Индукционные датчики принцип работы: Please Wait… | Cloudflare

Содержание

Индуктивные датчики. Виды. Устройство. Параметры и применение

Индуктивные датчики – преобразователи параметров. Их работа заключается в изменении индуктивности путем изменения магнитного сопротивления датчика.

Большую популярность индуктивные датчики получили на производстве для измерения перемещений в интервале от 1 микрометра до 20 мм. Индуктивный датчик можно применять для замера уровней жидкости, газообразных веществ, давлений, различных сил. В этих случаях диагностируемый параметр преобразуется чувствительными компонентами в перемещение, далее эта величина поступает на индуктивный преобразователь.

Для замера давления применяются чувствительные элементы. Они играют роль датчиков приближения, предназначенные для выявления разных объектов бесконтактным методом.

Виды и устройство

Индуктивные датчики разделяются по схеме построения на 2 вида:

  1. Одинарные датчики.
  2. Дифференциальные датчики.

Первый вид модели имеет одну ветвь измерения, в отличие от дифференциального датчика, у которого две измерительные ветви.

В дифференциальной модели при изменении диагностируемого параметра изменяются индуктивности 2-х катушек. При этом изменение осуществляется на одинаковое значение с противоположным знаком.

Индуктивность катушки вычисляется по формуле:  
L = WΦ/I

Где W– количество витков; Ф – магнитный поток; I – сила тока, протекающего по катушке. Сила тока взаимосвязана с магнитодвижущей силой следующим отношением:  I = Hl/W

Из этой формулы получаем:  
L = W²/Rm
Где
R m = H*L/Ф – магнитное сопротивление.

Работа одинарного датчика заключается в свойстве дросселя, изменять индуктивность при увеличении или уменьшении воздушного промежутка.

Конструкция датчика включает в себя ярмо (1), витки обмотки (2), якорь (3), который фиксируется пружинами. По сопротивлению поступает переменный ток на обмотку. Сила тока в нагрузочной цепи вычисляется:

L – индуктивность датчика, rd – активное дроссельное сопротивление.

Оно является постоянной величиной, поэтому изменение силы тока I может осуществляться только путем изменения составляющей индуктивности XL=IRн, зависящей от размера воздушного промежутка δ.

Каждой величине зазора соответствует некоторое значение тока, определяющего падение напряжения на резисторе Rн: Uвых=I*Rн – является сигналом выхода датчика. Можно определить следующую зависимость U вых = f (δ), при одном условии, что зазор очень незначительный и потоки рассеивания можно не учитывать, как и магнитное сопротивление металла Rмж в сравнении с магнитным сопротивлением зазора воздуха Rмв.

Окончательно получается выражение:

На практике активное сопротивление цепи несравнимо ниже индуктивного. Поэтому формула принимает вид:

Из недостатков одинарных можно отметить:
  • При эксплуатации датчика на якорь воздействует сила притяжения к сердечнику.
    Эта сила не уравновешена никакими методами, поэтому она снижает точность функционирования датчика, и вносит некоторый процент погрешности.
  • Сила нагрузочного тока зависит от амплитуды напряжения и ее частоты.
  • Чтобы измерить перемещение в двух направлениях, нужно установить первоначальное значение зазора, что доставляет определенные неудобства.

Дифференциальные индуктивные датчики объединяют в себе два нереверсивных датчика и изготавливаются в виде некоторой системы, которая состоит из 2-х магнитопроводов, имеющих два отдельных источника напряжения. Для этого чаще всего применяется разделительный трансформатор (5).

 

Дифференциальные датчики классифицируются по форме сердечника:
  • Индуктивные датчики с Ш-образной формой магнитопровода, выполненного в виде листов электротехнической стали. При частоте более 1 килогерца для сердечника используют пермаллой.
  • Цилиндрические индуктивные датчики с круглым магнитопроводом.

Форму датчика выбирают в зависимости от конструкции и ее сочетания с механизмом. Использование магнитопровода Ш-образной формы является удобным для сборки катушки и снижения габаритных размеров индуктивного датчика.

Для функционирования дифференциального датчика применяют питание от трансформатора (5), который имеет вывод от средней точки. Между этим выводом и общим проводом катушек подключают прибор (4). При этом воздушный промежуток находится в пределах от 0,2 до 0,5 мм.

При расположении якоря в средней позиции при равных промежутках индуктивные сопротивления обмоток (3 и 3′) равны. Значит, значения токов катушек также одинаковы, и общий полученный ток в устройстве равен нулю.

При малом отклонении якоря в любую сторону изменяется значение воздушных промежутков и индуктивностей. Поэтому прибор определяет ток разности I1-I2, который определен функцией перемещения якоря от средней позиции. Разность токов чаще всего определяется магнитоэлектрическим устройством (4), выполненным по типу микроамперметра со схемой выпрямления (В) на входе.

Полярность тока не зависит от изменения общего сопротивления катушек. При применении фазочувствительных схем выпрямления можно определить направление перемещения якоря от средней позиции.

Параметры
  • Одним из параметров индуктивных датчиков является диапазон срабатывания. По этому параметру выбирают датчики, однако он не настолько важен. В инструкции по датчику даны номинальные параметры питания при эксплуатации устройства при температуре +20 градусов. Постоянное напряжение для датчика – 24 В, а переменное 230 В. Обычно датчик работает в совершенно других условиях.
На практике при подборе датчика важны два показателя интервала срабатывания:

— Полезный.
— Эффективный.

Показания первого вычисляются как +10% от 2-го при температуре 25-70 градусов. Показания 2-го отличаются от номинала на 10%. Интервал температуры при этом увеличивается с 18 до 28 градусов. Если при втором параметре применяется номинальное напряжение, то при первом есть разброс 85-110%.

  • Другим параметром является гарантированный предел срабатывания. Он колеблется от нуля до 81% от номинала.
  • Также следует учитывать параметры: повторяемость и гистерезис, который равен расстоянию между конечными позициями работы датчика. Его оптимальная величина равна 20% от эффективного интервала срабатывания.
  • Нагрузочный ток. Изготовители иногда производят датчики специального исполнения на 500 миллиампер.
  • Частота отклика. Этот параметр определяет наибольшую величину возможности переключения в герцах. Основные промышленные датчики имеют частоту отклика 1000 герц.
Методы подключения на схемах

Имеется несколько видов индуктивных датчиков с различным числом проводов для подключения. Рассмотрим основные виды подключений разных индуктивных датчиков.

  • Двухпроводные индуктивные датчики подключаются непосредственно в нагрузочную цепь. Это наиболее простой способ, однако в нем есть особенности. Для такого способа для нагрузки требуется номинальное сопротивление. Если это сопротивление будет больше или меньше, то устройство функционирует некорректно. При включении датчика на постоянный ток нельзя забывать о полярности выводов.
  • Трехпроводные индуктивные датчики наиболее популярны. В них имеется два проводника для подключения питания, а один для нагрузки.
  • Четырехпроводные и пятипроводные индуктивные датчики. У них два провода на питание, другие два на нагрузку, пятый проводник для выбора режима эксплуатации.
Цветовая маркировка

Маркировка проводников цветом является очень удобной для осуществления обслуживания и монтажа датчиков. Их выходные проводники промаркированы определенным цветом:

  • Минус – синий.
  • Плюс – красный.
  • Выход – черный цвет.
  • Второй проводник выхода – белый цвет.
Погрешности

Погрешность преобразования диагностируемого параметра влияет на способность выдачи информации индуктивным датчиком.

Суммарная погрешность состоит из множества различных погрешностей.

  • Электромагнитная погрешность является случайной величиной. Она появляется вследствие индуцирования ЭДС в катушке датчика наружными магнитными полями. На производстве возле силовых электрических устройств существуют магнитные поля чаще всего частотой 50 герц.
  • Погрешность от температуры также является случайным значением, так как работа большого количества элементов датчика зависит от температуры и является значительной величиной, учитываемой при проектировании датчиков.
  • Погрешность магнитной упругости. Она появляется от нестабильности деформаций сердечника при сборке прибора, а также из-за изменения деформаций при работе. Влияние нестабильности напряжений в магнитопроводе образует нестабильность сигнала на выходе.
  • Погрешности устройства появляются по причине влияния измеряющей силы на деформации элементов датчика, а также влияния скачка усилия измерения на нестабильность деформации. Также на погрешность влияют люфты и зазоры в подвижных частях конструкции датчика.
  • Погрешность кабеля образуется от непостоянной величины сопротивления, деформации кабеля и его температуры, наводок электродвижущей силы в кабеле от внешних полей.

  • Тензометрическая погрешность случайная величина и зависит от качества намотки витков провода. При намотке возникают механические напряжения, изменение которых при функционировании датчика приводит к изменению сопротивления обмотки постоянному току, а значит, изменению сигнала на выходе. Чаще всего в качественных датчиках эту погрешность не учитывают.
  • Погрешность старения датчика появляется от износа движущихся частей устройства датчика, а также постоянного изменения электромагнитных свойств магнитопровода. Такую погрешность считают также случайным значением. При определении погрешности износа учитывается кинематика устройства датчика. При проектировании датчика рекомендуется определять его срок эксплуатации в нормальном режиме, за период которого погрешность от износа не превзойдет заданного значения.
  • Погрешность технологии появляется при отклонениях от техпроцесса изготовления датчика, разброса параметров катушек и элементов при сборке, от влияния натягов и зазоров при сопряжении деталей. Оценка погрешности технологии производится простыми механическими измерителями.

Электромагнитные параметры материалов и их свойства со временем меняются. Чаще всего процессы изменения свойств материалов происходят в первые 200 часов после термообработки сердечника магнитопровода. Далее эти свойства остаются теми же, и не влияют на полную погрешность датчика.

Достоинства
  • Большая чувствительность.
  • Повышенная мощность выхода, до нескольких десятков Вт.
  • Возможность подключения к промышленным источникам частоты.
  • Прочное и простое устройство.
  • Нет трущихся контактов.
Недостатки
  • Способны функционировать только на переменном напряжении.
  • Стабильность питания и частота влияют на точность работы датчика.
Сфера использования
  • Медицинские аппараты.
  • Бытовая техника.
  • Автомобильная промышленность.
  • Робототехническое оборудование.
  • Промышленная техника регулирования и измерения.
Похожие темы:

«Принцип работы индуктивных датчиков?» – Яндекс.Кью

Чтобы понять принцип работы индуктивного датчика, разберём его составляющие.

Состоит индуктивный датчик:

1. Электромагнитная система → 2. Генератор → 3. Демодулятор → 4. Пороговое устройство → 5. Выходной усилитель

1электромагнитная система.
Её также называют чувствительным элементом датчика. Электромагнитная система является частью генератора.
Она представляет собой катушку индуктивности, помещенную в магнитопровод. Чаще всего это круглая ферритовая чашка. Чашки в зависимости от габаритов датчика могут иметь диаметр от 3,3 мм до 150 мм.

С внешней стороны ферритовый сердечник закрыт диэлектрическим колпачком. Его торцевая часть называется чувствительной поверхностью.

Область перед чувствительной поверхностью является зоной чувствительности датчика. Там сконцентрировано магнитное поле. Оно распространяется примерно на половину диаметра датчика.

2 - генератор.
Это та часть электронной схемы датчика, которая вырабатывает электрические колебания. Генератор формирует переменное электромагнитное поле, в сечении напоминающее букву М.
Катушка индуктивности и конденсатор (устройство для накопления заряда и энергии электрического поля) образуют колебательный контур. Генератор вырабатывает незатухающие синусоидальные колебания. При попадании металлического объекта в зону чувствительности датчика в нём образуются вихревые токи. Они создают встречный магнитный поток, демпфирующий колебания контура. Другими словами, происходит затухание электромагнитных колебаний, уменьшается их амплитуда. Чем ближе металлический объект к чувствительной поверхности датчика и чем больше его размер, тем сильнее затухание.

3 - демодулятор или детектор, он же выпрямитель.

Преобразует изменение высокочастотных колебаний генератора в изменение постоянного напряжения.

4 - пороговое устройство сравнивает переданное демодулятором напряжение с заранее установленным порогом срабатывания.
При достижении порога формируется логический сигнал "0 или 1" (т. е. "выключение / или включение"). Таким образом, пороговое устройство преобразует аналоговый сигнал детектора в «цифровой»выходной, его ещё называют дискретным.

В качестве порогового устройства используются как транзисторные, так и микросхемные варианты компараторов и триггеров Шмитта.

Особенностью порогового устройства является то, что пороги переключения из "0" в "1" и из "1" в "0" не совпадают. Это делается преднамеренно для повышения помехоустойчивости датчика. Данное свойство называют гистерезисом.

5 - выходной усилитель увеличивает мощность выходного сигнала до необходимого значения для передачи последующим устройствам.

Выходной усилитель часто называют выходным ключом, так как он оперирует логическими значениями 0 и 1.

В качестве выходного ключа могут использоваться транзисторы разных типов, тиристоры (симисторы), реле электромагнитные, реле твердотельные, оптроны, специализированные микросхемы (интеллектуальные ключи).

Электромагнитная система, генератор, демодулятор, пороговое устройство и выходной усилитель являются основой индуктивных датчиков.

Подытожим:
Принцип действия индуктивного датчика основан на изменении параметров электромагнитного поля при вхождении металлического объекта в зону чувствительности. Эти изменения фиксируются электронной схемой датчика и изменяют его состояние. В результате этого происходит коммутация выходных цепей: размыкание нормально замкнутого, замыкание нормально разомкнутого или переключение контактов.

Принцип работы индуктивных датчиков

Что же такое датчик в целом? Он могут быть совершенно различны и по форме, и по размеру. В целом датчик – это устройство, преобразующее воздействие физической величины в электрический сигнал, удобный для использования. Физическим воздействием может быть, например, расстояние до объекта, температура, влажность и различные другие физические величины. Индуктивный датчик – это датчик, который бесконтактно реагирует на металлический объект. Другими словами, он позволяет обнаружить металл, не соприкасаясь с ним. Датчики бывают цилиндрические, прямоугольные, плоские, уголковые, кольцевые, щелевые, и специальные, например, для контроля поворотных задвижек. Индуктивные датчики применяют для обнаружения, подсчёта, определения положения, скорости и перемещение металлических объектов. 

Основной отличительной способностью индуктивных датчиков является их нечувствительность к неметаллическим объектам, исключением являются такие материалы, как ферриты. Также к важным преимуществам можно отнести простоту конструкции настройки и монтажа, стабильность и надёжность, устойчивость к загрязнениям, доступное и недорогое решение задач, возможность работать с чёрными и цветными металлами, а также сплавами. Именно поэтому индуктивные датчики нашли широкое применение для автоматизации процессов, например, в металлургии, машиностроении, добывающей промышленности, нефтяной, в том числе нефтехимии, в химической промышленности, в пищевой и других отраслях промышленности. С более конкретными применениями вы можете ознакомиться на нашем сайте https://www.sensor.ua/.

Где же был применён первый индуктивный датчик?

Историческая справка. Бесконтактный индуктивный выключатель был изобретён более 60 лет назад, в 1958 г. В Мангейме (Германия). Одним из основателей компании по производству электронных компонентов PEPPERL+FUCHS Вальтера Пёпперлем и его коллегой Вильфридом Гейлем.

 Крупная химическая компания BASF нуждалась в надёжном устройстве, которое могло бы работать во взрывоопасной среде в зоне химического завода, выполняя тысячи циклов переключения при очень низких токах.

 В лаборатории PEPPERL+FUCHS удалось разработать альтернативы механическим бесконтактным выключателям. Это был первый в мире датчик приближения в комплекте с первым транзисторным усилителем, с искробезопасной схемой управления. 

Изобретение стало всемирно признанным стандартом в индустрии бесконтактных выключателей, а также отправной точкой в истории успеха компании. Этому событию посвящена бронзовая плита на так называемой Аллее славы Мангейма.

Принцип работы индуктивного датчика

Чтобы понять принцип работы индуктивного датчика, разберём его составляющие. Индуктивные бесконтактные выключатели состоят из следующих основных узлов: электромагнитная система, генератор, демодулятор, пороговое устройство, и выходной усилитель, электромагнитная система, её также называют элементом датчика.

Электромагнитная система является частью генератора, она представляет собой катушку индуктивности, помещённую в магнитопровод, чаще всего – это круглая ферритовая чашка. 

Чашки, в зависимости от габаритов датчика, могут иметь диаметр от 3,3мм до 150мм. С внешней стороны ферритовый сердечник закрыт ферритовым колпачком, его торцевая часть называется чувствительной поверхностью. Область перед чувствительной поверхностью называется зоной чувствительности датчика, там сконцентрировано магнитное поле, оно распространяется примерно наполовину диаметра датчика. Генератор – это та часть электронной схемы датчика, которая вырабатывает электрические колебания. Генератор формирует переменное электромагнитное поле, в сечении напоминающее букву «м». Катушка индуктивности и конденсатор образуют колебательный конур. Конденсатор – это устройство для накопления заряда и энергии электрического поля. Генератор вырабатывает незатухающие синусоидальные колебания. При попадании металлического объекта в зону чувствительности датчика, в нём образуются вихревые токи, они создают встречный магнитный поток, демпфирующий колебания контура, другими словами, происходит затухание электромагнитных колебаний, уменьшается их амплитуда. Чем ближе металлический объект к чувствительной поверхности датчика, и чем больше его размер, тем сильнее затухание. Демодулятор, или детектор, он же выпрямитель, преобразует изменение высокочастотных колебаний генератора в изменение постоянного напряжения.

Пороговое устройство сравнивает переданное электро модулятором напряжение с заранее установленным порогом срабатывания. При достижении порога формируется логический сигнал «0» или «1», т.е. выключение или включение. Таким образом пороговое устройство преобразует аналоговый сигнал детектора в цифровой выходной сигнал, ещё его называют дискретным. В качестве порогового устройства используют как транзисторные, там и микро схемные компораторов и тригеров Шмидта. 

Особенностью порогового устройства является то, что пороги переключения из «0» в «1» и из «1» в «0» не совпадают. Это делается преднамеренно для повышения помехоустойчивости датчика. Данное свойство называют гистерезисом.

Выходной усилитель увеличивает мощность выходного сигнала до необходимого значения для передачи последующему устройству. Выходной усилитель часто называют выходным ключом, т.к. он оперирует логическим значением «0» и «1». В качестве выходного ключа могут использоваться транзисторы различных типов, тиристоры (семисторы), реле электромагнитные, реле твердотельные, оптроны, интеллектуальные ключи и другие специализированные микросхемы. Электромагнитная система, генератор, демодулятор, пороговое устройство и выходной усилитель являются основой индуктивных датчиков.

Подытожим вышесказанное. Принцип действия индуктивного датчика основан на изменении параметров электромагнитного поля при вхождении металлического объекта в зону чувствительности. Эти изменения фиксируются электронной схемой датчика и изменяют его состояние. В результате этого происходит коммутация выходных цепей: размыкание нормально замкнутого, замыкание нормально разомкнутого или переключение контакта.

Цель и принцип работы индуктивных датчиков

Цель и принцип работы индуктивных датчиков (на фото: Omron 5 мм 6-36 В постоянного тока индуктивный датчик приближения PNP NC)

Индуктивные датчики используют токи, индуцированные магнитными полями для обнаружения соседних металлических объектов. Индуктивный датчик использует катушку (индуктор) для генерации высокочастотного магнитного поля, как показано на рисунке 1 ниже. Если есть металлический объект вблизи изменяющегося магнитного поля, в нем будет протекать ток.

Этот результирующий ток создает новое магнитное поле, которое противостоит исходному магнитному полю. Чистый эффект заключается в том, что он изменяет индуктивность катушки в индуктивном датчике.

Измеряя индуктивность, датчик может определить, когда рядом был металлик.

Эти датчики обнаруживают любые металлы, когда часто используются многочисленные типы металлических многократных датчиков.

Рисунок 1 - Индуктивный датчик приближения

Примечание: они работают, настраивая высокочастотное поле. Если мишень приближается к полю, это вызовет вихревые токи. Эти токи потребляют энергию из-за сопротивления, поэтому энергия в поле теряется, и амплитуда сигнала уменьшается. Детектор проверяет зарегистрированную величину, чтобы определить, когда она достаточно уменьшилась для переключения.

Датчики могут обнаруживать объекты на расстоянии нескольких сантиметров от конца. Но направление к объекту может быть произвольным, как показано на рисунке 2 ниже.

Рисунок 2 - Экранированные и неэкранированные датчики

Магнитное поле неэкранированного датчика покрывает больший объем вокруг головки катушки. Добавляя щит (металлическая рубашка вокруг боковых сторон катушки), магнитное поле становится меньше, но также более направлено. Щиты будут часто доступны для индуктивных датчиков, чтобы улучшить их направленность и точность.

Ссылка: Автоматизация производственных систем с ПЛК - Хью Джек

Связанные электрические направляющие и изделия

Сравнение индуктивных и ёмкостных датчиков положения

Автор: Mark Howard, Zettlex UK Ltd
Ссылка на оригинал: technical articles/inductive vs. capacitive_rev4.0
Перевод на русский язык подготовлен компанией АВИ Солюшнс.

Введение

Некоторые индуктивные и ёмкостные датчики выглядят очень похоже и неудивительно что инженеры-разработчики бывают сбиты с толку их сходством. И те и другие являются бесконтактными датчиками положения и построены на основе печатных плат. Тем не менее, физические принципы, лежащие в основе каждого типа датчиков, достаточно различны. В конечном итоге на практике это означает, что эти  типы датчиков подходят для различных приложений.  Эта статья объясняет физические принципы каждой технологии и сравнивает соответственно сильные и слабые стороны каждого подхода.

Принцип работы – Ёмкостные датчики

Когда исследователя Эвальда Юргена фон Клейста ударило электрическим током от лабораторного прибора в 1745 году, он внезапно понял, что есть возможность сохранять электрический заряд в больших количествах. Возможно, ненамеренно он построил первый в мире конденсатор. Конденсатор действует как накопитель электрической энергии и, как правило, состоит из двух проводящих пластин, разделённых непроводящим материалом (диэлектриком). В качестве диэлектрика обычно выступает воздух, пластик или керамика. Простая математическая модель конденсатора приведена на рис. 1.


 Рис. 1 Простая модель конденсатора (С)

Диэлектрическая проницаемость ε включает в себя две составляющие - εr и ε0, где εr – это относительная магнитная проницаемость (иногда называемая диэлектрической постоянной) материала между пластинами и ε0 – электрическая постоянная (ε0 ≈ 8.854×10−12 Ф/м). 

Многие датчики работают по ёмкостному принципу, в особенности тактильные датчики таких устройств, как планшеты и мобильные телефоны. Эти ёмкостные датчики определяют отсутствие или присутствие пальца человека и работают как альтернатива кнопочному переключателю. Присутствие пальца человека – или скорее воды в нём – приводит к изменению относительной диэлектрической проницаемости вызывающей в свою очередь изменение ёмкости. 

Другой тип ёмкостного датчика – это ёмкостной датчик перемещения, который работает путём измерения изменений ёмкости происходящих из-за изменения размеров конденсатора. Как можно видеть из математической формулы на рис. 1, ёмкость как при изменении расстояния между пластинами (d) так и при изменении площади перекрытия пластин (A). Перемещение может измеряться в осевом направлении (изменение d) или в плоскости пластин. Пластины конденсатора можно с успехом изготавливать с использованием печатных плат. 

Другой тип ёмкостного датчика – это ёмкостной датчик перемещения. Принцип его работы основан на измерении величины емкости, которая изменяется при изменении размеров конденсатора. Как можно видеть из математической формулы на рис. 1, ёмкость прямо пропорциональна как расстоянию между пластинами (d), так и площади перекрытия пластин (A). Перемещение может измеряться в осевом направлении (изменение d) или в плоскости пластин. Пластины конденсатора можно с успехом изготавливать с использованием печатных плат.

Для того чтобы хранить сколько-нибудь значительный заряд, расстояние между пластинами d должно быть существенно меньше площади пластин. Величина d обычно гораздо меньше 1 мм. По этой причине такая технология хорошо подходит для измерения нагрузки и тензометрических датчиков, поскольку может давать сравнительно большие изменения сигнала при маленьком измеряемом расстоянии. Похожим образом, ёмкостные линейные или вращающиеся датчики могут быть сконструированы таким образом, что перемещение вызывает изменение площади перекрытия пластин A. Например, один комплект пластин расположен на подвижной части датчика, а другой комплект расположен на статичной части. Как только два этих комплекта смещаются относительно друг друга, площадь А изменяется. 

К сожалению, кроме изменения размеров конденсатора, ёмкость также чувствительна и к другим факторам. Если пластины конденсатора окружены воздухом то диэлектрическая проницаемость будет изменяться из-за влияния температуры и влажности, поскольку диэлектрическая постоянная воды отличается от воздуха. Близко расположенный объект, который изменяет проницаемость окружающего пространства, тоже будет вызывать изменения ёмкости. В случае тактильного датчика, вода в пальцах вызывает местное изменение проницаемости и, соответственно, срабатывание датчика. Вот почему работа нереагирующего тактильного датчика может быть улучшена, если намочить конец пальца. 

За исключением случаев, когда окружающая среда датчика может быть герметично замкнута или жёстко контролируема, ёмкостные датчики не подходят для применения в жёстких условиях окружающей среды, где есть возможность проникновения посторонних веществ или больших изменений температуры. Неудивительно, что ёмкостные датчики мало подходят для применения в условиях, где высока вероятность образования конденсата при снижении температуры. 

При неизменном физическом устройстве датчика, расстояние между пластинами датчика должно поддерживаться малым относительно размеров пластин конденсатора и выдерживаться в достаточно узком допуске. Это может накладывать очень высокие требования по механической точности установки датчика в конечное изделие и может быть непрактично и неэкономично, поскольку различие тепловых расширений, вибраций или механических допусков конечного изделия могут привести к изменению расстояния между пластинами и, таким образом, к искажению измерений.

Более того ёмкостный эффект основан на хранении электрического заряда на пластинах конденсатора. Если конечное изделие, куда устанавливается датчик, может создавать электростатическое поле в процессе своего перемещения – от трения, скольжения или вращения деталей – это может искажать показания датчика. В экстремальных случаях датчик не будет работать совсем или, что хуже, электростатические возмущения будут приводить к правдоподобным, но неверным показаниям датчика. В некоторых случаях обязательно  заземление компонентов конечного изделия для рассеивания заряда с пластин датчика. Часто это является необходимым в ёмкостных датчиках угла, поскольку вращение вала создаёт статический заряд из-за относительного перемещения подшипников, шестерён, шкивов и прочее. 

Принцип работы – Индуктивные датчики

В 1831 Майкл Фарадей открыл, что протекание переменного тока по одному проводнику индуцирует протекание тока в противоположном направлении во втором проводнике. С тех пор магнитная индукция стала широко использоваться как физический принцип построения датчиков для измерения положения и скорости – резольверы (СКВТ), сельсины и дифференциальный трансформатор для измерения линейных перемещений. Основы теории можно объяснить, рассматривая две катушки: передающую катушку (Tx), по которой протекает переменный ток, и приёмную катушку (Rx), в которой индуцируется ток.


Рисунок 2. Закон индукции Фарадея

Величина напряжения на приёмной обмотке пропорциональна относительным площадям, геометрии и смещению двух катушек. Однако, как и с ёмкостной технологией, на поведение катушек могут влиять и другие факторы. Одним из таких факторов является температура, но её влияние может быть нивелировано путём использования нескольких приёмных катушек и вычислении положения по отношению полученных сигналов (как в дифференциальном трансформаторе). Соответственно, даже в случае изменений температуры, её влияние на результат компенсируется, поскольку отношение сигналов является неизменным для любого положения.  

В отличие от ёмкостных способов измерения, индуктивная технология гораздо менее подвержена влиянию посторонних частиц, таких как вода или грязь. Поскольку катушки могут находиться на относительно большом расстоянии друг от друга, точность установки составляет гораздо меньше проблем, и основные компоненты индуктивного датчика могут быть установлены с относительно свободными допусками. Это не только помогает снизить стоимость датчика и конечного изделия, но также позволяет использовать компоненты с защитным покрытием или заливкой, что позволяет датчикам противостоять таким внешним воздействующим факторам, как длительное погружение, сильные удары, вибрация или наличие взрывоопасной газовой или пылевой среды. 

Индуктивные датчики обеспечивают надёжный, стабильный и устойчивый к внешним воздействиям подход к измерению положения и, таким образом, является предпочтительным выбором в приложениях, где жёсткие условия окружающей среды являются нормой, например, в военной технике, авиакосмической промышленности, промышленных установках и системах для нефтегазового сектора.  

Несмотря на надёжность и устойчивость к внешним воздействиям, традиционные индуктивные датчики имеют ряд отрицательных сторон, которые препятствуют их более широкому распространению. В их конструкции есть проводники, намотанные на катушки, которые должны быть намотаны достаточно точно, чтобы обеспечить необходимую точность измерений положения. Для того, чтобы обеспечить наличие достаточно сильного электрического сигнала, необходимы обмотки с большим количеством витков. Такая конструкция с намотанной катушкой делает традиционный индуктивный датчик громоздким, тяжёлым и дорогим.

Инженеры, рассматривающие возможность применения индуктивных датчиков положения, часто задают вопрос о сложностях, связанных с электромагнитными шумами. В данном случае такая озабоченность является неуместной, если принять во внимание, что эти датчики, как резольверы, успешно используются много лет в жёсткой электромагнитной установке в корпусах электродвигателей для коммутации и управления скоростью. Что касается температурной стабильности, то устойчивость к жёстким условиям  может быть достигнута при использовании дифференциального подхода, так, что электромагнитная энергия, поступающая в различные части системы, эффективно компенсирует друг друга. Вот почему индуктивные датчики, такие как резольверы и дифференциальные линейные трансформаторы, являются предпочтительным выбором в ответственных применениях, например, в гражданской авиации в течение многих лет.

Другой подход к индуктивным датчикам

Другой подход к индуктивным датчикам использует тот же физический принцип, но в нём применяются плоские конструкции на основе печатных плат вместо намотанных катушек. Именно этот подход и применяется Zettlex. Это означает, что обмотки могут быть изготовлены путём травления меди или при помощи нанесения на самые различные материалы подложки: полиэстерную плёнку, бумагу, эпоксидный слоистый пластик и даже на керамику. Такие печатные конструкции можно изготовить более точно, чем намотанные катушки. Вследствие чего достигается более высокая точность измерения при меньших затратах, размерах и массе, сохраняя в то же время все положительные свойства индуктивной технологии. 

 

Рисунок 3. Пример грязного, но полностью работоспособного индуктивного датчика с плоской печатной обмоткой. 

Датчики серии IncOders компании Zettlex – это бесконтактные устройства для прецизионного измерения угла. Датчик IncOder состоит из двух частей: статор и ротор, каждая из которых имеет форму плоского кольца. Большое центральное отверстие позволяет легко пропускать валы, оптические волокна, трубы и кабели, размещать токосъёмники. Индуктивные угловые энкодеры серии IncOder не требуют точной механической установки, скорее можно сказать, что ротор и статор должны быть просто привинчены в конечное изделие. Угловые энкодеры Zettlex не восприимчивы к посторонним веществам, что делает их идеально подходящими к жёстким условиям окружающей среды, где ёмкостные устройства работают ненадёжно.  

Заключение

Преимущества каждого из трёх подходов сведены вместе в таблице ниже. Можно сделать вывод, что из трёх приведённых подходов, нетрадиционный индуктивный подход, использующий печатные обмотки, обеспечивает наибольшее количество преимуществ.

 

Ёмкостные

(Традиционные катушки)

 Индуктивные
(Печатные катушки)

Высокое разрешение


Высокая повторяемость

Высокая точность 


Устойчивость к грязи, воде или конденсату
 

Устойчивость к электростатике
 


Устойчивость к электромагнитным помехам

Низкий температурный дрейф
   

Простота установки
 

?

Компактный

 

Лёгкий

 

Экономичный

?

 


Рисунок 4. Таблица сравнительных преимуществ каждой технологии

Датчики перемещения, расстояния и положения Micro-Epsilon

Емкостные датчики предназначены для бесконтактного измерения смещения, расстояния и положения, а также для измерения толщины. Благодаря высокой стабильности и разрешению сигнала емкостные датчики смещения применяются в лабораториях и промышленных измерительных задачах. Например, при управлении производством емкостные датчики измеряют толщину пленки и нанесение клея. Установленные в станках, они контролируют смещение и положение инструмента. Специальная конструкция сенсора, сенсорный кабель и инновационная технология контроллера обеспечивают идеально согласованную измерительную систему. Поэтому измерительные системы capaNCDT отличаются высокой точностью и стабильностью сигнала. Даже в промышленных применениях емкостные датчики достигают разрешающей способности в диапазоне субмикрометров.

  • CS005 цилиндрический датчик с гнездом, диапазон измерения: 0,05 мм
  • CS02 цилиндрический датчик с гнездом, диапазон измерения: 0,2 мм
  • CSH02-CAm1,4 цилиндрический датчик с кабелем, диапазон измерения: 0,2 мм
  • CSH02FL-CRm1,4 плоский датчик с кабелем, диапазон измерения: 0,2 мм
  • CS05 цилиндрический датчик с гнездом, диапазон измерения: 0,5 мм
  • CSE05 цилиндрический датчик с гнездом, компактная конструкция, диапазон измерения: 0,5 мм
  • CSE05 / M8 надежный датчик (цилиндрический) с резьбой M8 и гнездом, диапазон измерения: 0,5 мм
  • CSG0,50-CAm2,0 датчик зазора (на плате) с кабелем, 2-сторонний, диапазон измерения: 0,5 мм
  • CSH05-CAm1,4 цилиндрический датчик с кабелем, диапазон измерения: 0,5 мм
  • CSH05FL-CRm1,4 плоский датчик с кабелем, диапазон измерения: 0,5 мм
  • CS08 цилиндрический датчик с гнездом, диапазон измерения: 0,8 мм
  • CS1 цилиндрический датчик с гнездом, диапазон измерения: 1 мм
  • CS1HP цилиндрический датчик с гнездом, диапазон измерения: 1 мм
  • CSE1 цилиндрический датчик с гнездом, компактная конструкция, диапазон измерения: 1 мм
  • CSG1,00-CAm2,0 датчик зазора (на плате) с кабелем, 2-сторонний, диапазон измерения: 1 мм
  • CSh2-CAm1,4 цилиндрический датчик с кабелем, диапазон измерения: 1 мм
  • CSh2FL-CRm1,4 плоский датчик с кабелем, диапазон измерения: 1 мм
  • CSh2,2-CAm1,4 цилиндрический датчик с кабелем, диапазон измерения: 1,2 мм
  • CSh2,2FL-CRm1,4 плоский датчик с кабелем, диапазон измерения: 1,2 мм
  • CSE1,25 цилиндрический датчик с гнездом, компактная конструкция, диапазон измерения: 1,25 мм
  • CSE1,25 / M12 надежный датчик (цилиндрический) с резьбой M12 и гнездом, диапазон измерения: 1,25 мм
  • CS2 цилиндрический датчик с гнездом, диапазон измерения: 2 мм
  • CSE2 цилиндрический датчик с гнездом, компактная конструкция, диапазон измерения: 2 мм
  • CSE2 / M16 надежный датчик (цилиндрический) с резьбой M16 и гнездом, диапазон измерения: 2 мм
  • CSF2 датчик зазора (на плате) с разъемом, односторонний, диапазон измерения: 2 мм
  • CSF2-CRg4,0 датчик зазора (на плате) с кабелем, односторонний, диапазон измерения: 2 мм
  • CSh3-CAm1,4 цилиндрический датчик с кабелем, диапазон измерения: 2 мм
  • CSh3FL-CRm1,4 плоский датчик с кабелем, диапазон измерения: 2 мм
  • CS3 цилиндрический датчик с гнездом, компактная конструкция, диапазон измерения: 3 мм
  • CSE3 цилиндрический датчик с гнездом, компактная конструкция, диапазон измерения: 3 мм
  • CSE3 / M24 надежный датчик (цилиндрический) с резьбой M24 и гнездом, диапазон измерения: 3 мм
  • CSh4FL-CRm1,4 плоский датчик с кабелем, диапазон измерения: 3 мм
  • CSF4 датчик зазора (на плате) с разъемом, односторонний, диапазон измерения: 4 мм
  • CSF4-CRg4,0 датчик зазора (на плате) с кабелем, односторонний, диапазон измерения: 4 мм
  • CS5 цилиндрический датчик с гнездом, диапазон измерения: 5 мм
  • CSF6 датчик зазора (на плате) с односторонним разъемом, диапазон измерения: 6 мм
  • CSF6-CRg4,0 датчик зазора (на плате) с кабелем, односторонний, диапазон измерения: 6 мм
  • CS10 цилиндрический датчик с гнездом, диапазон измерения: 10 мм

Мифы об индуктивных датчиках положения.

Марк Смит, Microchip Technology

Индуктивные датчики положения измеряют индуктивность.

Индуктивные датчики не измеряют индуктивность. Работа этих устройств основана на взаимодействии магнитного поля катушки датчика и металла, который входит в состав объекта. Для точного определения возмущений в магнитном поле, вызванных этим объектом, используются хорошо известные свойства трансформатора с воздушным сердечником и закон Фарадея. Проще говоря, индуктивные датчики измеряют возмущение магнитного поля, обусловленное проводящим объектом (см. рис. 1).

   

Рис. 1. Образец индуктивного датчика положения

 

Магнитное поле генерируется не постоянным магнитом, который применяется в датчиках Холла и магниторезистивных датчиках, а первичной обмоткой трансформатора. Две вторичные обмотки используются для детектирования этого поля. Металлический объект, помещенный в магнитное поле, индуцирует вихревые токи, которые противодействуют полю. На поверхности металлического объекта напряженность поля равна нулю. Разнесенные друг от друга приемные катушки определяют разные значения напряжения. Положение объекта рассчитывается путем сравнения этих двух напряжений.

Точность определения положения с помощью индуктивных датчиков невысока.

Это в корне неверное утверждение, т.к. индуктивные датчики положения работают с очень высокой точностью и при высоких рабочих температурах превосходят другие магнитные датчики, применение которых в таких случаях затруднено. Показания индуктивных датчиков положения не зависят от нелинейных свойств постоянного магнита – они фиксируют только возмущение в генерируемом ими магнитном поле. Погрешность их измерения не превышает ±0,1% во всем диапазоне измерения при комнатной температуре. Погрешность не превышает ±0,3% при более высоких температурах и изменениях воздушного зазора между объектом и датчиком.

Кроме того, для устранения вариаций температуры или минимизации этого эффекта применяется полноценный алгоритм. Например, индуктивный датчик положения возбуждает магнитное поле на частоте 1–6 МГц, используя для этого LC-генератор. Оба параметра могут меняться в зависимости от температуры, но это не влияет на точность определения положения. Дело в том, что приемные каналы вторичной обмотки используют синхронную демодуляцию (см. рис. 2),

Рис. 2. Схема синхронного демодулятора

 

причем демодулятор управляется осциллятором первичной стороны. Этот дрейф не влияет на амплитуду принимаемых сигналов. В то же время металлические объекты, находящиеся рядом с датчиком, могут влиять на магнитное поле. В таких случаях требуется калибровка, которая, однако, не учитывает изменений температуры. Для устранения погрешностей вычислений и дискретизации применяются 13-бит АЦП и 32-бит процессоры, обеспечивающие 12-бит разрешение на выходе в измеряемом диапазоне.

 

У индуктивных датчиков положения – высокая цена.

Высокая эффективность индуктивных датчиков сочетается с разумной стоимостью. Если датчикам Холла и магниторезистивным датчикам требуется постоянный магнит для обеспечения достаточно хорошей точности, то индуктивным датчикам необходимо только, чтобы объект был металлическим, благодаря чему пользователь может сэкономить на цене магнита. И хотя площадь платы индуктивного датчика больше за счет его проводников, ее стоимость существенно ниже стоимости постоянного магнита. Таким образом, индуктивный датчик положения – более экономичное решение, чем приложения с датчиком Холла или магниторезистивным датчиком благодаря тому, что магнитное поле измеряется без помощи магнита.

 

Индуктивные датчики положения чувствительны к внешнему магнитному полю.

Современные автоматические устройства генерируют еще больше паразитных магнитных полей, чем прежде, которые вызывают проблемы с использованием датчиков Холла и магнитных датчиков. В индуктивных датчиках положения применяется активная демодуляция для борьбы с этими паразитными полями.

Величина потребляемого тока электромобилями следующего поколения достигает нескольких сотен ампер (см. рис. 3).

 

Рис. 3. При работе мотора и протекании большого тока генерируются паразитные магнитные поля высокой напряженности

 

Кроме того, большинство электромобилей оснащено более чем тремя бесщеточными электродвигателями постоянного тока (BLDC), электронными гидроусилителями руля и системами помощи при торможении. Все эти системы генерируют паразитное магнитное поле. Поскольку у него высокая скорость нарастания, ужесточаются требования к проведению испытаний на помехоустойчивость. В соответствии с действующими стандартами автомобильная электроника при прохождении испытаний на электромагнитную совместимость подвергается воздействию поля постоянного тока величиной 4 мТл, и потому ложные показания датчиков недопустимы.

Преимущество индуктивных датчиков положения в том, что они устойчивы к этим помехам благодаря активной фильтрации только той частоты, которая требуется для измерений. Поскольку в этих датчиках не используются магнитные материалы, данные устройства не подвержены влиянию магнитного поля постоянного тока. Кроме того, описанный выше синхронный демодулятор отфильтровывает сигналы на других частотах, отличных от частоты возбуждения первичной обмотки. Такой принцип подавления не применим в датчиках Холла и магниторезистивных датчиках.

 

Измерение положения с помощью индуктивных датчиков – новая технология.

В индуктивных датчиках положения проводники печатной платы используются для определения положения объекта, а объектом измерения является металлический предмет. На самом деле, эта технология давно является общепринятой – лишь изменился способ измерения. Принцип работы линейного дифференциального трансформатора напряжения (LVDT) очень схож с принципом измерений индуктивного датчика положения. В этом трансформаторе первичная обмотка и две вторичные обмотки определяют положение металлической рукоятки в робототехнических приложениях. В индуктивных датчиках положения применяются во многом схожие методы, которые к тому же позволяют разместить проводники катушки на печатной плате.

В магнитных вращающихся трансформаторах, представляющих собой разновидность LVDT-трансформатора, применяются те же методы. И в этом случае не трансформатор определяет положение металлического объекта, а индуктивный датчик с помощью проводников печатной платы. Для определения координат все три названных устройства измеряют соотношение между двумя напряжениями, индуцированными возмущенным магнитным полем проводящего элемента.

 

Из-за дублирующего датчика объем занимаемого пространства удваивается.

Критически важным автомобильным и промышленным приложениям часто необходима избыточность для обеспечения самого высокого уровня безопасности. Благодаря оптимизации слоев печатной платы и некоторым инновационным методам создания первичной обмотки сдвоенному датчику не требуется в два раза больше места на печатной плате по сравнению с одинарным устройством (см. рис. 4).

 

Рис. 4. Решение с двумя датчиками

 

Два гальванически изолированных датчика, свободно связанных с полем, совместно измеряют величину одного и того же магнитного поля. Вторичные обмотки соединены с двумя микросхемами, с которых поступают два независимых сигнала о положении объекта, что повышает безопасность приложения.

 

Индуктивные датчики положения измеряют только небольшие линейные перемещения.

Индуктивные датчики положения могут измерять линейные перемещения в достаточно широком диапазоне. Наилучшая точность достигается в тех случаях, когда длина датчика сопоставима с диапазоном измерений; при этом выходное разрешение может масштабироваться даже при измерении минимального расстояния. Длина датчика варьируется в диапазоне 5–600 мм и выше. Любые ограничения по длине должны соотноситься со способностью осциллятора генерировать корректный сигнал для резонансного LC-контура. Во всех случаях применяется один и тот же принцип работы: определяются изменения генерируемого магнитного поля.

Измерение линейных перемещений – заметное преимущество этой технологии, а требуемая чувствительность достигается с помощью единого принципа измерения во многих используемых на практике диапазонах. В то же время для выполнения аналогичной задачи может потребоваться несколько мультиплексированных датчиков Холла, чтобы магнит перемещался из одного положения в другое. Перекрестное управление таким мультиплексированием достаточно сложное, а на результаты измерения может влиять изменение температуры. Индуктивный датчик не имеет таких недостатков и измеряет линейные перемещения в соответствии с требованиями приложений.

 

Индуктивные датчики положения измеряют только линейные перемещения.

Датчики этого типа могут измерять не только линейные, но и вращательные и дуговые перемещения с не меньшей точностью при более высокой помехоустойчивости. Индуктивная технология применяется для измерения положения автомобильных педалей, воздушных и водяных клапанов, а также роторов. Например, 360-градусный датчик положения ротора устроен как изогнутый линейный датчик с соединенными концами. Индуктивные датчики для измерения круговых перемещений – самые точные приборы благодаря тому, что генерируемое магнитное поле является очень однородным вдоль всех радиусов. Таким образом, эта технология обеспечивает измерение линейных, круговых и дуговых перемещений.

 

Измеряемые объекты должны быть изготовлены из магнитного материала.

Датчики рассматриваемого типа определяют изменения магнитного поля под влиянием перемещающегося металлического объекта, но в использовании магнитного материала нет необходимости. Все проводящие ток объекты вызывают появление вихревых токов, возмущающих магнитное поле (см. рис. 5).

 

Рис. 5. Вихревые токи, наведенные в металлической структуре

 

Чтобы увеличить расстояние, на котором определяется положение металлического объекта, а также уменьшить потребляемый ток, в качестве металлов с наилучшими проводящими свойствами применяется медь, алюминий или сталь.

Индуктивные датчики положения программируются внешними устройствами.

В автомобилях часто применяются датчиковые модули, которые подключаются к блокам управления двигателем с помощью проводов. Как правило, к датчику подключаются провода питания и заземления, а также выходного контакта. Калибровка модуля с помощью силового вывода исключает необходимость в дополнительных подключениях к печатной плате с датчиком, что позволяет сэкономить расходы и проблемы сборки. Однако в некоторых встраиваемых приложениях датчик может программироваться с помощью внешнего микроконтроллера, например LX3302A от компании Microchip с помощью выводов GPIO.

 

Разработчики не получают помощи от производителей компонентов.

Не так давно для получения хороших результатов требовалось обладать хорошим опытом проектирования приложений с магнитными датчиками, доступом к самым современным средствам моделирования методом конечных элементов или большим терпением для реализации проекта методом проб и ошибок. В настоящее время производители ИС предоставляют клиентам демонстрационные платы и наборы, которые позволяют не только начать с разработки модели, но и выполнить полноценные симуляции проводников печатной платы. Некоторые вендоры даже предоставляют результаты симуляций с анализом погрешности датчика до этапа испытаний печатной платы.

Шифр статьи: МСА816

Размещение статей, рекламы, новостей и подписка: [email protected]

Индуктивные датчики

Basics

Кольцевые датчики используют физический эффект изменения характеристик резонансного контура, который создается потерями на вихревые токи в проводящих материалах. Благодаря этому могут быть обнаружены все токопроводящие объекты. Осциллятор внутри датчика создает переменное электромагнитное поле высокой частоты. Из-за осесимметричного расположения катушек создается почти однородное поле. Ферритовый сердечник и корпус датчика группируют силовые линии переменного поля в центре кольца.Если металл попадает в датчик, возникают вихревые токи, которые забирают энергию из переменного поля. Из-за этого возникает затухание, а также изменение напряжения в генераторе. Электроника внутри датчика оценивает изменение напряжения.

Цифровые кольцевые датчики

подразделяются на статические датчики (нормальная чувствительность) и динамические датчики (высокая чувствительность). Пока внутри области датчика есть металл, датчик статического электричества создает постоянный сигнал. Только если металл убрать, сигнал отваливается.Статические датчики обнаруживают неподвижные и движущиеся части. При обнаружении металла динамические датчики создают только короткий импульс. Они обнаруживают металл только тогда, когда движутся в области датчика, но работают с гораздо более высокой чувствительностью.

Аналоговые кольцевые датчики генерируют постоянный сигнал (как статические датчики), который зависит от размера и положения металла в датчике. Чем больше металл, тем больше выходной сигнал датчика.

Зона деятельности:

  • Контроль обрыва провода = статические датчики
  • Подсчет предметов / выброс штампов
  • Посещаемость
  • Обнаружение загрязнения в неметаллических материалах = динамические и статические датчики
  • Измерение толщины проволоки = аналоговые датчики
  • Обнаружение предметов / устройство для сортировки мелких деталей

5 типов датчиков приближения (применение и преимущества)

Датчик приближения - это датчик, способный определять присутствие близлежащих объектов без какого-либо физического контакта. На рынке существуют различные типы датчиков приближения, но можно сказать, что это устройство часто выполняет задачу обнаружения присутствия объекта, испуская электромагнитное поле или луч электромагнитного излучения (например, инфракрасного) и выявляя изменения в поле или обратный сигнал.

Датчики приближения доступны в различных категориях в зависимости от их обнаружения. Некоторые датчики приближения полезны для обнаружения материалов; тогда как некоторые полезны для обнаружения различных условий окружающей среды.

В зависимости от метода обнаружения объектов существует четыре широко используемых типа датчиков приближения, а также несколько более новых высокотехнологичных конструкций:

  1. Индуктивные датчики приближения
  2. Емкостные датчики приближения
  3. Ультразвуковые датчики приближения
  4. ИК-датчики приближения
  5. Высококачественные датчики приближения

Прежде чем вдаваться в подробности о различных типах датчиков приближения, давайте кратко рассмотрим, как они делают то, что они делают, а также о преимуществах использования датчиков приближения в приложениях для измерения параметров окружающей среды.

Датчик приближения и его преимущества

Датчики приближения - это датчики, которые обнаруживают движение / присутствие объектов без физического контакта и передают полученную информацию в электрический сигнал. Его также можно определить как бесконтактный переключатель, определение, данное японскими промышленными стандартами (JIS) для всех бесконтактных датчиков обнаружения.

Чтобы лучше понять, что такое датчик приближения, мы рассмотрим его особенности. Ниже вы увидите особенности датчиков приближения по сравнению с традиционными оптическими или контактными датчиками, чтобы лучше понять, почему мы используем эти устройства.

Бесконтактный датчик приближения позволяет обнаруживать объект, не касаясь его, обеспечивая хорошее состояние объекта

  • Не зависит от состояния поверхности

Датчики приближения почти не зависят от цвета поверхности объектов, поскольку они в основном обнаруживают физические изменения

  • Пригодность для широкого спектра применений

Датчики приближения подходят для влажных условий и использования в широком диапазоне температур, в отличие от традиционных оптических датчиков.

Датчики приближения

также применимы в телефонах, будь то устройства Android или iOS. Он состоит из простой ИК-технологии, которая включает и выключает дисплей в соответствии с вашим использованием. Например, он отключает ваш дисплей, когда телефонный звонок продолжается, чтобы вы случайно не активировали что-то, поднося его к щекам!

Поскольку датчик приближения использует полупроводниковые выходы, нет движущихся частей, зависящих от рабочего цикла. Таким образом, его срок службы увеличивается по сравнению с традиционными датчиками!

По сравнению с переключателями, для которых требуется контакт, датчики приближения обеспечивают более высокую скорость отклика.

Типы датчиков приближения: индуктивные датчики приближения

Индуктивные датчики приближения - это бесконтактные датчики, используемые только для обнаружения металлических предметов. Он основан на законе индукции, приводящем в движение катушку с осциллятором, когда к ней приближается металлический объект.

Имеет две версии:

  • Неэкранированный: электромагнитное поле, создаваемое катушкой, не ограничено, что позволяет увеличивать и увеличивать расстояния срабатывания
  • Экранировано: генерируемое электромагнитное поле сосредоточено спереди, где стороны катушки датчика закрыты.

и состоит из 4 основных компонентов:

  • Он состоит из 4 основных компонентов, как показано на рисунке; Катушка, генератор, триггер Шмитта и схема переключения выхода

Принцип работы

  1. В катушку подается переменный ток, создающий электромагнитное поле обнаружения
  2. Когда металлический объект приближается к магнитному полю, возникают вихревые токи, что приводит к изменению индуктивности катушки
  3. При изменении индуктивности катушки цепь, которая постоянно отслеживает, срабатывает выходной переключатель датчика

* Примечание: даже когда цель отсутствует, индуктивные датчики продолжают колебаться. Переключатель срабатывает только при наличии объекта.

Общие приложения

  • Промышленное использование
    • Машины для автоматизации производства, подсчитывающие продукцию, перемещение продукции
  • Использование безопасности
    • Обнаружение металлических предметов, арсенала, мин и др.

Преимущества индуктивных датчиков приближения

  • Бесконтактное обнаружение
  • Адаптивность к окружающей среде; устойчива к обычным условиям промышленной эксплуатации, таким как пыль и грязь
  • Возможность и универсальность в обнаружении металлов
  • Достаточно дешево по цене
  • Отсутствие движущихся частей, продление срока службы

Недостатки индуктивных датчиков приближения

  • Отсутствие дальности обнаружения, в среднем максимальная дальность до 80 мм
  • Обнаруживает только металлические предметы
  • На производительность могут влиять внешние условия; экстремальные температуры,
    СОЖ или химикаты

Типы датчиков приближения: емкостные датчики приближения

Емкостные датчики приближения - это бесконтактные датчики, которые обнаруживают как металлические, так и неметаллические объекты, включая жидкости, порошки и гранулы. Он работает, обнаруживая изменение емкости.

Как и индуктивные датчики, он состоит из генератора, триггера Шмитта и схемы переключения выходов. Единственное отличие состоит в том, что он состоит из 2 зарядных пластин (1 внутренняя, 1 внешняя) для емкостного заряда:

  • Внутренняя пластина, подключенная к генератору
  • Внешняя пластина (электроды датчика), используемая в качестве чувствительной поверхности

Принцип работы

  1. Емкостной датчик приближения создает электростатическое поле
  2. Когда объект (проводящий / непроводящий) приближается к чувствительной области, емкость обеих пластин увеличивается, что приводит к усилению амплитуды генератора
  3. Результирующее усиление амплитуды срабатывает переключатель выхода датчика

* Примечание: емкостные датчики колеблются только при наличии целевого объекта

Общие приложения

  • Промышленное использование
    • Машины для автоматизации производства, подсчитывающие продукцию, перемещение продукции
    • Процессы розлива, трубопроводы, краски и т. Д.
    • Уровень, состав и давление жидкости
  • Контроль влажности
  • Неинвазивное обнаружение содержимого
  • Сенсорные приложения

Преимущества емкостных датчиков приближения

  • Бесконтактное обнаружение
  • Широкий спектр обнаруживаемых материалов
  • Способен обнаруживать объекты через неметаллические стены благодаря широкому диапазону чувствительности
  • Подходит для использования в промышленных условиях
  • Содержит потенциометр, который позволяет пользователям регулировать чувствительность датчика таким образом, чтобы обнаруживались только требуемые объекты.
  • Отсутствие движущихся частей, продление срока службы

Недостатки емкостных датчиков приближения

  • Относительно низкий диапазон, но с постепенным увеличением по сравнению с индуктивными датчиками
  • Более высокая цена по сравнению с индуктивными датчиками

Типы датчиков приближения: ультразвуковые датчики приближения

Третий в этом списке - ультразвуковые датчики приближения, обнаруживающие присутствие объектов посредством излучения высокочастотного ультразвукового диапазона. Это происходит за счет преобразования электрической энергии. Подобно емкостным датчикам, он может обнаруживать твердые, жидкие, гранулированные или гранулированные объекты.

Пожалуй, самый простой из всех, он состоит только из ультразвукового передатчика и ультразвукового приемника.

Принцип работы

  1. Звуковой преобразователь излучает звуковые волны
  2. Звуковые волны отражаются от объекта
  3. Отразившаяся волна возвращается на датчик
  4. Время, затраченное на излучение и прием звуковых волн, затем используется для определения расстояния / близости

Общие приложения

  • Измерение расстояния
  • Анемометры для определения скорости и направления ветра
  • Автоматизация производственных процессов
  • Обнаружение жидкости
  • Беспилотные летательные аппараты (БПЛА) для наблюдения за объектами
  • Робототехника

Преимущества ультразвуковых датчиков приближения

  • Бесконтактное обнаружение
  • Не зависит от цвета и прозрачности объекта
  • Не подвержен влиянию внешних условий окружающей среды, надежное решение
    • Хорошо работает в экстремальных условиях
    • Может использоваться в темноте
  • Низкое потребление тока

Недостатки ультразвуковых датчиков приближения

  • Ограниченная дальность обнаружения, хотя возможна более высокая дальность по сравнению с индуктивными и емкостными датчиками
  • Не работает в вакууме, так как ультразвуковые датчики работают с помощью звуковых волн.
  • Невозможно измерить расстояние до мягких объектов или объектов с экстремальной текстурой

Типы датчиков приближения: ИК-датчики приближения

IR, сокращенно инфракрасный, обнаруживает присутствие объекта, испуская луч инфракрасного света.Он работает аналогично ультразвуковым датчикам, но вместо использования звуковых волн передается ИК-излучение.

Инфракрасные датчики приближения состоят из излучающего ИК-светодиода и светового датчика для обнаружения отражения. Он имеет встроенную схему обработки сигнала, которая определяет оптическое пятно на PSD.

Принцип работы

  1. Инфракрасный свет излучается ИК-излучателем светодиода
  2. Луч света попадает на объект и отражается обратно под углом
  3. Отраженный свет достигнет светового датчика
  4. Датчик в детекторе света определяет положение / расстояние до отражающего объекта

Общие приложения

  • Измерение расстояния
  • Счетчик предметов; когда объект пересекает излучаемый свет, он считается за один
  • Системы безопасности, такие как наблюдение, охранная сигнализация и т. Д.
  • Приложения для мониторинга и управления

Преимущества инфракрасных датчиков приближения

  • Бесконтактное обнаружение
  • Для дневного и ночного использования
  • Защищенная связь в прямой видимости
  • Способен измерять расстояние до мягких предметов в отличие от ультразвуковых датчиков приближения
  • Точность инфракрасного датчика не подвержена коррозии или окислению

Недостатки ИК-датчиков приближения

  • Под воздействием условий окружающей среды и твердых предметов, что означает невозможность использования через стены или двери
  • Требуется прямая видимость между передатчиком и приемником для связи
  • Производительность падает на больших расстояниях

Посмотрите видео здесь, чтобы узнать больше об этих типах датчиков приближения и их использовании.

Типы датчиков приближения: датчики приближения высшего класса

Фотоэлектрические датчики приближения

Фотоэлектрические датчики приближения - это датчики, в которых используются высококачественные фотоэлектрические технологии. Он излучает световой луч, способный обнаруживать любые объекты!

Он имеет следующие три разные модели; Отражение, пересечение луча и светоотражение. Каждая модель предлагает различные методы излучения света, хотя все они очень эффективны, когда дело доходит до обнаружения на расстоянии.

Магнитный датчик приближения

Магнитные датчики приближения - это бесконтактные устройства, используемые для обнаружения магнитных объектов на большом расстоянии. Типичный включает стекло и металлическое лезвие, что позволяет быстро намагничивать!

Хотя он просто чувствует магниты, он по-прежнему хорош своей невысокой стоимостью, большой дальностью действия и небольшими размерами.

Датчик приближения LiDAR

LiDar, сокращенно от Light Detection and Ranging, представляет собой высокотехнологичную сенсорную технологию, которая обеспечивает превосходную максимальную дальность обнаружения с высокой частотой обновления.Единственный главный недостаток - это стоимость, которая может оказаться слишком высокой для среднего потребителя.

Функциональность и технология индуктивных датчиков

Индуктивные датчики положения Baumer - это бесконтактные электронные датчики. Индуктивные датчики распознают любую проводящую металлическую цель.

Генератор создает высокочастотное электромагнитное поле, которое исходит от чувствительной поверхности переключателя. Когда проводящий металлический объект попадает в это электромагнитное поле, в металле индуцируются вихревые токи, вызывающие изменение амплитуды колебаний.Результатом является изменение напряжения на выходе генератора, которое заставляет триггер изменять состояние и изменять состояние выхода.

Расстояние срабатывания

Международный стандарт EN 60947-5-2 определяет расстояние срабатывания следующим образом: расстояние срабатывания - это расстояние, на котором стандартная цель, движущаяся к чувствительной поверхности бесконтактного переключателя, вызывает изменение сигнала.

Стандартная мишень
Стандартная мишень представляет собой квадратную пластину толщиной 1 мм, изготовленную из Fe 360 ​​(низкоуглеродистой стали). Длина его стороны определяется как большее из диаметра чувствительной поверхности или трехкратного Sn (номинальное расстояние обнаружения).

Номинальное расстояние срабатывания Sn
Номинальное расстояние срабатывания Sn является параметром классификации типа и не учитывает допуски во время обработки или изменения, вызванные внешними условиями, такими как напряжение или температура.

Эффективное расстояние срабатывания Sr
Эффективное расстояние срабатывания отдельного бесконтактного переключателя, которое измеряется при определенной температуре, напряжении и условиях установки.Для индуктивных бесконтактных переключателей оно должно составлять от 90% до 110% номинального расстояния срабатывания при 23 ± 5 ° C.

Полезное расстояние срабатывания Su
Расстояние срабатывания отдельного бесконтактного переключателя, измеренное в диапазоне температур и при напряжении питания 90% и 110% от номинального значения. Для индуктивных бесконтактных переключателей оно должно составлять от 90% до 110% эффективного расстояния срабатывания.

Гарантированное расстояние срабатывания Sa
Расстояние от чувствительной поверхности, на котором срабатывание бесконтактного переключателя обеспечивается при определенных условиях.Для индуктивных бесконтактных переключателей гарантированное расстояние срабатывания составляет от 0% до 81% номинального расстояния переключения.

Особо большие расстояния срабатывания - GammaProx
Расстояния срабатывания индуктивных устройств GammaProx до пяти раз превышают стандартное значение CENELEC. Это обеспечивает одинаково безопасное и надежное обнаружение стали и цветных металлов. Благодаря увеличенному расстоянию срабатывания можно выбрать, как правило, большие расстояния до движущихся объектов, что обеспечивает большие допуски при установке, предотвращает повреждение и повышает надежность установки.

Из-за увеличенного расстояния переключения сенсоры GammaProx более чувствительно реагируют на окружающий материал. По этой причине установка заподлицо возможна не для всех материалов. Точные условия установки и поправочные коэффициенты указаны в технических паспортах.

Поправочный коэффициент Cf
Если для демпфирования используются металлические материалы, отличные от Kf стандартной измерительной пластины (Fe 360), указанные расстояния срабатывания необходимо умножить на поправочный коэффициент материала, указанный в техническом паспорте.Эти результаты следует рассматривать как рекомендации. Если в таблице данных не указаны поправочные коэффициенты, можно использовать стандартные значения, указанные в этой таблице. Геометрия, отличная от стандартной измерительной пластины, также влияет на расстояние переключения.

При обнаружении алюминиевой фольги или неметаллических материалов, покрытых тонким слоем алюминия или меди, достигнутое расстояние обнаружения может быть близко к значению для мягкой стали. Фактическое содержание Sn зависит от толщины слоя, а также от состава сплава.

Фактор 1
Стандартные датчики позволяют уменьшить расстояние срабатывания до 70% по отношению к неферромагнитным металлам. Датчики фактора 1 включают микроконтроллер для компенсации. В результате у датчиков с коэффициентом 1 отсутствует недостаток уменьшения расстояния срабатывания в зависимости от материала. Они имеют незначительный температурный дрейф, а также отличаются высокой скоростью переключения, что делает их идеальными для измерений на алюминии, цветных металлах и для измерения скорости вращения относительно зубчатых колес или перфорированных дисков.

Равномерное расстояние обеспечивает исключительную гибкость в концепции системы и установке датчиков. Однако преимущества датчиков Baumer идут еще дальше: они являются самыми быстрыми в своем классе в отношении расстояния срабатывания и обладают исключительной широтой срабатывания.

Гистерезис

При приближении и удалении цели существует разница между точкой срабатывания и точкой срабатывания, которая определяется как гистерезис. Гистерезис встроен в характеристики датчика, чтобы защитить его от возможного неправильного срабатывания из-за вибрации.

Частота переключения

В соответствии со стандартами EN 60947-5-2 частота коммутации - это максимально возможное количество переключений в секунду.

Индуктивный датчик приближения

: принцип работы и его применение

Последнее обновление 13 февраля 2021 г., Крунал Шах

Индуктивный датчик - это разновидность датчика приближения.

Что означает датчик приближения? Датчик приближения означает - если какой-либо объект приближается к нему, он обнаруживает этот объект.

Что такое индуктивный датчик приближения?

Индуктивный датчик - это датчик бесконтактного типа, помогающий обнаруживать металлические предметы. Он может распознавать как черные, так и цветные материалы. Дальность срабатывания до 100 мм. Однако уровень чувствительности снижается при обнаружении цветных металлов. Посмотрите на таблицу ниже.

Чувствительность при наличии различных объектов, Sn = рабочее расстояние
Fe37 (железо) 1 х Sn
Нержавеющая сталь 0.9 х Sn
Латунь, бронза 0,5 x Sn
Медь 0,4 x Sn
Алюминий 0,4 x Sn

Обозначение IEC -

Позвольте мне сказать вам, что индуктивные датчики лучше всего работают с черными металлами.

Зачем нужен бесконтактный датчик?

У нас уже есть механические переключатели для определения положения, тогда какая польза от бесконтактных датчиков? Этот вопрос может возникнуть у вас в голове.

У бесконтактных датчиков

есть определенные преимущества, которые нельзя игнорировать.

Помните, что у механических переключателей есть свое преимущество, о котором можно говорить отдельно.

Итак, прежде чем я перейду к техническому аспекту, позвольте мне рассказать вам о некоторых ключевых особенностях индуктивных датчиков.

  • Прежде всего, механические переключатели - это переключатели обнаружения контакта. Это означает, что если объекты коснутся переключателя, он сработает. В индуктивном датчике этого не происходит.
  • Вы должны рассчитать и установить угол приближения в случае механических переключателей.
  • Износ механических частей - основная проблема, которой нет в случае индуктивного датчика. Индуктивные датчики приближения имеют твердотельную сборку - без движущихся частей.
  • Увеличение времени обслуживания за счет замены изношенных деталей.
  • Электроприводы обычно металлические, подверженные коррозии.

Основные компоненты индуктивного датчика приближения

Индуктивный датчик приближения состоит из четырех элементов: катушки, генератора, цепи запуска и выхода.

Катушка

Катушка генерирует необходимое электромагнитное поле. Чашечкообразный ферритовый магнитопровод удерживает катушку внутри. Чашечкообразный сердечник необходим для концентрации магнитного поля катушки на передней части датчика.

Генератор

Генератор обычно представляет собой LC-генератор. Он производит радиочастоту (от 100 кГц до 1 МГц), которая помогает генерировать электромагнитное поле.

Цепь запуска

Схема триггера определяет изменение амплитуды колебаний и выдает сигнал на твердотельный выход.

Выходная цепь

В выходной цепи используется транзистор NPN или PNP. После получения сигнала затвора транзистор включается и выдает выходной сигнал.

Принцип работы индуктивного датчика приближения

Когда металлическая цель попадает в магнитное поле, создаваемое катушкой, внутри цели циркулирует вихревой ток. Это вызывает нагрузку на датчик, которая снижает амплитуду генератора. По мере приближения цели к датчику амплитуда осциллятора уменьшается.

Цепь триггера обычно представляет собой триггер Шмитта. Он контролирует амплитуду осциллятора. Если амплитуда генератора достигает заданного уровня, схема триггера дает сигнал выходной цепи для включения выхода.

Конструкция индуктивного датчика приближения

Чувствительная поверхность может быть из PEEK, керамики и т. Д. В зависимости от требований применения. У вас есть разные варианты выбора материала корпуса.Выбор материала корпуса зависит от среды, в которой он будет подвергаться воздействию. Упомяну несколько материалов корпуса:

  • Нержавеющая сталь V2A,
  • Латунь с никелированным или тефлоновым покрытием,
  • PBTB (полибутилентерефталат)
  • ППС
  • PA (полиамид)

Высококачественная нержавеющая сталь - лучший вариант для гигиенических помещений. Он может соответствовать стандартам качества пищевых продуктов.

Материал PBTB устойчив к истиранию, жаре, холоду и т. Д.

Материал PPS может выдерживать более высокие температуры. Материал выдерживает температуру 200 ° C.

Электронная схема залита смолой в вакууме.

Варианты материала кабеля -

  • ПВХ: Средняя устойчивость к маслам, жирам и высокая устойчивость к истиранию.
  • PUR: Обеспечивает высокую устойчивость к маслам, жирам. Он не хрупкий и обладает высокой устойчивостью к истиранию.
  • Кремний: Этот материал может выдерживать высокие температуры (от -50 ° C до + 180 ° C), но является среднеустойчивым к маслам и жирам.

Применение индуктивных датчиков приближения

Индуктивные датчики используются в различных приложениях. Назову несколько из них.

  1. Вы можете использовать индуктивный датчик приближения для подсчета металлических банок.
  2. Может использоваться для контроля скорости вращения машины.
  3. В конвейерном приложении вы можете использовать его для контроля положения.
  4. На заводе по производству труб сенсоры лучше всего подходят для обнаружения металлических труб для дальнейшей обработки труб.
  5. Управление роботизированной рукой возможно с помощью индуктивных датчиков.

Мониторинг и подсчет могут выполняться без фактического касания цели. Это самое большое преимущество.

Преимущества индуктивных датчиков приближения
  1. Бесконтактное зондирование.
  2. Высокая скорость переключения.
  3. Долговечный, поскольку в нем нет движущихся частей.
  4. Простая установка.

Недостатки индуктивных датчиков приближения
  1. Чувствует только металл.
  2. Ограничение обнаружения дальности. Максимальный диапазон обнаружения составляет 100 мм.

Итак, речь идет об индуктивном датчике приближения. Надеюсь, вам понравилась эта статья.

【Датчики приближения】 Типы, принципы работы и области применения

Датчики приближения используются в различных устройствах. Бесконтактные датчики находят широкое применение от базовых бытовых до крупномасштабных. Основная функция датчиков приближения - обнаружение объектов.Обнаружение материала или объекта по близости приводит к инициированию определенного действия. Действие, инициируемое при обнаружении, предопределено. Обнаружение объекта с помощью датчика приближения происходит без физического контакта датчика с объектом. В датчике приближения для его работы используется ряд методов обнаружения.

Типы датчиков приближения:

Типы датчиков приближения

Датчики приближения делятся на разные категории в зависимости от их обнаружения.Некоторые датчики приближения используются для обнаружения материалов, тогда как некоторые используются для обнаружения различных условий окружающей среды в соответствии с этой классификацией. Типы датчиков приближения следующие:

Емкостный:

Емкостные датчики приближения используют изменение емкости датчика, чтобы сделать вывод об обнаружении объекта. Механизм для этой категории довольно прост, в котором датчик действует как отдельная пластина конденсатора, а объект действует как еще одна пластина или источник напряжения для объекта.Воздух - это диэлектрический материал между этими двумя потенциалами. Как только объект попадает в диэлектрик пластин, емкость конденсатора изменяется. Это изменение принято за обнаружение объекта.

Индуктивный:

Бесконтактные датчики индуктивного типа срабатывают по изменению индуктивности датчика. Этот тип датчиков приближения используется с металлическими предметами. При изменении тока в проводнике изменяется и индуктивность цепи.Это изменение индуктивности вызывает обнаружение объекта. Эти датчики приближения не могут обнаружить объекты, обладающие непроводящими свойствами. Тип обнаруженного материала может повлиять на диапазон этих датчиков, поскольку разные материалы имеют разные свойства проводимости.

Принципы работы

Принцип работы датчика приближения

Принцип обнаружения индуктивных датчиков приближения Индуктивные датчики приближения

обнаруживают магнитные потери из-за вихревых токов, которые генерируются на проводящей поверхности внешним магнитным полем. Магнитное поле переменного тока создается на катушке обнаружения, и обнаруживаются изменения импеданса из-за вихревых токов, возникающих на металлическом объекте.

Другие методы включают в себя датчики обнаружения алюминия, которые обнаруживают фазовую составляющую частоты, и цельнометаллические датчики, в которых рабочая катушка используется для обнаружения только измененной составляющей импеданса. Существуют также датчики импульсного отклика, которые генерируют вихревой ток в импульсах и определяют изменение во времени вихревого тока с напряжением, индуцированным в катушке.

Принцип обнаружения емкостных датчиков приближения

Емкостные датчики приближения обнаруживают изменения емкости между обнаруживаемым объектом и датчиком. Величина емкости зависит от размера и расстояния до объекта обнаружения. Обычный емкостный датчик приближения похож на конденсатор с двумя параллельными пластинами, в котором определяется емкость двух пластин. Одна из пластин - это измеряемый объект (с воображаемой землей), а другая - чувствительная поверхность датчика. Обнаруживаются изменения в емкости, возникающей между этими двумя полюсами.

Объекты, которые можно обнаружить, зависят от их диэлектрической проницаемости, но помимо металлов они содержат смолу и воду.

Применение датчиков приближения

Применение датчиков приближения

Датчики приближения имеют множество применений. Самым основным является обнаружение объектов. Это приложение близости очень полезно. Например, в сотовых телефонах датчики приближения являются важнейшими частями.В разных инженерных проектах используются разные датчики приближения для разных функций. Датчики приближения также используются на стоянках, в системах обнаружения обрыва листа и конвейерных системах.

>>> Где купить датчики приближения

Как работают индуктивные датчики давления?

По мере того, как все больше и больше современных промышленных процессов становятся автоматизированными, спрос на датчики, способные решить эту проблему, значительно возрастает. Одним из важных датчиков во многих современных электрических системах управления является индуктивный датчик давления. Название может показаться немного устрашающим, но на самом деле это датчик, работающий по относительно простому принципу.

Как это работает

Индуктивный датчик давления работает по принципу близости. Обладая способностью обнаруживать металлические предметы, не касаясь их, этот датчик состоит из пяти основных элементов, включая:

  • Датчик поля
  • Осциллятор
  • Демодулятор
  • Вьетнамки
  • Выход

Каждый датчик содержит индукционную петлю, которая изменяется в зависимости от материала, который он содержит. Когда магнитное поле генерируется электрическим током, индуктивность внутри петли изменяется.Поскольку металлы в основном являются лучшими индукторами, ток, протекающий через индукционный контур, увеличивается. Когда повышение тока обнаруживается схемой считывания, она затем отправляет сигнал другому устройству, чтобы сообщить ему об обнаружении металла.

Применение индуктивных преобразователей

Индуктивные преобразователи используются во множестве приложений. Многие отрасли используют их для автоматизации процесса, а также в таких приложениях, как:

  • Светофор
  • Металлоискатели
  • Автомойки

По мере того, как светофоры становятся все более зависимыми от сложной электронной схемы, индуктивный датчик давления стал полагаться на то, чтобы эти огни работали должным образом.Металлоискатели, которые также становятся все более технологически продвинутыми, полагаются на эти преобразователи, чтобы помочь им обнаруживать сокровища под поверхностью земли. Сварочное оборудование также может содержать эти преобразователи, что позволяет аппарату лучше откалибровать правильную температуру, необходимую для работы.

Измерение и калибровка

Индуктивные датчики давления также играют ключевую роль во многих областях автоматизированной обработки. Некоторые из наиболее популярных применений этих преобразователей:

  • Калибровка
  • Контроль утечек
  • Измерение напряжения
  • Программируемые логические контроллеры

Область контрольно-измерительных приборов стала зависеть от этих индукторов, помогающих с калибровкой, измерением температуры, измерением давления и т. Д.Большинство преобразователей сделаны так, чтобы быть универсально совместимыми с оборудованием и помогать с картами аналого-цифрового преобразователя, картами сбора данных и программируемыми логическими контроллерами. По мере роста потребности в технологиях на производстве и в других областях ожидается, что индуктивные датчики давления будут играть еще более важную роль в обеспечении бесперебойной работы машин и другого оборудования.

Позвоните Sure Controls по телефону 800-844-8405 для получения дополнительной информации об индуктивных датчиках давления.

Все о датчиках приближения: какой тип использовать?

Индуктивный, емкостный, ультразвуковой, ИК? Это распространенные типы датчиков приближения, которые сегодня используются в различных приложениях, от датчиков приближения Andriod и iPhone до измерения расстояния и обнаружения объектов с помощью Arduino. Следовательно, выбор легко подключаемого, точного и надежного устройства очень важен для выполнения ваших предполагаемых целей.

В этом руководстве я расскажу о различных типах датчиков приближения, их использовании и цене с рекомендациями, чтобы облегчить ваше решение!

Это руководство будет охватывать следующие компоненты:

  • Что такое датчики приближения?
  • Типы датчиков приближения
  • Как выбрать датчик приближения
  • Достойные упоминания
  • Сравнение датчиков приближения (Резюме)

Датчики приближения - это датчики, которые обнаруживают движение / присутствие объектов без физического контакта и передают полученную информацию в электрический сигнал.Его также можно определить как бесконтактный переключатель, определение, данное японскими промышленными стандартами (JIS) для всех бесконтактных датчиков обнаружения

.
  • Звуки сложные? Датчик приближения просто означает; Датчик, который обнаруживает, улавливает и передает информацию без какого-либо физического контакта!

Характеристики датчика приближения

Чтобы лучше понять, что такое датчик приближения, мы рассмотрим его особенности. Ниже приведены его особенности, некоторые из которых уникальны по сравнению с традиционными оптическими / контактными датчиками:

Бесконтактное зондирование

Бесконтактный датчик приближения позволяет обнаруживать объект, не касаясь его, обеспечивая хорошее состояние объекта

Не зависит от состояния поверхности

Датчики приближения почти не зависят от цвета поверхности объектов, поскольку они в основном обнаруживают физические изменения

Пригодность для широкого спектра применений

Датчики приближения

подходят для влажных условий и использования в широком диапазоне температур, в отличие от традиционных оптических датчиков.

Датчики приближения

также применимы в телефонах, будь то устройства Andriod или IOS. Он состоит из простой ИК-технологии, которая включает и выключает дисплей в соответствии с вашим использованием. Например, он отключает ваш дисплей, когда телефонный звонок продолжается, чтобы вы случайно не активировали что-то, поднося его к щекам!

Увеличенный срок службы

Поскольку датчик приближения использует полупроводниковые выходы, нет движущихся частей, зависящих от рабочего цикла. Таким образом, его срок службы увеличивается по сравнению с традиционными датчиками!

Высокая скорость отклика

По сравнению с переключателями, для которых требуется контакт, датчики приближения обеспечивают более высокую скорость отклика.

Теперь, когда мы поняли, что такое датчики приближения, мы подробнее рассмотрим различные типы; каждый хорошо подходит для своих конкретных приложений и сред.

Готовы? Вот краткое изложение различных типов датчиков приближения!

Индуктивные датчики приближения

Индуктивные датчики приближения - это бесконтактные датчики, используемые только для обнаружения металлических предметов.Он основан на законе индукции, приводящем в движение катушку с осциллятором, когда к ней приближается металлический объект.

Он имеет две версии и состоит из 4 основных компонентов:

Версии:

  • Неэкранированный: электромагнитное поле, создаваемое катушкой, не ограничено, что позволяет увеличивать и увеличивать расстояние срабатывания
  • Экранированное: генерируемое электромагнитное поле сосредоточено спереди, где стороны катушки датчика закрыты

Компоненты:

  • Он состоит из 4 основных компонентов, как показано на рисунке; Катушка, осциллятор, триггер Шмитта и схема переключения выхода

Как работает индуктивный датчик приближения?
  1. Переменный ток подается на катушку, создавая электромагнитное поле обнаружения
  2. Когда металлический объект приближается к магнитному полю, нарастают вихревые токи, что приводит к изменению индуктивности катушки
  3. При изменении индуктивности катушки цепь , который постоянно отслеживается, активирует выходной переключатель датчика

* Примечание: даже когда цель отсутствует, индуктивные датчики продолжают колебаться. Переключатель срабатывает только при наличии объекта.

Общие приложения:
  • Промышленное использование
    • Машины для автоматизации производства, которые подсчитывают продукты, передачи продуктов
  • Системы безопасности
    • Обнаружение металлических предметов, оружия, мин и т. Д.

Преимущества индуктивных датчиков приближения
  • Бесконтактное обнаружение
  • Приспособляемость к окружающей среде; устойчивость к обычным условиям, наблюдаемым в промышленных областях, таких как пыль и грязь
  • Возможность и универсальность в обнаружении металлов
  • Достаточно дешево по цене
  • Отсутствие движущихся частей, что обеспечивает более длительный срок службы

Недостатки индуктивных датчиков приближения
  • Отсутствие дальности обнаружения, в среднем макс. Дальность до 80 мм.
  • Может обнаруживать только металлические предметы.
  • На производительность могут влиять внешние условия; экстремальные температуры,
    СОЖ или химикаты

Индуктивные датчики, предлагаемые в Seeed

Grove - 2-канальный индуктивный датчик (LDC1612)

Компания Seeed предлагает этот индуктивный датчик, который позволяет реализовать преимущества индуктивного измерения в производительности и надежности при минимальных затратах и ​​потреблении энергии.

Выходя за рамки простого измерения приближения, его Arduino совместим с возможностями приложений дистанционного зондирования и многими другими возможностями!

Хотите узнать больше? Вы можете перейти на страницу нашего продукта, чтобы узнать больше!


Емкостные датчики приближения Изображение предоставлено: Automation Insights

Емкостные датчики приближения - это бесконтактные датчики, которые обнаруживают как металлические, так и неметаллические объекты, включая жидкости, порошки и гранулы. Он работает, обнаруживая изменение емкости.

Как и индуктивные датчики, он состоит из генератора, триггера Шмитта и схемы переключения выходов. Единственное отличие состоит в том, что он состоит из 2 зарядных пластин (1 внутренняя, 1 внешняя) для емкостного заряда:

  • Внутренняя пластина, подключенная к генератору
  • Внешняя пластина (электроды датчика), используемая в качестве чувствительной поверхности

Как работают емкостные датчики приближения?
  1. Емкостный датчик приближения создает электростатическое поле
  2. Когда объект (проводящий / непроводящий) приближается к чувствительной области, емкость обеих пластин увеличивается, что приводит к усилению амплитуды генератора
  3. Полученное усиление амплитуды запускает переключатель выхода датчика

* Примечание: емкостные датчики колеблются только при наличии целевого объекта

Общие приложения:
  • Промышленное использование
    • Машины для автоматизации производства, которые подсчитывают продукцию, перемещение продукции
    • Процессы розлива, трубопроводы, чернила и т. Д.
    • Уровень, состав и давление жидкости
  • Контроль влажности
  • Неинвазивное обнаружение содержимого
  • Сенсорные приложения

Преимущества емкостных датчиков приближения
  • Бесконтактное обнаружение
  • Широкий спектр материалов, которые можно обнаружить
  • Способен обнаруживать объекты через неметаллические стены с широким диапазоном чувствительности
  • Хорошо подходит для использования в промышленных условиях
  • Содержит потенциометр, который позволяет пользователям для регулировки чувствительности датчика таким образом, чтобы обнаруживались только нужные объекты
  • Отсутствие движущихся частей, что обеспечивает более длительный срок службы

Недостатки емкостных датчиков приближения
  • Относительно низкий диапазон, но с постепенным увеличением по сравнению с индуктивными датчиками
  • Более высокая цена по сравнению с индуктивными датчиками

Емкостные датчики, предлагаемые в Seeed
Grove - емкостной датчик влажности (коррозионно-стойкий)

Поскольку мы теперь поняли, что емкостные датчики приближения могут контролировать влажность, нам, конечно же, понадобится датчик для его применения!

Вот где на сцену выходит Grove - емкостной датчик влажности (устойчивый к коррозии). Это датчик влажности почвы, основанный на изменении емкости. По сравнению с резистивными датчиками он не только устойчив к коррозии, но и предлагает широкий спектр применения!

Хотите узнать больше? Перейдите на страницу нашего продукта здесь!

Grove - 12-клавишный емкостный датчик касания I2C V2 (MPR121)

Нужен модуль, который делает больше, чем просто емкостное определение приближения? Мы получили именно это!

The Grove - 12-клавишный емкостный датчик касания I2C V2 (MPR121) - это модуль 3-в-1 со следующими функциями: определение емкости, датчик касания и датчик приближения.

Чтобы узнать о нем больше информации, перейдите на страницу нашего продукта здесь!


Ультразвуковые датчики приближения Ультразвуковой датчик расстояния

Третий в этом списке - ультразвуковые датчики приближения, обнаруживающие присутствие объектов посредством излучения высокочастотного ультразвукового диапазона. Это происходит за счет преобразования электрической энергии. Подобно емкостным датчикам, он может обнаруживать твердые, жидкие, гранулированные или гранулированные объекты.

Пожалуй, самый простой из всех, он состоит только из ультразвукового передатчика и ультразвукового приемника.

Как работает ультразвуковой датчик приближения?
  1. Звуковой преобразователь излучает звуковые волны
  2. Звуковые волны отражаются от объекта
  3. Отразившаяся волна возвращается к датчику
  4. Время, необходимое для излучения и приема звуковых волн, затем используется для определения расстояния / близости

Общие приложения
  • Измерение расстояния
  • Анемометры для определения скорости и направления ветра
  • Автоматизация производственных процессов
  • Обнаружение жидкостей
  • Беспилотные летательные аппараты (БПЛА) для мониторинга объектов
  • Робототехника

Преимущества ультразвуковых датчиков приближения
  • Бесконтактное обнаружение
  • Не зависит от цвета и прозрачности объекта
  • Не зависит от внешних условий окружающей среды, надежное решение
    • Хорошо работает в местах с экстремальными условиями
    • Можно использовать в темноте
  • Низкое потребление тока

Недостатки ультразвуковых датчиков приближения
  • Ограниченная дальность обнаружения, хотя и более высокая по сравнению с индуктивными и емкостными датчиками
  • Не работает в вакууме, так как ультразвуковые датчики работают с помощью звуковых волн
  • Невозможно измерить расстояние до мягких объектов или объектов с экстремальной текстурой

Ультразвуковые датчики, предлагаемые в Seeed
Grove - ультразвуковой датчик: Улучшенная версия HC-SR04

Сделанный со значительными преимуществами по сравнению с традиционным ультразвуковым датчиком HC-SR04, Grove - Ultrasonic Sensor является идеальным ультразвуковым модулем не только для определения приближения, но и для измерения расстояния и ультразвукового датчика. также!

Хотите узнать больше? Вы можете ознакомиться со следующими ресурсами:


ИК датчик приближения

IR, сокращенно инфракрасный, обнаруживает присутствие объекта, испуская луч инфракрасного света. Он работает аналогично ультразвуковым датчикам, но вместо использования звуковых волн передается ИК-излучение.

Инфракрасные датчики приближения состоят из излучающего ИК-светодиода и светового датчика для обнаружения отражения. Он имеет встроенную схему обработки сигнала, которая определяет оптическое пятно на PSD.

Как работают ИК-датчики приближения?
  1. Инфракрасный свет излучается ИК-излучателем светодиода
  2. Луч света попадает на объект и отражается обратно под углом
  3. Отраженный свет достигает светового детектора
  4. Датчик в световом детекторе определяет положение / расстояние отражающего объекта

Общие приложения
  • Измерение расстояния
  • Счетчик предметов; когда объект отсекает излучаемый свет, он считается за единицу.
  • Системы безопасности, такие как наблюдение, охранная сигнализация и т. д.
  • Приложения для мониторинга и управления

Преимущества инфракрасных датчиков приближения
  • Бесконтактное обнаружение
  • Применимо для использования в дневное и ночное время
  • Защищенная связь через линию прямой видимости
  • В отличие от ультразвуковых датчиков приближения возможность измерения расстояния до мягких объектов
  • Точность инфракрасного датчика не подвержена коррозии или окислению

Недостатки ИК-датчиков приближения
  • Под влиянием условий окружающей среды и твердых предметов, что подразумевает невозможность использования через стены или двери
  • Требуется прямая видимость между передатчиком и приемником для связи
  • Производительность снижается на больших расстояниях

Инфракрасный датчик приближения, предлагаемый в Seeed
Grove - Инфракрасный датчик приближения 80 см

Основанный на SHARP GP2Y0A21, этот ИК-датчик приближения является популярным выбором, который я рекомендую всем, кто ищет более точные измерения расстояния, помимо ваших альтернатив.

Этот инфракрасный датчик приближения, упакованный в небольшой корпус с низким энергопотреблением, обеспечивает непрерывное считывание расстояния в диапазоне от 10 см до 80 см!

Хотите узнать больше? Вы можете ознакомиться со следующими ресурсами:


Как выбрать подходящий датчик приближения

Теперь, чтобы помочь вам выбрать подходящий из четырех, я предоставил критерии, которые вы должны учитывать при выборе датчика приближения.

Однако, как всегда, вам нужно сначала принять во внимание предполагаемую цель; В первую очередь, для чего вы пытаетесь его использовать.

Датчик приближения Crieria Как выбрать Пригодность датчика
Требования к объекту Взгляните на объект, который вы планируете использовать датчик приближения на
. Учитывайте следующие факторы:
Цвет объекта
Форма объекта
Материал объекта
Наиболее подходит для сложных объектов:
ИК-датчик приближения

Не подходит для сложных объектов:
Ультразвуковой датчик приближения

Среда зондирования Взгляните на окружающую среду, в которой вы собираетесь ощущать свой объект на
. Учитывайте следующие факторы:
Чистота
Температура
Влажность
Подходит для суровых условий:
Емкостный (наиболее подходящий)
Индуктивный
Ультразвуковой

Не подходит для суровых условий:
ИК-датчик приближения

Дальность / расстояние срабатывания Посмотрите, будет ли ваш объект размещен близко к лицевой стороне датчика
Примите во внимание следующие факторы:
Расстояние между размещенным объектом и датчиком (далеко или близко)
Подходит для обнаружения на близком расстоянии:
Индуктивные и емкостные датчики приближения

Подходит для обнаружения на большом расстоянии:
Ультразвуковые и инфракрасные датчики приближения

Еще один фактор, на который стоит обратить внимание, - это электрическая система, с которой вы интегрируете датчик приближения.Будь то электрическая нагрузка (NPN / PNP) или напряжение питания (AC / DC), датчик должен работать с системой управления, которую вы используете.


Почетные грамоты

Теперь, когда я рассмотрел критерии для рассмотрения датчика приближения, вот список некоторых почетных упоминаний, на которые все же стоит обратить внимание!

Фотоэлектрический датчик приближения

Фотоэлектрические датчики приближения - это датчики, в которых используется высококачественная фотоэлектрическая технология, они излучают световой луч, способный обнаруживать любые объекты!

Имеются следующие 3 разные модели; Отражение, пересечение луча и светоотражение.Каждая модель предлагает различные методы излучения света, хотя все они очень эффективны, когда дело доходит до обнаружения на расстоянии.

Если вас интересует такая технология определения приближения, вы можете проверить этот датчик, который объединяет его в небольшой корпус:

Инфракрасный датчик расстояния PSK-CM8JL65-CC5

Магнитный датчик приближения

Магнитные датчики приближения - это бесконтактные устройства, используемые для обнаружения магнитных объектов на большом расстоянии. Типичный включает стекло и металлическое лезвие, что позволяет быстро намагничивать!

Хотя он просто чувствует магниты, он по-прежнему хорош своей невысокой стоимостью, большой дальностью действия и небольшими размерами.

Если вам нравится один и вы хотите узнать о нем больше, вы можете проверить это:

Grove - 12-битный магнитный датчик поворота / энкодер (AS5600)

Основанный на A5600, этот магнитный датчик положения не только способен бесконтактно определять приближение, но и обладает значительными преимуществами по сравнению с обычными энкодерами.Точный, программируемый и экономичный - это вариант, который стоит рассмотреть!

Хотите узнать больше? Вы можете перейти на страницу нашего продукта для получения дополнительной информации!

LiDAR Датчик приближения

LiDar, сокращенно от Light Detection and Ranging, представляет собой высокотехнологичную сенсорную технологию, которая обеспечивает превосходный максимальный диапазон обнаружения с высокой частотой обновления. Единственный главный недостаток - это стоимость, которая может оказаться слишком высокой для среднего потребителя.

Не бойтесь, компания Seeed предлагает очень доступный миниатюрный датчик приближения LiDAR!

Хотите узнать об этом больше? Вы можете перейти на страницу нашего продукта!

Сводка

Подводя итог, вот датчики приближения по сравнению с их рекомендуемым использованием:

Индуктивная Емкостная Ультразвуковая ИК
Обнаруживаемый объект Только металл Металлические и неметаллические объекты
Включая жидкость, порошки и гранулы
Объект с простыми поверхностями Объект с простые / сложные поверхности
Диапазон чувствительности Короткий Короткий Длинный Длинный
Применения Промышленное использование:
Машины, автоматизация
Промышленное использование:
Машины, автоматика
Жидкость и влага

Датчик касания

Измерение расстояния
Анемометры для определения скорости и направления ветра
Автоматизация производственных процессов
Обнаружение жидкостей
Беспилотные летательные аппараты (БПЛА) для наблюдения за объектами
Робототехника
Счетчик предметов
Системы безопасности, такие как системы наблюдения, ограждения сигнализация и др.
Приложения для мониторинга и управления
Окружающая среда Подходит для использования в суровых условиях окружающей среды
(в определенной степени)
Чрезвычайно подходит для использования в суровых условиях окружающей среды Подходит для суровых условий окружающей среды
(Не подходит для используется в вакууме)
Не подходит для использования в суровых условиях окружающей среды

Для совместимости датчика приближения с Arduino вы можете рассмотреть рекомендуемые продукты Seeed, охватываемые каждым типом датчика приближения! Это сэкономит ваше время, пытаясь сделать его самостоятельно!

  • Рекомендация индуктивного датчика:
  • Рекомендация емкостного датчика:
  • Рекомендация ультразвукового датчика:
  • Рекомендация ИК-датчика:

Пожалуйста, следите за нами и ставьте лайки:

Теги: емкостный датчик приближения, расстояние, индуктивный датчик приближения, ИК-датчик приближения, магнитный датчик приближения, фотоэлектрический датчик приближения, приближение, датчик расстояния приближения, Датчик приближения, датчик приближения arduino, сравнение датчиков приближения, руководство по датчику приближения, среднее значение датчика приближения, датчик , типы датчиков приближения, ультразвуковой датчик приближения, ультразвуковой датчик, что такое датчик приближения

Продолжить чтение

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *