Из чего делают солнечные батареи: Из чего делают солнечные батареи и можно ли сделать своими руками

Содержание

Как выбрать солнечные батареи для частного дома и не ошибиться

Солнечная батарея - устройство, преобразующее солнечное излучение в электрическую энергию. Впервые метод работы солнечной батареи был разработан 1839 году физиком Александром Беккерелем. Практическое применение метод получил в 1873 после изобретения первого полупроводника. Технология использования энергии солнца в целях ресурсообеспечения приобретает все большую популярность по всему миру. Получаемый вид энергии является возобновляемым, финансовые затраты при эксплуатации солнечных батарей очень низкие - средства требуются только на покупку и установку оборудования. Энергия, вырабатываемая этим источником, является дешевой и доступной и благодаря этому широко используется по всему миру. И если вы решили приобщиться к обществу "зеленой энергетики", то начать надо из того, чтобы разобраться - как правильно выбрать солнечные батареи для частного дома, дачи или даже квартиры. 

Как устроены солнечные батареи?

Стандартная солнечная батарея состоит из алюминиевой рамы, солнечных элементов, специального стекла, подложки, токоведущих жил и распределительной коробки.

Рис. 1 Устройство солнечной батареи

Рама панели - алюминиевая конструкция, придающая жесткость изделию и образующая основу для остальных деталей батареи. Солнечные элементы - кремниевые полупроводниковые фотоэлектрические преобразователи, выращиваемые, как правило, монокристаллическим или поликристаллическим методом. Использование полупроводниковых преобразователей дает возможность прямого, одноступенчатого преобразования энергии, что позволяет использовать солнечные батареи наиболее эффективно.

В солнечной батарее используется фотовольтаический эффект, возникающий в неоднородных полупроводниковых структурах при контакте с солнечным излучением. Неоднородность полупроводникового слоя солнечной батареи достигается легированием одного полупроводникового слоя различными примесями или соединением нескольких слоев полупроводников с различной шириной запрещенной зоны - созданием гетеропереходов. Также методом получения неоднородных кремниевых полупроводников является изменение химического состава полупроводника.

Эффективность использования фотопроводника характеризуется оптическими свойствами проводника, одним из которых является фотопроводимость. Потери энергии при работе солнечных батарей связаны с несколькими процессами: частичным отражением солнечных лучей от поверхности преобразователей; прохождением части лучей, через фотопреобразователи без поглощения в них; рассеянием избыточной энергии фотонов на тепловых колебаниях решетки; внутренним сопротивлением преобразователей.

Выбор параметров солнечной батареи

При выборе солнечной батареи перед покупателем встает вопрос «Как выбрать подходящую солнечную батарею?» Существует несколько видов фотоэлементов, имеющих свои преимущества и недостатки:

  1. Поликристаллические элементы, в которых полупроводник производится поликристаллическим способом, этот метод удешевляют солнечную батарею, но снижают эффективность её работы. КПД элементов составляет 17-19%.
  2. Монокристаллические. Если элементы выращиваются монокристаллическим способом, то КПД фотоэлементов составляет 20-21%. Стоимость батарей при таком способе производства кремния увеличивается, но площадь фотоэлементов для получения энергии того же количества снижается. Готовые солнечные батареи, изготовленными поликристаллическим способом имеют КПД 13-17 %, а с фотоэлементами, изготовленными монокристаллическим способом - КПД 15-18,5%,
  3. Аморфные. Самым низким КПД (4-6%) обладают солнечные батареи, в которых фотоэлементы изготавливают из аморфного кремния.
  4. Арсенид галлиевые. Для изготовления высокоэффективных преобразователей в настоящее время широко используются GaAs - Арсенид галлия, имеющий гетероструктуру и более широкую запрещенную зону, это позволяет увеличить КПД солнечных батарей до 35-40%, правда такой тип элементов имеет очень высокую цену и используется только в космической отрасли.

Рис. 2 Типы солнечных элементов

На что обратить внимание при выборе солнечных батарей?

При выборе солнечных батарей для частного дома или дачи необходимо обратить внимание не только на КПД батареи, которое в современных конструкциях на основе кремниевых элементов, ограничивается величиной 20-21%, но и на суммарную мощность купленной солнечной электростанции.

Она должна обеспечить электроэнергией, достаточной для потребления электросистемой дома в любую погоду.

Зимой сильно снижается длительность светового дня, поэтому в регионах, где это наблюдается, необходимо делать запас мощности, чтобы батарей хватало на то время, когда солнце менее активно. Почему выработка зимой меньше? Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять и меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.

Еще один важный момент при составлении плана "Как выбрать солнечные батареи для домашней электростанции" - эффективность финансовых вложений. Многие батареи при правильном выборе окупаются достаточно быстро, так как производимая при использовании энергии солнца электроэнергия является бесплатной.

Выходное номинальное напряжение солнечных батарей кратно 12В и 24В, но бывают и 20В – это панели с 60 элементами. Фактическое напряжение на выходе гелиопанелей, как правило больше номинального. Так гелиопанель с выходным номинальным напряжение, равным 12В, в точке максимальной мощности выдает 17В, а при холостом ходе выдает 23В. Аналогично работают и батареи с номинальным напряжением на выходе 20 В и 24В. Двадцативольтовая батарея выдает напряжение на выходе 30В точке максимальной мощности и 39В - в режиме холостого хода, а двадцатичетырехвольтовая соответственно - 37В и 45В.

Типовые ошибки при выборе солнечных батарей для дома

Собирая себе солнечную электростанцию самостоятельно, чаще всего допускаются ошибки связанные с подбором оборудования, отметим основные из них:

  • Не правильно подобранное напряжение аккумуляторов и солнечных батарей, используемых в одной системе;
  • Использование ШИМ контроллера с 60 ячейковой солнечной панелью;
  • Не учтенный температурный коэффициент, связанный изменением напряжения, при изменении температуры;
  • Использование разных аккумуляторов, при последовательном подключении;
  • Неверно подобранное сечение перемычек между инвертором и АКБ; 
  • Пренебрежение защитными устройствами.

После подбора оборудования ошибки дилетантов не заканчиваются, поскольку впереди монтаж. При установке солнечной электростанции своими руками ошибки чаще допускаются такие:

  • Неправильная пространственная установка самих солнечных батарей;
  • Падение тени на ячейки от деревьев и соседних построек;
  • Неверное подключение оборудования. Если в системе даже всего два АКБ, последовательное соединение могут перепутать с параллельным. Не говоря уже о нескольких АКБ, когда требуется сделать последовательно – параллельное соединение. Это касается и подключения солнечных батарей;
  • Плохой контакт в электрических соединениях. Касаемо изготовления перемычек кустарным способом, без применения специального инструмента. Применение скрутки, пайки коннекторов MC4 и другие ненадежные соединения.

Это только самые распространенные ошибки, но на практике их гораздо больше. Если вы решили собирать солнечную электростанцию самостоятельно, проконсультируетесь со специалистами, это поможет избежать ошибки, сэкономить деньги и да, консультацию у нас можно получить бесплатно.

Мнения экспертов о продукции

Выбор типа солнечной станции зависит от задачи, которую необходимо решить с помощью альтернативных источников энергии.

В настоящее время наиболее широко применяются три типа солнечных электростанций:

  1. Автономные. В местах, где нет подключения к центральной сети, в садах, на дачах, автономные солнечные электростанции самые востребованные, хорошо подходят для освещения и других жизненно важных электроприборов. Применение автономных солнечных станций позволяет существенно экономить финансы, на жидкое топливо для генераторов, особенно в районах с большим количеством солнечных дней.
  2. Комбинированные с сетью. Если есть центральная сеть, то не нужно отказываться от нее, лучше сделать систему совместную с сетью. Автоматическая работа инвертора, входящего в состав такой станции, будет самостоятельно выбирать источник питания электрических приборов. А входящие в состав аккумуляторные батареи будут источником резервного электроснабжения, при отключениях сети.
  3. Сетевые on-grid. Сетевые солнечные электростанции самые выгодные и быстро окупаемые, поскольку не имеют в составе аккумуляторных батарей и преобразование энергии происходит с высоким КПД. Более того, позволяют передавать (продавать) излишки генерируемой электроэнергии в сеть, тем самым ускоряя процесс окупаемости. Во многих странах при такой генерации с помощью возобновляемых источников для продажи электроэнергии действует «зеленый тариф». В РФ в 2019 году принят в первом чтении Федеральный закон №581324-7 «О внесении изменений в ФЗ «Об электроэнергетике» в части развития микрогенерации», который позволит реализовывать электрическую энергию, вырабатываемую альтернативными источниками, по специальному тарифу. Покупка гарантирующим поставщиком электроэнергии от объектов микрогенерации будет обязательной. Цена купли-продажи будет равна средневзвешенной нерегулируемой цене на электроэнергию на ОРЭМ. Доходы физических лиц, возникшие при реализации лишней электроэнергии, произведенной для нужд своего домохозяйства, не будут подлежать налогообложению.

Независимо от выбранного типа солнечной электростанции, стоит понимать, что для надежной и эффективной работы лучше приобретать высококачественные солнечные батареи. Несмотря на более высокую стоимость они более эффективны и долговечны. Срок службы батарей может достигать 30 и более лет. Покупатели часто задают вопрос: «Почему выработка зимой меньше?» Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять, плюс меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.

Появилась надежда на повышение КПД классических солнечных панелей из кремния

Не секрет, что популярные солнечные панели из кремния имеют ограничение по эффективности преобразования света в электричество. Это связано с тем, что каждый фотон выбивает только один электрон, хотя энергии частицы света может быть достаточно, чтобы выбить два электрона. В свежем исследовании учёные из Массачусетского технологического института показали, что это фундаментальное ограничение может быть обойдено, что открывает путь к солнечным элементам из кремния с существенно более высоким значением КПД.

Возможность фотона выбивать два электрона теоретически была обоснована около 50 лет назад. Но первые удачные эксперименты удалось воспроизвести только 6 лет назад. Тогда в качестве опыта использовалась солнечная ячейка из органических материалов. Было бы заманчиво перейти к более эффективному и распространенному кремнию, с чем учёным удалось справиться только сейчас в ходе выполнения колоссального объёма работ.

В ходе последнего эксперимента удалось создать кремниевую солнечную ячейку, теоретический предел КПД которой был повышен с 29,1 % до 35 %, и это не предел. К сожалению, для этого солнечную ячейку пришлось сделать составной из трёх разных материалов, так что одним монолитным кремнием в данном случае обойтись нельзя.

В собранном виде солнечный элемент представляет собой бутерброд из органического материала тетрацена в виде поверхностной плёнки, тончайшей (в несколько атомов) плёнки из оксинитрида гафния и, собственно, кремниевой пластины.

Слой тетрацена абсорбирует высокоэнергетический фотон и преобразует его энергию в два блуждающих возбуждения в слое. Это так называемые квазичастицы экситоны. Процесс разделения известен как синглетное деление экситона. В грубом приближении экситоны ведут себя как электроны, и эти возбуждения можно использовать для генерации электрического тока. Вопрос, как эти возбуждения передать в кремний и дальше?

Два электрона из одного фотона (MIT)

Своеобразным мостиком между поверхностной тетраценовой плёнкой и кремнием стал тончайший слой из оксинитрида гафния. Процессы в этом слое и поверхностные эффекты на кремнии преобразуют экситоны в электроны, а дальше всё идёт по накатанной. В эксперименте удалось показать, что таким образом повышается эффективность солнечной ячейки в синем и зелёном спектрах. По мнению учёных, это не предел повышения эффективности солнечной ячейки из кремния. Но даже для представленной технологии уйдут годы для её коммерческого воплощения.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Как делают солнечные батареи для космоса

Это фотоэлектрические преобразователи — полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями». С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи у нас в Краснодаре — на заводе «Сатурн». Руководство завода пригласило автора этого блога посмотреть на производственный процесс и рассказать о нем у себя в дневнике.

 

1. Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» — один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли — гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

2. Итак, всё начинается здесь — на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки — около трех миллионов евро.

3. После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем, на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т. д. — всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

4. Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента — как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

5. В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

6. Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И, хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).

6a

6b

7. Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

8. Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей — так правильно).

9. Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

9a

10. Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее. Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей — еще одна часть работы завода «Сатурн». На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

10a

11. Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка — это положительные и отрицательные электроды, разделённые сепараторной бумагой — в них и происходит преобразование и накопление энергии.

12. Установка для электронно-лучевой сварки в вакууме с помощью которой изготавливается корпус аккумулятора из тонкого металла.

13. Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления. В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность — неотъемлемая часть процесса изготовления аккумуляторов.

14. Корпус никель-водородного аккумулятора — очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см2, при испытаниях разрыв произошел при давлении 148 кг·с/см2.

15. Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

16. Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

17. Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

17a

17b

18. Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

18a

19. В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами — одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом. Уезжал с «Сатурна» в отличном настроении — всегда приятно посмотреть у нас на место, где не занимаются пустой болтовней и не перекладывают бумажки, а делают настоящее, серьезное дело, успешно конкурируют с такими же производителями в других странах. Побольше бы в России такого.

Источник

Напечатанные полимерные солнечные батареи могут составить конкуренцию классическим решениям

Солнечные батареи хоть и экологически чистые, но при этом – весьма дорогие. Ученые нашли им альтернативу – полимерные солнечные батареи. О том, что это такое, рассказано в статье. Человек, хотя бы немного интересующийся солнечной энергетикой, прекрасно представляет себе, что такое солнечная батарея – это совокупность большого количества фотоэлементов, укрепленных на какой-либо поверхности. Фотоэлемент представляет собой полупроводниковое устройство, которое преобразует энергию Солнца в электрический ток. Фотоэлементы «традиционных» солнечных батарей производят из кремния. Процесс производства таких батарей сложен и весьма дорог.

Воспользуйтесь нашими услугами

Несмотря на то, кремний – это очень распространенный элемент и что в земной коре содержится около 20% кремния, процесс превращения исходного песка в высокочистый кремний очень сложен и дорог.

Кроме того, порой возникают проблемы с утилизацией отработанных фотоэлементов, поскольку в этих фотоэлементах помимо кремния содержится еще и кадмий. И наконец, кремниевые фотоэлементы по мере работы сильно нагреваются. После чего их производительность начинает снижаться. Поэтому кремниевым батареям помимо фотоэлементов требуются еще и дорогостоящие системы охлаждения.  Все это заставило ученых искать более эффективные способы преобразования солнечной энергии.

Альтернативой кремниевым солнечным батареям могут стать полимерные солнечные батареи. Это новая технология, над развитием которой работают десятки научно-исследовательских институтов и фирм по всему миру.

Полимерный фотоэлемент – это пленка, которая состоит из активного слоя (полимера), электродов из алюминия, гибкой органической подложки и защитного слоя. Для создания рулонных полимерных солнечных батарей отдельные пленочные фотоэлементы объединяют между собой.

Достоинства полимерных солнечных батарей по сравнению с обычными кристаллическими: компактность, легкость, гибкость. Такие батареи недороги в производстве (для их изготовления не используется дорогой кремний) и экологичны, так как они оказывают на окружающую среду менее значительное влияние.

Недостаток пока один – эффективность преобразования солнечной энергии полимерных солнечных батарей пока очень низкий. Этот недостаток и ограничивал создание таких батарей на уровне образцов-прототипов.

В настоящее время, наибольший коэффициент полезного действия полимерных солнечных батарейудалось добиться Алану Хигеру из центра полимеров и органических твёрдых частиц университета Калифорнии в Санта-Барбаре (семь лет назад он получил Нобелевскую премию по химии за открытие и развитие проводящих полимеров)  и Кванхе Ли из корейского института науки и технологии в Гванджу.

Их солнечная батарея имеет КПД в 6,5% при освещённости в 0,2 ватта на квадратный сантиметр. Это самый высокий уровень, достигнутых для солнечных батарей из органических материалов.  И хотя лучшие кремниевые солнечные батареи имеют КПД 40%, тем не менее к полимерным батареям во всем мире проявляют очень сильный интерес. Правда технология производства таких батарей находится пока еще в ранней стадии своего развития.

Первые полимерные батареи в промышленных масштабах начали выпускать в Дании.

Совсем недавно датская компания «Mekoprint A/S» запустила первую линию, на которой будут производится полимерные солнечные батареи. Компания около 10 лет занималась проектно-конструкторскими работами и вот теперь готова к массовому выпуску таких батарей.

Производство заключается в многослойной печати солнечного фотоэлемента на гибкую пленку, которую затем можно скручивать, разрезать и делать из пленки солнечные батареи абсолютно любых размеров.

По заявлениям специалистов компании, основной плюс полимерных батарей – это их дешевизна. Их производство обойдется компании как минимум в 2 раза дешевле, чем производство обычных, кремниевых батарей. Это обстоятельство, в свою очередь, скажется на рыночной стоимости полимерных батарей и в результате они станут намного доступнее.

Вторым плюсом полимерных батарей является их потрясающая гибкость. Такую батарею – можно резать ножом, можно сворачивать в трубку, можно наклеить на любую поверхность совершенно произвольной формы.

При желании такую батарею можно наклеить даже на одежду (что и было однажды проделано датскими специалистами). Полимерная батарея была наклеена на обычную шапку. И в солнечную погоду мощности батареи вполне хватало на то, чтобы от нее работал небольшой переносной радиоприемник.

И наконец, нельзя не упомянуть и о чистоте процесса производства таких батарей. Оказывается. их производство не вреднее, чем производство обычной пластиковой посуды и о вредных выбросах в атмосферу, происходящих при производстве обычных батарей из кремния скоро можно забыть.

Вполне возможно, что через какое-то время мы забудем о газе и угле, так как при дальнейшем развитии этой технологии вполне возможно что вырабатываемая электроэнергия с использованием солнечных полимерных батарей окажется дешевле процесса получения электроэнергии путем сжигания традиционных энергоносителей.

В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называютсяфотоэлектрическими панелями).

Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи – это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.

В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.

Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей), которые непосредственно преобразуют солнечную энергию в электрическую.

Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.

Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые – 15%.

Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность. Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.

Э.д.с. (электродвижущая сила) отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.

Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.

Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.

Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном – выходной ток. Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.

Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а э.д.с. – последовательно включенных солнечных элементов. Так комбинируя типы соединения собирают батарею с требуемыми параметрами.

Солнечные элементы батареи шунтируются диодами. Обычно их 4 – по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает. Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.

При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов, они шунтируются и ток через них не идет. Диоды должны быть низкоомными, чтобы уменьшить на них падение напряжения. Для этих целей в последнее время используют диоды Шоттки.

Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы – химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.

При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.

Это процесс контролируется специальным контроллером. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.

При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.

Наиболее эффективно использование специальных аккумуляторов – гелевых (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей – 10 – 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!

Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.

Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства – инверторы.

Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.

Автор: Андрей Повный
Источник: http://electrik.info/

Воспользуйтесь нашими услугами

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

3D-печать солнечных панелей – революция в возобновляемой энергетике

Почему 3D-печать – эффективное решение для энергетики | Солнечные батареи: 3D-печать в возобновляемой энергетике | Такие системы действительно выгодно печатать на 3D-принтере? | Аддитивное производство солнечных батарей: 5 успешных проектов | Будущее 3D-печати в области солнечной энергетики

3D-печать все более активно используется в энергетической промышленности. Место аддитивного производства в отрасли возобновляемой энергетики представляет большой интерес. Взгляните на ситуацию с изменением климата: сегодня получение энергии из экологически чистых источников является одной из важнейших задач.

Объемы ископаемого топлива стремительно сокращаются, и поэтому мы видим все больше электромобилей, ветровых установок и солнечных батарей. Однако большинство из них далеки от совершенства, а производство по-прежнему требует больших затрат. К счастью, исследователи уже работают над солнечными батареями, которые можно печатать на 3D-принтерах, чтобы максимально эффективно использовать солнце – неисчерпаемый источник энергии.

Вы знали, что 3D-печать – превосходный метод изготовления солнечных батарей? Исследователи утверждают, что аддитивное производство поможет сократить стоимость производства солнечных батарей на 50%, а батареи, напечатанные на 3D-принтерах, – эффективнее солнечных батарей, изготовленных традиционными методами. В этой статье рассказано об эффективном использовании 3D-печати в сфере возобновляемой энергии, а точнее, в гелиоэнергетике. Кроме того, здесь рассмотрены методы 3D-печати фотоэлектрических элементов для солнечных батарей, а также исследования, посвященные данным методам.

Почему 3D-печать – эффективное решение для энергетики

Аддитивное производство используется во множестве отраслей и может быть крайне эффективно для изготовления источников энергии. Цифровое производство –  превосходный метод реализации проектов в энергетической отрасли: качество изделий растет, а затраты на производство сокращаются. Перед производителями возобновляемых источников энергии стоит задача сократить расходы на производство. Давайте выясним, почему производителям систем с питанием от солнечной энергии или других экологически чистых источников следует обратить внимание на 3D-печать.

3D-печать оптимизирует процесс разработки продукта

3D-принтер – отличный инструмент для прототипирования: благодаря ему растет производительность и сокращаются расходы. Используя ПО для 3D-моделирования, модели можно менять до тех пор, пока не будет получена идеальная конструкция. Перед изготовлением систем и деталей можно выполнить столько итераций, сколько потребуется. Благодаря скорости и точности 3D-печати упрощается и быстрое прототипирование.

Значительное сокращение расходов

Пытаетесь сократить расходы на прототипы и производство? Обратите внимание на 3D-печать. При ее использовании расходуется только необходимое количество материала, а выполнять итерации на 3D-принтере дешевле, чем методом литья под давлением, ведь вам не потребуется изготавливать новую пресс-форму и повторять весь процесс.

3D-принтеры повышают эффективность производства

Цифровые технологии подходят не только для прототипирования, но и для производства. У этих методов много преимуществ: например, на 3D-принтерах можно очень быстро изготавливать малые партии деталей. Кроме того, используя аддитивное производство, можно полностью управлять процессом и заказывать только необходимое количество деталей. Перечисленные особенности делают аддитивные технологии оптимальным решением для реализации всего проекта или изготовления отдельных деталей.

Аддитивные технологии – превосходный инструмент для научных исследований

Далее в статье мы поговорим о том, почему 3D-печать подходит для проверки ваших идей и работы с новыми материалами. Исследователи продолжают находить новые сферы применения 3D-печати: к примеру, она используется для производства экологически чистых энергетических устройств – таких как солнечные панели.

Солнечные батареи: 3D-печать в возобновляемой энергетике

Что такое солнечные батареи?

Это блоки, преобразовывающие солнечную энергию в тепло или электричество. Они выполнены из фотоэлектрических элементов, в которых происходит ряд физических и химических явлений. Как правило, фотоэлектрические элементы делают из кристаллического кремния, однако сейчас активно разрабатываются новые материалы (недавний пример – технология тонкопленочных солнечных элементов). Качество и эффективность солнечных батарей, изготавливаемых традиционными способами, оставляют желать лучшего. Именно поэтому специалисты, изучающие аддитивные технологии, экспериментируют с целью создать высококачественные солнечные панели на 3D-принтерах.

Аддитивное производство поможет сократить стоимость производства солнечных батарей на 50%

3D-печать – наилучшее решение для изготовления солнечных батарей

Одна из основных трудностей, возникающая в ходе разработки и производства возобновляемых источников энергии, – высокие затраты. Именно по этой причине такие источники доступны не всем. Мы видели, как 3D-печать подходит для реализации новых проектов, и производство солнечных батарей – отличный пример.

Прежде всего, для производства эффективных солнечных панелей высокого качества требуется множество исследований и разработок. Раньше фотоэлектрические элементы выполнялись из дорогих материалов. При разработке новых солнечных батарей и использовании материалов с новыми техническими свойствами требуется провести много испытаний и изготовить много прототипов. Подобные проекты должны быть тщательно продуманы, а для их демонстрации команде, инвесторам и будущим клиентам потребуются модели высокого качества. И здесь на помощь приходит 3D-печать, поскольку она позволит создать высококачественные прототипы. Кроме того, вы сможете проводить столько итераций, сколько потребуется. Аддитивные технологии подходят и для производства, однако вам потребуется найти 3D-принтеры, способные печатать из соответствующих материалов. Например, солнечные батареи изготавливаются из материала, который поглощает солнечный свет.

В теории, 3D-печать подходит для изготовления экологически чистых источников энергии по более низкой стоимости. Но так ли это на практике?

Такие системы действительно выгодно печатать на 3D-принтере?

Использование напечатанных солнечных батарей сокращает расходы на 50%

Исследователи Массачусетского технологического института утверждают, что аддитивное производство солнечных батарей помогает сократить расходы на 50%. Для изготовления таких установок не требуются дорогие материалы (например, стекло, поликристаллический кремний и индий). Очевидно, что реализация таких проектов возможна благодаря печати новых материалов на 3D-принтере. Например, не так давно стало известно о том, что производство фотоэлектрических элементов из синтетического перовскита дешевле.

Модель проекта ASTRI и CSIRO (Австралия) / Фото: blog.csiro.au

Такие системы можно внедрять в развивающихся странах

Солнечные батареи можно изготавливать на 3D-принтерах, и они дешевле стеклянных панелей, изготовленных традиционными методами. Напечатанные солнечные батареи имеют меньший вес, поскольку они изготавливаются из сверхтонких полосок. Транспортировка таких батарей вызывает меньше трудностей. Эта технология становится доступнее, а значит, возобновляемые источники энергии можно внедрять практически везде и транспортировать их даже в развивающиеся страны, где существуют проблемы с электроснабжением.

Солнечные батареи, напечатанные на 3D-принтере, эффективнее на 20%

Солнечные батареи, изготовленные на 3D-принтере, на 20% эффективнее батарей, созданных традиционными способами. Это обусловлено появлением новых методов, материалов и возможностей проектирования, которые стали возможны благодаря 3D-печати. Солнечной энергетике были нужны инновации, а самое главное – сокращение стоимости. Похоже, 3D-печать совершит революцию в этой отрасли.

Аддитивное производство солнечных батарей: 5 успешных проектов

Новая технология 3D-печати фотоэлектрических элементов уже существует, и она может в корне поменять отрасль возобновляемой энергетики. Ниже приведены примеры того, как компании используют 3D-печать для производства солнечных батарей и как исследователи разрабатывают наиболее оптимальные варианты производства высококачественных фотоэлектрических элементов.

В австралийской организации CSIRO (Commonwealth Scientific and Industrial Research Organisation) на промышленных 3D-принтерах изготавливаются рулоны фотоэлектрических элементов. Исследователи производят листы фотоэлектрических элементов формата A3, которые подходят для любых поверхностей (например, окон и зданий). Батареи из таких элементов функциональны и эффективны.

На сегодняшний день это крупнейшие фотоэлектрические элементы. Они выполняются из эластичного легкого пластика. Исследователи разработали чернила с фотоэлектрическими свойствами, которые наносятся на полоску из эластичного пластика. Процесс производства включает в себя покрытие полосок с помощью гравированного цилиндра, нанесение материала с использованием щелевой экструзионной головки, а также ракельную печать. Использование аддитивной технологии помогло изготовить систему высокой точности.

Поле солнечных панелей: проект ASTRI и CSIRO (Австралия) / Фото: www.csiro.au

Австралийские специалисты используют солнечную энергию максимально эффективно, однако они печатают не только фотоэлектрические элементы. Например, они могут напечатать целое поле солнечных батарей, ведь в Австралии самая высокая плотность солнечного излучения в мире. 

Этот проект реализован Австралийской научно-исследовательской программой по солнечной энергии (ASTRI) и его ведущим партнером – CSIRO. Устройство собирает концентрированное солнечное излучение в виде тепловой энергии. Гелиостаты в буквальном смысле заполняют целое поле, концентрируя излучение Солнца в 50–1000 раз больше его обычной мощности. Преобразованная солнечная энергия хранится в вышке-приемнике.

Некоторые клиенты французской компании Sculpteo работают с солнечной энергией и используют 3D-печать. Например, основанная в 2014 году компания Simusolar налаживает работу солнечных электростанций в сельской местности Танзании, разрабатывая и внедряя компактные экологичные решения, которые помогают людям в повседневной жизни. Клиенты компании – фермеры, рыбаки и сельские жители, которым требуется оборудование, работающее от солнечного электричества. Simusolar использует 3D-печать, поскольку есть потребность во множестве кастомизированных деталей.

Цель компании Kyung-In Synthetic – снабдить солнечным электричеством отдаленные районы. Для этого было принято решение печатать солнечные батареи. В рамках проекта возобновляемые источники энергии стали доступны более чем одному миллиону людей. Напечатанные на 3D-принтере солнечные батареи выполнены из перовскита – минерала, в состав которого входит титанат кальция. Свойства фотоэлектрических элементов, изготовленных из перовскита, улучшаются с каждым годом, а значит, системы из таких элементов могут работать без снижения эффективности несколько лет. У этой технологии большое будущее.

Напечатанные на 3D-принтере солнечные батареи в Национальных лабораториях Сандия / Фото: 3dprint.com

Инженеры Национальных лабораторий Сандия (штат Нью-Мексико, США) работали над приемниками солнечного излучения и доказали, что они на 20% эффективнее солнечных батарей, изготовленных традиционными методами. Батареи были перенастроены и стали поглощать больше солнечного света. Благодаря особой конструкции они могут поглощать свет в различных масштабах.

Аддитивное производство позволяет инженерам создавать солнечные установки со сложной геометрией и значительно упрощает процесс проектирования. Исследователи создали панели жалюзийного типа, поглощающие больше света. Данная система работает без потери энергии. Сперва свет попадает на приемник, а затем поглощается.

Разумеется, для изготовления таких систем необходимо разрабатывать новые материалы и технологии. И если вам кажется, что производство солнечных батарей – сложный процесс, эти примеры демонстрируют, как 3D-печать упрощает его.

Будущее 3D-печати в области солнечной энергетики

3D-печать в этой сфере может быстро стать одной из ключевых технологий. Например, она делает возможной массовую кастомизацию деталей и систем. Люди смогут заказывать солнечные батареи нужных форм и размеров, изготовленные на 3D-принтере по индивидуальным требованиям.

Разработка нового материала для 3D-печати может сильно изменить отрасль солнечной энергетики. Более того, высокоэффективные элементы низкой стоимости подойдут для изготовления устройств с питанием от солнечной энергии, и, возможно, электричество станет доступно во всем мире, даже в самых отдаленных районах.

Энергетика и 3D-печать становятся отличными партнерами. Вероятно, в будущем они помогут разработать множество экологически чистых систем, использование которых поможет бороться с изменением климата. 


Автор: Люси Гаже. Перевод с английского. Оригинал материала на сайте Sculpteo
Фото в заставке: Littlegate Publishing

Статья опубликована 05.11.2019 , обновлена 12.03.2021

Солнечные батареи своими руками ?

Данная статья – вольный перевод статьи Майкла Дэвиса о постройке недорогой Солнечной фотоэлектрической батареи своими руками.

Пару лет назад я купил удаленный участок в Аризоне. Я астроном, и мне нужно было удаленное от крупных городов место для астрономических наблюдений. Я нашел такое место. Проблема в том, что из-за удаленности на участке нет никакого электроснабжения. Ну, на самом деле для меня это не проблема. Нет электричества – нет ночной засветки неба. Тем не менее,хорошо бы иметь хоть какое-то электроснабжение, т.к. жизнь в ХХI веке сильно от него зависит.

Я построил ветрогенератор для электрообеспечения этого участка. Он работает хорошо, когда ветер дует. К сожалению, мне нужно больше энергии. И эта энергия должна быть более стабильна. А то такое ощущение, что у меня на участке ветер дует всегда, но только не тогда когда мне нужна энергия. В Аризоне более 300 солнечных дней в году, поэтому солнечная батарея сделанная своими рукам кажется очевидным дополнением к ветрогенератору. К сожалению, солнечные батареи недешевы, поэтому я решил сделать все сам. Использовал самые обычные инструменты и недорогие и распространенные материалы, чтобы сделать батарею конкурирующую с коммерческими образцами по мощности, но не оставляющим никакого шанса по цене.

Итак, что же такое солнечная батарея или солнечный фотоэлектрический модуль?
По существу, это контейнер, содержащий массив солнечных элементов. Солнечные элементы, это те штуки, которые на самом деле делают всю работу по преобразованию солнечной энергии в электричество. К сожалению, для получения мощности, достаточной для практического применения, солнечных элементов надо достаточно много. Также, солнечные элементы ОЧЕНЬ хрупкие. Поэтому их и объединяют в СБ. Батарея содержит достаточное количество элементов для получения высокой мощности и защищает элементы от повреждения. Звучит не слишком сложно. Я уверен, что смогу сделать солнечную батарею своими руками.

Я начал свой проект, как обычно, с поиска в сети информации по самодельным солнечным батареям и был шокирован как же ее мало. Тот факт, что мало кто сделал свои собственные солнечные батареи, заставлял меня думать, что это должно быть очень сложно. Задумка была отложена в долгий ящик, но я никогда не переставал думать о ней.

Спустя какое-то время, я пришел к следующим умозаключениям:

  • главное препятствие в постройке СБ это приобретение солнечных элементов за разумную цену
  • новые солнечные элементы очень дороги и их сложно найти в нормальном количестве за любые деньги
  • дефектные и поврежденные солнечные элементы есть в наличии на eBay и других местах гораздо дешевле
  • солнечные элементы «второго сорта» возможно, могут быть использованы для изготовления солнечной батареи

Когда до меня дошло, что я могу использовать дефектные элементы,чтобы сделать свою СБ, я взялся за работу. Начал с покупки элементов.

Купил несколько блоков монокристаллических солнечных элементов размером 3х6 дюйма. Чтобы сделать СБ, необходимо соединить последовательно 36 таких элементов. Каждый элемент генерирует порядка 0,5В. 36 элементов,соединенных последовательно дадут нам около 18В, которые будут достаточны для зарядки батарей на 12В. (Да, такое высокое напряжение действительно необходимо для эффективной зарядки 12В аккумуляторов). Солнечные элементы этого типа тонкие как бумага, хрупкие и ломкие как стекло. Их очень легко повредить. Продавец этих элементов окунул наборы из 18 шт. в воск для стабилизации и доставки без повреждений. Воск –это головная боль при его удалении. Если у вас есть возможность, ищите элементы, не покрытые воском. Но помните, что они могут получить больше повреждений при транспортировке. Заметьте, что мои элементы уже имеют припаянные проводники. Ищите элементы с уже припаянными проводниками. Даже с такими элементами вам нужно быть готовым много поработать паяльником. Если же вы купите элементы без проводников, приготовьтесь работать паяльником раза в 2-3 больше. Короче, лучше переплатить за уже припаянные провода.

Также я купил пару наборов элементов без заливки воском у другого продавца.Эти элементы пришли упакованные в пластиковую коробку. Они болтались в коробке и немного обкололись по бокам и углам. Незначительные сколы не имеют особого значения. Они не смогут снизить мощность элемента настолько, чтобы об этом надо было беспокоиться. Купленных мной элементов должно хватить на сборку двух СБ. Я знаю, что возможно сломаю парочку при сборке, поэтому купил чуть больше.

Солнечные элементы продаются самого широкого спектра форм и размеров. Вы можете использовать более крупные или мелкие, чем мои 3х6 дюймов. Просто помните:

  • Элементы одного типа производят одинаковое напряжение независимо от их размера. Поэтому для получения заданного напряжения всегда потребуется одинаковое количество элементов.
  • Большие по размеру элементы могут генерировать бОльший ток, а меньшие по размеру, соответственно – меньший ток.
  • Общая мощность вашей батареи определяется как ее напряжение умноженное на генерируемый ток.

Использование больших по размеру элементов позволит получить большую мощность при том же напряжении, но батарея получится крупнее и тяжелее.Использование меньших элементов позволит уменьшить и облегчить батарею,но не сможет обеспечить такую же мощность. Также стоит отметить, что использование в одной батарее элементов разных размеров – плохая идея. Причина в том, что максимальный ток, генерируемый вашей батареей, будет ограничен током самого маленького элемента, а более крупные элементы не будут работать в полную силу.

Солнечные элементы, на которых я остановил выбор, имеют размер 3х6дюйма и способны генерировать ток примерно 3 ампера. Я планирую соединить последовательно 36 таких элементов, чтобы получить напряжение чуть больше 18 вольт. В результате должна получиться батарея, способная выдавать мощность порядка 60 ватт на ярком солнце. Звучит не сильно впечатляюще, но все же это лучше чем ничего. При чем, это 60Вт каждый день, когда светит солнце. Эта энергия будет идти на зарядку аккумулятора, который будет использоваться для питания светильников и небольшой аппаратуры всего несколько часов после наступления темноты. Просто когда я иду спать, мои энергетические потребности сводятся к нулю. Короче, 60 Вт это вполне достаточно, особенно учитывая, что у меня есть ветрогенератор, который тоже производит энергию, когда дует ветер.

После того как вы купите свои солнечные элементы спрячьте их в безопасное место, где они не разобьются, не попадут детям для игр и не будут съедены вашей собакой до тех пор, пока вы не будете готовы установить их в вашу СБ. Элементы очень хрупкие. Грубое обращение превратит ваши дорогие солнечные элементы в маленькие синенькие блестящие и ни для чего непригодные осколочки.

Итак, солнечная батарея это просто неглубокий ящик. Я начал с постройки такого ящика. Я сделал его неглубоким, чтобы борта не затеняли солнечные элементы, когда солнце светит под углом. Сделан он из фанеры толщиной 3/8 дюйма с бортиками из реек толщиной 3/4 дюйма. Бортики приклеены и привинчены на место. Батарея будет содержать 36 элементов размером 3х6 дюймов. Я решил разделить их на две группы по 18 шт.просто для того, чтобы их было проще паять в будущем. Отсюда и центральная планка посередине ящика.

Вот небольшой набросок, показывающий размеры моей СБ. Все размеры в дюймах(простите меня, поклонники метрической системы). Бортики толщиной 3/4дюйма идут вокруг всего листа фанеры. Такой же бортик идет по центру и делит батарею на две части. В общем, я решил сделать так. Но в принципе, размеры и общий дизайн не критичны. Можете свободно все варьировать в своем эскизе. Размеры же тут я приводу для тех людей,которые постоянно ноют, чтобы я включил их в свои эскизы. Я всегда поощряю народ экспериментировать и изобретать что-то свое, нежели слепо следовать инструкциям, написанным мной (или кем-то еще). Возможно, у вас получится лучше.

Вид одной из половин моей будущей батареи. В этой половине будет размещена первая группа из 18 элементов. Обратите внимание на небольшие отверстия в бортиках. Это будет нижняя часть батареи (на фото верх находится внизу). Это вентиляционные отверстия, предназначенные для выравнивания давления воздуха внутри и снаружи СБ и служащие для удаления влаги. Эти отверстия должны быть только внизу батареи, иначе дождь и роса попадут внутрь. Такие же вентиляционные отверстия должны быть сделаны в центральной разделительной планке.

Далее я вырезал два подходящих по размеру куска ДВП. Они будут служить подложками, на которых будут собираться солнечные элементы. Они должны свободно помещаться между бортиками. Не обязательно использовать именно перфорированные листы ДВП, просто у меня оказались такие под рукой.Пойдет любой тонкий, жесткий и не проводящий ток материал.

>

Чтобы защитить батарею от погодных неприятностей, лицевую сторону закрываем оргстеклом. Эти два куска оргстекла были вырезаны, чтобы закрывать всю батарею полностью. У меня не было одного достаточно большого куска.Стекло тоже можно использовать, но стекло бьется. Град, камни и летящий мусор могут разбить стекло, а от оргстекла просто отскочат. Как видите,начинает вырисовываться картинка, как солнечная батарея будет выглядеть в итоге.

Упс! На фото два листа оргстекла соединенные на центральной перегородке. Я сверлил отверстия вокруг кромки, чтобы посадить оргстекло на шурупы.Будьте осторожны, сверля отверстия возле кромки оргстекла. Будете сильно давить – сломается, что у меня и произошло. В итоге, я просто приклеил отломавшийся кусок и просверлил недалеко новое отверстие.

После этого, я окрасил все деревянные части солнечной батареи несколькими слоями краски, чтобы защитить их от влаги и воздействия окружающей среды. Ящик я покрасил внутри и снаружи. При выборе типа краски и ее цвета был использован научный подход. Я взболтал всю краску из остатков, имеющихся у меня в гараже, и выбрал ту банку, в которой краски хватит, чтобы сделать всю работу.

/>

Подложки тоже были окрашены в несколько слоев с обеих сторон. Убедитесь, что вы хорошо все прокрасили, иначе дерево может покоробиться от влаги. А это может повредить солнечные элементы, которые будут приклеены к подложкам. Теперь, когда у меня есть основа для СБ, самое время подготовить солнечные элементы.

Как я говорил раньше, удаление воска с солнечных элементов – это настоящая головная боль. После нескольких проб и ошибок я все-таки нашел неплохой способ. Но я по-прежнему рекомендую покупать элементы у того, кто не заливает их воском.

Первый шаг, это «купание» в горячей воде, чтобы растопить воск и отделить элементы друг от друга. Не дайте воде закипеть, иначе пузырьки пара будут сильно бить элементы один о другой. Кипящая вода также может быть слишком горячей, в элементах могут быть нарушены электрические контакты. Я также рекомендую погружать элементы в холодную воду, а потом медленно их нагревать, чтобы исключить неравномерный нагрев.

Пластиковые щипцы и лопатка помогут отделить элементы, когда воск растает. Постарайтесь сильно не тянуть за металлические проводники – могут порваться. Я обнаружил это, когда пробовал разделить свои элементы. Хорошо, что я купил их с запасом.

Тут показана финальная версия «установки» которую я использовал. Моя подруга спросила, что это я готовлю. Вообразите ее удивление, когда я ответил: «Солнечные элементы». Первая «горячая ванна» для растапливания воска находится на заднем плане справа. На переднем плане слева – горячая мыльная вода, а справа – чистая горячая вода. Температуры во всех кастрюлях ниже температуры кипения воды. Сначала в дальней кастрюле растапливаем воск, переносим элементы по одному в мыльную воду, чтобы удалить остатки воска, после чего промываем в чистой воде. Выкладываем элементы для просушки на полотенце. Вы можете менять мыльную воду и воду для промывки почаще. Только не сливайте использованную воду в канализацию, т.к. воск затвердеет и засорит сток.Этот процесс удалил практически весь воск с солнечных элементов. Только на некоторых остались тонкие пленки, но это не помешает пайке и работе элементов. Промывка растворителем, возможно, удалит остатки воска, но это может быть опасно и зловонно.

Несколько разделенных и очищенных солнечных элементов сушатся на полотенце. После разделения и удаления защитного воска из-за своей хрупкости они стали удивительно сложными в обращении и хранении. Я рекомендую оставить их в воске до тех пор, пока вы не будете готовы установить их в вашу СБ. Это позволит вам не разбить их до того, как вы сможете их использовать.Поэтому постройте сначала основу для батареи. У меня же пришло уже время установить их.

Я начал с отрисовки сетки на каждой основе, для упрощения процесса установки каждого элемента. Потом я выложил элементы по этой сетке обратной стороной вверх, так их можно спаять вместе. Все 18 элементов для каждой половины батареи должны быть соединены последовательно,после чего обе половины также должны быть соединены последовательно для получения требуемого напряжения.

Спаивать элементы между собой поначалу сложно, но я быстро приловчился.Начинайте только с двух элементов. Разместите соединительные проводники одного из них так, чтобы они пересекали точки пайки на обратной стороне другого. Также нужно убедиться, что расстояние между элементами соответствует разметке.

Я использовал маломощный паяльник и прутковый припой с сердцевиной из канифоли. Также перед пайкой я смазывал флюсом точки пайки на элементах при помощи специального карандаша. Не давите на паяльник! Элементы тонкие и хрупкие, нажмете сильно – сломаете. Я был неаккуратен пару раз – пришлось выбросить несколько элементов.

Повторять пайку пришлось до тех пор, пока не получилась цепочка из 6-ти элементов. Соединительные шины от сломанных элементов я припаял к обратной стороне последнего элемента цепочки. Таких цепочек я сделал три, повторив процедуру еще дважды. Всего 18 элементов для первой половины батареи.

Три цепочки элементов должны быть соединены последовательно. Поэтому среднюю цепочку поворачиваем на 180 градусов по отношению к двум другим. Ориентация цепочек получилась правильной (элементы все еще лежат обратной стороной вверх на подложке). Следующий шаг – приклеивание элементов на место.

Приклеивание элементов потребует некоторой сноровки. Наносим небольшую каплю силиконового герметика в центре каждого из шести элементов одной цепочки. После этого переворачиваем цепочку лицевой стороной вверх и размещаем элементы по разметке, которую нанесли раньше. Легонько прижмите элементы, надавливая по центру, чтобы приклеить их к основе. Сложности возникают в основном при переворачивании гибкой цепочки элементов. Вторая пара рук тут не повредит.

Не наносите слишком много клея и не приклеивайте элементы нигде кроме центра. Элементы и подложка, на которой они смонтированы, будут расширяться, сжиматься, гнуться и деформироваться при изменении температуры и влажности. Если вы приклеите элемент по всей площади, он со временем сломается. Приклеивание только в центре дает элементам возможность свободно деформироваться отдельно от основы. Элементы и основа могут деформироваться по-разному и элементы не сломаются.

Вот полностью собранная половина батареи. Я использовал медную оплетку от кабеля для соединения первой и второй цепочки элементов.

Можно использовать специальные шины или даже обычные провода. Просто уменя под рукой была медная оплетка от кабеля. Такое же соединениеделаем с обратной стороны между второй и третьей цепочкой элементов. Каплей герметика я прикрепил провод к основанию, чтобы он не «гулял» ине гнулся.

Тест первой половины солнечной батареи на солнце. При слабом солнце в дымке эта половина генерирует 9,31В. Ура! Работает! Теперь мне нужно сделать еще одну такую же половину батареи. После того как обе основы с элементами будут готовы, я смогу установить их на место в подготовленную коробку и соединить. Каждая из половин помещается на свое место. Я использовал 4 небольших шурупа для крепления основы с элементами внутри батареи. Провод для соединения половин батареи я пропустил через одно из вентиляционных отверстий в центральном бортике. Тут тоже пара капель герметика поможет закрепить провод на одном месте и предотвратить его болтание внутри батареи.

Каждая солнечная батарея в системе должна быть снабжена блокирующим диодом,соединенным последовательно с батареей. Диод нужен для предотвращения разряда аккумуляторов через батарею ночью и в пасмурную погоду. Я использовал диод Шоттки на 3,3А. Диоды Шоттки имеют гораздо более низкое падение напряжения, чем обычные диоды. Соответственно, будут меньше потери мощности на диоде. Я купил набор из 25 диодов марки 31DQ03 всего за пару баксов. У меня останется еще много диодов для моих будущих СБ.

Сначала я планировал присоединить диод снаружи батареи. Но после того как посмотрел технические характеристики диодов, решил поместить их внутри батареи. У этих диодов падение напряжения уменьшается сростом температуры. Внутри моей батареи будет высокая температура, диод будет работать более эффективно. Используем еще немного силиконового герметика чтобы закрепить диод.

Я просверлил отверстие в днище батареи ближе к верху, чтобы вывести провода наружу. Провода завязаны на узел, чтобы предотвратить их вытягивание из батареи, и закреплены все тем же герметиком. Важно дать герметику высохнуть до того, как мы будем крепить оргстекло на место. Советую, опираясь на предыдущий опыт. Испарения из силикона могут образовать пленку на внутренней поверхности оргстекла иэлементов, если вы не дадите силикону высохнуть на открытом воздухе.

На выходной провод я прикрутил двух контактный разъем. Розетка этого разъема будет присоединена к контроллеру заряда аккумуляторов, который я использую для своего ветрогенератора. Таким образом, солнечная батарея сможет работать с ним параллельно.

Вот как выглядит законченная СБ с прикрученным экраном из оргстекла.Оргстекло пока еще не герметизировано. Я сначала не производил герметизацию стыков. Провел сначала небольшое тестирование. По результатам тестов мне потребовался доступ к внутренностям батареи, там обнаружилась проблема. У меня на одном из элементов отошел контакт. Может быть, это произошло из-за перепада температур или из-за неаккуратного обращения с батареей. Кто знает? Я разобрал батарею и заменил этот поврежденный элемент. С тех пор проблем не было. В будущем, возможно, я герметизирую стыки под оргстеклом при помощи герметика или закрою их алюминиевой рамкой.

Солнечная батарея в работе. Я перемещаю ее пару раз в день для сохранения ориентации на солнце, но это не такая уж и большая сложность. Возможно,когда-нибудь я построю автоматическую систему слежения за солнцем. Вольтметр показывает 18,88В без нагрузки. Это в точности как я и рассчитывал. Амперметр показывает 3,05А – ток короткого замыкания. Это как раз недалеко от расчетного тока элементов. Солнечная батарея прекрасно работает!

Итак, сколько же все это стоило? Я сохранил все чеки от всех своих покупок для этого проекта. Ну и конечно многое уже было у меня в мастерской. Всякие куски дерева, провода и прочие полезные вещи (кто-то скажет, мусор) валяются также у меня вокруг мастерской. Короче, много чего уже было под рукой. Поэтому ваши подсчеты могут отличаться:

  • Солнечные элементы - eBay - $74.00*
  • Дерево - Строительный магазин - $20.26
  • Оргстекло - Со свалки - $0.00
  • Шурупы - Из запасов - $0.00
  • Силиконовый герметик - Строительный магазин - $3.95
  • Провода - Из запасов - $0.00
  • Диод - $0.20±
  • Двухконтактный разъем - Newark Electronics - $6.08
  • Краска - Из запасов - $0.00
  • Итого --- $104.85

Не так уж и плохо! Это лишь малая часть стоимости серийной СБ такой же мощности. В экономический расчет не вошла и стоимость работ. У меня уже есть план построить еще несколько солнечных батарей, чтобы увеличить мощность. И это очень просто!

На самом деле я купил 4 набора по 18 элементов. В подсчете указана стоимость только двух наборов, которые пошли на построение солнечной батареи своими руками.

А теперь посмотрите на профессиональную сборку солнечных батарей.....

Алтайские энергетики делают ставку на солнечные батареи

https://ria.ru/20191217/1562471947.html

Алтайские энергетики делают ставку на солнечные батареи

Алтайские энергетики делают ставку на солнечные батареи

Солнечные электростанции обеспечат 30% энергопотребления в Республике Алтай, сообщает пресс-служба региона. Вторая очередь Ининской СЭС мощностью 15 МВт и... РИА Новости, 17.12.2019

2019-12-17T10:22

2019-12-17T10:22

2019-12-17T15:39

алтайский край

хорошие новости

хорошие новости

/html/head/meta[@name='og:title']/@content

/html/head/meta[@name='og:description']/@content

https://cdn23.img.ria.ru/images/156247/14/1562471467_0:0:1500:844_1920x0_80_0_0_557812044f67304f89874f99a552afae.jpg

МОСКВА, 17 дек — РИА Новости. Солнечные электростанции обеспечат 30% энергопотребления в Республике Алтай, сообщает пресс-служба региона. Вторая очередь Ининской СЭС мощностью 15 МВт и Усть-Коксинская СЭС мощностью 40 МВт с 1 декабря начали передавать электроэнергию в электросеть региона. В январе следующего года планируется ввести в эксплуатацию еще одну станцию.Ранее инвесторы построили и ввели в эксплуатацию в Республике Алтай две солнечные станции в Кош-Агаче мощностью по 5 МВт, станции в Усть-Кане и Онгудае также по 5 МВт каждая, Майминскую станцию мощностью 25 МВт и также первую очередь Ининской СЭС мощностью 10 МВт.В январе 2020 года заработает Чемальская СЭС мощностью 10 МВт."Это особенно важно для надежности электроснабжения наиболее популярного у туристов Чемальского района, где находится множество туристических баз. Таким образом, установленная мощность солнечной генерации в регионе в 2020 году достигнет 120 МВт", — сообщают в пресс-службе.Расчетная годовая выработка всех солнечных электростанций составит около 154 миллионов кВт/ч. Как сообщается, ввод в эксплуатацию новых солнечных электростанций в республике повысит надежность электроснабжения районов и снизит потери при передаче электроэнергии без увеличения тарифной нагрузки на жителей Горного Алтая.

https://ria.ru/20191125/1561492388.html

алтайский край

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2019

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn21.img.ria.ru/images/156247/14/1562471467_186:0:1311:844_1920x0_80_0_0_93a725f53710ca15f4576bc834b75a42.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

алтайский край, хорошие новости

МОСКВА, 17 дек — РИА Новости. Солнечные электростанции обеспечат 30% энергопотребления в Республике Алтай, сообщает пресс-служба региона. Вторая очередь Ининской СЭС мощностью 15 МВт и Усть-Коксинская СЭС мощностью 40 МВт с 1 декабря начали передавать электроэнергию в электросеть региона. В январе следующего года планируется ввести в эксплуатацию еще одну станцию.

Ранее инвесторы построили и ввели в эксплуатацию в Республике Алтай две солнечные станции в Кош-Агаче мощностью по 5 МВт, станции в Усть-Кане и Онгудае также по 5 МВт каждая, Майминскую станцию мощностью 25 МВт и также первую очередь Ининской СЭС мощностью 10 МВт.

25 ноября 2019, 08:00НаукаСлишком умные! Как сэкономить на отоплении

В январе 2020 года заработает Чемальская СЭС мощностью 10 МВт.

"Это особенно важно для надежности электроснабжения наиболее популярного у туристов Чемальского района, где находится множество туристических баз. Таким образом, установленная мощность солнечной генерации в регионе в 2020 году достигнет 120 МВт", — сообщают в пресс-службе.

Расчетная годовая выработка всех солнечных электростанций составит около 154 миллионов кВт/ч. Как сообщается, ввод в эксплуатацию новых солнечных электростанций в республике повысит надежность электроснабжения районов и снизит потери при передаче электроэнергии без увеличения тарифной нагрузки на жителей Горного Алтая.

Как работают солнечные панели?

Солнечная энергия имеет решающее значение для нашего выживания как вида, и, к счастью, отрасль процветает. С тех пор, как Конгресс принял налоговую льготу в 2006 году, Ассоциация индустрии солнечной энергии (SEIA) заявляет, что за последнее десятилетие солнечная промышленность в среднем показывала темпы роста 50 процентов. В большинстве областей это будут макро-новости. Но у солнечной энергии есть миссия, выходящая за рамки зарабатывания денег - она ​​должна спасти планету.

Нет никакого плана по предотвращению антропогенного глобального потепления от постоянного искажения климата Земли без солнечных панелей и энергии, которую они могут преобразовать.«Роль возобновляемых источников энергии в смягчении последствий изменения климата доказана», - говорится в заявлении Программы развития Организации Объединенных Наций. Некоторые представители отрасли считают, что к 2050 году отрасль солнечной энергетики вырастет на 6500 процентов, чтобы удовлетворить эту потребность.

☀️Вы любите солнечную. И мы тоже. Давайте вместе поработаем над этим.

Но, несмотря на всю свою важность, солнечные батареи по-прежнему кажутся загадочными. Жесткие и слегка угрожающие черные прямоугольники, они не выглядят и не похожи на спасителей.Величественные водопады и плотины выглядят героически, а вот солнечные батареи - нет. Итак, каковы их внутренние механизмы, как они работают?

Краткая история солнечных панелей

Цифровая библиотека Gallica

Работа в области солнечной энергии началась в 1839 году, когда молодой французский физик Эдмон Беккерель открыл то, что сейчас известно как фотоэлектрический эффект. Беккерель работал в семейном бизнесе - его отец, Антуан, был известным французским ученым, который все больше интересовался электричеством, - когда он сделал свое открытие.

Эдмонда интересовало, как работает свет, и когда ему было всего 19 лет, их интересы совпали - он обнаружил, что электричество можно производить с помощью солнечного света. (Кстати, это также привело его к созданию первой в мире цветной фотографии).

Шли годы, и технология пошла маленькими, устойчивыми шагами. В 1940-х годах такие ученые, как Мария Телкес, экспериментировали с использованием сульфатов натрия для хранения энергии солнца, чтобы создать Dover Sun House. При исследовании полупроводников инженер Рассел Шумейкер Охс исследовал образец кремния с трещиной и заметил, что он проводит электричество, несмотря на трещину.

Но самый большой скачок произошел 25 апреля 1954 года, когда химик Кэлвин Фуллер, физик Джеральд Пирсон и инженер Дэрил Чапин показали, что они построили первый практический кремниевый солнечный элемент.

Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Как и Охс, это трио работало в Bell Labs и раньше взяло на себя задачу создания такого баланса.Чапин пытался создать источники питания для удаленных телефонов в пустынях, где разрядятся обычные батарейки. Пирсон и Фуллер работали над контролем свойств полупроводников, которые позже будут использоваться для питания компьютеров. Зная о работе друг друга, все трое решили сотрудничать.

Кальвин С. Фуллер, на снимке диффузии бора в кремний.

Архивы AT&T

Через год после создания первого работающего солнечного элемента Bell Labs нашла практическое применение этой технологии.Здесь мастер по ремонту кабелей в Джорджии устанавливает панели для первого в истории телефонного разговора на солнечной энергии 4 октября 1955 года.

Bell Labs

Эти самые ранние солнечные элементы были «в основном собранными вручную устройствами», - говорит Роберт Марголис, старший энергетический аналитик Национальной лаборатории возобновляемой энергии (NREL), федеральной лаборатории в Голдене, штат Колорадо, посвященной возобновляемым источникам энергии.

Как работают солнечные панели?

Чтобы понять, как кремниевые солнечные панели производят электричество, вы должны подумать на атомном уровне.Кремний имеет атомный номер 14, что означает, что в его центре 14 протонов и 14 электронов вращаются вокруг этого центра. Используя классический образ атомных кругов, вокруг центра движутся три круга. Самый внутренний круг заполнен двумя электронами, а средний круг - восемью.

Однако крайняя окружность, содержащая четыре электрона, заполнена наполовину. Это означает, что он всегда будет стремиться заполниться с помощью ближайших атомов. Когда они соединяются, они образуют так называемую кристаллическую структуру.

Бен Миллс

Со всеми этими электронами, тянущимися и соединяющимися друг с другом, электрическому току не так много места, чтобы двигаться. Вот почему кремний, содержащийся в солнечных батареях, нечистый, смешанный с другим элементом, например фосфором. Внешний круг из фосфора состоит из пяти электронов.

Этот пятый электрон становится так называемым «свободным носителем», способным переносить электрический ток без особых усилий.Ученые увеличивают количество свободных носителей, добавляя примеси в процессе, называемом легированием. В результате получился кремний N-типа.

Обзоры чистой энергии

Кремний N-типа - это то, что находится на поверхности солнечной панели. Ниже находится его зеркальная противоположность - кремний P-типа. В то время как кремний N-типа имеет один дополнительный электрон, P-тип использует примеси таких элементов, как галлий или бор, которые имеют на один электрон меньше. Это создает еще один дисбаланс, и когда солнечный свет попадает на P-тип, электроны начинают двигаться, заполняя пустоты друг в друге.Уравновешивающее действие, которое повторяется снова и снова, генерируя электричество.

Что такое солнечная панель?

Pramote Полиамат Getty Images

Солнечные элементы сделаны из кремниевых пластин. Они сделаны из кремния, твердого и хрупкого кристаллического вещества, которое является вторым по распространенности элементом в земной коре после кислорода. Если вы находитесь на пляже и видите на песке блестящие черные точки, это кремний.Как обнаружил Охс, он естественным образом преобразует солнечный свет в электричество.

Кремний, как и другие кристаллы, можно выращивать. Ученые, подобные тем, что работают в Bell Labs, выращивают кремний в трубке в виде единого однородного кристалла, разворачивая трубку и разрезая полученный лист на так называемые пластины.

«Визуализируйте круглую палку», - говорит Викрам Аггарвал, основатель и генеральный директор EnergySage, торговой площадки для сравнительных покупок солнечных панелей. Эта палочка нарезается как «пепперони, тонко нарезанный рулет салями для бутербродов - они очень тонко бреют их», - говорит он.Вот где исторически было очень сложно - либо слишком толстые, либо отходы, либо слишком тонкие, что делало их неточными и склонными к растрескиванию ».

Резервная копия Vanguard 1, первого в истории спутника, использующего солнечную энергию. Резервная копия находится в Смитсоновском музее авиации и космонавтики.

Смитсоновский музей авиации и космонавтики.

Они стараются сделать эти вафли как можно более тонкими, чтобы получить как можно больше пользы от своего кристалла. Этот тип солнечных элементов сделан из монокристаллического кремния.

Хотя первые солнечные элементы внешне напоминают сегодняшние, есть ряд отличий. Вернувшись в Bell Labs, первоначальная надежда заключалась в том, что солнечные элементы будут хороши для грядущей космической гонки, говорит Марголис, поэтому было важно снизить вес. Фотоэлементы, как их стали называть, были помещены в легкий корпус.

И это сработало. Всего через четыре года после разработки первого работающего солнечного элемента, 17 марта 1958 года, Морская исследовательская лаборатория построила и запустила первый в мире спутник на солнечной энергии.

Панели солнечных батарей сегодня

Производство фотоэлементов на заводе First Solar в Питтсбурге, штат Пенсильвания.

Первая солнечная

В настоящее время фотоэлектрические элементы производятся серийно и разрезаются лазерами с большей точностью, чем мог представить любой ученый из Bell Labs. Хотя они используются в космосе, они нашли гораздо больше цели и ценности на Земле. Поэтому вместо того, чтобы делать упор на вес, производители солнечных батарей теперь делают упор на прочность и долговечность.Прощай, легкий инкапсулятор, привет, стекло, выдерживающее непогоду.

Один из основных приоритетов любого производителя солнечной энергии - это эффективность: сколько солнечного света, попадающего на каждый квадратный метр солнечной панели, можно преобразовать в электричество. По словам Аггарвала, это «основная математическая проблема», которая лежит в основе всего производства солнечной энергии. Здесь эффективность означает, сколько солнечного света можно правильно преобразовать через кремний P- и N-типа.

Рабочие в Калифорнии устанавливают солнечные батареи на крыше.Эффективность имеет решающее значение для получения от них максимальной мощности.

Джо Сом / Видения Америки / Universal Images Group Getty Images

«Допустим, у вас есть 100 квадратных футов на крыше», - гипотетически говорит Аггарвал. «В этом ограниченном пространстве, если эффективность панелей составляет 10 процентов, то это менее 20 процентов. Эффективность означает, сколько электронов они могут произвести на квадратный дюйм кремниевых пластин. Чем они эффективнее, тем большую экономию они могут принести».

Около десяти лет назад, по словам Марголиса, эффективность использования солнечной энергии колебалась около 13 процентов.В 2019 году эффективность использования солнечной энергии выросла до 20 процентов. Существует явная тенденция к росту, но она говорит о том, что у Марголиса есть предел с кремнием. Из-за природы кремния как элемента верхний предел солнечных панелей составляет 29 процентов.


Лучшие солнечные панели

Лучший выбор

Монокристаллическая солнечная панель мощностью 160 Вт

Если вы не совсем уверены, с чего начать, эта солнечная панель - надежный вариант. Это относительно бюджетно (солнечные панели могут быть дорогими , быстро ), и он работает.Он изготовлен из ПЭТ, ЭВА и монокристаллического кремния, обладает антибликовым покрытием и высокой прозрачностью. Он также прост в использовании и имеет компактный размер, поэтому его легко хранить, когда он не нужен.

Лучшее при слабом освещении

Монокристаллическая складная солнечная панель DOKIO

Если вы живете в местах с плохим освещением, вы можете беспокоиться, что солнечные батареи не для вас, но они действительно отлично работают в условиях низкой освещенности.Фотоэлектрическая панель с высокой эффективностью преобразования 100 Вт может заряжать батареи 12/24 В, и она поставляется с портативным складным чемоданом. Его легко взять с собой, если вы в походе, и легко хранить, если вы используете его дома, на случай отключения электроэнергии.

Лучшая трата

Монокристаллическая солнечная панель Renogy мощностью 300 Вт

Если вы действительно хотите сделать все возможное, вы не ошибетесь с 10-элементными 300-ваттными солнечными панелями Renology.Они способны выдерживать сильный ветер и снеговые нагрузки, обладают антибликовым покрытием и чрезвычайно универсальны. Они идеально подходят для жилых или коммерческих крыш, но они также совместимы с наземным креплением.

Лучшее для начинающих

Стартовый комплект Renogy, 100 Вт, 12 В, монокристаллическая солнечная энергия

Любой, кто плохо знаком с солнечными батареями, должен начать с хорошего комплекта, такого как этот от Renology. Вы получите все необходимое в одном устройстве, в том числе солнечную панель мощностью 100 Вт, контроллер отрицательного заземления с ШИМ 30 А, разъемы MC4, кабель для лотка 8 футов 10 AWG и монтажные Z-образные кронштейны для дома на колесах или лодки.Он может полностью зарядить батарею на 50 Ач с 50% за 3 часа.


Несмотря на эти достижения, есть некоторые внешние силы, которые временно сдерживают рост производства солнечных батарей. До начала пандемии COVID-19 в начале этого года солнечные панели на крышах составляли около 40 процентов от общего мирового рынка. Но из-за личного финансового бремени, которое ложится на потребителей, многие из которых не имеют работы и не могут получить своевременный доступ к пособиям по безработице, аналитики прогнозируют, что солнечная промышленность будет постоянно расти в течение 2020 года, согласно исследованию Вуд Маккензи. твердый.

Итак, что же нам дальше?

Будущее солнечной энергии

Профессор Чарльз Чи Сурья из Гонконгского политехнического университета позирует с тандемным солнечным элементом из перовскита и кремния, который имеет одни из самых высоких в мире показателей эффективности.

К. Я. Ченг / South China Morning Post через Getty Images, Getty Images

Некоторые ученые работают над использованием новых материалов. Есть минерал, известный как перовскит, который Аггарвал описывает как «очень интересный».«Впервые обнаруженный на Урале на западе России, перовскит вызвал удивление при испытаниях - с 10 процентов эффективности в 2012 году до 20 процентов в 2014 году. Его можно получить искусственно из обычных промышленных металлов, что упрощает поиск, и для этого используется более простой процесс, чем балансирующий танец кремния типа P и N для проведения электричества.

Но и Аггарвал, и Марголис предупреждают, что эта технология все еще находится на начальной стадии ". Эффективность лаборатории быстро выросла, но есть разница между лаборатория и реальный мир », - говорит Марголис.В то время как перовскит показал большой прогресс в чистой окружающей среде, он быстро снижается при попадании в такие элементы, как вода, с которыми он может столкнуться при повседневном использовании.

Марголис и его команда работают не над новыми материалами, а над концепцией, которую он называет «солнечный плюс». По его словам, по мере увеличения использования солнечной энергии есть потенциал для улучшения того, как «солнечная энергия взаимодействует с другими зданиями в целом».

Представьте, что в городе очень жаркое лето. Вы идете в офис по работе, а вечером возвращаетесь домой.Здесь жарко и влажно, поэтому вы включаете кондиционер, как и все жители города. Электрическая сеть становится напряженной.

Но Марголис считает, что можно хранить и использовать солнечную энергию, чтобы уменьшить напряжение. «За два часа до того, как вы вернетесь домой, когда солнце еще светит, кондиционер может заранее запустить и охладить ваш дом». То же самое касается холодной зимы, когда есть риск замерзания труб. "Вы можете сильно нагреть воду в жаркий день и по-прежнему использовать эту горячую воду для мытья посуды или принятия душа на следующее утро... мы только начинаем думать о том, как интегрировать солнечную энергию в нашу систему ».

Несмотря на борьбу с преобладанием солнечной энергии, например, конкуренцию со стороны природного газа и политический климат, благоприятствующий ископаемым видам топлива, Марголис настроен оптимистично.

« Мы » На этом этапе коммунальные предприятия и инженеры понимают, что солнечная энергия становится достаточно большой, и мы должны с этим справиться, - говорит он. - Это забавные задачи ».

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Из чего сделаны солнечные батареи?

Это зависит от того, на какую солнечную панель вы смотрите. Существует два основных типа солнечных панелей или модулей, используемых в установках на крыше и на земле: кристаллический кремний и тонкопленочный.

Солнечные панели из кристаллического кремния (c-Si) являются наиболее распространенными. Это те, которые выглядят как синие или черные прямоугольные сетки из меньших квадратов.Эти меньшие квадраты представляют собой кремниевые солнечные элементы, и они соединяются последовательно, образуя цепь. Чем больше соединенных между собой ячеек в серии, тем больше электроэнергии вырабатывает система.

Кристаллические панели чаще группируются в панели с 60 и 72 ячейками. Панели меньшего размера также используются на автономном рынке. Эти серии ячеек обычно соединяются шинами. Ленты сборных шин (обычно из алюминия или меди с серебром) соединяют солнечные элементы вместе для создания более высоких напряжений.Чем больше шин через солнечный элемент, тем больше электронов может пройти через него, а мощность и эффективность солнечной панели возрастут.

Существует два основных типа конструкций кристаллического кремния: поликристаллический и монокристаллический . Монокристаллический кремний солнечный получают путем выращивания монокристалла. Поскольку эти кристаллы обычно имеют овальную форму, на монокристаллических панелях вырезаны характерные узоры, которые придают им узнаваемый внешний вид: нарезанные кремниевые ячейки открывают недостающие углы в решетчатой ​​структуре.Кристаллический каркас в монокристалле ровный, дает ровный синий цвет без следов зерна, что обеспечивает наилучшую чистоту и высочайший уровень эффективности.

Поликристаллический солнечный свет производится путем заливки расплавленного кремния в отливку. Однако из-за этого метода строительства кристаллическая структура будет формироваться несовершенно, создавая границы, на которых образование кристаллов нарушается. Это придает поликристаллическому кремнию характерный зернистый вид, так как узор типа драгоценного камня подчеркивает границы в кристалле.Эти примеси в кристалле делают поликристаллические модули менее эффективными, а также более дешевыми, чем монокристаллические.

Тонкопленочные солнечные панели

Тонкопленочные панели более традиционно используются в крупных промышленных установках. Тонкий полупроводник наносится на подложку из стекла, пластика или металлической фольги. Тонкая пленка, судя по названию, может быть очень тонкой и иногда гибкой. Его легкий вес и гибкость позволили использовать его на изогнутых крышах, автомобилях и других уникальных установках.

Есть три общих тонкопленочных подразделения: аморфный кремний (a-Si), теллурид кадмия (CdTe) и селенид галлия, индия, медь (CIGS). Тонкопленочные солнечные элементы часто создаются путем совместного испарения химических веществ на стеклянном листе. Они имеют более низкую эффективность преобразования, чем кремний, но уменьшают количество материала, необходимого для создания ячейки.

Модуль в сборе

Как правило, все солнечные панели состоят из солнечных элементов со стеклянным слоем спереди и защитным листом сзади.Обычно изготавливаемые из полимера, нижние листы прикрепляются к задней стороне модулей для обеспечения электрической изоляции. Белые задние листы являются наиболее распространенными, хотя все больше черных задних листов используется в высокоэффективных модулях, ищущих определенную эстетику.

Алюминиевые рамы обычно завершают модуль. Они добавляют панели прочности и защищают край стекла. Рама помогает прикрепить стеллажи и системы крепления к панели, чтобы закрепить ее на крыше или земле.

Но все меняется.Благодаря новому двустороннему дизайну (когда солнечные элементы выставлены как на передней, так и на задней стороне панели) задние листы больше не нужны. Некоторые панели также становятся бескаркасными: солнечные элементы размещаются между двумя кусками стекла, либо используются более прочные задние листы, для которых не нужна рама.

Три типа солнечных панелей

Когда вы думаете об установке солнечных панелей, вы обычно учитываете такие факторы, как стоимость, эстетика и энергоэффективность. Хотя это важные факторы, в солнечных батареях есть фактор, который влияет на все три из них: типы солнечных панелей, которые вы выбираете.Типы солнечных панелей, представленные сегодня на рынке, будут влиять на стоимость установки и производства, а также на то, как панели будут выглядеть на вашей крыше. Это одно из самых важных соображений при установке солнечных батарей.

Есть три типа солнечных панелей, и у каждого есть свои плюсы и минусы. Правильные солнечные панели будут зависеть от вашей конкретной ситуации и того, что, как вы надеетесь, солнечные панели сделают для вас. В этом руководстве мы обсудим типы солнечных панелей, плюсы и минусы каждого типа, а также то, как выбрать лучший тип солнечной панели для вас.

Какие 3 типа солнечных панелей?

Три типа солнечных панелей: монокристаллические, поликристаллические и тонкопленочные. Каждый из этих типов солнечных элементов сделан уникальным способом и имеет разный эстетический вид. Вот разбивка по каждому типу солнечных батарей.

Монокристаллический

Монокристаллические солнечные панели - это самый старый и наиболее развитый тип солнечных панелей. Эти солнечные панели состоят из примерно 40 монокристаллических солнечных элементов.Эти солнечные элементы сделаны из чистого кремния. В процессе производства (так называемый метод Чохральского) кристалл кремния помещается в чан с расплавленным кремнием. Затем кристалл очень медленно вытягивается из чана, позволяя расплавленному кремнию сформировать вокруг него твердую кристаллическую оболочку, называемую слитком. Затем слиток тонко нарезают на кремниевые пластины. Пластина превращается в элемент, а затем элементы собираются вместе, чтобы сформировать солнечную панель.


Монокристаллические солнечные элементы кажутся черными из-за того, как солнечные лучи взаимодействуют с чистым кремнием.Ячейки черные, но задние листы и рамы могут быть разных цветов и дизайнов. Монокристаллические ячейки имеют форму квадрата со снятыми углами, поэтому между ячейками есть небольшие зазоры.

поликристаллический

Поликристаллические солнечные панели - новая разработка, но их популярность и эффективность быстро растут. Как и монокристаллические элементы, поликристаллические элементы сделаны из кремния. Но поликристаллические ячейки состоят из расплавленных вместе фрагментов кристалла кремния.В процессе изготовления кристалл кремния помещается в чан с расплавленным кремнием. Вместо того, чтобы вытаскивать его медленно, кристаллу дают возможность фрагментироваться, а затем остыть. Затем, как только новый кристалл охлаждается в своей форме, фрагментированный кремний тонко разрезается на поликристаллические солнечные пластины. Эти пластины собираются вместе, образуя поликристаллическую панель.


Поликристаллические ячейки имеют синий цвет из-за того, как солнечный свет отражается на кристаллах. Солнечный свет отражается от кремниевых фрагментов иначе, чем от чистого кремниевого элемента.Обычно задние рамки и оправы серебряные с поликристаллическим покрытием, но возможны вариации. Форма ячейки - квадрат, между углами ячеек отсутствуют зазоры.

Тонкопленочный

Тонкопленочные солнечные панели - это совершенно новая разработка в индустрии солнечных панелей. Наиболее отличительной особенностью тонкопленочных панелей является то, что они не всегда сделаны из силикона. Они могут быть изготовлены из различных материалов, включая теллурид кадмия (CdTe), аморфный кремний (a-Si) и селенид меди, индия, галлия (CIGS).Эти солнечные элементы создаются путем помещения основного материала между тонкими листами проводящего материала со слоем стекла сверху для защиты. В панелях a-Si действительно используется кремний, но они используют некристаллический кремний и также покрыты стеклом.


Как следует из названия, тонкопленочные панели легко идентифицировать по их тонкому внешнему виду. Эти панели примерно в 350 раз тоньше тех, в которых используются силиконовые пластины. Но тонкопленочные кадры иногда могут быть большими, и это может сделать внешний вид всей солнечной системы сравнимым с монокристаллической или поликристаллической системой.Тонкопленочные элементы могут быть черными или синими, в зависимости от материала, из которого они сделаны.

Монокристаллические, поликристаллические и тонкопленочные

Помимо изготовления и внешнего вида, есть некоторые различия в том, как работает каждый из типов солнечных элементов. Ключевые категории - эффективность и цена. Вот как каждый тип солнечных панелей показывает эффективность и доступность, а также другие факторы, которые следует учитывать.

КПД

Эффективность - это количество энергии, которое солнечная панель может произвести из количества получаемого ею солнечного света.По сути, эффективность определяет, сколько энергии может производить солнечная панель. Самая эффективная солнечная панель - это монокристаллические панели. Монокристаллический может достигать эффективности более 20 процентов. С другой стороны, поликристаллические панели обычно могут достигать эффективности только от 15 до 17 процентов. Этот промежуток между двумя панелями может сократиться в будущем по мере совершенствования технологий для повышения эффективности поликристаллических панелей. Наименее эффективная солнечная панель - это тонкопленочная. Тонкая пленка обычно имеет более низкий КПД и производит меньшую мощность, чем любой из кристаллических вариантов, с КПД всего около 11 процентов.Мощность тонкопленочной панели может быть разной, потому что у нее нет стандартного размера, и некоторые модели могут производить больше энергии, чем другие.

Стоимость

Цена может повлиять на принятие решения о солнечной энергии, и тип солнечных элементов, которые вы выбираете, является одним из факторов, который больше всего влияет на цену. Самые дешевые солнечные панели - это тонкопленочные панели, потому что они могут быть изготовлены с наименьшими затратами. CdTe - самые дешевые солнечные панели на рынке, но CIGS могут быть более дорогими.Тонкопленочные рамы обычно легче, поэтому часто можно сэкономить на монтажных расходах. С другой стороны, монокристаллические солнечные панели сейчас являются самым дорогим вариантом. Производство чистого кремния может быть дорогостоящим, а панели и рамы тяжелые, что приводит к более высоким затратам на установку. Поликристаллические панели были разработаны для снижения стоимости солнечных панелей, и они обычно более доступны, чем монокристаллические. Но этот разрыв между монокристаллическими и поликристаллическими панелями может сократиться, поскольку новаторы найдут более эффективные способы производства монокристаллических солнечных элементов.

Прочие факторы - температурный коэффициент, градостойкость, огнестойкость, списки UL и IEC и т. Д.

Помимо стоимости и эффективности, при выборе солнечных батарей следует учитывать еще несколько факторов. Одним из факторов является температурный коэффициент. Монокристаллические и поликристаллические солнечные панели обычно имеют температурный коэффициент от -0,3% / ° C до -0,5% / ° C. Тонкопленочные панели имеют коэффициент ближе к -0,2% / ° C.

Это означает, что при повышении температуры одни типы солнечных панелей будут производить больше энергии, чем другие.Это особенно важно учитывать в таких регионах, как Северная Каролина, где высокие температуры могут быть значительными.


Еще один фактор, который следует учитывать, - это класс огнестойкости, который может варьироваться в зависимости от типа вашей крыши и типа панели, которую вы выбираете. Пожар - не единственное стихийное бедствие, которое может поразить вашу крышу, поэтому вам также следует учитывать рейтинг града. Большинство монокристаллических и поликристаллических панелей могут выдерживать падение с высоты 25 мм со скоростью примерно 50 миль в час, но точные характеристики могут варьироваться и могут повлиять на срок службы вашей солнечной системы.Вы также можете рассмотреть возможность поиска технологии солнечных элементов с гетеропереходом (HJT) для вашей системы, которая сочетает в себе пластины монокристаллического кремния с аморфным кремнием. HJT имеет максимальную эффективность с самым низким температурным коэффициентом и без световой деградации (LID). Наконец, вы захотите рассмотреть LID, потому что снижение эффективности может повлиять на количество энергии, которое вы можете произвести.


Все эти факторы учитываются нашими инженерами при проектировании и рекомендации солнечных фотоэлектрических систем.Мы смотрим на общий жизненный цикл и эффективность системы не только в идеальных сценариях, но и во всех условиях, которым будет подвергаться ваша солнечная фотоэлектрическая система.


Это отличная идея - иметь базовое представление о том, как работают солнечные панели, но мы понимаем, что выбор правильного типа солнечных панелей может оказаться непосильной задачей. Наши специалисты по солнечной энергии в 8MSolar готовы оценить ваши потребности и помочь вам принять лучшее решение, отвечающее вашим уникальным потребностям.

Лучший тип солнечных батарей

Лучший тип солнечных панелей зависит от их назначения и места их установки.Для жилых домов с большой площадью кровли или недвижимости лучшим выбором могут быть поликристаллические панели. Эти панели являются наиболее доступными для больших помещений и обеспечивают достаточную эффективность и мощность. Для жилых домов с меньшим пространством монокристаллический материал может быть лучшим выбором. Эти панели хорошо подходят для тех, кто хочет максимизировать свои счета за электроэнергию в небольшом пространстве. Монокристаллические и поликристаллические панели хорошо подходят для домов и других подобных построек. Тонкопленочные солнечные панели почти никогда не используются в домах, потому что они менее эффективны.Вместо этого тонкопленочные солнечные панели идеально подходят для коммерческих зданий, которые не могут выдержать дополнительный вес традиционных панелей. Хотя тонкопленочные покрытия менее эффективны, коммерческие крыши имеют больше места, чтобы покрыть большую часть крыши панелями.


Если вы не уверены, какой из типов солнечных панелей лучше всего подойдет для вашего проекта, или вам нужны рекомендации по пониманию технологии солнечных панелей, наши специалисты в 8MSolar может помочь вам выбрать правильные панели для вашего уникального проекта.

Как изготавливаются солнечные панели

Этапы производства солнечных панелей:

Теперь, когда мы понимаем отдельные слои солнечной панели, легче понять, как все вместе создается. Чтобы упростить сложный процесс создания солнечной панели, мы разделим его на 6 этапов.

Этап 1: песок и кремний

Создание солнечной панели вращается вокруг ее самого важного компонента: солнечных элементов.Солнечный элемент - это слой кремниевых элементов. Таким образом, первым шагом при производстве солнечной панели является поиск сырья для создания тонкого листа кремниевых элементов. Производители солнечных панелей используют кварцевый песок для извлечения кремния высочайшей чистоты. Подвергая песок очень высоким температурам в дуговой печи, примеси выгорают, и большие кремниевые породы остаются открытыми.

Этап 2: кремниевые породы в цилиндрические слитки

Чтобы разбить эти большие кремниевые породы на большие цилиндрические слитки (блоки), фабрика снова переключается на нагрев.Производители плавят кремниевые породы в цилиндрической печи, выравнивая атомы кремния в желаемой структуре и ориентации. К расплавленному кремнию также добавляют бор для придания положительной электрической полярности.

Этап 3: Слитки на диски

Используя кремний в форме цилиндра, рабочие с помощью канатных пил разрезают цилиндры на диски или пластины. Эти пластинки толщиной с бумагу очень блестящие, поэтому они отражают свет. Чтобы предотвратить отражение и максимизировать поглощение солнечного света, каждая пластина пропитывается антибликовым покрытием перед следующей фазой.

Этап 4: От пластины к солнечному элементу

После нанесения покрытия и обработки эти пластины готовы к использованию в качестве солнечных элементов. Металлические проводники добавлены в виде сетки в виде матрицы на поверхности каждой пластины, что обеспечивает преобразование солнечной энергии в электричество. Эти новые солнечные элементы помещаются в камеру, похожую на печь, где фосфор тонким слоем рассеивается по солнечным элементам. Слой люминофора позволяет поверхности каждой ячейки иметь отрицательную электрическую ориентацию, создавая положительный отрицательный переход между поверхностью и содержимым ячейки.

Этап 5: от солнечного элемента к солнечной панели

Солнечные элементы соединяются путем пайки металлического разъема между каждым элементом, образуя панели из 48, 60 или 72 элементов. Затем на панели наносится защитный слой из заднего листа, пленки EVA, закаленного стекла и алюминиевой рамы. Распределительная коробка добавлена ​​для подключения панели к модулю, позволяя электричеству течь от панели к дому.

Этап 6: с завода до дома

Перед отправкой солнечных панелей основным дистрибьюторам и домам каждая солнечная панель проверяется, чтобы убедиться, что ее солнечные элементы работают должным образом.После прохождения теста солнечные панели очищаются, еще раз проверяются, а затем отправляются домовладельцам по всему миру.

Для более подробного объяснения и визуальных эффектов посмотрите видео по ссылке ниже:

Как это сделано Панели солнечных батарей

Каков срок службы солнечных панелей?

Как мы упоминали ранее, солнечные панели могут эффективно производить электроэнергию в течение 25 лет, но многие из них остаются в рабочем состоянии намного дольше.Некоторые из первых современных солнечных панелей эксплуатируются почти 60 лет! Более того, из-за того, насколько долговечны солнечные панели, они очень медленно теряют эффективность. По оценкам некоторых экспертов, к 20-25 годам солнечные панели все еще работают с эффективностью 80%. (Для более подробного обсуждения того, как долго вы можете рассчитывать на срок службы ваших панелей, ознакомьтесь с нашим недавним постом Как долго прослужат мои солнечные панели?)

Однако после нескольких десятилетий эксплуатации любой, у кого есть солнечные батареи, Панельной системе может потребоваться переоценка их потребностей в энергии.Если выяснится, что старые панели не отвечают этим требованиям, возможно, их потребуется заменить или рядом с ними можно будет установить новые панели.

При замене солнечной панели большинство ее частей можно утилизировать. Эти панели отправляются на предприятие по переработке, где панели разбираются и разрушаются кислотами, чтобы отделить их кристаллический кремний, который является полупроводниковым материалом в большинстве фотоэлектрических элементов. Кислотные гидрометаллургические системы используются для отделения любых драгоценных минералов.

Около 75% материала, который отделяется в процессе переработки, составляет стекло, которое в будущем легко переработать в новые продукты. Другие материалы, такие как медь и серебро, также могут быть переработаны.

Солнечная энергия - это источник энергии, который требует небольшого пространства (на крыше) и минимального обслуживания (благодаря прочной конструкции). Он не производит парниковых газов, и когда солнечные панели работают нормально, металлолом можно перерабатывать. В целом, солнечная энергия - это зеленый вариант на важном этапе в отношении энергетических угроз, таких как изменение климата.

Зачем устанавливать солнечную систему?

Помимо причин, перечисленных выше, солнечные панели представляют большую ценность для всех, кто их устанавливает. После того, как солнечная панель установлена ​​в доме клиента, он может рассчитывать на десятилетия полезной энергии, которая компенсирует его энергопотребление, экономя деньги и, в случае перепроизводства, даже продавая ее обратно в сеть для получения прибыли, в зависимости от того, как коммунальное предприятие учитывает этот излишек в своем состоянии.

Владение солнечной системой - это еще одна инвестиция в дом, которая может быть привлекательным источником капитала при продаже дома. Несмотря на то, что количество солнечных установок растет, это все еще новая экономия для любого покупателя, желающего приобрести.

Солнечные панели Blue Raven

Чтобы обеспечить высочайшее качество вариантов, Blue Raven Solar работает со сторонними поставщиками, что позволяет нам устанавливать наиболее эффективные солнечные панели в домах наших клиентов.Наша миссия - сделать жизнь домовладельцев лучше, увеличивая их зависимость от чистой и изобильной возобновляемой энергии.

Мы также работаем с клиентами, чтобы помочь им владеть своими солнечными панелями, а не арендовать их, поскольку это дает им максимальную экономию. Соглашения о закупке электроэнергии и лизинговые соглашения - это методы, с помощью которых устанавливаются солнечные панели, но они не помогают покупателю в долгосрочной перспективе. Экономия от аренды солнечного оборудования не компенсирует затрат на то, что цены на электроэнергию определяет другая компания.

Когда клиент владеет своей солнечной системой, он владеет своими сбережениями. Это касается не только ежемесячных счетов за электроэнергию. Наличие солнечных панелей также дает возможность сэкономить за счет налоговых льгот на уровне федерального правительства и штата. Аренда солнечных панелей означает, что эти преимущества достаются компании, которая их установила, а не клиенту, использующему солнечную систему.

В Blue Raven Solar мы хотим, чтобы наши клиенты доверяли нашей прозрачности и информации. Наши клиенты точно знают, сколько они сэкономят и какого размера должна быть их солнечная система, чтобы получить максимальную экономию.

Более того, если окажется, что солнечная энергия ничего не спасает после того, как они запросят у нас смету, мы позаботимся о том, чтобы наши клиенты знали об этом. При установке солнечных панелей играет роль множество факторов, и наши клиенты заслуживают самую эффективную систему солнечных панелей, соответствующую их потребностям в электроэнергии.

Обеспечивая обслуживание клиентов мирового класса за счет надежного процесса продаж и быстрой и качественной установки, Blue Raven Solar хочет быть партнером для наших клиентов, которому они могут доверять.Настройтесь на следующую неделю, чтобы узнать, как солнечные панели превращают свет в электричество.

Как вообще производятся солнечные панели?

09 октября 2019 г. | 10:15 утра

Как вообще производятся солнечные панели?

Отрицатели и скептики продолжают спорить и преуменьшать достоинства солнечной энергии и других возобновляемых источников энергии. Здесь мы разберем, как производятся солнечные панели и насколько экологичен производственный процесс.

Несмотря на огромный источник энергии, сияющий в небе, отрицатели продолжают спорить и преуменьшать достоинства солнечной энергии и других возобновляемых источников энергии, снова и снова задавая одни и те же вопросы: насколько эффективна солнечная энергия? Разве не дороже? Что происходит, когда солнце садится или пасмурно?

Мы развенчали эти мифы и раньше, но всегда возникает вопрос: ОК, но из чего сделаны солнечные панели и наносим ли мы вред климату, создавая их?

Не нужно стесняться.Это немного сложно!

Во-первых, сама панель.

Большие черные солнечные панели, которые вы видите в домах и на предприятиях, состоят из группы солнечных элементов (или фотоэлектрических элементов), сделанных из кремниевых полупроводников, которые поглощают солнечный свет и создают электрический ток. Эти отдельные элементы соединены вместе, чтобы образовать одну солнечную панель.

Если вы хотите получить более подробную техническую информацию, вы можете взглянуть на структуру этих отдельных солнечных элементов.Они состоят из двух типов полупроводников: положительного (p-тип) и отрицательного (n-тип) слоев кремния.

В то время как слой кремния n-типа имеет дополнительные электроны, которые могут относительно свободно перемещаться, слой p-типа имеет электронные вакансии, называемые дырками. Когда вы соединяете слои вместе, электроны начинают переходить от n-типа к p-типу, который образует специальный переход и создает электрический потенциал в материале. Когда солнечный свет попадает на этот переход, фотон может выбить электрон и оставить дыру.По мере того, как больше электронов заполняет вновь созданные дырки, свободные электроны начинают собираться на полюсе. Собранные электроны затем проходят через проводник, и возникает электрический ток.

Почему кремний?

В 1940-х годах исследователь из Bell Labs по имени Рассел Ол обнаружил функциональность PN-перехода и обнаружил, что кремний - элемент, обнаруженный в песке и второй по распространенности элемент в земной коре после кислорода, - проявлял свойства, способствующие образованию этого перекрестка.

Ученые продолжали работать над открытием Оля, и в 1954 году Bell Labs представила первый современный солнечный элемент.

Эта демонстрация вдохновила статью « New York Times » 1954 года на предсказание того, что солнечные элементы в конечном итоге приведут к «реализации одной из самых заветных мечт человечества - использованию почти безграничной энергии солнца».

В настоящее время фотоэлектрические (ФЭ) элементы в основном производятся серийно и режутся лазерами - это далеко от их скромного происхождения.

Далее инвертор. Солнечные элементы собирают солнечную энергию и превращают ее в электричество постоянного тока. Однако в большинстве домов и предприятий используется переменный ток (AC). Инверторы преобразуют электричество постоянного тока от солнечных панелей в полезное электричество переменного тока.

Наконец, есть система крепления , чтобы все это можно было удерживать на крыше или надежно закрепить на земле. Как правило, в северном полушарии солнечные панели должны быть направлены на юг и устанавливаться под углом 30 или 45 градусов, в зависимости от расстояния от экватора.Фиксированные крепления удерживают панели на месте, но также доступны гусеничные крепления, которые «следуют» за солнцем в течение дня, хотя обычно более дорогие.

Хорошо, а насколько все это зеленое?

Да, это правда, что при производстве солнечных панелей образуется углекислый газ, как и при производстве большинства вещей. Есть также некоторые законные опасения по поводу утилизации солнечных панелей.

Но по мере того, как производство солнечных панелей становится более эффективным, их углеродный след значительно сокращается.В исследовании 2016 года сообщается, что общие производимые выбросы уменьшались на 17–24% каждый раз, когда установленная мощность удваивалась за последние 40 лет.

И общие выбросы парниковых газов, связанные с солнечной энергией, все еще (что неудивительно) намного ниже, чем у угля или природного газа. Сами солнечные панели могут прослужить десятилетия без особого обслуживания - и поскольку их части не изнашиваются легко, хорошо известно, что фотоэлектрические панели продолжают производить чистую электроэнергию намного дольше, чем на них часто дается гарантия, хотя иногда с несколько меньшей эффективностью, чем в годы переходят от одного к другому.

В конце срока службы панели некоторые производители предлагают своим клиентам глобальные программы утилизации.

Проведенное в июне 2012 года Национальной лабораторией возобновляемых источников энергии (NREL) исследование , изучающее темпы деградации фотоэлектрических систем около 2000 солнечных установок за период 40 лет, показало, что средняя солнечная система теряла всего 0,5 процента своей выработки электроэнергии в год. Таким образом, к концу типичной 25-летней гарантии солнечные панели на вашей крыше все еще могут работать примерно на 87 процентов от своей первоначальной мощности.

Кроме того, с ростом популярности солнечной энергии ожидается, что программы и компании по утилизации будут расти и станут более устойчивыми в будущем.

Узнайте еще больше о преимуществах солнечной энергии, загрузив нашу бесплатную электронную книгу Вещи выглядят ярко: факты о солнечной энергии или ознакомьтесь с Знание - сила , наше сотрудничество с HGTV Property Brothers соведущий и защитник солнечной энергии Джонатан Скотт.

В электронной книге рассказывается о невероятных преимуществах солнечной энергии и об обманчивой тактике, которую используют коммунальные предприятия, работающие на ископаемом топливе, для защиты своей прибыли за счет каждого человека на планете.

Как изготавливаются солнечные панели?

Поликристаллический кремний

Панели из поликристаллического кремния требуют меньше усилий для изготовления, чем их аналоги из монокристаллического кремния. Это потому, что в производственном процессе меньше этапов.

Кристаллы, используемые в поликристаллическом кремнии, имеют более низкое качество, чем монокристаллический кремний.Эти панели синего цвета и выглядят так, как будто они содержат вещество, похожее на конфетти. Это кристаллическое вещество, используемое в панелях из поликристаллического кремния, укрепляет кремний и помогает преобразовывать солнечный свет в электричество.

Панели из монокристаллического кремния и панели из поликристаллического кремния имеют подтип PERC. PERC расшифровывается как Passivated Emitter Rear Cell. С обоими типами панелей есть вероятность, что примеси могут попасть в панель и осесть в зазорах между различными кристаллами.Эти примеси могут снизить эффективность панели. Панель PERC имеет дополнительный слой силикона, добавленный к ней, чтобы лучше защитить ее от примесей. Это помогает вашим панелям дольше работать эффективно.

Как создаются солнечные панели

Теперь, когда мы поговорили о различных способах производства электроэнергии панелями и о различных материалах панелей, давайте посмотрим, как производятся солнечные панели.

Во-первых, кремниевые панели обычно изготавливаются из поликремния полупроводникового качества.Этот поликремний обычно представляет собой смесь обработанного кварца, который также используется для изготовления деталей электроники, таких как микрочипы. Этот поликремний нагревают до температуры плавления. Отсюда в поликремний добавляют другие химические добавки, такие как бор. Это создает полупроводниковый материал P-типа.

Для простоты представьте полупроводник P-типа как материал, который проводит электричество лучше, чем обычный полупроводник, но все же не так хорошо, как традиционный металлический проводник.

Во-вторых, эта расплавленная смесь поликремния и бора охлаждается и образует так называемый слиток или блок кремния.

В-третьих, этот слиток разрезают на невероятно тонкие пластинки, известные как вафли. Затем эти кусочки протравливаются и очищаются, пока они не будут готовы перейти к следующему этапу.

В-четвертых, эти пластины погружены в раствор N-типа. Опять же, для простоты, представьте, что материал N-типа проводит электричество лучше, чем другие полупроводники, но не так хорошо, как чистые металлические проводники.Когда раствор N-типа соприкасается с пластиной P-типа, они взаимодействуют таким образом, чтобы помочь им лучше проводить электричество.

В-пятых, эта погружная пластина теперь покрыта антибликовым покрытием. Это помогает предотвратить отражение солнечного света от панелей и попадание солнечной энергии в солнечную систему.

Наконец, каждый солнечный элемент испытывается и прикрепляется к панели в соответствии с ее размером и прочностью.

Точные химические соединения в данной панели будут меняться в зависимости от типа панели и материала, из которого она сделана.Но это общий процесс, через который проходит большинство солнечных панелей в жилых домах.

Vivint Solar может помочь вам работать на чистой энергии

По мере того, как вы узнаете больше о солнечных панелях, вы получите лучшее представление о том, что лучше всего подойдет вам и вашему дому. В Vivint Solar мы используем монокристаллические панели PERC, потому что они являются наиболее эффективным типом панелей на рынке для жилых домов.

Приходите и назначьте встречу с одним из наших представителей солнечной энергетики. Он или она поможет вам узнать, поможет ли солнечная энергия сэкономить деньги на электричестве вашего дома сегодня.

Мы будем рады вам помочь!

Как делают солнечные панели? Из чего они сделаны?

Когда вы думаете об этом, способность получать электроэнергию из солнечного света - изумительный процесс.

Ключевые преимущества солнечной энергии
  • Солнечная энергия 100% безуглеродная, возобновляемая, чистая и бесшумная. Сами солнечные панели очень долговечны и имеют срок службы 25 лет. +
  • Солнце создает электричество за счет фотоэлектрического эффекта в кремниевых элементах солнечной панели, который запускается солнечным светом
  • Большинство солнечных панелей производятся в Азии в огромных количествах и технологически продвинутых помещения

Сравните предложения до 7 установщиков в вашем регионе.

Так как же на самом деле работают современные солнечные панели?

Солнечные панели состоят из 60 или 72 кремниевых элементов. Когда солнечный свет попадает на эти клетки, электроны внутри кремния на атомном уровне высвобождаются и перемещаются. Электрический ток - это просто движение или поток электронов в одном направлении. Например, молния - это внезапная волна электронов через накопление заряда в облаках или между облаками и землей.

Если посмотреть более подробно, кремний (Si), используемый в солнечных панелях, адаптируется в процессе производства для увеличения количества доступных электронов.Часто фосфор (P) и бор (B) связаны с противоположными слоями кремния. Фосфор добавляет дополнительные доступные электроны и обеспечивает отрицательный заряд, в то время как бор уменьшает количество доступных электронов, обеспечивая положительный заряд. Возникающее электрическое поле активируется, когда солнечный свет попадает на панель, чтобы доставить поток электронов к стыку между ячейками.

Если вы подключите группу этих фотоэлементов в цепь внутри панели и установите несколько панелей рядом, вы можете создать большой поток электронов и электричества постоянного тока.Однако в домах используется электричество 240 вольт переменного тока. Поэтому ящик, называемый солнечным инвертором - обычно не больше, чем ваша средняя корзина для покупок, - используется для преобразования электричества постоянного тока в переменный, чтобы его могли немедленно использовать жители и электросеть.

Как производятся солнечные панели? Step by Step

Как и в случае со многими другими продуктами, процесс производства большинства солнечных панелей перенесен в Азию и преимущественно в Китай. Создание огромных производственных мощностей и современных технологий, таких как робототехника, привело к быстрому снижению стоимости солнечных технологий и, в целом, к повышению качества.

Этап 1. Очистка сырья

Кремний - второй по распространенности элемент на Земле после кислорода. Соединения кремния содержатся в камнях, песке, глине, воде, растениях и даже в некоторых животных. Для очистки кремния его нагревают до температуры кипения (1410 ° C). Монокристаллы создаются путем извлечения цилиндрических кристаллов из расплавленного кремния. Панели солнечных батарей можно назвать монокристаллическими или поликристаллическими. Монокристаллические элементы солнечных панелей получают из одного кристалла кремния (в отличие от кофе одного происхождения), в то время как поликристаллические солнечные панели используют смесь, которая приводит к немного более низкой эффективности.

Шаг 2: Производство солнечного элемента

Хотя кремний является активным материалом в солнечном элементе, существует ряд компонентов, которые используются при производстве современного солнечного элемента. Обычно силикон разрезают на тонкие листы шириной примерно с лист бумаги. На листы кремния наносится покрытие, которое улучшает поглощение солнечного света и сводит к минимуму любое отражение. Затем добавляются металлические проводники, чтобы облегчить поток электронов, которые представляют собой небольшие видимые линии сетки.Каждая ячейка содержит положительно (бор) и отрицательно (фосфор) заряженные кремниевые пластины, которые встречаются в проводящем переходе, чтобы вызвать поток электричества.

Этап 3: Производство солнечной панели

Интересно отметить, что процессы некоторых производителей солнечных панелей начнутся только с этого этапа, и они закупают предварительно изготовленные солнечные элементы у других производителей. Типичные солнечные панели в Австралии используют 60 элементов или 72 элемента, объединенных в одну панель.Каждая панель будет иметь верхний лист из оргстекла для защиты ячеек, герметичный материал, такой как EVA, между каждым слоем и задний лист для защиты силикона от влаги и загрязнения. Солнечные панели обычно удерживаются вместе с алюминиевой рамой и имеют распределительную коробку вывода / ввода, когда установщики солнечных батарей могут легко соединить солнечные панели в массив.

Шаг 4: Тестирование и аккредитация

Европа, США, Австралия и другие страны имеют разные требования к солнечной панели для аккредитации и доступности для использования.У каждого из них разные требования к испытаниям, которые позволяют производителю солнечных батарей представлять свои различные технические характеристики в листе технических данных. В Австралии Совет по чистой энергии - это орган, которому поручено тестировать и аккредитовать новые солнечные панели. Существует также один крупный независимый тестер солнечных панелей под названием DNV GL. Они проходят тщательную процедуру тестирования и ежегодно публикуют список лучших производителей, чтобы помочь потребителям определить производителей высокого качества.

Сравните предложения до 7 установщиков в вашем регионе.

Список компонентов солнечных панелей

Производственный процесс объединяет приведенный ниже список частей для солнечной панели:

  • Алюминиевая рама
  • Закаленное стекло
  • Герметизирующий материал, например Пленка EVA
  • Кремниевые элементы
  • Задний лист
  • Распределительная коробка, включая провода 12 В

Каждая часть солнечной панели была усовершенствована и улучшена с годами для повышения эффективности, долговечности и снижения стоимости производства.На приведенном ниже графике представлен обзор того, как стоимость солнечных панелей снизилась за последние 8 лет, что напрямую связано с улучшениями в производственных процессах.

Другие формы солнечных панелей и солнечной энергии

В солнечной энергетике появляются новые технологии, которые предоставляют возможности для постепенного изменения эффективности панелей. К ним относятся графеновое покрытие солнечных элементов, легкие панели, в которых не используется стекло и которые являются гибкими. Чтобы увидеть более подробный обзор различных типов солнечных панелей и различных брендов, см. Эту статью.

Кроме того, существуют альтернативные формы солнечной энергии, такие как концентрирующая солнечная энергия (CSP), где вместо солнечных панелей используются зеркальные панели для фокусировки солнечного света на центральной башне, где вода нагревается до высоких температур и преобразуется обратно в энергию посредством паровые турбины. Солнечные тепловые панели также работают немного иначе, когда вода проходит через панели в медных трубках, которые нагревают воду, пока она проходит через панель и возвращается в резервуар для горячей воды.

Сравните предложения до 7 предварительно проверенных установщиков в вашем регионе.
С 2008 года наши знания и сложное программное обеспечение позволили более 160 000 австралийских домашних хозяйств и предприятий сделать осознанный выбор в отношении установки для установки солнечных батарей и батарей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *