками составляет 208 вольт (округляя в большую сторону), и, таким образом, напряжение системы питания обозначено как 120/208 В.

Если мы посчитаем ток через «нейтральный» провод, то обнаружим, что он не равен нулю, даже при сбалансированном сопротивлении нагрузки. Закон Кирхгофа говорит нам, что токи, входящие и выходящие из узла между двумя нагрузками, должны быть равны нулю:

[латекс] I _ {\ text {load # 1}} + I _ {\ text {load # 2}} + I _ {\ text {нейтральный}} = 0A [/ latex]

[латекс] \ begin {align} I _ {\ text {нейтральный}} = & -I _ {\ text {load # 1}} - I _ {\ text {load # 2}} \\ = & - (83.33 A \ angle \ text {0 °}) - (83,33 A \ angle \ text {120 °}) \\ = & \ pmb {83,33 A \ angle \ text {240 °}} \ text {или} \ pmb { 83,33 A \ angle \ text {-120 °}} \ end {align} [/ latex]

Итак, мы обнаруживаем, что «нейтральный» провод имеет полный ток 83,33 А, как и каждый «горячий» провод.

Обратите внимание, что мы все еще передаем 20 кВт общей мощности двум нагрузкам, при этом «горячий» провод каждой нагрузки, как и раньше, выдерживает 83,33 А. При одинаковом количестве тока через каждый «горячий» провод, мы должны использовать медные проводники одинакового сечения, поэтому мы не снизили стоимость системы по сравнению с системой с разделением фаз 120/240.Тем не менее, мы добились повышения безопасности, поскольку общее напряжение между двумя «горячими» проводниками на 32 вольт ниже, чем было в системе с расщепленной фазой (208 вольт вместо 240 вольт).

Три источника напряжения вне фазы 120 °

Тот факт, что нейтральный провод пропускает ток 83,33 А, вызывает интересную возможность: поскольку по нему в любом случае протекает ток, почему бы не использовать этот третий провод в качестве еще одного «горячего» проводника, запитав другой нагрузочный резистор третьим источником 120 В, имеющим фазу. угол 240 °? Таким образом, мы могли бы передать на больше мощности (еще 10 кВт) без необходимости добавления дополнительных проводников.Посмотрим, как это может выглядеть:

Рис. 4.25. Если третья нагрузка смещена под углом 120 ° к двум другим, токи такие же, как и для двух нагрузок.

Многофазная цепь

Эта схема, которую мы анализировали с тремя источниками напряжения, называется многофазной цепью . Префикс «поли» просто означает «более одного», как в « поли, теизм» (вера в более чем одно божество), « поли, гон» (геометрическая форма, состоящая из нескольких отрезков линии: например, пятиугольник и шестиугольник ) и « поли атомный» (вещество, состоящее из нескольких типов атомов).Поскольку все источники напряжения находятся под разными фазовыми углами (в данном случае три разных фазовых угла), это схема « poly phase». В частности, это трехфазная цепь , которая используется преимущественно в крупных системах распределения электроэнергии.

Однофазная система

Давайте рассмотрим преимущества трехфазной системы питания по сравнению с однофазной системой с эквивалентным напряжением нагрузки и мощностью. Однофазная система с тремя нагрузками, подключенными напрямую параллельно, будет иметь очень высокий общий ток (83.33 раза по 3, или 250 ампер.

Рисунок 4.26 Для сравнения, три нагрузки по 10 кВт в системе 120 В переменного тока потребляют 250 А.

Это потребует медного провода сечением 3/0 ( - очень большого!), С плотностью около 510 фунтов на тысячу футов и со значительным ценником. Если бы расстояние от источника до нагрузки составляло 1000 футов, нам потребовалось бы более полутонны медного провода для выполнения этой работы.

Двухфазная система

С другой стороны, мы могли бы построить двухфазную систему с двумя нагрузками по 15 кВт, 120 В.

Рисунок 4.27. Система с разделенной фазой потребляет половину тока 125 А при 240 В переменного тока по сравнению с системой на 120 В переменного тока.

Наш ток вдвое меньше того, который был при простой параллельной схеме, что является большим улучшением. Мы могли бы обойтись без использования медного провода калибра 2 при общей массе около 600 фунтов, из расчета около 200 фунтов на тысячу футов с тремя участками по 1000 футов каждый между источником и нагрузками. Тем не менее, мы также должны учитывать повышенную угрозу безопасности, связанную с наличием в системе 240 вольт, даже если каждая нагрузка получает только 120 вольт.В целом существует большая вероятность поражения электрическим током.

Трехфазная система

Если сравнить эти два примера с нашей трехфазной системой (рисунок выше), преимущества становятся очевидными. Во-первых, токи в проводниках немного меньше (83,33 ампер против 125 или 250 ампер), что позволяет использовать гораздо более тонкий и легкий провод. Мы можем использовать провод калибра 4 с плотностью около 125 фунтов на тысячу футов, что составит 500 фунтов (четыре участка по 1000 футов каждый) для нашей примерной схемы.Это обеспечивает значительную экономию затрат по сравнению с системой с разделением фаз, с дополнительным преимуществом, заключающимся в том, что максимальное напряжение в системе ниже (208 против 240).

Остается ответить на один вопрос: как вообще мы можем получить три источника переменного напряжения, фазовые углы которых разнесены точно на 120 °? Очевидно, что мы не можем отводить по центру обмотку трансформатора или генератора переменного тока, как мы это делали в системе с расщепленной фазой, поскольку это может дать нам только формы волны напряжения, которые либо совпадают по фазе, либо не совпадают по фазе на 180 °.Возможно, мы могли бы придумать способ использования конденсаторов и катушек индуктивности для создания фазовых сдвигов на 120 °, но тогда эти фазовые сдвиги также будут зависеть от фазовых углов наших импедансов нагрузки (замена резистивной нагрузки емкостной или индуктивной нагрузкой изменится. все!).

Лучший способ получить фазовые сдвиги, которые мы ищем, - это генерировать его в источнике: сконструировать генератор переменного тока (генератор переменного тока), обеспечивающий мощность таким образом, чтобы вращающееся магнитное поле проходило через три набора проволочных обмоток, каждая установите на расстоянии 120o по окружности машины, как показано на рисунке ниже.

Рисунок 4.28 (a) Однофазный генератор переменного тока, (b) Трехфазный генератор переменного тока.

Вместе шесть «полюсных» обмоток трехфазного генератора переменного тока соединены, чтобы образовать три пары обмоток, каждая пара вырабатывает переменное напряжение с фазовым углом 120 °, смещенным от любой из двух других пар обмоток. Межсоединения между парами обмоток (как показано для однофазного генератора переменного тока: перемычка между обмотками 1a и 1b) для простоты не показаны на чертеже трехфазного генератора.

В нашем примере схемы мы показали три источника напряжения, соединенных вместе в конфигурации «Y» (иногда называемой конфигурацией «звезда»), с одним выводом каждого источника, привязанным к общей точке (узлу, к которому мы подключили «нейтраль»). Дирижер). Обычный способ изобразить эту схему подключения - нарисовать обмотки в форме буквы «Y», как показано на рисунке ниже.

Рисунок 4.29. Y-образная конфигурация генератора.

Конфигурация «Y» - не единственный доступный нам вариант, но, вероятно, поначалу ее легче всего понять.Подробнее об этом мы поговорим позже в этой главе.

  • Однофазная система питания - это система, в которой имеется только один источник переменного напряжения (одна форма волны напряжения источника).
  • Система питания с расщепленной фазой - это система, в которой есть два источника напряжения, сдвинутых по фазе на 180 ° друг от друга, которые питают две последовательно соединенные нагрузки. Преимуществом этого является возможность иметь более низкие токи в проводниках при сохранении низкого напряжения нагрузки по соображениям безопасности.
  • Многофазная система питания использует несколько источников напряжения, находящихся под разными фазовыми углами друг от друга (много «фаз» формы волны напряжения в работе). Многофазная система питания может обеспечивать большую мощность при меньшем напряжении с проводниками меньшего сечения, чем однофазные или двухфазные системы.
  • Источники сдвинутого по фазе напряжения, необходимые для многофазной энергосистемы, создаются в генераторах переменного тока с несколькими наборами обмоток проводов. Эти наборы обмоток расположены по окружности вращения ротора под желаемым углом (-ами).

Трехфазный генератор переменного тока

Давайте возьмем схему трехфазного генератора переменного тока, представленную ранее, и посмотрим, что происходит при вращении магнита.

Рисунок 4.30 Трехфазный генератор переменного тока

Фазовый сдвиг на 120 ° является функцией фактического углового сдвига трех пар обмоток. Если магнит вращается по часовой стрелке, обмотка 3 будет генерировать свое пиковое мгновенное напряжение ровно 120 ° (вращения вала генератора) после обмотки 2, которое достигнет своего пика 120 ° после обмотки 1.Магнит проходит через каждую пару полюсов в разных положениях во вращательном движении вала. То, где мы решим разместить обмотки, будет определять величину фазового сдвига между формами сигналов переменного напряжения обмоток. Если мы сделаем обмотку 1 нашим «эталонным» источником напряжения для фазового угла (0 °), то обмотка 2 будет иметь фазовый угол -120 ° (120 ° с запаздыванием или 240 ° вперед), а обмотка 3 - угол -240 °. (или 120 ° вперед).

Последовательность фаз

Эта последовательность фазовых сдвигов имеет определенный порядок.Для вращения вала по часовой стрелке порядок 1-2-3 (сначала обмотка 1 пика, затем обмотка 2, затем обмотка 3). Этот порядок повторяется, пока мы продолжаем вращать вал генератора.

Рисунок 4.31 Чередование фаз по часовой стрелке: 1-2-3.

Однако, если мы обратим вращение вала генератора переменного тока (повернем его против часовой стрелки), магнит пройдет мимо пар полюсов в противоположной последовательности. Вместо 1-2-3 у нас будет 3-2-1.Теперь форма волны обмотки 2 будет впереди на 120 ° впереди 1 вместо запаздывания, а 3 будет еще на 120 ° впереди 2.

Рисунок 4.32 Последовательность фаз при вращении против часовой стрелки: 3-2-1.

Порядок последовательностей сигналов напряжения в многофазной системе называется чередованием фаз или чередованием фаз . Если мы используем многофазный источник напряжения для питания резистивных нагрузок, чередование фаз не будет иметь никакого значения. Независимо от того, 1-2-3 или 3-2-1, значения напряжения и тока будут одинаковыми.Как мы вскоре увидим, есть некоторые применения трехфазного питания, которые зависят от того, имеет ли чередование фаз то или иное направление.

Детекторы чередования фаз

Поскольку вольтметры и амперметры бесполезны для определения чередования фаз в действующей системе питания, нам нужен какой-то другой инструмент, способный выполнять эту работу.

В одной оригинальной схеме используется конденсатор для введения фазового сдвига между напряжением и током, который затем используется для определения последовательности путем сравнения яркости двух индикаторных ламп на рисунке ниже.

Рисунок 4.33 Детектор последовательности фаз сравнивает яркость двух ламп.

Две лампы имеют одинаковое сопротивление нити накала и мощность. Конденсатор рассчитан на то, чтобы иметь примерно такое же реактивное сопротивление на системной частоте, что и сопротивление каждой лампы. Если бы конденсатор был заменен резистором, равным сопротивлению ламп, две лампы светились бы с одинаковой яркостью, схема сбалансирована. Однако конденсатор вносит фазовый сдвиг между напряжением и током в третьем плече цепи, равный 90 °.Этот фазовый сдвиг больше 0 °, но меньше 120 ° приводит к смещению значений напряжения и тока на двух лампах в соответствии с их фазовым сдвигом относительно фазы 3.

Обмен горячими проводами

Существует намного более простой способ изменить чередование фаз, чем реверсирование вращения генератора: просто поменяйте местами любые два из трех «горячих» проводов, идущих к трехфазной нагрузке.

Этот трюк станет более понятным, если мы еще раз посмотрим на последовательность фаз трехфазного источника напряжения:

1-2-3 вращения: 1-2-3-1-2-3-1-2-3-1-2-3-1-2-3.. .

3-2-1 вращение: 3-2-1-3-2-1-3-2-1-3-2-1-3-2-1. . .

То, что обычно обозначается как «1-2-3» чередования фаз, можно также назвать «2-3-1» или «3-1-2», идя слева направо в числовой строке выше? Точно так же противоположное вращение (3-2-1) можно так же легко назвать «2-1-3» или «1-3-2».

Начиная с чередования фаз 3-2-1, мы можем попробовать все возможности для замены любых двух проводов за раз и посмотреть, что произойдет с результирующей последовательностью на рисунке ниже.

Рисунок 4.34. Все возможности перестановки любых двух проводов.

Независимо от того, какую пару «горячих» проводов из трех мы выберем для замены, чередование фаз в конечном итоге меняется на противоположное (1-2-3 меняются на 2-1-3, 1-3-2 или 3-2. -1, все равнозначно).

  • Чередование фаз или чередование фаз - это порядок, в котором формы волны напряжения многофазного источника переменного тока достигают своих соответствующих пиков. Для трехфазной системы есть только две возможные последовательности фаз: 1-2-3 и 3-2-1, соответствующие двум возможным направлениям вращения генератора.
  • Чередование фаз не влияет на резистивные нагрузки, но влияет на несимметричные реактивные нагрузки, как показано в работе схемы детектора поворота фаз.
  • Чередование фаз можно изменить, поменяв местами любые два из трех «горячих» выводов, подающих трехфазное питание на трехфазную нагрузку.

Трехфазное соединение звездой (Y)

Первоначально мы исследовали идею трехфазных систем питания, соединив вместе три источника напряжения в так называемой конфигурации «Y» (или «звезда»).Такая конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника.

Рисунок 4.35 Трехфазное соединение «Y» имеет три источника напряжения, подключенных к общей точке.

Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (генератор переменного тока или обмотку трансформатора), и произведем небольшую перестановку, конфигурация «Y» станет более очевидной на рисунке ниже.

Рисунок 4.36. Трехфазное четырехпроводное соединение «Y» использует «общий» четвертый провод.

Три проводника, идущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , а сами обмотки обычно называются фазами . В системе с Y-соединением нейтральный провод может быть или не быть (рисунок ниже) в точке соединения посередине, хотя это, безусловно, помогает облегчить потенциальные проблемы, если один из элементов трехфазной нагрузки выйдет из строя, как обсуждалось. ранее.

Рисунок 4.37 Трехфазное трехпроводное соединение «Y» не использует нейтральный провод.

Значения напряжения и тока в трехфазных системах

Когда мы измеряем напряжение и ток в трехфазных системах, нам нужно уточнить значение , где мы измеряем . Напряжение сети означает величину напряжения, измеренного между любыми двумя проводниками линии в сбалансированной трехфазной системе. В приведенной выше схеме линейное напряжение составляет примерно 208 вольт. Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.Для схемы, показанной выше, фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют той же логике: первый относится к току через любой один линейный проводник, а второй - к току через любой один компонент.

Источники и нагрузки, подключенные по схеме Y, всегда имеют линейное напряжение больше, чем фазное, а линейные токи равны фазным токам. Если источник или нагрузка, подключенные по схеме Y, сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:

.

Для цепей «Y»:

[латекс] \ begin {align} \ tag {4.1} \ text {E} _ {\ text {line}} & = \ sqrt {3} \ text {E} _ {\ text {phase}} \\ \ text {I} _ {\ text {line}} & = \ text {I} _ {\ text {phase}} \ end {align} [/ latex]

Однако конфигурация «Y» не единственная допустимая для соединения трехфазного источника напряжения или элементов нагрузки.

Трехфазная конфигурация, треугольник (Δ)

Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ). Обратите внимание на полярность каждой обмотки на рисунке ниже.

Рисунок 4.38 Трехфазное, трехпроводное соединение Δ не имеет общего.

На первый взгляд кажется, что три таких источника напряжения могут вызвать короткое замыкание, электроны текут по треугольнику, и ничто, кроме внутреннего сопротивления обмоток, сдерживает их. Однако из-за фазовых углов этих трех источников напряжения это не так.

Закон Кирхгофа о напряжении при соединении треугольником

Для быстрой проверки этого можно использовать закон Кирхгофа, чтобы увидеть, равны ли три напряжения вокруг контура нулю.Если они это сделают, тогда не будет доступного напряжения для проталкивания тока вокруг этого контура и, следовательно, не будет циркулирующего тока. Начиная с верхнего витка и двигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:

[латекс] (120 \ text {V} \ angle \ text {0 °}) + (120 \ text {V} \ angle \ text {240 °}) + (120 \ text {V} \ angle \ text { 120 °}) [/ латекс]

Все равно нулю?

Да!

В самом деле, если мы сложим эти три векторные величины вместе, они в сумме дадут ноль.Еще один способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, - это разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве:

Рисунок 4.39 Напряжение в открытом состоянии Δ должно быть нулевым.

Начиная с правой обмотки (120 В 120 °) и продвигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:

[латекс] (120 \ text {V} \ angle \ text {120 °}) + (120 \ text {V} \ angle \ text {0 °}) + (120 \ text {V} \ angle \ text { 240 °}) + \ text {E} _ {\ text {break}} = 0 [/ latex]

[латекс] 0 + \ text {E} _ {\ text {break}} = 0 [/ латекс]

[латекс] \ text {E} _ {\ text {break}} = 0 [/ латекс]

Конечно, на разрыве будет нулевое напряжение, говорящее нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет выполнено.

Установив, что трехфазный источник напряжения, подключенный по схеме Δ, не сгорит до резкости из-за циркулирующих токов, перейдем к его практическому использованию в качестве источника питания в трехфазных цепях. Поскольку каждая пара линейных проводов подключена непосредственно к одной обмотке в цепи Δ, линейное напряжение будет равно фазному напряжению. И наоборот, поскольку каждый линейный проводник присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой двух соединяющихся фазных токов.Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:

Для цепей Δ («треугольник»):

[латекс] \ begin {align} \ tag {4.2} \ text {E} _ {\ text {line}} & = \ text {E} _ {\ text {phase}} \\ \ text {I} _ {\ text {line}} & = \ sqrt {3} \ text {I} _ {\ text {phase}} \ end {align} [/ latex]

Анализ цепи примера соединения треугольником

Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)

Когда каждое сопротивление нагрузки получает 120 В от соответствующей фазной обмотки источника, ток в каждой фазе этой цепи будет 83.33 ампера:

[латекс] I \: = \ frac {P} {E} [/ латекс]

[латекс] I \: = \ frac {10 кВт} {120 В} [/ латекс]

[латекс] \ pmb {I = 83.33A} \ text {(для каждого нагрузочного резистора и обмотки источника)} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = √3 \ text {I} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = √3 (83,33 A) [/ латекс]

[латекс] \ pmb {\ text {I} _ {\ text {line}} = 144,34 A} [/ латекс]

Преимущества трехфазной системы Delta

Таким образом, ток каждой линии в этой трехфазной энергосистеме равен 144.34 ампера, что значительно больше, чем линейные токи в системе с Y-соединением, которую мы рассматривали ранее. Можно задаться вопросом, не потеряли ли мы все преимущества трехфазного питания здесь, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстого и более дорогого провода. Ответ - нет. Хотя для этой схемы потребуются три медных проводника калибра 1 (на расстоянии 1000 футов между источником и нагрузкой это составляет чуть более 750 фунтов меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для Однофазная система, обеспечивающая одинаковую мощность (30 кВт) при одинаковом напряжении (120 В между проводниками).

Одним из явных преимуществ системы с Δ-соединением является отсутствие нейтрального провода. В системе с Y-соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или отключится), чтобы не допустить изменения фазных напряжений на нагрузке. Это не обязательно (или даже возможно!) В схеме с Δ-соединением. Когда каждый элемент фазы нагрузки напрямую подключен к соответствующей обмотке фазы источника, фазное напряжение будет постоянным независимо от обрывов в элементах нагрузки.

Возможно, самым большим преимуществом источника с Δ-подключением является его отказоустойчивость. Одна из обмоток трехфазного источника, подключенного по схеме Δ, может открыться при отказе (рисунок ниже) без влияния на напряжение или ток нагрузки!

Рис. 4.40. Даже при выходе из строя обмотки источника линейное напряжение по-прежнему составляет 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В. Единственная разница заключается в дополнительном токе в оставшихся функциональных обмотках источника.

Единственным последствием разрыва обмотки источника для источника, подключенного по схеме Δ, является увеличение фазного тока в остальных обмотках.Сравните эту отказоустойчивость с системой с Y-соединением и обмоткой с открытым источником на рисунке ниже.

Рис. 4.41. Разомкнутая обмотка источника «Y» уменьшает вдвое напряжение на двух нагрузках подключенной нагрузки Δ.

При Δ-подключенной нагрузке два сопротивления испытывают пониженное напряжение, в то время как одно остается при исходном линейном напряжении, 208. Нагрузка, подключенная по схеме Y, постигает еще худшую судьбу (рисунок ниже) с таким же отказом обмотки в схеме с Y-подключением. источник.

Рисунок 4.42 Обмотка с открытым истоком системы «Y-Y» снижает вдвое напряжение на двух нагрузках и полностью теряет одну нагрузку.

В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине источники с Δ-соединением предпочтительнее для надежности. Однако, если необходимы двойные напряжения (например, 120/208) или предпочтительны для более низких линейных токов, предпочтительной конфигурацией являются системы с Y-соединением.

  • Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
  • Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
  • Напряжение линии - это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение - это напряжение, измеренное на отдельном компоненте трехфазного источника или нагрузки.
  • Линейный ток - это ток через любую линию между трехфазным источником и нагрузкой.
  • Фазный ток - это ток через любой компонент, содержащий трехфазный источник или нагрузку.
  • В симметричных Y-цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.
  • Для цепей «Y»:

[латекс] \ text {E} _ {\ text {line}} = \ sqrt {3} \ text {E} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = \ text {I} _ {\ text {phase}} [/ latex]

  • В симметричных Δ-цепях линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.
  • Для цепей Δ («треугольник»):

[латекс] \ text {E} _ {\ text {line}} = \ text {E} _ {\ text {phase}} [/ latex]

[латекс] \ text {I} _ {\ text {line}} = \ sqrt {3} \ text {I} _ {\ text {phase}} [/ latex]

  • Трехфазные источники напряжения, подключенные по схеме Δ, обеспечивают большую надежность в случае отказа обмотки, чем источники с подключением по схеме Y. Однако источники, подключенные по схеме Y, могут выдавать такое же количество энергии при меньшем линейном токе, чем источники, подключенные по схеме Δ.

переменного и постоянного тока | Электричество переменного и постоянного тока

Переменный ток, переменный ток и постоянный ток, постоянный ток - это две формы электрического тока, каждая из которых имеет свои преимущества и недостатки.Выбор переменного или постоянного тока зависит от применения и свойств переменного и постоянного тока.


Учебное пособие по электрическому току Включает:
Что такое электрический ток Текущая единица - Ампер ПЕРЕМЕННЫЙ ТОК


Одно из основных различий в типе тока, протекающего в цепи, заключается в том, является ли ток переменным, переменным или постоянным, постоянным.

Электричество переменного и постоянного тока широко используются в электрических и электронных схемах, каждая из которых используется для разных целей.

И переменный, и постоянный ток имеют свои особенности и дают разные преимущества, которые можно использовать в разных ситуациях.

Что такое постоянный ток, DC

Поскольку название подразумевает постоянный ток, постоянный ток - это форма электричества, которое течет в одном направлении - оно прямое, и это дало ему название.

Постоянный ток в базовой схеме

Характеристика постоянного тока, DC может быть отображена на графике. Здесь видно, что ток может быть либо положительным, либо отрицательным.

График, показывающий атрибуты постоянного тока

Применения постоянный ток, постоянный ток

Постоянный ток, DC используется во многих областях:

  • Батареи: Батареи, как неперезаряжаемые, так и перезаряжаемые, могут питать только постоянный ток. Аккумуляторы также нуждаются в подзарядке постоянным током.
  • Электронное оборудование: Все оборудование, такое как компьютеры, радио, мобильные телефоны, и фактически все электронное оборудование использует постоянный ток для питания электронных схем.Биполярные транзисторы, полевые транзисторы и интегральные схемы, в которых используются эти компоненты, нуждаются в постоянном токе для питания их и будут повреждены при обратной полярности. Хотя многие из этих элементов питаются от сети переменного тока, внутри устройства есть блок, называемый источником питания, который преобразует входящий переменный ток в постоянный ток с правильным напряжением (-ями) внутри электронного элемента.
  • Некоторое электрическое оборудование: Хотя во многих электрооборудовании используется переменный ток, в некоторых используется постоянный ток.
  • Панели солнечных батарей: Панели солнечных батарей, используемые для выработки электроэнергии, вырабатывают постоянный ток непосредственно от самих солнечных панелей. При использовании с сетью переменного тока для подачи в сеть или подачи местного питания переменного тока для источников переменного тока требуется блок, известный как инвертор, для обеспечения постоянного тока, постоянного тока от солнечных панелей для преобразования в переменный ток.

Что такое переменный ток, AC

Переменный ток, переменный ток отличается от постоянного тока.Как следует из названия, он течет сначала в одном направлении, а затем в другом.

График, поясняющий переменный ток

На приведенном выше графике показана форма волны тока, изменяющаяся как синусоида, причем ток сначала движется в одном направлении, а затем в другом.

Чаще всего наблюдаются колебания напряжения. Опять же, для переменного сигнала напряжение будет изменяться в положительную и отрицательную сторону.

Как для тока, так и для напряжения видно, что форма волны меняется, становясь в этом примере сначала положительной, а затем отрицательной.

Напряжение для синусоидального сигнала переменного тока

Синусоидальный сигнал легко представить и понять, но большое количество других сигналов также может представлять собой переменный сигнал с переменным током.

Есть несколько важных моментов в отношении чередующихся сигналов. Первый - это период времени для сигнала. Это время от точки в одном цикле формы волны до идентичной пинты в следующем цикле. Часто пик легче всего увидеть, как показано, но можно взять любую точку - например, когда определенное напряжение достигается в заданном направлении - это может быть точка срабатывания напряжения и т. Д.Нулевые переходы - еще одна возможность, которую легко идентифицировать.

Еще одна особенность переменного сигнала - его частота. Это количество раз, когда заданная точка формы сигнала видна в течение секунды, и измеряется в герцах, Гц, где 1 Гц - это один цикл в секунду. Показанный пример имеет частоту 3 Гц, так как в течение секунды наблюдаются три цикла.

В качестве других примеров частота электросети составляет 50 или 60 Гц в зависимости от страны. В Европе и многих других странах используется 50 Гц, тогда как в Северной Америке, странах Карибского бассейна и некоторых странах Южной Америки используется 60 Гц.

Приложения переменного тока

Переменный ток обычно используется для распределения энергии. Его преимущество состоит в том, что его можно легко преобразовать в другие напряжения с помощью простого трансформатора - трансформаторы не работают с постоянным током.

Если мощность распределяется при высоком напряжении, потери намного ниже. Возьмем, к примеру, источник питания 250 В с током 4 А и сопротивлением провода 1 Ом. В качестве мощности, Вт = вольт x ампер, передаваемая мощность составляет 1000 Вт.Потери мощности составляют I 2 x R = 16 Вт.

При передаче электроэнергии высокого напряжения используется переменный ток

Если линия напряжения передает 4 А, но имеет напряжение 250 000 вольт, т. Е. 250 кВ, и линия передает 4 А, тогда потери мощности остаются такими же, но в целом Система передачи несет 1 МВт, а 16 Вт - это почти незначительные потери.

Именно по этой причине для передачи энергии используются высокие напряжения, которые затем снижаются до относительно безопасного уровня для использования в жилых и коммерческих помещениях.

Ввиду того, что в системе питания используется переменный ток, он также используется в двигателях, для отопления и во многих других изделиях без необходимости его преобразования в постоянный ток.

переменного тока и постоянного тока

Во многих областях может быть принято решение о переменном или постоянном токе и о том, какая форма питания лучше всего подходит для данного приложения.

Переменный ток, переменный и постоянный ток, постоянный ток имеют свои преимущества и недостатки, но это означает, что есть возможность выбрать лучший вариант для любого конкретного использования или применения.Переменный ток, переменный ток, как правило, используется для распределения электроэнергии, поэтому сетевые розетки в наших домах и на работе обеспечивают переменный ток для питания всего необходимого, но постоянный ток более широко используется для самих плат электроники и для многих другие приложения.

Источники как переменного, так и постоянного тока широко используются в электротехнической и электронной промышленности, каждый в своей области.

И переменный, и постоянный ток могут обеспечивать передачу электроэнергии, но с немного разными преимуществами.

Дополнительные концепции и руководства по основам электроники:
Voltage Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность РЧ шум
Вернуться в меню «Основные понятия электроники». . .

переменного тока и постоянного тока: все, что вам нужно знать

Не секрет, что наша жизнь полностью зависит от электричества.Но знаете ли вы, как электрический ток попадает в наши дома и офисы? Поток электричества - это поток электронов по проводу . Этот поток делится на 2 типа - переменный ток (AC) и постоянный ток (DC).

AC и DC различаются в зависимости от направления потока электроэнергии. Движение электронов в переменном токе постоянно меняется. Он идет вперед, а затем назад. В постоянном токе электричество течет в одном направлении.

В этой статье мы подробно разберемся с напряжением переменного и постоянного тока.Мы также проясним, в чем еще есть различия между ними и какое из них предпочтительнее.

Что такое переменный ток?

Ток, который движется вперед и назад в своем направлении, называется переменным током. Его размер и полярность также время от времени меняются. Переменный ток работает на частоте 50-60 Гц. Переменный ток может трансформироваться из высокого в низкое значение через трансформатор . Он может меняться очень быстро, то есть с низкого значения на высокое. Поэтому переменный ток считается лучшей альтернативой для передачи и распределения.

Что такое постоянный ток?

В отличие от переменного тока, электрический ток течет в одном направлении по постоянному току. Он работает на нулевой частоте. Размер и полярность постоянного тока все время остаются неизменными. Таким образом, он используется для мобильных телефонов, сварочных целей, электронного оборудования и электромобилей.

Разница между переменным током и постоянным током

Критерии Напряжение переменного тока Напряжение постоянного тока
Направление течения Течение меняет свое направление. Течение не меняет своего направления.
Расход заряда Поток заряда за счет вращения катушки в магнитном поле или вращения поля в устойчивом кольце. Перенос заряда за счет постоянного магнетизма в проводе.
Частота Работает на частоте 50-60 Гц в зависимости от страны. Работает на нулевой частоте.
Коэффициент мощности Коэффициент мощности находится в пределах от 0 до 1. Коэффициент мощности всегда равен 1.
Генерация тока Ток генерируется через генератор. Ток вырабатывается генератором и аккумулятором.
Нагрузка Нагрузка бывает емкостной, резистивной или индуктивной. Нагрузка резистивная
Графическое представление Поскольку переменное напряжение течет в прямом и обратном направлениях, его можно графически изобразить в виде пилообразных, прямоугольных или периодических волн и других видов волн. Постоянное напряжение течет в одном направлении. Поэтому его можно изобразить прямой линией.
Передача на большие расстояния Есть некоторые потери при передаче на большие расстояния Несущественные потери при передаче на большие расстояния.
Преобразование Преобразует в постоянное напряжение через выпрямитель Преобразует в переменное напряжение через инвертор
Требование подстанции Требуется ограниченное количество подстанций для генерации и передачи тока. Требуется больше подстанций для генерации и передачи тока.
Использование Используется для бытовых и промышленных целей. Используется для фонарей, гальваники, электромобилей, электронного оборудования и т. Д.


Процесс генерации переменного тока

переменного тока вырабатывается генератором переменного тока. Это устройство, специально разработанное для выработки переменного тока.Проволочная петля вставляется внутрь магнитного поля. Вращение проволоки осуществляется с помощью проточной воды, ветряной турбины, паровой турбины и т. Д. Время от времени проволока раскручивается, приобретая различную магнитную полярность. Таким образом, ток переменного напряжения периодически меняет направление.

Процесс создания постоянного тока

Существует несколько способов создания постоянного напряжения. Коммутатор - это устройство, которое может производить постоянный ток. Он генерирует постоянный ток путем преобразования переменного тока в постоянный. Батареи также могут генерировать постоянный ток в результате химической реакции внутри них.

Преимущества - переменный ток против постоянного тока

Есть различные преимущества переменного напряжения перед постоянным. Некоторые из них -

  • AC занимает больше места по сравнению с DC.
  • AC дешевле, чем DC
  • Проще генерировать ток через переменный, а не постоянный ток.
  • Потери мощности меньше в переменном токе во время передачи по сравнению с постоянным током.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет.Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. Он хранит обширный инвентарь электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводов, предохранительных выключателей и т. Д. Он закупает электрические материалы у первоклассных компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования.Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Установите пользовательское содержимое вкладки HTML для автора на странице своего профиля
Поделитесь этой историей, выберите платформу!

Сравнение переменного тока и постоянного тока: Урок для детей

Постоянный ток

При постоянном токе электроны движутся в одном направлении, от (-) отрицательного к (+) положительному. Это постоянный ток, протекающий непрерывно, пока он не отключится, либо его источник питания не иссякнет, либо не перестанет генерировать энергию.

Постоянный ток протекает по простой цепи.

Допустим, мы рассматриваем цепь с лампочкой. Как уже отмечалось, постоянный ток течет от отрицательного к положительному, а переключатель включения / выключения действует как затвор для этого электронного потока. Когда он включен, цепь замкнута, позволяя электронам течь. Пройдя через выключатель, электроны попадают в лампочку. Нить накала в лампочке загорается, забирая заряд с электронов, которые затем притягиваются к положительной клемме аккумулятора для повторной зарядки.Этот процесс продолжается до тех пор, пока аккумулятор не разрядится.

Переменный ток

При переменном токе электроны на самом деле не текут, они просто колеблются взад и вперед от отрицательного к положительному и от положительного к отрицательному. Это также не постоянная вибрация, как постоянный поток в постоянном токе. Электроны колеблются во времени или синхронно друг с другом, и это время регулируется путем изменения скорости генератора. Мы называем это электрическое время герц .

В США электричество переменного тока вырабатывается с частотой 60 Гц. Электроны вибрируют и сталкиваются друг с другом, передавая свой заряд с положительного на отрицательный и обратно 60 раз в секунду. Это означает, что когда в цепи, работающей на переменном токе, есть лампочка, через нее не проходит постоянный поток положительно заряженных электронов, как при питании от постоянного тока, поэтому свет тоже непостоянен. Он мигает при каждом цикле переноса заряда электрона со скоростью 60 полных циклов в секунду.Однако это слишком быстро для человеческого глаза, поэтому кажется, что это постоянный свет.

Переменный ток протекает по простой цепи.

Переменный ток вырабатывается генератором, и его заряд (отрицательный или положительный) течет в обоих направлениях, как показано синими и красными стрелками на этом изображении. Переключатель и лампочка работают так же, как и в цепи постоянного тока.

Изучая различия в мощности переменного и постоянного тока, помогает визуализировать происходящее.Как вы можете видеть на иллюстрации, сравнивая их, переменный ток течет синусоидально, чередуя от отрицательного к положительному, а постоянный ток течет в одном направлении от отрицательного к положительному последовательно и за постоянное время.

Проиллюстрирован поток переменного и постоянного тока.

Напряжение

Величина силы, с которой перемещаются электроны, называется напряжением . Многие из наших электрических устройств требуют разного напряжения.Напряжение в сети переменного тока можно легко изменить с помощью трансформатора, что делает этот ток идеальным для электроснабжения наших домов.

Тем не менее, питание постоянного тока позволяет легко транспортировать электричество с нами в виде батарей, таких как те, которые мы используем в наших мобильных телефонах, ноутбуках, планшетах, фонариках и даже в наших транспортных средствах, потому что им не нужны очень высокое напряжение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *