Импульсный блок питания на tl494 схема – Импульсный лабораторный блок питания на TL494

TL494 в полноценном блоке питания

РадиоКот >Схемы >Питание >Блоки питания >

TL494 в полноценном блоке питания

Прошло больше года как я всерьез занялся темой блоков питания. Прочитал замечательные книги Марти Браун "Источники питания" и Семенов "Силовая электроника". В итоге заметил множество ошибок в схемах из интернета, а в последнее время и только и вижу жестокое издевательство над моей любимой микросхемой TL494.

Люблю я TL494 за универсальность, наверное нету такого блока питания, который невозможно было бы на ней реализовать. В данном случае я хочу рассмотреть реализацию наиболее интересной топологии "полумост". Управление транзисторами полумоста делается гальванически развязанным, это требует немало элементов, впринципе преобразователь внутри преобразователя. Несмотря на то, что существует множество полумостовых драйверов, использование в качестве драйвера трансформатора (GDT) списывать еще рано, этот способ наиболее надежный. Бутстрепные драйвера взрывались, а вот взрыва GDT я еще не наблюдал. Драйверный трансформатор представляет собой обычный импульсный трансформатор, рассчитывается по тем же формулами как и силовой учитывая схему раскачки. Часто я видел использование мощных транзисторов в раскачке GDT. Выходы микросхемы могут выдать 200 миллиампер тока и в случае грамотно построенного драйвера это очень даже много, лично я раскачивал на частоте в 100 килогерц IRF740 и даже IRFP460. Посмотрим на схему этого драйвера:

т
Данная схема включается на каждую выходную обмотку GDT. Дело в том, что в момент мертвого времени первичкая обмотка трансформатора оказывается разомкнутой, а вторичные не нагруженными, поэтому через саму обмотку разряд затворов будет идти крайне долго, введение подпирающего, разрядного резистора будет мешать быстро заряжаться затвору и кушать много энергии впустую. Схема на рисунке избавлена от этих недостатков. Фронты замеренные на реальном макете составили 160нс нарастающий и 120нс спадающий на затворе транзистора IRF740.
Аналогично построены дополняющие до моста транзисторы в раскачке GDT. Применение раскачки мостом обусловлено тем, что до срабатывания триггера питания tl494 по достижении 7 вольт, выходные транзисторы микросхемы будут открыты, в случае включения трансформатора как пуш-пул произойдет короткое замыкание. Мост работает стабильно.

Диодный мост VD6 выпрямляет напряжение с первичной обмотки и если оно превысит напряжение питания то вернет его обратно в конденсатор С2. Происходит это по причине появления напряжения обратного хода, всетаки индуктивность трансформатора не бесконечна.

Схему можно питать через гасящий конденсатор, сейчас работает 400 вольтовый к73-17 на 1.6мкф. диоды кд522 или значительно лучше 1n4148, возможна замена на более мощные 1n4007. Входной мост может быть построен на 1n4007 или использовать готовый кц407. На плате ошибочно применен кц407 в качестве VD6, его туда ни в коем слуdчае недопустимо ставить, этот мост должен быть выполнен на вч диодах. Транзистор VT4 может рассеивать до 2х ватт тепла, но играет он чисто защитную роль, можно применить кт814. Остальные транзисторы кт361, причем крайне нежелательна замена на низкочастотные кт814. Задающий генератор tl494 настроен здесь на частоту в 200 килогерц, это означает что в двухтактном режиме получим 100 килогерц. Мотаем GDT на ферритовом кольце 1-2 сантиметра диаметром. Провод 0.2-0.3мм. Витков должно быть в десяток раз больше чем рассчетное значение, это сильно улучшает форму выходного сигнала. Чем больше намотато - тем меньше нужно подгружать GDT резистором R2. Я намотал на кольце внешним диаметром 18мм 3 обмотки по 70 витков. Связано завышение числа витков и обязательная подгрузка с треугольной составляющей тока, она уменьшается с увеличеним витков, а подгрузка просто уменьшает его процентное влияние. Печатная плата прилагается, однако не совсем соответсвует схеме, но основные блоки на ней есть плюс добавлен обвес одного усилителя ошибки и последовательный стабилизатор для запитки от трансформатора. Плата выполнена под монтаж в разрез платы силовой части.

Файлы:
Файл принципиальной схемы
Фотография

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Мощный блок питания на микросхеме TL494 | РадиоДом

Краткие данные устройства:
Входное напряжение: 220 вольт
Частота сети: 50 герц.
Выходная мощность: 400 ватт.
Внутренняя частота преобразования: 30000 герц.
Работает устройство так: сигналы для управления ключами генерирует задающий генератор собранный на импортной микросхеме TL494, частота импульсов управления 30000 герц. Импульсы управления с выходов микросхемы подаются поочередно на транзисторные ключи VT1,VT2 предварительного формирователя импульсов для выходных силовых ключей.
Ключи VT1,VT2 нагружены трансформатором управления TR1, который и формирует импульсы управления мощными выходными ключами VT3, VT4, формирователь необходим для гальванической развязки затворных цепей выходного каскада. ИБП построен по полу мостовой схеме, средняя точка для полумоста создается конденсаторами С3,С4, которые одновременно служат сглаживающим фильтром выпрямленного диодным мостом VDS1 питающего напряжения сети.
Стабилитрон VD1 ограничивает напряжение первичного запуска до 12 вольт. Вторичное напряжение питания для РЭА снимается с обмотки 3 трансформатора TR2, выпрямляется диодами Шотки VD3, VD4 и подается на сглаживающие конденсаторы С9 и С10. Если нужное напряжение питания более 35 вольт, включаются по два диода последовательно.

Сам прибор упакован в корпусе БП АТХ. Силовые транзисторы VT3,VT4 закрепляем на алюминиевые ребристые пластины площадью 60 кв.см.
VT1 и VT2: IRFZ34.
VT3 и VT4: IRFP460.
Параметры обмоток TR1 и TR2:
TR1, все четыре обмотки содержат по 50 витков провода 0.52 мм
TR2, Обмотка 1 наматывается проводом 0.7 мм 110 витков. Обмотка 3 содержит 12 витков проводом 0.7 мм. Обмотка 2 наматывается в зависимости от необходимого вторичного напряжения питания.

radiohome.ru

cxema.org - Мощный стабилизатор тока и напряжения на TL494

Мощный стабилизатор тока и напряжения на TL494

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат.  Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант - это попытка создания простого и достаточно мощного стабилизатора.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе  до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт.  Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

Устройство не боится коротких замыканий, просто сработает ограничение тока.

Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор,  и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное - микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков  намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

Подробное описание и испытания блока можно посмотреть в видео

Печатная плата тут 

vip-cxema.org

TL494 в полноценном блоке питания. Часть 2

РадиоКот >Схемы >Питание >Блоки питания >

TL494 в полноценном блоке питания. Часть 2

Итак. Плату управления полумостовым инвертором мы уже рассмотрели, пришло время применить ее на практике. Возьмем типовую схему полумоста, особых сложностей в сборке она не вызывает. Транзисторы подключаются к соответсвующим выводам платы, подается дежурное питание 12-18 вольт т.к. последовательно включено 3 диода напряжение на затворах упадет на 2 вольта и получим как раз нужные 10-15 вольт.

Рассмотрим схему:


Трансформатор рассчитывается программой или упрощенно по формуле N=U/(4*пи*F*B*S). U=155В, F=100000 герц с номиналами RC 1нф и 4.7кОм, B=0,22 Тл для среднестатистического феррита не зависимо от проницаемости, из переменного параметра остается только S - площадь сечения бочины кольца или среднего стержня Ш магнитопровода в метрах квадратных.

Дроссель рассчитывается по формуле L=(Uпик-Uстаб)*Тмертв/Iмин. Однако формула не очень удобная - мертвое время зависит от самой разности пикового и стабилизированного напряжения. Стабилизированное напряжение является средним арифметическим выборки с выходных импульсов (не путать со среднеквадратичным). Для регулируемого в полном диапазоне блока питания формулу можно переписать в виде L= (Uпик*1/(2*F))/Iмин. Видно что, в случае полной регулировки напряжения индуктивность нужна тем больше, чем меньше минимальное значение тока. Что-же произойдет если блок питания нагружен менее чем на ток Iмин.. А все очень просто - напряжение будет стремиться к пиковому значению, оно как бы игнорирует дроссель. В случае регулировки обратной связью, напряжение не сможет подняться, вместо этого импульсы будут задавлены так, что останутся только их фронты, стабилизация будет идти за счет нагрева транзисторов, по сути линейный стабилизатор. Считаю верным принять Iмин таким, чтобы потери линейного режима были равны потерям при максимальной нагрузке. Таким образом регулировка сохраняется в полном диапазоне и не опасна для блока питания.

Выходной выпрямитель построен по двухполупериодной схеме со средней точкой. Такой подход позволяет снизить вдвое падение напряжения на выпрямителе и позволяет применить готовые диодные сборки с общим катодом, которые по цене не дороже одиничного диода, например MBR20100CT или  30CTQ100. Первые цифры маркировки означают ток 20 и 30 ампер соответственно, а вторые напряжение 100 вольт. Стоит учесть, что на диодах будет двойное напряжение. Т.е. мы получаем на выходе 12 вольт, а на диодах будет 24 при этом.

Транзисторы полумоста.. А тут стоит подумать что нам нужно. Относительно маломощные транзисторы типо IRF730 или IRF740 умеют работать на очень высоких частотах, 100 килогерц для них еще не предел, к тому же мы при этом не рискуем схемой управления, построенной на не очень то мощных деталях. Для сравнения емкость затвора 740 транзистора всего 1,8нф, а IRFP460 целых 10нф, это означает в 6 раз больше мощности пойдет на переливания емкости каждый полупериод. Плюс ко всему это затянет фронты. Для статических потерь можно записать P=0.5*Rоткр *Iтр^2 на каждый транзистор. Словами - сопротивление открытого транзистора умноженное на квадрат тока через него, деленное на два. И эти потери обычно составляют несколько ватт. Другое дело динамические потери, это потери на фронтах, когда транзистор проходит через ненавистный всем режим А, и этот злой режим вызывает потери, грубо описываемые, как максимальная мощность умноженная на отношение длительности обеих фронтов к длительности полупериода, деленное на 2. На каждый транзистор. И эти потери куда больше чем статические. Поэтому, если взять транзистор мощнее, когда
можно обойтись более легким вариантом, можно даже проиграть в КПД, так что не злоупотребляем.

Глядя на входные и выходные емкости, может возникнуть желание поставить их чрезмерно большими, и это вполне логично, ведь несмотря на рабочую частоту блока питания в 100 килогерц, мы всетаки выпрямляем сетевое напряжение 50 герц, и в случае недостаточной емкости мы на выходе получим тот же выпрямленный синус, он замечательно модулируется и демодулируется обратно. Так что пульсации стоит искать именно на частоте 100 герц. Тем кто боится "вч шумов", уверяю, их там нету ни капли, проверено осциллографом. Но увеличение емкостей может привести к огромным пусковым токам, а они обязательно вызовут повреждени входного моста, а завышенные  выходные емкости еще и к взрыву всей схемы. Чтобы исправить ситуацию я внес некоторые дополнения в схему - реле контроля заряда входной емкости и мягкий пуск на том же реле и конденсаторе С5. За номиналы не отвечаю, могу сказать только что C5 будет заряжаться через резистор R7, а оценить время заряда можно по формуле T=2пRC, с той же скоростью будет заряжаться выходная емкость, зарядка стабильным током описывается U=I*t/C, хоть не точно, но оценить бросок тока в зависимости от времени можно. Кстати, без дросселя это не имеет смысла.

Посмотрим на то что вышло после доработки:


А давайте представим, что блок питания сильно нагружен и в тоже время выключен. Мы его включаем, а зарядка конденсаторов не происходит, просто горит резистор на заряде и всё. Беда, но решение есть. Вторая контактная группа реле нормально замкнутая, а если 4 вход микросхемы замкнуть со встроенным стабилизатором 5 вольт на 14 ноге, то длительность импульсов снизится до нуля. Микросхема будет выключена, силовые ключи заперты, входная емкость зарядится, щелкнет релюшка, начнется заряд конденсатора C5, ширина импульсов медленно подымется до рабочей, блок питания полностью готов к работе. В случае снижения напряжения в сети, произойдет отключение реле, это приведет к отключению схемы управления. По восстановлению напряжения процесс запуска снова повторится. Вроде как грамотно выполнил, если что-то упустит, буду рад любым замечаниям.

Стабилизация тока, она здесь играет больше защитную роль, хотя возможна регулировка переменным резистором. Реализовано через трансформатор тока, потому что, адаптировалось под блок питания с двухполярным выходом, а там то не все просто. Расчет этого трансформатора выполняется очень просто - шунт сопротивлением в R Ом переносится на вторичную обмотку с количеством витков N как сопротивление Rнт=R*N^2, можно выразить напряжение из соотношения числа витков и падения на эквивалентном шунте, оно должно быть больше чем напряжение падения диода. Режим стабилизации тока начнется тогда, когда на + входе операционника напряжение попытается превысить напряжение на - входе. Исходя из этого расчет. Первичная обмотка - провод протянутый через кольцо. Стоит учесть, что обрыв нагрузки трансформатора тока может привести к появлению огромных напряжений на его выходе, по крайней мере достаточных для пробоя усилителя ошибки.

Конденсаторы C4 C6 и резисторы R10 R3 образуют дифференциальный усилитель. За счет цепочки R10 C6 и отзеркаленой R3 C4 получаем треугольный спад амплитудно частотной характеристики усилителя ошибки. Это выглядит как медленное изменение ширины импульсов в зависимости от тока. С одной стороны это снижает скорость обратной связи, с другой стороны делает систему устойчивой. Здесь главное обеспечить уход ачх ниже 0 децибел на частоте не более 1/5 частоты шима, такая обратная связь достаточно быстрая, в отличие от обратной связи с выхода LC фильтра. Частота начала среза по -3дб рассчитывается как F=1/2пRC где R=R10=R3; C=C6=C4, за номиналы на схеме не отвечаю, не считал. Собственное усиление

схемы считается как отношение максимально возможного напряжения (мертвое время стремится к нулю) на конденсаторе С4 к напряжению встроенного в микросхему генератора пилы и переведенное в децибелы. Оно подымает ачх замкнутой системы вверх. Учитывая то что наши компенцисующие цепочки дают спад 20дб на декаду начиная с частоты 1/2пRC и зная этот подъем несложно найти точку пересечения с 0дб, которая должна быть не более чем на частоте 1/5 рабочей частоты, т.е. 20 килогерц.Стоит заметить, что трансформатор не следует мотать с огромным запасом по мощности, наоборот ток кз должен быть не особо большим, иначе защита даже столь высокочастотная не сможет сработать вовремя, ну а вдруг там килоампер выскочит.. Так что и этим не злоупотребляем.

На сегодня всё, надеюсь схема будет полезна. Ее можно адаптировать под питалово шуруповерта, или сделать двухполярный выход для питания усилителя, так же возможен заряд аккумуляторов стабильным током. По полной обвязке tl494 обращаемся в прошлой части, из дополнений к ней только конденсатор плавного пуска C5 и контакты реле на нем же. Ну и важное замечание - контроль напряжения на конденсаторах полумоста вынудил связать схему управления с силой так, что это не позволит использовать дежурное питание с гасящим конденсатором, по крайней мере с мостовым выпрямлением. Возможное решение - однополупериодный выпрямитель типо диодный полумост или трансформатор в дежурку.

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Зарядное из АТ блока питания 200 Вт на TL494

При переделке некоторых старых блоков АТ в зарядные устройства, можно столкнуться с некоторыми проблемами, в которых новичку тяжело разобраться. Мы попытаемся сегодня уделить немного времени таким моментам и расскажем, как можно сделать зарядное из АТ блока питания 200 Вт на основе ШИМ TL494. Опытом переделки поделится с вами Ильсур Валитов с Ульяновска.

Зарядное из АТ блока питания 200 Вт на TL494

Немножко теории. ШИМ TL494 был, есть и будет популярен среди радиолюбителей, на его основе очень часто встречаются как старые АТ блоки, так и современные АТХ. Вся суть переделок подобных БП заключается в корректировке режима работы TL494 для поднятия выходного напряжения блока до 14,4 В.

Если смотреть типовую схему включения TL494, то выходное напряжение блока будет зависеть от делителя, состоящего с резисторов R8 и R9. Увеличивая сопротивление R8, можно увеличивать и выходное напряжение БП. Проще говоря, ШИМ будет стараться поддерживать опорное напряжение 2,5 В на этом делителе, к которому подключена 1-я ножка TL494.





Все было бы хорошо, но существуют АТ блоки, где такой делитель подключен только к шине + 5 В.

В таком блоке питания получается, что стабилизирована только шина +5 В. Если мы, с помощью резистора R7 (см. уже схему блока) увеличивая его сопротивление, добьемся выходного напряжения 14,4 В на шине +12 В, то при подключении АКБ зарядный ток будет составлять лишь 1-1,5 А. Этого явно мало, т.к. блок способен выдать больше. Для этого нам нужно стабилизировать шину +12 В, к которой будем подключать АКБ.

Выпаиваем R7 (нумерация деталей на схеме не совпадает с нумерацией на плате, но номиналы деталей соответствуют схеме).

Вместо него устанавливаем подстроечный резистор. Ножку резистора, которая шла на шину +5 В, подключаем к шине +12 В.

Подстроечный резистор настраиваем на 24 кОм, т.к. при таком его сопротивлении TL494 необходимо будет подать 14,4 В на выход БП, чтобы на делителе получилось 2,5 В.

Теперь с помощью подстроечного резистора можно немного откорректировать выходное напряжение.

Зарядное из АТ блока питания готово. Ну и, конечно, финальное фото процесса зарядки. При подключении сильно посаженной АКБ зарядные токи могут достигать 5 -7 А и выше, по мере заряда батареи ток будет падать.

Процесс зарядки можно будет считать оконченным, когда зарядный ток снизится до 0,5 А.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Самодельный лабораторный блок питания: vladikoms — LiveJournal

Когда то у меня был советский источник питания Б5-47, он очень громко и противно пищал, грелся, периодически из него шел дым. Таким образом пользование сей девайсом более 5 минут причиняло просто невыносимые моральные страдания. Явно он был неисправен. Вскрытие показало что лучше его сразу выбросить и забыть. К тому же его интерфейс управления мне никогда не нравился, юзабельность тоже оставляла желать лучшего. Понятно, что без нормального БП жизнь скучна, решил быстренько сделать БП из того что было под рукой. В итоге изготовление данной конструкции по разным причинам затянулось аж на 2 года. Собственно вот результат:

P1020361c


Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное - мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это - напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.

hy3005d

Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи - низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.

Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.

Вкратце о конструкции:

Принципиальная схема (кликабельно)

Power_supply_schematic.GIF

Как уже говорил - девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.

Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.
D1 - TL494, VD1 - диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 - весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 - взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.

Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 - при входном напряжении около 40 В он начинал ужасно глючить - просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.

Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей - в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части - слаботочную и силовую.

P1020330c

Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения - TL494 c обвязкой, и плата сигнализации - включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её "до ума". Там тоже были свои заморочки.

P1020338

Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.

P1020333c

Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипед

P1020364c

Если кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.

Обновление 09.01.2019

По прошествии времени пользователи в комментариях поделились своими модификациями блоков питания. Рассмотрим подробнее предложенные варианты. Обсуждение всех конструкций по-прежнему доступно в комментариях

Модификация № 1

Предложена acxat_smr

Принципиальная схема

New_bp.jpg

Драйвер полевика (точнее, двух параллельно - выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.
TL494 запитана от отдельного источника 24 в.
Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.
Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.
Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.

Внешний вид конструкции

New_bp.jpg

New_bp.jpg

Модификация № 2

Предложена rond_60

Принципиальная схема

New_bp.jpg

Недавно натолкнулся на эту статью про ЛБП на TL494. Загорелся желанием собрать БП по этой схеме, тем более уже давно валялся трансформатор от польского блока питания на 24в и 4а. Вторичка выдает 34в переменки, после моста с кондером 10000х63в - 42в. Собрал навесным монтажом по этой схеме, включил и сразу дым из 494-й. Все проверил, заменил микросхему, включаю - на холостом работает, на выходе напряжение пытается регулироваться, прикоснулся к 494 - горячая! Добавил номинал 4.7к резистору R1 - блок работает, но стоило подключить лампочку 24в 21вт, как взорвалась микросхема в районе 9, 10 ножки. Отмотал с вторичной обмотки транс-ра несколько витков (снизил напряжение на 4 вольта) и все равно горят микросхемы. Питание на 8,11,12 ноги подавал 12в с другого БП, мотал дроссель разным по диаметру проводом и количеством витков - толку нет (сжег 6 микрух). У меня есть кой - какой опыт по переделке компьютерных блоков в зарядные устройства и регулируемые блоки питания на основе TL494 и ее аналогах. Начал собирать обвязку ШИМа по схемам к комповым БП. Изменил управление силовым транзистором, подал питание на ШИМ от отдельного источника на 12в (переделал зарядку от сотового телефона) и все - блок заработал! Пару дней настраивал на регулировки и свист дросселя (оссцила нет) теперь надо отлутить плату управления и можно собирать в корпус.

Сегодня настраивал свой БП. Спасибо большое shc68 за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).
Как рекомендовал shc68 конденсатор С15 действительно жизненно важный. Еще с помощью динамика определил бракованный потенциометр на регулировку тока. При его вращении из динамика слышался шорох и треск. После его замены и установки доп. конденсаторов из динамика тишина (чуть слышное шипение) при разной нагрузке на выходе БП.
Делал тест на нагрев деталей блока. При такой нагрузке в течении 1.5 часов только транзистор грелся (трогал пальцем его корпус), а радиатор, где он установлен, чуть теплый (обдувается вентилятором). Дроссель - холодный, трансформатор тоже.

Внешний вид конструкции

PS03.JPG

PS05.JPG

PS04.JPG

PS02.JPG

PS01.JPG

Модификация № 3

Предложена andrej_l

За основу была взята схема с полевиком https://ic.pics.livejournal.com/rond_60/78751049/3328/3328_original.jpg
При отладке появились проблемы с управлением полевика через трансформатор. На небольших токах нагрузки он работал, при увеличении более 2 ампер происходил срыв и падение тока (при скважности ШИМ > 30%). Пришлось убрать трансформатор и вместо него поставить оптодрайвер ACPL3180 с питанием от отдельной обмотки трансформатора.
Сделал 2 независимых канала с регулировкой напряжения до 30V и ограничения тока до 10A. Второй канал запустился сразу, только пришлось подстроить максимальные значения напряжения и тока. Регулировочные резисторы - 10 оборотные
https://ru.aliexpress.com/item/Free-Shipping-3590S-2-103L-3590S-10K-ohm-Precision-Multiturn-Potentiometer-10-Ring-Adjustable-Resistor/32673624883.html?spm=a2g0s.11045068.rcmd404.3.de3456a4CSwuV3&pvid=b572f0cb-2d84-4353-a657-a28824b99672&gps-id=detail404&scm=1007.16891.96945.0&scm-url=1007.16891.96945.0&scm_id=1007.16891.96945.0
В качестве V-A метра применён китайский модуль
https://ru.aliexpress.com/item/DC-100-10A-50A-100A/32834619911.html?spm=a2g0s.9042311.0.0.466b33edLWGUwZ с доработкой, достигнута точность показаний 2% при больших токах и 10 мА при токах до 1А.
Радиатор на транзисторе и диоде один от компьютерного блока питания. При нагрузке на лампу 15V 150W он нагревается до 80 градусов (больше греется диод). Настроил включение вентилятора охлаждения на 50 град. (один на 2 канала)
Окончательная схема одного канала

PS01.JPG

Rшунт 0,0015 Ом - Это встроенный шунт прибора, к нему добавляются сопротивление проводов от индикатора до клемм XS104 и "-", при большом токе они оказывают значительное влияние. Провод 1,5 кв.мм
Настройка:
1 Запускаем задающий генератор на TL494 и драйвер с отключенным затвором VT101. На выходе драйвера будет ШИМ около 90%. Настраиваем частоту TL в пределах 80 - 100 кГц подбирая R107
2 Подключаем затвор транзистора (для подстраховки питание +45 подаём через токоограничивающий балласт, я брал 2 лампы 24V 150W последовательно) и смотрим выход БП. Подключаем небольшую нагрузку (я брал 100 Ом). Если напряжение на выходе регулируется то устанавливаем максимальное значение выхода с помощью R122.
3 Убираем токоограничивающий балласт, нагружаем выход сильнотоковой нагрузкой (я брал лампу 15V 150W) и настраиваем максимальный ток в нагрузке: R106 постепенно выводим в нижнее по схеме положение, подбираем R104 и R105 добиваясь срабатывания защиты по току (у меня ограничение по току 10А). При сработке токовой защиты регулировка напряжения с помощью R101 в большую сторону не приводит к его росту на выходе.
4 Узел индикации на операционнике и светодиодах не нуждается в настройке (его единственный недостаток - небольшая подсветка красного светодиода когда горит зелёный, можно исправить включив последовательно с красным обычный диод.
5 настраиваем Р101 на нужную температуру срабатывания вентилятора нагрузив блок питания на приличную нагрузку измеряя температуру диода и транзистора на радиаторе.

Внешний вид:

PS01.JPG

Осциллограммы

PS01.JPG

PS01.JPG

PS01.JPG

PS01.JPG

vladikoms.livejournal.com

Импульсный блок питания 1 кВт на TL494CN для УНЧ | РадиоДом

Параметры устройства:
Мощность нагрузки …………………………………....……………….........................1000 Вт
Напряжение на выходе ………………………………………………………………….50 вольт
Ток нагрузки на выходе…………………………………………………...........……….10 Ампер
Напряжение выхода при максимальном токе ……………...........................………48 вольт
Ток срабатывания защиты………………………………….....……приблизительно 14 Ампер
Частота устройства………………………………………….............…………………50000 герц
Конденсатор С3 обеспечивает плавный пуск устройства. При отключении питания конденсатор разряжается с помощью резистора R1. Транзисторы VT1, VT2 выполняют роль триггерной защиты.
  В цепи затворов транзисторов VT9, VT10 включены резисторы R20, R21, которые вместе с емкостями затворов образуют фильтр НЧ. Цепи R22, R23, C8, C9, VD5–VD8 также служат для уменьшения гармоник при работе преобразователя.

Элементы R6, C4 определяют частоту работы внутреннего генератора пилообразного напряжения микросхемы DA1 (при указанных на схеме частота 50000 герц). Подбором сопротивления резистора R6 и емкости конденсатора С4, возможно изменить частоту преобразователя напряжения.
Силовая часть схемы питается через сетевой фильтр С10, С11, L1, выпрямитель VD4 и конденсаторы С12, С13. Резистор R24 разряжает конденсатор фильтра в выключенном преобразователе. Микросхема DA1 и ключи на транзисторах VT3–VT8 питаются от стабилизированного источника питания на элементах Т2, VD3, C5–C7 и стабилизатора DA2.

Трансформатор Т1 преобразователя наматывают на 4-х сложенных вместе кольцах из феррита марки 2000НМ размерами К45х28х12. Моточные данные трансформатора смотрим ниже:
 

Обмотки I и II трансформатора отделяют от остальных обмоток двумя тремя слоями лакоткани.
Трансформатор Т2 используют готовый с переменным напряжением на вторичной обмотке около 16 вольт. Катушка L1 состоит из 2х20 витков, намотанных на ферритовом кольце из феррита 2000НМ размерами К31х18х7 в два провода диаметром 1 мм. Катушки L2, L3 наматывают на кусочках феррита диаметром 7…9 мм и длиной около 25 мм проводом диаметром 1,15 мм в один слой по всей длине феррита.
Конденсатор С12 набран из трех конденсаторов емкостью 220 мкФ х 400 вольт. Неэлектролитические конденсаторы любого типа, например К73-17.
VD3 – с выпрямленным током не менее 500 мА; VD4 – с выпрямленным током не менее 8 ампер и напряжением более 400 вольт.
Транзисторы BSS88 можно заменить другими подобными полевыми транзисторами с изолированным затвором и n-каналом (напряжение сток исток более 50 вольт, ток стока 0,15…0,5 ампер). Это могут быть транзисторы типов BSS123, BS108, 2SK1336 и т.п. Вместо мощных полевых транзисторов 2SK956 подойдут транзисторы типов 2SK787, IRFPE50.
Микросхема TL494CN заменима микросхемой КА7500В. Оптопару АОТ101БС можно заменить АОТ101АС, PS2501C2. В качестве микросхемы DA2 можно применить КР142ЕН8Е или 7815.
Транзисторы КТ502Е, КТ503Е заменимы КТ502Г, КТ503Г, а диоды КД510А – на КД503, КД522.
Схема достаточно сложна в изготовлении и налаживании, малоопытным радиолюбителям не просто будет попытаться довести дело до конца.

radiohome.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о