Измеряет силу тока: Как на практике измеряют силу тока

Содержание

Как на практике измеряют силу тока

Для измерения величины тока в цепях постоянного и переменного тока используют электроизмерительный прибор амперметр. Амперметр включается в цепь последовательно с источником тока.

Поскольку ток — это упорядоченное движение заряженных частиц вдоль проводника (через поперечное сечение проводника), то для измерения его величины необходимо пропустить измеряемый ток еще и через амперметр. Поэтому амперметр включается именно в разрыв исследуемой цепи, когда нужно измерить ток, а ни в коем случае не параллельно ей.

В выходной цепи современного амперметра обычно находится шунт — калиброванный резистор повышенной точности и довольно малого сопротивления (считанные доли ома), на котором электронная схема прибора измеряет падение напряжения, и по нему косвенным путем вычисляет ток (или как говорят — силу тока).

Амперметр, как отдельный измерительный прибор или как одна из функций мультиметра, имеет несколько диапазонов измерения тока. Выбор диапазона осуществляется при помощи переключателя, расположенного на лицевой панели прибора.

Обычно на мультиметре можно выбрать одно из следующих значений (максимальное значение для диапазона): 200мкА, 2мА, 20мА, 200мА, 10А и т.д. Кроме того у некоторых мультиметров есть возможность измерения постоянного, переменного, либо и постоянного и переменного тока.

Вид тока также выбирается на шкале переключателя. Для измерения тока и напряжения у мультиметров имеются два отдельных гнезда для подключения щупов: одно гнездо — для измерения напряжения, второе гнездо — для измерения тока. Третье — общий провод, который остается на своем месте независимо от того, что измеряется, ток или напряжение.

Подключите щупы к соответствующим гнездам мультиметра или амперметра. Включите прибор и переведите его в режим измерения тока, выбрав вид тока и диапазон с помощью переключателя. Если диапазон неизвестен, то стоит начать с самого большого значения из доступных на шкале переключателя, потом можно будет уменьшить. Обесточьте цепь, в которой необходимо будет измерить ток.

Присоедините щупы (соблюдая осторожность!) так, чтобы прибор оказался включен в разрыв цепи. Подайте ток в цепь. Спустя пару секунд прибор отобразит на своем дисплее действующее значение измеренного тока.

Если диапазон 10А или более, то значение измеренного тока будет отображено в амперах. Если диапазон например 200мА, 20мА или 2мА (порядок величин таков, но в принципе значения на шкале могут отличаться от этих), то на дисплее будут показания в миллиамперах. Если выбран диапазон 200мкА (или такого же порядка) — на дисплее будут показаны микроамперы.

Амперметр никогда нельзя подключать параллельно источнику тока, ибо в этом случае ток короткого замыкания пройдет через измерительный шунт внутри прибора и если ток окажется больше предельно допустимого для прибора, то прибор мгновенно сгорит.

Если источником тока является, например, розетка или другой источник с низким внутренним сопротивлением, это может закончиться трагедией с жертвами, а в самом лучшем случае — быстрым выходом прибора из строя.

Если вам необходимо измерить ток короткого замыкания пальчиковой батарейки — такое может пройти для амперметра безвредно, но правилом включения амперметра лучше не пренебрегать никогда.

Амперметр включается всегда последовательно в цепь и только в тот момент, когда эта цепь обесточена! Потребители в исправной цепи сами ограничат ток рабочей величиной.

Особенной разновидностью амперметра являются электроизмерительные токовые клещи. Они имеют очень большой диапазон измеряемых токов, и их невозможно включить неправильно. Токовые клещи просто накидываются в обхват участка цепи, ток в которой нужно измерить, и сразу показывают ток. Более распространены токовые клещи для измерения переменного тока, но существуют и модели для измерения постоянного тока (на базе датчика холла).

28 Ноя 2016г | Раздел: Радио для дома

Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением:

2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «

СОМ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «

01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Любая электротехническая система не обходится без расчета силы тока в цепях, проводниках и приборах. Например, при монтаже электрической проводки в однофазной сети или в трехфазной сети для расчета толщины проводников и автоматических защитных выключателей необходимо знать силу тока, который будет протекать в данных линиях. Правильное измерение – залог безопасной и надежной эксплуатации любого электрического устройства.

Измерения силы тока проводят не только для расчета цепей, но и для диагностики электрического оборудования (например, измерения на трехфазном двигателе) и бытовых электроприборов (в нагревателе, лампочках, блоках питания, зарядных устройствах USB и пр.). Автомобильные электрики, для выявления неисправности в электрических системах автомобиля (например, в прикуривателе) проводят измерения силы тока на аккумуляторе или на генераторе автомобиля. В этой статье мы подробно расскажем, как правильно измерять ток в различных ситуациях.

Как измерить ток

Для того, чтобы уметь правильно измерить силу тока, не обязательно быть профессиональным электриком, но необходимо иметь некоторые познания в электротехнике.

Что же такое сила тока? Сила тока – физическая величина, которая равна отношению количества заряда, который проходит через определенную поверхность за некоторое время, к величине этого промежутка времени. Данная величина измеряется в Амперах и обозначается буквой «А». Хоть определение силы тока и звучит достаточно мудрено, но в этой физической величине нет ничего сложного.

Но как измерить амперы? Чтобы провести измерения силы тока необходимо иметь определенный инструмент или оборудование для этого. Обычно измерения в цепи постоянного напряжения проводят мультиметром или тестером, а в сетях переменного напряжения токоизмерительными клещами или амперметром.

Постоянный ток

Как уже было сказано выше, измерения силы тока в цепях постоянного напряжения удобнее всего проводить мультиметром. Для того, чтобы осуществить измерение необходимо взять мультиметр и настроить его для работы с силой тока.

Для этого переключатель режимов перемещается в положение DCA (измерение постоянного тока), а красный и черный штекеры щупов мультиметра подключаются к гнездам с обозначением «10А» и «COM», а другие концы подключаются в разрыв цепи (то есть красный подключается к положительной полярности, а черный к отрицательной).

На современных китайских мультиметрах есть два гнезда для измерения силы тока. Одно из них подписано mA. Оно защищено предохранителем и предназначено для измерения малых токов, зачастую не более 200 мА. А второе гнездо подписывается либо просто «А», либо «10А». Оно не защищено предохранителем и предназначено для измерения тока большой величины. При этом время измерения обычно ограничивается периодом в 10-20 секунд.

Измерения производят с максимального значения, постепенно уменьшая для получения на экране необходимой размерности значения. Важно понимать примерную мощность электрической сети, в которой проводятся измерения, и выбирать прибор в соответствии с этим. Если прибор не рассчитан на такую величину, то он может выйти из строя или произойдет короткое замыкание.

В быту измерения силы тока постоянного напряжения проводят, например, у светодиода на светодиодной ленте или на плате телевизора (или другой техники) при его ремонте, а также в других случаях.

Многие думают, что для измерений силы тока нужно покупать дорогой мультиметр. Но тут надо понимать, для каких целей и задач будет использоваться прибор. Если работу выполняет профессиональный электрик, то приобретается более точный и дорогой инструмент, а домашние измерения можно производить и китайским мультиметром.

Переменный ток

Измерение силы тока в цепи переменного тока сложнее, чем для постоянного. Для этого применяют такие приборы, как амперметр или токоизмерительные клещи. Использование токоизмерительных клещей – самый удобный и безопасный способ, но он подходит только при открытой прокладке проводки или кабеля. Такой способ позволяет измерить ток без разрыва цепи, что существенно безопаснее и быстрее.

Измерение производится путем помещения проводника под напряжением в разъёмный магнитопровод со вторичной обмоткой (конструкция почти аналогична трансформатору тока). Благодаря явлению электромагнитной индукции можно измерить вторичный ток в обмотке, а после этого прибор рассчитывает первичный в измеряемой цепи. При измерении токоизмерительными клещами проводник заводится в раствор клещей и на дисплее прибора отображается сила тока в цепи переменного напряжения.

Чтобы применять амперметр для измерений силы тока нужно обладать определенными навыками и знать, как следует включить в цепь амперметр чтобы измерить силу тока.

Амперметр, как и мультиметр включается в разрыв цепи. При этом важно понимать, что переменный ток наиболее опасен, поэтому требует серьезного отношения к электробезопасности. При включении амперметра в цепь, подачи напряжения и подключения нагрузки на дисплее или табло амперметра будет указана сила тока в цепи.

Примеры измерения тока

Для понимания принципов измерения силы тока в различных электроприборах и цепях ниже приведены варианты устройств и способы измерения силы тока.

Электродвигатель

Измерения силы тока в обмотках электродвигателя производят для проверки наличия коротких замыканий, неисправностей и для настройки правильного алгоритма управления электродвигателем. Так как ток в трехфазном асинхронном двигателе в каждой фазе одинаковый, то достаточно подключить один амперметр к одной фазе для проверки его потребления.

Для диагностики каждой из обмоток замеряют ток в каждой фазе, и если в каждой из фаз он отличается, то в какой-то из обмоток возможно межвитковое замыкание, а если в одной из фаз вообще нет тока — то либо обрыв на линии либо обрыв в обмотке. Если в одной из фаз ток есть но он меньше чем в двух других – возможен плохой контакт в брно или в коммутационных приборах.

У однофазного электромотора все проще: ток измеряется на единственной фазе. Но нужно иметь в виду, что максимальная сила тока амперметра ограничена и обычно составляет не более 5А, поэтому при для больших токов используют токовые клещи или другие схемы с трансформаторами тока и амперметром.

Сварочный аппарат

Для того, чтобы понимать какие электроды использовать и в каком режиме производить сварочные работы можно измерить силу тока на проводе выхода у сварочного аппарата под нагрузкой. Измерение производят аналогично другим приборам, включая в цепь на сварочном инверторе амперметр с трансформатором (бывают и старые модели амперметров с возможностью измерения до 200 А) или используя токоизмерительные клещи.

Батарейки и аккумуляторы

В быту часто бывает необходимо измерить ток электроприбора на батарейках (в качестве батареек могут быть кроны, пальчиковые батарейки и прочие аккумуляторы). Важно понимать, что просто подключить мультиметр или амперметр к источнику нельзя, потому что силу тока измеряют только под нагрузкой.

В качестве нагрузки можно остановится на лампе накаливания или на резисторе или включится в цепь самого прибора. Для замера нужно выбрать на мультиметре необходимый режим (для измерения постоянного тока), правильно подключить клеммы к прибору и на участке цепи. При этом на экране мы получим искомое значение для той нагрузки, которая подключена к аккумулятору.

Заключение

Как можно убедится, существует всего два способа измерения силы тока:

  1. С помощью амперметра или мультиметра — в этом способе важно чтобы прибор выдерживал и его предел измерения был рассчитан на измеряемую силу тока. Недостаток у этого способа состоит в том, что необходимо разрывать цепь. Тогда при измерениях на плате придется перерезать дорожку, а при измерении потребления приборов – разделывать их кабель и выделять одну из жил, или отключать от прибора один провод и включать в его цепь измерительный прибор.
  2. С помощью токоизмерительных клещей. Зачастую этот способ используются для измерения переменного тока, но современной промышленностью выпускают токоизмерительные клещи для постоянного тока, принцип действия которых основан на эффекте Холла (только такие клещи дороговаты — стоят от 50$). Удобен способ тем, что не нужно разрывать цепь – нужно лишь ОДНУ жилу вложить в клещи и на экране высветится сила тока в цепи (или стрелка подскочит, если прибор стрелочный).

Существуют и комбинированные способы, когда измерительный прибор не рассчитан на измеряемую величину – можно использовать трансформатор тока. Например, электросчетчики прямого включения не всегда могут измерять большие токи для учета электроэнергии. Тогда их подключают не напрямую, а через трансформатор тока.

Теперь вы знаете, как измерить силу тока в цепи постоянного и переменного тока. Надеемся, наша инструкция и примеры помогли вам разобраться в вопросе. Если что-либо осталось непонятным, задавайте вопросы в комментариях под статьей!

Зашунтированный амперметр измеряет токи до 10 А. Какую наибольшую силу тока

Условие задачи:

Зашунтированный амперметр измеряет токи до 10 А. Какую наибольшую силу тока может измерить этот амперметр без шунта, если \(R_А=0,02\) Ом, \(R_ш=0,005\) Ом?

Задача №7.5.11 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(I=10\) А, \(R_А=0,02\) Ом, \(R_ш=0,005\) Ом, \(I_0-?\)

Решение задачи:

Для измерения силы тока на каком-либо участке электрической цепи используют амперметр, его располагают на том участке, где и нужно измерить величину силы тока. Если предел измерения амперметра (т.е. максимальное значение силы тока, которое может измерить амперметр) не позволяет измерить силу тока на этом участке, то к амперметру параллельно подключают шунт сопротивлением \(R_{ш}\). Шунт уменьшает силу тока на амперметре.

При этом величину сопротивления шунта можно определить из следующих соображений. Так как амперметр и шунт соединены параллельно, то на них одинаковое напряжение \(U\). Сила тока на амперметре не должна превышать предела измерения \(I_0\), тогда на шунте сила тока будет равна \(\left( {I – {I_0}} \right)\). Здесь \(I\) – измеряемая сила тока. Поэтому:

\[\left\{ \begin{gathered}
U = {I_0}{R_А} \hfill \\
U = \left( {I – {I_0}} \right){R_ш} \hfill \\
\end{gathered} \right.\]

Тогда, очевидно, имеем:

\[{I_0}{R_А} = \left( {I – {I_0}} \right){R_ш}\]

Раскроем скобки в правой части:

\[{I_0}{R_А} = I{R_ш} – {I_0}{R_ш}\]

\[{I_0}{R_А} + {I_0}{R_ш} = I{R_ш}\]

\[{I_0}\left( {{R_А} + {R_ш}} \right) = I{R_ш}\]

В итоге получим такую формулу для расчета предела измерения амперметра \(I_0\):

\[{I_0} = \frac{{I{R_ш}}}{{{R_А} + {R_ш}}}\]

Подставим численные данные задачи в эту формулу и посчитаем ответ:

\[{I_0} = \frac{{10 \cdot 0,005}}{{0,02 + 0,005}} = 2\;А\]

Ответ: 2 А.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Тест по физике за 10 класс

Тест по физике за 10 класс.

http://ubt.bugin.kz

4. Законы постоянного тока


4.01. Какая физическая величина определяется отношением работы, совершаемой сторонними силами, при перемещении заряда q по всей замкнутой электрической цепи, к значению этого заряда?

А.) сила тока; Б.) напряжение; В.) электрическое сопротивление;

Г.) удельное электрическое сопротивление; Д.) электродвижущая сила.

4.02. Какая из приведенных ниже формул применяется для вычисления работы электрического тока?

А.) ; Б.) ; В.) ; Г.) ; Д.) .

4.03. Какая из приведенных ниже формул применяется для вычисления мощности электрического тока?
А.) ; Б.) ; В.) ; Г.) ; Д.) .

4.04. Какую физическую величину в технике измеряют в кВт∙ч?
А.) стоимость потребляемой электроэнергии;

Б.) мощность электрического тока;
В.) работу электрического тока.

4.05. По какой схеме (см. рис. 18) при включении амперметр наиболее точно измеряет силу тока, протекающего через резистор R?

4.06. По какой схеме (см. рис. 19) при включении вольтметр наиболее точно измеряет напряжение на резисторе R?


4.07. Какая из приведенных ниже формул выражает закон Ома для участка цепи?
А.) ; Б.) ; В.) ; Г.) .

4.08. Какая из приведенных ниже формул выражает закон Ома для замкнутой цепи?
А.) ; Б.) ; В.) ; Г.) .

4.09. Зависит ли сопротивление проводника от напряжения на его концах? Нагреванием проводника можно пренебречь.

А.) зависит прямо пропорционально;

Б.) зависит обратно пропорционально; В.) не зависит.

4.10. Какой график на рис.20 соответствует зависимости сопротивления проводника от температуры?

А.) 1;

Б.) 2;

В.) 3.

4.11. Определить общее сопротивление цепи (рис.21), если

R1=1 Ом, R2=R3=R4=3 Ом.

А.) 10 Ом;

Б.) 1 Ом;

В.) 0,5 Ом;

Г.) 2 Ом.

4.12. При напряжении 12 В через нить электролампы течёт ток 2 А. Сколько тепла выделит нить за пять минут?

А.) 7200 Дж; Б.) 120 Дж; В.) 60 Дж; Г.) 3600 Дж.


4.13. Кусок неизолированной проволоки сложили вдвое. Как изменилось сопротивление проволоки?
А.) увеличилось в 2 раза; Б.) уменьшилось в 2 раза;

В.) увеличилось в 4 раза; Г.) уменьшилось в 4 раза;

Д.) не изменилось.

4.14. ЭДС элемента равна 15 В, внутреннее сопротивление r=1 Ом, сопротивление внешней цепи 4 Ом. Какова сила тока короткого замыкания?
А.) 15 А; Б.) 3 А; В.) 3,8 А.


4.15. Определите напряжение на проводнике R1, если сила тока в проводнике R2 равна 0,2 А (см. рис. 22), где R1=60 Ом, а R2=15 Ом.

А.) 3 В;
Б.) 12 В;
В.) 30 В.

4.16. Каково сопротивление лампы, включенной в цепь, если амперметр показывает ток 0,5 А, а вольтметр — 35 В? (рис. 23)

А.) 49,8 Ом;
Б.) 50,1 Ом;
В.) 120 Ом;
Г.) 20 Ом.

4.17. Найти сопротивление участка цепи, если R=3 Ом (рис. 24).

А.) 13 Ом; Б.) 3,9 Ом; В.) 5,5 Ом; Г.) 1,9 Ом.

4.18. Аккумулятор с ЭДС 2 В и внутренним сопротивлением 0,2 Ом замкнут сопротивлением 4,8 Ом. Найдите мощность тока на внешнем участке цепи.
А.) 1,92 Вт; Б.) 0,8 Вт; В.) 0.16 Вт; Г.) 0,77 Вт.

4.19. Что показывает амперметр, включенный в цепь, если ЭДС источника 3 В, внутреннее сопротивление 1 Ом, все сопротивления внешней цепи одинаковы и равны по 10 Ом? (рис. 25)

А.) 2 А;
Б.) 0,5 А;

В.) 1 А;
Г.) 0,14 А.

4.20. Сколько электронов проходит каждую секунду через поперечное сечение вольфрамовой нити лампочки мощностью 70 Вт, включенной в сеть напряжением 220 В?

А.) 3 ∙ 1018; Б.) 2 ∙ 1018; В.) 0,19 ∙ 10-18; Г.) определить невозможно.

4.21. Каждая из двух ламп рассчитана на 220 В. Мощность одной лампы Р1=50 Вт, а другой Р2=100 Вт. Найдите отношение сопротивлений этих ламп.
А.) ; Б.) ; В.) ; Г.) .

4.22. Электрический чайник имеет две спирали. При каком соединении — параллельном или последовательном спиралей вода в чайнике закипит быстрее?
А.) при последовательном; Б.) при параллельном;

В.) тип соединения не играет роли; Г.) не знаю.

4.23. Найдите отношение сопротивлений двух железных проволок одинаковой массы. Диаметр первой проволоки в 2 раза больше второй.
А.) сопротивление более тонкой проволоки в 16 раз меньше;
Б.) сопротивление более тонкой проволоки в 16 раз больше;
В.) сопротивление более тонкой проволоки в 4 раз меньше;
Г.) сопротивление более тонкой проволоки в 4 раз больше.

4.24. Как отразится на работе плитки, если при её ремонте спираль немного укоротили?

А.) накал спирали увеличится; Б.) накал спирали уменьшится;
В.) накал спирали не изменится.

4.25. На каком из резисторов (рис. 26) выделяется наибольшее количество теплоты в единицу времени?

А.) на первом;
Б.)на втором;
В.) на третьем;
Г.) на четвертом.

4.26. КПД источника η. Определить внутреннее сопротивление источника тока, если внешнее сопротивление цепи R.
А.) ; Б.) ; В.) ; Г.) .
4.27. Электрический утюг рассчитан на напряжение 215 В и мощность 500 Вт. При включении его в сеть напряжение на розетке падает с 220 В до 210 В. Определите сопротивление проводов, считая сопротивление утюга постоянным.
А.) 4,3 Ом; Б.) 0,43 Ом; В.) 23 Ом; Г.) 2,3 Ом.

4.28. К амперметру, внутреннее сопротивление которого 0,1 Ом, подключен шунт сопротивлением 0,0111 Ом. Определите силу тока, протекающего через амперметр, если сила тока в общей цепи 0,27 А.
А.) 2,7 А; Б.) 0,27 А; В.) 0,027 А; Г.) 0,0027 А.

4.29. Элемент с внутренним сопротивлением 0,6 Ом замкнут никелевой проволокой длиной б м и сечением 1 мм2. Определите КПД элемента. Удельное сопротивление никеля 73 ∙ 10-7 Ом∙м.
А.) 42%; Б.) 98%; В.) 44%; Г.) 14%.

4.30. На каких из резисторов R1, R2, R3 и R4 (рис. 27) выделяется одинаковое количество теплоты в единицу времени, если амперметр показывает 3 А, а R1=10 Ом, R2=R3=20 Ом и R4=40 Ом?

А.) 1 и 2;

Б.) 2 и 3;

В.) 3 и 4;

Г.) 4 и 1.

Ключи правильных ответов

Уровень заданий

Номера заданий и правильные ответы

1 уровень

(1 балл)

4.01

4.02

4.03

4.04

4.05

4.06

4.07

4.08

4.09

4.10

Д

В

Г

В

А

А

Г

Б

В

В

2 уровень

(2 балла)

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Г

А

Г

А

Б

Г

В

Г

Б

Б

3 уровень

(3 балла)

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

А

Б

Г

А

Б

В

А

В

Б

Г

Чем измеряют силу тока

Сила тока наряду с напряжением и сопротивлением является очень важным понятием в электричестве. Она измеряется в амперах и определяется количеством электрической энергии, проходящей через проводник за определенную единицу времени. Определяют ее величину с помощью измерительных приборов, в домашних условиях это проще всего сделать при помощи мультиметра, или тестера, имеющегося в распоряжении многих хозяев современных квартир. Контроль силы тока очень важен для работы механизмов, зависящих от электропитания, поскольку превышение ею максимально допустимого значения приводит к поломке приборов и возникновению аварийных ситуаций. Тема этой статьи – как измерить силу тока мультиметром.

Виды мультиметров

На современном рынке электроприборов представлено две разновидности тестеров:

Основными элементами аналоговых приборов являются шкала с нанесенными на ней делениями, по которой определяются показатели электрических величин, и стрелка-указатель. Такие мультиметры пользуются высоким спросом у новичков благодаря своей низкой стоимости и простоте в использовании.

Но, наряду с этими положительными сторонами, аналоговые тестеры имеют и ряд недостатков, основным из которых является высокая погрешность измерений. Ее можно несколько уменьшить за счет настроечного резистора, конструктивно входящего в состав прибора. Тем не менее, при необходимости замерить электрические параметры с высокой точностью, лучше воспользоваться цифровым прибором.

Цифровые мультиметры

Единственным внешним отличием цифрового аппарата от аналогового является экран, на котором в виде цифр отражаются измеряемые параметры. Старые модели оборудованы светодиодным дисплеем, приборы нового типа – жидкокристаллическим.

Они отличаются высокой точностью измерений и простотой в эксплуатации, поскольку не нуждаются в подгонке градуировки.

Недостатком этих устройств можно назвать цену, которая в разы превосходит стоимость аналоговых тестеров.

Особенности конструкции

Независимо от количества гнезд в мультиметре, любой из этих приборов имеет два типа выходов, которые обозначаются разными цветами. Общий выход (масса) окрашен в черный цвет и имеет обозначение либо «com», либо «–». Выход, предназначенный для измерений (потенциальный), имеет красный цвет. Для любого из измеряемых параметров электроцепи может быть свое гнездо.

Не стоит опасаться перепутать его с другими, поскольку каждое из этих гнезд обозначено соответствующей единицей.

Еще одним внешним элементом прибора является рукоятка для установки предела измерений, которая может вращаться по кругу. На цифровых мультиметрах этих пределов больше, чем на аналоговых, кроме того, в них могут быть включены дополнительные опции, например, звуковой сигнал и другие. Поскольку мы говорим о том, как с помощью тестера произвести измерение силы тока, речь пойдет о шкале с амперами.

Каждый мультиметр имеет свой максимальный предел по току, и при выборе электросети для тестирования, проверяемую силу тока в ней следует сопоставить с пределом, на который рассчитан прибор. Так, если сила тока, проходящего внутри электроцепи составляет 180 А, не рекомендуется проводить измерения при помощи мультиметра, рассчитанного на 20 А, поскольку единственным полученным результатом будет сгорание прибора сразу же после начала тестирования. Максимальный предел всегда указывается в паспорте мультиметра или на корпусе устройства.

Порядок подготовки прибора к измерениям

Переключатель мультиметра нужно перевести в сектор A (DA для постоянного тока или CA для переменного), который соответствует измерению тока, выбрав при этом нужный предел. Некоторые современные тестеры для электроцепей постоянного тока имеют одну позицию, а для переменного – другую. Чтобы не ошибиться, нужно ориентироваться по литерам, имеющимся на лицевой панели.

Они одинаковы в любом приборе, надо просто понимать, какую величину каждый из них обозначает.

Все мультиметры комплектуются двумя кабелями, на конце каждого из которых имеется щуп и разъем. Вторые концы проводов вставляются в гнезда прибора, которые соответствуют текущему измерению, в нашем случае – силы тока.

Порядок измерений

Мультиметр для измерения величины силы тока включается в разрыв электроцепи. В этом состоит основное отличие от процедуры измерения напряжения, при которой тестер подключается к цепочке параллельно. Показатель величины тока, который проходит через прибор, отображается стрелкой на шкале (если речь идет об аналоговом аппарате) или высвечивается на жидкокристаллическом (светодиодном) дисплее.

Разорвать тестируемую цепь для включения в нее прибора можно по-разному. Например, отсоединив один из выводов радиоэлемента при помощи паяльника.

Иногда приходится перекусывать провод кусачками или пассатижами.

При определении величины тока батарейки или аккумулятора такой проблемы не существует, поскольку просто собирается цепь, одним из элементов которой является мультиметр.

Что необходимо учитывать при измерении

Важным условием при определении силы тока является включение в цепочку ограничительного сопротивления – резистора или обычной электролампочки. Этот элемент защитит прибор от поломки (сгорания) под воздействием потока электронов.

Если сила тока на индикаторе не отображается, это говорит о неверно выбранном пределе, который нужно снизить на одну позицию. Если результата нет снова – еще на одну, продолжая до тех пор, пока на экране или шкале не отобразится какое-то значение.

Производить замер нужно быстро – щуп не должен контактировать с кабелем более одной-двух секунд. Особенно это касается элементов питания малой мощности. Если, измеряя силу тока батареек, держать щуп на проводе длительное время, итогом станет их разряд – частичный или полный.

Техника безопасности

Как видим, процедура измерения силы тока при помощи мультиметра никакой сложности не представляет. Важно только следовать инструкции и не забывать о строгом соблюдении мер безопасности:

  • Перед проведением замеров обесточьте электросеть.
  • Проверьте изоляцию кабелей – при продолжительной эксплуатации ее целостность иногда нарушается, и вероятность поражения электротоком значительно возрастает.
  • Работайте исключительно в резиновых перчатках.

  • Не проводите измерения при высокой влажности воздуха. Дело в том, что влага обладает высокой электрической проводимостью и риск поражения также возрастает.
  • Человек, пострадавший от удара током, нуждается в медицинской помощи. Если есть возможность, любые работы с электричеством, в том числе и измерения, лучше проводить вдвоем. В нештатной ситуации присутствие напарника может оказаться настоящим спасением.

Закончив измерения, разрезанные кабели нужно вновь соединить, предварительно снова обесточив цепь.

Подробно и наглядно про измерения проводимые с помощью мультиметра на видео:

Заключение

В этой статье мы разобрались, как проверить силу тока с помощью мультиметра. Прочитав изложенный материал, любой взрослый человек сможет справиться с этой задачей, благо мультиметр – прибор совсем несложный, но в то же время очень нужный для решения не только профессиональных, но и бытовых задач, связанных с электричеством.

Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.

Измерение тока рекомендуется делать в следующих случаях:

  • После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
  • Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
  • При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
  • Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
  • Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
  • Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока

Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.

Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.

Измерение тока приборами

Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.

  • Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.

  • Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.

Порядок измерения силы тока мультиметром
  • Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
  • Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
  • Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
  • Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.

  • Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
  • Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
  • Отключить питание цепи и отсоединить мультиметр.
  • Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.

Способы измерения тока

Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.

При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.

Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.

Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.

Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.

Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.

Электрическим током называют направленное перемещение заряженных частиц, которое происходит под влиянием электрического поля.

Как образуется ток?

Электрический ток появляется в веществе при условии наличия свободных (несвязанных) заряженных частиц. Носители заряда могут присутствовать в среде изначально, либо образовываться при содействии внешних факторов (ионизаторов, электромагнитного поля, температуры).

В отсутствие электрического поля их передвижения хаотичны, а при подключении к двум точкам вещества разности потенциалов становятся направленными – от одного потенциала к другому.

Количество таких частиц влияет на проводимость материала – различают проводники, полупроводники, диэлектрики, изоляторы.

Где возникает ток?

Процессы образования электрического тока в различных средах имеют свои особенности:

  1. В металлах заряд перемещают свободные отрицательно заряженные частицы – электроны. Переноса самого вещества не происходит – ионы металла остаются в своих узлах кристаллической решетки. При нагревании хаотичные колебания ионов близ положения равновесия усиливаются, что мешает упорядоченному движению электронов, — проводимость металла уменьшается.
  2. В жидкостях (электролитах) носителями заряда являются ионы – заряженные атомы и распавшиеся молекулы, образование которых вызвано электролитической диссоциацией. Упорядоченное движение в этом случае представляет собой их перемещение к противоположно заряженным электродам, на которых они нейтрализуются и оседают.

Катионы (положительные ионы) движутся к катоду (минусовому электроду), анионы (отрицательные ионы) – к аноду (плюсовому электроду). При повышении температуры проводимость электролита возрастает, так как растет число разложившихся на ионы молекул.

При низких температурах полупроводники приближаются по свойствам к изоляторам, так как электроны заняты ковалентными связями атомов кристаллической решетки.

При увеличении температуры валентные электроны получают достаточную для разрыва связей энергию, и становятся свободными. Соответственно, чем выше температура – тем лучше проводимость полупроводника.

Посмотрите видео ниже с подробным рассказом об электрическом токе:

От чего зависит ток?

На количество свободных заряженных частиц и на скорость их упорядоченного передвижения влияют следующие факторы:

  1. Материал проводящего вещества;
  2. Заряд и масса частиц;
  3. Величина разности потенциалов;
  4. Окружающая температура;
  5. Наличие дополнительных внешних факторов – магнитного поля, ионизирующего излучения.

В чем измеряется ток?

Для измерения электрического тока пользуются понятиями силы тока и его плотности. Измеряется сила тока специальным приборам —амперметром.

Сила тока измеряется в Амперах (А) и представляет собой величину заряда, который проходит через поперечное сечение проводящего материала за единицу времени. Единица измерения силы тока называется Ампер (А). Один ампер приравнивают к отношению одного Кулона (Кл) к одной секунде.

Плотностью тока называют отношение силы тока к площади этого сечения. Единицей измерения измеряют в Амперах на квадратный метр (А/м2).

Ниже представлено видео о силе электрического тока в рамках школьной программы:

Постоянный и переменный — в чём различие?

Сети с переменным током используют для передачи энергии по проводам на значительные расстояния.

Клещи для измерения силы тока

Токоизмерительные клещи помогут вам точно определить силу тока. Они осуществляют непрямое измерение магнитного поля, окружающего проводник. Таким образом, вам не нужно отключать ток, чтобы проводить измерения непосредственно на электрическом кабеле, поскольку это измерение бесконтактное.

Преимущества токовых клещей testo 770

  • Инновационный механизм захвата позволяет легко схватить кабель
  • Дополнительные функции: измерение пускового тока, мощности и малых токов в диапазоне мкА
  • Возможность работы с приложением testo Smart Probes по Bluetooth

Основные преимущества

Инновационный механизм захвата

Идеально подходит для плотно уложенных кабелей

Автоматическое определение AC/DC

Для более безопасной работы

Работа с мобильным приложением

Для вывода результатов в виде графика и цифрового документирования

Сравнение моделей токоизмерительных клещей testo 770

    • Токоизмерительные клещи testo 770-1
  • Базовая модель для быстрого измерения самых важных параметров.
  • • Полностью убираемый зубец
  • • Автоматическое определение постоянного/переменного тока и измерение истинного СКЗ
  • • Батарейки и измерительные щупы в комплекте
    • Токоизмерительные клещи testo 770-2
  • Точный универсальный прибор для измерения электрических параметров и температуры.
  • • Измерение силы тока в диапазоне мкА
  • • Измерение силы пускового тока на электродвигателях
  • • Автоматическое определение постоянного/переменного тока и измерение истинного СКЗ
  • • Адаптер для термопар типа K для измерения температуры в комплекте
    • Токоизмерительные клещи testo 770-3
  • Наша самая мощная модель – с мобильным приложением и Bluetooth.
  • • Очень широкий диапазон измерения силы тока и температуры
  • • Измерение силы пускового тока на электродвигателях
  • • Автоматическое определение постоянного/переменного тока и измерение истинного СКЗ
  • • Отображение процесса измерения и цифровое документирование в приложении testo Smart Probes

Сферы применения:


Точные токоизмерительные клещи для разных сфер применения

Складывающийся зубец позволяет легко захватывать плотно уложенные кабели. Благодаря этому вы сможете измерить силу тока, даже если вы не можете временно отключить систему. Токоизмерительные клещи позволяют одновременно регистрировать множество измеряемых параметров, обеспечивая решение разных измерительных задач и чёткий сбор данных.

При работе с токоизмерительными клещами необходимо учитывать две особенности:

  • можно одновременно захватить и измерить только один проводник,
  • если клещи захватывают весь кабель, включая проводник и обратный проводник, измеряется только ток утечки.
     

Точное измерение тока утечки

Зонд для измерения тока утечки – важный прибор для точных измерений в области электроники. В отличие от классических токоизмерительных клещей, эти диагностические приборы обладают повышенной чувствительностью, позволяющей измерять силу тока в очень малых диапазонах.

Высококачественные и высокоточные зонды для измерения тока утечки обладают дополнительными функциями, такими как измерение пускового тока и малых токов в диапазоне мкА. Это позволяет вам использовать токоизмерительные клещи для решения следующих задач:

  • проверка на обрыв цепи и измерение сопротивления,
  • измерение напряжения,
  • измерение истинного СКЗ.

Высокоточные токоизмерительные клещи Testo для большей безопасности

Современные измерительные приборы Testo отличаются инновационным механизмом захвата, который облегчает работу с электрощитками. Этот механизм позволяет точно захватывать отдельные провода, обеспечивая точное бесконтактное измерение силы тока и прочих необходимых параметров. Даже когда кабели очень плотно уложены и их диаметр очень мал, вы можете быть уверены в работе токовых клещей и зонда тока утечки. Токоизмерительные клещи оснащены большим двухстрочным дисплеем и функцией автоматического определения постоянного и переменного тока. Мы предлагаем три модели токоизмерительных клещей:

  • testo 770-1 с полностью убираемым зубцом для максимального удобства,
  • testo 770-2 с дополнительным температурным адаптером и функцией измерения в диапазоне мкА,
  • testo 770-3 с оптимизированной функцией измерения истинного СКЗ и с Bluetooth.

Для регистрации статического магнитного поля

Для измерения постоянного тока токовые клещи измеряют сопротивление, которое  зависит от магнитного поля. Это позволяет регистрировать статическое магнитное поле, что необходимо, так как переменного поля с постоянным током не существует.

Магниторезистивные сопротивления, которые для этого необходимы, устанавливаются в немагнитный зазор. Их очень слабый сигнал нужно усиливать электронными средствами, так что измерительные приборы оснащены соответствующим аккумулятором и работают от сети или батареи. Токоизмерительные клещи могут измерять и переменный ток. Помимо измерения силы постоянного и переменного тока в амперах, клещи имеют возможность измерять напряжение переменного и постоянного тока в вольтах. Кроме того, у них есть дополнительные измерительные функции:

  • измерение сопротивления (в омах),
  • измерение ёмкости (в фарадах),
  • измерение частоты (в герцах).

Надёжный помощник во многих ситуациях

Токоизмерительные клещи, предназначенные для измерения силы постоянного тока, подходят для обслуживания и проверки электрических систем и небольших устройств. Однако этот прибор также позволяет измерять электрическую ёмкость или сопротивление, а также проводить проверку на обрыв цепи. Если объект измерения находится в труднодоступном месте, функция hold облегчает считывание показаний.

Полностью убираемый зубец значительно облегчает работу с токоизмерительными клещами Testo в сложных условиях. Вы сможете безопасно и эффективно работать даже с плотно уложенными кабелями в узких распределительных щитках. Дополнительная функция измерения тока утечки помогает вам тестировать электрические параметры и обеспечивать сохранность всей системы. Большой дисплей позволяет вам видеть все результаты измерений, что позволяет вам вовремя предпринять шаги, необходимые для обеспечения изоляции и обслуживания системы.
 

Тест по физике Законы электрического тока 8 класс

Тест по физике Законы электрического тока для учащихся 8 класса с ответами. Тест состоит из 4 вариантов в каждом по 20 заданий.

1 вариант

1. В каких единицах измеряют силу тока?

1) В кулонах (Кл)
2) В амперах (А)
3) В омах (Ом)
4) В вольтах (В)

2. Известно, что через поперечное сечение проводника, вклю­ченного в цепь на 2 мин, прошел заряд, равный 36 Кл. Какова была сила тока в этом проводнике?

1) 0,3 А
2) 18 А
3) 36 А
4) 72 А

3. По какой формуле определяют электрическое напряжение?

1) v = s/t
2) I = q/t
3) P = A/t
4) U = A/q

4. Нужно измерить напряжение на электролампе. Какой из представленных здесь схем можно воспользоваться для этого?

1) №1
2) №2
3) №3

5. Какая физическая величина характеризует электропровод­ность цепи?

1) Сила тока
2) Работа тока
3) Сопротивление
4) Напряжение

6. На рисунке показаны три графика зависимости силы тока от напряжения. Какой из них построен для цепи, обладающей наименьшим сопротивлением?

1) №1
2) №2
3) №3

7. Напряжение на реостате сопротивлением 20 Ом равно 75 В. Какова сила тока в нем?

1) 1,5 А
2) 7,5 А
3) 37,5 А
4) 3,75 А

8. Сила тока в проводнике 0,25 А, напряжение на его концах 150 В. Каким сопротивлением обладает этот проводник?

1) 60 Ом
2) 600 Ом
3) 37,5 Ом
4) 375 Ом

9. Как сопротивление проводника зависит от его длины?

1) Изменение длины проводника не влияет на его сопротивле­ние
2) С увеличением длины проводника его сопротивление уве­личивается
3) С увеличением длины проводника сопротивление уменьша­ется

10. По какой формуле рассчитывают сопротивление проводника, если известны его размеры?

1) R = U/I
2) F = gρV
3) R = ρl/S
4) F = gρжVт

11. Определите сопротивление никелинового провода длиной 20 м и площадью поперечного сечения 0,4 мм2.

1) 16 Ом
2) 40 Ом
3) 10 Ом
4) 20 Ом

12. Как надо изменить положение ползунка, чтобы сопротивление реостата уменьшилось?

1) Сдвинуть его в право
2) Передвинуть влево
3) Сместить в любую сторону

13. К источнику тока подключены последовательно соединенные лампа, резистор и реостат (см. схему). Под каким номером обо­значен реостат? Какова в нем сила тока, если в лампе она равна 0,3 А?

1) №3; 0,1 А
2) №2; 0,1 A
3) №3; 0,3 А
4) №2; 0,3 А

14. Две одинаковые параллельно соединенные лампы подключе­ны к источнику тока, напряжение на полюсах которого 12 В. При этом сила тока в лампе №1 равна 1 А. Каковы напряже­ния на лампе №1 и №2? Какой силы ток течет в общей цепи этих ламп?

1) На той и другой лампе 12 В; 2 А
2) На той и другой лампе 12 В; 0,5 А
3) На каждой лампе по 6 В; 2 А
4) На каждой лампе по 6 В; 0,5 А

15. По каким двум формулам рассчитывают работу электрическо­го тока?

1) A = Uq и U = IR
2) q = It и A = Ult
3) A = Uq и A = Ult

16. Какая физическая величина характеризует быстроту выпол­нения работы электрическим током? В каких единицах ее из­меряют?

1) Заряд, прошедший через поперечное сечение проводника; в кулонах
2) Мощность электрического тока; в ваттах
3) Напряжение; в вольтах
4) Выделяемое количество теплоты; в джоулях

17. Сила тока в лампе 0,8 А, напряжение на ней 150 В. Какова мощность электрического тока в лампе? Какую работу он со­вершит за 2 мин ее горения?

1) 120 Вт; 22,5 кДж
2) 187,5 Вт; 14,4 кДж
3) 1875 Вт; 14,4 кДж
4) 120 Вт; 14,4 кДж

18. От каких величин зависит количество теплоты, выделяемой проводником при прохождении по нему электрического тока?

1) Силы тока и длины проводника
2) Силы тока и площади его поперечного сечения
3) Силы тока, времени и сопротивления проводника
4) Силы тока, напряжения и материала, из которого изготов­лен проводник

19. Силу тока в цепи увеличили в 2 раза, а ее сопротивление уменьшили в 2 раза. Изменилось ли в цепи и как выделение теплоты?

1) Увеличилось в 2 раза
2) Не изменилось
3) Уменьшилось в 2 раза
4) Увеличилось в 4 раза

20. Лампа, сопротивление нити накала которой 10 Ом, включена на 10 мин в цепь, где сила тока равна 0,1 А. Сколько энергии в ней выделилось?

1) 1 Дж
2) 6 Дж
3) 60 Дж
4) 600 Дж

2 вариант

1. По какой формуле можно вычислить силу тока в цепи?

1) P = A/t
2) I = q/t
3) m = Q/λ
4) U = A/q

2. К источнику тока подключены последовательно соединенные лампа и реостат. Где следует включить в этой цепи амперметр, чтобы измерить силу тока в реостате?

1) Между лампой и реостатом
2) Между источником тока и реостатом
3) Между реостатом и ключом
4) В любом месте цепи

3. В каких единицах измеряется электрическое напряжение?

1) В джоулях (Дж)
2) В амперах (А)
3) В омах (Ом)
4) В вольтах (В)

4. На каком из участков электрической цепи ток совершит наи­меньшую работу, если на первом из них напряжение равно 20 В, на втором — 10 В и на третьем — 60 В?

1) На первом
2) На втором
3) На третьем

5. Выясните по приведенным здесь графикам зависимости сил тока в двух цепях, чему равны силы тока в них при напряже­нии на их концах 30 В.

1) №1 — 4 А; №2 — 1 А
2) №1 — 1 А; №2 — 4 А
3) В обеих цепях 4 А
4) В обеих цепях 1 А

6. Как изменится сопротивление проводника, если сила тока в нем возрастет в 2 раза?

1) Увеличится в 4 раза
2) Уменьшится в 2 раза
3) Не изменится
4) Увеличится в 2 раза

7. Какова сила тока в проводнике, сопротивление которого 10 Ом, при напряжении 220 В?

1) 2,2 А
2) 22 А
3) 2,2 кА
4) 22 кА

8. При напряжении 70 В сила тока в проводнике 1,4 А. Определите его сопротивление.

1) 5 Ом
2) 50 Ом
3) 98 Ом
4) 9,8 Ом

9. Как сопротивление проводника зависит от его поперечного се­чения?

1) При увеличении сечения сопротивление уменьшается
2) С увеличением его площади сопротивление увеличивается
3) Изменение площади сечения не влияет на сопротивление

10. Серебро имеет малое удельное сопротивление. Оно — хороший или плохой проводник электричества?

1) Ответить нельзя — нет нужных данных
2) Плохой
3) Хороший

11. Спираль изготовлена из нихромового провода длиной 50 м и поперечным сечением 0,2 мм2. Каково его сопротивление?

1) 11 Ом
2) 27,5 Ом
3) 110 Ом
4) 275 Ом

12. Куда следует передвинуть ползунок, чтобы сопротивление увеличить?

1) Влево
2) Вправо
3) Поставить на середину

13. Цепь, схема которой показана на рисунке, состоит из источ­ника тока, амперметра и двух одинаковых параллельно соеди­ненных электроламп. Амперметр показывает силу тока, рав­ную 0,6 А. Какова сила тока в лампах?

1) В обеих лампах 0,6 А
2) В №1 — 0,6 А; №2 — 0,3 А
3) №1 — 0,3 А; №2 — 0,6 А
4) В обеих лампах 0,3 А

14. К источнику тока подключены две одинаковые последователь­но соединенные лампы сопротивлением 6 Ом каждая. Сила тока в лампе №1 равна 1,5 А. Определите напряжение на по­люсах источника тока и силу тока в соединительных прово­дах.

1) 9 В; 1,5 А
2) 18 В; 1,5 А
3) 18 В; 3 А
4) 9 В; 3 А

15. Какими тремя приборами надо располагать, чтобы измерить величины, необходимые для расчета работы электрического тока?

1) Амперметром, аккумулятором, вольтметром
2) Амперметром, вольтметром, реостатом
3) Амперметром, вольтметром, часами

16. По какой формуле рассчитывают мощность электрического тока?

1) q = It
2) А = Uq
3) Р = UI
4) U = IR

17. Сопротивление участка цепи 75 Ом, напряжение на его кон­цах 150 В. Чему равна мощность электрического тока на этом участке? Какую работу он совершит здесь за 0,5 мин?

1) 300 Вт; 9 кДж
2) 300 Вт; 0,6 кДж
3) 300 Вт; 90 кДж
4) 300 Вт; 900 кДж

8. Как зависит теплота, выделяющаяся в проводнике, от силы тока?

1) Чем больше сила тока, тем больше выделяется теплоты
2) Чем больше сила тока, тем меньше выделяется теплоты
3) Количество теплоты прямо пропорционально силе тока
4) Количество теплоты прямо пропорционально квадрату силы тока

19. Как изменится выделение теплоты в цепи, если силу тока в ней уменьшить в 3 раза, а сопротивление увеличить в 3 раза?

1) Уменьшится в 9 раз
2) Уменьшится в 3 раза
3) Увеличится в 3 раза
4) Не изменится

20. Проводник сопротивлением 250 Ом при силе тока, равной 200 мА, нагревался 3 мин. Сколько энергии электрического тока перешло при этом в его внутреннюю энергию? (Потери энергии не учитывать.)

1) 180 Дж
2) 1800 Дж
3) 18 кДж
4) 30 кДж

3 вариант

1. Выразите в амперах силу тока, равную 4250 мА и 0,8 кА.

1) 42,5 А и 80 А
2) 42,5 А и 800 А
3) 4,25 А и 800 А
4) 4,25 А и 80 А

2. В какой электролампе измеряет силу тока амперметр, включенный так, как показано на схеме?

1) №1
2) №2
3) В любой из них

3. Какую работу совершит электрический ток в реостате, напряжение на котором 35 В, если по нему пройдет заряд, равный 10 Кл?

1) 35 Дж
2) 350 Дж
3) 70 Дж
4) 700 Дж

4. Как включается в цепь вольтметр?

1) Параллельно тому участку цепи, на котором должно быть измерено напряжение
2) Последовательно с тем участком цепи, где измеряется напряжение
3) Однозначного ответа нет: в разных цепях по-разному

5. В каких единицах измеряют сопротивление проводников?

1) В вольтах (В)
2) В кулонах (Кл)
3) В омах (Ом)
4) В амперах (А)

6. Какая из приведенных здесь формул выражает закон Ома?

1) U = A/q
2) I = q/t
3) P = A/t
4) I = U/R

7. Сила тока в электролампе 0,44 А, сопротивление ее раскален­ной нити 500 Ом. При каком напряжении она горит?

1) 220 В
2) 22 В
3) 8,8 В
4) 88 В

8. Сопротивление проводника 450 Ом, напряжение на его кон­цах 90 В. Найдите силу тока в этом проводнике.

1) 0,5 А
2) 5 А
3) 20 А
4) 0,2 А

9. Какая физическая величина характеризует зависимость сопро­тивления проводника от вещества, из которого он состоит?

1) Сила тока
2) Напряжение
3) Удельное сопротивление
4) Количество электричества

10. У сплава манганин довольно большое удельное сопротивле­ние, а у серебра малое. Какое из этих веществ лучше проводит электрический ток?

1) Манганин
2) Серебро
3) Сравнения удельных сопротивлений веществ недостаточно для ответа на вопрос

11. Рассчитайте сопротивление реостата, на изготовление кото­рого пошло 100 м константановой проволоки с площадью по­перечного сечения 0,5 мм2.

1) 10 Ом
2) 25 Ом
3) 100 Ом
4) 250 Ом

12. Как изменится сила тока в цепи, если ползунок включенного в нее реостата сдвинуть вправо?

1) Уменьшится
2) Увеличится
3) Не изменится

13. В цепи, схема которой представлена на рисунке, сопротивле­ние лампы 25 Ом, резистора 45 Ом, звонка 10 Ом. Найдите со­противление этой цепи и силу тока в лампе, если сила тока в резисторе 0,6 А.

1) 80 Ом; 0,2 А
2) 55 Ом; 0,6 А
3) 35 Ом; 0,2 А
4) 80 Ом; 0,6 А

14. Лампа и резистор, сопротивления которых одинаковы, вклю­чены в цепь согласно показанной схеме. Сила тока в лампе 2 А, напряжение на полюсах источника тока 10 В. Каково со­противление резистора и сила тока в нем?

1) 5 Ом; 2 А
2) 20 Ом; 2 А
3) 20 Ом; 1 А
4) 5 Ом; 1 А

15. В каких единицах измеряют работу электрического тока?

1) В омах (Ом)
2) В амперах (А)
3) В джоулях (Дж)
4) В вольтах (В)

16. Какие нужно иметь приборы, чтобы можно было измерить ве­личины, позволяющие определить мощность электрического тока?

1) Амперметр и реостат
2) Амперметр и вольтметр
3) Вольтметр и часы
4) Вольтметр и реостат

17. В проводнике сопротивлением 15 Ом сила тока равна 0,4 А. Какова мощность электрического тока в нем? Чему равна ра­бота тока в этом проводнике, совершенная за 10 мин?

1) 2,4 Вт; 1,44 кДж
2) 6 Вт; 3,6 кДж
3) 6 Вт; 60 Дж
4) 2,4 Вт; 24 Дж

18. По какой формуле рассчитывают количество теплоты, выде­ляющейся в проводнике при прохождении по нему электриче­ского тока?

1) Q = cm(t2 — t1)
2) Q = I2Rt
3) А = IUt

19. Во сколько раз надо увеличить сопротивление цепи, чтобы при уменьшении силы тока в 4 раза выделяющееся в ней ко­личество теплоты осталось неизменным?

1) В 4 раза
2) В 8 раз
3) В 16 раз

20. Сила тока в проводнике сопротивлением 125 Ом равна 0,1 А. Какое количество теплоты выделяется в нем за 1 мин?

1) 750 Дж
2) 75 Дж
3) 1,25 Дж
4) 12,5 Дж

4 вариант

1. Переведите в амперы силу тока, равную 700 мА и 0,25 кА.

1) 7 А и 250 А
2) 0,7 А и 25 А
3) 7 А и 25 А
4) 0,7 А и 250 А

2. Какой амперметр измерит силу тока в верхней (на схеме) лампе?

1) №1
2) №2
3) Любой из них
4) Ни один из этих приборов

3. При прохождении по участку цепи заряда 100 Кл электриче­ский ток произвел работу, равную 12 кДж. Каково напряже­ние на этом участке цепи?

1) 120 В
2) 12 В
3) 1,2 В
4) 0,12 В

4. На каком приборе измеряет напряжение вольтметр, включен­ный так, как показано на схеме?

1) На звонке
2) На лампе
3) На реостате

5. В чем главная причина того, что проводники оказывают со­противление электрическому току?

1) Постоянное хаотическое движение электронов
2) Столкновение упорядоченно движущихся электронов с ио­нами кристаллической решетки
3) Взаимодействие электронов с ионами решетки

6. Пользуясь законом Ома, получите формулу для расчета сопро­тивления проводника.

1) R = U/I
2) I = q/t
3) P = A/t

7. При какой силе тока напряжение на концах проводника со­противлением 125 Ом будет равно 1,5 кВ?

1) 1,2 А
2) 12 А
3) ≈ 83 А
4) ≈ 8,3 А

8. Сила тока в реостате 0,8 А, его сопротивление 100 Ом. Определите напряжение на его клеммах.

1) 125 В
2) 12,5 В
3) 80 В
4) 800 В

9. От каких физических величин зависит сопротивление прово­дника?

1) От его длины (l)
2) От площади его поперечного сечения (S)
3) От удельного сопротивления (ρ)
4) От всех этих трех величин

10. Какое вещество — с малым или большим удельным сопротив­лением — может служить хорошим проводником электриче­ства?

1) С малым
2) С большим
3) Однозначного ответа нет

11. Железный провод длиной 6 м и площадью поперечного сече­ния 0,3 мм2 включен в цепь. Какое сопротивление он оказыва­ет электрическому току?

1) 36 Ом
2) 18 Ом
3) 2 Ом
4) 20 Ом

12. У реостата, показанного на рисунке, когда он был включен в цепь, передвинули ползунок вправо. Как изменилась при этом сила тока?

1) Уменьшилась
2) Увеличилась
3) Не изменилась

13. Сила тока в лампе №1 равна 5 А. Какова сила тока в такой же лампе №2 и какую силу тока покажет амперметр?

1) 2,5 А; 5 А
2) 5 А ; 10 A
3) 2,5 А; 7,5 А
4) 5 А; 7,5 А

14. В цепи с последовательным соединением потребителей тока (двух ламп и резистора, обладающих одинаковыми сопротив­лениями) сила тока равна 0,4 А, напряжение на резисторе 20 В. Определите общее сопротивление цепи и напряжение на по­люсах источника тока.

1) 150 Ом; 40 В
2) 50 Ом; 60 В
3) 150 Ом; 20 В
4) 150 Ом; 60 В

15. В каких единицах должны быть выражены величины при рас­чете работы электрического тока по формуле А = IUt?

1) В амперах, вольтах и секундах
2) В амперах, вольтах, минутах
3) В вольтах, омах, часах
4) В кулонах, вольтах, секундах

16. Если известна мощность электрического тока, то как найти силу тока в цепи?

1) I = U/R
2) I = P/U
3) I = q/t
4) I = A/(Ut)

17. Электролампа, сопротивление нити накала которой 20 Ом, включена в сеть с напряжением 220 В. Какова мощность тока? Какую работу он произведет за 5 мин свечения лампы?

1) 4,4 кВт; 1320 кДж
2) 4,4 кВт; 22 кДж
3) 2,42 кВт; 22 кДж
4) 2,42 кВт; 726 кДж

18. Какая из формул выражает закон Джоуля — Ленца?

1) Q = cm(t2 — t1)
2) F = k(l2 — l1)
3) Q = I2Rt

19. Как и во сколько раз надо изменить силу тока в цепи, чтобы при уменьшении ее сопротивления в 4 раза выделение тепло­ты в ней осталось прежним?

1) Уменьшить в 2 раза
2) Увеличить в 4 раза
3) Уменьшить в 4 раза
4) Увеличить в 2 раза

20. Проводник обладает сопротивлением 80 Ом. Какое количество теплоты выделится в нем за 10 с при силе тока 0,3 А?

1) 7,2 Дж
2) 72 Дж
3) 720 Дж

Ответы на тест по физике Законы электрического тока
1 вариант
1-2
2-1
3-4
4-2
5-3
6-1
7-4
8-2
9-2
10-3
11-4
12-2
13-3
14-1
15-3
16-2
17-4
18-3
19-1
20-3
2 вариант
1-2
2-4
3-4
4-2
5-1
6-3
7-2
8-2
9-1
10-3
11-4
12-1
13-4
14-2
15-3
16-3
17-1
18-4
19-2
20-2
3 вариант
1-3
2-3
3-2
4-1
5-3
6-4
7-1
8-4
9-3
10-2
11-3
12-1
13-4
14-1
15-3
16-2
17-1
18-2
19-3
20-2
4 вариант
1-4
2-4
3-1
4-2
5-3
6-1
7-2
8-3
9-4
10-1
11-3
12-2
13-2
14-4
15-1
16-2
17-4
18-3
19-4
20-2

Измерение тока и напряжения. Вольтметр и амперметр.

Приветствую всех читателей на нашем сайте и сегодня в рамках курса «Основы электроники» мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр и амперметр.

Измерение тока. Амперметр.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

I = \frac{U}{R} = \frac{12}{100} = 0.12

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 🙂

Важным параметром этого прибора является его внутреннее сопротивление r_А. Почему это так важно? Смотрите сами — при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

I = \frac{U}{R_1+r_А}

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

R = \frac{r_А}{n\medspace-\medspace 1}

В этой формуле n — это коэффициент шунтирования — число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток I. Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

R = \frac{r_А}{n\medspace-\medspace 1}

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

I_А\medspace r_А = I_R\medspace R

Выразим ток шунта через ток амперметра:

I_R = I_А\medspace \frac{r_А}{R}

Измеряемый ток равен:

I = I_R + I_А

Подставим в это уравнение предыдущее выражение для тока шунта:

I = I_А + I_А\medspace \frac{r_А}{R}

Но сопротивление шунта нам также известно (R = \frac{r_А}{n\medspace-\medspace 1}). В итоге мы получаем:

I = I_А\medspace (1 + \frac{r_А\medspace (n\medspace-\medspace 1)}{r_А}\enspace) = I_А\medspace n

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить 🙂

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения. Вольтметр.

Прибор, предназначенный для измерения напряжения называется вольтметр. И, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

I_1 = I_2 = \frac{U}{R_1 + R_2} = \frac{30}{10 + 20} = 1

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с R_2. Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (I_B = 0), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку r_В имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток. В связи с этим напряжение на резисторе R_2 уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

R_Д = r_В\medspace (n\medspace-\medspace 1)

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример:

Здесь мы добавили в цепь добавочное сопротивление R_3. Перед нами стоит задача измерить напряжение на резисторе R_2:\medspace U_2 = R_2\medspace I_2. Давайте определим, какой результат при таком включении выдаст нам вольтметр:

U_2 = I_2\medspace R_2 = U_В + I_В\medspace R_3

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

U_2 = U_В + I_В\medspace (r_В\medspace (n\medspace-\medspace 1)) = U_В + I_В\medspace r_В\medspace n\medspace-\medspace I_В\medspace r_В = U_В + U_В\medspace n\medspace-\medspace U_В = U_В\medspace n

Таким образом: U_В = \frac{U_2}{n}. То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра!

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи — омметр — и мощности — ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Как использовать амперметр для измерения силы тока | Основные концепции и испытательное оборудование

Детали и материалы
  • Аккумулятор 6 В
  • Лампа накаливания 6 В

Предполагается, что с этого момента будут доступны основные компоненты конструкции схемы, такие как макетная плата, клеммная колодка и перемычки, при этом в разделе «Детали и материалы» останутся только компоненты и материалы, уникальные для данного проекта.

Дополнительная литература

Уроки электрических цепей , том 1, глава 1: «Основные концепции электричества»

Уроки электрических цепей , том 1, глава 8: «Схемы измерения постоянного тока»

Цели обучения использованию амперметра
  • Как измерить ток мультиметром
  • Как проверить внутренний предохранитель мультиметра
  • Выбор подходящего диапазона расходомера

Схема амперметра

Амперметр Иллюстрация

Инструкции по эксперименту

Ток — это мера скорости электронного «потока» в цепи.Он измеряется в амперах, называемых просто «ампер» (А).

Наиболее распространенный способ измерения тока в цепи — разомкнуть цепь и вставить «амперметр» в серию (в линию) со схемой, чтобы все электроны, протекающие по цепи, также прошли через измеритель. .

Поскольку для измерения тока таким способом требуется, чтобы измеритель был частью цепи, это более сложный тип измерения, чем измерение напряжения или сопротивления.

Некоторые цифровые измерители, такие как устройство, показанное на рисунке, имеют отдельный разъем для вставки красного штекера измерительного провода при измерении тока.

В других измерителях, как и в большинстве недорогих аналоговых измерителей, используются те же гнезда для измерения напряжения, сопротивления и тока.

Для получения подробной информации об измерении тока обратитесь к руководству пользователя конкретной модели счетчика, которым вы владеете.

Когда амперметр включен последовательно с цепью, в идеале он не падает, когда через него проходит ток.

Другими словами, он действует очень похоже на кусок провода, с очень небольшим сопротивлением от одного измерительного щупа к другому.

Следовательно, амперметр будет действовать как короткое замыкание, если он будет размещен параллельно (через выводы) значительного источника напряжения. Если это будет сделано, в результате произойдет скачок тока, который может повредить счетчик:

Использование предохранителя в цепи
Амперметры

обычно защищены от чрезмерного тока с помощью небольшого предохранителя , расположенного внутри корпуса счетчика.

Если амперметр случайно подключен к источнику значительного напряжения, возникающий в результате скачок тока «сожжет» предохранитель и сделает измеритель неспособным измерять ток до тех пор, пока предохранитель не будет заменен.

Будьте очень осторожны, чтобы избежать этого сценария! Вы можете проверить состояние предохранителя мультиметра, переключив его в режим сопротивления и измерив непрерывность через измерительные провода (и через предохранитель).

На измерителе, в котором одни и те же гнезда измерительных проводов используются для измерения сопротивления и тока, просто оставьте разъемы измерительных проводов на месте и соедините два щупа вместе.

В мультиметр, где используются разные гнезда, вот как вы вставляете штекеры тестовых проводов, чтобы проверить предохранитель:

Создайте схему с одной батареей и одной лампой, используя перемычки для подключения батареи к лампе, и убедитесь, что лампа загорается, прежде чем подключать измеритель к ней последовательно.

Затем разомкните цепь в любой точке и подключите щупы измерителя к двум точкам разрыва для измерения тока.

Как обычно, если ваш измеритель измеряет диапазон вручную, начните с выбора самого высокого диапазона для тока, затем переместите селекторный переключатель в положение меньшего диапазона, пока на дисплее измерителя не будет получена самая сильная индикация без выхода за пределы диапазона.Если индикатор показывает «назад» (движение влево на аналоговой стрелке или отрицательное значение на цифровом дисплее), поменяйте местами подключения тестового датчика и попробуйте снова.

Когда амперметр показывает нормальные показания (не «в обратном направлении»), электроны входят в черный измерительный провод и выходят из красного.

Вот как вы определяете направление тока с помощью измерителя.

Для 6-вольтового аккумулятора и фонарика ток в цепи будет в пределах тысячных ампера, или миллиампер .

Цифровые измерители часто показывают маленькую букву «м» в правой части дисплея, чтобы указать этот метрический префикс.

Попробуйте разомкнуть цепь в другом месте и вместо этого вставить туда измеритель. Что вы замечаете в измеряемой величине тока? Как вы думаете, почему это так?

Восстановите схему на макетной плате следующим образом:

Подключение амперметра к схеме макетной платы: советы и хитрости

Студенты часто путаются при подключении амперметра к макетной плате.

Как можно подключить счетчик, чтобы улавливать весь ток цепи и не создавать короткого замыкания? Вот один простой метод, который гарантирует успех:

  • Определите, через какой провод или клемму компонента вы хотите измерить ток.
  • Вытяните этот провод или клемму из отверстия в макете. Оставьте его висеть в воздухе.
  • Вставьте запасной кусок провода в отверстие, из которого вы только что вытащили другой провод или клемму. Другой конец провода оставьте висеть в воздухе.
  • Подключите амперметр между двумя неподключенными концами провода (двумя, которые висели в воздухе). Теперь вы уверены, что измеряет ток через первоначально идентифицированный провод или клемму.

Опять же, измерьте ток через разные провода в этой цепи, следуя той же процедуре подключения, которая описана выше.

Что вы заметили в этих измерениях тока? Результаты в схеме макетной платы должны быть такими же, как результаты в схеме произвольной формы (без макета).

Результаты эксперимента

Построение той же цепи на клеммной колодке также должно дать аналогичные результаты:

Текущее значение 24,70 мА (24,70 мА), показанное на иллюстрациях, является произвольной величиной, приемлемой для небольшой лампы накаливания.

Если ток в вашей цепи имеет другое значение, это нормально, пока лампа работает при подключенном счетчике.

Если лампа не загорается, когда счетчик подключен к цепи, и счетчик регистрирует намного большее значение, возможно, у вас короткое замыкание в измерителе.

Если ваша лампа не загорается, когда счетчик подключен к цепи, и счетчик регистрирует нулевой ток, вы, вероятно, перегорели предохранитель внутри счетчика.

Проверьте состояние предохранителя измерителя, как описано ранее в этом разделе, и при необходимости замените предохранитель.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

какой блок измеряет ток — Lisbdnet.com

Какая единица измерения силы тока?

Что такое ток и его единицы?

Единица измерения тока SI — ампер , который измеряет поток электрического заряда через поверхность со скоростью один кулон в секунду.Поскольку заряд измеряется в кулонах, а время — в секундах, единица измерения — кулон / сек (Кл / с) или ампер.

Что такое единица измерения электрического тока?

Обычная единица измерения электрического тока — ампер, , что определяется как поток заряда в один кулон в секунду, или 6,2 × 10 18 электронов в секунду.

Какая основная единица тока?

Ампер, обозначение A , является единицей измерения электрического тока в системе СИ. Он определяется путем принятия фиксированного числового значения элементарного заряда e равным 1.602 176 634 x 10 19 при выражении в единицах C, которые равны A s, где вторая определяется как Δν Cs .

Что такое единица текущего класса 10?

Ответ Единица измерения тока — Ампер . Считается, что 1 ампер равен 1 кулону заряда, протекающему через любое поперечное сечение проводника за 1 секунду.

Какой прибор измеряет электрический ток?

Прибор, используемый для измерения электрического тока, называется амперметр .Прибор отображает ток, проходящий через него, в амперах, поэтому его название — амперметр. Как правило, сопротивление прибора очень мало, поэтому падение напряжения на приборе очень низкое.

Что такое единица измерения напряжения и силы тока?

Напряжение измеряется в единицах вольт (В) . Сила тока измеряется в амперах или амперах (А). Сопротивление измеряется в омах (Ом).

Как вы измеряете ток?

Устройство , называемое амперметром , используется для измерения тока.У некоторых типов амперметров есть стрелка на циферблате, но у большинства есть цифровой дисплей. Чтобы измерить ток, протекающий через компонент в цепи, вы должны подключить амперметр последовательно с ним.

Какие 3 основных единицы измерения электроэнергии?

Основными единицами измерения электричества являются ток, напряжение и сопротивление.

  • Ток (I) Ток, измеряемый в амперах, — это скорость протекания заряда — скорость движения электронов.…
  • Напряжение (В)…
  • Сопротивление (R)…
  • Аналогия с водопроводом. …
  • Закон Ома. …
  • Вт.

Что вы подразумеваете под единицей СИ?

Международная система единиц

Ответ на вопрос, что такое единица СИ, заключается в том, что это аббревиатура от , французского слова Système International . Международная система единиц (СИ) — это метрическая система, которая повсеместно используется в качестве стандарта для измерений. … Он состоит из 7 базовых единиц, которые используются для определения 22 производных единиц.

Что такое единица текущего класса 9?

Единица силы тока СИ — ампер .

Каковы единицы измерения силы тока и температуры?

Базовыми единицами измерения электрического тока и температуры являются ампер и Кельвина соответственно.

Единицы СИ и метрические префиксы.

Базовое количество Имя Символ
Время секунда с
Электрический ток ампер А
Термодинамическая температура кельвин К
Количество вещества моль моль

Как измерить электричество?

Электроэнергия измеряется в ваттах и ​​ киловаттах.

Электроэнергия измеряется в единицах мощности, называемых ваттами, в честь Джеймса Ватта, изобретателя паровой машины.Ватт — это единица измерения электрической мощности, равная одному амперу при давлении в один вольт. Один ватт — это небольшая мощность.

Как вы измеряете переменный ток?

Как измерить напряжение переменного тока

  1. Поверните циферблат в положение ṽ. Некоторые цифровые мультиметры (DMM) также включают m. …
  2. Сначала вставьте черный провод в разъем COM.
  3. Затем вставьте красный провод в гнездо VΩ. …
  4. Подключите щупы к цепи: сначала черный, затем красный.…
  5. Считайте результат измерения на дисплее.

Как вы измеряете силу тока?

Прежде чем мы начнем измерять ток, мы сначала установим диапазон амперметра . Сохранение максимального диапазона предотвратит взрыв внутреннего предохранителя амперметра. Затем установите тип тока, то есть постоянного или переменного тока. Теперь соедините клеммы амперметра последовательно с сопротивлением или нагрузкой.

Какой инструмент лучше всего подходит для измерения силы тока?

Мультиметры поставляются с тестерами с черным и красным выводами, прикрепленными к концам проводов.Эти зонды можно поднести к клеммам аккумулятора или вставить в розетки для тестирования. Один мультиметр может выполнять работу трех инструментов. Это может быть вольтметр, измеряющий напряжение, или амперметр , измеряющий ток, .

Какие четыре основных электрических блока?

Стандартными единицами электрического измерения, используемыми для выражения напряжения, тока и сопротивления, являются Вольт [В], Ампер [А] и Ом [Ом] соответственно.

Какие 4 единицы электричества?

Следовательно, 4 основных единицы электричества — это вольт, ампер, ом и ватт.

Что такое схема?

Электрический ток
Простая электрическая схема, в которой ток обозначается буквой i. Связь между напряжением (V), сопротивлением (R) и током (I) такова: V = IR; это известно как закон Ома.
Общие символы I
Единица СИ ампер
Выведение из других величин

Что такое класс единицы измерения 11?

Система единиц — это полный набор единиц, как основных, так и производных , для всех видов физических величин.Общая система единиц, которая используется в механике, представлена ​​ниже: Система CGS В этой системе единицей измерения длины является сантиметр, единицей массы является грамм, а единицей измерения времени является секунда.

Почему важны физические единицы?

Физика зависит от измерений , а измерения зависят от стандартов. Существуют измерения и стандарты для обеспечения согласованности и точности, а также для облегчения общения и сравнения. Единицы — это стандарты, выбранные для представления количеств.

Что такое производные единицы?

Производная единица — это , единица измерения в системе СИ, состоящая из комбинации семи основных единиц . Как и в системе СИ, единица силы — это производная единица, ньютон или Н, где N = s21 × м × кг.

Что такое класс электрического тока 10 и единица СИ?

Единица измерения электрического тока в системе СИ — ампер, и обозначается буквой A. Ампер определяется как один кулон заряда, проходящий через точку за одну секунду. Если через нашу рамку проходит 6,241 x 10 18 электронов за одну секунду, то электрический ток, протекающий через нее, равен «одному амперу».

Что такое единица СИ и определите ее класс 10?

Единица измерения тока в системе СИ — ампер . Ампер определяется как одна единица заряда, протекающая через данную цепь за одну секунду.

Что такое единица измерения электрического тока 7 класса?

Единица СИ для измерения электрического тока — Ампер (А) . Электрический ток измеряется с помощью прибора, называемого амперметром.

Что измеряет термометр?

Термометр — это прибор, используемый для измерения температуры .… Термометр — это прибор, который измеряет температуру. Он может измерять температуру твердого вещества, например пищи, жидкости, например воды, или газа, например воздуха. Три наиболее распространенных единицы измерения температуры — это Цельсий, Фаренгейт и Кельвин.

Что такое единица СИ у термометра?

Единица измерения температуры в системе СИ в соответствии с Международной системой единиц — Кельвин, , которая представлена ​​символом К. Шкала Кельвина широко признана или используется в области науки и техники.Однако в большинстве стран мира для измерения температуры используется шкала Цельсия или Фаренгейта.

Как измерить электричество в цепи?

Чтобы получить подробную информацию об использовании энергии, вам действительно нужен только один инструмент: монитор использования электроэнергии , который сообщает вам , сколько именно кВтч потребляет устройство или прибор. Монитор может быть таким же простым, как монитор «сетевой нагрузки», который подключается к розетке; затем вы подключаете устройство / прибор к монитору.

Как узнать, переменный или постоянный ток?

Один из способов определить, есть ли у вас источник питания AC-DC или модель DC-DC, — это , чтобы посмотреть на само устройство .Часто входная и выходная информация оказывается где-то на поверхности. Если на входе переменный ток, у вас есть источник питания переменного-постоянного тока, и у вас есть модель постоянного-постоянного тока, если и вход, и выход — постоянный ток.

Какая единица измерения мощности переменного тока?

Единица измерения мощности — ватт (обозначение: Вт) . Кажущаяся мощность часто выражается в вольт-амперах (ВА), поскольку она является произведением действующего значения напряжения и среднеквадратичного значения тока. Единицей измерения реактивной мощности является вар, что означает реактивная вольт-амперная мощность.

Какая польза от ТТ при измерении тока?

Трансформатор тока (CT) используется для измерения тока другой цепи . Трансформаторы тока используются во всем мире для контроля высоковольтных линий в национальных электрических сетях. ТТ предназначен для создания переменного тока во вторичной обмотке, пропорционального измеряемому току в первичной обмотке.

Как амперметр измеряет ток в цепи?

Амперметр измеряет электрический ток в цепи.Название происходит от названия единицы измерения электрического тока в системе СИ, ампер (А). Чтобы амперметр мог измерять ток устройства, он должен быть последовательно подключен к этому устройству. Это необходимо, потому что последовательно соединенные объекты испытывают одинаковый ток.

Как вы измеряете ток в цепи?

Вернуться к верхней кнопке

Компоненты и методы измерения тока

Измерение тока используется для выполнения двух основных функций схемы.Во-первых, он используется для измерения того, «сколько» тока протекает в цепи, что может использоваться для принятия решений об отключении периферийных нагрузок для экономии энергии или возврата работы к нормальным пределам. Вторая функция — определить, когда это «слишком много» или это состояние неисправности. Если ток превышает безопасные пределы, условие программной или аппаратной блокировки выполняется и выдает сигнал для выключения приложения, например, двигателя в остановленном состоянии или короткого замыкания. Важно выбрать подходящую технологию с необходимой надежностью, чтобы должным образом выдерживать экстремальные условия, которые могут возникнуть во время неисправности.

Сигнал, указывающий на условие «сколько» и «слишком много», доступен в различных методах измерения:

  1. Резистивный (прямой)
    а. Резисторы считывания тока
    б. Сопротивление индуктивности постоянному току
  2. Магнитный (непрямой)
    а. Трансформатор тока
    б. Катушка Роговского
    c. Устройство на эффекте Холла
  3. Транзистор (Прямой)
    а. R DS (ВКЛ)
    б.Передаточно-метрическая

Каждый метод имеет преимущества для измерения тока, но также требует компромиссов, которые могут иметь решающее значение для конечной надежности приложения. Их также можно разделить на две основные категории методов измерения; прямо или косвенно. Прямой метод означает, что он подключен непосредственно к измеряемой цепи и что измерительные компоненты подвергаются воздействию линейного напряжения, тогда как косвенный метод обеспечивает изоляцию, которая может быть необходима для безопасности конструкции.

Резистор считывания тока

Резистор — это прямой метод измерения тока, который отличается простотой и линейностью. Резистор считывания тока помещается в линию с измеряемым током, и возникающий в результате ток вызывает преобразование небольшого количества энергии в тепло. Это преобразование мощности и обеспечивает сигнал напряжения. Помимо благоприятных характеристик простоты и линейности, резистор считывания тока является экономичным решением со стабильным температурным коэффициентом сопротивления (TCR)

Сопротивление индуктивности постоянному току

Сопротивление индуктивности постоянному току также можно использовать для измерения резистивного тока.Этот метод считается «без потерь» из-за низкого значения сопротивления меди, обычно

Трансформатор тока

Три основных преимущества трансформатора тока заключаются в том, что он обеспечивает изоляцию от сетевого напряжения, обеспечивает измерение тока без потерь, а напряжение сигнала может быть большим, что обеспечивает некоторую помехоустойчивость. Этот метод косвенного измерения тока требует изменения тока, такого как переменный, переходный или коммутируемый постоянный ток; для создания изменяющегося магнитного поля, которое магнитно связано с вторичными обмотками (рис.1). Вторичное измерительное напряжение можно масштабировать в соответствии с соотношением витков первичной и вторичной обмоток. Этот метод измерения считается «без потерь», потому что ток цепи проходит через медные обмотки с очень небольшими резистивными потерями. Однако небольшая мощность теряется из-за потерь трансформатора на нагрузочном резисторе, потерь в сердечнике, а также сопротивления первичной и вторичной обмоток постоянному току.

Катушка Роговского

Катушка Роговского похожа на трансформатор тока тем, что на вторичную катушку наводится напряжение, пропорциональное току, протекающему через изолированный проводник.Исключением является то, что пояс Роговского (рис. 2) представляет собой конструкцию с воздушным сердечником, в отличие от трансформатора тока, который использует сердечник с высокой магнитной проницаемостью, такой как многослойная сталь, для магнитного соединения с вторичной обмоткой. Конструкция с воздушным сердечником имеет более низкую индуктивность, что обеспечивает более быструю реакцию на сигнал и очень линейное напряжение сигнала. Из-за своей конструкции он часто используется в качестве временного метода измерения тока в существующей проводке, такой как портативный измеритель. Это можно рассматривать как более дешевую альтернативу трансформатору тока.

Эффект Холла

Когда проводник с током помещается в магнитное поле, как показано на рис. 3, возникает разность потенциалов перпендикулярно магнитному полю и направлению тока. Этот потенциал пропорционален величине протекающего тока. Когда нет магнитного поля и существует ток, разницы потенциалов нет. Однако, когда существует магнитное поле и ток, заряды взаимодействуют с магнитным полем, вызывая изменение распределения тока, что создает напряжение Холла.

Преимущество устройств на эффекте Холла заключается в том, что они способны измерять большие токи с малой рассеиваемой мощностью. Однако существует множество недостатков, которые могут ограничивать их использование, включая нелинейный температурный дрейф, требующий компенсации, ограниченная полоса пропускания, обнаружение тока низкого диапазона требует большого напряжения смещения, которое может привести к ошибке, восприимчивости к внешним магнитным полям и высокой стоимости.

Транзисторы Транзисторы

считаются методом обнаружения перегрузки по току «без потерь», поскольку они являются стандартными управляющими компонентами схемы, и для подачи управляющего сигнала не требуется дополнительных устройств сопротивления или рассеивания мощности.В технических характеристиках транзисторов указано сопротивление в открытом состоянии сток-исток, R DS (ON) , с типичным сопротивлением в диапазоне мОм для силовых полевых МОП-транзисторов (рис. 4). Это сопротивление состоит из нескольких компонентов, которые начинаются с выводов, подключаемых к полупроводниковому кристаллу через сопротивление, которое составляет многочисленные характеристики канала. Основываясь на этой информации, ток, проходящий через полевой МОП-транзистор, можно определить по формуле I Load = V RDS (ON) / R DS (ON) .

Каждая составляющая R DS (ON) вносит свой вклад в ошибку измерения, которая возникает из-за незначительных изменений сопротивлений областей интерфейса и эффектов TCR. Эффекты TCR можно частично компенсировать путем измерения температуры и корректировки измеренного напряжения с учетом ожидаемого изменения сопротивления из-за температуры. Часто TCR для полевых МОП-транзисторов может достигать 4000 ppm / ° C, что эквивалентно изменению сопротивления на 40% при повышении температуры на 100 ° C. Как правило, этот метод обеспечивает точность сигнала приблизительно от 10% до 20%.В зависимости от требований к точности это может быть приемлемым диапазоном для обеспечения максимальной токовой защиты.

Метрические полевые МОП-транзисторы с измерением силы тока

MOSFET состоит из тысяч параллельных транзисторных ячеек, которые уменьшают сопротивление в открытом состоянии. Чувствительный к току полевой МОП-транзистор, показанный на рис. 5, использует небольшую часть параллельных ячеек и подключается к общим затворам и стокам, но с отдельным источником. Это создает второй изолированный транзистор; «Смысловой» транзистор. Когда транзистор включен, ток через транзистор считывания будет иметь отношение, сравнимое с основным током через другие ячейки.

В зависимости от транзистора диапазон допуска точности может варьироваться от 5% до 15–20%. Это не подходит для приложений управления током, которые обычно требуют точности измерения 1%, но предназначено для защиты от перегрузки по току и короткого замыкания.

Преимущества резисторной технологии

Тонкая пленка

обычно не используется для текущих приложений, но включена в это обсуждение, чтобы расширить тему. Как правило, эти резистивные изделия предназначены для прецизионных применений, поскольку диапазон резистивного слоя составляет от 0.От 000001 до 0,000004 дюйма толщиной. Они довольно устойчивы к скачкам напряжения в соответствующем приложении, но не рассчитаны на высокие токи, обычно связанные с упомянутыми здесь приложениями.

Толстая пленка

, обычно толщиной от 0,0005 до 0,002 дюйма, почти в 100 раз толще, чем тонкая пленка. Увеличенная толщина соответствует большей массе, которая лучше способна переносить относительно высокие токи и рассеивать тепло по подложке, а также лучше справляться с переходными процессами.Еще одним преимуществом толстопленочной продукции является гибкость при запросе стандартных значений сопротивления благодаря высокой эффективности процесса лазерной обрезки. Компромисс толстой пленки заключается в том, что эти продукты не так способны выдерживать очень жесткие допуски, как у тонкопленочных продуктов.

Технология фольги

имеет еще большее поперечное сечение и представляет собой однородный резистивный сплав, который отличается от технологии толстой пленки, в которой используются резистивные материалы, подвешенные в стеклянной матрице. Для сравнения, фольга имеет тенденцию выдерживать более высокие переходные процессы перенапряжения по сравнению с предыдущими версиями.Принципиальным преимуществом этой технологии является низкий диапазон омических значений с низким TCR.

Резисторы из массивного сплава

имеют максимальную устойчивость к перенапряжениям из-за большой токонесущей массы. Он доступен со значениями сопротивления от 0,000 5 Ом с низким TCR. Сплав в массе обычно является лучшим выбором для сильноточных источников питания или там, где неисправность может привести к возникновению экстремальных токов. Эти продукты не имеют такого широкого диапазона сопротивлений, как продукты с толстой пленкой, потому что резисторный сплав имеет ограниченное сопротивление для достижения высоких значений диапазона, а также требует механической прочности, чтобы выдерживать технологические операции.

Особенности продукта

Сильноточные приложения требуют, чтобы значение сопротивления было очень низким, чтобы минимизировать потери мощности, и при этом обеспечивать необходимый уровень сигнала для обеспечения сигнала напряжения, достаточно высокого для превышения уровня шума. Для этих низких значений омического сопротивления часто требуется четырехконтактное соединение, чтобы уменьшить ошибки, которые могут возникнуть из-за контактного сопротивления, возникающего при установке детали на плату.

CSL (рис. 6a) предлагает четыре клеммы по конструкции, но другие стандартные устройства для поверхностного монтажа могут выиграть от конструкции с четырьмя клеммами.Эти части имеют физически разделенные точки подключения для тока и напряжения, что снижает погрешность измерения, связанную с контактами. В случае CSL ток будет протекать через внутренние штыри, а напряжение измеряется на внешних штырях и рекомендуется для лучшей точности с LRF3W, который должен быть сконфигурирован как устройство с поперечным потоком с током на диаметрально противоположных углах (например, контакт 2 к контакту 3).

Расположение контактных площадок (рис. 6b) создает отдельные области для измерения напряжения сигнала от токоведущей части, что снижает погрешность.Конструкция контактной площадки 1 иллюстрирует один метод, который создает изолированную область контактной площадки внутри схемы контактной площадки, но эта конструкция может уменьшить площадь контактной площадки ниже необходимых пределов, чтобы пропускать высокие токи через медную дорожку. В конструкции контактной площадки 2 используется металлическое сквозное отверстие для подключения под контактной площадкой и подключения к внутренней или внешней дорожке для измерения; это максимизирует пространство контактной площадки для передачи тока к резистору. Контактная точка помещает сигнальную линию как можно ближе к текущему каналу; минимизация погрешности измерения.

Теплоизоляция

Метод измерения Точность Изоляция EMI (сопротивление взлому) Прочный Размер Стоимость
Резистивный (прямой)
Смысловой резистор Высокая Высокая Высокая Маленький Низкий
Сопротивление индуктивности постоянному току Низкий Умеренно Высокая Маленький Низкий
Транзистор (Прямой)
RDSon Низкий Умеренно Умеренно Маленький Низкий
Коэффициент метрический Умеренно Умеренно Умеренно Маленький Умеренно
Магнитный (непрямой)
Трансформатор тока Высокая Есть Умеренно Высокая Большой Умеренно
Катушка Роговского Высокая Есть Умеренно Высокая Большой Умеренно
Эффект Холла Высокая Есть Высокая Умеренно Умеренно Высокая

OARS (открытый резистор для поверхностного монтажа) — это уникальная конструкция, которая поднимает горячую точку резистивного материала намного выше материала печатной платы.Это помещает самую горячую область детали в доступный воздушный поток, который рассеивает максимальное количество тепловой энергии в воздухе, а не на печатной плате.

Это дает два ключевых преимущества для теплового расчета, которые влияют на материал печатной платы и другие соседние силовые или полупроводниковые компоненты. Типичный материал печатной платы FR4 рассчитан только на 130 ° C; силовой резистор, который обычно прилегает к плате, может вызвать повреждение материала во время скачков мощности или снизить верхние пределы температурных характеристик схемы.Повышенная чувствительность к току предотвращает повреждение материала схемы и позволяет паяному соединению охладиться. Второе преимущество за счет отвода тепла в воздух вместо печатной платы — это улучшенная производительность расположенных поблизости устройств, подверженных тепловому воздействию. Эти эффекты могут включать в себя срок службы, управляемую мощность, световой поток, точность и надежность.

Тепловизионные изображения, показанные на рис. 7, помогают проиллюстрировать изоляционные характеристики продуктов OAR и OARS. Эти испытания проводились на картонном материале FR4 без окружающего воздушного потока; воздушный поток улучшит тепловые характеристики системы.Следите за температурой паяного соединения по отношению к горячей точке. Эти температуры основаны на достижении теплового равновесия, однако в применении эти результаты могут быть расширены, чтобы их можно было рассматривать как тепловые характеристики для условий максимальной токовой защиты. FR4 не будет превышать свой номинальный температурный режим, хотя существуют экстремальные условия цепи.

Напряжение паяного соединения

Изогнутая и приподнятая конструкция семейства резистивных продуктов OARS позволяет резистору изгибаться.Эта конструкция снижает напряжение, создаваемое различиями в коэффициентах теплового расширения между выделяющим тепло металлом и материалом рассеивающей печатной платы. Компоненты для поверхностного монтажа, которые являются плоскими и параллельными печатной плате, будут прикладывать усилия сдвига к паяным соединениям, что может привести к отказу или изменению рабочих характеристик. В приложениях с интенсивным термоциклированием OARS предпочтительнее других подобных цельнометаллических конструктивных элементов из-за этой гибкости (рис. 8).

LRF3W (рис.9) от TT electronics обеспечивает ряд преимуществ конструкции, обусловленных соотношением сторон 1225 с заделкой вдоль длинной стороны компонента. Боковая заделка увеличивает номинальную мощность до 3 Вт, устраняя необходимость в уменьшении трассировки цепей, как того требует традиционная площадь основания 2512. Это также снижает напряжения в паяных соединениях из-за различий в температурном коэффициенте расширения керамики и материала печатной платы. Соотношение сторон 1225 уменьшает расстояние между центром / горячей зоной детали и теплоотводящим материалом печатной платы.Это обеспечивает высокую мощность 3 Вт и снижает нагрузку на паяное соединение из-за различий в температурных коэффициентах расширения между керамической подложкой и тепловой массой материала печатной платы.


Статьи по теме

Датчик тока индуктора повышает КПД регулятора

Измерение входного тока понижающего или обратного преобразователя

Фильтр считывает ток в высоковольтных двигателях

Современные токоизмерительные костюмы High-Rel Systems

Цифровые клещи

KAIWEETS T-RMS 6000 отсчетов, мультиметр, тестер напряжения с автоматическим выбором диапазона, измерение текущего напряжения, температуры, емкости, сопротивления, постоянного рабочего цикла диодов (клещи для переменного тока): Amazon.com: Industrial & Scientific

Il multimetro con pinza amperometrica HT206D, marcato KAIWEETS, acquistato ad agosto 2020, dalla Elfine Tools, contrariamente a quanto dichiarato sul sito di vendita, non ha il campo di misurazione della corrente, sia in AC che in DC, con cheondo scala 6 , a loro detta, dovrebbe attivarsi, automaticamente, quando si misura una corrente inferiore o uguale a 6 A col selettore posizionato sul fondo scala 60 A.
Se ciò fosse, dato che il display utilizza quattro cifre numeriche a la inferiore o uguale , dovrebbe visualizzarne il valore con una cifra Intera e tre decimali mentre espone semper due cifre intere e due decimali rimanendo, pertanto, nel campo di misurazione con fondo scala 60 A.
Это очень быстрое преобразование точного звука в более позднем возрасте, чем обычное напряжение, требующее 70 мА.
La Elfine Tools, in un primo momento, ha affermato che l’utilizzo del fondo scala di 6 A avviene in automatico, successivamente, poiché di fatto non risultava che lo facesse, mi ha comunicato che avrebbe interpellato il produttore e che mi avato ricont .
Sono ancora in attesa di una risposta che, questo punto, mi sembra, purtroppo, evidente, così, как il comportamento della Elfine Tools.
Certo è che se la preferenza a questo prodotto, rispetto ad altri, stata data in virtù di una dichiarata maggiore precisionzza nelle misure amperometriche (fondo scala 6 A), cosa risultata poi diveritiera, non ha pi motivo d’essere.
Ritengo inutile qualsiasi considerazione in merito poiché i fatti sono sufficientemente eloquenti.

————————————————- ————————————————— —————

AGGIORNAMENTO последнее обновление 22/09/2020

La Elfine Tools имеет контактную информацию, s’è scusata per l’errata informazione, sull’esistenza del fondo scala от 6 A, и для того, чтобы попробовать рисовать в темноте.
Ha effettuato le poortune modifiche sul sito, ha detto di aver predisposto la correzione dei manuali e mi ha proposto due soluzioni per venire incontro all mie needità.
Ha ottemperato, con cura e tempestivamente, alla scelta comunicatagli, dimostrando senso di responseabilità ed atttention nei confronti dei propri clienti, confermandosi un fornitore serio ed Atibile.
Per quanto al prodotto ho constatato la buona qualità dei materiali e dell’assemblaggio, delle sue molte funzioni, della sufficiente bontà delle misurazioni e del buon rapporto qualità / costo.
Ringrazio la Elfine Tools для рисования.

Как измерить ток с помощью датчиков тока

Автор Грант Малой Смит, эксперт по сбору данных

В этой статье мы обсудим, как измеряется электрический ток, применительно к приложениям сбора данных (DAQ) сегодня, с достаточной детализацией, чтобы вы:

  • См. , какие датчики и преобразователи тока доступны сегодня
  • Изучите основы точного измерения тока
  • Понимать , как различные датчики применяются в текущих измерительных приложениях

Готовы начать? Пойдем!

Введение

Как и напряжение, ток может быть переменным (AC) или постоянным (DC).Электрический ток — это сила или скорость протекания электрического заряда. Подобно измерению напряжения, нам иногда нужно измерять очень малые токи, то есть в диапазоне микроампер, в то время как в других случаях нам может потребоваться измерить очень большие токи в тысячи ампер.

Для реализации этого широкого диапазона возможностей Dewesoft предлагает множество преобразователей тока и датчиков, которые имеют выходное напряжение или ток, совместимые с одним из преобразователей сигнала напряжения , доступных для нашего оборудования для тестирования сбора данных.

Системы сбора данных

Dewesoft могут измерять электрические свойства всех основных типов, включая напряжение, ток и т. Д. Эта комбинация датчика и формирователя сигнала плавно преобразует широкий диапазон токов в выходной сигнал низкого уровня, который может быть оцифрован для отображения, хранения и анализа.

Но какой датчик выбрать? Цель этой статьи — описать различные типы доступных датчиков тока, их плюсы и минусы, а также с какими приложениями каждый тип справляется лучше всего.

Что такое электрический ток?

Как упоминалось выше, ток — это сила или скорость протекания электрического заряда. В системах постоянного тока ток течет в одном направлении, иначе говоря, «однонаправленно». Общие источники постоянного тока включают батареи и солнечные элементы.

Переменный ток и постоянный ток

В системах переменного тока ток меняет направление на заданную частоту. В наших офисах и дома у нас есть сеть переменного тока с частотой 50 или 60 Гц (в зависимости от вашей страны).Этот переменный ток обычно является синусоидальным (например, в форме синусоидальной волны).

Наиболее типичным источником переменного тока является ваша местная электростанция. Ток, создаваемый фотоэлектрическими элементами, является постоянным и должен быть преобразован в переменный, чтобы обеспечить питание наших домов. То же самое и с ИБП, или с системой резервного питания от компьютерных батарей — энергия накапливается в батарее и должна быть преобразована в переменный ток, чтобы обеспечивать электроэнергией дом.

Переменный ток также используется несинусоидальным образом для модуляции информации в цепи, например, в радиосигналах и передаче звука.

Типовой аудиосигнал

В Международной системе единиц (СИ) для обозначения силы тока используется термин «ампер», который обычно сокращается до слова «амперы» и обозначается символом A.

Current также часто пишется с буквой I. Это восходит к французской фразе tensité de courant («сила тока» на английском языке). И A, и I являются допустимыми сокращениями для тока.

Переменный ток и постоянный ток часто обозначают аббревиатурой AAC и ADC соответственно.

Один ампер равен одному кулону электрического заряда, проходящего мимо данного места за одну секунду (один кулон содержит примерно 6,242 × 1018 электронов).

Ток всегда создает магнитное поле. Чем сильнее ток, тем сильнее поле. Измеряя это поле с помощью различных методов: эффекта Холла, индукции или магнитного потока, мы можем измерить поток электронов (ток) в электрической цепи.

Как мы можем измерить ток?

Поскольку ток всегда создает магнитное поле, существуют датчики на эффекте Холла и другие датчики, которые позволяют нам измерять это поле и тем самым измерять ток.

Также можно подключить шунтирующий резистор внутри самой цепи и напрямую измерять ток, как в классическом амперметре и токовом шунте. Мы рассмотрим оба метода в следующих разделах.

Датчики тока с разомкнутым контуром и замкнутым контуром

Возможно, вы слышали о датчиках тока разомкнутого и замкнутого контура. Какие отличия?

Датчики тока с разомкнутым контуром дешевле, чем датчики с замкнутым контуром, такие как датчики тока с нулевым потоком.Они состоят из датчика Холла, установленного в зазоре магнитопровода. Выходной сигнал датчика Холла усиливается и измеряет поле, создаваемое током, без какого-либо контакта с ним. Это обеспечивает гальваническую развязку между цепью и датчиком.

Датчик тока без обратной связи

Некоторые датчики тока без обратной связи имеют компенсационную электронику, которая помогает компенсировать дрейф, вызванный изменениями температуры окружающей среды. По сравнению с датчиками с обратной связью, датчики с обратной связью меньше и дешевле.Они имеют низкие требования к мощности и могут использоваться для измерения как переменного, так и постоянного тока. В то же время они не так точны, как их собратья с замкнутым контуром: они подвержены насыщению и обеспечивают низкую температурную компенсацию и помехозащищенность.

Датчики тока с обратной связью используют схему управления с обратной связью для обеспечения выхода, пропорционального входу. По сравнению с датчиками без обратной связи, эта конструкция с обратной связью с обратной связью по своей сути обеспечивает повышенную точность и линейность, а также лучшую компенсацию температурного дрейфа и устойчивость к шумам.

Датчик тока с обратной связью

Для датчиков с разомкнутым контуром дрейф, вызванный температурой, или любые нелинейности в датчике вызовут ошибку. С другой стороны, датчики с обратной связью используют катушку, которая активно приводится в действие за счет создания магнитного поля, которое противодействует полю проводника тока. Это «замкнутый контур», который обеспечивает повышенную точность и характеристики насыщения.

Так что лучше? Это полностью зависит от приложения. Более низкие требования к стоимости, размеру и мощности делают датчики тока без обратной связи очень популярными.Это отчасти компенсируется тем фактом, что их чувствительность к насыщению означает, что в некоторых приложениях они должны быть «завышены», чтобы избежать этой проблемы.

Датчики тока

с замкнутым контуром являются явным фаворитом в приложениях, требующих максимальной точности и устойчивости к насыщению, или которые используются в средах с большими экстремальными температурами или электрическими шумами.

Датчики тока без обратной связи используются в таких приложениях, как:

  • Цепи с батарейным питанием (в связи с низким энергопотреблением)
  • Приводные системы, в которых точность крутящего момента не должна быть высокой
  • Измерение тока вентилятора и насоса
  • Сварочные аппараты
  • Системы управления батареями
  • Частотно-регулируемые приводы
  • Применение источников бесперебойного питания

Датчики тока с обратной связью используются в таких приложениях, как:

  • Приводы с регулируемой скоростью (когда точность и линейность имеют первостепенное значение)
  • Сервоуправление
  • Максимальная токовая защита
  • Детекторы замыкания на землю
  • Промышленные приводы постоянного и переменного тока
  • Управление роботом
  • Приложения для измерения энергии

Как и в случае с любым другим датчиком, желаемый конечный результат должен быть определяющим фактором при выборе типа датчика.

Приложения для измерения тока

Как фундаментальный компонент электричества, ток и точные измерения необходимы в бесчисленных приложениях. Вы можете представить себе энергетическую компанию, не знающую, сколько ампер она вырабатывает? Или что они не будут знать, сколько энергии потребляют их клиенты?

Конечно, это было бы абсурдно. Но есть миллионы других целей и требований к текущим измерениям. Фактически, эти требования можно разделить на разомкнутого контура или замкнутого контура .

Обратите внимание, что это не следует путать с датчиками открытого или закрытого контура , как описано в предыдущем разделе. Здесь мы говорим о самом текущем измерительном приложении как о разомкнутом или замкнутом контуре.

В приложении для измерения тока с обратной связью нам нужно знать ток, потому что нам нужно контролировать его в реальном времени . Приложения включают:

  • Компоненты, в которых ток должен быть ограничен до определенного уровня, e.g., импульсные источники питания и зарядные устройства, и это лишь некоторые из них.
  • Функции автоматического отключения критических систем в зависимости от потребляемого тока.
  • Электромагнитные клапаны с регулируемым током, используемые в автомобилях, самолетах и ​​т. Д.
  • Усилитель мощности смещает регулировку тока.
  • И многое другое.

В приложениях для измерения тока с разомкнутым контуром нет необходимости в управлении в реальном времени, но нам нужно знать текущее значение для различных целей, в том числе:

  • Исследования и разработки электродвигателей в автомобилях, поездах, потребительских товарах и т. Д.
  • Энергопотребление для получения дохода.
  • Проверка работоспособности приводов, используемых в самолетах, ракетах и ​​т. Д.
  • Измерение подачи и потребления электроэнергии в электропоездах, а также в третьем рельсе и цепных сетях, питающих их.
  • Приложения качества электроэнергии как для производителей, так и для потребителей энергии.
  • Буквально миллионы приложений в исследованиях, производстве, автомобилестроении, аэрокосмической промышленности, военном деле, здравоохранении, образовании, промышленной автоматизации и т. Д.

Типы основных датчиков тока

Таким образом, для этих различных методов доступны различные датчики тока и преобразователи тока, каждый из которых адаптирован к среде измерения, а также к диапазону тока, который предназначен для измерения. Например, требования к измерению микроампер (мкА) сильно отличаются от требований, предъявляемых к измерению тысяч ампер. Мы рассмотрим каждый тип датчика и опишем принцип его действия, а также его применение.

Шунт Эффект Холла CT Роговски Нулевой поток
Тип подключения Прямой Косвенный Косвенный Косвенный Косвенный
Текущий переменного и постоянного тока переменного и постоянного тока AC AC переменного и постоянного тока
Точность Высокая Средний Средний Низкий Высокая
Диапазон Низкий Средний Высокая Средний Высокая
Выколотка Низкий Средний Средний Высокая Низкий
Изоляция 1) Есть Есть Есть Есть

1) Шунты могут быть изолированы через внутренний или внешний формирователь сигнала, но они не изолированы по своей сути

Как упоминалось ранее, существует два основных метода измерения тока:

  • При прямом контакте с током (шунт / амперметр)
  • Путем измерения электромагнитного поля или потока тока

Самый распространенный способ измерения тока — это подключить последовательно к цепи амперметр (измеритель для измерения тока) или шунтирующий резистор .Амперметр или шунт амперметра на самом деле не более чем высокоточный резистор. Когда мы помещаем в цепь прецизионный резистор, на ней происходит падение напряжения. Выходной сигнал шунтирующего датчика измеряется системой сбора данных, которая применяет закон Ома для определения силы тока, протекающей по цепи.

Обратите внимание, что максимальный диапазон тока, который может измерять данный амперметр, ограничен номиналом его резистора. Поэтому обычной практикой является добавление дополнительного шунтирующего резистора параллельно для увеличения максимального диапазона измерения нашего испытательного оборудования.

Это ограничение является причиной того, что прямое соединение с электрическими проводниками цепи более широко используется в приложениях с низким током, но редко в приложениях с высоким током, где гораздо более распространены косвенные измерительные датчики, такие как токовые клещи и гибкие катушки.

Измерение тока шунта

При подключении низкоомного резистора параллельно цепи ток протекает через шунтирующий резистор -R- и вызывает падение напряжения.

Типовое подключение для измерения шунта в простой схеме

Мы можем измерить это падение и применить закон Ома для расчета тока.

Графическое представление закона Ома

Закон

Ома описывает взаимосвязь между напряжением (В), током (I) и сопротивлением (R). Если мы знаем два из трех из них, мы можем легко вычислить третье с помощью простой арифметики. На приведенной выше диаграмме показаны три способа выражения закона Ома:

I = V / R OR V = IR OR R = V / I

Итак, если мы знаем напряжение (падение) и сопротивление, мы можем рассчитать ток, используя I = V / R.

Шунтирующий резистор следует выбирать для соответствующего диапазона напряжения и тока, потому что слишком высокое сопротивление повлияет на измерение, а также приведет к потере энергии и искажению измерения по мере нагрева резистора. Эта потеря энергии равна:

I2 * R

Кроме того, важным фактором является точность резистора, так как это напрямую влияет на точность самого измерения.

Dewesoft DSIi-10A Токовый шунт

Dewesoft предлагает несколько токовых шунтов компактного размера, каждый из которых имеет внутри свой собственный резистор и предназначен для измерения различных диапазонов тока.Эти шунты были спроектированы таким образом, чтобы оказывать минимальное влияние на саму цепь.

Адаптеры

DSI можно подключить практически ко всем устройствам сбора данных Dewesoft. Изолированные аналоговые входы усилителей Dewesoft — важный фактор в обеспечении точных измерений, поскольку шунт подключается непосредственно к измеряемой цепи, а изоляция между цепью и измерительной системой всегда важна. Изолированные входы означают, что вы можете разместить свой шунт на стороне низкого или высокого уровня цепи и не беспокоиться о контуре заземления или синфазных ошибках измерения .


Снова принимая во внимание закон Ома и взаимосвязанный характер напряжения, тока и сопротивления, становится абсолютно ясно, что система сбора данных должна иметь возможность выполнять очень точное измерение напряжения и сопротивления, чтобы производить точное измерение тока.

IOLITE STG со встроенным токовым шунтом

Некоторые формирователи сигналов Dewesoft имеют встроенный шунт для измерения малых токов . Возьмем, к примеру, формирователь сигналов STG серии IOLITE и IOLITEd для сбора данных.Этот модуль является универсальным, что означает, что он может работать с широким спектром датчиков и типов входов.

Например, он может работать с тензодатчиками в полномостовых, полумостовых и четвертьмостовых конфигурациях, напряжениями до 50 В, потенциометрическими датчиками и токов до 20 мА . Кроме того, адаптеры серии DSI могут использоваться для работы с термопарами, датчиками RTD, датчиками положения LVDT, напряжениями до 200 В, токами до 5 А, акселерометрами IEPE и т. Д.

Система сбора данных IOLITE с различными модулями
(6xSTG с 6 универсальными аналоговыми входами в первых двух слотах)

IOLITE 6xSTG имеет шесть дифференциальных входов с защитой от перенапряжения и питанием датчика от каждого из его универсальных входов и частотой дискретизации до 20 kS / s / ch.

Для измерения тока он имеет встроенный шунтирующий резистор на 50 Ом , который можно применять в программном обеспечении, что позволяет инженерам измерять ток до 2 мА или 20 мА по выбору пользователя.

Шасси

IOLITE доступны в настольной модели «IOLITEs», которая поддерживает до 8 многоканальных модулей (показано на рисунке выше). Для стационарной установки существует модель «ИОЛИТЕР», предназначенная для стандартной установки в 19-дюймовую стойку. В данной модели 12 слотов для модулей:

ИОЛИТЕР, стоечная модель

Обе модели IOLITE оснащены блоками питания с двойным резервированием для надежной работы в критически важных приложениях.У них также есть две параллельные шины EtherCAT. Первичная шина используется для получения буферизованных данных на полной скорости на жесткий диск ПК с программным обеспечением DEWESoft X. Вторичная шина в основном используется для передачи данных с малой задержкой в ​​реальном времени в любую стороннюю систему управления на основе EtherCAT.

IOLITE — это уникальная система сбора данных, которая объединяет миры управления в реальном времени и высокоскоростного сбора данных, объединяя их в одном надежном приборе.

Измерение электромагнитного поля или потока тока

Поскольку ток всегда создает магнитное поле, пропорциональное величине тока, мы можем измерить это поле с помощью различных датчиков и, таким образом, измерить ток.

Теперь давайте рассмотрим некоторые из наиболее распространенных датчиков и преобразователей тока, их основные принципы работы и способы их наилучшего использования.

Датчик Холла для измерения

Датчики

на эффекте Холла работают, в основном, путем измерения магнитных полей. В 1879 году, за двадцать лет до открытия электрона, американский физик Эдвин Холл заметил, что когда ток течет по проводнику, электроны движутся по прямой линии. Однако, когда этот проводник подвергается воздействию магнитного поля, на него действует сила Лоренца, и путь электронов искривляется.

Кроме того, когда электроны выталкиваются больше к одной стороне проводника, чем к другой, создается разность потенциалов между двумя сторонами проводника. Холл заметил, что эта разность потенциалов прямо и линейно пропорциональна силе магнитного поля.

Эта разность потенциалов, измеренная между сторонами (или «плоскостями») проводника, называется напряжением Холла .

Эффект Холла был принят для тысяч приложений, включая бесконтактные переключатели, схемы управления скоростью двигателя, тахометры, датчики LVDT и даже в качестве датчика уровня топлива в автомобилях.Но мы остановимся на его применении именно с датчиками тока.

Типовой датчик тока на эффекте Холла

Токовые клещи на эффекте Холла

работают, пропуская провод через открытый сердечник. Таким образом, они обеспечивают бесконтактный метод измерения постоянного и переменного тока. Им требуется очень мало энергии, поэтому они могут питаться напрямую от предусилителя SIRIUS с разъемом DSUB9. Никакого дополнительного источника питания не требуется.

Они не так точны, как токовые клещи с магнитным затвором или преобразователи с нулевым магнитным потоком, но они предлагают гораздо более широкий диапазон измерения.

Датчики на эффекте Холла

доступны в вариантах с разомкнутым и замкнутым контуром. Датчики с замкнутым контуром добавляют компенсационную обмотку и улучшают бортовую обработку сигнала, что делает их более точными, чем их аналоги с разомкнутым контуром.

DS-ЗАЖИМ-150DC DS-ЗАЖИМ-150DCS DS-ЗАЖИМ-1800DC
Тип Датчик Холла Датчик Холла Датчик Холла
Диапазон 200 А постоянного тока или 150 А переменного тока, среднеквадратичное значение 290 А постоянного тока или 150 А переменного тока, среднеквадратичное значение 1800 А постоянного или переменного тока, среднеквадратичное значение
Ширина бренда от 0 до 100 кГц от 0 до 100 кГц от 0 до 20 кГц
Точность 1% + 2 мА 1% + 2 мА 0 — 1000 А: ± 2.5% от показаний ± 0,5 A
1000-1500 A: ± 3,5% от показаний
1500-1800 A: ± 5% от показаний
Чувствительность 20 мВ / А 20 мВ / А 1 мВ / А
Разрешение ± 1 мА ± 1 мА ± 1 мА
Возможность перегрузки 500 А постоянного тока (1 мин) 500 А постоянного тока (1 мин) 2000 А постоянного тока (1 мин)
TEDS с полной опорой с полной опорой с полной опорой
Размеры 205 мм x 60 мм x 15 мм
(отверстие под зажим d = 32 мм)
106 мм x 100 мм x 25 мм
(отверстие под зажим d = 25 мм)
205 мм x 60 мм x 15 мм
(отверстие под зажим d = 32 мм)

Датчики тока на эффекте Холла марки Dewesoft

DS-CLAMP 150DC и 150DCS могут быть подключены напрямую к усилителю Sirius® LV или Sirius® HS-LV с помощью разъема DSUB9.DS-CLAMP-1800DC можно подключить напрямую ко всем усилителям DEWESoft® с разъемом DSUB9 (например, Sirius® LV-DB9).

Типичный датчик эффекта Холла от Dewesoft

Подробные характеристики датчиков тока Dewesoft.

Измерение трансформатора тока (CT)

Трансформаторы тока (CT) используются для измерения переменного тока (AC). Это индукционные датчики, состоящие из первичной обмотки, магнитопровода и вторичной обмотки.

По сути, высокий ток преобразуется в более низкий с помощью магнитного носителя, поэтому очень высокие токи можно измерять безопасно и эффективно. В большинстве трансформаторов тока первичная обмотка имеет очень мало витков, в то время как вторичная обмотка имеет намного больше витков. Это соотношение витков первичной и вторичной обмоток определяет, насколько снижается величина токовой нагрузки.

Типовой трансформатор тока

Переменный ток, обнаруживаемый первичной обмоткой, создает магнитное поле в сердечнике, которое наводит ток во вторичной обмотке.Этот ток преобразуется в выходной сигнал датчика.

Они доступны в конфигурации с разъемным сердечником от Dewesoft, что обеспечивает удобные возможности подключения, так как не нужно каким-либо образом изменять схему. Вы можете просто открыть зажимы и освободить их вокруг провода, что делает эти токовые клещи для переменного тока особенно удобными в использовании.

Трансформаторы тока CT марки Dewesoft

DS-ЗАЖИМ-5AC DS-ЗАЖИМ-15AC DS-ЗАЖИМ-200AC DS-ЗАЖИМ-1000AC
Тип Железный сердечник Железный сердечник Железный сердечник Железный сердечник
Диапазон 5 А 15 А 200 А 1000 А
Пропускная способность 5 кГц 10 кГц 10 кГц 10 кГц
Точность 0.5% для 12A
0,5% для 5A
1% для 500 мА
2% для 5 мА
1% для токов 1-15 А
2,5% для токов <1 А
1% для токов 100-240 А
2,5% для токов 10-100 А
3,5% для токов 0,5 — 10 А
0,3% для токов от 100 A до 1200 A
0,5% для токов от 10 до 100 A
2% для токов <1 A
Фаза ≤ 2,5 ° ≤3 ° для токов 1-15A
≤5 ° для токов <1A
≤2.5 ° для токов 100-240 А
≤ 5 ° для токов 10-100 А
Не указано для токов 0,5 — 10 А
0,7 ° для токов от 100 A до 1200 A
1 ° для токов от 10 до 100 A
Не указано для токов <1 A
TEDS с полной опорой с полной опорой с полной опорой с полной опорой
Чувствительность 60 мВ / А 100 мВ / А 10 мВ / А 1 мВ / А
Разрешение 0.01 A 0,01 А 0,5 А 0,001 А
Возможность перегрузки Крест-фактор 3 Крест-фактор 3 Крест-фактор 3 1200 А в течение 40 минут
Размеры 102 мм x 34 мм x 24 мм
(отверстие зажима d = 15 мм)
135 мм x 51 мм x 30 мм
(отверстие зажима d = 20 мм)
135 мм x 51 мм x 30 мм
(отверстие зажима d = 20 мм)
216 мм x 111 мм x 45 мм
(отверстие зажима d = 52 мм)

Dewesoft Iron Core CT Трансформатор тока

Датчики переменного тока с железным сердечником предлагают удобство использования очень небольшого количества энергии, поэтому они могут питаться напрямую от предусилителя SIRIUS с разъемом DSUB9.Никакого дополнительного источника питания не требуется. Они имеют полосу пропускания от 2 Гц до 10 кГц (от 2 Гц до 5 кГц для DS-CLAMP-5AC) и до 10 кГц для других моделей этой серии). Эти зажимы можно подключать напрямую ко всем усилителям Dewesoft с разъемами DSUB9 (например, Sirius-LV).

Подробные характеристики датчиков тока Dewesoft.

Измерение датчика тока Роговского

Датчики

Роговского обладают тем преимуществом, что обходят большие кабельные пучки, шины и проводники неправильной формы, чего не могут обычные зажимы.

Они созданы для измерения переменного тока, а их низкая индуктивность означает, что они могут реагировать на быстро меняющиеся токи. А отсутствие железного сердечника делает их очень линейными, даже когда они подвергаются очень большим токам. Они обеспечивают отличные характеристики при измерении содержания гармоник. Необходим небольшой интегратор и силовая цепь, которые встроены в каждый датчик DS-FLEX.

Типовая схема катушки Роговского

Число в названии модели, например 300, 3000 или 30 000, означает максимальную силу тока, которую они могут прочитать.Последнее число относится к длине «веревки» в см. Так, например, DS-FLEX-3000-80 может считывать до 3000 AAC и имеет длину «веревки» 80 см (то есть 800 мм или 31 дюйм).

Датчики тока Dewesoft Rogowski Coil «FLEX»

DS-FLEX-3000-17 DS-FLEX-3000-35 DS-FLEX-3000-35HS DS-FLEX-3000-80 DS-FLEX-30000-120
Тип Катушка Роговского Катушка Роговского Катушка Роговского Катушка Роговского Катушка Роговского
Диапазон 3, 30, 300, 3000 А
ACrms
3, 30, 300, 3000 А
ACrms
3000 А
ACrms
3, 30, 300, 3000 А
ACrms
30, 300, 3000, 30000 А
АСкв.
Пропускная способность 3A: от 10 Гц до 10 кГц
Другое: от 10 Гц до 20 кГц
3A: от 10 Гц до 10 кГц
Другое: от 10 Гц до 20 кГц
5 Гц — 1 МГц 3A: от 10 Гц до 10 кГц
Другое: от 10 Гц до 20 кГц
3A: от 10 Гц до 5 кГц
Другое: от 10 Гц до 20 кГц
Точность <1.5% <1,5% <1,5% <1,5% <1,5%
Длина рулона 170 мм (Ø 45 мм) 350 мм (Ø 100 мм) 350 мм (Ø 100 мм) 800 мм (Ø 250 мм) 1200 мм (Ø 380 мм)
TEDS Не поддерживается Не поддерживается с полной опорой Не поддерживается Не поддерживается

Dewesoft DS-FLEX-3000 Датчик тока с поясом Роговского

Эти зажимы можно подключать напрямую ко всем усилителям DEWESoft® с помощью разъемов DSUB9 (например,г. СИРИУСи Л.В.).

Обратите внимание, что переменный ток обычно выводится как истинное среднеквадратичное значение, а постоянный ток выводится как дискретное значение.

Подробные характеристики датчиков тока Dewesoft.

Измерение датчиков нулевого потока

Датчик тока с нулевым потоком или FluxGate похож на датчик тока на эффекте Холла, за исключением того, что в нем используется магнитная катушка вместо системы на эффекте Холла. Более высокая точность результатов делает эти датчики идеально подходящими для промышленных, аэрокосмических и других приложений, требующих высокоточных измерений.Преобразователи тока с нулевым потоком измеряют ток с гальванической развязкой. Они снижают токи высокого напряжения до гораздо более низкого уровня, который может легко считываться любой измерительной системой.

Типичный датчик нулевого потока / FluxGate

Они имеют две обмотки, которые работают в режиме насыщения для измерения постоянного тока, одну обмотку для переменного тока и дополнительную обмотку для компенсации. Этот вид измерения тока очень точен благодаря компенсации нулевого потока.Почему? Обычно магнитопровод сохраняет остаточный магнитный поток, что снижает точность измерения. Однако в преобразователях с нулевым потоком этот паразитный поток компенсируется.

Преобразователи нулевого потока идеальны при высокой точности переменного / постоянного тока и / или большой полосе пропускания (до 1 МГц). Они очень линейны и имеют низкую фазовую ошибку и ошибку смещения. Но они не очень удобны для выполнения более простых измерений, не требующих такой точности или полосы пропускания. Для этих приложений рекомендуются датчики тока, указанные в предыдущих разделах.

Технология

Flux расширяет этот принцип за счет использования магнитной катушки в качестве элемента обнаружения вместо элемента Холла. Кроме того, это датчик с обратной связью, что означает, что вторичная обмотка используется для устранения смещений, которые могут привести к неточностям измерения. Датчики потока могут обрабатывать даже очень сложные формы сигналов переменного и постоянного тока и, как правило, считаются обеспечивающими превосходную точность, линейность и полосу пропускания и являются неотъемлемой частью любого анализатора качества электроэнергии или анализатора мощности.

Токоизмерительные клещи Dewesoft FluxGate

Dewesoft предлагает несколько токовых клещей FluxGate, которые были соединены с нашими системами SIRIUS, включая соединительные и силовые кабели.Эти зажимы FluxGate должны получать питание от блока питания SIRIUSi-PWR-MCTS2.

DS-ЗАЖИМ-200DC DS-ЗАЖИМ-500DC DS-ЗАЖИМ-500DCS DS-ЗАЖИМ-1000DS
Тип Датчик магнитного затвора Датчик магнитного затвора Датчик магнитного затвора Датчик магнитного затвора
Диапазон 200 А постоянного или переменного тока, среднеквадратичное значение 500 А постоянного или переменного тока, среднеквадратичное значение 500 А постоянного или переменного тока, среднеквадратичное значение 1000 А постоянного или переменного тока, среднеквадратичное значение
Ширина бренда от 0 до 500 кГц от 0 до 100 кГц от 0 до 200 кГц от 0 до 20 кГц
Точность ± 0.3% от показания ± 40 мА ± 0,3% от показания ± 100 мА ± 0,3% от показания ± 100 мА ± 0,3% от показания ± 200 мА
Чувствительность ± 10 мВ / А ± 4 мВ / А ± 4 мВ / А ± 2 мВ / А
Разрешение ± 1 мА ± 1 мА ± 1 мА ± 1 мА
Возможность перегрузки 500 А (1мин) 1000 А постоянный ток 720 А постоянный ток 1700 А постоянный ток
TEDS с полной опорой с полной опорой с полной опорой с полной опорой
Размеры 153 мм x 67 мм x 25 мм
(отверстие зажима d = 20 мм)
116 мм x 38 мм x 36 мм
(отверстие под зажим d = 50 мм)
153 мм x 67 мм x 25 мм
(отверстие зажима d = 20 мм)
238 мм x 114 мм x 35 мм
(отверстие зажима d = 50 мм)

Подробные характеристики датчиков тока Dewesoft.

Трансформаторы тока с нулевым потоком Dewesoft

Dewesoft предлагает несколько трансформаторов тока с нулевым потоком, которые были соединены с нашими системами SIRIUS DAQ, включая соединительные и силовые кабели. Эти датчики должны работать с блоками питания SIRIUSi-PWR-MCTS2 или SIRIUSir-PWR-MCTS2.

ИТ-60-С Т-200-С ИТ-400-С ИТ-700-С ИТ-1000-С ИН-1000-С ИН-2000-С
Диапазон первичного тока DC
RMS Sinus
60 А 200 А 400 А 700 А 1000 А 1000 А 2000 А
Кратковременная перегрузочная способность (100 мс) 300 Apk 1000 Apk 2000 Apk 3500 Apk 4000 Apk 5000 Apk 10000 Apk
Макс.нагрузочный резистор (100% Ip) 10 Ом 10 Ом 2,5 Ом 2,5 Ом 2,5 Ом 4 Ом 3,5 Ом
di / dt (точное следование) 25 А / мкс 100 А / мкс 100 А / мкс 100 А / мкс 100 А / мкс 100 А / мкс 100 А / мкс
Влияние температуры <2.5 частей на миллион / K <2 частей на миллион / K <1 частей на миллион / K <1 частей на миллион / K <1 частей на миллион / K <0,3 частей на миллион / K <0,1 частей на миллион / к
Коэффициент выхода 100 мА при 60 А 200 мА в 200 А 200 мА при 400 А 400 мА в 200 А 1 А при 1000 А 666 мА при 1000 А 1A при 2000 A
Пропускная способность (0,5% от Ip) DC… 800 кГц DC … 500 кГц DC … 500 кГц DC … 250 кГц DC … 500 кГц DC … 440 кГц DC … 140 кГц
Линейность <0,002% <0,001% <0,001% <0,001% <0,001% <0,003% <0,003%
Смещение <0,025% 0.008% <0,004% <0,005% <0,005% <0,0012% <0,0012%
Влияние частоты 0,04% / кГц 0,06% / кГц 0,06% / кГц 0,12% / кГц 0,06% / кГц 0,1% / кГц 0,1% / кГц
Угловая точность <0,025 ° + 0,06 ° / кГц <0,025 ° + 0.05 ° / кГц <0,025 ° + 0,09 ° / кГц <0,025 ° + 0,18 ° / кГц <0,025 ° + 0,09 ° / кГц <0,01 ° + 0,05 ° / кГц <0,01 ° + 0,075 ° / кГц

Номинальное среднеквадратичное напряжение изоляции, одинарная изоляция
CAT III, степень загрязнения. 2
Стандарты IEC 61010-1
Стандарты EN 50178

2000 В
1000 В
2000 В
1000 В
2000 В
1000 В
1600 В
1000 В
300 В
300 В
Х Х
Испытательное напряжение 50/60 Гц, 1 мин 5.4 кВ 5,4 кВ 5,4 кВ 4,6 кВ 3,1 кВ 4,2 кВ 6 кВ
Внутренний диаметр 26 мм 26 мм 26 мм 30 мм 30 мм 38 мм 70 мм
DEWESoft® Shunt 5 Ом 5 Ом 2 Ом 2 Ом 1 Ом 1 Ом 1 Ом

Подробные характеристики датчиков тока Dewesoft.

Изоляция и фильтрация

Изоляция и фильтрация — важные аспекты любого прибора для сбора данных или испытательной системы.

Изоляция

Изоляция особенно важна при прямых измерениях цепи, т. Е. При использовании шунтирующего метода. Изоляция, встроенная практически во все формирователи сигналов и предусилители Dewesoft, достаточно высока и достаточна для должной изоляции измерительной системы от тестируемого объекта.

Это гарантирует целостность ваших измерений и защищает от коротких замыканий.Кроме того, он позволяет размещать шунт на стороне низкого или высокого уровня цепи большую часть времени, обеспечивая дополнительную гибкость. Измерения шунта на стороне низкого напряжения обычно предпочтительны, потому что относительно небольшое падение тока на шунте означает, что на формирователь сигнала подается выходной сигнал с высоким импедансом. Но у измерения нижней стороны есть два недостатка:

  • Шунт не обнаружит неисправность, если резистор замкнут на массу
  • Шунты на нижней стороне не подходят для измерения нескольких нагрузок или тех, которые выключаются и включаются независимо.

Следовательно, иногда требуется измерение тока шунта на стороне высокого давления с использованием дифференциальных и изолированных предварительных усилителей Dewesoft.

Фильтрация

Фильтрация — еще одна важная функция любой высокопроизводительной системы сбора данных. Электрические шумы и помехи — повседневная проблема для инженеров-испытателей. Это может быть вызвано люминесцентными лампами, другим электрическим оборудованием и бесчисленным множеством других источников.

Формирователи сигналов Dewesoft обеспечивают мощную аппаратную фильтрацию нижних частот, которая позволяет инженерам подавлять частоты выше определенного уровня.А в программном обеспечении DEWESoft доступна широкая палитра низкочастотной, высокочастотной, полосовой и полосовой фильтрации, которая может применяться в режиме реального времени или после того, как измерение выполнено.

Анализатор энергии постоянного тока

для измерения силы тока и напряжения

Самый доступный и простой в использовании прецизионный анализатор энергии постоянного тока
.

Джоулескоп измеряет ток и напряжение,
затем вычисляет мощность, энергию и заряд.

Измерение энергопотребления во время разработки продукта имеет решающее значение, особенно для устройств с батарейным питанием и постоянно включенных устройств. Однако точное измерение энергопотребления было дорогостоящим, утомительным или подверженным ошибкам.

Мы разработали кое-что получше. Встречайте Joulescope!

Джоулескоп измеряет ток и напряжение, затем вычисляет мощность и энергию. Joulescope ™ позволяет дизайнерам, инженерам и производителям быстро и легко оптимизировать энергопотребление и время автономной работы целевого устройства.Joulescope разработан для автоматической обработки широких диапазонов тока и быстрых изменений энергопотребления, позволяя при этом целевому устройству работать нормально.

Просмотр мгновенных значений

Joulescope фиксирует и отображает мгновенные значения тока, напряжения, мощности, энергии и заряда, как мультиметр.

Просмотр кривых с течением времени

Просматривайте изменения во времени, как с помощью осциллографа.Перемещайтесь по своим данным, выбирайте интересующие регионы и исследуйте, где ваше устройство потребляет больше всего энергии и мощности.

Все на вашем компьютере.

Joulescope полностью подключается через USB без внешних адаптеров питания. Программное обеспечение бесплатное и с открытым исходным кодом. Легко перемещайтесь по своим данным с помощью мыши и клавиатуры.

Великолепный динамический диапазон

Joulescope точно измеряет электрический ток более 9 порядков величины от ампер до наноампер.Этот широкий диапазон позволяет проводить точное и точное измерение тока для современных устройств. Спящие режимы часто бывают просто наноамперами (нА) или микроамперами (мкА). Активные режимы часто бывают миллиамперами (мА) или амперами (А).

Простота использования

Joulescope сообщает о совокупном потреблении энергии вместе с током, напряжением и мощностью в реальном времени.На экране мультиметра четко отображается самое последнее значение, а на экране осциллографа вы можете отслеживать изменения во времени. Намного проще и точнее, чем что-либо в своем классе!

Низкое падение напряжения

Большинство мультиметров и измерителей тока имеют значительное падение напряжения (иногда называемое нагрузочным напряжением или вносимыми потерями), которое влияет на фактическое напряжение, подаваемое на тестируемое устройство.Joulescope имеет полное падение напряжения 25 мВ при 1 А, что обеспечивает правильную работу целевого устройства. Чрезвычайно быстрое переключение диапазона тока Joulescope поддерживает низкое падение напряжения даже при быстро меняющемся потреблении тока.

Настраиваемый

Программное обеспечение хоста Joulescope с открытым исходным кодом на GitHub.Вы также можете поменять местами переднюю панель бананового разъема на передние панели с другими типами разъемов! Передние панели с открытым исходным кодом на GitHub.

Делает невидимое видимым

Joulescope измеряет ток и напряжение 2 миллиона раз в секунду с полосой пропускания 250 кГц. Эта высокая частота дискретизации делает видимыми потребление энергии процедурами обслуживания прерываний, пусковые токи и другие кратковременные события.

Доступный

Joulescope доступен по доступной цене, так что каждый разработчик в команде может иметь его на своем рабочем месте. Благодаря такому удобному доступу Joulescope позволяет разработчикам сразу видеть влияние своих изменений на энергопотребление.Разработчики могут сделать осознанный выбор, чтобы учесть время автономной работы во время проектирования. Избавьтесь от неожиданностей, связанных с энергопотреблением, во время тестирования конечного продукта!

  • Измерение и оптимизация тока микроконтроллера
  • Разработка энергоэффективного программного обеспечения и прошивки
  • Увеличение срока службы батареи
  • Оптимизация мощности оборудования
  • Оптимизация тока сна
  • Поиск и устранение неисправностей аппаратного и программного обеспечения
  • Программная характеристика мощности и профилирование процедуры обслуживания прерываний
  • USB 2.0 бросок тока и приостановка текущих предварительных испытаний на соответствие
  • Универсальные измерения тока, напряжения, мощности и энергии

Я говорил почти каждому коллеге, что больше не буду писать код без Joulescope. Я действительно могу наблюдать за выполнением задачи, включением светодиода, включением радио — и все это просто по характеристике мощности.Это идеальный помощник по встроенному программированию / отладке.

Марк Умина, Three Labs, LLC., Treelabs.io

Joulescope изменил правила игры для нашей команды разработчиков! Я позволил одному человеку одолжить его, потому что я только что получил его, но знал, что они могут его использовать. Внезапно у меня возникли проблемы с его возвращением. Теперь он есть у всех.

Джен Костильо

My Joulescope оказался невероятно полезным при отладке нашего устройства. Мы обнаружили проблему с перегрузкой по току, которая вызвала зависание устройства, и проблему с пробуждением 1 из 100.

Матье Стефан, создатель устройств Mooltipass

Joulescope — безусловно, мое любимое испытательное оборудование! Если вы занимаетесь разработкой оборудования или встраиваемых систем, я настоятельно рекомендую попробовать один из них.

Джошуа Райт, One Man Band of Hardware, jmachina.io

Не глядя на единственное руководство, я смог перейти от распаковки к тому, чтобы ответить на несколько актуальных вопросов, связанных с проектом, менее чем за 15 минут. Я счастлив сообщить, что не был впечатлен тем, что Just Works уже много лет.Спасибо, что добавили новую сверхмощность в мой рабочий стол.

Николай

Спасибо за этот замечательный продукт. Joulescope очень помог мне с моими маломощными радиочастотными устройствами. Это было недешево, но оно того стоило! Софт отличный. Аппаратное обеспечение отличное. Удивительный!

Ing.Arturo Mtz. Лавин В., Arteko Electronics SA de CV

Точность и высокая частота дискретизации Joulescope позволили мне обнаружить неожиданную обработку, и я снизил энергопотребление своего устройства, удалив эту ненужную обработку. Joulescope теперь является важной частью моего набора инструментов для отладки и проверки проектов.

Фрэнк Хунлет, вице-президент по разработке оборудования, SmartRent Inc.

Joulescope помог мне быстрее перевести прошивку в состояние с меньшим энергопотреблением. Открытие экрана мультиметра и осциллографа Joulescope при разработке маломощной прошивки теперь является важной частью моего рабочего процесса.

Альваро Прието, инженер по аппаратному и программному обеспечению

При разработке библиотеки для экономии энергии во встраиваемых устройствах мне понадобился инструмент, чтобы доказать ее эффективность.Joulescope — это все, что мне нужно для простой и точной регистрации энергопотребления и производительности устройства. Теперь это незаменимая часть моих встраиваемых проектов.

Крис Фриз, инженер-программист, DockYard Inc

Используйте стрелки влево / вправо для навигации по слайд-шоу или проводите пальцем влево / вправо при использовании мобильного устройства

Как сбалансированная система показателей измеряет текущие и будущие маркетинговые результаты

В моем последнем посте я утверждал, что маркетологи должны использовать сбалансированную систему показателей для измерения и управления маркетинговой эффективностью.Сбалансированная система показателей была представлена ​​Робертом Капланом и Дэвидом Нортоном в начале 1990-х годов и стала одним из самых популярных и эффективных инструментов управления бизнесом. В опросе Management Tools and Trends 2013 , проведенном Bain & Company, руководители предприятий со всего мира поставили сбалансированную систему показателей на пятое место среди наиболее широко используемых инструментов управления.

Сбалансированная система показателей была создана для устранения недостатков систем управления эффективностью, которые полагаются исключительно на показатели финансовой эффективности.Одним из основных недостатков показателей финансового учета является запаздывание показателей. Они измеряют финансовые последствия действий, предпринятых в прошлом, но не могут измерить, как сегодняшние действия повлияют на будущие результаты.

Для устранения этих недостатков в сбалансированной системе показателей используются как финансовые, так и нефинансовые показатели, и она включает меры как опережающих, так и запаздывающих показателей эффективности. Эта структура позволяет руководителям компаний отслеживать как текущую производительность, так и факторы, определяющие будущую производительность.

Эти возможности делают сбалансированную систему показателей мощным инструментом для измерения и управления маркетинговой эффективностью. Сбалансированная система показателей измеряет эффективность маркетинга в четырех аспектах: финансовом, клиентском, внутреннем, а также обучении и росте. Финансовая перспектива измеряет текущую эффективность всей маркетинговой функции, в то время как другие три точки зрения измеряют движущие силы будущих результатов. На схеме ниже показана базовая архитектура сбалансированной системы показателей.

Как сбалансированная система показателей измеряет текущую и будущую эффективность маркетинга

Для подробного объяснения того, как сбалансированная система показателей используется в маркетинге, потребуется книга, а не сообщение в блоге. В этом посте я кратко опишу четыре точки зрения маркетинговой сбалансированной системы показателей. В следующем посте я опишу, как можно использовать сбалансированную систему показателей для измерения эффективности своей маркетинговой стратегии.

Четыре перспективы сбалансированной системы показателей

Финансовая перспектива — Как отмечалось ранее, финансовая перспектива сбалансированной системы показателей измеряет текущие финансовые показатели маркетинговой функции.Когда для маркетинга используется сбалансированная система показателей, конечным финансовым показателем обычно является рентабельность инвестиций в маркетинг . Эта перспектива также обычно включает цели и меры, относящиеся к росту доходов и операционной эффективности маркетинговой функции. Например, большинство маркетинговых сбалансированных систем показателей измеряют общий рост доходов. В зависимости от стратегии роста компании, эта перспектива может также содержать конкретные цели и меры, относящиеся к определенным источникам роста доходов, таким как рост от определенных групп клиентов, продуктов или географических областей рынка.

Перспектива клиента — Перспектива клиента маркетинговой сбалансированной системы показателей будет содержать набор целей и мер, касающихся привлечения клиентов, а также их удержания, роста и удовлетворения. Эта перспектива также обычно включает цели и меры, которые сосредоточены на наиболее важных аспектах вашего предложения ценности для клиентов. Некоторые из показателей, обычно используемых в этой перспективе, включают количество новых привлеченных клиентов, (или количество новых клиентов определенного типа) и средний размер сделки .«Логика» сбалансированной системы показателей заключается в том, что, если компания достигает целей, включенных в эту перспективу, она достигает целей роста доходов с финансовой точки зрения.

Перспектива внутреннего процесса — Эта перспектива будет содержать цели и меры, относящиеся к внутренней деятельности и процессам, которые имеют решающее значение для (а) понимания ваших текущих и потенциальных клиентов и (б) передачи ваших ценностных предложений потенциальным и клиентам.Некоторые из этих процессов относятся к тому, как вы собираете и используете данные от ваших клиентов и потенциальных клиентов и о них, а некоторые связаны с тем, как вы разрабатываете и выполняете маркетинговые кампании и программы. Так, например, с этой точки зрения вы отслеживаете эффективность программ по привлечению потенциальных клиентов и их воспитанию. Перспектива внутреннего процесса также будет включать цели и меры, относящиеся к операционным процессам в маркетинговой функции, которые влияют на эффективность и производительность.

Перспектива обучения и роста — Четвертая и последняя перспектива сбалансированной системы показателей — это перспектива обучения и роста.С этой точки зрения измеряются нематериальные активы, которыми должна обладать ваша компания для выполнения ваших критически важных внутренних процессов с высоким уровнем компетентности. Эта перспектива обычно содержит цели и меры, относящиеся к трем типам нематериальных активов — человеческие способности, технологические возможности и организационные / культурные атрибуты.

Итак, как вы определяете, какие цели и меры должны быть включены в сбалансированную систему показателей? В следующем посте я объясню, почему цели и меры должны определяться вашей маркетинговой стратегией.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *