Импульсный блок питания на tl494 из деталей бп компьютера: Лабораторный блок питания из компьютерного блока на TL494

Содержание

Импульсный блок питания TL494 | Все своими руками

Обнаружена недоработка, прошу прощения, но поищите пока  себе что то другое!
Один товарищ попросил сделать для него импульсный блок питания для какой то штуки у него в гараже. Как бы питание у этого приборчика не стандартное и нужно 17-18В током до 5 А.  Что бы собрать этот блок питания,  решил использовать запчасти от старых разобранных ATX, трансформаторов таких у меня просто куча и есть с чего выбрать. Схему питальника использовал ту же, что и в прошлый раз собирал, вот ссылка на ИИП из ATX, только немного ее переделал.
Первым делом что я сделал, это немного переделал схему. Пересчитал делители на ОУ под нужные выходные напряжения, убрал фильтр на входе, ну а все остальные компоненты остались такие же.

Вот схема силовой части и драйвера

Вот схема управляющей части на TL494

Разберусь с используемыми компонентами, большинство были заказаны с Китая. Цены на товар с Китая в десятки раз дешевле чем заказывать в интернет магазинах России

Диодный мост KBU1010 заказан был с Китая
Две емкости 330мкФ 200В и шунтирующие конденсаторы 0.1мкФ 1000В из блока питания ATX, они еще нормально себя чувствуют

Силовые ключи использовал 13007 вот ссылка, мелкие 2SC945 вот ссылка
Силовой XZYEI-28C и развязывающий трансформаторWYEE-16C из ATX
Выходной сдвоенный диод S10C40 на 10А 40В из того же ATX
Дроссель для стабилизации размотал и намотал 24 витка проводом 1мм
Все резисторы  из Китая, 0,25Вт ссылка, 2Вт ссылка, подстроечный резистор 1кОм ссылка, токоизмерительный резистор  0,1Ом  ссылка
Конденсаторы электролитические разной емкости ссылка, а так же пленочные ссылка
Ну и диоды 1N4148 тоже Китай ссылка, остальные диоды были выбраны из всякого хлама
Управляющая TL494 заказана с Китая


Когда все детали определены, пора перейти к  разводке печатной платы. Снял все размеры компонентов и принялся за разводку печатки, все заняло часа 3-4.

Печатная плата силовой части и драйвера

Вот печатная плата управляющей части

Силовая часть схемы и развязывающий драйвер буду собирать на печатной плате размером 80*101мм, управляющая часть собрана на отдельном куске текстолита размерами 45*50мм.
Скачать печатную плату
Прочитайте Получить пароль от архива

Печатные платы изготавливал методом лазерной утюжки, травил раствором медного купороса на все было потрачено около часа. Причем больше времени заняла сама травка платы на подогреваемом растворе. Раствор стоит подогревать для ускорения процесса

Ну и пора переходить к сборке, печатных плат. На это было потрачено еще пару часов.
Первый пуск источника питания  как всегда через лампу, я тут описывал для чего это нужно. Далее испытания проводил уже без лампы, но через предохранитель 1,5А.  Вот что у меня получилось

С помощью подстроечного резистора установил напряжение 17,5В, в качестве нагрузки пока выступает вентилятор 12В через балластный резистор 33Ом. Забыл на плате разместить этот балластный резистор, поэтому придется навесом его оставить


Расположение всех компонентов на плате выглядит так, для разрядки высоковольтных конденсаторов балластные резисторы по 120кОм установлены с другой стороны на вывод конденсаторов


Управляющая плата установлена на коротких проводниках из медной проволоки,  на плате есть переменный резистор для точной настройки выходного напряжения


Диод и силовые ключи установлены на общий радиатор через прокладки для гальванической развязки, одного радиатора при принудительном охлаждения будет достаточно


Вот перемотанный дроссель для стабилизации напряжения

Две платы собранны максимально плотным монтажем, проверенны в условиях мастерской и готовы отправится в гараж знакомого

С ув. Эдуард

Похожие материалы: Загрузка...

Блок питания из компьютерного блока питания

Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL494 или KA7500. Другие блоки питания, к сожалению, переделать таким способом не получится.

У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.

Чтобы отключить защиту надо перерезать дорожку от Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.

Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.

Схема переделки компьютерного блока питания в зарядное устройство

Полная схема блока питания на микросхеме TL494, KA7500.

Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство

Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.

Схема подключения вольт амперметра к зарядному устройству

А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.

Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.

Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.

Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.

Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.

В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.

По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.

Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!

Или как сделать дешёвый блок питания для усилителя на 100 Вт

-А сколько будет стоить УНЧ Ватт на 300?

-Смотря для чего 🙂

-баксов *** нормальный будет.

-OMG! А подешевле никак?

-Ммммм. Надо подумать.

. И вспомнилось мне об импульсном БП, достаточно мощном и надёжном для УНЧ.

И начал я думать, как переделать его под наши нужды 🙂

После недолгих переговоров, человек, для которого всё это замышлялось сбавил планку мощности с 300 Ватт до 100-150, согласился пожалеть соседей. Соответственно импульсника на 200 Вт будет более, чем достаточно.

Как известно, компьютерный блок питания формата АТХ выдаёт нам 12, 5 и 3,3 В. В АТ блоках питания было ещё напряжение "-5 В". Нам эти напряжения не нужны.

В первом попавшемся БП, который был вскрыт для переделки стояла полюбившаяся народом микросхема ШИМ – TL494.

Блок питания этот был АТХ на 200 Вт фирмы уже не помню какой. Особо не важно. Поскольку товарищу "горело", каскад УНЧ был просто куплен. Это был моно усилитель на TDA7294, который может выдать 100 Вт в пике, что вполне устраивало. Усилителю требовалось двухполярное питание +-40В.

Убираем всё лишнее и ненужное в развязанной (холодной) части БП, оставляем формирователь импульсов и цепь ОС. Диоды Шоттки ставим более мощные и на более высокое напряжение (в переделанном блоке питания они были на 100 В). Так же ставим электролитические конденсаторы по вольтажу превосходящие требуемое напряжение вольт на 10-20 для запаса. Благо, место есть, где разгуляться.

На фото смотреть с осторожностью: далеко не все элементы стоят 🙂

Теперь основная "переделываемая деталь" – трансформатор. Есть два варианта:

  • разобрать и перемотать под конкретные напряжения;
  • спаять обмотки последовательно, регулируя выходное напряжение с помощью ШИМ

Я не стал заморачиваться и выбрал второй вариант.

Разбираем его и паяем обмотки последовательно, не забывая сделать среднюю точку:

Для этого выводы трансформатора были отсоеденены, прозвонены и скручены последовательно.

Для того, чтобы видеть: ошибся я обмоткой при последовательном соединении или нет, генератором пускал импульсы и смотрел, что получалось на выходе осциллографом.

В конце этих манипуляций я соединил все обмотки и убедился в том, что со средней точки они имеют одинаковый вольтаж.

Ставим на место, рассчитываем цепь ОС на TL494 под 2,5V с выхода делителем напряжения на вторую ногу и включаем последовательно через лампу на 100Вт. Если всё заработает хорошо – добавляем в цепочку гирлянды ещё одну, а затем ещё одну стоваттную лампу. Для страховки от несчастных разлётов деталек 🙂

Лампа, как предохранитель

Лампа должна мигнуть и потухнуть. Крайне желательно иметь осциллограф, чтобы иметь возможность посмотреть, что творится на микросхеме и транзисторах раскачки.

Попутно, тем кто не умеет пользоваться даташитами – учимся. Даташит и гугл помогают лучше форумов, если есть прокачанные навыки "гугление" и "переводчик с альтернативной точкой зрения".

Примерную схему блока питания нашёл в интернете. Схема очень даже простая (обе схемы можно сохранить в хорошем качестве):

В конечном итоге она получилась приблизительно вот такой, но это очень грубое приближение, не хватает много деталей!

Конструктив колонки был согласован и сопряжён с блоком питания и усилителем. Получилось просто и симпатично:

Справа – под обрезанным радиатором для видеокарты и компьютерным кулером находится усилитель, слева – его блок питания. Блок питания выдавал стабилизированные напряжения +-40 В со стороны плюсового напряжения. Нагрузка была что-то около 3,8 Ом (в колонке два динамика). Поместилось компактно и работает на ура!

Изложение материала достаточно не полное, упустил много моментов, так как дело было несколько лет назад. В качестве помощи к повторению могу порекомендовать схемы от мощных автомобильных усилителей низкой частоты – там есть двухполярные преобразователи, как правило, на этой же микросхеме – tl494.

Фото счастливого обладателя этого девайса 🙂

Так символично держит эту колонку, почти как автомат АК-47. Чувствует надёжность и скорый уход в армию 🙂

Напоминаем, что нас можно найти также в группе Вконтакте, где на каждый вопрос обязательно будет дан ответ!

Наша группа Вконтакте, где можно задать вопрос, на который всегда будет дан ответ!

9zip.ru Радиотехника, электроника и схемы своими руками Регулируемый блок питания из блока питания компьютера ATX

Если у Вас есть ненужный блок питания от компьютера ATX, то его можно легко превратить в лабораторный импульсный регулируемый блок питания, с регулировкой не только напряжения, но и тока, а это значит, что его можно использовать, например, для зарядки или восстановления аккумуляторов.

Блок питания имеет следующие параметры:

  • Напряжение – регулируемое, от 1 до 24В
  • Ток – регулируемый, от 0 до 10А

Возможны и другие пределы регулировки, по Вашей необходимости.

Для переделки подойдёт любой блок питания ATX, собранный на ШИМ-контроллере TL494. Часто в блоках питания применяется аналог этой микросхемы – KA7500.


Схемы большинства блоков питания похожи, и даже если Вы не смогли найти схему конкретно Вашего – ничего страшного. Первостепенная задача – выпаять из платы вторичные цепи после силового трансформатора, а также цепи, управляющие работой микросхемы TL494. На схеме ниже эти участки подсвечены красным. Перед выпаиванием пометьте выводы вторичной обмотки силового трансформатора по шине 12 вольт. Они нам понадобятся.


Нажмите на схему для увеличения
При этом на плате освободится много места. Печатные дорожки также можно удалить, проведя по ним нагретым паяльником. Некоторые печатные дорожки, идущие от выводов микросхемы, которые мы задействуем в дальнейшем, можно оставить для удобства и припаиваться к ним.


Теперь необходимо собрать новые выходные цепи и цепи регулировки тока и напряжения. К помеченным ранее обмоткам трансформатора шины 12 вольт необходимо припаять сборку двух диодов Шоттки с общим катодом. Сборку можно взять с шины +5В, обычно она имеет следующие параметры: напряжение – 30В, ток – 20А. Диоды Шоттки имеют очень малое падение напряжения, что в данном случае немаловажно. При данном типе выпрямителя можно питать большинство нагрузок.

Если же вам необходим большой ток на максимальном напряжении, данного варианта недостаточно. В этом случае необходимо убрать среднюю точку трансформатора, а выпрямитель сделать из четырёх диодов по классической схеме.

Затем необходимо намотать дроссель. Для этого необходимо взять выпаянный дроссель групповой стабилизации и смотать с него все обмотки. Сердечник дросселя имеет жёлтый цвет, одна сторона с торца покрашена белым. На это кольцо необходимо намотать 20 витков двемя проводами диаметром 1мм впараллель. Если такой толстой проволоки нет, то можно соединить вместе несколько жил более тонкой проволоки и намотать ими параллельно. При такой намотке все выводы на обоих концах обмотки необходимо залудить и соединить. Дроссель с такими параметрами обеспечит ток около 3А. Если нужен больший ток, то дроссель следует намотать десятью параллельными проводами диаметром 0,5мм.


После этого можно приступать к сборке той части схемы, которая отвечает за регулировки. Авторство этого метода принадлежит пользователю DWD, ссылка на тему с обсуждением:

Регулировка работает очень просто. Рассмотрим цепь регулировки напряжения. На вход компаратора (вывод 1) микросхемы TL494 подключен делитель напряжения на двух резисторах. Напряжение на их средней точке должно быть равно приблизительно 4.95 вольтам. Если Вы хотите изменить верхний предел регулировки напряжения блока питания, необходимо пересчитать именно этот делитель. Второй вход компаратора (вывод 2) подключен к средней точке переменного резистора, таким образом здесь также получается делитель напряжения. Если напряжение на выводе 1 компаратора будет меньше напряжения на выводе 2, то микросхема будет увеличивать ширину импульсов, пока напряжения не уравняются. Таким образом и осуществляется регулировка выходного напряжения блока питания.

Регулировка тока работает аналогично, только здесь для контроля протекающего в нагрузке тока используется падение напряжения на шунте Rш. В качестве шунта может быть использован практически любой шунт сопротивлением 0.01-0.05 Ом, например – участок токопроводящей дорожки, шунт от миллиамперметра или несколько SMD-резисторов. Верхний предел регулировки задаётся подстроечным резистором сопротивлением 1кОм. Если подстройка верхнего предела не нужна, то этот резистор следует заменить постоянным сопротивлением 270 Ом, что обеспечит регулировку до 10А.

Фото блока питания приведено ниже. На передней панели расположен экран ампервольтметра, под которым находятся ручки регуляторов напряжения и тока. Выходные клеммы выполнены из гнёзд RCA, приклееных изнутри эпоксидкой. К таким клеммам очень удобно цеплять зажимы типа крокодил. Большой жёлтый светодиод является индикатором включения блока питания, которое осуществляется большим красным переключателем.


В виду того, что корпус для блока питания выбран очень компактный (16*12см), монтаж получился плотный с обилием проводов. В будущем провода можно собрать в жгуты.


Для охлаждения блока питания применён термостат на микросхеме К157УД1, который охлаждает сборку выпрямительных диодов Шоттки и включается по мере надобности автоматически, затем выключается. О его конструкции будет рассказано отдельно.

О переделке другого БП можно почитать здесь.

Самодельный импульсный блок питания на tl494

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде – тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.

Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.

L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).

Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.

На фото печатная плата с микроконтроллером – амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.

Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.

При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора: ExcellentIT

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят – можно применять абсолютно любые).

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде – тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.

Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.

L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).

Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.

На фото печатная плата с микроконтроллером – амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.

Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.

При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора: ExcellentIT

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят – можно применять абсолютно любые).

Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).

В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.

Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.

Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.

Схема БП ATX
Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах).
Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.


Ссылка на схему в полном размере

Структурно разделим БП на следующие блоки:
— выпрямитель сетевого напряжения с фильтром
— источник дежурного питания(+5V standby)
— основной источник питания(+12V,-12V,+3.3V,+5V,-5V)
— схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ

Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.

Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.

Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.

Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.

Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.

Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.

ШИМ контроллер TL494.
Давайте разберемся как же устроен ШИМ контроллер TL494.
Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf

Начнем, как это ни странно, с конца — с выходной части микросхемы.
Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом).
Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2.
Вариант управления задаётся через пин 13(Output control).

Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов.
Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).

Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.

Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time.
Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.

Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.

Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.

Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты.
На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.

С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.

Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в.
Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.

Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.

Обратная связь.
Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.

Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.

Компенсация обратной связи
Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.

К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.

У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.

Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам…
Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1.
С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя.
Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.

Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).

Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1

От теории к практике
Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:

Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:

Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.

Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.

Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.

Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!

По этой схеме лазерным утюгом была изготовлена плата:

Она встраивается в БП вот таким образом:

В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.

Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.

Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper’a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.

Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.

В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.

Будущее уже рядом
Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!

Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.

Не переключайте канал, должно быть интересно.

Кстати, обещанная в начале книга:
Куличков А.В. «Импульсные блоки питания для IBM PC»
radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu

P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.

Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру

Переделка бп атх на tl494 в лабораторный. Автомобильный преобразователь на TL494 для усилителя НЧ

Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности.
Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но.... схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.


В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот.
Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно.
Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке.
Мощность в моем случае 2000 ватт, но схема без проблем позволит снять до 4000 ватт, если заменить ключи, мост и напичкать электролитов на 4000 мкФ. На счет электролитов - емкость подбирается исходя из расчета 1 ватт - 1мкФ.
Диодный мост - 30 Ампер 1000 Вольт - готовая сборка, имеет свой отдельный обдув (кулер)
Сетевой предохранитель 25-30 Ампер.
Транзисторы - IRFP460 , старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении.
Реле режима плавного пуска - 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему.
Трансформатор - в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.

Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер - для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер - для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.

Генератор построен на TL494 , настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей.
Трансформатор тока намотан на кольце 2000НМ 20х12х6 - вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45витковв.
В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 - с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт - UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки).
Конденсаторы после выпрямителя стоят на 100 Вольт (с запасом), емкость 1000мкФ, но разумеется на самой плате усилителей будут еще.

Устранение неполадок начальной схемы.
Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер.
Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем - при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью.
R42 - заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки.
Минимальная грань стабилизации напряжения 18-25 Вольт, дальше уже пойдет срыв генерации.

Автомобильный преобразователь на TL494 для усилителя НЧ, схема которого приведена ниже, преобразует бортовое напряжение +12В в двухполярное +-35В. На самом деле выходное напряжение зависит от параметров трансформатора.

Номиналы элементов и параметры трансформатора, которые будут указаны ниже, рассчитывались для мощности в 150Вт, что позволяет запитать усилитель НЧ на или на . Я же запитал данным преобразователем один канал TDA7293, поэтому мощности преобразователя в 150Вт мне было достаточным.

Схема автомобильного преобразователя на TL494 для усилителя НЧ


Схема преобразования двухтактная. Применяется такая схема в основном в повышающих преобразователях. Дефицитных компонентов в ней нет, за исключением диодов Шоттки КД213, в своем городе я их не нашел. Поставил импульсные диоды FR607, но они слабые, на 6 ампер. Еще один минус этих диодов, у них нет охлаждения, как у сборок. Для одного канала TDA7293 или TDA7294 диодов FR607 в принципе хватает.

Мозгом нашего автомобильного преобразователя является ШИМ контроллер TL494. Я использую китайские TL494, работают они у меня без нареканий. Есть вариант сэкономить немного денег и выдернуть ШИМ из старого блока питания ПК, очень часто они построены на TL494. Параметры и характеристики контроллера можете прочесть в .

Список Элементов.

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
ШИМ контроллер TL494 1
VT1,VT2 Биполярный транзистор BC557 2
VT3,VT4 MOSFET-транзистор IRFZ44N 2
VD3-VD6 Диод Шоттки КД213 4 FR607 и мощнее
VD1,VD2 Выпрямительный диод 1n4148 2
R1 Резистор 2Вт 18кОм 1
C1 Электролит 47мкФ 16В 1
С2,С11,С12 Конденсатор неполярный 0.1 мкф 3 Керамика любое напряж.
С3 Электролит 470 мкФ 16В 1
C4 Конденсатор неполярный 1нФ 1 Керамика любое напряж.
C5,С6 Электролит 2200 мкФ 16В 2
C7,С8 Конденсатор неполярный 0,01 мкФ 2 Керамика любое напряж.
C9,С10 Электролит 2200мкФ 50В 2
R1 Резистор 1 кОм 0.25Вт 1
R2 Резистор 4.7 кОм 0.25Вт 1
R3 Резистор 11 кОм 0.25Вт 1
R4 Резистор 56 Ом 2Вт 1
R5,R6 Резистор 22 Ом 0.25Вт 2
R7,R8 Резистор 820 Ом 0.25Вт 2
R9,R10 Резистор 22 Ом 2Вт 2
F1 Предохранитель 15А 1

Частота ШИМ задается элементами C4,R3. С помощью этого вы сможете рассчитать приближенную частоту. На выходах она делится на два, но трансформатор работает именно на той частоте, которую мы рассчитываем и задаем.

Изначально я рассчитывал ШИМ и трансформатор под частоту 50кГц (С4-1нф, R3-22кОм), но видимо марка сердечника трансформатора, фактически отличалась от заявленной марки продавцом, плюс погрешности в расчете. В итоге, количество витков первичной обмотки было недостаточным, вследствие чего, в обмотке протекал очень большой ток холостого хода, ключи ужасно грелись, и был слышен писк. Пришлось повысить частоту до 100 кГц, симптомы болезни исчезли.

Если у вас случится подобная ситуация с неточным расчетом, то необходимо увеличить, либо уменьшить частоту элементами C4,R3. Если на холостом ходу горячие ключи и горячий трансформатор, то следует повысить частоту, либо добавить витки в первичной обмотке. Совсем забыл, это если во вторичке нет короткого замыкания и нет ошибок в выходном выпрямителе, а то если есть КЗ на выходе, то естественно все будет греться и сгорит, так как в данной схеме нет защиты от КЗ.

Если на холостом ходу ничего не греется, а при нагрузке происходит чрезмерное выделение тепла в трансформаторе, значит нужно понизить частоту элементами C4,R3, либо уменьшить количество витков первичной обмотки.

Расчет и намотка трансформатора автомобильного преобразователя.

Теперь приступим к самой увлекательной части, намотке трансформатора!

Габариты моего кольцевого сердечника 40мм-25мм-11мм, марка 2000МН.


Скачиваем и запускаем программу .

Схему преобразования выбираем Пуш-пул, схема выпрямления двухполярная со средней точкой, тип контроллера TL494, частоту ставьте 50-100 кГц, в зависимости от частотозадающих элементов C4,R3, далее выбираем нужное нам на выходе и на входе напряжения, выбираем также диаметр провода.


Пару слов скажу про напряжение. При расчете я указал входное напряжение 10В-11В-13В, а после того как собрал преобразователь, при испытаниях замерил напряжение на клеммах аккумулятора 13,5 Вольт, в итоге на выходе получил не +-35В а +-46В на холостом ходу. Поэтому номинальное ставьте не 11В, а 13,5В. Минимальное и максимальное соответственно 11В и 14,5В.

В ходе расчета, я получил количество витков первичной обмотки 5+5, провод диаметра 0.85мм сложенный в пять жил. И как же это понять, спросите меня вы! Но тут ничего сложного, итак, приступим…

Мотаем первичную обмотку.

Сначала, обмотаем наше колечко диэлектриком.


Все обмотки будем мотать в одну сторону, в какую, выбирать вам. Единственное правило, в одну сторону!

Мотаем одним куском проволоки 5 витков. Берем еще кусок проволоки, и виток к витку мотаем еще 5 витков, и так далее виточек к виточку, пока не получим 5 витков в 10 жил (5+5 жил).



Кладем изоляцию на первичную обмотку.


Сразу зачищаем хвосты, скручиваем и усаживаем в термоусадку.



Все, первичная обмотка у нас готова.

Объясню, что мы получили. Нам нужна первичная обмотка, имеющая 10 витков в 5 жил с отводом от середины (5+5 витков). Мы могли намотать так, сначала мотаем 5 витков 5 жилами, распределенными равномерно по всему кольцу, далее делаем отвод, кладем изоляцию, и сверху еще 5 витков 5 жилами. Получим тоже самое 5+5 витков проводом в 5 жил., ну или 10 витков с отводом от середины, кому как нравится называть. Минус данного способа в том, что обмотки могут быть не одинаковыми, а это плохо, так же чем больше слоев у трансформатора, тем ниже его КПД.

Поэтому, мы мотали сразу 10 жилами 5 витков, далее разделили, и получили две одинаковых обмотки имеющих по 5 витков из 5 жил. Давайте разберемся, как соединить данные обмотки. Тут ничего сложного, начало одной обмотки соединяем с концом другой. Главное не перепутать, и не соединить начало одной обмотки с её же концом.)))))

[+] Дополнено файлами шкал и фотографиями.

Схема и описание переделок


Рис. 1


В качестве ШИМ-регулятора управления D1 используется микросхема типа TL494. Она выпускается рядом зарубежных фирм под разными наименованиями. Например, IR3M02 (SHARP, Япония), µА494 (FAIRCHILD, США), КА7500 (SAMSUNG, Корея), МВ3759 (FUJITSU, Япония) - и т.д. Все эти микросхемы являются аналогами микросхемы КР1114ЕУ4.

Перед модернизацией надо проверить ИБП на работоспособность, иначе ничего путного не выйдет.

Снимаем переключатель 115/230V и гнезда для подсоединения шнуров. На месте верхнего гнезда устанавливаем микроамперметр РА1 на 150 – 200 мкА от кассетных магнитофонов, родная шкала снята, вместо нее установлена самодельная шкала изготовленная с помощью программы FrontDesigner, файлы шкал прилагаются.


Место нижнего гнезда закрываем жестью и сверлим отверстия для резисторов R4 и R10. На задней панели корпуса устанавливаем клеммы Кл1 и Кл2. На плате ИБП оставляем провода идущие от шин GND и +12В, их мы припаяем к клеммам Кл1 и Кл2. Провод PS-ON (если он есть) соединяем на корпус (GND).

Металлическим резаком перерезаем дорожки на печатной плате ИБП идущие к выводам №№1, 2, 3, 4, 13, 14, 15, 16 микросхемы DA1 и подпаиваем детали согласно схеме (Рис. 1).

Все электролитические конденсаторы на шине +12В заменяем на 25-ти Вольтовые. Штатный вентилятор М1 подключаем через стабилизатор напряжения DA2.
При монтаже также надо учесть, что резисторы R12 и R13 в процессе работы блока нагреваются, их надо расположить поближе к вентилятору.

Правильно собранное, без ошибок, устройство запускается сразу. Изменяя сопротивление резистора R10, проверяем пределы регулировки выходного напряжения, примерно от 3 – 6 до 18 – 25 В (в зависимости от конкретного экземпляра). Подбираем последовательно с R10 постоянный резистор, ограничив верхний предел регулировки на нужном нам уровне (ну скажем 14 В). Подключаем к клеммам нагрузку (сопротивлением 2 – 3 Ома) и изменяя сопротивление резистора R4 регулируем ток в нагрузке.

Если на наклеечке ИБП было написано +12 V 8 A, то не следует пытаться снять с него 15 Ампер.

Итого

Вот и все можно закрывать крышу. Данное устройство можно использовать как лабораторный блок питания, так и зарядное устройство для аккумуляторов. В последнем случае резистором R10 надо выставить конечное напряжение для заряженного аккумулятора (например 14,2 В для автомобильного кислотного аккумулятора), подключить нагрузку и выставить резистором R4 ток зарядки. В случае зарядного устройства для автомобильных аккумуляторов резистор R10 можно заменить на постоянный.

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде - тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.


Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.


L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).


Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.


На фото печатная плата с микроконтроллером - амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.





Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.


При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора:

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят - можно применять абсолютно любые).

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 ШИМ контроллер

TL494

1 Поиск в Чип и Дип В блокнот
IC2 Операционный усилитель

LM324

1 Поиск в Чип и Дип В блокнот
VR1 Линейный регулятор

L7805AB

1 Поиск в Чип и Дип В блокнот
VR2 Линейный регулятор

LM7905

1 Поиск в Чип и Дип В блокнот
T1, T2 Биполярный транзистор

C945

2 Поиск в Чип и Дип В блокнот
T3, T4 Биполярный транзистор

MJE13009

2 Поиск в Чип и Дип В блокнот
VDS2 Диодный мост MB105 1 Поиск в Чип и Дип В блокнот
VDS1 Диодный мост GBU1506 1 Поиск в Чип и Дип В блокнот
D3-D5, D8, D9 Выпрямительный диод

1N4148

5 Поиск в Чип и Дип В блокнот
D6, D7 Выпрямительный диод

FR107

2 Поиск в Чип и Дип В блокнот
D10, D11 Выпрямительный диод

FR207

2 Поиск в Чип и Дип В блокнот
D12, D13 Выпрямительный диод

FR104

2 Поиск в Чип и Дип В блокнот
D15 Диод Шоттки F20C20 1 Поиск в Чип и Дип В блокнот
L1 Дроссель 100 мкГн 1 Поиск в Чип и Дип В блокнот
L2 Синфазный дроссель 29 мГн 1 Поиск в Чип и Дип В блокнот
L3, L4 Дроссель 10 мкГн 2 Поиск в Чип и Дип В блокнот
L5 Дроссель 100 мкГн 1 на желтом кольце Поиск в Чип и Дип В блокнот
L6 Дроссель 8 мкГн 1 Поиск в Чип и Дип В блокнот
Tr1 Импульсный трансформатор EE16 1 Поиск в Чип и Дип В блокнот
Tr2 Импульсный трансформатор EE28 - EE33 1 ER35 Поиск в Чип и Дип В блокнот
Tr3 Трансформатор BV EI 382 1189 1 Поиск в Чип и Дип В блокнот
F1 Предохранитель 5 А 1

Как повысить напряжение в блоке питания компьютера

Основа современного бизнеса – получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, – просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно – различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат – импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках "Дефект" столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все – "труба", то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак – несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель – не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает – можно делать пробный пуск и измерить все напряжения.

+3,3 В – оранжевый

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть – блок включится и вентилятор – индикатор включения – начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это "черный" и "зеленый". Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины – 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод – вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром – вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке – типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения – достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор – для подбора срабатываний по току. Но получилось неважно – нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Дорогие друзья, я расскажу вам о простом способе переделки компьютерного блока питания в зарядное устройство для автомобильных аккумуляторов своими руками. Для переделки подойдут любые компьютерные блоки питания собранные на микросхемах TL494 или КА7500 с любым буквенным индексом в конце. Модель, дата производства, цвет и размер блока питания никакого значения не имеют. Самое главное, это наличие в блоке питания микросхемы TL494 или ее аналога КА7500. Снимите верхнюю крышку и проверьте на какой микросхеме собран блок.

Прежде чем приступить к переделке компьютерного блока питания в зарядное устройство, проверьте исправность блока питания. Как включить блок питания без компьютера? Замкните зеленый провод с любым черным. Блок должен включиться.

Для нормальной зарядки аккумулятора требуется напряжение 14,5 вольт, а на выходе из компьютерного блока питания напряжение 12 вольт. Поэтому, надо сделать блок питания регулируемым, то есть поднять напряжение до максимального значения в 16 вольт. На этом рисунке изображена схема переделки компьютерного блока питания в зарядное устройство.

Схема переделки компьютерного блока питания в зарядное устройство

В каждом блоке питания, собранном на микросхемах TL494 или КА7500, имеется защита от короткого замыкания и высокого напряжения, которая отключает блок питания в случае нештатной ситуации. Чтобы повысить выходное напряжение до 16 вольт, надо отключить защиту. Для этого отрежьте дорожку от 4 ноги микросхемы. Далее 4 ногу микросхемы соедините куском провода на минус, это большой пучок черных проводов, обозначенных на плате GND. Чтобы сделать блок питания регулируемым, надо удалить резистор, через который подается напряжение с выхода блока питания, обозначенного на плате +12V (пучок желтых проводов) на первую ногу микросхемы и на его место поставить переменный резистор сопротивлением 50 кОм или 100 кОм. Для каждого блока подбирается индивидуально ведь блоки питания у всех разные.

Для начинающих радиолюбителей это очень сложная задача потому, что этот самый резистор очень любят прятать от зорких глаз и умелых рук начинающих радиолюбителей хитрые производители компьютерных блоков питания. Каких либо стандартов расположения резистора на печатной плате нет. Все производители блоков питания по своему располагают и нумеруют детали на плате. Поэтому, искать надо от выхода +12V до первой ноги микросхемы или наоборот, кому как удобно. На этой плате я отключил защиту, отрезав дорожку от 4 ноги микросхемы. Потом соединил 4 ногу на минус. После включения в сеть блок питания запускается без замыкания зеленого провода с черным, это означает, что защита отключена.

В этом компьютерном блоке питания, резистор находится здесь, рядом с первой ногой микросхемы. Напряжение на резисторе около 12 вольт.

После установки переменного резистора на 100 кОм. Напряжение плавно регулируется от 4,5 вольт до 16 вольт и обратно. Поскольку выходное напряжение увеличилось до 16 вольт, а в некоторых блоках питания возможно поднять напряжение до 20 вольт. Во избежание мощного взрыва выходных конденсаторов настоятельно рекомендую заменить 16 вольтовые конденсаторы на выходе из блока питания на 25 вольтовые, они по диаметру идеально становятся на свои места, а по высоте немного длиннее. Вентилятор подключите через резистор от 20 до 100 ом.

Для визуального контроля процесса зарядки аккумулятора желательно установить универсальный вольт амперметр китайского производства. Схема подключения изображена на рисунке внизу. Не смотря на свою универсальность, чудо прибор для точности измерительных показаний нуждается в небольшой настройке. На задней плате прибора имеется два маленьких подстроечных SMD резистора. Левый резистор предназначен для калибровки амперметра, а правый показаний вольтметра. Как откалибровать китайский вольт амперметр?

После подключения прибора к выходу компьютерного блока питания, подключите мультиметр в режиме вольтметра. Сравните показания двух приборов. В случае необходимости подкорректируйте показания вольт амперметра правым подстроечным резистором. Чтобы откалибровать амперметр, переключите мультиметр в режим амперметра и соедините последовательно с вольт амперметром через лампу накаливания 12 Вольт 21 Ватт. Точность показаний амперметра установите левым подстроечным резистором. На этом калибровка вольт амперметра окончена.

Схема подключения универсального вольт амперметра к зарядному устройству из компьютерного блока питания

Так выглядит готовое зарядное устройство, все детали легко разместились внутри стандартного корпуса. Поскольку в зарядном устройстве отсутствует защита от короткого замыкания, не забудьте установить предохранитель на 10А в разрыв (желтого) провода выходящего из линии +12V, который надежно защитит блок питания от короткого замыкания.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать зарядное устройство из компьютерного блока питания!

Показать содержимое по тегу: ATX

Схема импульсного стабилизатора ненамного сложней обычного, используемого в трансформаторных блоках питания, но более сложная в настройке.

Поэтому недостаточно опытным радиолю­бителям, не знающим правил работы с высоким напряжением (в частности, никогда не работать в одиночку и никогда не настраивать включенное уст­ройство двумя руками — только одной!), не рекомендую повторять эту схему.

На рис. 1 представлена электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов.

Рис. 1 Электрическая схема импульсного стабилизатора напряжения

Схема представляет собой блокинг-генератор, реализованный на транзисторе VT1 и трансформаторе Т1. Диодный мост VD1 выпрямляет переменное сете­вое напряжение, резистор R1 ограничивает импульс тока при включении, а также выполняет функцию предохранителя. Конденсатор С1 необязателен, но благодаря ему блокинг-генератор работает более стабильно, а нагрев транзи­стора VT1 чуть меньше (чем без С1).

При включении питания транзистор VT1 слегка приоткрывается через рези­стор R2, и через обмотку I трансформатора Т1 начинает течь небольшой ток. Благодаря индуктивной связи, через остальные обмотки также начинает протекать ток. На верхнем (по схеме) выводе обмотки II положительное напряжение небольшой величины, оно через разряженный конденсатор С2 приоткрывает транзистор еще сильней, ток в обмотках трансформатора нарастает, и в итоге транзистор открывается полностью, до состояния насыщения.

Через некоторое время ток в обмотках перестает нарастать и начинает снижаться (транзистор VT1 все это время полностью открыт). Уменьшается напряжение на обмотке II, и через конденсатор С2 уменьшается напряжение на базе транзистора VT1. Он начинает закрываться, амплитуда напряжения в обмотках уменьшается еще сильней и меняет полярность на отрицательную.

Затем транзистор полностью закрывается. Напряжение на его коллекторе увеличивается и становится в несколько раз больше напряжения питания (индуктивный выброс), однако благодаря цепочке R5, С5, VD4 оно ограничивается на безопасном уровне 400...450 В. Благодаря элементам R5, С5 генерация нейтрализуется не полностью, и через некоторое время полярность напряжения в обмотках снова меняется (по принципу действия типичного колебательного контура). Транзистор снова начинает открываться. Так продолжается до бесконечности в цикличном режиме.

На остальных элементах высоковольтной части схемы собраны регулятор напряжения и узел защиты транзистора VT1 от перегрузок по току. Резистор R4 в рассматриваемой схеме выполняет роль датчика тока. Как только паде­ние напряжения на нем превысит 1...1,5 В, транзистор VT2 откроется и замк­нет на общий провод базу транзистора VT1 (принудительно закроет его). Конденсатор СЗ ускоряет реакцию VT2. Диод VD3 необходим для нормаль­ной работы стабилизатора напряжения.

Стабилизатор напряжения собран на одной микросхеме - регулируемом стабилитроне DА1.

Для гальванической развязки выходного напряжения от сетевого использует­ся оптрон VOL Рабочее напряжение для транзисторной части оптрона берет­ся от обмотки II трансформатора Т1 и сглаживается конденсатором С4. Как только напряжение на выходе устройства станет больше номинального, через стабилитрон DA1 начнет течь ток, светодиод оптрона загорится, сопротивле­ние коллектор-эмиттер фототранзистора VOL2 уменьшится, транзистор VT2 приоткроется и уменьшит амплитуду напряжения на базе VT1.

Он будет сла­бее открываться, и напряжение на обмотках трансформатора уменьшится. Если же выходное напряжение, наоборот, станет меньше номинального, то фототранзистор будет полностью закрыт и транзистор VT1 будет "раскачиваться" в полную силу. Для защиты стабилитрона и светодиода от перегрузок по току, последовательно с ними желательно включить резистор сопротивле­нием 100...330 Ом.

Налаживание
Первый этап: первый раз включать устройство в сеть рекомендуется через лампу 25 Вт, 220 В, и без конденсатора С1. Движок резистора R6 устанавли-вают в нижнее (по схеме) положение. Устройство включают и сразу отклю­чают, после чего как можно быстрей измеряют напряжения на конденсаторах С4 и Сб. Если на них есть небольшое напряжение (согласно полярности!), значит, генератор запустился, если нет генератор не работает, требуется поиск ошибки на плате и монтаже. Кроме того, желательно проверить тран­зистор VT1 и резисторы R1, R4.

Если все правильно и ошибок нет, но генератор не запускается, меняют мес­тами выводы обмотки II (или I, только не обоих сразу!) и снова проверяют работоспособность.

Второй этап: включают устройство и контролируют пальцем (только не за металлическую площадку для теплоотвода) нагрев транзистора VTI, он не должен нагреваться, лампочка 25 Вт не должна светиться (падение напряже­ния на ней не должно превышать пары Вольт).

Подключают к выходу устройства какую-нибудь маленькую низковольтную лампу, например, рассчитанную на напряжение 13,5 В. Если она не светится, меняют местами выводы обмотки III.

И в самом конце, если все нормально работает, проверяют работоспособность регулятора напряжения, вращая движок подстроечного резистора R6. После этого можно впаивать конденсатор С1 и включать устройство без лампы-токоограничителя.

Минимальное выходное напряжение составляет около 3 В (минимальное па­дение напряжения на выводах DA1 превышает 1,25 В, на выводах светодио­да—1,5В).
Если нужно меньшее напряжение, заменяют стабилитрон DA1 резистором сопротивлением 100...680 Ом. Следующим шагом настройки требуется уста­новка на выходе устройства напряжения 3,9...4,0 В (для литиевого аккумуля­тора). Данное устройство заряжает аккумулятор экспоненциально умень­шающимся током (от примерно 0,5 А в начале заряда до нуля в конце (для литиевого аккумулятора емкостью около 1 А/ч это допустимо)). За пару ча­сов режима зарядки аккумулятор набирает до 80 % своей емкости.

О деталях
Особый элемент конструкции — трансформатор.
Трансформатор в этой схеме можно использовать только с разрезным ферри-товым сердечником. Рабочая частота преобразователя довольно велика, поэтому для трансформаторного железа нужен только феррит. А сам преоб­разователь — однотактный, с постоянным подмагничиванием, поэтому сер­дечник должен быть разрезным, с диэлектрическим зазором (между его поло­винками прокладывают один-два слоя тонкой трансформаторной бумаги).

Лучше всего взять трансформатор от ненужного или неисправного анало­гичного устройства. В крайнем случае его можно намотать самому: сечение сердечника 3...5 мм2, обмотка I-450 витков проводом диаметром 0,1 мм, обмотка II-20 витков тем же проводом, обмотка III-15 витков прово­дом диаметром 0,6...0,8 мм (для выходного напряжения 4...5 В). При намот­ке требуется строгое соблюдение направления намотки, иначе устройство будет плохо работать, или не заработает совсем (придется прикладывать усилия при налаживании — см. выше). Начало каждой обмотки (на схеме) вверху.

Транзистор VT1 — любой мощностью 1 Вт и больше, током коллектора не менее 0,1 А, напряжением не менее 400 В. Коэффициент усиления по току Ь2ь должен быть больше 30. Идеально подходят транзисторы MJE13003, KSE13003 и все остальные типа 13003 любой фирмы. В крайнем случае, при­меняют отечественные транзисторы КТ940, КТ969. К сожалению, эти транзи­сторы рассчитаны на предельное напряжение 300 В, и при малейшем повы­шении сетевого напряжения выше 220 В они будут пробиваться. Кроме того, они боятся перегрева, т. е. требуется их установка на теплоотвод. Для транзи­сторов KSE13003 и МГС13003 теплоотвод не нужен (в большинстве случаев цоколевка — как у отечественных транзисторов КТ817).

Транзистор VT2 может быть любым маломощным кремниевым, напряжение на нем не должно превышать 3 В; это же относится и к диодам VD2, VD3. Конденсатор С5 и диод VD4 должны быть рассчитаны на напряжение 400...600 В, диод VD5 должен быть рассчитан на максимальный ток нагрузки. Диодный мост VD1 должен быть рассчитан на ток 1 А, хотя потребляемый схемой ток не превышает сотни миллиампер — потому что при включении происходит довольно мощный бросок тока, а увеличивать сопротивление ре­зистора Шдля ограничения амплитуды этого броска нельзя — он будет силь­но нагреваться.

Вместо моста VD1 можно поставить 4 диода типа 1N4004...4007 или КД221 с любым буквенным индексом. Стабилизатор DA1 и резистор R6 можно заме­нить на стабилитрон, напряжение на выходе схемы будет на 1,5 В больше напряжения стабилизации стабилитрона.

"Общий" провод показан на схеме только для упрощения графики, его нельзя заземлять и (или) соединять с корпусом устройства. Высоковольтная часть устройства должна быть хорошо изолирована.

Оформление
Элементы устройства монтируют на плате из фольгированного стеклотексто­лита в пластмассовый (диэлектрический) корпус, в котором просверливают два отверстия для индикаторных светодиодов. Хорошим вариантом (использованным автором) является оформление платы устройства в корпус от ис­пользованной батареи типа А3336 (без понижающего трансформатора).

Регулируемый блок питания с режимом стабилизации напряжения и тока на основе АТХ - Блоки питания и ЗУ - Схемы - Каталог статей

С.П. Гапоненко, г. Чернигов РА 3-4, 9/2009
В основе блока питания (БП) лежит БП для компьютера формата АТХ модели Codegen 200XA1 250W ch.CG-07A. Но его с одинаковым успехом можно повторить и на любом другом БП (переделав соответственно печатную плату). Необходимым условием является использование ШИМ контроллера TL494 или его аналога.

Подробное описание работы этого контроллера описано в [3]
Схема блока питания показана на рис.1. Более 90% деталей используется непосредственно с компьютерного БП АТХ. Желательно, чтобы исходный БП был в исправном состоянии. Это избавит от проблем при первом включении. В противном случае нужно тщательно проверять каждый элемент, который устанавливается при сборке. Это касается как активных (микросхемы, транзисторы, стабилитроны, диоды), так и пассивных (резисторы, конденсаторы) элементов.
Высоковольтная часть БП осталась без изменений. Описывать ее нет смысла. Все это неоднократно рассматривалось, например, [1] и [2].
Выходная часть состоит из диодов VD18, VD19, в качестве которых можно применить 30CPQ150 или аналогичные. Параллельно каждому из диодов подключены демпфирующие RC-цепочки, снижающие уровень паразитных колебаний, возникающих на фронтах импульсов. L1 изготовлен из дросселя групповой стабилизации. Вместо существующих наматывается одна обмотка, состоящая из 6 витков провода ПЭВ-2 3x1,2 мм. L2 - готовый 5-вольтовый дроссель от БП. Резистор R56 нужен для разряда конденсаторов при уменьшении напряжения без подключенной нагрузки. Конденсаторы желательно применить, которые рассчитаны для работы в импульсном режиме при частоте до 100 кГц.
Довольно сложно было реализовать индикацию перехода БП  в режим стабилизации тока.  После нескольких неудачных попыток было найдено простое решение: применить для этого дополнительную микросхему DD2 TL494.

 


При переходе БП в режим стабилизации тока загорается светодиод HL2.
На микросхеме DA2 LM358 собран измерительный усилитель выходного напряжения и тока. Коэффициент усиления их выбран так, что при изменении напряжения и тока на входе от 0 до максимума, на выходе напряжения менялись от 0 до 2,5 В. Дальше они подаются на входы усилителей ошибки, соответственно 1 и 16 DD1. А на инверсные входы подаются опорные напряжения. С помощью резисторов R43, R47 регулируем величину опорного напряжения, тем самым изменяем величину напряжения и тока на выходе БП. На компараторе DA1 собран узел аварийной защиты, при срабатывании которой происходит блокировка работы ШИМ и силовые транзисторы VD16, VD17 запираются. Выход из этого состояния осуществляется выключателем «PowerON» или отключением БП от сети. В качестве датчика перегрузки используется трансформатор тока, состоящий из 30 витков провода ПЭВ2-0,2, намотанного на кольце диаметром 10 мм. Обмотка равномерно распределяется по всему кольцу. Первичная обмотка - вывод от трансформатора Т2.1, продетый через кольцо. Кольцо, в зависимости от вида трансформатора Т2, располагается или непосредственно на нем, или находится рядом. Светодиод HL1 служит для индикации срабатывания аварийной защиты.
На терморезисторе TR2 собран блок управления вентилятором, который при повышении температуры увеличивает обороты вентилятора. Сам терморезистор расположен в непосредственной близости от L1.
БП имеет блочную конструкцию. Если он покажется кому-то очень сложным, то его можно упростить, несколько ухудшив удобство в работе. На стабильности выходного напряжения это никак не отразится.
При необходимости, некоторые блоки можно исключить. Например, если не нужен индикатор перехода в режим стабилизации тока, то DD2 вместе с R50, VT9, R52, HL2 можно исключить. При этом проводник, соединенный с 14 выводом DD2, соединить с 14 выводом DD1.
Если не нужен блок управления вентилятором, то TR2, СЗЗ, R13, VT2, R16, R15, VT4 можно исключить, а вентилятор запитать непосредственно от катода VD5.
Если не нужна кнопка включения БП, то элементы R22, R23, VT5, R28, VD15, С31 можно не устанавливать, а левый вывод резистора R34 соединить с общим проводом.
Если не нужен блок аварийной защиты, то элементы Т4, R3, R6, VD4, С4, R10, DA1, VD11, R12, R11, R14, R19, VT3, R18, HL1, R17 можно не устанавливать. Но при пробое одного из диодов VD18 или VD19 могут выйти из строя высоковольтные транзисторы VD16, VD17 и диодный мост VD6-VD9.
Блок питания способен выдавать напряжение от 0 до 20 вольт при токе до 20 ампер (мощность не должна превышать рекомендуемую для Codegen 200XA1, те при 20 вольтах максимальный ток составит 10 ампер). Для получения на выходе более высокого напряжения, следует перемотать вторичную обмотку силового трансформатора.

При включении блока питания, на индикаторе появится установленное напряжение. Но на выходе блока питания напряжение будет отсутствовать. Для того чтобы на выходе блока питания появилось установленное напряжение, нужно нажать кнопку S1. Срабатывает триггерная схема подачи питания. При этом загорается светодиод HL3, индицируя появление на выходе блока питания напряжения. Преимущество данной схемы подачи питания в том, что при включении блока питания, либо после перебоев в подаче электроэнергии, на выходе напряжение всегда будет отсутствовать. При первом нажатии кнопки S1 питание включается, а при втором нажатии кнопки S1

 

 

питание отключается. Применены два реле с одной группой переключающих контактов в каждом. Реле К2 с допустимым током коммутации не менее максимального тока нагрузки блока питания (20 Ампер). Возможно применить одно реле с двумя группами контактов на переключение. Иногда потребуется подобрать резистор R59 для надежного включения и выключения реле. Схема собрана на отдельной печатной плате. В силу своей простоты и различий в применяемых реле, печатная плата не приводится.
Для контроля напряжения и тока применяется любой измерительный прибор. В авторском варианте использован вольтметр и амперметр на основе ICL7107CPL (КР572ПВ2А) с семисегментными светодиодными индикаторами ВА56-11GWA. Подробное описание которых находится соответственно в [4] и [5]. Оба индикатора собраны на одной односторонней плате.
О деталях блока питания: все детали взяты с исходного блока питания, кроме дополнительной микросхемы DD2, самодельного дросселя L1, DA2 и его обвязки. В качестве R33 взято два резистора по 0,1 Ом мощностью 2 Вт, соединенные параллельно. Сборку 30CPQ150 можно заменить на другую аналогичную. Или поставить отечественные диоды КД21 ЗА или КД2999А, желательно по два параллельно в каждом плече. На радиатор они устанавливаются через слюдяную прокладку.
И, как обычно, если все детали исправны и ошибок в монтаже нет, то блок питания начинает работать сразу.

 


Необходимо лишь выставить при помощи R6 максимальный ток, при котором срабатывает аварийная защита. Но все-же, при первом включении используйте последовательно включенную лампочку 60Вт 220 вольт. Это избавит Вас от многих проблем. Помните, часть элементов находится под напряжением в 300 вольт! Соблюдайте меры электробезопасности при налаживании и эксплуатации блока питания!

 


Литература
1. Куличков А.В. Импульсные блоки питания для IBM PC. 2-е изд., стер. - М.: "ДМК Пресс", 2002
2.  Головков А. В., Любицкий В.  Б.  Блоки питания для системных модулей типа IBM PC-XT/AT. - М.: "Лад и Н",1995 год.
3.  Справочник. Интегральные микросхемы. Микросхемы для импульсных источников питания   и   их   применение.   -М.:"Додэка" 1997г.
4.  http://www.intersil.com/da-ta/fn/f n3082.pdf
5.  http://www.datasheetarchi-ve.com/pdf/815242.pdf

 

ePanorama.net - Ссылки


    Блок питания преобразует линию переменного тока (AC), идущую из вашего дома, в постоянный ток (DC), необходимый для персонального компьютера. В персональном компьютере (ПК) источником питания является металлический ящик, который обычно находится в углу корпуса. . Блок питания виден сзади многих систем, поскольку он содержит розетку для кабеля питания и охлаждающий вентилятор. Типичный компьютерный блок питания генерирует напряжения, необходимые для аксессуаров материнской платы компьютера.Типичный источник питания современного ПК генерирует следующие напряжения:

    • + 5 В (+ -5%) до десятков ампер для электроники материнской платы, дисководов и карт
    • + 12 В (+ -10%) при нескольких ампер для дисководы и некоторые карты
    • + 3,3 В (+ -5%) до десятков ампер для большинства современной логической электроники в материнских платах
    • -12 В (+ -10%) обычно менее одного ампера для некоторых дополнительных карт
    Большинство других компьютерных блоков питания обычно дают напряжение на этой линии, потому что это наиболее часто используемое напряжение, используемое в компьютерных системах.В зависимости от модели ПК блоки питания имеют мощность от 150 до 350 Вт. Блок питания ПК в среднем рассчитан на 250-400 Вт. Блоки питания мощностью более 300 Вт необычны и, как правило, поставляются только в серверах или машинах, которые были разработаны для «хардкорных» приложений, таких как игры, где графическая карта на 100 Вт не такая уж необычная. Обычно, если у вас есть 300 Вт, а компьютер будет использовать, возможно, 150–220 Вт, в зависимости от того, что в нем находится. Питание ПК предназначено для обеспечения +12, +5, -5 и -12 (в настоящее время обычно также +3.3 В), при этом мощность в этих диапазонах распределяется неравномерно. Возьмите средний компьютерный блок питания и взгляните на него, и, вероятно, там будет таблица, в которой будет указано, сколько усилителей может быть выдано для каждой категории напряжения. Источники питания для ПК в основном являются первичными импульсными блоками питания с переключателями питания, расположенными в полумостовой конфигурации. Выходы могут управлять обычными 20 А (+5 В), 8 А (+12 В) и 0,5 А (-12 В, -5 В) при прибл. Выходная мощность 205 Вт. (современные блоки питания ATX добавляют к этому значительное количество 3.3В).Типичный КПД блока питания ПК составляет около 75%. Типичный блок питания для ПК имеет размеры около 140 x 100 x 50 мм (Ш, Г, В) и весит около 300-400 граммов. Частота коммутации ок. 33 кГц - это обычное для блоков питания ПК. Блоки питания для ПК обычно можно найти в вариантах AT и ATX. Старые ПК использовали блоки питания AT. Эти блоки питания подавали на материнскую плату питание +5 В, +12 В, -12 В и -5 В. Практически все новые ПК используют блоки питания формата ATX, которые добавили к картинке дополнительные функции: +3.Выход 3 В, включение программы / кнопки, резервное питание (слабый ток + 5 В вывод на некоторые части внутри ПК, когда основной источник питания выключен) и возможность выключить источник питания с помощью программного управления.

    Ноутбуки используют несколько иной подход к источнику питания. Современный портативный компьютер обычно поставляется с импульсным источником питания, который подключается к стене и подает на компьютер необходимое питание при подходящем низком напряжении. Типичное напряжение, которое эти сетевые адаптеры подают на ноутбук, находится в диапазоне 16-24 В, фактическое используемое напряжение может варьироваться в зависимости от марки и модели компьютера (более подробную информацию см. В руководстве к компьютеру и / или маркировке блока питания).Мощность, подаваемая этим типом источника питания, обычно находится в диапазоне максимум 40-60 Вт (информацию о вашей системе см. В руководстве к компьютеру и / или источнику питания). Электроника внутреннего источника питания внутри портативного компьютера затем генерирует несколько напряжений, необходимых внутри портативного компьютера (обычно не менее 5 В, 3,3 В и напряжение внутреннего ядра процессора). Если вам нужно запитать ноутбук от автомобильного напряжения (12 В), у вас есть два варианта сделать это: использовать преобразователь постоянного тока в переменный или преобразователь постоянного тока. Когда вы используете преобразователь постоянного тока в переменный, вы сначала берете питание автомобиля (обычно 12 В от прикуривателя) и переключаете его на нормальное сетевое напряжение (110–120 В переменного тока или 220–240 В переменного тока в зависимости от того, где вы живете).Затем обычный настенный блок питания ПК используется для преобразования этой мощности в напряжение, используемое ноутбуком. Этот подход может сработать, но у него есть свои недостатки. Минусами являются низкая эффективность (потеря мощности, нагревание преобразователя и блока питания ноутбука) и потенциальная несовместимость с преобразователем постоянного тока в переменный и блоками питания компьютера. Преобразователи постоянного тока в переменный обычно не любят нагрузку типа компьютерного блока питания (очень нелинейная нагрузка, которая принимает сильные скачки тока, может привести к ненадежной работе и потенциальному отказу преобразователя), а блок питания компьютера не всегда может быть похож на несинусоидальную сеть. мощность, которую вырабатывают самые дешевые преобразователи постоянного тока в переменный (может вызвать больший нагрев источника питания и даже его повреждение).Дорогой мощный синусоидальный преобразователь постоянного тока в переменный должен хорошо работать с любой нагрузкой, в том числе с компьютерными блоками питания, но стоит дорого. Другой обычно лучший подход - использовать преобразователь постоянного тока в постоянный, который заменяет исходный блок питания компьютера. Он принимает автомобильную мощность 12 В и выдает то же выходное напряжение, что и обычный сетевой адаптер. Такие адаптеры доступны у нескольких производителей ноутбуков. Адаптер от того же производителя, что и ваш ноутбук, обычно является самым простым и безопасным вариантом, но не самым дешевым вариантом.В настоящее время существуют также довольно дешевые преобразователи постоянного тока в постоянный для портативных компьютеров общего назначения, которые можно адаптировать для использования с множеством различных ноутбуков. Эти адаптеры обычно имеют регулируемое выходное напряжение (его следует отрегулировать в соответствии с вашим конкретным компьютером). Просто выберите адаптер, который можно настроить для работы вашего ноутбука и который имеет достаточно высокую мощность (такую ​​же или более высокую, как у оригинального сетевого адаптера), и все должно работать нормально. Обратите внимание, что в некоторых случаях использование преобразователя постоянного тока в постоянный, не одобренного производителем компьютера, может привести к аннулированию гарантии на ваш ноутбук.

    Многие люди, кажется, в настоящее время имеют много старых блоков питания для ПК от старых компьютеров и, похоже, хотят использовать их для некоторых других приложений. Блоки питания для ПК подают много напряжений (+ -12 В, + 5 В и т. Д.), Но для успешного использования этих блоков питания требуются определенные знания. Источники питания ПК обычно представляют собой импульсные блоки питания, которые не любят работать без нагрузки (блоки питания обычно автоматически отключаются, когда они не видят нагрузки). Источники питания стандарта AT не имеют никаких специальных сигналов для включения.Они предназначены для правильной работы в определенном диапазоне мощностей. Если они будут загружены меньше или больше, чем они предназначены для работы, они отключатся сами. Обычно вам нужно достаточно нагружать выход +5 В (обычно требуется минимальная нагрузка от 1 ампера до многих ампер, в зависимости от блока питания, вам может потребоваться это проверить). Материнская плата или старый жесткий диск, подключенный к источнику питания, принимает как минимум эту минимальную нагрузку, поэтому Держите блок питания довольным. Если вы не хотите, чтобы такие устройства были рядом с вами, вам необходимо иметь какой-либо другой тип нагрузки, которую вы можете использовать, например, хорошо охлаждаемый силовой резистор на выходе + 5 В или головную лампу 12 В, подключенную к выходу + 5 В (лампа 12 В будет светиться красным / желтым при питании от +5 В и потребляемой мощности, достаточной для обеспечения минимально необходимой нагрузки).Необходима минимальная нагрузка на + 5В, потому что блоки питания ПК обычно регулируются на выходе + 5В. Контур управления импульсным источником питания хорошо работает в условиях нормальной нагрузки, но в случае слишком малой нагрузки обычно вызывает повышение выходного напряжения + 5 В до слишком высокого напряжения, что приводит к отключению источника питания при обнаружении перенапряжения. Независимо от того, какой источник питания вы хотите использовать, лучше всего проверить спецификацию блока питания: для некоторых требуется минимальное потребление тока на некоторых шинах. Это довольно просто сделать с помощью силового резистора или силовых резисторов.Сказанное выше обычно справедливо и для большинства других компьютерных блоков питания. Все современные блоки питания для ПК в настоящее время построены в соответствии с новым стандартом ATX. Эти блоки питания имеют больше сигналов на своем разъеме, например, для их включения и выключения. Если вы планируете использовать такой источник питания, вам необходимо позаботиться о минимальной нагрузке, о которой говорилось выше. В дополнение к этому вам необходимо выяснить подробности того, как вы должны включать этот источник питания. Для включения питания ATX нужен только PS_ON.PS_ON можно активировать, подключив вывод питания ATX 14 (PS_ON) к контакту 15 (заземление). Некоторым блокам питания ATX для запуска также требуется нагрузка на основной источник питания +5 В (может даже выйти из строя без достаточной нагрузки). Большинству, но не всем, для правильной работы требуется нагрузка на +5 В, некоторым также требуется нагрузка на +12. Сигнал PWR_OK не имеет никакого отношения к управлению работой блока питания ATX. PWR_OK - это выход от источника питания. «PWR_OK - это сигнал« хорошее энергопотребление ». Он должен быть подтвержден источником питания высокого уровня, чтобы указывать на наличие +12 В постоянного тока, + 5 В постоянного тока и +3.Выходы 3 В постоянного тока превышают пороговые значения пониженного напряжения.


<[адрес электронной почты]>

Вернуться на главную страницу ePanorama ??

Анатомия импульсных источников питания

[nextpage title = ”Введение”]

Источники питания

, используемые в ПК, основаны на технологии, называемой «режим переключения», и поэтому также известны как источники питания с импульсным переключением (SMPS) (преобразователь постоянного тока в постоянный - еще одно прозвище для импульсных источников питания). В этом руководстве мы объясним вам, как работают импульсные блоки питания, и познакомимся с блоком питания ПК, показав его основные компоненты и то, что они делают.

Мы уже опубликовали руководство по источникам питания, в котором мы рассмотрели форм-факторы, как рассчитать номинальную мощность блока питания, а также объяснили основные характеристики блока питания. В этом руководстве мы продвинулись еще дальше, объяснив, что находится внутри коробки, каковы основные компоненты блока питания, как их идентифицировать и что они делают.

Существует два основных исполнения источников питания: линейный и импульсный.

Линейные источники питания работают, получая 127 В или 220 В от электросети и понижая его до более низкого значения (например,г., 12 В) с помощью трансформатора. Это более низкое напряжение по-прежнему является переменным током. Затем выпрямление выполняется набором диодов, преобразующих это переменное напряжение в пульсирующее (цифра 3 на рисунках 1 и 2). Следующим шагом является фильтрация, которая выполняется электролитическим конденсатором, преобразующим это пульсирующее напряжение почти в постоянное (цифра 4 на рисунках 1 и 2). Постоянный ток, полученный после конденсатора, немного колеблется (это колебание называется пульсацией), поэтому необходим каскад регулирования напряжения, выполняемый стабилитроном или интегральной схемой регулятора напряжения.После этого этапа на выходе будет истинное постоянное напряжение (цифра 5 на рисунках 1 и 2).

Рисунок 1: Блок-схема стандартной конструкции линейного источника питания.

Рисунок 2: Осциллограммы, обнаруженные на линейном источнике питания.

Хотя линейные блоки питания очень хорошо подходят для нескольких приложений с низким энергопотреблением (беспроводные телефоны и игровые приставки - это два приложения, которые приходят в голову), когда требуется высокая мощность, линейные блоки питания могут быть буквально очень большими для этой задачи.

Размер трансформатора и емкость (и, следовательно, размер) электролитического конденсатора обратно пропорциональны частоте входного переменного напряжения: чем ниже частота переменного напряжения, тем больше размер этих компонентов и наоборот. Поскольку линейные источники питания по-прежнему используют частоту 60 Гц (или 50 Гц, в зависимости от страны) от электросети, что является очень низкой частотой, трансформатор и конденсатор очень большие.

Кроме того, чем выше ток (т.е.е., мощность), потребляемая цепью, питаемой от источника питания, тем больше трансформатор.

Строить линейный блок питания для ПК было бы безумием, так как он был бы очень большим и очень тяжелым. Решение заключалось в использовании подхода высокочастотного переключения.

В высокочастотных импульсных источниках питания частота входного напряжения повышается перед входом в трансформатор (типичные значения - 50-60 кГц). При увеличении частоты входного напряжения трансформатор и электролитический конденсатор могут быть очень маленькими.Это источник питания, используемый в ПК и другом электронном оборудовании, таком как видеомагнитофоны. Имейте в виду, что «переключение» - это сокращение от «высокочастотное переключение», не имеющее никакого отношения к тому, есть ли у источника питания переключатель включения / выключения или нет…

Блок питания, используемый в ПК, использует даже лучший подход: это система с обратной связью. Схема, которая управляет переключающим транзистором, получает обратную связь от выходов источника питания, увеличивая или уменьшая рабочий цикл напряжения, подаваемого на трансформатор, в соответствии с потреблением ПК (этот подход называется ШИМ, широтно-импульсной модуляцией).Таким образом, блок питания саморегулируется в зависимости от потребления подключенного к нему устройства. Когда ваш компьютер не потребляет много энергии, блок питания подстраивается под меньший ток, в результате чего трансформатор и все другие компоненты рассеивают меньше энергии, т. Е. Вырабатывается меньше тепла.

В линейных источниках питания источник питания настроен на максимальную мощность, даже если цепь, которая к нему подключена, не потребляет большой ток. В результате все компоненты работают на полную мощность, даже если в этом нет необходимости.В результате выделяется большее количество тепла.

[nextpage title = «Схема импульсного источника питания»]

На рисунках 3 и 4 представлена ​​блок-схема импульсного источника питания с обратной связью ШИМ, используемого на ПК. На рисунке 3 мы показываем блок-схему источника питания без схемы PFC (коррекции коэффициента мощности), используемой дешевыми источниками питания, а на рисунке 4 мы показываем блок-схему источника питания с активной схемой PFC, которая используется в высоких -конечные блоки питания.

Рисунок 3: Блок-схема импульсного источника питания с ШИМ (без PFC).

Рисунок 4: Блок-схема импульсного источника питания с ШИМ и активной коррекцией коэффициента мощности.

Вы можете увидеть разницу между блоком питания с активным PFC и блоком без этой схемы, сравнив рисунки 3 и 4. Как видите, блоки питания с активным PFC не имеют переключателя 110/220 В, а также не имеют У них нет схемы удвоения напряжения, но, конечно, у них есть активная коррекция коэффициента мощности, о которой мы поговорим позже.

Это очень простая диаграмма.Мы не включали дополнительные схемы, такие как защита от короткого замыкания, резервная цепь, генератор сигналов хорошего питания и т. Д., Чтобы упростить понимание схемы. Если вам нужны подробные схемы, см. Рисунок 5. Если вы не разбираетесь в электронике, не волнуйтесь. Эта цифра предназначена для читателей, которые хотят углубиться в подробности.

Рисунок 5: Схема типичного блока питания ATX начального уровня.

Вы можете спросить себя, где находится ступень регулирования напряжения на рисунках выше.Схема ШИМ регулирует напряжение. Входное напряжение выпрямляется перед прохождением через переключающие транзисторы, и они посылают в трансформатор прямоугольную волну. Итак, на выходе трансформатора мы имеем сигнал прямоугольной формы, а не синусоидальный. Поскольку форма волны уже имеет квадратную форму, очень просто преобразовать ее в напряжение постоянного тока. Значит, после выпрямления после трансформатора напряжение уже постоянное. Вот почему иногда импульсные источники питания также называют преобразователями постоянного тока в постоянный.

Петля, используемая для питания схемы управления ШИМ, отвечает за выполнение всех необходимых регулировок. Если выходное напряжение неправильное, схема управления ШИМ изменяет рабочий цикл сигнала, подаваемого на транзисторы, чтобы скорректировать выходной сигнал. Это происходит, когда потребление энергии ПК увеличивается, когда выходное напряжение имеет тенденцию падать, или когда потребление энергии ПК уменьшается, когда выходное напряжение имеет тенденцию к увеличению.

Все, что вам нужно знать перед переходом к следующей странице (и что вы можете узнать, обратив внимание на рисунки 3 и 4):


  • Все, что до трансформатора, называется «первичным», а все, что после него - «вторичным».

  • Блоки питания с активной схемой коррекции коэффициента мощности не имеют переключателя на 110/220 В. У них также нет удвоителя напряжения.

  • В источниках питания без коррекции коэффициента мощности, если 110 В / 220 В установлено на 110 В, источник питания будет использовать удвоитель напряжения, чтобы всегда поддерживать напряжение около 220 В перед выпрямительным мостом.

  • В блоках питания ПК два силовых полевых МОП-транзистора образуют коммутатор. Можно использовать несколько различных конфигураций, об этом мы поговорим позже.

  • Форма волны, подаваемая на трансформатор, квадратная. Таким образом, форма волны на выходе трансформатора является квадратной, а не синусоидальной.

  • Схема управления ШИМ, которая обычно представляет собой интегральную схему, изолирована от первичной обмотки через небольшой трансформатор. Иногда вместо трансформатора используется оптопара (небольшая интегральная схема, содержащая светодиод и фототранзистор, упакованные вместе).

  • Как мы уже упоминали, схема управления ШИМ использует выходы источника питания для управления тем, как она будет управлять переключающими транзисторами.Если выходное напряжение неправильное, схема управления ШИМ изменяет форму волны, подаваемой на переключающие транзисторы, чтобы скорректировать выходной сигнал.

  • На следующих страницах мы рассмотрим каждый из этих этапов с изображениями, показывающими, где их можно найти внутри источника питания.
[nextpage title = «Внутри блока питания ПК»]

После первого включения источника питания (не делайте этого с подсоединенным шнуром питания, иначе вы получите удар электрическим током), вы можете потеряться, пытаясь понять, что к чему.Но вы узнаете как минимум две вещи, которые уже знаете: вентилятор блока питания и некоторые радиаторы.

Рисунок 6: Внутри блока питания ПК.

Но вы сможете очень легко распознать компоненты, принадлежащие первичному, и компоненты, принадлежащие вторичному.

Вы найдете один (для блоков питания с активным PFC) или два (для блоков питания без PFC) больших электролитических конденсаторов. Найдите их, и вы найдете основной.

Обычно блоки питания ПК имеют три трансформатора между двумя большими радиаторами, как вы можете видеть на рисунке 7.Главный трансформатор - самый большой. Средний трансформатор используется для генерации выхода + 5VSB, а самый маленький трансформатор используется схемой управления ШИМ для изоляции вторичной обмотки от первичной (это трансформатор, обозначенный как «изолятор» на рисунках 3 и 4). В некоторых источниках питания вместо трансформатора в качестве изолятора используется одна или несколько оптопар (они выглядят как небольшие интегральные схемы), поэтому в источниках питания, использующих эти компоненты, вы, вероятно, найдете только два трансформатора.Об этом мы поговорим позже.

Один из радиаторов относится к первичной обмотке, а другой - к вторичной.

На первичном радиаторе вы найдете переключающие транзисторы, а также транзисторы PFC и диод, если в вашем источнике питания есть активный PFC. Некоторые производители могут использовать отдельный радиатор для активных компонентов PFC, поэтому в источниках питания с активным PFC вы можете найти два радиатора в его первичной обмотке.

На вторичном радиаторе вы найдете несколько выпрямителей.Они похожи на транзисторы, но внутри у них два силовых диода.

Вы также найдете несколько небольших электролитических конденсаторов и катушек, которые относятся к фазе фильтрации - найдя их, вы найдете вторичную.

Более простой способ найти вторичную и первичную - просто проследить за проводами источника питания. Выходные провода будут подключены к вторичной обмотке, а входные провода (те, которые идут от шнура питания) будут подключены к первичной. См. Рисунок 7.

Рисунок 7: Расположение первичного и вторичного.

Теперь поговорим о компонентах, которые можно найти на каждой ступени источника питания.

[nextpage title = «Переходная фильтрация»]

Первым этапом питания ПК является фильтрация переходных процессов. На рисунке 8 вы можете увидеть схему рекомендованного переходного фильтра для блока питания ПК.

Рисунок 8: Переходный фильтр.

Мы говорим «рекомендуется», потому что многие блоки питания, особенно дешевые, не имеют всех компонентов, показанных на рисунке 8.Таким образом, хороший способ проверить, исправен ли ваш блок питания, - это проверить, есть ли в его ступени фильтрации переходных процессов все рекомендуемые компоненты или нет.

Его основной компонент называется MOV (Металлооксидный варистор) или варистор, обозначенный на нашей схеме RV1, который отвечает за резку скачков напряжения (переходных процессов), обнаруживаемых на линии электропередачи. Это точно такой же компонент, как и в ограничителях перенапряжения. Проблема, однако, в том, что в дешевых источниках питания нет этого компонента, чтобы сократить расходы.В источниках питания с MOV ограничители перенапряжения бесполезны, так как в них уже есть ограничитель перенапряжения.

L1 и L2 - ферритовые катушки. C1 и C2 - дисковые конденсаторы, обычно синие. Эти конденсаторы также называются «Y-конденсаторами». C3 - это металлизированный полиэфирный конденсатор, обычно со значениями, такими как 100 нФ, 470 нФ или 680 нФ. Этот конденсатор также называют «конденсатором X». В некоторых источниках питания есть второй конденсатор X, установленный параллельно с основной линией питания, где RV1 показан на рисунке 8.

Конденсатор

X - это любой конденсатор, выводы которого подключены параллельно основной линии питания. Конденсаторы типа Y идут парами, их необходимо соединять последовательно, причем точка соединения между ними должна быть заземлена, т. Е. Подключена к шасси источника питания. Затем их подключают параллельно к основной линии электропередачи.

Фильтр переходных процессов не только фильтрует переходные процессы, исходящие от линии электропередачи, но также предотвращает возврат шума, создаваемого переключающими транзисторами, в линию электропередачи, что могло бы вызвать помехи в другом электронном оборудовании.

Давайте посмотрим на несколько реальных примеров. Обратите внимание на рисунок 9. Вы видите здесь что-то странное? В этом блоке питания просто нет переходного фильтра! Этот блок питания представляет собой дешевый «универсальный» блок. Если вы обратите внимание, то можете увидеть маркировку на печатной плате блока питания, где должны быть установлены фильтрующие компоненты.

Рисунок 9: Этот дешевый «универсальный» источник питания не имеет даже ступени фильтрации переходных процессов.

На рисунке 10 вы можете увидеть переходную фильтрацию дешевого источника питания.Как видите, MOV отсутствует, а у этого блока питания только одна катушка (отсутствует L2). С другой стороны, у него есть один дополнительный конденсатор X (размещенный там, где RV1 на рисунке 8).

Рисунок 10: Фильтрация переходных процессов на дешевом блоке питания.

На некоторых источниках питания фильтр переходных процессов можно разделить на два отдельных каскада, один из которых припаян к входному разъему питания, а другой - на печатной плате источника питания, как вы можете видеть на источнике питания, показанном на рисунках 11 и 12.

На этом источнике питания вы можете найти конденсатор X (заменяющий RV1 на рисунке 8) и первую ферритовую катушку (L1), припаянную на небольшой печатной плате, которая подключена к основному разъему питания переменного тока.

Рисунок 11: Первая ступень переходного фильтра.

На печатной плате блока питания находятся остальные компоненты. Как видите, у этого источника питания есть MOV, хотя он и находится в необычном положении после второй катушки. Если вы обратите внимание, в этом источнике питания больше, чем рекомендовано, количество компонентов, так как в нем есть все компоненты, показанные на рисунке 8, плюс дополнительный конденсатор X.

Рисунок 12: Вторая ступень переходного фильтра.

MOV этого блока питания желтого цвета, однако чаще всего используется темно-синий цвет.

Вы также должны найти предохранитель рядом с переходным фильтром (F1 на Рисунке 8, см. Также Рисунки 9, 10 и 12). Если этот предохранитель перегорел, будьте осторожны. Предохранители не перегорают сами по себе, а перегоревший предохранитель обычно указывает на неисправность одного или нескольких компонентов. Если вы замените предохранитель, новый, вероятно, перегорит сразу после включения компьютера.

[nextpage title = «Удвоитель напряжения и первичный выпрямитель»]

На блоках питания без активной цепи PCF вы найдете удвоитель напряжения. В удвоителе напряжения используются два больших электролитических конденсатора. Таким образом, к этому этапу относятся конденсаторы большего размера, имеющиеся в блоке питания. Как мы упоминали ранее, удвоитель напряжения используется только в том случае, если вы подключаете источник питания к электросети 127 В.

Рисунок 13: Электролитические конденсаторы от удвоителя напряжения.

Рисунок 14: Электролитические конденсаторы от удвоителя напряжения, снятые с источника питания.

Рядом с двумя электролитическими конденсаторами находится выпрямительный мост. Этот мост может состоять из четырех диодов или из одного компонента, см. Рисунок 15. В высокопроизводительных источниках питания этот выпрямительный мост подключен к радиатору.

Рисунок 15: Выпрямительный мост.

На первичной обмотке вы также найдете термистор NTC, который представляет собой резистор, который изменяет свое сопротивление в зависимости от температуры.Он используется для перенастройки источника питания после того, как он некоторое время использовался в горячем состоянии. NTC означает отрицательный температурный коэффициент. Этот компонент напоминает керамический дисковый конденсатор и обычно имеет оливково-зеленый цвет.

[заголовок следующей страницы = «Активная коррекция коэффициента мощности»]

Очевидно, что эта схема встречается только в источниках питания с активным PFC. На рисунке 16 вы можете изучить типичную активную схему коррекции коэффициента мощности.

Рисунок 16: Активная коррекция коэффициента мощности.

В активной схеме PFC обычно используются два силовых полевых МОП-транзистора.Эти транзисторы прикреплены к радиатору первичного каскада источника питания. Для лучшего понимания мы обозначили название каждого терминала MOSFET: S - источник, D - сток, а G - ворота.

Диод PFC - это силовой диод, обычно использующий корпус, аналогичный силовым транзисторам (но имеющий только два вывода), и он также прикреплен к радиатору, находящемуся на первичном каскаде источника питания.

Катушка PFC, показанная на рисунке 16, является самой большой катушкой в ​​источнике питания.

Электролитический конденсатор - это большой электролитический конденсатор, который вы найдете в первичной части источников питания с активным PFC.

И показанный резистор представляет собой термистор NTC, который представляет собой резистор, который изменяет свое сопротивление в зависимости от температуры. Он используется для перенастройки источника питания после того, как он некоторое время использовался в горячем состоянии. NTC означает отрицательный температурный коэффициент.

Активная схема управления PFC обычно основана на интегральной схеме.Иногда эта интегральная схема также отвечает за управление схемой ШИМ (используемой для управления переключающими транзисторами). Такой тип интегральной схемы называется «комбинация PFC / PWM».

Давайте теперь посмотрим на несколько реальных примеров. На рисунке 17 мы сняли основной радиатор, чтобы вы могли лучше видеть компоненты. Справа вы можете увидеть компоненты переходной фильтрации, которые мы уже обсуждали. Слева вы можете увидеть активные компоненты PFC. Поскольку мы сняли радиатор, активные транзисторы PFC и диод PFC на этом рисунке отсутствуют.Если вы обратите внимание, вы увидите, что в этом источнике питания используется конденсатор X между его выпрямительным мостом и активной схемой PFC (коричневый компонент под радиатором выпрямительного моста). Обычно термистор, который напоминает керамический дисковый конденсатор и обычно имеет оливково-зеленый цвет, использует резиновую защиту, как вы можете видеть. Как мы уже упоминали, самой большой катушкой источника питания обычно является активная катушка коррекции коэффициента мощности.

Рисунок 17: Активные компоненты PFC.

На Рисунке 18 вы можете увидеть компоненты, которые прикреплены к радиатору, находящемуся на первичной части блока питания, изображенном на Рисунке 17.Вы можете увидеть два силовых MOSFET-транзистора и силовой диод из активной схемы PFC.

Рисунок 18: Компоненты, прикрепленные к первичному радиатору.

На рисунке 18 вы также можете увидеть два переключающих транзистора, используемых в этом источнике питания, который является нашей следующей темой.

[nextpage title = «Коммутационные транзисторы»]

Секция переключения импульсных источников питания может быть построена с использованием нескольких различных конфигураций. Мы собрали наиболее распространенные из них в таблице ниже.

Конфигурация Количество транзисторов Количество диодов Количество конденсаторов Выводы трансформатора
Однотранзисторный передний ход 1 1 1 4
Двухтранзисторный передний ход 2 2 0 2
Полумост 2 0 2 2
Полный мост 4 0 0 2
Push-Pull 2 0 0 3

Конечно, мы просто анализируем количество необходимых компонентов. Есть и другие аспекты, которые инженеры должны учитывать при принятии решения, какую конфигурацию использовать.

Две наиболее распространенные конфигурации для блоков питания ПК - это двухтранзисторная прямая и двухтактная, и в обеих используются два переключающих транзистора. Физический аспект этих транзисторов - силовых полевых МОП-транзисторов - можно увидеть на предыдущей странице. Они прикреплены к радиатору на первичной части блока питания.

Ниже мы покажем вам схемы для каждой из этих пяти конфигураций.

Рисунок 19: Прямая однотранзисторная конфигурация.

Рисунок 20: Прямая конфигурация с двумя транзисторами.

Рисунок 21: Конфигурация полумоста.

Рисунок 22: Конфигурация полного моста.

Рисунок 23: Двухтактная конфигурация.

[nextpage title = «Трансформаторы и схема управления ШИМ»]

Как мы упоминали ранее, типичный блок питания ПК имеет три трансформатора. Большой - это тот, который показан на нашей блок-схеме (рисунки 3 и 4) и схемах (рисунки с 19 по 23), где его первичная обмотка соединена с переключающими транзисторами, а вторичная - с выпрямительными диодами и схемами фильтрации, которые обеспечат выходы блока питания постоянного тока (+12 В, + 5 В, +3.3 В, -12 В и -5 В). Второй трансформатор используется для генерации выхода + 5VSB. Независимая схема генерирует этот выходной сигнал, также известный как «резервная мощность». Причина в том, что этот выход всегда включен, даже когда питание вашего ПК «выключено» (т.е. он находится в режиме ожидания). Третий трансформатор - изолирующий трансформатор, соединяющий схему управления ШИМ с переключающими транзисторами (на нашей блок-схеме обозначены как «изолятор»). Этот третий трансформатор может не существовать, его заменяют одна или несколько оптопар, которые выглядят как небольшая интегральная схема (см. Рисунок 25).

Рисунок 24: Трансформаторы питания.

Рисунок 25: В этом источнике питания вместо трансформатора для изоляции цепи ШИМ используются оптопары.

Схема управления ШИМ основана на интегральной схеме. В источниках питания без активной коррекции коэффициента мощности обычно используется интегральная схема TL494 (в блоке питания, показанном на рисунке 26, использовалась совместимая часть DBL494). В источниках питания с активным PFC иногда используется интегральная схема, сочетающая в себе управление PWM и PFC.CM6800 - хороший пример комбинированной интегральной схемы PWM / PFC. Другая интегральная схема обычно используется в источнике питания, чтобы генерировать хороший сигнал мощности. Об этом мы поговорим позже.

Рисунок 26: Схема управления ШИМ .

[nextpage title = "Вторичный"]

Наконец, второстепенный этап. Здесь выходы главного трансформатора выпрямляются и фильтруются, а затем передаются на ПК. Выпрямление отрицательных напряжений (-5 В и -12 В) выполняется обычными диодами, поскольку они не требуют большой мощности и тока.Но для выпрямления положительных напряжений (+3,3 В, +5 В и +12 В) используются силовые выпрямители Шоттки, которые представляют собой трехконтактные компоненты, которые выглядят как силовые транзисторы, но имеют внутри два силовых диода. Способ выполнения исправления зависит от модели источника питания, и возможны две конфигурации, показанные на рисунке 27.

Рисунок 27: Конфигурации исправления.

Конфигурация «A» больше используется источниками питания низкого уровня. Как видите, для этой конфигурации требуется три вывода от трансформатора.Конфигурация «B» больше используется в источниках питания высокого класса. Здесь используются только два вывода трансформатора, однако ферритовая катушка должна быть физически больше и, следовательно, дороже, и это одна из основных причин, по которой источники питания низкого уровня не используют эту конфигурацию.

Также в источниках питания высокого класса, чтобы увеличить максимальный ток, источник питания может выдавать два силовых диода, которые могут быть подключены параллельно, таким образом удваивая максимальный ток, который может выдержать схема.

Все блоки питания имеют полную схему выпрямления и фильтрации для выходов +12 В и +5 В, поэтому все блоки питания имеют как минимум две схемы, подобные показанной на рисунке 27.

Но для выхода +3,3 В можно использовать три варианта:


  • Добавление регулятора напряжения +3,3 В к выходу +5 В. Это наиболее распространенный вариант для бюджетных блоков питания.

  • Добавление полной схемы выпрямления и фильтрации, подобной показанной на Рисунке 27 для выхода +3,3 В, но с тем же выходом трансформатора, который используется схемой выпрямления +5 В. Это наиболее распространенный вариант для источников питания высокого класса.

  • Использование полностью независимого +3.Схема выпрямления и фильтрации 3 В. Это очень редко и встречается в очень дорогих и дорогих источниках питания. На сегодняшний день мы видели только один блок питания, использующий эту опцию (для записи, Enermax Galaxy 1000 W).

Поскольку для выхода +3,3 В обычно используется цепь +5 В полностью (в источниках питания низкого уровня) или частично (в источниках питания высокого класса), выход +3,3 В ограничен выходом +5 В. наоборот. Вот почему блоки питания ПК имеют рейтинг «комбинированной мощности», указывающий максимальную мощность, которую эти два выхода могут объединить вместе, в дополнение к максимальной выходной мощности каждого выхода (общая мощность меньше суммы +3.Номинальная мощность 3 В и +5 В).

На Рисунке 28 вы в целом видите вторичную обмотку блока питания низкого уровня. Здесь вы можете увидеть интегральную схему, отвечающую за формирование сигнала Power Good. Обычно для этой задачи в младших блоках питания используется LM339 или аналогичный.

Вы найдете несколько электролитических конденсаторов (намного меньших, чем те, что есть на удвоителе напряжения или активной схеме PFC) и несколько катушек. Они отвечают за этап фильтрации (см. Рисунок 27).

Рисунок 28: Вторичная ступень источника питания.

Для лучшего снимка мы перерезали все провода и удалили две большие фильтрующие катушки. На рисунке 29 вы можете увидеть диоды меньшего размера, используемые для выпрямления линий -12 В и -5 В, которые имеют меньшие номинальные значения тока (и, следовательно, мощности) (0,5 А каждый для этого конкретного источника питания). Остальные выходы напряжения имеют потребность в токе, намного превышающем 1 А, и для выполнения выпрямления требуются силовые диоды.

Рисунок 29: Выпрямительные диоды для линий –12 В и –5 В.

[nextpage title = ”The Secondary (Cont’d)”]

На Рисунке 30 у нас есть пример компонентов, которые прикреплены к радиатору, находящемуся на вторичном каскаде низкоуровневого источника питания.

Рисунок 30: Компоненты вторичного радиатора блока питания низкого уровня.

Слева направо вы найдете:

  • Интегральная схема регулятора напряжения - хотя она имеет три вывода и выглядит как транзистор, это интегральная схема. В случае с нашим источником питания это был 7805 (регулятор 5 В), отвечающий за регулирование выхода + 5VSB. Как мы упоминали ранее, этот выход использует схему, которая не зависит от стандартной линии +5 В (см. Рисунок 5 для лучшего понимания), так как он будет продолжать подавать +5 В на выход + 5VSB, даже когда ваш компьютер «включен». выкл »(режим ожидания).Вот почему этот выход также называют «резервным питанием». ИС 7805 может обеспечивать ток до 1 А.
  • A силовой MOSFET-транзистор для регулирования выхода +3,3 В. В случае с нашим источником питания использовался тот, который был PHP45N03LT, который может обрабатывать до 45 А. Как мы упоминали на предыдущей странице, только источники питания низкого уровня будут использовать стабилизатор напряжения для выхода +3,3 В, что является подключен к линии +5 В.
  • Силовой выпрямитель Шоттки, который представляет собой просто два диода, склеенных в одном корпусе.В случае нашего источника питания использовался один из них - STPR1620CT, который может выдерживать до 8 А на каждый диод (всего 16 А). Этот выпрямитель используется для линии +12 В.
  • Другой силовой выпрямитель Шоттки. В случае с нашим источником питания использовался E83-004, который может работать с током до 60 А. Этот специальный выпрямитель мощности используется для линий +5 В и + 3,3 В. Поскольку в линиях +5 В и +3,3 В используется один и тот же выпрямитель, их добавленный ток не может быть больше максимального тока выпрямителя. Эта концепция называется комбинированной мощностью.Другими словами, линия +3,3 В генерируется из +5 В; трансформатор не имеет выходного напряжения 3,3 В, в отличие от всех остальных напряжений, обеспечиваемых источником питания. Эта конфигурация используется только в источниках питания низкого уровня. Источники питания высокого класса используют отдельные выпрямители для выходов +3,3 В и +5 В.

Теперь давайте взглянем на основные компоненты, используемые на вторичной ступени высокопроизводительного источника питания.

Рисунок 31: Компоненты вторичного радиатора высокопроизводительного источника питания.

Рисунок 32: Компоненты вторичного радиатора высокопроизводительного источника питания.

Здесь вы можете найти:

  • Два мощных выпрямителя Шоттки для выхода +12 В, подключенных параллельно, вместо одного, как в младших блоках питания. Эта конфигурация удваивает максимальный ток (и, следовательно, мощность), который может выдать выход +12 В. В этом источнике питания используются два выпрямителя Шоттки STPS6045CW, каждый из которых может выдавать ток до 60 А.
  • Один мощный выпрямитель Шоттки для выхода +5 В.На этом конкретном блоке питания использовался один STPS60L30CW, который поддерживает до 60 А.
  • Один выпрямитель Шоттки для выхода +3,3 В, что является основным различием между источниками питания высокого и низкого уровня (как мы только что показали вам, в источниках питания низкого уровня выход +3,3 В генерируется через + Линия 5 В). На изображенном источнике питания использовалась схема STPS30L30CT, поддерживающая до 30 А.
  • Один регулятор напряжения из схемы защиты источника питания. Эта функция зависит от модели источника питания.

Обратите внимание, что максимальные токи, которые мы опубликовали, относятся только к компонентам. Максимальный ток, который может обеспечить источник питания, будет зависеть от других компонентов, которые к ним подключены, таких как катушки, трансформатор, калибр используемых проводов и даже ширина дорожек на печатной плате.

В качестве упражнения вы можете рассчитать максимальную теоретическую мощность для каждого выхода, умножив максимальный ток выпрямителя на выходное напряжение. Например, для блока питания, изображенного на Рисунке 30, максимальная теоретическая мощность на выходе +12 В составляет 192 Вт (16 А x 12 В).Но имейте в виду то, что мы только что сказали в предыдущем абзаце.

Импульсные источники питания от сети

Модификации выхода 13,8 В

(См. Принципиальные схемы в оригинальных статьях, где указаны номера деталей.)

Эти модификации бывают трех основных уровней:

  1. Просто примите существующий выход +12 В постоянного тока или настройте RV1, чтобы увеличить его. К достичь 13,8 В, иногда нужно изменить R8 на более низкий стандарт ценить.Это даст до 10 А (существующий номинал выхода +12 В). при падении напряжения менее 1В при полной нагрузке.
    Примечание: вам всегда понадобится нагрузочный резистор на выходе 5 В - см. статьи.
  2. Перейти к более высокой токовой нагрузке и лучшему регулированию напряжения. Этот обычно включает:
    1. Поменяйте местами D3 и D4, чтобы на выходе 13,8 В использовалось большее, низкоомный диод D3.
    2. Доработка дросселя фильтра L2 (что может быть проблемой из-за отсутствия другие обмотки для уменьшения магнитного потока в сердечнике)
    3.Изменение схем обнаружения неисправностей, чтобы они контролировали новые 13,8 В. рейка вместо + 5В.
    Таким образом, слабым местом является вторичная обмотка Т1, поэтому следующий уровень ...
  3. Перемотка вторичной обмотки Т1, которая требует от вас полная ответственность за все цепи вывода и управления.

Все это можно сделать - статья VK6APH - отличный пример мода «Уровень 3», но давайте также сохраним некоторую перспективу:

  • Типичный класс мощностью 100 Вт трансивер требует 13.8В при пике 20А (260Вт), что выходит за рамки возможностей из любой блок питания мощностью всего 200 Вт. Даже если блок питания мощностью 300 Вт может быть модифицированный для обеспечения 13,8 В, он будет незначительным - и может быть подчеркнут пределы надежности.
  • А Вы серьезно предлагаете управлять трансивером на 1000 штук от блока питания это не было предназначено для этой цели, которую вы изменили, и чья схему вы не совсем понимаете? Это кажется разумным риском? Это не для меня.

На фотографии в части 2 показана модификация блока питания уровня 1, изображенная на Часть 1:

  • Сетевой кулисный переключатель и разъемы Powerpole DC залиты эпоксидной смолой. имеющиеся слоты в корпусе
  • Более качественный входной сетевой фильтр прикручен непосредственно к дело. Кажется, этого достаточно, чтобы убить весь выходной шум - ничего не получается. слышен на КВ трансивере, питаемом от этого конкретного устройства.
  • Другими вариантами уменьшения выходного шума могут быть намотка обоих выходных выводы на ферритовом тороиде; заземлить отрицательный вывод на корпус сразу за выходной розеткой; и обойти положительный вывод к корпус, также сразу за выходным разъемом.Я не пробовал ни одного из эти варианты.
  • Металлический корпус 10Вт нагрузочный резистор для шины + 5В прикручен к корпусу под сетью фильтр. Корпус обеспечивает радиатор, необходимый этим резисторам.

БЕЗОПАСНОСТЬ

Обратите внимание на широкое использование термоусадочной изоляционной муфты в фотография.

Этот блок питания достаточно безопасен, когда его крышка заменяется, но не забывайте, что изначально она была предназначена для использовать внутри корпуса ПК.Без этой дополнительной защиты не встретит современные стандарты безопасности , потому что это возможен контакт с сетью и другим высоким напряжением через вентиляцию слоты ... но БП будет перегрев, если эти слоты заблокированы. БЕРЕГИТЕСЬ!

13,8 В / 15 А от блока питания ПК

13,8 В / 15 А от блока питания ПК

13,8 В / 15 А от блока питания ПК

Правила техники безопасности

Осторожно: смертельная опасность: Следующая схема работает при сетевом напряжении 230 В переменного тока.Из-за исправления некоторые компоненты проводят постоянное напряжение более 322 В. Работать необходимо. осуществляется только в том случае, если цепь отключена от сети и обесточена. Обратите внимание, что конденсаторы, расположенные на первичной стороне, могут заряжаться высоким напряжением. в течение нескольких секунд даже после переключения сетевого напряжения.

Основные недостатки обычной линейной мощности Источники имеют высокую рассеиваемую мощность, размер и соответствующий вес.Когда ища альтернативное решение, решил использовать импульсный блок питания (SMPS). КПД таких источников питания составляет от 70% до 90% при мощности плотность 0,2 Вт / см. Потому что о домашнем пивоварении не могло быть и речи из-за отсутствия Время от времени я пробовал модификацию импульсного блока питания ПК.

Рис.1: Блок-схема первичного импульсный источник питания

Краткое описание ИИП ПК Возможности

В зависимости от модели ПК они имеют любой рейтинг. от 150 до 240 Вт.Для питания основных плат socket 7 у них есть четыре разных выходное напряжение +5 В, +12 В, -12 В и -5 В. В основном это первичные коммутационные блоки питания с переключателями питания, расположенными по схеме полумоста. На выходы могут подаваться обычные 20 А (+5 В), 8 А (+12 В) и 0,5 А (-12 В, -5 В). V). Приблизительно. Выходная мощность 205 Вт и типичный КПД 75%, что означает рассеиваемая мощность всего 68 Вт. Я приобрел блок питания для ПК другого производителя, измеряющий 140 х 100 х 50 мм (Ш, Г, В) и весом 350 г.Большинство блоков питания спроектирован по тому же принципу (конфигурация полумоста) и, следовательно, следующая описанная модификация должна быть применима также к источникам питания от других производителей.

Рис.2: Конфигурация полумоста силовых переключателей

Постановление

После включения сетевого напряжения схема кратковременно работает как автономный генератор.Этот поведение вызвано обмоткой обратной связи на выходном трансформаторе T2. Как только в качестве вспомогательного напряжения Uaux присутствует ИМС широтно-импульсного модулятора TL494CN. от Texas-Instruments берет на себя функцию управления и синхронизирует «осциллятор».
Усилитель ошибки в TL494 сравнивает напряжение на выходе +5 В (фактическое значение) с опорным напряжением (заданное значение), вычисляет аналоговое управление переменная согласно алгоритму PI и регулирует широтно-импульсный модулятор (см. рис.6). Модулятор посылает на транзисторы драйвера чередующиеся импульсы. Q5 и Q6. Длительность импульса обратно пропорциональна регулируемой переменной. рейтинг. Увеличение нагрузки на выходе +5 В делает импульсы более широкими, более легкими. нагрузка вызывает более узкие импульсы. Поскольку существует конечная минимальная длительность импульса, требуется минимальная нагрузка 0,1 А. Без этой нагрузки источник питания может быть уничтожен. Частота коммутации составляет ок. 33 кГц как обычно для блоков питания ПК.Он определяется резистором и конденсатором, расположенными на выводах 5 и 6 микросхемы IC1.

Рис. 3: Сетевой фильтр на первичной стороне, выпрямитель, выключатели питания и драйверы

Цепь контроля

Несколько схем защиты включены в оригинальный блок питания. Чрезмерный первичный ток из-за очень высокого вторичного тока ток приводит к высокому переменному напряжению на выходе Т3. Если это напряжение выше фиксированного порога TL494 немедленно прекращает циклическую генерацию импульсы и переход в прерывистый режим (вкл / выкл).Схема и нагрузка также защищены от перенапряжения на выходе +5 В или короткого замыкания на выходах -12 В и -5 В. Выключение осуществляется с помощью H-сигнала на Вход защиты IC1 (контакт 4) тоже.
Если вы видите на плате микросхему ШИМ-регулятора KA7500 или IR3MO2, каждая из них представляет собой пин совместимый второй источник с TL494CN. IC3 - двойной компаратор от LM339 тип. Некоторые блоки питания не оснащены этой микросхемой, а имеют двухтранзисторный дискретная схема контроля, предлагающая ту же функциональность.

Модификации вторичной ректификации

Намерение для всех доступных питание на вторичной обмотке 12 В Т1, которое необходимо выпрямить, отрегулировать, защитить с фильтром для обеспечения единственного выхода 13,8 В постоянного тока при 205 Вт или более, если это возможно. Первая проверка показывает, что провод +12 В был того же диаметра, что и Провод +5 В.
Сначала распаяйте и удалите все компоненты на вторичной стороне T1, которые предусмотрены для выпрямления, фильтрации и регулирования четырех выходных напряжений.В этой части платы остались только три члена RC RC1 - RC3 и компоненты для обеспечения вспомогательного источника питания Uaux.

Рис.4: Вторичное выпрямление, как в оригинальный блок питания ПК

Реконструкция вторичного сторона.

Разорвите дорожки на печатной плате между элементами RC RC1 / RC2 и оба отвода 5 В вторичной обмотки T1.
Измените L4 на 12 В при 20 А.Снимаем обмотки L4a, L4b и L4c от тороида (с учетом витков L4c). Перемотайте тороид L4 * с одной обмоткой, витки считаются как старые L4c, но в 2,5 раза больше толщина. Возьмите две проволоки диаметром 1 мм каждая, бифилярно намотанные.
Установите два электролитических конденсатора с низким ESR. 2200 мкФ каждый и резистор утечки 100 Ом в качестве постоянной нагрузки.
Используйте старые дорожки печатной платы из секции +5 В. и GND в качестве клемм для L4 *, резистора 100 Ом и двух 2200 Конденсаторы мкФ.Вставьте L4 * в том же месте на стороне компонента печатной платы. где раньше была подключена обмотка L4b.
Оригинальное охлаждение выпрямительного диода D5 недостаточно. Достаточное охлаждение достигается за счет измерения оребрения радиатора. 70 x 50 x 30 мм (Ш, Г, В) вместо старого алюминиевого листа.
Закрепите D5 на радиаторе и выдвиньте три провода длиной 40 мм. Используйте изоляционный материал и термопасту.D5 имеет на некоторых платах аббревиатуру SKD.
Установите оребренный радиатор прибл. 40 мм над «зачищенной» вторичкой (см. фото) с пластиковыми проставками и длинными Винты M3 (избегайте короткого замыкания на массу).
Соедините анодные выводы D5a и D5b с по одному члену RC RC1 / RC2 каждый. Катоды должны быть подключены к узловому точка RC1, RC2 и L4.
Установить две перемычки между клеммами 12 В. элементов Т1 и RC двумя толстыми проволоками.D5 будет питаться из 12 V обмотка.

Простая и понятная структура вторичного Исправление достигалось после «зачистки» и «реконструкции».

Рис. 5: вторичная обмотка новой конструкции для Ua = 13,8 В

Модификации в Регламент и Защита Схема

Часть цепи, отвечающая за регулирование и мониторинг должен быть изменен в трех местах.Расставить дополнительные компоненты свободно стоящий на компонентной стороне печатной платы.

R24 * рассчитано на выходное напряжение 13,8 В. Напряжение на (+) входе усилителя ошибки должно быть равно 2,5 В после стабилизации контура управления, то есть половину опорного напряжения 5 В при выходном напряжении 13,8 В.

R24 * = 20 кОм = 2 x 10 кОм последовательно

Установите второй универсальный диод 1N4148 и стабилитрон 8,2 В последовательно с D16.

Usum = 8,2 В + 2 x 0,7 В = 9,6 В

Упростите делитель напряжения (R36, R42, R45 и D14) в цепи защиты от короткого замыкания. Для этого удалите R36 и D14. Подключите свободный конец R42 к общему (GND) и замените R45 на один более высокого значения, чтобы гарантировать отсутствие отключения при нормальной работе. Напряжение на R42 должно быть меньше 1,7 В (я выбрал 1,2 В).

R45 * = 15 кОм

Области, отмеченные пунктирными рамками, показывают модифицированные или дополнительные компоненты, необходимые для 13.Выходное напряжение 8 В.

Рис.6: Цепи регулирования и защиты вкл. все модификации

Дальнейшие модификации

После ввода доработанной платы в эксплуатацию ситуация относительно помех выглядит очень плохо. Весь диапазон приема от 3,5 Частота до 30 МГц была нарушена гармониками частоты коммутации 33 кГц. Показания S-метра показали S5 на 80 м до S2 на 10 м. Когда я тестировал плата в металлическом ящике, выходить ВЧ излучение могло только по сетевому кабелю и / или выходные провода постоянного тока.Включение дополнительной стандартной сети 230 В переменного тока фильтр и самодельный пи-фильтр на выходе сделали помехи неслышными.

Вставьте дополнительный сетевой фильтр 230 В / 2 А к первичной стороне, рядом с местом входа сетевого кабеля в задняя стенка корпуса.
Вставьте пи-фильтр на 20 А в выход постоянного тока , за клеммами +/- DC на задней стенке.
Корпус блока питания должен обязательно состоят из листового железа для экранирования магнитных полей.Алюминиевые пластины защищают только против электрических полей.
Дополнительно на первичном: замените 220 Сглаживающие конденсаторы мкФ С1 и С2 конденсаторами емкостью 470 мкФ. Это снижает первичный пульсация, которая помогает регулировать выходную мощность при полной нагрузке.

Проверка источника питания

Этап 1: Эти тесты должны быть выполняется при низком напряжении питания постоянного тока во избежание разрушения компонентов на случай возможных ошибок.На выход 13,8 В загружается автомобиль 12 В / 50 Вт. лампа фары и лабораторный источник питания 15 В / 1 А подключены к GND и Uaux. Микросхема TL494 получает рабочее напряжение и генерирует управляющие импульсы с максимальной длительность импульса. Проверьте сигналы на Q5 и Q6.

Фаза 2: Во время второго теста фаза гальванически развязанная первичная сторона цепи обеспечивается лабораторией поставка тоже. Для этого сделайте короткую кабельную связь между Uaux и U + как а также между GND и U-.Контроллер PWM пытается предложить 13,8 В на выходе. выход при максимальной длительности импульса. Последний не может быть успешным из-за низкое входное напряжение 15 В постоянного тока и текущий коэффициент трансформации. С осциллографом измеряемые сигналы в точках измерения TP1 (эмиттер Q1 относительно эмиттера Q2) и TP2 (катод D5 относительно GND) должны выглядеть, как показано на рисунке 7.

Рис. 7: Форма сигнала на TP1 и TP2

Фаза 3: Не отключайте лабораторное питание от только первичная сторона.Вместо этого подключите сетевой трансформатор 48 В / 1 А к L1. и клемма N для подачи на плату гальванически изолированного переменного напряжения. 60 В постоянного тока на C1 и C2 в Европе считается безопасным напряжением. 48 Переменный ток на входе вызывает повышение выходного напряжения до +6 В.

Если до сих пор все в порядке, можно продолжите захватывающий тест при 230 В переменного тока. Лабораторный блок питания, Трансформатор 48 В, измерительные приборы и все временные кабельные соединения прилагается для теста и т. д.очевидно, должны быть удалены. Автомобильная лампочка дальше нужен как нагрузка и для функциональных проверок. Если после применения 230 Напряжение в сети переменного тока лампы горят ярко, выходное напряжение составляет 13,8 В и никаких неопределенных шумов или запахов не заметно. круглый. Если нераспознаваемая ошибка прошла предварительную проверку, два переключателя транзисторы и медные дорожки прощаются с более-менее громким треском.

Для следующего испытания под нагрузкой несколько резисторов большой мощности. с сопротивлением 1 Ом и достаточной мощностью.Текущий текущий при такой нагрузке не должно происходить чрезмерного нагрева выпрямительного диода и переключение транзисторов в течение 5-минутного испытательного периода.

Предупреждение: проверьте температуру компоненты только при отключенном сетевом напряжении

Охлаждение переключающих транзисторов Q1 и Q 2 при непрерывном токе 15 А в любом случае необходимо улучшить. При обмене небольшие радиаторы, обратите внимание, что они образуют электрическое соединение между медными треки на некоторых досках.Заменить отсутствующее соединение проводными перемычками. Как один как видно на фото, я не предпринял этих мер для дальнейшего улучшения мощности.

Опыт работы

Модифицированная плата была навсегда установлен в акустическом кабинете SP120, который соответствует моему трансиверу. Сеть вывод провода с его задней стороны, который также несет клеммы постоянного тока, двухпозиционный переключатель, дополнительный сетевой фильтр и небольшой вентилятор на 12 В. Зеленый светодиодный индикатор включения питания был вставлен в переднюю панель в отверстие 5 мм.Я установил небольшая воздуходувка на всякий случай, но оказалась лишней; при низком рабочем цикле CW и SSB, ни один из компонентов не нагревается. Блок питания был пользовался несколько лет и никаких проблем не дало.

Рис.8: Модифицированный блок питания плата в корпусе динамика SP120



[Обо мне | Акронимы | CW | Таблицы данных | Документы | Скачать | Электронное письмо | ГЛАВНАЯ | ветчина проекты | Хобби-схемы | Фотогалерея | ПОС | QTH фотографии |
Знак в моей гостевой книге | Вид моя гостевая книга]


2001 - YO5OFH, Чаба Гайдос

Блог Кена Ширриффа: февраль 2012 г.

Новая биография Стив Джобс содержит замечательное заявление о блоке питания Apple II и его разработчике Роде Холте: [1]
Вместо обычного линейного источника питания Холт построил тот, который используется в осциллографах.Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему сохранять энергию в течение гораздо меньшего времени и, следовательно, отбрасывать меньше тепла. «Этот импульсный источник питания был столь же революционным, как и материнская плата Apple II», - сказал позже Джобс. «Род не получил большого признания за это в учебниках истории, но он должен. Теперь каждый компьютер использует импульсные блоки питания, и все они копируют дизайн Рода Холта».
Мне показалось удивительным то, что в компьютерах теперь используются блоки питания, основанные на дизайне Apple II, поэтому я провел небольшое расследование.Оказывается, блок питания Apple не был революционным ни в концепции использования импульсного блока питания для компьютеров, ни в конкретной конструкции блока питания. Современные компьютерные блоки питания совершенно разные и не копируют дизайн Рода Холта. Оказывается, Стив Джобс делал свое обычное заявление о том, что все воруют революционные технологии Apple, что полностью противоречит действительности.

История импульсных блоков питания оказывается довольно интересной.Хотя большинство людей рассматривают блок питания как скучную металлическую коробку, на самом деле за этим стоит много технологических разработок. Фактически произошла революция в источниках питания в конце 1960-х - середине 1970-х годов, когда импульсные источники питания пришли на смену простым, но неэффективным линейным источникам питания, но это произошло за несколько лет до выхода Apple II в 1977 году. Для этой революции следует перейти к достижениям в полупроводниковой технологии, в частности, к усовершенствованию переключающих транзисторов, а затем и к инновационным ИС для управления импульсными источниками питания.[2]

Некоторые сведения об источниках питания

В стандартном настольном компьютере источник питания преобразует сетевое напряжение переменного тока в постоянное, обеспечивая несколько тщательно регулируемых низких напряжений при высоких токах. Источники питания могут быть построены различными способами, но линейные и импульсные источники питания - это два метода, относящиеся к этому обсуждению. (См. Примечания для получения дополнительной информации об устаревших технологиях, таких как большие механические мотор-генераторные системы [3] и феррорезонансные трансформаторы [4] [5].)

Типичный линейный источник питания использует громоздкий силовой трансформатор для преобразования 120 В переменного тока в низкое напряжение переменного тока, преобразует его в постоянное напряжение низкого напряжения с помощью диодного моста, а затем использует линейный регулятор для понижения напряжения до желаемого уровня.Линейный стабилизатор - это недорогой, простой в использовании компонент на основе транзистора, который преобразует избыточное напряжение в отходящее тепло для получения стабильного выходного сигнала. Линейные источники питания почти несложно спроектировать и изготовить. [6] Однако одним большим недостатком является то, что они обычно расходуют около 50-65% энергии в виде тепла [7], часто требуя больших металлических радиаторов или вентиляторов для отвода тепла. Второй недостаток - они большие и тяжелые. С другой стороны, компоненты (кроме трансформатора) в линейных источниках питания должны работать только с низким напряжением, а выход очень стабильный и бесшумный.

Импульсный источник питания работает по совершенно другому принципу: быстрое включение и выключение питания, а не превращение избыточной мощности в тепло. В импульсном источнике питания входная линия переменного тока преобразуется в высоковольтный постоянный ток, а затем источник питания включает и выключает постоянный ток тысячи раз в секунду, тщательно контролируя время переключения, чтобы выходное напряжение в среднем составляло желаемое значение. Теоретически энергия не тратится зря, хотя на практике КПД будет 80% -90%.Импульсные источники питания намного эффективнее, выделяют гораздо меньше тепла и намного меньше и легче линейных источников питания. Основным недостатком импульсного источника питания является то, что он значительно сложнее, чем линейный источник питания, и его гораздо труднее спроектировать [8]. Кроме того, он предъявляет гораздо более высокие требования к компонентам, требуя транзисторов, которые могут эффективно включаться и выключаться на высокой скорости при большой мощности. Переключатели, катушки индуктивности и конденсаторы в импульсном источнике питания могут быть расположены в нескольких различных схемах (или топологиях) с такими названиями, как понижающий, повышающий, обратный, прямой, двухтактный, полуволновой и полноволновой.[9]

История импульсных источников питания до 1977 года

Принципы импульсных источников питания были известны с 1930-х годов [6] и строились из дискретных компонентов в 1950-х. [10] В 1958 году в компьютере IBM 704 использовался примитивный импульсный стабилизатор на основе электронных ламп. [11] Компания Pioneer Magnetics начала производство импульсных источников питания в 1958 году [12] (а спустя десятилетия внесла ключевое новшество в блоки питания для ПК [13]). Компания General Electric опубликовала первый проект импульсного источника питания в 1959 году.[14] В 1960-х годах аэрокосмическая промышленность и НАСА [15] были основной движущей силой развития импульсных источников питания, поскольку преимущества небольшого размера и высокой эффективности компенсировали высокую стоимость. [16] Например, НАСА использовало переключатели питания для спутников [17] [18], таких как Telstar в 1962 году. [19]

Компьютерная промышленность начала использовать импульсные блоки питания в конце 1960-х годов, и их популярность неуклонно росла. Примеры включают миникомпьютер PDP-11/20 в 1969 году [20] Honeywell h416R в 1970 году [21] и миникомпьютер Hewlett-Packard 2100A в 1971 году.[22] [23] К 1971 году компании, использующие импульсные регуляторы, «читали как« Кто есть кто »компьютерной индустрии: IBM, Honeywell, Univac, DEC, Burroughs и RCA, и это лишь некоторые из них» [21]. В 1974 году HP использовала импульсный источник питания для миникомпьютера 21MX, [24] Data General для Nova 2/4, [25] Texas Instruments для 960B, [26] и Interdata для своих мини-компьютеров. [27] В 1975 году HP использовала автономный импульсный источник питания в терминале с дисплеем HP2640A, [28] Matsushita для своего миникомпьютера управления трафиком [29] и IBM для своего подобного пишущей машинке Selectric Composer [29] и портативного компьютера IBM 5100. .[30] К 1976 году Data General использовала импульсные блоки питания для половины своих систем, Hitachi и Ferranti использовали их [29], настольный компьютер Hewlett-Packard 9825A [31] и калькулятор 9815A [32] использовали их, а decsystem 20 [33] - большой импульсный блок питания. К 1976 году в жилых комнатах появились импульсные источники питания, питающие цветные телевизионные приемники. [34] [35]

Импульсные блоки питания также стали популярными продуктами для производителей блоков питания, начиная с конца 1960-х годов.В 1967 году RO Associates представила первый импульсный источник питания 20 кГц [36], который, как они утверждают, также был первым коммерчески успешным импульсным источником питания [37]. NEMIC начала разработку стандартизированных импульсных источников питания в Японии в 1970 году [38]. К 1972 году большинство производителей блоков питания предлагали импульсные блоки питания или собирались их предложить. [5] [39] [40] [41] [42] HP продала линейку импульсных блоков питания мощностью 300 Вт в 1973 году [43], а также компактный импульсный источник питания мощностью 500 Вт [44] и импульсный блок питания мощностью 110 Вт [45] в 1975 году.К 1975 году импульсные блоки питания составляли 8% рынка блоков питания и быстро росли благодаря улучшенным компонентам и желанию использовать блоки питания меньшего размера для таких продуктов, как микрокомпьютеры. [46]

Импульсные источники питания были представлены в журналах по электронике той эпохи, как в рекламе, так и в статьях. Electronic Design рекомендовал импульсные источники питания в 1964 году для повышения эффективности [47]. На обложке журнала Electronics World за октябрь 1971 года был представлен импульсный блок питания мощностью 500 Вт и статья «Блок питания импульсного регулятора».В длинной статье о источниках питания в Computer Design 1972 года подробно обсуждались импульсные источники питания и растущее использование импульсных источников питания в компьютерах, хотя в ней упоминается, что некоторые компании все еще скептически относились к импульсным источникам питания [5]. В 1973 г. в журнале Electronic Engineering была опубликована подробная статья «Импульсные источники питания: зачем и как» [42]. В 1976 году обложка журнала Electronic Design [48] была озаглавлена ​​«Внезапно переключиться стало проще», описывая новые ИС контроллера импульсного источника питания, Electronics опубликовал длинную статью об импульсных источниках питания, [29] Powertec разместила двухстраничную рекламу преимуществ своих импульсных источников питания с крылатой фразой «Большой переключатель - это переключатели» [49], а журнал Byte объявил о импульсных источниках питания Boschert для микрокомпьютеров.[50]

Ключевым разработчиком импульсных блоков питания был Роберт Бошерт, который уволился с работы и в 1970 году начал собирать блоки питания на своем кухонном столе [51]. Он сосредоточился на упрощении импульсных источников питания, чтобы сделать их экономически конкурентоспособными по сравнению с линейными источниками питания, и к 1974 году он начал массовое производство недорогих источников питания для принтеров [51] [52], за которым последовала недорогая коммутация мощностью 80 Вт. Электроснабжение в 1976 г. [50] К 1977 году Boschert Inc выросла до компании с 650 сотрудниками [51], которая производила блоки питания для спутников и истребителей F-14 [53], а затем блоки питания для таких компаний, как HP [54] и Sun.Люди часто думают, что настоящее время - уникальное время для технологических стартапов, но Бошерт показывает, что стартапы на кухонном столе происходили даже 40 лет назад.

Развитие импульсных источников питания в 1970-х годах было в значительной степени обусловлено новыми компонентами. [55] Номинальное напряжение переключаемых транзисторов часто было ограничивающим фактором [5], поэтому появление в конце 1960-х - начале 1970-х годов высокоэффективных, высокоскоростных и мощных транзисторов по низкой цене значительно увеличило популярность импульсных источников питания.[5] [6] [21] [16] Технология транзисторов развивалась так быстро, что коммерческий блок питания мощностью 500 Вт, изображенный на обложке Electronics World в 1971 году, не мог быть построен с транзисторами всего 18 месяцев назад [21]. Как только силовые транзисторы смогут выдерживать сотни вольт, источники питания смогут отказаться от тяжелого силового трансформатора с частотой 60 Гц и работать в автономном режиме непосредственно от сетевого напряжения. Более высокие скорости переключения транзисторов позволили использовать более эффективные и гораздо меньшие блоки питания. Введение интегральных схем для управления импульсными источниками питания в 1976 году широко рассматривается как начало эры импульсных источников питания за счет их радикального упрощения.[10] [56]

К началу 1970-х годов стало ясно, что происходит революция. Производитель блоков питания Уолт Хиршберг заявил в 1973 году, что «революция в конструкции блоков питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен» [57]. В 1977 году во влиятельной книге по источникам питания говорилось, что " считалось, что импульсные регуляторы совершают революцию в отрасли электроснабжения »[58].

Apple II и его блок питания

Персональный компьютер Apple II был представлен в 1977 году.Одной из его особенностей был компактный импульсный блок питания без вентилятора, который обеспечивал мощность 38 Вт при 5, 12, -5 и -12 вольт. Блок питания Холта Apple II имеет очень простую конструкцию с автономной топологией обратноходового преобразователя. [59]

Стив Джобс сказал, что теперь каждый компьютер копирует революционный дизайн Рода Холта [1]. Но революционен ли этот дизайн? Был ли он сорван с любого другого компьютера?

Как показано выше, импульсные блоки питания использовались на многих компьютерах к моменту выпуска Apple II.Конструкция не является особенно революционной, поскольку аналогичные простые автономные обратноходовые преобразователи продавались Boschert [50] [60] и другими компаниями. В долгосрочной перспективе создание схемы управления из дискретных компонентов, как это сделала Apple, было тупиковой технологией, поскольку будущее импульсных источников питания было за ИС контроллеров ШИМ [2]. Удивительно, что Apple продолжала использовать дискретные генераторы в источниках питания даже через Macintosh Classic, так как контроллеры IC были представлены в 1975 году. [48] Apple действительно перешла на контроллеры IC, например, в Performa [61] и iMac.[62]

Блок питания, который Род Холт разработал для Apple, был достаточно инновационным, чтобы получить патент [63], поэтому я подробно изучил патент, чтобы увидеть, есть ли какие-нибудь менее очевидные революционные особенности. В патенте описаны два механизма защиты источника питания от неисправностей. Первый (пункт 1) - это механизм безопасного запуска генератора через вход переменного тока. Второй механизм (пункт 8) возвращает избыточную энергию от трансформатора к источнику питания (особенно при отсутствии нагрузки) через зажимную обмотку на трансформаторе и диод.

Это блок питания AA11040-B для Apple II Plus. [59] Питание переменного тока поступает слева, фильтруется, проходит через большой переключающий транзистор к трансформатору обратного хода в середине, выпрямляется диодами справа (на радиаторах), а затем фильтруется конденсаторами справа. Схема управления находится внизу. Фотография использована с разрешения kjfloop, Copyright 2007.

Механизм запуска переменного тока не использовался Apple II, [59] но использовался Apple II Plus, [64] Apple III, [65] Lisa, [66] Macintosh, [67] и Mac 128K через Classic.[68] Я не смог найти никаких источников питания сторонних производителей, которые использовали бы этот механизм, [69] кроме блока питания телевизора 1978 года, [70] и он стал устаревшим контроллерами IC, так что этот механизм, похоже, не повлиял на дизайн блока питания компьютера.

Второй механизм в патенте Холта, зажимная обмотка и диод для возврата мощности в обратном преобразователе, использовался в различных источниках питания до середины 1980-х годов, а затем исчез. Некоторые примеры - источник питания Boschert OL25 (1978), [60] Apple III (1980), [65] Документация по источникам питания Apple (1982 г.), [59] Жесткий диск Tandy (1982 г.), [71] Тэнди 2000 (1983), [72] [73] Яблочная Лиза (1983), [66] Apple Macintosh (1984 г.), [67] Commodore Model B128 (1984), [74] Тэнди 6000 (1985), [75] и От Mac Plus (1986) до Mac Classic (1990).[68] Эта обмотка с обратным зажимом, по-видимому, была популярна в Motorola в 1980-х годах, она фигурирует в техническом описании микросхемы контроллера MC34060 [76], руководстве разработчика 1983 года [77] (где обмотка описывалась как обычная, но необязательная) и в примечании к применению 1984 года. . [78]

Является ли этот зажим обратного хода намоткой на инновации Холта, которые сорвали другие компании? Я так и думал, пока не нашел книгу по источникам питания 1976 года, в которой подробно описывалась эта обмотка [35], которая испортила мой рассказ. (Также обратите внимание, что в прямых преобразователях (в отличие от обратных преобразователей) эта зажимная обмотка использовалась еще в 1956 г. [79] [80] [81], поэтому ее применение в обратном преобразователе в любом случае не кажется большим скачком. .)

Одним из озадачивающих аспектов обсуждения источников питания в книге Стива Джобса [1] является утверждение, что источники питания Apple II «похожи на те, что используются в осциллографах», поскольку осциллографы - всего лишь одно небольшое применение для переключения источников питания. Это заявление, по-видимому, возникло из-за того, что Холт ранее разработал импульсный источник питания для осциллографов [82], но нет другой связи между источником питания Apple и источниками питания осциллографов.

Наибольшее влияние Apple II на индустрию блоков питания оказала Astec - гонконгская компания, производившая блоки питания.До выхода Apple II Astec была малоизвестным производителем импульсных инверторов постоянного тока. Но к 1982 году Astec стала ведущим в мире производителем импульсных источников питания, почти полностью опираясь на бизнес Apple, и удерживала первое место в течение ряда лет. [83] [84] В 1999 году Astec была приобретена компанией Emerson [85], которая в настоящее время является второй по величине компанией в области энергоснабжения после Delta Electronics. [86]

Малоизвестный факт об источнике питания Apple II заключается в том, что он был первоначально собран калифорнийскими домохозяйками среднего класса как сдельная.[83] Однако по мере роста спроса строительство источника питания было передано Astec, хотя оно стоило на 7 долларов больше. К 1983 году Astec производила 30 000 блоков питания Apple в месяц. [83]

Блоки питания post-Apple

В 1981 году был выпущен IBM PC, который оказал долгосрочное влияние на конструкции блоков питания компьютеров. Блоки питания для оригинального ПК IBM 5150 производились компаниями Astec и Zenith. [83] В этом источнике питания мощностью 63,5 Вт используется обратная схема, управляемая микросхемой контроллера источника питания NE5560.[87]

Я буду подробно сравнивать блок питания для ПК IBM 5150 с блоком питания Apple II, чтобы показать их общие черты и различия. Оба они представляют собой автономные источники питания с обратным ходом и несколькими выходами, но это почти все, что у них общего. Несмотря на то, что в блоке питания ПК используется контроллер IC, а в Apple II используются дискретные компоненты, в блоке питания ПК используется примерно в два раза больше компонентов, чем в блоке питания Apple II. В то время как в блоке питания Apple II используется генератор переменной частоты, построенный на транзисторах, в блоке питания ПК используется генератор ШИМ фиксированной частоты, обеспечиваемый микросхемой контроллера NE5560.В ПК используются оптоизоляторы для обеспечения обратной связи по напряжению с контроллером, а в Apple II используется небольшой трансформатор. Apple II напрямую управляет силовым транзистором, в то время как ПК использует управляющий трансформатор. ПК проверяет все четыре выхода мощности на соответствие нижнему и верхнему пределам напряжения, чтобы убедиться, что питание хорошее, и выключает контроллер, если какое-либо напряжение выходит за пределы спецификации. Apple II вместо этого использует лом SCR на выходе 12 В, если это напряжение слишком высокое. В то время как обратноходовой трансформатор ПК имеет одну первичную обмотку, Apple II использует дополнительную первичную фиксирующую обмотку для возврата мощности, а также другую первичную обмотку для обратной связи.ПК обеспечивает линейное регулирование от источников питания 12 В и -5 В, а Apple II - нет. В ПК используется вентилятор, а в Apple II - нет. Понятно, что блок питания IBM 5150 не «сдирает» конструкцию блоков питания Apple II, поскольку между ними почти нет ничего общего. А позже конструкции блоков питания стали еще более разными.

Блок питания IBM PC AT стал де-факто стандартом для блоков питания компьютеров. В 1995 году Intel представила спецификацию материнской платы ATX [88], а блок питания ATX (вместе с вариантами) стал стандартом для блоков питания настольных компьютеров, а компоненты и конструкции часто ориентированы именно на рынок ATX.[89]

Компьютерные системы питания стали более сложными с появлением в 1995 году модуля регулятора напряжения (VRM) для Pentium Pro, который требовал более низкого напряжения при более высоком токе, чем источник питания мог обеспечить напрямую. Для обеспечения этого питания Intel представила VRM - импульсный стабилизатор постоянного тока, установленный рядом с процессором, который снижает 12 вольт от источника питания до низкого напряжения, используемого процессором [90]. (Если вы разгоняете свой компьютер, именно VRM позволяет поднять напряжение.) Кроме того, видеокарты могут иметь собственный VRM для питания высокопроизводительного графического чипа. Быстрому процессору может потребоваться 130 Вт от VRM. Сравнение этого с половиной ватта мощности, используемой процессором Apple II 6502 [91], показывает огромный рост энергопотребления современных процессоров. Один только современный процессорный чип может использовать более чем в два раза мощность всего компьютера IBM 5150 или в три раза больше, чем Apple II.

Поразительный рост компьютерной индустрии привел к тому, что потребление энергии компьютерами стало причиной беспокойства об окружающей среде, что привело к появлению инициатив и нормативных актов, направленных на повышение эффективности источников питания.[92] В США сертификация Energy Star и 80 PLUS [93] подталкивает производителей к производству более эффективных «зеленых» источников питания. Эти источники питания обеспечивают большую эффективность с помощью различных методов: более эффективное резервное питание, более эффективные схемы запуска, резонансные схемы (также известные как мягкое переключение и ZCT или ZVT), которые снижают потери мощности в переключающих транзисторах за счет отсутствия питания протекает через них, когда они выключаются, и схемы «активного зажима» для замены переключающих диодов более эффективными транзисторными схемами.[94] Усовершенствования в технологии MOSFET-транзисторов и высоковольтных кремниевых выпрямителей за последнее десятилетие также привели к повышению эффективности. [92]

Источники питания могут более эффективно использовать мощность сети переменного тока с помощью метода коррекции коэффициента мощности (PFC). [95] Активная коррекция коэффициента мощности добавляет еще одну схему переключения перед основной схемой источника питания. Специальная микросхема контроллера PFC переключает его с частотой до 250 кГц, аккуратно извлекая плавное количество энергии из источника питания для создания высокого напряжения постоянного тока, которое затем подается в обычную схему импульсного источника питания.[13] [96] PFC также иллюстрирует, как блоки питания превратились в товар с очень тонкой маржой, где доллар - это большие деньги. Активная коррекция коэффициента мощности считается особенностью высокопроизводительных источников питания, но ее фактическая стоимость составляет всего около 1,50 доллара США [97].

На протяжении многих лет для блоков питания IBM PC использовалось множество различных микросхем контроллеров, конструкций и топологий, как для поддержки различных уровней мощности, так и для использования преимуществ новых технологий. [98] Микросхемы контроллеров, такие как NE5560 и SG3524, были популярны в ранних ПК IBM.[99] Микросхема TL494 стала очень популярной в конфигурации полумоста, [99] самой популярной конструкции в 1990-х. [100] Серия UC3842 также была популярна для конфигураций прямого преобразователя. [99] Стремление к повышению эффективности сделало двойные прямые преобразователи более популярными [101], а коррекция коэффициента мощности (PFC) сделала контроллер CM6800 очень популярным [102], поскольку одна микросхема управляет обеими цепями. В последнее время стали более распространены прямые преобразователи, которые генерируют только 12 В, с использованием преобразователей постоянного тока для получения очень стабильных 3.Выходы 3 В и 5 В. [94] Более подробную информацию о современных источниках питания можно получить из многих источников. [103] [104] [98] [105]

В этом типичном блоке питания XT мощностью 150 Вт используется популярная полумостовая конструкция. Фильтр переменного тока на входе справа. Слева от него находится схема управления / драйвера: микросхема TL494 вверху управляет маленьким желтым приводным трансформатором внизу, который управляет двумя переключающими транзисторами на радиаторах внизу. Слева от него находится больший желтый главный трансформатор с вторичными диодами и регулятором на радиаторах и выходной фильтром слева.Этот полумостовой блок питания полностью отличается от конструкции Apple II с обратной связью. Право на фотографию принадлежит larrymoencurly, использовано с разрешения.

Современные компьютеры содержат удивительный набор импульсных источников питания и регуляторов. Современный источник питания может содержать переключающую схему PFC, переключающий обратноходовой источник питания для резервного питания, переключаемый прямой преобразователь для выработки 12 вольт, переключающий преобразователь постоянного тока в постоянный для выработки 5 вольт и переключающий преобразователь постоянного тока в постоянный для выработки 3 .3 вольта, [94] поэтому блок питания ATX можно рассматривать как пять различных импульсных блоков питания в одной коробке. Кроме того, на материнской плате есть импульсный регулятор VRM для питания процессора, а на видеокарте есть еще один VRM, всего семь коммутируемых источников питания в типичном настольном компьютере.

Технология импульсных источников питания продолжает развиваться. Одно из разработок - цифровое управление и цифровое управление питанием. [106] Вместо использования аналоговых схем управления микросхемы цифрового контроллера оцифровывают управляющие входы и используют программные алгоритмы для управления выходами.Таким образом, проектирование контроллера источника питания становится вопросом программирования в такой же степени, как и проектирования аппаратного обеспечения. Цифровое управление питанием позволяет источникам питания обмениваться данными с остальной системой для повышения эффективности и ведения журнала. Хотя сейчас эти цифровые технологии в основном используются для серверов, я ожидаю, что в конечном итоге они перейдут на настольные компьютеры.

Подводя итог, можно сказать, что исходный блок питания для ПК IBM 5150 почти во всех отношениях отличался от блока питания Apple II, за исключением того, что оба блока питания были обратноходовыми.Более современные блоки питания не имеют ничего общего с Apple II. Абсурдно утверждать, что блоки питания копируют дизайн Apple.

Известные конструкторы импульсных источников питания

Стив Джобс сказал, что Род Холт должен быть более известен тем, что разработал блок питания для Apple II: «Род не получил большого признания за это в учебниках истории, но он должен» [1]. Но даже в лучшем случае разработчики блоков питания не известны за пределами очень небольшого сообщества. Роберт Бошерт был занесен в Зал славы электронной инженерии Electronic Design в 2009 году за работу в области энергоснабжения.[51] Роберт Маммано получил награду за заслуги перед компанией Power Electronics Technology в 2005 году за начало производства ИС для контроллеров с ШИМ [10]. В 2008 году Руди Севернс получил награду за заслуги перед Power Electronics Technology за свои инновации в импульсных источниках питания. [107] Но ни один из этих людей не известен даже в Википедии. Другим крупным новаторам в этой области уделяется еще меньше внимания. [108] Я неоднократно сталкивался с работой Эллиота Джозефсона, который проектировал спутниковые системы питания в начале 1960-х годов [18], имеет множество патентов на источники питания, включая Tandy 6000 [75], и даже номер его патента напечатан на Apple II Plus. и платы источника питания Osborne 1 [59], но он, похоже, полностью не распознан.

Ирония в комментарии Стива Джобса о том, что Роду Холту не уделяют должного внимания, заключается в том, что работа Рода Холта описана в десятках книг и статей об Apple, от Revenge of the Nerds, в 1982 [109] до лучших работ 2011 года. продавая биографию Стива Джобса, что делает Рода Холта самым известным дизайнером блоков питания за всю историю.

Заключение

Источники питания - это не скучные металлические коробки, как думает большинство людей; у них много интересной истории, в значительной степени обусловленной усовершенствованием транзисторов, которые сделали импульсные источники питания практичными для компьютеров в начале 1970-х годов.Совсем недавно стандарты эффективности, такие как 80 PLUS, вынудили источники питания стать более эффективными, что привело к появлению новых конструкций. Apple II продавал огромное количество импульсных блоков питания, но его конструкция блока питания была технологическим тупиком, который не был «сорван» другими компьютерами.

Если вас интересуют источники питания, вам также может понравиться моя статья «Крошечный, дешевый и опасный: внутри (поддельного) зарядного устройства для iPhone».

Примечания и ссылки

Я потратил слишком много времени на изучение источников питания, анализ схем и копание в старых журналах по электронике.Вот мои заметки и ссылки на случай, если они кому-то пригодятся. Мне было бы интересно услышать от разработчиков источников питания, которые имели непосредственный опыт разработки источников питания в 1970-х и 1980-х годах.

[1] Стив Джобс , Уолтер Исааксон, 2011. Дизайн блока питания Рода Холта для Apple II обсуждается на странице 74. Обратите внимание, что описание импульсного блока питания в этой книге довольно искажено.

[2] ШИМ: от одного чипа к гигантской отрасли, Джин Хефтман, Power Electronics Technology, стр 48-53, октябрь 2005 г.

[3] Предварительное планирование площадки: компьютер Cray-1 (1975) В Cray-1 использовались два мотор-генератора мощностью 200 л.с. (150 кВт) для преобразования входного переменного тока 250 А 460 В в регулируемую мощность 208 В, 400 Гц; каждый мотор-генератор был примерно 3900 фунтов. Мощность 208 В, 400 Гц подавалась на 36 отдельных источников питания, в которых использовались двенадцатифазные трансформаторы, но не было внутренних регуляторов. Эти блоки питания образуют 12 верстаков вокруг компьютера Cray. Фотографии силовых компонентов Cray можно найти в Справочном руководстве по аппаратному обеспечению Cray-1 серии S (1981).Эта высокочастотная схема двигатель-генератор может показаться странной, но в IBM 370 использовалась аналогичная установка, см. Объявление: IBM System / 370 Model 145.

[4] Во многих более крупных компьютерах для регулирования использовались феррорезонансные трансформаторы. Например, в блоке питания компьютера IBM 1401 использовался феррорезонансный регулятор мощностью 1250 Вт, см. Справочное руководство, 1401 Data Processing System (1961), стр. 13. В HP 3000 Series 64/68/70 также использовались феррорезонансные трансформаторы, см. Руководство по установке компьютеров Series 64/68/70 (1986), стр. 2-3.DEC использовала феррорезонансные и линейные источники питания почти исключительно в начале 1970-х годов, в том числе для PDP-8 / A (рисунок в «Выбор источника питания вырисовывается большой в сложных конструкциях», Electronics , Oct 1976, volume 49, p111).

[5] «Источники питания для компьютеров и периферийных устройств», Computer Design , июль 1972 г., стр. 55-65. В этой длинной статье о блоках питания много говорится об импульсных блоках питания. Он описывает понижающую (последовательную), повышающую (шунтирующую), двухтактную (инверторную) и полную мостовую топологии.В статье говорится, что номинальное напряжение переключающего транзистора является ограничивающим параметром во многих приложениях, но «высоковольтные высокоскоростные транзисторы становятся все более доступными по низкой цене, что является важным фактором более широкого использования источников импульсных стабилизаторов». В нем делается вывод, что «Доступность высоковольтных, высокомощных переключающих транзисторов по умеренным ценам дает дополнительный импульс использованию высокоэффективных импульсных обычных [sic] источников питания. В этом году ожидается существенное увеличение их использования."

В статье также говорится: «Одной из наиболее спорных тем является продолжающаяся дискуссия о ценности импульсных источников питания для компьютерных приложений по сравнению с обычными последовательными транзисторными регуляторами». Это подтверждается некоторыми комментариями производителей. Одним из скептиков была компания Elexon Power Systems, которая «не считает импульсные регуляторы« ответом ». Они планируют раскрыть совершенно новый подход к источникам питания в ближайшем будущем ». Другой был Modular Power Inc, который «не рекомендовал переключать регуляторы, за исключением случаев, когда малый размер, легкий вес и высокая эффективность являются основными соображениями, как в портативном и бортовом оборудовании.«Sola Basic Industries» заявила, что «их инженеры очень скептически относятся к долговременной надежности импульсных стабилизаторов в практических конструкциях массового производства и прогнозируют проблемы с отказом транзисторов».

Раздел статьи, посвященный комментариям производителей, дает представление о технологиях в отрасли электроснабжения в 1972 году: Hewlett Packard »указывает, что сегодня большое влияние оказывает доступность высокоскоростных, сильноточных и недорогих транзисторов, ускоряемая нынешней тенденцией к использованию регуляторов импульсного типа.Компания широко использует переключатели в полном спектре конструкций с высокой мощностью ». Lambda Electronics «широко использует импульсные регуляторы на выходную мощность более 100 Вт», которые предназначены для предотвращения охлаждения вентилятором. Компания Analog Devices предложила прецизионные расходные материалы, в которых для повышения эффективности используются методы переключения. RO Associates «считает, что рост числа импульсных источников питания является серьезным изменением в области проектирования источников питания». Они предлагали миниатюрные источники на 20 кГц и недорогие источники на 60 кГц. Sola Basic Industries »прогнозирует, что производители мини-компьютеров будут использовать больше бестрансформаторных импульсных регуляторов в 1972 году для повышения эффективности и уменьшения размера и веса." Trio Laboratories «указывает на то, что производители компьютеров и периферийных устройств обращаются к переходным типам, потому что цены сейчас более конкурентоспособны, а приложения требуют меньшего размера».

[6] Практическая конструкция импульсного источника питания, Марти Браун, 1990, стр. 17.

[7] См. Раздел комментариев для подробного обсуждения эффективности линейного источника питания.

[8] . Поваренная книга по источникам питания , Марти Браун, 2001. На странице 5 обсуждается относительное время разработки для различных технологий электропитания, при этом линейный регулятор занимает 1 неделю общего времени разработки, а импульсный стабилизатор с ШИМ требует 8 человеко-месяцев.

[9] Сводка различных топологий находится в обзорах SMPS и топологиях источников питания. Подробности см. В Microchip AN 1114: Топологии SMPS и Топологии импульсных источников питания

[10] Лауреат премии за выслугу лет Роберт Маммано, Power Electronics Technology , сентябрь 2005 г., стр. 48-51. В этой статье Silicon General SG1524 (1975) описывается как ИС, открывшая эру импульсных регуляторов и импульсных источников питания.

[11] Справочное руководство по проектированию заказчиков IBM: Блок питания 736, Блок питания 741, Блок распределения питания 746 (1958), стр. 60-17.Блок питания для компьютера 704 состоит из трех шкафов размером с холодильник, заполненных электронными лампами, предохранителями, реле, механическими таймерами и трансформаторами, потребляющими мощность 90,8 кВА. Он используется несколько методов регулирования, включая трансформаторы насыщаемых-реакторы и термистор на основе опорного напряжения. Выходы постоянного тока регулировались переключающим механизмом тиратрона с частотой 60 Гц. Тиратроны - это переключающие вакуумные лампы, которые управляют выходным напряжением (подобно триакам в обычном диммерном переключателе). Это можно рассматривать как импульсный источник питания (см. Источники питания, импульсные регуляторы, инверторы и преобразователи , Irving Gottlieb, pp 186-188).

[12] В своей рекламе Pioneer Magnetics заявляет, что они разработали свой первый импульсный источник питания в 1958 году. Например, см. Electronic Design , V27, p216.

[13] Источник питания с коэффициентом мощности Unity, патент 4677366. Pioneer Magnetics подала этот патент в 1986 году на активную коррекцию коэффициента мощности. См. Также статью Pioneer Magnetics «Почему PFC? страница.

[14] Один из первых импульсных источников питания был описан в «Транзисторный преобразователь-усилитель мощности», Д. А. Пейнтер, General Electric Co., Solid-State Circuits Conference , 1959, p90-91. Также см. Соответствующий патент 1960 г. 3067378 «Транзисторный преобразователь».

[15] Исследование бездиссипативного преобразователя постоянного тока в преобразователь постоянного тока, Центр космических полетов Годдарда, 1964. Этот обзор транзисторных преобразователей постоянного тока показывает около 20 различных схем переключения, известных в начале 1960-х годов. Обратный преобразователь заметно отсутствует. Многие другие отчеты НАСА о преобразователях энергии за этот период доступны на сервере технических отчетов НАСА.

[16] Подробная история импульсных источников питания представлена ​​в S.J. M.Phil Уоткинса. дипломная работа Автоматическое тестирование импульсных источников питания, в главе История и развитие импульсных источников питания до 1987 г.

[17] История развития импульсных источников питания, TDK Power Electronics World. Это очень краткая история импульсных источников питания. В TDK также есть удивительно подробное обсуждение импульсных источников питания в комической форме: TDK Power Electronics World.

[18] «Спутниковый источник питания с регулируемой шириной импульса», Electronics , февраль 1962 г., стр. 47-49. В этой статье Эллиота Джозефсона из Lockheed описывается ШИМ-преобразователь постоянного тока с постоянной частотой для спутников. См. Также патент 3219907 Устройство преобразования мощности.

[19] Система электропитания космического корабля, Telstar, 1963. Спутник Telstar получал энергию от солнечных батарей, сохраняя энергию в никель-кадмиевых батареях. Эффективность была критической для спутника, поэтому использовался импульсный стабилизатор напряжения постоянного тока с понижающим преобразователем, преобразующим переменное напряжение батареи в стабильное -16 В постоянного тока при мощности до 32 Вт при КПД до 92%.Поскольку спутнику требовался широкий диапазон напряжений, до 1770 вольт для усилителя RF, были использованы дополнительные преобразователи. Регулируемый постоянный ток преобразовывался в переменный, подавался на трансформаторы и выпрямлялся для получения необходимых напряжений.

[20] В некоторых моделях PDP, таких как PDP-11/20, использовался источник питания H720 (см. Руководство по PDP, 1969). Этот источник питания подробно описан в Руководстве по блоку питания и монтажной коробке H720 (1970). В источнике питания весом 25 фунтов используется силовой трансформатор для генерации 25 В постоянного тока, а затем импульсные регуляторы (понижающий преобразователь) для генерации 230 Вт регулируемого напряжения +5 и -15 В.Поскольку транзисторы той эпохи не могли работать с высоким напряжением, напряжение постоянного тока пришлось снизить до 25 вольт с помощью большого силового трансформатора.

[21] "Источник питания импульсного регулятора", Electronics World v86 October 1971, p43-47. Эта длинная статья об импульсных источниках питания была размещена на обложке журнала Electronics World . Статью стоит поискать хотя бы для изображения импульсного источника питания самолета F-111, которое выглядит настолько сложным, что я почти ожидал, что он посадит самолет.Импульсные источники питания, обсуждаемые в этой статье, сочетают в себе импульсный инвертор постоянного и переменного тока с трансформатором для изоляции с отдельным понижающим или повышающим импульсным стабилизатором. В результате в статье утверждается, что импульсные блоки питания всегда будут дороже линейных блоков питания из-за двух каскадов. Однако современные блоки питания сочетают в себе оба этапа. В статье рассматриваются различные источники питания, в том числе импульсный блок питания мощностью 250 Вт, используемый в Honeywell h416R. В статье говорится, что импульсный стабилизатор питания достиг совершеннолетия благодаря новым достижениям в области быстродействующих и мощных транзисторов.На обложке изображен импульсный блок питания мощностью 500 Вт, который, согласно статье, не мог быть построен с транзисторами, доступными всего полтора года назад.

[22] Источник питания Bantam для мини-компьютера, Hewlett-Packard Journal , октябрь 1971 г. Подробная информация о схемах в патенте «Высокоэффективный источник питания» 3,852,655. Это автономный источник питания мощностью 492 Вт, использующий инверторы, за которыми следуют импульсные стабилизаторы на 20 В.

[23] HP2100A был представлен в 1971 году с импульсным источником питания (см. Основные характеристики HP2100A).Утверждается, что он имеет первый импульсный источник питания в миникомпьютере 25 лет работы в режиме реального времени, но PDP-11/20 был раньше.

[24] Компьютерная система питания для тяжелых условий эксплуатации, стр. 21, Hewlett-Packard Journal , октябрь 1974 г. В миникомпьютере 21MX использовался автономный импульсный пререгулятор мощностью 300 Вт для генерации регулируемого постоянного тока 160 В, который подавался на переключающие преобразователи постоянного тока в постоянный.

[25] Общее техническое руководство по данным Nova 2, 1974. В Nova 2/4 использовался импульсный стабилизатор для генерации 5 В и 15 В, в то время как в более крупном 2/10 использовался трансформатор постоянного напряжения.В руководстве говорится: «При более высоких токовых потерях, связанных с компьютером, потери [от линейных регуляторов] могут стать чрезмерными, и по этой причине часто используется импульсный стабилизатор, как в NOVA 2/4».

[26] Модель 960B / 980B для обслуживания компьютеров Модель: источник питания В блоке питания миникомпьютера Texas Instruments 960B использовался импульсный стабилизатор для источника питания 5 В мощностью 150 Вт и линейные регуляторы для других напряжений. Импульсный стабилизатор состоит из двух параллельных понижающих преобразователей, работающих на частоте 60 кГц и использующих переключающие транзисторы 2N5302 NPN (введены в 1969 году).Поскольку транзисторы рассчитаны на максимальное напряжение 60 В, в блоке питания используется трансформатор для понижения напряжения до 35 В, которое подается на регулятор.

[27] Руководство по эксплуатации импульсных источников питания M49-024 и M49-026, Interdata, 1974. Эти автономные полумостовые источники питания обеспечивали мощность 120 Вт или 250 Вт и использовались в миникомпьютерах Interdata. В генераторе переключения используются микросхемы таймера 555 и 556.

[28] 2640A, источник питания Hewlett-Packard Journal , июнь 1975 г., стр. 15.«Импульсный источник питания был выбран из-за его эффективности и занимаемой площади». Также техническая информация о терминале данных. Другой интересный момент - его корпус, отлитый из структурной пены (p23), который очень похож на пластиковый корпус Apple II (см. Стр. 73 из Steve Jobs ), сделанный парой лет назад.

[29] «В сложных конструкциях большое значение имеет выбор источников питания», Electronics , Oct 1976, volume 49. p107-114. В этой длинной статье подробно рассматриваются источники питания, в том числе импульсные.Обратите внимание, что Selectric Composer сильно отличается от популярной пишущей машинки Selectric.

[30] Информационное руководство по обслуживанию портативного компьютера IBM 5100. IBM 5100 был портативным компьютером весом 50 фунтов, который использовал BASIC и APL, а также включал монитор и ленточный накопитель. Источник питания описан на стр. 4-61 как небольшой, высокомощный, высокочастотный импульсный импульсный стабилизатор, обеспечивающий 5 В, -5 В, 8,5 В, 12 В и -12 В.

[31] Настольный компьютер HP 9825A 1976 года использовал импульсный стабилизатор для источника питания 5 В.Он также использовал формованный корпус из пеноматериала, предшествующий Apple II; см. 98925A Product Design, Hewlett-Packard Journal , июнь 1976 г., стр. 5.

[32] Калькулятор среднего уровня обеспечивает большую мощность при меньших затратах, В журнале Hewlett-Packard Journal , июнь 1976 г. обсуждается импульсный источник питания 5 В, используемый в калькуляторе 9815A.

[33] Блок питания DEC H7420 описан в Decsystem 20 Power Supply System Description (1976). Он содержит 5 импульсных регуляторов для обеспечения нескольких напряжений и обеспечивает мощность около 700 Вт.В источнике питания используется большой трансформатор для снижения линейного напряжения до 25 В постоянного тока, которое передается на отдельные импульсные регуляторы, которые используют понижающую топологию для получения желаемого напряжения (+5, -5, +15 или +20).

Миникомпьютер Decsystem 20 представлял собой большую систему, состоящую из трех шкафов размером с холодильник. Потребовалось внушительное трехфазное питание мощностью 21,6 кВт, которое регулируется комбинацией импульсных и линейных регуляторов. Он содержал семь источников питания H7420 и около 33 отдельных импульсных регуляторов, а также линейный регулятор для ЦП, который использовал -12 В постоянного тока при 490 А.

[34] Импульсные источники питания для телевизионных приемников стали набирать обороты примерно в 1975–1976 годах. Philips представила TDA2640 для телевизионных импульсных источников питания в 1975 году. Philips опубликовала книгу Импульсные источники питания в телевизионных приемниках в 1976 году. Одним из недостатков все более широкого использования импульсных источников питания в телевизорах было то, что они вызывали помехи. с любительским радио, как обсуждалось в Wireless World, v82, p52, 1976.

[35] «Электронное управление мощностью и цифровые методы», Texas Instruments, 1976.В этой книге подробно рассматриваются импульсные источники питания.

В главе IV «Системы инвертора / преобразователя» описан простой источник обратноходового питания мощностью 120 Вт, использующий силовой транзистор BUY70B, управляемый тиристором. Следует отметить, что в этой схеме используется дополнительная первичная обмотка с диодом для возврата неиспользованной энергии источнику.

В главе V «Импульсные источники питания» описывается конструкция импульсного источника питания 5 В 800 Вт на основе автономного импульсного шунтирующего регулятора, за которым следует преобразователь постоянного тока в постоянный.Он также описывает довольно простой обратноходовой источник питания с несколькими выходами, управляемый SN76549, разработанный для цветного телевидения с большим экраном.

[36] Основные этапы развития силовой электроники, Ассоциация производителей источников энергии.

[37] В 1967 году RO Associates представила первый успешный импульсный источник питания, импульсный источник питания 20 кГц, 50 Вт, модель 210 (см. «RO сначала в импульсные источники питания», Electronic Business , Volume 9, 1983, p36 К 1976 году они претендовали на лидерство в производстве импульсных блоков питания.В их патенте 1969 года 3564384 «Высокоэффективный источник питания» описан полумостовой импульсный источник питания, который удивительно похож на источники питания ATX, популярные в 1990-х годах, за исключением схем усилителя, управляющих ШИМ, а не повсеместной микросхемы контроллера TL494.

[38] Компания Nippon Electronic Memory Industry Co (NEMIC, которая в итоге стала частью TDK-Lambda) начала разработку стандартизированных импульсных источников питания в 1970 году. История корпорации ТДК-Лямбда.

[39] «Я прогнозирую, что большинство компаний, после нескольких неудачных попыток в области источников питания, к концу 1972 года предложат ряд импульсных источников питания с приемлемыми характеристиками и ограничениями радиопомех.", стр. 46, Электронная инженерия , том 44, 1972.

[40] Производитель блоков питания Coutant построил блок питания под названием Minic, используя «относительно новую технику импульсного стабилизатора». Инструментальная практика для управления технологическими процессами и автоматизации , Том 25, стр. 471, 1971.

[41] «Импульсные источники питания выходят на рынок», стр. 71, Electronics & Power , февраль 1972 г. Первый «бестрансформаторный» импульсный источник питания появился на рынке Великобритании в 1972 году, APT SSU1050, который представлял собой регулируемый импульсный источник питания мощностью 500 Вт с использованием полумостовой топологии.Этот 70-фунтовый блок питания считался легким по сравнению с линейными блоками питания.

[42] В этой статье подробно рассказывается о импульсных источниках питания и описываются преимущества автономных источников питания. В нем описан миниатюрный импульсный источник питания полумоста MG5-20, созданный Advance Electronics. В статье говорится: «Широкое применение микроэлектронных устройств подчеркнуло огромное количество обычных источников питания. Переключающие преобразователи теперь стали жизнеспособными и предлагают заметную экономию в объеме и весе." «Импульсные источники питания: почему и как», Малкольм Берчалл, технический директор, подразделение источников питания, Advance Electronics Ltd. Electronic Engineering , Volume 45, Sept 1973, p73-75.

[43] Высокоэффективные модульные источники питания с использованием импульсных регуляторов, Hewlett-Packard Journal , декабрь 1973 г., стр. 15-20. Серия 62600 обеспечивает мощность 300 Вт при использовании автономного импульсного источника питания с полумостовой топологией. Ключевым моментом было внедрение транзисторов на 400 В, 5 А с субмикросекундным временем переключения.«Полный импульсный регулируемый источник питания мощностью 300 Вт едва ли больше, чем просто силовой трансформатор эквивалентного источника с последовательным регулированием, и он весит меньше - 14,5 фунтов против 18 фунтов трансформатора».

[44] Сильноточный источник питания для систем, в которых широко используется 5-вольтовая ИС-логика, Hewlett-Packard Journal , апрель 1975 г., стр. 14-19. Импульсный источник питания 62605M мощностью 500 Вт для OEM-производителей, размер и вес которых составляет 1/3 и 1/5 от линейных источников питания. Использует автономную полумостовую топологию.

[45] Модульные источники питания: модели 63005C и 63315D: в этом источнике питания мощностью 110 Вт и 5 В используется топология автономного прямого преобразователя и конвекционное охлаждение без вентилятора.

[46] «Проникновение коммутационных источников питания на рынок источников питания в США вырастет с 8% в 1975 году до 19% к 1980 году. Это растущее проникновение соответствует мировой тенденции и представляет собой очень высокие темпы роста». Для такого прогнозируемого роста было указано несколько причин, в том числе «доступность более качественных компонентов, снижение [...] общей стоимости и появление более мелких продуктов (таких как микрокомпьютеры), которые делают желательными меньшие блоки питания». Электроника, Том 49. 1976. Стр. 112, врезка «Что насчет будущего?»

[47] Сеймур Левин, "Импульсные регуляторы питания для повышения эффективности"."Electronic Design, 22 июня 1964 г. В этой статье описывается, как импульсные регуляторы могут повысить эффективность с менее чем 40 процентов до более чем 90 процентов с существенной экономией в размере, весе и стоимости.

[48] На обложке журнала Electronic Design 13 от 21 июня 1976 г. написано: «Внезапно переключиться стало проще. Импульсные источники питания могут быть разработаны с использованием на 20-50 дискретных компонентов меньше, чем раньше. Одна ИС выполняет все функции управления, необходимые для двухтактный выходной дизайн.ИС называется регулирующим широтно-импульсным модулятором. Чтобы узнать, предпочитаете ли вы переключение, перейдите на страницу 125 ». На странице 125 есть статья« Управление импульсным источником питания с помощью одной схемы LSI », в которой описаны ИС импульсных источников питания SG1524 и TL497.

[49] В 1976 году Powertec разместила двухстраничную рекламу, описывающую преимущества импульсных источников питания, под названием «Большой переход к коммутаторам». В этой рекламе описывались преимущества блоков питания: с удвоенной эффективностью они выделяли 1/9 тепла.У них были 1/4 размера и веса. Это обеспечило повышенную надежность, работало в условиях обесточивания и могло выдерживать гораздо более длительные перебои в подаче электроэнергии. Powertec продала линейку импульсных блоков питания мощностью до 800 Вт. Они предложили импульсные источники питания для систем с дополнительной памятью, компьютерных мэйнфреймов, телефонных систем, дисплеев, настольных приборов и систем сбора данных. Страницы 130-131, Электроника в49, 1976.

[50] Byte magazine, p100 В июне 1976 года был анонсирован новый импульсный источник питания Boschert OL80, обеспечивающий 80 Вт при двухфунтовом блоке питания по сравнению с 16 фунтами для менее мощного линейного блока питания.Это также было объявлено в Microcomputer Digest, февраль 1976 г., стр. 12.

[51] Роберт Бошерт: Человек многих шляп меняет мир источников питания: он начал продавать импульсные источники питания в 1974 году, сосредоточившись на том, чтобы сделать импульсные источники питания простыми и недорогими. В заголовке говорится, что «Роберт Бошерт изобрел импульсный источник питания», что должно быть ошибкой редактора. В статье более обоснованно утверждается, что Бошерт изобрел недорогие импульсные источники питания для массового использования. В 1974 году он произвел в больших объемах недорогой импульсный источник питания.

[52] Руководство по техническому обслуживанию коммуникационного терминала Diablo Systems HyTerm модели 1610/1620 показаны двухтактный источник питания Boschert 1976 года и полумостовой источник питания LH Research 1979 года.

[53] Опыт Boschert с F-14 и спутниками рекламировался в рекламе Electronic Design , V25, 1977, где также упоминалось серийное производство для Diablo и Qume.

[54] Необычный импульсный источник питания использовался в компьютере HP 1000 A600 (см. Техническую и справочную документацию) (1983).Блок питания 440 Вт обеспечивал стандартные выходы 5 В, 12 В и -12 В, а также выход переменного тока 25 кГц 39 В, который использовался для распределения мощности на другие карты в системе, где она регулировалась. В автономном двухтактном источнике питания, разработанном Boschert, использовалась специальная микросхема HP, чем-то напоминающая TL494.

[55] В 1971 году для поддержки автономных импульсных источников питания были представлены многочисленные линейки переключающих транзисторов 450 В, такие как серия SVT450, серия 40850 - 4085 от RCA и серия 700V SVT7000.

[56] ШИМ: от одного чипа к гигантской отрасли, Power Electronics Technology , октябрь 2005 г. В этой статье описывается история создания ИС управления источником питания, от SG1524 в 1975 году до отрасли с многомиллиардным оборотом.

[57] «Происходящая сейчас революция в конструкции источников питания не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен», - Вальтер Хиршберг, ACDC Electronics Inc, Калифорния. «Новые компоненты вызывают революцию в источниках питания», p49, Canadian Electronics Engineering , v 17, 1973.

[58] Импульсный и линейный источник питания, конструкция преобразователя питания , Pressman 1977 «Импульсные регуляторы, которые совершают революцию в отрасли электроснабжения из-за их низких внутренних потерь, небольшого размера, веса и стоимости, конкурентоспособной по сравнению с традиционными последовательными или линейными источниками питания».

[59] Несколько источников питания Apple описаны в документе Apple Products Information Pkg: Astec Power Supplies (1982). Источник питания Apple II Astec AA11040 - это простой дискретный источник питания с обратным ходом и несколькими выходами.В нем используется переключающий транзистор 2SC1358. Выход 5 В сравнивается с стабилитроном и обратной связью управления и изолируется через трансформатор с двумя первичными обмотками и одной вторичной. В нем используется зажимная обмотка обратного диода.

AA11040-B (1980) имеет существенные модификации схемы обратной связи и управления. Он использует переключающий транзистор 2SC1875 и опорного напряжения TL431. AA11040-B, по-видимому, использовался для Apple II + и Apple IIe (см. Форум hardwaresecrets.com).Шелкография на печатной плате источника питания говорит о том, что она защищена патентом 4323961, который, как оказалось, является «автономным источником питания постоянного тока с обратным ходом», выданным Эллиотом Джозефсоном и переданным Astec. Схема в этом патенте в основном представляет собой немного упрощенный AA11040-B. Изолирующий трансформатор обратной связи имеет одну первичную и две вторичные обмотки, противоположные AA11040. Этот патент также напечатан на плате блока питания Osborne 1 (см. Разборку Osborne 1), которая также использует 2SC1875.

В Apple III Astec AA11190 используется фиксирующая обмотка обратного диода, но не схема запуска переменного тока Холта.Используется переключающий транзистор 2SC1358; схема обратной связи / управления очень похожа на AA11040-B. В источнике питания дисковода Apple III Profile AA11770 использовалась фиксирующая обмотка обратного диода, переключающий транзистор 2SC1875; опять же, схема обратной связи / управления очень похожа на AA11040-B. AA11771 аналогичен, но добавляет еще один TL431 для выхода AC ON.

Интересно, что в этом документе Apple перепечатывает десять страниц «Руководства по источникам питания постоянного тока» HP (версия 1978 года, используемая Apple), чтобы предоставить справочную информацию о импульсных источниках питания.

[60] Обратные преобразователи: твердотельное решение для недорогого импульсного источника питания, Electronics , декабрь 1978 г. В этой статье Роберта Бошерта описывается источник питания Boschert OL25, который представляет собой очень простой дискретно-компонентный источник обратноходового питания мощностью 25 Вт с 4 выходами. Он включает в себя зажимную обмотку обратного диода. Он использует опорный сигнал TL430 напряжения и оптрон для обратной связи с выхода 5V. В нем используется переключающий транзистор MJE13004.

[61] В Macintosh Performa 6320 использовалась микросхема контроллера SMPS AS3842, как видно на этом рисунке.AS3842 - это версия контроллера тока UC3842 от Astec, который был очень популярен для прямых преобразователей.

[62] Детали блока питания для iMac найти сложно, и используются разные блоки питания, но, если собрать воедино различные источники, iMac G5, похоже, использует контроллер PFC TDA4863, пять силовых МОП-транзисторов 20N60C3, ШИМ-контроллер SG3845, напряжение TL431. ссылки и контроль мощности с помощью WT7515 и LM339. Также используется 5-контактный встроенный коммутатор TOP245, вероятно, для питания в режиме ожидания.

[63] Источник питания постоянного тока, №4130862. который был подан в феврале 1978 г. и выдан в декабре 1978 г. Блок питания, указанный в патенте, имеет некоторые существенные отличия от блока питания Apple II, созданного Astec. Большая часть логики управления находится на первичной стороне в патенте и вторичной стороне в фактическом источнике питания. Кроме того, в патенте обратная связь является оптической, и в ее источнике питания используется трансформатор. Блок питания Apple II не использует обратную связь по переменному току, описанную в патенте.

[64] Подробное обсуждение блока питания Apple II Plus можно найти на сайте applefritter.com. В описании источник питания ошибочно называется топологией прямого преобразователя, но это топология обратного хода. Неудобно, что это обсуждение не соответствует схемам блока питания Apple II Plus, которые я нашел. Заметные различия: в схеме используется трансформатор для обеспечения обратной связи, в то время как в обсуждении используется оптоизолятор. Кроме того, обсуждаемый источник питания использует вход переменного тока для запуска колебаний транзистора, а схема - нет.

[65] Яблоко III (1982 г.). Этот блок питания Apple III (050-0057-A) практически полностью отличается от блока питания Apple III AA11190. Это дискретный источник питания обратного хода с переключающим транзистором MJ8503, управляемым тиристором, зажимной обмоткой обратного хода и 4 выходами. Он использует схему запуска переменного тока Холта. Обратная связь переключения контролирует выход -5 В с операционным усилителем 741 и подключается через трансформатор. Он использует линейный регулятор на выходе -5 В.

[66] Яблочная Лиза (1983).Еще один дискретный источник питания с обратным ходом, но значительно более сложный, чем Apple II, с такими функциями, как резервное питание, дистанционное включение через симистор и выход +33 В. Для переключения в нем используется силовой транзистор MJ8505 NPN, управляемый тиристором. Он использует схему запуска переменного тока Холта. Обратная связь по переключению контролирует напряжение + 5 В (по сравнению с линейно регулируемым выходом -5 В) и подключается через трансформатор.

[67] Блок питания Macintosh. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта.В нем используется переключающий транзистор 2SC2335, управляемый дискретным генератором. Коммутационная обратная связь контролирует выход +12 В с помощью стабилитронов и операционного усилителя LM324 и подключается через оптоизолятор.

[68] Схема Mac 128K, Обсуждение Mac Plus. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта. В нем используется переключающий транзистор 2SC2810, управляемый дискретными компонентами. Обратная связь по переключению контролирует выход 12 В и подключается через оптоизолятор.Интересно, что в этом документе утверждается, что блок питания, как известно, был склонен к сбоям из-за того, что в нем не использовался вентилятор. Блок питания Mac Classic выглядит идентичным.

[69] TEAM ST-230WHF 230 Вт импульсный источник питания. Эта схема - единственный компьютерный блок питания стороннего производителя, который я обнаружил, который подает необработанный переменный ток в схему привода (см. R2), но я уверен, что это всего лишь ошибка чертежа. R2 должен подключаться к выходу диодного моста, а не к входу. Сравните с R3 в почти идентичной схеме привода в этом блоке питания ATX.

[70] Микропроцессоры и микрокомпьютеры и импульсные источники питания , Брайан Норрис, Texas Instruments, McGraw-Hill Company, 1978 г. В этой книге описываются импульсные источники питания для телевизоров, которые используют сигнал переменного тока для запуска колебаний.

[71] Блок питания жесткого диска Tandy (Astec AA11101). В этом обратноходовом источнике питания мощностью 180 Вт используется обмотка с зажимом диода. В нем используется переключающий транзистор 2SC1325A. В генераторе используются дискретные компоненты. Обратная связь от шины 5 В сравнивается с опорным напряжением TL431, а обратная связь использует трансформатор для изоляции.

[72] Блок питания Tandy 2000 (1983 г.). Этот источник питания с обратным ходом мощностью 95 Вт использует микросхему контроллера MC34060, переключающий транзистор MJE12005 и имеет обмотку фиксатора обратного хода. Он использует MC3425 для контроля напряжения, имеет линейный регулятор для выхода -12 В и обеспечивает обратную связь на основе выхода 5 В по сравнению с опорным сигналом TL431, проходящим через оптоизолятор. На выходе 12 В используется стабилизатор магнитного усилителя.

[73] В «Искусстве электроники» подробно обсуждается блок питания Tandy 2000 (стр. 362).

[74] Модель Commodore B128. В этом источнике питания обратного хода используется обмотка с зажимом диода. Он использует MJE8501 переключающий транзистор, управляемый дискретных компонентов, а также переключающие мониторы обратной связи выходного 5V с использованием опорного TL430 и изолирующий трансформатор. Выходы 12 В и -12 В используют линейные регуляторы.

[75] Tandy 6000 (Astec AA11082). В этом обратноходовом источнике питания мощностью 140 Вт используется обмотка с зажимом диода. Схема представляет собой довольно сложную дискретную схему, поскольку в ней используется повышающая схема, описанная в патенте Astec 4326244, также разработанном Эллиотом Джозефсоном.В нем используется переключающий транзистор 2SC1325A. У него немного необычный выход 24 В. Один выход 12 В линейно регулируется LM317, а выход -12 В управляется линейным регулятором MC7912, но другой выход 12 В не имеет дополнительной регулировки. Обратная связь осуществляется с выхода 5 В с использованием источника напряжения TL431 и развязывающего трансформатора. Здесь есть красивая фотография блока питания.

[76] Документация на микросхему контроллера MC34060 (1982 г.).

[77] Руководство разработчика по переключению цепей и компонентов источника питания, The Switchmode Guide , Motorola Semiconductors Inc., Паб. № SG79, 1983. R J. Haver. Для обратного преобразователя фиксирующая обмотка описывается как дополнительная, но «обычно присутствует, чтобы позволить энергии, накопленной в реактивном сопротивлении утечки, безопасно вернуться в линию, вместо того, чтобы лавина переключающего транзистора».

[78] «Обеспечение надежной работы силовых полевых МОП-транзисторов», в примечании к приложению Motorola 929, (1984) показан источник питания с обратным ходом, использующий MC34060 с фиксирующей обмоткой и диодом. Его можно скачать с datasheets.org.uk.

[79] Для получения дополнительной информации о форвард-конвертерах см. История прямого преобразователя, Switching Power Magazine , vol.1, No. 1, pp. 20-22, июл 2000 г.

[80] Первый импульсный преобразователь с диодной обмоткой зажима был запатентован в 1956 году компанией Philips, патент 2,920,259 преобразователя постоянного тока.

[81] Другим патентом, показывающим обмотку с возвратной энергией с диодом, является патент Hewlett-Packard от 1967 года 3313998. Импульсно-регуляторный источник питания с цепью возврата энергии

[82] Маленькое королевство: частная история Apple Computer Майкл Мориц (1984) говорит, что Холт проработал в компании на Среднем Западе почти десять лет и помог разработать недорогой осциллограф (стр. 164).Стив Джобс, «Путешествие - награда», Джеффри Янг, 1988 г., утверждает, что Холт разработал импульсный источник питания для осциллографа за десять лет до прихода в Apple (стр. 118). Учитывая состояние импульсных источников питания в то время, это почти наверняка ошибка.

[83] «Коммутационные блоки растут в чреве компьютеров», Электронный бизнес , том 9, июнь 1983 г., стр. 120-126. В этой статье подробно описывается бизнес-сторона импульсных источников питания. В то время как Astec была ведущим производителем импульсных блоков питания, Lambda была ведущим производителем блоков питания переменного и постоянного тока, поскольку она продавала большие партии как линейных, так и импульсных источников питания.

[84] «Стандарты: переключение вовремя для поставок», Electronic Business Today , vol 11, p74, 1985. В этой статье говорится, что Astec является ведущим в мире производителем блоков питания и лидером в области импульсных блоков питания. Astec выросла почти исключительно на поставках блоков питания Apple. В этой статье также упоминаются компании-поставщики электроэнергии из «большой пятерки»: ACDC, Astec, Boschert, Lambda и Power One.

[85] Astec становится 100% дочерней компанией Emerson Electric, Business Wire , 7 апреля 1999 г.

[86] Отраслевой отчет о крупнейших энергоснабжающих компаниях за 2011 год - Power Electronics Industry News, v 189, март 2011 г., консультанты по микротехнике. Также, Энергетическая промышленность продолжает марш к консолидации, Power Electronics Technology, май 2007 обсуждает различные консолидации.

[87] Документация SAMS по фотофакту для IBM 5150 содержит подробную схему источника питания.

[88] Википедия предоставляет обзор стандарта ATX. Официальная спецификация ATX находится в формфакторах.орг.

[89] ON Semiconductor имеет эталонные образцы блоков питания ATX, как и Fairchild. Некоторые ИС, разработанные специально для приложений ATX, - это SG6105 Power Supply Supervisor + Regulator + PWM, NCP1910 High Performance Combo Controller for ATX Power Supplies, ISL6506 Multiple Linear Power Controller with ACPI Control Interfaces, и SPX1580 Ultra Low Dropout Voltage Regulator.

[90] Корпорация Intel представила рекомендацию о коммутационном преобразователе постоянного тока рядом с процессором в документе Intel AP-523 Pentium Pro Processor Power Distribution Guidelines, в котором представлены подробные спецификации модуля регулятора напряжения (VRM).Подробная информация об образце VRM приведена в разделе «Заправка мегапроцессора - обзор конструкции преобразователя постоянного тока в постоянный ток» с использованием UC3886 и UC3910. Более свежие спецификации VMR содержатся в Рекомендациях по проектированию Intel Voltage Regulator Module (VRM) и Enterprise Voltage Regulator-Down (EVRD) 11 (2009).

[91] В техническом описании микропроцессоров R650X и R651X указано типичное значение рассеиваемой мощности 500 мВт.

[92] Технологии преобразования энергии для компьютерных, сетевых и телекоммуникационных систем питания - прошлое, настоящее и будущее, М.М. Йованович, Лаборатория силовой электроники Delta, Международная конференция по преобразованию энергии и приводам (IPCDC), Санкт-Петербург, Россия, 8-9 июня 2011 г.

[93] Программа 80 Plus описана в разделе «Сертифицированные источники питания и производители 80 PLUS», где описаны различные уровни 80 PLUS: бронзовый, серебряный, золотой, платиновый и титановый. Базовый уровень требует КПД не менее 80% при различных нагрузках, а более высокие уровни требуют все более высокого КПД. Первые блоки питания 80 PLUS вышли в 2005 году.

[94] Несколько случайных примеров блоков питания, которые сначала генерируют всего 12 В и используют преобразователи постоянного тока для генерации выходных сигналов 5 В и 3,3 В: Эталонный дизайн высокоэффективного блока питания ATX 255 Вт от ON Semiconductor (80 Plus Silver), мощность NZXT HALE82 обзор блока питания, обзор блока питания SilverStone Nightjar.

[95] Источники питания используют только часть электроэнергии, подаваемой по линиям электропередач; это дает им плохой «коэффициент мощности», который тратит энергию и увеличивает нагрузку на нижние линии.Вы можете ожидать, что эта проблема возникает из-за быстрого включения и выключения импульсных источников питания. Однако плохой коэффициент мощности на самом деле происходит из-за начального выпрямления переменного и постоянного тока, которое использует только пики входного переменного напряжения.

[96] Основы коррекции коэффициента мощности (PFC), Примечание по применению 42047, Fairchild Semiconductor, 2004.

[97] Правильный выбор размеров и разработка эффективных источников питания утверждает, что активная коррекция коэффициента мощности добавляет около 1,50 доллара к стоимости источника питания мощностью 400 Вт, активный фиксатор добавляет 75 центов, а синхронное выпрямление добавляет 75 центов.

[98] Многие источники схем электроснабжения доступны в Интернете. Некоторые андизм danyk.wz.cz, и smps.us. Несколько сайтов, которые предоставляют загрузку схем источников питания, - это eserviceinfo.com и elektrotany.com.

[99] Информацию о типовой конструкции блока питания ПК см. В FAQ по SMPS. В разделах «Описание Боба» и «Комментарии Стива» обсуждаются типичные блоки питания для ПК на 200 Вт, использующие микросхему TL494 и конструкцию полумоста.

[100] В тезисе 1991 г. говорится, что TL494 все еще использовался в большинстве импульсных блоков питания ПК (по состоянию на 1991 г.).Разработка импульсного источника питания 100 кГц (1991 г.). Мыс Техникон Тезисы и диссертации. Документ 138.

[101] Введение в двухтранзисторную прямую топологию для источников питания с эффективностью 80 PLUS, EE Times, 2007.

[102] hardwaresecrets.com заявляет, что CM6800 является самым популярным контроллером PFC / PWM. Это замена ML4800 и ML4824. CM6802 - более «зеленый» контроллер в том же семействе.

[103] Анатомия импульсных источников питания, Габриэль Торрес, Hardware Secrets, 2006.В этом учебном пособии очень подробно описывается работа и внутреннее устройство блоков питания ПК с подробными изображениями реальных внутренних устройств блока питания. Если вы хотите точно знать, что делает каждый конденсатор и транзистор в блоке питания, прочтите эту статью.

[104] Презентация источника питания ON Semiconductor's Inside представляет собой подробное математическое руководство по работе современных источников питания.

[105] Справочное руководство по источнику питания SWITCHMODE, ON Semiconductor. Это руководство содержит большое количество информации об источниках питания, топологиях и многих примерах реализации.

[106] Некоторые ссылки на цифровое управление питанием: «Дизайнеры обсуждают достоинства цифрового управления питанием», EE Times , декабрь 2006 г. Глобальный рынок ИС для цифрового управления питанием к 2017 году достигнет 1,0 миллиарда долларов. Системный контроллер цифровой ШИМ TI UCD9248. Эталонная схема цифрового питания переменного / постоянного тока с универсальным входом и коррекцией коэффициента мощности, EDN , апрель 2009 г.

[107] Руди Севернс, лауреат премии за выслугу лет, Power Electronics Technology , сентябрь 2008 г., стр. 40-43.

[108] Куда ушли все гуру ?, Power Electronics Technology , 2007. В этой статье обсуждается вклад многих новаторов в области источников питания, включая Сола Гиндоффа, Дика Вайза, Уолта Хиршберга, Роберта Окада, Роберта Бошерта, Стива Голдмана, Аллена Розенштейна, Уолли Херсома , Фил Кётч, Яг Чопра, Уолли Херсом, Патрицио Винчиарелли и Марти Шлехт.

[109] История разработки Холтом источника питания для Apple II впервые появилась в статье Пола Чотти Revenge of the Nerds (не имеющей отношения к фильму) в журнале California в 1982 году.

ИСТОЧНИК ПОСТОЯННОГО ТОКА 12 В

ИСТОЧНИК ПИТАНИЯ 13,8 В ПОСТОЯННОГО ТОКА

Вдохновленный статьями (упомянутыми ниже), это моя сборка сильноточного источника постоянного тока 13,8 В (до 20 А). электроснабжение с использованием повторно используемых компьютерных импульсных блоков питания (ИИП).
Очевидное применение - это питание радиолюбительского приемопередатчика (типа мобильного источника питания 12 В), который может потреблять 13 ~ 15 ампер при передаче.
Для физической конструкции я использовал урезанный компьютерный корпус и установил повторно откалиброванные измерители напряжения и тока, а также охлаждающий вентилятор на 12 В (также от компьютера-донора).
Габаритные размеры 15 см (В) 25 см (Ш) 19 см (Г) .

Получите 2 (или более) блока питания от вышедших из употребления компьютеров башенного типа.
Они изолированы в металлическом корпусе.
и поставьте + 12В -12В + 5В -5В + 3,3В (для питания ПК)

ССЫЛКА НА «ТИПИЧНАЯ» ЦЕПЬ ИИП

Источник питания + 5В (максимальная допустимая токовая нагрузка) - это то, что нас интересует.
Печатные платы должны быть извлечены из корпуса.
По сути, "уловка" состоит в том, чтобы перенастроить устройства для подачи 13,8 В постоянного тока.
Одна из идей - отрегулировать выходное напряжение (вверх) с 5 В до 13.8V путем замены компонентов схемы.
Однако это может показаться попыткой получить немного слишком много.
Другая идея состоит в том, чтобы «поставить» один блок на другой, чтобы получить напряжение отключения 13,8 В и при этом сохранить требуемую допустимую нагрузку по току.
Я выбрал второй подход.
Электрически 2 платы соединены последовательно (см. Блок-схему), что дает стабилизированный источник постоянного тока + 10В.
«Верхняя» плата плавает на другой стороне, необходимо следить за тем, чтобы никакая часть этого узла не соединялась с заземленным шасси.
Заземленная сторона верхней платы подключается к (номинальному) + 5V o / p нижней платы. Показано желтым на диаг.
Земляное соединение нижних плат прикреплено к металлическому корпусу.

Увеличивая значение одного резистора в точке измерения напряжения (вывод 1 TL494), их можно «обмануть», чтобы каждый из них выдавал выходное напряжение 6,9 В (т.е. 2 x 6,9 = 13,8 В).
Большинство плат, которые у меня есть исследовали использование микросхемы TL494 для выполнения всех переключений / регулирования / управления напряжением и т. д.
Данные об этом устройстве находятся в свободном доступе.Я нашел эквиваленты, совместимые с выводом
: SL494, IR3MO2, KA7500B

Как видно из схемы, вывод 1 является точкой измерения напряжения, и, просто установив правильное соотношение цепи делителя напряжения на выводе 1, мы можем принудительно достаточно, чтобы удовлетворить наши потребности.
Худшее, что могло случиться, если бы произошел какой-то сбой в цепи;
и необработанные 240 вольт сети появятся на выходных клеммах постоянного тока. (и это может привести к повреждению любого подключенного оборудования!)
Для предотвращения этого есть некоторые дополнительные схемы в виде защиты от перенапряжения.
Контакт 4 TL494 (обозначен как «контроль мертвого времени»), кажется, является контактом «выключения», который, если подан положительным напряжением, подавляет работу микросхемы.
Контакт 4 должен быть изолирован от всех существующих цепей.
Несмотря на то, что на плате есть некоторые схемы защиты от перенапряжения, я решил включить небольшую вспомогательную схему, а не изменять значения существующих схем. Я использовал вариант знакомой схемы «лом» для защиты от перенапряжения на выходе 13,8 В.
Небольшой понижающий трансформатор / выпрямитель / фильтр подает постоянный ток на SCR -
, если возникает перенапряжение, стабилитрон 15 В будет сильно проводить, запускать и фиксировать SCR и подавать сигнал через управляющие диоды на контакт 4 TL494 и, следовательно, выключите их.
Красный светодиод укажет, что это произошло.
Если да; выключите и исследуйте!

Я тестировал свой пример в течение длительного времени на резистивной нагрузке с масляным охлаждением.
15 ампер постоянный ток и никаких проблем!

Еще одна полезная схема, в которой используется TL494, - это цепь батареи радио «B» (преобразователь постоянного / постоянного тока)

Каталожные номера:

1) Использование ПК (коммутируемый режим) Источник питания в качестве источника постоянного тока 12 В от VK6APH
Amateur Radio Action Mag, ноябрь 1998 г., стр. 14

2) Преобразование компьютерных PS - простой способ, автор - Кейт Алдер VK2AXN
Amateur Radio (Австралия), январь 2000 г., стр. 11

3) YouTube-видео аналогичного преобразования (из США) SMPS в качестве любительского радио DC Supply

ATX PSU, модифицированный в автомобильное зарядное устройство - Часть 3

Для тех, кто читал мою предыдущую статью, об этой модификации, показанной в двух частях ниже,

https: // www.jestineyong.com/atx-psu-modified-into-a-car-battery-charger-part-1/

https://www.jestineyong.com/atx-psu-modified-into-a-car-battery-charger-part-2/

специально для тех, кто просил у меня конкретную информацию, чтобы они могли построить свое собственное зарядное устройство, сделав такую ​​же модификацию, я подготовил: а) базовый чертеж, показывающий значения компонентов, которые я использовал, и б) некоторые важные инструкции для их удобства.

Вы можете увидеть базовый рисунок ниже:

Прежде всего, перед началом процедуры убедитесь, что имеющийся у вас блок питания находится в хорошем рабочем состоянии.В противном случае вы должны сначала отремонтировать его, а после необходимой проверки, что все в порядке, вы можете продолжить модификацию. Это очевидно…

На приведенной выше схеме большинство значений компонентов вокруг ИС являются типичными. Возможно, будут какие-то вариации с тем, который у вас есть, но это не имеет значения. Так или иначе, вы не трогаете эти компоненты. Все, что вам нужно сделать на этом этапе, - это найти расположение резисторов, образующих резистивный делитель для напряжения обратной связи, а затем заменить эти резисторы резистивной «тройкой», состоящей из R1, R2 и R3.Обычно делительная сеть должна быть ближе всего к выходу.

В частях 1 и 2 я объяснил, что использовал углеродные пленочные резисторы вместо металлопленочных. Добавьте к этому, что только потому, что мой запас состоит из обычных резисторов серии E12, для того, чтобы иметь этот R4 номиналом 5 кОм, я подключил две части по 10 кОм параллельно. Теоретическое значение резистора составляет 4 986 кОм. Это влияет на максимальное заданное значение тока, вызывая отклонение, но это отклонение, как вы уже видели, не так уж важно для этого приложения.

Это резистивное «трио» (R1, R2 и R3) будет вашей новой цепью измерения напряжения и обратной связи для стабилизации выходного напряжения. Переключатель, замыкающий средний резистор 1K2, переключает выходное напряжение с уровня «обслуживания» (13,2 В) на уровень «ускоренного заряда» (14,7 В). Я настоятельно рекомендую вам протестировать функцию выбора напряжения сразу после установки резистивного «трио», прежде чем продолжить.

Тем читателям, которые заинтересованы в очень хорошей компенсации выходного напряжения при колебаниях нагрузки, я предлагаю им установить и подключить это резистивное «трио» точно к выходным клеммам блока питания, возможно, используя крошечную перфорированную печатную плату для удержания резисторов. плотно на месте.Это также значительно упростит процедуру модификации.

Что касается схемы измерения и ограничения тока, то все немного сложно, но, тем не менее, вполне управляемо. Имейте в виду, что только потому, что ожидаемый срок службы блока питания будет полностью зависеть от этой схемы до конца ее срока службы, вы должны сначала внимательно изучить приведенный выше рисунок и работать соответствующим образом. Кроме того, позвольте мне предоставить вам основную информацию об этом, чтобы вы точно знали, что вам следует делать, и объяснили, почему вы должны это делать.

Шунтирующий резистор, чувствительный к току, представляет собой резистор 0,1 Ом / 10 Вт, показанный на схеме выше, на выходном обратном пути системы. Он преобразует ток, протекающий через него, в падение напряжения на его выводах. Это, в свою очередь, работает как зеркало, отражающее изображение тока как напряжение, которое теперь может «увидеть» ИС. Таким образом, пока на выходе течет ток, на выводах этого шунтирующего резистора возникает напряжение, величина которого, конечно, напрямую зависит от величины протекающего выходного тока.

Учитывая, что шунт расположен на пути возврата тока, это напряжение (измеренное относительно земли) имеет отрицательную полярность на узле шунтирующего резистора и R5. С другой стороны, R4 и R5 образуют резистивный делитель, который определяет максимальный выходной ток. Это разделитель, который вы должны установить в нем, потому что его нет в вашем блоке питания.

Давайте подробнее рассмотрим, как это работает. Это довольно интересно. Пока на выходе нет тока, нижний резистор этого делителя (R5 относительно земли) находится под потенциалом земли (через шунтирующий резистор).В узле R4, R5 всегда присутствует напряжение 600 мВ, потому что на R4 постоянно подается опорный сигнал 5 В с вывода 14 ИС. Поскольку ток, протекающий на выходе становится все выше и выше, в зависимости от увеличения нагрузки, напряжение разработан на шунтирующий резистор в некоторой точке (на 6А примерно как вычисленной) перевешивает стабильную ссылку 600mV с равным напряжением обратной полярности, и когда его просто превышает его, напряжение на выводе 15 ИС становится более отрицательным, чем нулевое напряжение на выводе 16, с которым это сравнение происходит постоянно.Это меняет на обратное состояние второго (считывающего ток) операционного усилителя, выходной сигнал которого теперь перескакивает с «низкого» уровня на «высокий». Это момент, когда операционный усилитель тока берет на себя управление ШИМ, уменьшая ширину выходных импульсов до минимума, чтобы поддерживать заданное значение тока стабильным. Таким образом, ШИМ переходит в текущий режим работы. Напряжение нельзя больше стабилизировать до заданного уровня, пока выходной ток не упадет ниже предельной уставки. Когда это происходит, операционный усилитель напряжения берет на себя управление ШИМ, стабилизируя напряжение.Текущий операционный усилитель сейчас находится в расслабленном состоянии.

Теперь есть некоторые предпосылки для правильной работы этой цепи. Прежде всего, вы должны разорвать цепь заземления, чтобы установить шунтирующий резистор. Поэтому вы должны использовать острый нож или резак и после того, как найдете место, где вы собираетесь установить шунт, отрежьте широкий след из фольги в точке, немного отстоящей от точки, откуда выходили все эти черные кабели. При установке ваш шунтирующий резистор должен перекрыть этот разорванный путь.Вполне понятно, не правда ли? Режем фольгу, чтобы разорвать цепь, и устанавливаем перемычку, чтобы через нее измерять обратный ток. Вот и все. Это ваш второй шаг модификации.

Далее в игру вступает установка чувствительного к току резистивного делителя. Возможно, вам придется удалить некоторые компоненты, чтобы освободить место для новых. Если вы это сделаете, прежде чем случайно удалить что-либо жизненно важное для работы ИС, имейте в виду, что на приведенном выше чертеже есть все необходимые детали для правильной работы ИС.Сначала проведите проверку, обезопасьте все те компоненты, которые ни при каких обстоятельствах не следует снимать с их места, и только затем продолжайте удаление остальных из них, которые вам не нужны. Не раньше, потому что ты там потеряешься. Но даже если это произойдет, не сдавайтесь. Расслабьтесь, приготовьте себе чашку кофе, проследите за рисунком и еще раз определите наличие жизненно важных компонентов. В любом случае было бы разумно проверять работу блока питания после каждого следующего промежуточного шага.

Дополнительная общая информация:

Контакты 1 и 2 микросхемы подключены к первому операционному усилителю в этой ИС с ШИМ. С их помощью достигается регулировка напряжения. Возможно, в имеющемся у вас блоке питания для этой функции используются контакты 15 и 16 (то есть второй операционный усилитель). Вы не можете знать это заранее, но это легко определить. Ключом к этому является измерение напряжений на клеммах 1, 2, 15 и 16 микросхемы. Если вы нашли ссылку 5V на выводе 2 и 5V обратной связи на выводе 1, соединения будут, как показано на рисунке выше, и вы будете знать, что операционный усилитель 1 управляет напряжением.Некоторые конструкции используют половину опорного напряжения здесь, то есть 2,5V.

Если у вас есть доступный источник питания, в котором используется KA 7500 от Fairchild, имейте в виду, что эта микросхема совместима по выводам с TL 494. Таким образом, вы можете использовать эти инструкции и для этого блока питания. Ничего из этого описания для него не меняется.

Второй операционный усилитель (обычно) не используется. Вы еще раз убедитесь в этом, используя тот же метод. Измерьте напряжения на 15 и 16. Если вы измеряете ссылку 5V на контакте 15, а штырь 16 заземлен, то вы будете знать, что второй операционный усилитель не используется (в этом случае он вынужден нейтрализованной, «Low» состояние выхода).Для использования этого операционного усилителя вы должны прежде всего освободить его контакт 15, чтобы подключить к нему вашу обратную связь по току в соответствии с рисунком. Во время установки резистивного делителя тока, чувствительного к току, не забудьте также установить этот конденсатор 10 нФ в соединении с отрицательной обратной связью операционного усилителя, точно так же, как показано, подключенное между контактами 3 (выход компаратора) и 15 (инвертирующий вход 2 и операционный усилитель). Если вы забудете установить этот колпачок, когда произойдет ограничение тока во время обычной работы, вы сразу же получите свистящий шум напоминания…

Также имейте в виду, что общий выход обоих операционных усилителей появляется на выходе компаратора (вывод 3).Их отдельные выходы соединены вместе, каждый с разделительным диодом на выходе, причем эта пара диодов формирует функцию логического ИЛИ. Таким образом, напряжение на контакте 3 является очень полезной информацией о том, что происходит в схеме контроллера, в связи с тем, что мы видим на его конечных выходах.

Что касается охлаждающего вентилятора, то для продления срока его службы также целесообразно изменить его подключения к источнику питания. Отключите его от основного выхода 12 В и подключите к вспомогательному выходу резервного трансформатора.Если это напряжение намного выше 12 В, например 22 В, используйте трехконтактный регулятор 7812, чтобы получить стабилизированное напряжение 12 В для вентилятора. Не изменяйте это напряжение, потому что оно также питает ИС ШИМ (вывод 12), и вы, вероятно, вызовете непредсказуемое поведение контроллера.

Кроме того: вывод 13 является выводом управления выходом. При привязке к Vref, как в нашем случае, ИС работает в двухтактном режиме, деля тактовую частоту на два, для подачи на каждый транзистор драйвера соответствующих импульсов. Вывод 14 является 5V опорный вне.Контакт 5 - это клемма CT (синхронизирующая крышка) и работает с RT, контакт 6 (который является клеммой синхронизирующего резистора). Вывод 7 - это земля ИС, а выводы 9 и 10 - соответствующие эмиттеры двух внутренних биполярных транзисторов драйвера. CT - единственный колпачок из полипропилена. Все остальное (кроме колпачка ДТ) - керамические колпачки дисков.

Хитрый вывод - № 4, DT (вывод контроля мертвого времени). Большинство разработчиков используют этот штифт, чтобы нейтрализовать работу ИС в ненормальных условиях. Согласно паспорту данных, их выбор для достижения этой нейтрализации - три, путем наложения сигнала 5Vref a) на вывод 3 (comp), b) на вывод 4 (DT) или c) на входы операционных усилителей, в зависимости от каждого случая соответственно.

В любом случае имейте в виду, что конденсатор на 10 мкФ (единственный электролитический в базовой цепи) и подключенный к нему резистор 10 кОм образуют цепь с «постоянной времени». Во время запуска крышка ведет себя как короткое замыкание, пока не зарядится. Это происходит в пределах 100 мсек, что является постоянной времени этой цепи. Это время равно задержке в 5 циклов напряжения сети 50 Гц перед нормальной работой ИС. В это время на вывод 4 подается сигнал 5Vref, запрещающий вывод ШИМ. Когда крышка заряжается, напряжение на выводе 4 падает почти до уровня земли, ИС начинает работать плавно и продолжает нормально работать благодаря этой цепи плавного пуска R-C, подключенной к клемме DT.

Это означает, что в случае возникновения странных проблем типа «не запускается, хотя питание есть», сначала проверьте напряжение на выводе управления мертвым временем. Он должен быть близок к потенциалу земли. Его рабочий диапазон составляет от 0 В до 3,3 В. Выше этого уровня на выходе нет импульсов…

Когда все, что связано с модификацией, закончено, пришло время тестирования. Поскольку вы собираетесь исследовать общую производительность устройства, не поддавайтесь искушению закоротить его выходные клеммы, чтобы увидеть эффект защиты от ограничения тока.

Сначала загрузите оборудование, постепенно увеличивая нагрузку, наблюдая за напряжением обратной связи по току на операционном усилителе контроллера. Он должен соответственно увеличиваться. Также убедитесь, что ваш эталон (600 мВ) на месте, и он становится все меньше и меньше по мере увеличения нагрузки.

Если присутствуют оба напряжения, увеличьте нагрузку выше предела 6 А. (Вы можете легко сделать это, подключив параллельно автомобильные лампы. Например, для этих 6A вам потребуется 72 Вт для номинального рабочего напряжения 12 В.Это означает параллельное соединение нити накала дальнего света автомобильной лампы мощностью 60 Вт с контрольной лампой тормоза мощностью 21 Вт. Это сделает работу). Выходное напряжение должно упасть, когда вы превысите эту уставку в 6 А.

Если вы видите этот эффект, все готово. Вы можете делать с зарядным устройством все, что захотите, кроме одного. Чтобы (случайно) подключить выходные клеммы блока питания с обратной полярностью к полюсам заряжаемой батареи. В таком случае вам придется провести серьезный ремонт расширенного уровня, чтобы снова привести поврежденное зарядное устройство в рабочее состояние.

Наконец, если вы хотите включить в него защиту от обратной полярности, вам нужно купить реле с катушкой на 12 В, наиболее предпочтительно для использования в автомобиле, включая однополюсный однопозиционный переключатель, способный выдерживать номинальный ток. Только для дополнительной безопасности выберите выдерживаемую силу тока 20 А или более для его контактов.

Теперь подключите положительный выходной кабель блока питания к клемме C (общий) реле, а его нормально разомкнутый контакт - к выходной клемме блока питания (соединение последовательно, используя нормально разомкнутый контакт внутреннего переключателя реле. ).

Незаземленная клемма катушки должна получать питание через небольшой, скажем, 1А, обычный выпрямительный диод. Анод этого диода получает питание от плюсовой клеммы выходного плюсового разъема БП, будучи подключенным к ней. Катод его питает катушку реле. Это означает, что если к блоку питания не подключена батарея, реле не будет запитано и выходное напряжение не будет. Если заряжаемая батарея подключена с правильной полярностью, реле получает питание от батареи, и его ранее открытый контакт теперь замыкается и подает на батарею зарядный ток.Напротив, если батарея подключена в обратном направлении, реле не будет активировано (из-за обратного смещения диода, питающего его катушку), и оно останется неактивным. Нет напряжения на выводах БП.

У использования этой схемы защиты два недостатка. А) Нет выхода, если к нему не подключена батарея. Это ограничивает использование данного блока питания в качестве обычного блока питания общего назначения, ограничивая его исключительно зарядным устройством. Б) Всегда существует вероятность того, что заряжаемый аккумулятор полностью разряжен.В таком случае у него не будет достаточно мощности для включения реле, и поэтому он не будет заряжаться…

Возможно (для очень требовательных читателей) вы также можете использовать обходной переключатель для обхода защиты ... что значительно усложняет задачу. Однако вы можете реализовать все, что захотите, чтобы удовлетворить ваши собственные конкретные требования и потребности. Все равно делай, как хочешь! Это исключительно ваше решение!

Надеюсь, эти рекомендации будут работать для вас наилучшим образом. Если вы попробуете, я желаю вам успехов в ваших усилиях по модификации и дальнейшего удовольствия от пуленепробиваемого зарядного устройства после этого, когда вы его используете!

Эта статья была подготовлена ​​для вас Пэрис Азис из Афин, Греция.Ему 59 лет, и у него более 30 лет опыта в ремонте электроники, как бытовой, так и промышленной электроники. Он начал как любитель в возрасте 12 лет и закончил свою профессиональную карьеру старшим техником-электронщиком. Он был специалистом по всему спектру ремонта бытовой электроники (: вентильные радиоприемники и ТВ-приемники, транзисторные цветные ЭЛТ-телевизоры, аудиоусилители, катушечные и кассетные магнитофоны, автоответчики и телефакс, электрические утюги, кухонные приборы МВ и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *