Импульсный блок питания как работает: Принцип работы у импульсного блока питания

Содержание

Импульсный блок питания или линейный

13-01-2013

Импульсный блок питания или линейный. История вопроса

Наверно ни для кого не секрет, что большинство специалистов, радиолюбителей и просто технически грамотных покупателей источников питания с опаской относятся к импульсным блокам питания, отдавая предпочтение линейным.

Причина проста и понятна. Репутация импульсных блоков питания серьезно подорвана еще в 80-х годах, во времена массовых отказов отечественных цветных телевизоров, низкокачественной импортной видеотехники, оснащенных первыми импульсными блоками питания.

Что мы имеем на сегодняшний день? Практически во всех современных телевизорах, видеоаппаратуре, бытовой технике, компьютерах используются импульсные блоки питания. Все меньше и меньше сфер применения линейных (аналоговых, параметрических) источников. Линейный источник электропитания сегодня в бытовой аппаратуре практически не найдёшь. А стереотип остался. И это не консерватизм, несмотря на бурный прогресс электроники, преодоление стереотипов происходит очень медленно.

Давайте попробуем объективно посмотреть на сегодняшнее положение и попробуем изменить мнение специалистов. Рассмотрим «стереотипные» и присущие импульсным блокам питания недостатки: сложность, ненадёжность, помехи.

Импульсный блок питания.  Стереотип «сложность»

Да, импульсные блоки питания сложные, точнее сказать сложнее аналоговых, но намного проще компьютера или телевизора. Вам не нужно разбираться в их схемотехнике, так же как и в схемотехнике цветного телевизора. Оставьте это профессионалам. Для профессионалов там нет ничего сложного.

Импульсный блок питания. Стереотип «ненадёжность»

Элементная база импульсного блока питания не стоит на месте. Современная комплектация, применяемая в импульсных блоках питания, позволяет сегодня с уверенностью сказать: ненадёжность – это миф. В основном надежность импульсного блока питания, как и любого другого оборудования, зависит от качества применяемой элементной базы. Чем дороже импульсный блок питания, тем дороже элементная база в нем. Высокая интеграция позволяет реализовать большое количество встроенных защит, которые порой недоступны в линейных источниках.

Импульсный блок питания. Стереотип «помехи»

В схемотехнике импульсных блоков питания заложено формирование мощных импульсов и затухающих колебаний в обмотках трансформатора. Эти коммутационные процессы предопределяют широкий спектр паразитного излучения.
Поэтому корпус и соединительные провода источника могут стать антенной для излучения радиопомех. Но если конструкция импульсного блока питания тщательно проработана, о помехах можно забыть. Кроме этого, благодаря современным технологиям импульсные блоки питания позволяют существенно сгладить пульсации сетевого напряжения.

А какие достоинства импульсного блока питания?

Импульсный блок питания. Высокий КПД

Высокий КПД (до 98%) импульсного блока питания связан с особенностью схемотехники. Основные потери в аналоговом источнике это сетевой трансформатор и аналоговый стабилизатор (регулятор). В импульсном блоке питания  нет ни того ни другого. Вместо сетевого трансформатора используется высокочастотный, а вместо стабилизатора — ключевой элемент. Поскольку основную часть времени ключевые элементы либо включены, либо выключены, потери энергии в импульсном блоке питания минимальны. КПД аналогового источника может быть порядка 50 %, то есть половина его энергии (и ваших денег) уходит на нагрев окружающего воздуха, проще говоря, улетают на ветер.

Импульсный блок питания. Небольшой вес

Импульсный блок питания имеет меньший вес за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса импульсного блока питания в разы меньше аналогового.

Импульсный блок питания. Меньшая стоимость

Спрос рождает предложение. Благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности сегодня мы имеем низкие цены силовой базы импульсных блоков питания. Чем больше выходная мощность, тем дешевле стоит источник по сравнению со стоимостью аналогичного линейного источника. Кроме того, главные компоненты аналогового источника (медь, железо трансформатора, радиаторы из алюминия) постоянно дорожают.

Импульсный блок питания. Надёжность

Вы не ослышались, надежность. На сегодняшний момент импульсные блоки питания надёжнее линейных за счет наличия в современных блоках питаниях встроенных цепей защиты от различных непредвиденных ситуаций, например, от короткого замыкания, перегрузки, скачков напряжения, переполюсовки выходных цепей. Высокий КПД обуславливает меньшие теплопотери, что в свою очередь обуславливает меньший перегрев элементной базы импульсного блока питания, что так же является показателем надёжности.

Импульсный блок питания. Требования к сетевому напряжению

Что творится в отечественных электросетях, вы наверно знаете не понаслышке. 220 Вольт в розетке скорее редкость, чем норма. А импульсные блоки питания допускают широчайший диапазон питающего напряжения, недостижимого для линейного. Типовой нижний порог сетевого напряжения для импульсного блока питания — 90…110 В, любой аналоговый источник при таком напряжении в лучшем случае «сорвется в пульсации» или просто отключится.

Итак, импульсный или линейный? Выбор в любом случае за вами, мы лишь хотели помочь вам объективно взглянуть на импульсные блоки питания и сделать правильный выбор. Только не забывайте, что качественный источник – это источник сделанный профессионально, на базе качественных комплектующих. А качество это всегда цена. Бесплатный сыр только в мышеловке. Впрочем последняя фраза в равной мере относится  к любому источнику, и к импульсному и к аналоговому.

Читайте также по теме

Блоки питания импульсные. Важно знать

В этой статье мы попробуем представить достоинства импульсных блоков питания, так сказать, вообще, в принципе. Это значит, что по определённому набору характеристик, как это будет показано дальше, этот тип вторичного питания имеет ряд несомненных преимуществ. Например, в отношении трансформаторного типа блока питания, отчего он и пользуется заслуженной популярностью. Однако! Это не значит, что импульсный блок питания (ИБП) панацея на все случаи жизни и может во всём заменить альтернативные приборы.

Вначале, о блоках питания вообще. Эти устройства предназначены для преобразования энергии первичных (других) источников питания, чтобы обеспечивать работу различных приборов. Они преобразуют напряжение, ток и другие параметры, которые потребляет данное устройство. Так, они могут стабилизировать, регулировать, управлять и т.д. Сами блоки питания бывают интегрированными и не интегрированными.

Ну, а теперь, собственно, об импульсных блоках питания.

Вкратце, как работает ИБП?

Импульсный блок питания - это инверторная система, т.е. когда постоянный ток преобразуется в переменный. При этом происходит изменение величины частоты или напряжения, либо, и того и другого вместе. Есть ИБП, работающие с гальванической развязкой (бесконтактное управление). Есть варианты где применяются малогабаритные трансформаторы. И это имеет своё объяснение, так как, чем выше частота, тем выше эффективность работы трансформатора, при этом требования к размеру сердечника уменьшаются, а мощность достигается сопоставимая. Стабилизция ИБГ осуществляется за счёт отрицательной обратной связи.

Преимуществ ИБП наберётся немало, поэтому мы их будем нумеровать для чёткости восприятия.

Достоинства импульсных блоков питания.

1. Меньший вес. Также достигается использованием (мы уже упоминали выше) малогабаритных трансформаторов, при той же передаваемой мощности. Использованием конденсаторов меньшей ёмкости, что тоже уменьшает габариты выходного фильтра напряжения. Повышенная частота преобразования этому как раз способствует. Потом, конструктивно его можно выполнить по более простой однополупериодной схеме и при этом не переживать, что увеличатся пульсации выходного напряжения.

2. Более высокий КПД (до 98%). Ответ прост — малые потери. Обусловлено это наличием в схемотехнике высокочастотного элемента вместо сетевого трансформатора, и ключевого элемента вместо стабилизатора. А так как основную часть времени ключевые элементы находятся в стабильном состоянии, т.е. либо включены, либо выключены, то потери, происходящие в основном при переходных процессах, сведены к минимуму.

3. Меньшая цена. И это при сопоставимой передаваемой мощности и надёжности альтернативных устройств. Дешевле стоит силовая часть устройства, за счёт унификации элементной базы, разработке ключевых транзисторов высокой мощности и ещё из-за того, что в трансформаторные БП входят дорогостоящие металлы и в больших объёмах.

4. Широкий диапазон питающего напряжения и частоты.

Просто не сопоставимый с линейным трансформатором в той же ценовой категории! На деле это даёт большую универсальность в применении в разных местах, где есть большие отличия по напряжению и частоте в стандартных розетках.

5. Надёжность. Её обеспечивают встроенные цепи защиты от различных «вредных» ситуаций. Это и перегрузки, и короткое замыкание, и различные скачки напряжения. Также если произошла переполюсовка выходных цепей. Потом, импульсные БП меньше греются, что уменьшает вероятность перегревания прибора.

Сказали «за», нельзя не сказать и «против». А то как – то идеально получается.

Где ИБП не так сильны?

В частности, они «плохо переносят» понижение мощности нагрузки. Могут просто не запуститься. Или, параметры выходных напряжений могут выходить за допустимые нормы. Далее, и это хорошо известный факт, импульсные блоки питания являются источником высокочастотных помех. Хотя, считается, что в хорошо проработанных схемах, этот недостаток существенно нивелируется. ( Но, думается, что в приборах, где принципиально важно отсутствие помех, будет использована альтернатива). И, наконец, если в работе прибора от сети не предусмотрена гальваническая развязка, то это затрудняет последующий его ремонт.

Теперь, если вы решили купить импульсный блок питания, вы знаете, с чем будете иметь дело.

Импульсный блок питания, технические характеристики, состав, особенности применения, фото блока.

Смотреть блок питания S-350 12 вольт 29А Mean Well

Импульсный блок питания IPS 13,8V/20A BM предназначен для питания в стационарных условиях различной радиоэлектронной аппаратуры, в том числе КВ трансиверов IC-746PRO, FT-757, TS-570 и многих других, устройств автомобильной электроники, электродвигателей постоянного тока, приборов освещения и других потребителей энергии.

Особенности блока питания
  Для повышения надежности энергоснабжения наиболее ответственных потребителей при возможном отключении питающей сети в блоке питания предусмотрена возможность подключения резервной аккумуляторной батареи.

  • Напряжение на аккумуляторной батарее, при котором происходит ее автоматическое подключение к нагрузке, (12,0…12,4)В.
  • Напряжение на аккумуляторной батарее, при котором происходит ее автоматическое отключение от нагрузки, (10,5…10,75)В.
  • Напряжение на аккумуляторной батарее, при котором происходит ее автоматическое подключение к прибору при наличии напряжении питающей сети переменного тока, не более 9В.
  • Блок питания способен работать в диапазоне напряжения питающей сети переменного тока (180…250)В.

Нестабильность выходного напряжения при изменении напряжения питающей сети во всем рабочем диапазоне и токе нагрузки 0,9 Iмакс, не более 1%.
Нестабильность выходного напряжения при изменении тока нагрузки от 0 до 0,9 Iмакс при номинальном напряжении питающей сети, не более 1%.
Температурный дрейф выходного напряжения в режиме стабилизации напряжения, не более 0,02%/С.

Защита от перегрузок

В блоке питания защита от перегрузок и коротких замыканий осуществляется автоматически путем перехода из режима стабилизации напряжения в режим ограничения тока и наоборот.
Импульсный блок питания допускают заземление одной из выходных клемм.
По способу защиты человека от поражения электрическим током блок питания соответствует классу 01, а по степени защиты корпусом электрического оборудования – классу IP20
Электрическая прочность изоляции между замкнутыми контактами сетевого шнура и корпусом прибора, между замкнутыми выходными клеммами и корпусом прибора, а также между замкнутыми контактами сетевого шнура и замкнутыми выходными клеммами прибора, выдерживает без пробоя испытательное напряжение 1000В эффективного значения.

Технические характеристики импульсного блока питания

Параметры Значения
Входное напряжение переменного тока 220 В (187…242 В)
Выходное напряжение постоянного тока 13 В
Максимальный выходной ток 20 A
Возможность подключения батареи да
Пульсации выходного напряжения не более 100мВ эффективного значения
Пульсации выходного напряжения в режиме ограничения тока не более 300мВ эффективного значения
Максимальный выброс выходного напряжения при сбросе нагрузки
от 0,9 Iмакс до 0 в режиме стабилизации напряжения
не более 7% от Uвых эффективного значения
Цифровой индикатор нет
Режим работы круглосуточный
Относительная влажность 95% при температуре +35*С
Конструктивное исполнение настольный
Индикация выхода красный LED
Температура окружающего воздуха 0*С до +40*С
К.П.Д. прибора при максимальной выходной мощности не менее 0,8
Размер корпуса источника питания 150×95×170 мм (Ш×В×Г)
Масса источника питания не более 1,4 кг
Виды блока питания

Блок питания импульсный 13 вольт, фото с боку - Блок питания импульсный 13 вольт 20А

Описание самодельного блока питания для КВ трансивера Перейти

Чем отличается импульсный блок питания от обычного: особенности и отличия

Создана: 27.05.2020   Обновлено: 29.01.2021 13:36:28

Подавляющее большинство современной электроники работает на постоянном токе с малыми значениями силы и напряжения. Например, роутеры потребляют 12 вольт и 5 ампер, а смартфоны в большинстве случаев – 5 вольт и 2 ампера. Вот только в бытовой сети распространяется совершенно другой ток – переменный, с частотой 60 Гц, напряжением 220 вольт и (обычно) силой до 6 ампер.

Соответственно, для использования электронных приборов в бытовой сети этот ток надо как-то преобразовать. Для этих целей и используются блоки питания. Их задача – трансформация тока для придания ему определённых параметров напряжения, силы, а также частоты (превращения переменного в постоянный).

И если требуется выбрать подходящий блок питания либо соорудить самостоятельно, то чаще всего можно встретить два варианта – обычный, он же трансформаторный, и импульсный. И в чём разница, кроме конструкционной сложности, не всегда понятно. Поэтому в этой статье мы разберёмся, чем отличается импульсный блок питания от обычного, рассмотрим их особенности и отличия.

Обычные блоки питания (трансформаторного типа)

Трансформаторные блоки питания – одни из первых устройств для преобразования электричества. Они относятся к аналоговому типу, отличаются конструкционной простотой и сравнительно высокой надёжностью. Впрочем, и существенные недостатки вроде слишком крупных габаритов у них также имеются.

Основной функциональный элемент таких БП – трансформатор. Он состоит из двух индукционных катушек. На первую подаётся электричество из бытовой 220-вольтовой сети и создаёт электромагнитное поле. Оно, в свою очередь, наводит индукцию и создаёт электродвижущую силу на второй. Таким образом достигается понижение напряжения.

В дальнейшем электрический ток, созданный на понижающей катушке, передаётся на выпрямляющее устройство. Как правило, оно состоит из нескольких силовых диодов, включённых по схеме моста. Для сглаживания пульсирующего напряжения используется конденсатор, подключённый параллельно диодному мосту, а затем силовые транзисторы его стабилизируют.

В итоге на выходе формируется постоянный ток заданного напряжения и силы. Для регулирования параметров его работы используются специальные резисторы подстройки, включаемые в схему стабилизации.

Обычные БП (трансформаторного типа) характеризуются максимальной конструкционной простотой. В принципиальной схеме элементарного устройства – всего три детали: система катушек, диодный мост и конденсатор.

Ключевые достоинства обычных блоков питания:

  1. Простота сборки и конструирования. БП необходимой мощности можно собрать самостоятельно – достаточно лишь понимать принцип работы и точно осознавать, для каких целей планируется использовать аппарат;

  2. Высокая надёжность и долговечность. При правильной эксплуатации срок работы аппаратов практически не ограничен. Так, сегодня ещё можно найти функционирующие модели, выпущенные более нескольких десятилетий назад;

  3. Доступность комплектующих. Все необходимые детали можно приобрести на радиорынках, у радиолюбителей и в специальных магазинах, заказывать какие-то определённые микросхемы из-за рубежа не требуется;

  4. Не создают паразитные радиоволновые токи. Благодаря этому помехи в питающей сети или в конечных потребителях практически не наблюдаются.

Ключевые недостатки обычных блоков питания:

  1. Низкий КПД. При передаче электричества трансформаторным способом огромная часть мощности просто теряется. Кроме того, из-за использования стабилизатора на выходе для получения стабильных параметров работы часть КПД дополнительно теряется;

  2. Крупногабаритные. Причём чем мощнее БП – тем больше его вес и размеры. Как следствие, высокомощные и вовсе могут быть маломобильными;

  3. Создают значительное электромагнитное поле. Тем самым они могут образовывать наводки в других линиях передачи сигнала – например, коаксиальных кабелях или «витой паре».

Все эти недостатки оказываются настолько критическими, что сегодня обычные БП в быту практически не используются. Вместо этого применяются импульсные.

Импульсные блоки питания

Импульсные блоки питания имеют сложную конструкцию и являются устройствами инверторного типа. Их ключевое отличие от обычных заключается в том, что входное напряжение подаётся сразу на выпрямитель. Затем оно формирует импульсы определённой частоты. За это отвечает отдельная подсистема управления, так что импульсные БП являются полноценными цифровыми устройствами.

Поскольку импульсные БП отличаются конструкционной и принципиальной сложностью, рассматривать схему их работы в рамках этой статьи не целесообразно. и

  1. Ток из сети поступает на сетевой фильтр, минимизирующий входящие и исходящие искажения;

  2. Преобразователь трансформирует синусоиду переменного тока в импульсный постоянный ток;

  3. Инвертор, контролируемый через модуль управления, формирует из импульсного постоянного тока прямоугольные высокочастотные сигналы;

  4. Ток поступает на импульсный трансформатор, который подаёт напряжение на различные элементы самого БП, а также на нагрузку;

  5. После этого ток поступает на выходной выпрямитель, а затем сглаживается на выходном фильтре.

Такая система обеспечивает не только высокий коэффициент полезного действия, но и малые размеры устройства. Причём чем выше частота импульсов – тем компактнее БП за счёт уменьшения габаритов трансформатора.

Ключевые достоинства импульсных блоков питания:

  1. Высокий КПД, составляющий, как правило, около 98%. Небольшие потери создаются их-за переходных процессов, возникающих при переключении ключа. Но они слишком незначительны, чтобы брать их в расчёт;

  2. Компактные размеры и малый вес. Это достигается за счёт того, что импульсным БП не требуется массивный трансформатор.

Ключевые недостатки импульсных блоков питания:

  1. Конструкционная сложность. Собрать такое устройство в домашних условиях без знаний в области электроники или электротехники практически невозможно;

  2. Заметный нагрев при работе. Поэтому высокомощные импульсные БП оснащаются дополнительными системами охлаждения, которые приводят к увеличению размера и массы устройства;

  3. Наличие высокочастотных помех. Как следствие, для использования в чувствительной аппаратуре такие блоки питания оснащаются фильтром помех, но и он не даёт 100% защиты от такого «мусорного сигнала»;

  4. Мощность нагрузки должна входить в номинальный диапазон. При превышении или понижении её будут наблюдаться изменения выходного напряжения. Как правило, производители предусматривают это явление и устанавливают защиту от подобных нештатных ситуаций.

Компактные размеры и высокое значение КПД помогли импульсным БП распространиться максимально широко. Сегодня они применяются в зарядных устройствах мобильной электроники, компьютерной и бытовой техники, а также в системах электронного балласта осветительных приборов.

Сравнение импульсного и обычного блоков питания

Сравним эти два типа устройств, определив, какие лучше использовать в той или иной ситуации.

Тип блока питания

Обычный (трансформаторный)

Импульсный

Принцип работы

Напряжение сначала понижается, а затем выравнивается

Напряжение сначала преобразуется, а затем понижается

Использование

Некоторые высокоточные и чувствительные к ВЧ-помехам устройства

Практически повсеместно

Коэффициент полезного действия

Небольшой, особенно с учётом потерь на стабилизаторе

Как правило, 98%

Габариты

Как правило, крупные

Как правило, малые

Высокочастотные помехи в выходном токе

Нет

Могут быть

Требование максимальной и минимальной мощностей нагрузки

Нет

Да

При прочих равных предпочтительнее использовать импульсные БП. Они обеспечивают больший КПД, а ещё весят от нескольких десятков граммов. Но в некоторых высокоточных, прецизионных устройствах лучше применять обычные (трансформаторные) модели, поскольку они не засоряют выходной сигнал помехами.



Оцените статью
 

Всего голосов: 0, рейтинг: 0

Как полвека назад Стив Джобс произвел революцию в компьютерных блоках питания


Рентгеновский снимок блока питания компьютера Apple II.

Блоки питания не пользуются большим уважением у обычных пользователей. Многие знают, какой процессор находится в их компьютере и сколько в нем физической памяти, но, скорее всего, они ничего не скажут вам о блоке питания в нем. В этом нет ничего удивительного — даже производители зачастую думают об источнике питания в последнюю очередь. 

И это позор, потому что потребовалось немало усилий для создания блоков питания, которые вы сейчас можете найти в персональных компьютерах, и они представляют собой значительное улучшение по сравнению со схемами, которые питали бытовую электронику вплоть до конца 1970-х годов. Этот прорыв стал результатом серьезных успехов, достигнутых в области полупроводниковых технологий полвека назад. И все же эта революция практически незнакома широкой публике.

И вы, наверное, удивитесь, но одним из ярых «революционеров» был Стив Джобс. По словам его биографа, Уолтера Айзексона, Джобс имел серьезные требования к блоку питания компьютера Apple II, которые смог воплотить в жизнь конструктор Род Холт:

Вместо обычного линейного источника питания Холт построил такой, который используется в осциллографах. Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему хранить энергию гораздо меньшее время и, следовательно, выделять меньше тепла. «Этот импульсный источник питания был таким же революционным, как и логическая плата Apple II», — сказал позже Джобс. «Род не попал за это в учебники истории, хотя должен был. Каждый компьютер теперь использует импульсный источник питания, и все они сдирают дизайн Рода Холта».
Однако версия событий, описанная основателем Apple, была, в общем и целом, в корне неверной. Революция произошла между концом 1960-х и серединой 1970-х годов, когда импульсные блоки питания пришли на смену простым, но неэффективным линейным источникам питания. Apple II, представленный в 1977 году, выиграл от этой революции, но отнюдь не спровоцировал ее.

Это исправление к версии событий Джобса — далеко не мелочь. Сегодня импульсные источники питания используются повсеместно, с их помощью мы заряжаем наши смартфоны, планшеты, ноутбуки, фотоаппараты и даже некоторые автомобили. Они питают часы, радио, домашние аудиоусилители и другие мелкие приборы. Инженеры, которые действительно вызвали эту революцию, заслуживают уважения. И это довольно интересная история.

Блок питания настольного компьютера, такого как Apple II, преобразует переменное напряжение из сети в постоянное, обеспечивая высокостабильное питание всей системы. Блоки питания могут работать по различным схемам, но наиболее распространенными являются линейные и импульсные конструкции.

Типичный линейный источник питания использует громоздкий трансформатор для понижения относительного высокого переменного напряжения из сети, которое затем преобразуется в низковольтное постоянное напряжение с использованием четырех диодов, подключенных по классической мостовой конфигурации. Большие электролитические конденсаторы используются для сглаживания выходного сигнала диодного моста. В компьютерных источниках питания используется схема, называемая линейным регулятором, которая снижает постоянное напряжение до требуемого уровня и удерживает его, даже если нагрузка меняется.

Линейные источники питания максимально просты для проектирования и сборки. И они используют недорогие низковольтные полупроводниковые элементы. Но у них есть два основных недостатка. Первый — это большие конденсаторы и здоровенный трансформатор, которые нереально упаковать во что-то столь же маленькое, легкое и удобное, как зарядное устройство, которое мы используем со своим смартфоном и планшетом. 

Второй — это линейный регулятор, основанный на транзисторах, который превращает все, что выше назначенного выходного напряжения, в тепло. Таким образом, такие источники питания обычно выделяют более половины потребляемой ими энергии в виде тепла. И они часто требуют больших металлических радиаторов или вентиляторов, чтобы избавиться от него.



В прошлом в небольших электронных устройствах обычно использовались громоздкие настенные трансформаторы, которые пренебрежительно называли «настенными бородавками». В начале XXI века технологические усовершенствования сделали возможными компактные импульсные источники питания для небольших устройств. А после того, как упала цена на AC/DC-преобразователи, они быстро заменили собой громоздкие настенные трансформаторы в большинстве бытовых устройств.

Apple превратила блок питания в высококлассный девайс, представив элегантное зарядное устройство для iPod в 2001 году с компактным IC-контроллером внутри [слева]. Зарядные USB-устройства вскоре стали повсеместными, а ультракомпактный зарядник для iPhone, выпущенный в 2008 году, стал одним из самых популярных во всем мире [справа].

Последняя тенденция в высокопроизводительных зарядных устройствах этого типа заключается в использовании полупроводников на основе нитрида галлия (GaN), которые способны переключаться быстрее, чем кремниевые транзисторы, и, таким образом, более эффективны. Также популяризация технологии производства импульсных БП серьезно снизила цены, и теперь самые дешевые USB-зарядники продаются менее чем за доллар, хотя и за счет плохого качества питания и отсутствующих функций безопасности.



Импульсный источник питания работает по другому принципу: в нем переменное напряжение выпрямляется при помощи диодного моста и сглаживается с помощью емкого конденсатора. Далее напряжение снова преобразуется в переменное высокочастотное (сотни килогерц) с помощью инвертора и подается на первичную обмотку трансформатора, после чего, уже пониженное, снимается со вторичной, снова выпрямляется и подается на выходы блока питания. Высокие частоты позволяют использовать намного меньшие и более легкие трансформаторы и конденсаторы. Поскольку такие БП не нуждаются в линейных регуляторах, они расходуют мало энергии: обычно их КПД составляет 80-90%, из-за чего они выделяют очень мало тепла.

Однако импульсный источник питания устроен значительно сложнее, чем линейный, и, следовательно, его сложнее проектировать. Кроме того, он намного более требователен к компонентам и нуждается в высоковольтных силовых транзисторах, которые могут эффективно включаться и выключаться на высокой скорости.

К слову, некоторые компьютеры использовали источники питания, которые не являются ни линейными, ни импульсными. Грубым, но эффективным методом было использование обычного электродвигателя, который соединялся с валом электрогенератора — последний и создавал желаемое выходное напряжение. Мотор-генераторы использовались в течение десятилетий, по крайней мере, начиная с эпохи перфокарт в вычислительных машинах IBM 30-х годов и вплоть до 1970-х годов в суперкомпьютерах Cray.

Принципы, лежащие в основе импульсного источника питания, были известны инженерам-электрикам еще с 1930-х годов, но эта техника нашла лишь ограниченное применение в эпоху вакуумных ламп. В некоторых источниках питания того времени использовались специальные ртутьсодержащие трубки, называемые тиратронами, которые можно было считать примитивными низкочастотными импульсными регуляторами. 

В качестве примеров можно привести блок питания телетайпа REC-30 1940-х годов и блок питания, использовавшийся в компьютере IBM 704 с 1954 года. Однако с появлением силовых транзисторов в 1950-х годах импульсные источники питания быстро улучшились. Pioneer Magnetics начала использовать их в 1958 году, а General Electric опубликовал ранний проект транзисторного импульсного источника питания в 1959 году.


Источник питания компьютера IBM 704.

На протяжении 1960-х годов НАСА и аэрокосмическая отрасль обеспечивали основную движущую силу по разработке импульсных источников питания, поскольку для аэрокосмических применений преимущества небольшого размера и высокой эффективности превосходили немалую их стоимость. Например, в 1962 году Telstar (первый в мире спутник для передачи телевизионных изображений) и ракета Minuteman оба использовали импульсные источники питания. Шли годы, стоимость снижалась, а доступность для простых людей, наоборот, росла. Например, в 1966 году компания Tektronix использовала импульсный блок питания в портативном осциллографе, который позволял ему работать как от сети, так и от батарей.

Эта тенденция ускорилась, поскольку производители блоков питания начали продавать свои импульсные решения другим компаниям. В 1967 году RO Associates представила первый 20-килогерцовый импульсный источник питания, который, по их утверждениям, стал первым коммерчески успешным блоком питания такого типа. Компания Nippon Electronic Memory Industry Co. начала разработку стандартизированных импульсных источников питания в Японии в 1970 году. К 1972 году большинство производителей блоков питания уже имели в ассортименте такие устройства.

Примерно в это же время компьютерная индустрия начала использовать импульсные источники питания. Первыми стали миникомпьютеры Digital Equipment PDP-11/20 в 1969 году и Hewlett-Packard 2100A в 1971. К середине 70-ых они использовались в компьютерах таких компаний, как HP, IBM, Univac, DEC, RCA и многих других, и даже добрались до цветных телевизоров.

Импульсные источники питания широко освещались в компьютерных журналах той эпохи, как в рекламе, так и в статьях. Еще в 1964 году компания Electronic Design рекомендовала использовать импульсные блоки питания для повышения энергоэффективности. В октябре 1971 года на обложке журнала «Мир электроники» были показаны 500-ваттные импульсные источники питания, а к середине 70-ых публикаций на эту тему был уже не один десяток. 

Одним из ключевых разработчиков был Роберт Бошерт, который в 1970 году уволился с работы и начал проектировать импульсные источники питания буквально на своем кухонном столе. Он сосредоточился на упрощении их конструкции, чтобы сделать их конкурентоспособными по стоимости с линейными блоками питания, и к 1974 году он массово производил недорогие блоки питания для принтеров, за которыми последовал дешевый импульсный блок питания мощностью 80 Вт в 1976 году. К 1977 году в Boschert Inc. работало уже 650 человек. Он делал источники питания для спутников и истребителей Grumman F-14, а затем стал производить компьютерные блоки питания для таких компаний, как HP и Sun.

Массовое производство дешевых высоковольтных высокоскоростных транзисторов в конце 1960-х и начале 1970-х годов такими компаниями, как Solid State Products Inc., Siemens Edison Swan и Motorola, также помогло популяризировать импульсные блоки питания. Чем выше скорость переключения транзистора, тем выше его эффективность, потому что тепло в нем рассеивается в основном во время его переключения между состояниями включения и выключения, и чем быстрее он может выполнить этот переход, тем меньше энергии он преобразует в тепло.

Скорости переключения транзисторов тогда росли как на дрожжах. Транзисторные технологии развивалась настолько быстро, что в 1971 году редакторы журнала «Мир электроники» заявили, что блок питания мощностью 500 Вт, показанный на его обложке, просто не мог быть построен с использованием транзисторов, доступных всего лишь 18 месяцами ранее.

Еще один заметный прогресс произошел в 1976 году, когда Роберт Маммано, один из основателей Silicon General Semiconductors, представил первую интегральную схему для управления импульсным источником питания, разработанную для электронного телетайпа. Его контроллер SG1524 значительно упростил конструкцию и снизил расходы, что привело к росту продаж.

В итоге к плюс-минус 1974 году всем, кто хоть немного разбирался в электронной промышленности, было ясно, что происходит настоящая революция в разработке источников питания.


Блок питания компьютера Apple II.

Персональный компьютер Apple II был представлен в 1977 году. Одной из его особенностей стал компактный безвентиляторный импульсный источник питания, выдающий суммарно 38 Вт по линиям 5, 12, –5 и –12 вольт. Он использовал простую конструкцию Холта, известную как топологию автономного преобразователя с обратной связью. Джобс утверждал, что теперь каждый компьютер использует революционную технологию Холта. Но был ли этот дизайн действительно революционным в 1977 году? И был ли он скопирован другими производителями компьютеров?

Нет и нет. Подобные автономные преобразователи с обратной связью продавались в то время Boschert и другими компаниями. Холт получил патент на несколько специфических особенностей своего блока питания, но они так и не получили широкого распространения. А построение схемы управления из дискретных компонентов, как это было сделано в Apple II, вообще оказалось технологическим тупиком. Будущее импульсных источников питания принадлежало специализированным IC-контроллерам.

Если и есть компьютер, который оказал серьезное влияние на конструкцию блоков питания, то это был IBM PC, выпущенный в 1981 году. К тому времени, всего через четыре года после выхода Apple II, технологии создания блоков питания серьезно изменились. Хотя оба этих ранних персональных компьютера использовали блоки питания с автономным преобразователем с обратной связью, это почти все, что у них было общего. 

К примеру, в блоке питания IBM PC использовался IC-контроллер, который содержал примерно в два раза больше компонентов, чем аналогичный в блоке питания Apple II. Эти дополнительные компоненты обеспечивали дополнительное регулирование на выходе и сигнал «исправная мощность», когда все четыре напряжения были правильными.

В 1984 году IBM выпустила значительно обновленную версию своего персонального компьютера под названием IBM Personal Computer AT. В его источнике питания использовалось множество новых схем и произошел полный отказ от более ранней топологии обратной связи. Он быстро стал стандартом де-факто и оставался таковым до 1995 года, когда Intel представила спецификации форм-фактора ATX, определившие, помимо прочего, основные характеристики источника питания ATX, который до сих пор остается стандартом.

Несмотря на появление стандарта ATX, компьютерные системы электропитания стали более сложными в том же 1995 году с появлением процессора Pentium Pro, который требовал более низкого напряжения при более высоком токе, чем мог дать источник питания ATX напрямую. Чтобы обеспечить требуемое питание, Intel представила модуль регулятора напряжения (VRM) — импульсный стабилизатор постоянного тока, устанавливаемый рядом с процессором. Он уменьшал 5 В от источника питания до 3 В, используемых CPU. Видеокарты также содержат VRM для питания высокопроизводительных графических чипов, которым требуется порядка 1 В вместо входящих 12.


Типичный ATX-блок питания внутри.

В наши дни быстрые домашние процессоры могут требовать до 150 Вт от VRM — значительно больше, чем лишь половина ватта мощности, используемая процессором MOS Technology 6502 в Apple II. Действительно, один только современный процессор может потреблять в три раза больше энергии, чем весь компьютер Apple II.

Растущее энергопотребление компьютеров стало причиной озабоченности по поводу окружающей среды, что привело к инициативам и нормативным актам, направленным на повышение эффективности источников питания. В Соединенных Штатах правительственная компания Energy Star и отраслевые сертификаты 80 Plus подтолкнули производителей к производству более «зеленых» источников питания. 

Они смогли сделать это, используя различные методы: более эффективные компоненты и схемы запуска, резонансные схемы, которые уменьшают потерю мощности при переключении транзисторов, а также схемы APFC (компенсации реактивной мощности), улучшающие КПД и позволяющие блоку питания работать более стабильно. Появление MOSFET и высоковольтных выпрямителей в последнее десятилетие также привело к повышению эффективности, которая у лучших источников питания на данный момент составляет 95%.

Технологии проектирования импульсных источников питания продолжают развиваться и в других направлениях. Сегодня вместо аналоговых схем используются цифровые микросхемы и программные алгоритмы для управления выходным напряжением. Проектирование контроллеров источника питания стало такой же задачей программирования, как и разработка аппаратного обеспечения. Цифровое управление питанием позволяет БП обмениваться данными с остальной системой для повышения эффективности и учета потраченной энергии. И хотя эти цифровые технологии в основном заточены под сервера, они уже начинают использоваться в источниках питания для настольных компьютеров.

Трудно сопоставить эту историю с утверждением Джобса о том, что Холт должен был «попасть в учебники истории». Даже самые лучшие разработчики источников питания редко становятся известным за пределами этого крошечного сообщества. Так, в 2009 году редакторы Electronic Design ввели Бошерта в свой Зал инженерной славы. Роберт Маммано получил награду за свои достижения в 2005 году от редакторов Power Electronics Technology. При этом ни один из этих светил в разработке блоков питания не известен даже Википедии.

Часто повторяемое утверждение Джобса о том, что Холта упустили из виду, привело к тому, что работа последнего была описана в десятках популярных статей и книг об Apple, даже в самой продаваемой биографии основателя Apple, написанной Айзексоном в 2011 году. Так что Род Холт, вероятно, стал самым известным разработчиком блоков питания, хотя не сделал ничего революционного.

Импульсный блок питания 5 В, 2,5 А

Блоки питания с трансформаторами на частоту 50 Гц сегодня практически сдали свои позиции импульсным с высокой рабочей частотой, которые при той же выходной мощности имеют, как правило, меньшие габариты и массу, более высокий КПД. Основные сдерживающие факторы для самостоятельного изготовления импульсных блоков питания радиолюбителями - трудности с расчётом, изготовлением или приобретением готового импульсного трансформатора или ферритового магнитопровода для него. Но если для сборки маломощного импульсного блока питания использовать готовый трансформатор от компьютерного блока питания формфактора ATX, задача значительно упрощается.

У меня оказался в наличии неисправный компьютерный блок питания IW-ISP300J2-0 (ATX12V300WP4). В нём был заклинен вентилятор, пробит маломощный диод Шотки, а более половины всех установленных оксидных конденсаторов вздуты и потеряли ёмкость. Однако дежурное напряжение на выходе +5VSB было. Поэтому было принято решение, используя импульсный трансформатор источника дежурного напряжения и некоторые другие детали, изготовить другой импульсный источник питания с выходным напряжением 5 В при токе нагрузки до 2,5 А.

В блоке питания ATX узлы источника дежурного напряжения легко обособить. Он даёт напряжение 5 В и рассчитан на максимальный ток нагрузки 2 А и более. Правда, в старых блоках питания этого типа он может быть рассчитан на ток всего 0,5 А. При отсутствии на этикетке блока пояснительной надписи можно ориентироваться на то, что трансформатор источника дежурного напряжения с максимальным током нагрузки 0,5 А значительно меньше трансформатора источника на 2 А.

Схема самодельного импульсного блока питания с выходным напряжением 5...5,25 В при максимальном токе нагрузки 2,5 А изображена на рис. 1. Его генераторная часть построена на транзисторах VT1, VT2 и импульсном трансформаторе T1 по образу и подобию имевшейся в компьютерном блоке, из которого был извлечён трансформатор.

Рис. 1. Схема самодельного импульсного блока питания

 

Вторичные узлы исходного блока питания (после выпрямителя напряжения +5 В) было решено не повторять, а собрать по традиционной схеме с интегральным параллельным стабилизатором напряжения в качестве узла сравнения выходного напряжения с образцовым. Входной сетевой фильтр собран из имеющихся деталей с учётом свободного места для их монтажа.

Переменное напряжение сети 230 В через плавкую вставку FU1 и замкнутые контакты выключателя SA1 поступает на RLC фильтр R1C1L1L2C2, который не только защищает блок от помех из питающей сети, но и не даёт создаваемым самим импульсным блоком помехам проникнуть в сеть. Резистор R1 и дроссели L1, L2, кроме того, уменьшают бросок потребляемого тока при включении блока. После фильтра напряжение сети поступает на мостовой диодный выпрямитель VD1-VD4. Конденсатор C9 сглаживает пульсации выпрямленного напряжения.

На высоковольтном полевом транзисторе VT2 собран генераторный узел преобразователя напряжения. Резисторы R2-R4 предназначены для запуска генератора. Суммарная мощность этих резисторов увеличена, поскольку печатная плата блока питания, из которого они извлечены, под ними заметно потемнела в результате перегрева. По той же причине демпфирующий резистор R8 установлен большей мощности, а в качестве VD6 применён более мощный, чем в прототипе, диод.

Стабилитрон VD5 защищает полевой транзистор VT2 от превышения допустимого напряжения между затвором и истоком. На биполярном транзисторе VT1 собран узел защиты от перегрузки и стабилизации выходного напряжения. При увеличении тока истока транзистора VT2 до 0,6 А падение напряжения на резисторе R5 достигнет 0,6 В. Транзистор VT1 откроется. В результате напряжение между затвором и истоком полевого транзистора VT2 уменьшится. Это предотвратит дальнейшее увеличение тока в канале сток- исток полевого транзистора. По сравнению с прототипом сопротивление резистора R5 уменьшено с 1,3 до 1,03 Ом, резистора R6 увеличено с 20 до 68 Ом, ёмкость конденсатора C13 увеличена с 10 до 22 мкФ.

Напряжение с обмотки II трансформатора T1 поступает на выпрямительный диод Шотки VD8, размах напряжения на выводах которого около 26 В. Пульсации выпрямленного напряжения сглаживает конденсатор C15. Если по тем или иным причинам выходное напряжение блока питания стремится увеличиться, растёт напряжение на управляющем входе параллельного стабилизатора напряжения DA1. Ток, текущий через излучающий диод оптрона U1, увеличивается, его фототранзистор открывается. Открывшийся в результате транзистор VT1 уменьшает напряжение между затвором и истоком полевого транзистора VT2, что возвращает выходное напряжение выпрямителя к номинальному значению. Цепь из резистора R16 и конденсатора C16 предотвращает самовозбуждение стабилизатора.

Изготовленный источник питания оснащён стрелочным измерителем тока нагрузки PA1, что значительно повышает удобство пользования им, поскольку позволяет быстро оценить ток, потребляемый нагрузкой. Шунтом для микроамперметра PA1 служит омическое сопротивление обмотки дросселя L4. Светодиоды HL1 и HL2 подсвечивают шкалу микроамперметра.

На выходные разъёмы XP2 и XS1 напряжение поступает через фильтр L5C19. Стабилитрон VD9 с диодом VD10 предотвращают чрезмерное повышение выходного напряжения при неисправности цепей его стабилизации.

Рабочая частота преобразователя - около 60 кГц. При токе нагрузки 2,3 А размах пульсаций выпрямленного напряжения на конденсаторе C15 - около 100 мВ, на конденсаторе C18 - около 40 мВ и на выходе блока питания - около 24 мВ. Это очень неплохие показатели.

КПД блока питания при токе нагрузки 2,5 А - 71 %, 2 А - 80 %, 1 А - 74 %, 0,2 А - 38 %. Ток короткого замыкания выхода - около 5 А, потребляемая от сети мощность при этом - около 7 Вт. Без нагрузки блок потребляет от сети около 1 Вт. Измерения потребляемой мощности и КПД проводились при питании блока постоянным напряжением, равным амплитуде сетевого.

При длительной работе с максимальным током нагрузки температура внутри его корпуса достигала 40 оС при температуре окружающего воздуха 24 оС. Это значительно меньше, чем у многочисленных малогабаритных импульсных источников питания, входящих в комплекты различных бытовых электронных приборов. При токе нагрузки, равном половине заявленного максимального значения, они перегреваются на 35...55 оС.

Большинство деталей описываемого блока питания установлены на плате размерами 75x75 мм. Монтаж - двухсторонний навесной. В качестве корпуса применена пластмассовая распределительная коробка размерами 85x85x42 мм для наружной электропроводки. Блок в открытом корпусе показан на рис. 2, а его внешний вид - на рис. 3.

Рис. 2. Блок в открытом корпусе

 

Рис. 3. Внешний вид блока

 

При изготовлении блока следует обратить особое внимание на фазировку обмоток трансформатора T1, начало и конец ни одной из них не должны быть перепутаны. Применённый трансформатор 3PMT10053000 (от упомянутого выше компьютерного блока питания) имеет также предназначенную для выпрямителя напряжения -12 В обмотку, которая в данном случае не использована. Взамен него можно применить почти любой подобный трансформатор. Для ориентировки при подборе трансформатора привожу значения индуктивности обмоток использованного: I - 2,4 мГн, II - 17 мкГн, III - 55 мкГн.

В качестве PA1 применён микроамперметр M68501 (индикатор уровня от отечественного магнитофона). Учтите, что микроамперметры этого типа различных лет выпуска имеют очень большой разброс сопротивления измерительного механизма. Если установить нужный предел измерения подборкой резистора R13 не удаётся, нужно включить последовательно с дросселем L4 проволочный резистор небольшого сопротивления (ориентировочно 0,1 Ом).

При градуировке микроамперметра неожиданно выяснилось, что он очень чувствителен к статическому электричеству. Поднесённая пластмассовая линейка могла отклонить стрелку прибора до середины шкалы, где она могла остаться и после того, как линейка была убрана. Устранить это явление удалось удалением имевшейся плёночной шкалы. Вместо неё была приклеена липкая алюминиевая фольга, которой были оклеены и свободные участки корпуса. Экран из фольги следует соединить проводом с любым выводом микроамперметра. Можно попробовать обработать корпус микроамперметра антистатическим средством.

Напечатанную на принтере бумажную шкалу приклеивают на место удалённой. Образец шкалы изображён на рис. 4. Как видите, у этого микроамперметра она заметно нелинейна.

Рис. 4. Образец шкалы

 

Резистор R1 - импортный невозгораемый. Вместо такого резистора можно установить проволочный мощностью 1...2 Вт. Отечественные металлоплёночные и углеродные резисторы в качестве R1 не подходят. Остальные резисторы общего применения (С1-14, С2-14, С2-33, С1-4, МЛТ, РПМ). Резистор R19 для поверхностного монтажа припаян непосредственно к выводам розетки XS1.

Оксидные конденсаторы - импортные аналоги К50-68. Использование конденсаторов C15, C18, C19 с номинальным напряжением 10 В вместо часто применяемых в импульсных блоках питания оксидных конденсаторов на напряжение 6,3 В значительно повышает надёжность устройства. Плёночный конденсатор C2 ёмкостью 0,033...0,1 мкФ предназначен для работы на переменном напряжении 275 В. Остальные конденсаторы - импортные керамические. Конденсаторы C14, C17 припаяны между выводами соответствующих оксидных конденсаторов. Конденсатор C20 установлен внутри штекера ХР2.

Мощная сборка диодов Шотки S30D40C взята из неисправного компьютерного блока питания. В рассматриваемом устройстве она может работать без теплоотвода. Заменить её можно на MBR3045PT, MBR4045PT, MBR3045WT. MBR4045WT При максимальном токе нагрузки корпус этой сборки нагревается до 60 оС - это самый горячий элемент в устройстве. Вместо диодной сборки можно применить два обычных диода в корпусе DO-201AD, например, MBR350, SR360, 1N5822, соединив их параллельно. К ним со стороны выводов катодов нужно прикрепить дополнительный медный теплоотвод, показанный на рис. 5.

Рис. 5. Дополнительный медный теплоотвод

 

Вместо диодов 1N4005 подойдут 1 N4006, 1 N4007, UF4007, 1N4937, FR107, КД247Г, КД209Б. Диод FR157 можно заменить на FR207, FM207, FR307, PR3007. Один из перечисленных диодов подойдёт и вместо КД226Б. Заменой диода FR103 может служить любой из UF4003, UF4004, 1N4935GP RG2D, EGP20C, КД247Б. Вместо стабилитрона BZV55C18 подойдут 1N4746A, TZMC-18.

Светодиоды HL1, HL2 - белого цвета свечения из узла подсветки ЖКИ сотового телефонного аппарата. Их приклеивают к микроамперметру цианакрилатным клеем. Транзистор KSP2222 можно заменить любым из PN2222, 2N2222, KN2222, SS9013, SS9014, 2SC815, BC547 или серии КТ645 с учётом различий в назначении выводов.

Полевой транзистор SSS2N60B извлечён из неисправного блока питания и установлен на ребристый алюминиевый теплоотвод с площадью охлаждающей поверхности 20 см2, причём все выводы транзистора должны быть электрически изолированы от теплоотвода, при работе блока питания с максимальным током нагрузки этот транзистор нагревается всего до 40 оС. Вместо транзистора SSS2N60B можно применить SSS7N60B, SSS6N60A, SSP10N60B, P5NK60ZF, IRFBIC40, FQPF10N60C.

Оптрон EL817 можно заменить другим четырёхвыводным (SFH617A-2, LTV817, PC817, PS817S, PS2501-1, PC814, PC120, PC123). Вместо микросхемы LM431ACZ подойдёт любая функционально аналогичная в корпусе ТО-92 (TL431, AZ431, AN1431T).

Все дроссели - промышленного изготовления, причём магнитопроводы дросселей L1, L2, L4 - H-образные ферритовые. Сопротивление обмотки дросселя L4 - 0,042 Ом. Чем крупнее этот дроссель по размеру, тем меньше будет нагреваться его обмотка, тем точнее будет измерять ток нагрузки микроамперметр PA1. Дроссель L5 намотан на кольцевом магнитопроводе, чем меньше сопротивление его обмотки и чем больше её индуктивность, тем лучше. Дроссель L3 - надетая на вывод общего катода диодной сборки VD8 ферритовая трубка длиной 5 мм.

Штекер XP2 соединён с конденсатором C19 сдвоенным многожильным проводом 2x2,5 мм2 длиной 120 см. Розетка XS1 USB-AF закреплена в отверстии корпуса устройства клеем.

Первое включение изготовленного устройства в сеть переменного тока производят без нагрузки через лампу накаливания мощностью 40...60 Вт на 235 В, установленную вместо плавкой вставки FU1. Предварительные испытания под нагрузкой выполняют, заменив FU1 лампой накаливания мощностью 250...300 Вт. Нити ламп накаливания при нормальной работе блока питания не должны светиться. Безошибочно изготовленное из исправных деталей устройство начинает работать сразу.

При необходимости подборкой резистора R13 можно установить показания амперметра. Подбирая резистор R14, устанавливают выходное напряжение блока питания равным 5...5,25 В. Повышенное напряжение компенсирует его падение на проводах, соединяющих блок с нагрузкой.

Изготовленный источник питания можно эксплуатировать совместно с доработанным USB-концентратором [1], к которому можно будет подключить до четырёх внешних жёстких дисков типоразмера 2,5 дюйма, работающих одновременно. Мощности будет достаточно и для питания, например, таких устройств, как [2].

Литература

1. Бутов А. Доработка USB-концентратора. - Радио, 2013, № 11, с. 12.

2. БутовА. Преобразователь напряжения 5/9 В для питания радиоприёмников. - Радио, 2013, № 12, с. 24, 25.

Автор: А. Бутов, с. Курба Ярославской обл.

2.6. Основные неисправности, методы их поиска и устранения

2.6. Основные неисправности, методы их поиска и устранения

В этом разделе читателю предлагается анализ возможных неисправностей импульсных источников питания ATX конструктива на примере схемы, приведенной на рис. 2.2. Источник питания является преобразователем сетевого первичного напряжения, поэтому работа с ним требует особой подготовки и аккуратности. Перед проведением самостоятельных работ с прибором подобного типа следует ознакомиться с содержанием предыдущего раздела «Проведение работ с блоками питания конструктива ATX». Это позволит подготовить рабочее место для проведения ремонта, избежать ошибок и предотвратить возможную порчу измерительных приборов.

Если произошел отказ источника питания, прежде всего неисправный прибор следует подвергнуть тщательному визуальному осмотру. На этом этапе можно выявить наличие поврежденных элементов и предварительно локализовать место неисправности. Замену элементов, особенно в силовых цепях, следует производить на оригинальные, используемые в данном приборе. Если такой возможности нет, и требуется отыскать аналог, то подбирать его следует очень внимательно с учетом требований конструкции, надежности и безопасности.

Описание поиска возможных неисправностей составлено в предположении, что внешне элементы тестируемого источника питания выглядят нормально, без очевидных дефектов и повреждений. Печатный монтаж не поврежден или предварительные работы по его восстановлению уже проведены. Проверка источника проводится без нагрузки вторичных цепей, если иное не указано, на отдельном стенде. Перечень необходимого оборудования приведен в разделе 2.5. Вход сигнала PS-ON должен быть замкнут перемычкой на общий провод вторичной цепи. Все операции по монтажу и демонтажу, а также установке и удалению временных соединений производятся только на полностью обесточенном приборе.

После включения блока питания выходные вторичные напряжения отсутствуют. Сгорел предохранитель.

Возможная причина: во время эксплуатации было произведено ощибочное подключение блока питания к сети с напряжением 220 В, в то время как переключатель выбора напряжения был установлен в положение 115 В.

Алгоритм поиска неисправности:

1. Последовательно проверить целостность индуктивных элементов сетевого фильтра, выпрямительные диоды D11 – D14, конденсаторы C5 и C6, силовые транзисторы Q9 и Q10, диоды рекуперации D23 и D24.

2. Провести проверку активных компонентов узла автогенератора на транзисторе Q3.

3. Оценку работоспособности элементов произвести только после их демонтажа из печатной платы блока питания. Наиболее вероятен выход из строя активных силовых элементов схемы и конденсаторов C5 и C6.

4. После замены неисправных элементов проверку работоспособности каскадов проведите последовательно по методике, приведенной в разделе 2.5. Сначала выполните проверку функционирования ШИМ преобразователя и силового каскада на Q9 и Q10, согласно положениям подраздела 2.5.2. Затем к тестируемому блоку питания подключите трансформатор сетевой развязки согласно рис. 2.21. Убедитесь в работоспособности узла на Q3, сравнивая данные результатов своих измерений с осциллограммами, приведенными на рис. 2.4.

5. Без нагрузки по вторичным каналам проверьте работу силового каскада. В базовой цепи Q9 проведите контроль прохождения импульсного сигнала через пассивные элементы C21, R36, R40. Измерения проводите относительно эмиттера Q9. Аналогично проверьте базовую цепь Q10, подключая общий вывод осциллографа к его эмиттерной цепи. Проверьте наличие трехуровневого импульсного сигнала на коллекторе Q10, измеряя его относительно эмиттера Q10. Размах сигнала должен практически совпадать с уровнем напряжения питания силового каскада. Вид полученных осциллограмм напряжений сравните с приведенными на рис. 2.12, 2.13, снятыми в соответствующих точках.

Возможная причина: произошел пробой изоляции силовых транзисторов, установленных на общем радиаторе.

Алгоритм поиска неисправности:

1. Не производя демонтаж, проверить сопротивление между металлическими частями корпусов транзисторов Q9 и Q10, на которые выведены выводы коллекторов, и радиатором, на котором они закреплены. Если обнаружено, что сопротивление между ними составляет несколько килоом или менее, это служит признаком того, что изолирующая прокладка повреждена. Нужно выпаять транзисторы и проверить целостность прокладок и исправность транзисторов.

2. Неисправные транзисторы и пробитые прокладки заменить. Крепление новых транзисторов произвести через новые прокладки. После механической установки проверить сопротивление между корпусами Q9, Q10 и радиатором.

3. Проверить исправность диодного моста на D11 – D14 и резистивные элементы базовых цепей силовых транзисторов. При пробое транзисторов или прокладок они также могут быть повреждены.

4. После замены всех неисправных элементов, включая предохранитель, проверку силовой части преобразователя провести в два этапа. На первом этапе использовать методику подраздела 2.5.2, на втором – подраздела 2.5.3.

Возможная причина: отказ элементов в автогенераторном каскаде на Q3.

Алгоритм поиска неисправности:

1. Проверить омметром исправность транзистора Q3. Если произошел отказ, следует произвести замену.

2. Дополнительно осмотреть трансформатор Т8. Провода трансформатора не должны быть повреждены, на изоляции обмоток не должны просматриваться следы термических повреждений. Если эти следы наблюдаются, то существует большая вероятность разрушения эмали провода обмотки, что приведет к межвитковым замыканиям и снижению индуктивности первичной обмотки T8. Трансформатор следует заменить.

3. После замены элементов проверку функционирования каскада выполнять по методике подраздела 2.5.3. Вид осциллограмм напряжений на элементах этого каскада должен соответствовать осциллограммам, изображенным на рис. 2.4.

Сразу после включения источника питания происходит срабатывание защиты.

Возможная причина: не подается сигнал обратной связи на микросхему IC1.

Алгоритм поиска неисправности:

1. Из-за повреждения проводника печатной платы, соединяющего точку объединения резисторов R47, R46 и вывод IC1/1, или неисправности самих резисторов сигнал обратной связи нагрузки основных вторичных каналов не подается на микросхему ШИМ преобразователя. Отсутствие этого сигнала IC1 в начальный момент воспринимает как повышение потребления по вторичным каналам положительных напряжений. Происходит увеличение длительности импульсов возбуждения силового каскада на транзисторах Q9 и Q10. Напряжение на конденсаторе C19 возрастает и открывается транзистор Q6. Далее развивается процесс включения блокировки ШИМ преобразователя по входу IC1/4 через транзистор Q1.

2. Проверку работы ШИМ преобразователя провести с использованием методики описанной в подразделе 2.5.1. После включения стабилизированного внешнего источника 2 по рис. 2.22 проследить подачу сигнала обратной связи от выходного контакта канала +5 В через резистор R47 на вывод IC1/1. При уровне выходного напряжения внешнего источника 2, соответствующем +5 В, напряжение на выводе IC1/1 должно составлять 2,2–2,3 В.

Возможная причина: нарушены электрические связи между пассивными элементами, установленными в базовой цепи транзистора Q4.

Алгоритм поиска неисправности:

1. Провести электрическую проверку исправности элементов и проводников их соединяющих, подключенных к базовой цепи транзистора Q4.

2. Наиболее вероятная причина срабатывания защиты по этому каналу – нарушение связей между резистором R9 и анодом диода D4. В этом случае напряжение от вторичного канала +5 В не компенсируется отрицательными напряжениями. Транзистор Q4 открывается положительным напряжением, поступающим на его базу. Далее, в проводящее состояние переходит Q1 и подключает вывод IC1/4 к положительному напряжению вывода IC1/14. ШИМ преобразователь блокируется.

Возможная причина: срабатывание защиты вызвано неисправностью стабилитронов ZD1 или ZD3.

Алгоритм поиска неисправности:

1. Проверить исправность стабилитронов ZD1 и ZD3. Если хоть один из них неисправен и его внутренняя структура образует лишь сопротивление малой величины, то положительное напряжение вторичного канала через него будет поступать на базу Q4. Последовательное переключение транзисторов Q4 и Q1 приведет к срабатыванию защиты и блокировке микросхемы IC1.

Не вырабатывается напряжение питания для элементов дежурного режима +5VSB. Вторичные напряжения поступают независимо от наличия перемычки, соединяющей вход PS-ON с общим проводом.

Возможная причина: нарушена работоспособность элементов вторичной цепи автогенераторного каскада.

Алгоритм поиска неисправности:

1. Если ШИМ преобразователь запускается без подключения вывода PS-ON к общему проводу, то это указывает на то, что при подключении блока к питающей сети не формируется напряжение +5 VSB, подаваемое на этот сигнальный вход через резистор R22.

2. Подключить импульсный блок питания к первичной сети. Произвести проверку формирования напряжения на вторичной обмотке автогенераторного каскада. Измерения производить относительно общего провода вторичной цепи.

3. Последовательно проверить наличие импульсного напряжения на аноде D8, входе микросхемы IC3 и ее выходе. Если на холостом ходу напряжение во всех точках в норме, подключить к выходу канала резистор 10 Ом мощностью не менее 2 Вт и проверить нагрузочную способность микросхемы IC3.

4. Если обнаружено, что микросхема IC3 неисправна, то ее необходимо заменить. Затем повторно проверить правильность формирования напряжения питания для элементов дежурного режима.

При включении питания блок питания не вырабатывает вторичные напряжения. Автогенератор работает нормально.

Возможная причина: отказ микросхемы IC1 или элементов в промежуточном усилителе на транзисторах Q7 и Q8.

Алгоритм поиска неисправности:

1. Нормальная работа автогенераторного каскада указывает на то, что в первичной цепи импульсного преобразователя нет повреждений. Выход из строя силовых транзисторов вызвал бы перегорание предохранителя. Неисправность связана с работой IC1, элементов подключенных к ней или промежуточного усилителя на Q7 и Q8.

2. Поиск неисправного элемента можно производить, подключив блок питания к первичной сети. Предварительно к выходному контакту канала +5 В следует подсоединить внешний источник стабилизированного напряжения с таким же выходным уровнем. Для выключения защиты временно отключить резистор R8, отпаяв один из его выводов.

3. Подключить питание первичной сети и внешнего источника. Проверить появление положительного напряжения на выводе IC1/14. Напряжение на выводе IC1/4 должно иметь уровень, близкий к потенциалу общего провода.

4. На нормальное функционирование микросхемы ШИМ преобразователя указывают следующие признаки:

– наличие пилообразного напряжения на выводе IC1/5 с амплитудой 3 В;

– появление на выводе IC1/14 напряжения +5 В;

– при подаче на микросхему напряжения питания от 7 до 40 В от выпрямителя на диоде D9 на выходах IC1/8, 11 появляются импульсные последовательности. Отсутствие хотя бы одного из перечисленных признаков свидетельствует об отказе внутренних узлов IC1. Если выходные последовательности на выходах микросхемы сформированы, то следует проверить правильность функционирования каскада на транзисторах Q7 и Q8. Пользуясь описанием этого каскада, приведенным в разделе 2.4 и иллюстрациями его работы, необходимо проверить режимы работы элементов и коммутацию транзисторов в соответствии с импульсными сигналами, поступающими на их базы с выводов IC1.

Возможная причина: ложные срабатывания защиты из-за повреждения транзисторов в системе блокировки микросхемы IC1.

Алгоритм поиска неисправности:

1. Немотивированная блокировка работы микросхемы IC1 может быть вызвана неисправностью хотя бы одного из транзисторов Q1, Q2, Q4 – Q6.

2. Для выявления неисправного элемента следует включить блок питания в обычном режиме. Определить через какой транзистор из пары Q1 или Q5 на вывод IC1/4 поступает напряжение +5 В. Затем, отключив блок питания от сети, проверить омметром исправность транзистора, который во время проверки находился в проводящем состоянии, и транзисторов, подключенных к его базовой цепи.

Возможная причина: отказ пассивных элементов в базовых цепях Q9 и Q10.

Алгоритм поиска неисправности:

1. Произвести подключение внешних источников питания в соответствии со схемой, приведенной на рис. 2.22, и рекомендациями по конфигурации, изложенными в подразделе 2.5.2. Если внешний источник стабилизированного напряжения не указывает на перегрузку по току, это является признаком того, что транзисторы Q9, Q10 не повреждены.

2. Проверить формирование импульсных последовательностей транзисторами Q7 и Q8. Если осциллограммы импульсов на коллекторах транзисторов промежуточного усилителя соответствуют изображению на рис. 2.10, проконтролировать поступление этих импульсов со вторичных обмоток трансформатора T2 в базовые цепи транзисторов Q9 и Q10.

3. Используя материал описания работы силового каскада и рис. 2.12, 2.13, проверить правильность прохождения импульсного сигнала через базовые цепи силовых транзисторов и формирование с их помощью трехуровнего сигнала на коллекторе Q10. Если в базовой цепи присутствуют неисправные элементы, то вид осциллограмм импульсных напряжений в базовой цепи и на коллекторе Q10 будет отличаться от приведенных на рис. 2.12, 2.13.

Компьютер с данным блоком питания не работает. Уровни вторичных напряжений в норме.

Возможная причина: не вырабатывается сигнал «питание в норме» (POWERGOOD).

Алгоритм поиска неисправности:

1. Вероятно, на микросхему IC2 не поступает какое-либо из подаваемых напряжений или она неисправна.

2. Подключить блок питания к сети стандартным образом. Проверить поступление напряжений через резистор R43 от входа сигнала PS-ON на вывод IC2/6, с вывода IC1/2 на контакты IC2/2, 5, исправность резисторов R33 и R42. Рабочий уровень входного сигнала PS-ON низкий. Если все элементы в норме и напряжение поступает на соответствующие выводы, на контакте IC2/7 должно быть напряжение примерно +5 В. Такое же напряжение устанавливается на IC2/1.

3. Если этого не происходит, микросхема IC2 неисправна и требует замены.

Плохая стабилизация вторичного напряжения +3,3 В.

Возможная причина: нарушение работы стабилизатора на ZIC1 и Q11.

Алгоритм поиска неисправности:

1. Непосредственная стабилизация вторичного напряжения +3,3 В производится каскадом на транзисторе Q11 и маломощном стабилизаторе ZIC1. Вторичное напряжение на этот стабилизатор подается от тех же обмоток, что и на канал +5 В. Между выводом 4 вторичной обмотки трансформатора T3 и анодом одного из выпрямительных диодов сборки SBD3 включен сглаживающий дроссель L6. Благодаря этому дросселю, импульсы на аноде указанного диода имеют меньшую амплитуду, чем непосредственно на выводе 4 вторичной обмотки. На катодах диодов SBD3 напряжение несколько ниже, чем в аналогичной точке канала +5 В, но без введения дополнительной регулировки будет превосходить номинал, установленный в +3,3 В. Выходной уровень канала +3,3 В регулируется частичным разрядом положительной обкладки конденсатора C34 через транзистор Q11 при подключении ее к источнику отрицательного напряжения, образованного выпрямительным диодом D31 и конденсатором С28.

2. Для проверки работы стабилизатора следует установить различные нагрузки по каналам +5 и +3,3 В. Для этого надо подключить к выходу канала +5 В резистивную нагрузку с номиналом «1,5 Ом и общей мощностью 20 Вт. К выходу канала +3,3 В присоединить резистивную нагрузку 3 Ом мощностью 4 Вт. В таком режиме разбаланса нагрузок энергии по каналу +5 В поступает больше, чем по цепи +3,3 В. При нормальной работе стабилизатора напряжение в точке соединения ZIC1 и резистора R54 поддерживается постоянным на уровне «2,72,8 В. Напряжение же на эмиттере транзистора Q11 изменяется в некоторых пределах. При повышении выходного напряжения канала +3,3 В транзистор Q11 открывается. Происходит замыкание положительной обкладки конденсатора C34 через резистор R55 и открытый транзистор Q11 на конденсатор C28, напряжение на правой по схеме обкладке которого имеет отрицательный уровень.

3. Следует проконтролировать работу этого каскада и проверить уровень напряжения на выходе ZIC1. Если реальная логика работы стабилизатора отличается от описанной или уровень напряжения на ZIC1 превышает указанное значение, требуется замена Q11 или маломощного стабилизатора.

При коротком замыкании по основным каналам вторичного напряжения не происходит блокировки ШИМ преобразователя.

Возможная причина: неисправность транзистора Q4 или элементов в его базовой цепи.

Алгоритм поиска неисправности:

1. Режим длительной блокировки работы микросхемы IC1 устанавливается либо при отсутствии низкого уровня сигнала PS-ON, либо при срабатывании пары транзисторов Q4 и Q1. В первом случае микросхема блокируется только в течение периода, когда транзистор Q2 находится в состоянии насыщения. Работа ШИМ преобразователя возобновляется, когда транзистор Q2 установлен в состояние отсечки. Во втором случае блокирующее напряжение через открытый транзистор Q1 подается на вывод IC1/4. Проводящее состояние транзистора Q1 поддерживается открытым транзистором Q4, подключенным к базовой цепи Q1. Включение транзистора Q4 может происходить от сигналов, поданных в его базовую цепь через диоды D4 и D5. После переключения Q1 к базовой цепи Q4 подключается положительное напряжение, поступающее через Q1, D3, R11. Это напряжение удерживает как Q4, так и Q1 в проводящем состоянии. Если транзистор Q4 неисправен, то защита не будет блокировать работу IC1 при КЗ по отрицательным каналам вторичных напряжений. При возникновении КЗ по каналу +5 В блокировка будет возникать только в течение промежутка времени, когда КЗ действует. Источник питания будет возобновлять свою работу автоматически после устранения КЗ.

2. Чтобы выяснить причину кратковременной блокировки блока питания его необходимо подключить к сети и искусственно создать КЗ по каналу -5 В. Проследить подачу положительного напряжения через D4 на базу Q4. Если открывающее положительное напряжение на базу транзистора поступает, а он не переходит в проводящее состояние, то Q4 неисправен и требуется его замена.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Как работает источник питания - Kitronik Ltd

Внешние блоки питания, используемые с электронными изделиями

Аккумуляторные батареи

Устройство для удаления батарей или регулируемый источник питания - это устройство, которое можно использовать вместо батарей. Он принимает сетевое питание переменного тока и преобразует его в 3 В, 4,5 В, 6 В, 9 В или 12 В постоянного тока, позволяя подавать эквивалентное напряжение для различного количества батарей. Выбор напряжения обычно осуществляется поворотом небольшого регулятора на корпусе блока питания.Регулируемые блоки питания обычно продаются с рядом адаптеров, позволяющих подключать их к большинству электронного оборудования (при условии, что они имеют подключение к источнику питания).

Внешние блоки питания

Когда электронный продукт продается с источником питания, этот источник питания будет иметь одно напряжение и один разъем. Это сделает его немного дешевле, чем регулируемая альтернатива.

Маркировка

Когда вы посмотрите на источник питания, он расскажет вам, каковы входное напряжение и ток, а также выходное напряжение и ток, он также может указать, какой контакт на выходном разъеме является заземлением и питанием.Вы также увидите некоторые символы; Значение этих символов описано ниже:

Как работают блоки питания

Источник питания используется для снижения напряжения в сети при 240 вольт переменного тока до чего-то более полезного, например, 12 вольт постоянного тока. Есть два типа питания: линейный и импульсный. В линейном блоке питания используется трансформатор для снижения напряжения. Отношение первичных обмоток (подключенных к сети) к количеству вторичных обмоток (подключенных к выходу) даст отношение того, насколько снижается напряжение, в этом случае соотношение 20: 1 снижает входное напряжение переменного тока 240 вольт. до 12 В переменного тока на вторичных обмотках.Импульсный источник питания работает путем очень быстрого включения и выключения электросети для снижения напряжения. В этом случае снижение напряжения зависит от соотношения времени включения и времени выключения. Переключение происходит очень быстро, 10 000 раз в секунду или быстрее. Используя эту технику, можно заменить громоздкий трансформатор в линейном источнике питания на меньший. Ниже представлена ​​блок-схема импульсного источника питания. Сигнал переменного тока выпрямляется и регулируется для получения высокого постоянного напряжения. Затем он быстро включается и выключается полевым транзистором.Затем коммутируемый сигнал проходит через трансформатор, хотя это может снизить напряжение, он изолирует выход от электросети (по соображениям безопасности). Затем обратная связь выхода используется для управления отношением промежутка между метками переключения, чтобы выход оставался при требуемом напряжении. Трансформатор, используемый в импульсном источнике питания, намного меньше и дешевле, чем трансформатор, используемый в линейном источнике питания, но должен быть в состоянии выдерживать более высокие частоты переключения.

Трансформаторы

Мы уже упоминали, что существует два типа трансформаторов: те, которые используются на низких частотах (50 Гц) в линейных источниках питания, и высокоскоростные (> 10 кГц) версии, используемые в импульсных источниках питания.Трансформатор линейного источника питания обычно использует стальной сердечник. Поскольку вихревые токи могут возникать в твердом стальном сердечнике и снижать эффективность, сердечник сделан из изолированных стальных пластин, уложенных друг за другом, с намотанными вокруг них обмотками.

Линейный и режим переключения

Поскольку для импульсного источника питания не нужен большой трансформатор, он меньше, легче и дешевле. Импульсный источник питания более эффективен, чем линейный, поэтому выделяет меньше тепла. Импульсные источники питания могут быть разработаны для работы с различными входными напряжениями (240 В или 115 В), поэтому их можно использовать по всему миру.Все вышеперечисленные причины означают, что импульсный источник питания гораздо более распространен, чем линейный источник питания. К сожалению, очень быстрое переключение импульсного источника питания вызывает электрические помехи или скачки напряжения в источнике каждый раз, когда он переключается. Если необходима чистая подача, она должна быть линейной.
Ферритовые тороидальные (кольцевые) сердечники намного лучше работают с более высокими частотами и используются в импульсных источниках питания.

Регулируемые поставки

В блок-схеме импульсного источника питания заключительным этапом было сглаживание импульсов путем добавления конденсатора большой емкости.В зависимости от того, насколько точной должна быть поставка, этого решения может быть достаточно. В этой конструкции на выходе будет некоторая рябь; оно будет отличаться от требуемого напряжения на небольшую величину, может быть, на несколько процентов. Регулируемый источник использует IC, где IC контролирует выходное напряжение относительно опорного напряжения и регулирует выходную мощность, соответственно. Регуляторы имеют гораздо меньшую пульсацию и часто включают защиту от перегрузки по току и перегрева, благодаря чему они автоматически отключаются, делая их и остальную часть источника питания неразрушаемыми.Деталь, показанная справа, представляет собой обычный регулятор на 5 вольт 7805.

Типы корпусов

Самый распространенный тип корпуса - это пластиковый корпус. Это связано с тем, что его можно легко изготовить с использованием процесса литья под давлением, а такие элементы, как монтажные отверстия для печатной платы или зажимы, отверстия для ввода кабеля и т. Д., Могут быть включены в конструкцию практически без дополнительных затрат на детали. Более дорогая альтернатива - металлический корпус; однако они должны быть заземлены по соображениям безопасности. Скачать pdf-версию этой страницы здесь. Узнать больше об авторе подробнее »

© Kitronik Ltd - Вы можете распечатать эту страницу и дать ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

Как работает блок питания ПК

Каждый компьютер имеет один блок питания (БП). Настольные компьютеры, рабочие станции, игровые установки, ноутбуки и серверы включают в себя блок питания. Основное назначение источника питания ПК - преобразование сетевого питания переменного тока в напряжение постоянного тока, необходимое для работы различных компонентов внутри компьютера (материнской платы, процессора, видеокарты, памяти, дисководов и т. Д.). И источник питания должен быть спроектирован и изготовлен таким образом, чтобы обеспечить совместимость, стабильность и управляемость.

Вы когда-нибудь задумывались, что происходит внутри блока питания? Мы часто используем такие фразы, как « современная топология с полумостовым LLC-резонансным преобразователем, синхронное выпрямление с регуляторами постоянного напряжения ». Так что это значит и что такое топология? Мы рады, что вы спросили - читайте дальше, и мы объясним!

Примечание: одна из проблем, с которыми мы сталкиваемся при публикации статьи «общей теории», - это найти правильный баланс между техническими деталями и пустяками.За прошедшие годы мы получили много отзывов об обзорах источников питания PCPerspective. Некоторые читатели хотят получить более подробную техническую информацию, в то время как другие жалуются, что их слишком много. Мы стараемся найти правильный баланс, чтобы оставаться информативным и полезным, не утомляя среднего энтузиаста ПК техническими мелочами.

Форм-фактор

Форм-фактор - это спецификация, которая определяет как физические, так и электрические требования, которым должен соответствовать блок питания ПК, чтобы обеспечить совместимость на разных рынках.Это позволяет многочисленным производителям послепродажных источников питания конкурировать за деньги, которые вы потратите на сборку и модернизацию. Приобретая блок питания для ПК, вы можете быть уверены, что он будет совместим (физически и электрически) с вашим ПК.

Например, одним из последних руководств по проектированию блоков питания для форм-факторов настольных платформ (созданного Intel) является Руководство по проектированию блоков питания ATX12V, v2.4, в котором описаны спецификации для форм-фактора ATX.

(форм-факторы SFX, SFX-L и ATX)

(физические размеры ATX)

(серверные блоки питания 1U и 2U)

Помимо ATX, два других популярных форм-фактора, используемых в настольных ПК, включают форм-факторы SFX и SFX-L (расширенный или удлиненный).Форм-факторы 1U и 2U чаще всего используются в серверах. С другой стороны, блоки питания в типичном портативном компьютере являются собственностью конкретного производителя (встроены в основную плату с внешним блоком питания или без него) и не являются взаимозаменяемыми.

На схеме выше показаны основные электрические характеристики типичного блока питания ПК. Питание от сети переменного тока; пять отдельных выходных напряжений постоянного тока. Обратите внимание, что секция + 5VSB - это небольшой автономный преобразователь питания внутри более крупного блока питания.Его выход остается включенным каждый раз, когда блок питания подключен к сети переменного тока при включенном главном выключателе питания, даже когда основной блок питания находится в режиме ожидания, а компьютер выключен.

Продолжайте читать нашу статью о том, как работает блок питания для ПК!

Базовое управление

Чтобы источник питания был полезным, его нужно контролировать. Возможность включения и выключения источника питания - основное требование. В большинстве блоков питания ПК используется ручной выключатель для управления питанием переменного тока, поступающим в блок питания.После включения блок питания и компьютер (материнская плата) работают вместе, чтобы включить блок питания и компьютер и выключить их по запросу пользователя.

Когда вы нажимаете основную кнопку включения питания на передней панели компьютера, он посылает сигнал на материнскую плату, которая затем отправляет сигнал через контакт № 16 (зеленый провод) 24-контактного разъема ATX на источник питания. Когда контакт № 16 становится низким (заземление), блок питания запускается, выполняет некоторые быстрые внутренние самотестирование, а затем отправляет сигнал обратно на материнскую плату через контакт № 8 (серый провод), чтобы сообщить «Питание хорошее».Пока контакт №16 находится в низком состоянии, блок питания должен оставаться включенным. В конце процедуры выключения ПК контакт № 16 больше не будет опускаться на низкий уровень и ему будет разрешено удерживать высокий уровень, что приведет к отключению блока питания.

Блоки питания ПК

также включают ряд внутренних схем безопасности, которые контролируют работу блоков питания: защита от перегрузки по току (OCP), защита от перенапряжения (OVP), защита от пониженного напряжения (UVP), защита от перенапряжения (OPP), защита от перегрева. (OTP) и защита от короткого замыкания (SCP).Если какой-либо из этих параметров превышает их запрограммированные уставки, срабатывает сигнал неисправности для отключения блока питания.

Основы коммутации

Линейный источник питания

Еще до того, как транзисторы получили широкое распространение, источники питания были основаны на линейной конструкции. Линейные источники питания использовались в ранних радиоприемниках и телевизорах наряду со всеми видами электрических устройств. Они все еще используются сегодня и часто бывают большими, тяжелыми и относительно дорогими, не говоря уже о неэффективности (60 ~ 70%).

Например, линейный источник питания на фотографии выше обеспечивает выход 12 В постоянного тока с мощностью 6 А (72 Вт), весит около двенадцати фунтов и продается за 250 долларов США. Подумайте только, каким будет блок питания мощностью 600 Вт или более!

Конструкция и конструкция линейного источника питания относительно просты. Электропитание переменного тока проходит через большой трансформатор, где оно понижается до необходимого уровня постоянного напряжения. Для каждого напряжения необходимы отдельные обмотки / отводы.В действительности можно использовать несколько трансформаторов для обеспечения пяти различных выходов постоянного тока. Пониженное напряжение по-прежнему остается переменным, поэтому теперь его нужно выпрямить - превратить в пульсирующий постоянный ток. Последний шаг - отфильтровать выходной сигнал и сгладить оставшиеся пульсации переменного тока и шум. Большинство современных конструкций теперь включают в себя регулятор, помогающий контролировать напряжение постоянного тока. Основным ограничивающим фактором линейного источника питания является то, что он работает от частоты сети переменного тока; 50-60 Гц в зависимости от вашего местоположения. Трансформаторы, конденсаторы и катушки индуктивности должны быть очень большими, чтобы работать в этом диапазоне частот.

Обратите внимание на то, что на схеме выше показаны две разные конструкции выпрямительного каскада: полумост и полный мост. Эта топология также применима к импульсным источникам питания, хотя вместо диодов используются полевые МОП-транзисторы.

Импульсный источник питания (SMPS)

Современные блоки питания для ПК основаны на конструкции импульсных блоков питания и обычно называются импульсными блоками питания. Основным преимуществом импульсного источника питания является то, что он предназначен для работы на гораздо более высоких частотах (50 кГц - 1 МГц).А поскольку размер трансформатора, конденсаторов и катушек индуктивности обратно пропорционален рабочей частоте; эти компоненты могут быть значительно меньше, легче и дешевле.

(Предоставлено be quiet!)

Импульсный источник питания для ПК выполняет эту задачу в несколько этапов. Сначала поступающее сетевое питание переменного тока фильтруется (№1) для удаления остаточных электромагнитных помех (EMI). Затем коэффициент мощности (PF) активно регулируется, чтобы поддерживать коэффициент мощности, близкий к 1.00; форма волны тока поддерживается в тесной синхронизации с формой волны напряжения (# 2). Затем входящая мощность преобразуется в постоянный ток (№3). Мощные и высокоэффективные силовые транзисторы (MOSFET) используются для преобразования постоянного тока обратно в переменный (№4) путем «включения» и выключения питания постоянного тока на высокой частоте (~ 400 кГц). Эти переключающие транзисторы управляются с помощью сигнала обратной связи (IC) с широтно-импульсной модуляцией (ШИМ) с выхода для регулирования конечного напряжения. Произведенная высокочастотная прямоугольная волна затем понижается до требуемого напряжения трансформатором (№5), затем выпрямляется, преобразуется в постоянный ток (№6) и фильтруется для вывода (№7).Это очень упрощенный обзор работы SMPS. Теперь давайте посмотрим, как это выглядит внутри современного блока питания ПК.

Под капотом

Часть процесса проверки на PCPerspective включает вскрытие корпуса блока питания (да, это аннулирует гарантию производителя) и предоставление читателю возможности увидеть, как он выглядит изнутри. Беглый взгляд под капотом может многое рассказать о блоке питания (конструкция, компоненты, расположение, пайка и т. Д.).

(Предоставлено be quiet!)

На этих двух диаграммах показаны некоторые компоненты и их функции внутри 850W be quiet! Недавно мы рассмотрели блок питания Straight Power 11 (показан на фото выше).

(Предоставлено be quiet!)

(Предоставлено be quiet!)

Мы часто включаем словоблудие, описывающее топологию (как схема спроектирована и собрана), например: « производитель использует современный полумостовой LLC Resonant Converter, Zero Switching (ZS), Synchronous Rectification (SR) design вместе с с преобразователями постоянного тока в постоянный, расположенными на дочерней плате, чтобы обеспечить хорошее регулирование напряжения и высокий КПД. ”. Теперь давайте копнем немного глубже и посмотрим, что это на самом деле означает.

Полумост LLC Резонансный преобразователь

(Предоставлено be quiet!)

Начальное утверждение состоит из двух частей: полумоста и LLC Resonant Converter. Обратите внимание на сходство с базовой схемой полумостового выпрямителя, показанной ранее в разделе линейного источника питания. (Четыре полевых МОП-транзистора можно поочередно использовать для создания схемы полного мостового выпрямителя.)

В полумостовой конфигурации используются два полевых МОП-транзистора для создания высокочастотного переменного тока прямоугольной формы, который затем сглаживается схемой LLC для получения почти идеальной синусоидальной волны, прежде чем она попадет в главный трансформатор.Термин LLC происходит от (LLC = L1 + L2 + C1) катушки индуктивности, катушки индуктивности, конденсатора (L - катушка индуктивности, а C - конденсатор).

Это называется LLC Resonant Converter. Конфигурация катушек индуктивности и конденсатора в секции LLC образуют контур резервуара, который имеет резонансную частоту . Резонансный преобразователь LLC в ИИП с ПК обычно работает на более высокой частоте, чем резонансная частота резервуара.

Некоторые усовершенствованные конструкции LLC не только используют широтно-импульсную модуляцию (PWM) для управления переключающими транзисторами MOSFET, но также используют частотную модуляцию (FM) для регулировки преобразования мощности.Начиная с нагрузки от 10 до 15 процентов, высокопроизводительная схема LLC изменяет частоту, обеспечивая более высокий КПД, при этом оптимальные результаты достигаются при более высоких частотах при низких нагрузках и более низких частотах при высоких нагрузках.

Нулевое переключение

(Предоставлено be quiet!)

Многие современные высокопроизводительные конструкции включают переключение при нулевом напряжении (ZVS) и переключение при нулевом токе (ZCS) для повышения эффективности работы. Для этого фактическая точка переключения происходит при нулевом напряжении и нулевом токе (зеленые кружки на диаграмме выше).Традиционные топологии не могут точно контролировать точку переключения, что приводит к коммутационным потерям (красные кружки). Переключение с ZVS / ZCS происходит без потерь и приводит к повышению эффективности.

Синхронное выпрямление (SR)

(Предоставлено be quiet!)

После основного трансформатора переменный ток выпрямляется и становится постоянным током, необходимым для компонентов ПК. Это достигается за счет использования двух или более (в зависимости от мощности) полевых МОП-транзисторов , синхронизированных с использованием специальной ИС.

Преобразователи постоянного тока в постоянный

(Предоставлено be quiet!)

В большинстве современных блоков питания для ПК используются преобразователи постоянного тока в постоянный для вывода +3,3 В постоянного тока и +5 В постоянного тока. Вместо генерации трех основных напряжений (3,3 В, 5 В и 12 В) из переменного тока на первичной стороне, выходы 3,3 и 5 В генерируются из 12 В постоянного тока после главного трансформатора. Это помогает повысить общую эффективность источника питания.

+ 12В Конфигурация с одной или несколькими рейками

Еще в 2003 году одним из первых источников питания, которые я рассмотрел, был Seasonic мощностью 350 Вт.Он имел один выход +12 В, который мог выдавать ток до 19 А (228 Вт).

Блок питания, показанный выше, включает одну шину +12 В, обеспечивающую питание всех выходных кабелей / разъемов. Комбинированная уставка OCP составляет 80 А. Не имеет значения, какой кабель / разъемы используются для питания компонентов. Полный 80А доступен любому из них.

С годами, когда потребность ПК в электроэнергии увеличилась, выходная мощность блоков питания ПК также увеличилась, особенно на выходе +12 В.Однако возникли опасения, что слишком большая мощность может быть опасной (вспышка дуги, огненный шар, выброс расплавленного металла) в случае короткого замыкания или другой неисправности. Было предложено ограничить любую выходную мощность до 240 Вт. При подключении к шине +12 В получается 20 А (12 В x 20 А = 240 Вт). Чтобы соответствовать требованиям, производители начали выпускать блоки питания с несколькими выходами +12 В. Обратите внимание, что это было руководство, а не закон.

Однако не прошло много времени, как многие конечные пользователи начали сталкиваться с проблемами, связанными с отключением источников питания и, по всей видимости, их неработоспособностью.Во многих случаях проблема заключалась в том, что один конкретный выход +12 В был перегружен, хотя общая мощность +12 В. не использовалась.

В этом примере блок питания оснащен несколькими шинами +12 В, каждая из которых защищена собственным ограничителем тока. Ни один выход не может потреблять более 20 А или 30 А, в то время как комбинированная уставка OCP все еще ограничена 80 А.

Большая часть проблемы с конфигурациями с несколькими рельсами заключалась в том, что производителям приходилось решать, как будет распределяться общая мощность +12 В.Для многорельсового выходного источника питания им нужно было решить, какие выходы +12 В будут снабжать все конкретные кабели и разъемы, предназначенные для компонентов питания (ЦП, графические адаптеры, приводы и т. Д.). Это в конечном итоге определило, сколько мощности было доступно для каждого компонента. Если конфигурация конечного пользователя не соответствует нормативам производителя, могут возникнуть проблемы.

Со временем большинство производителей вернулись к одинарным выходам +12 В. Например, блок питания Corsair AX1600i может обеспечить до 133 штук.3А (1600Вт) на одиночном выходе + 12В. (Примечание: AX1600i дает пользователям возможность при желании устанавливать ограничения тока на шинах +12 В.)

Сегодня схемы защиты в большинстве современных блоков питания для энтузиастов достаточно быстры, они могут обнаружить неисправность (SCP или OCP) и отключить источник питания до того, как будет доставлено достаточно энергии, чтобы вызвать опасную проблему. Например, когда я тестирую схемы защиты от короткого замыкания в источнике питания, они обычно реагируют так быстро, что я едва получаю искру при возникновении прямого короткого замыкания (но я все еще ношу защитные очки).

A « Good » Источник питания

И последний, но не менее важный вопрос, который нам часто задают: «Что делает хороший блок питания и хорошим?» Вот несколько вещей, которые следует учитывать при покупке блока питания.

Требования:
• Совместимость: ATX12V v2.4, соответствие EPS 2.92
• Максимальная рабочая температура: предпочтительно 50 ° C
• Регулировка напряжения: в пределах ± 2% от рекомендуемых нормативов
• Пульсации переменного тока и подавление шума: менее 50% от рекомендованных норм
• Эффективность: минимум 80 Plus Gold (92%)
• Шум: не менее 120 мм вентилятор с хорошими подшипниками (FDB или Ball)
• Все конденсаторы японского производства рассчитаны на 105 ° C
• Гарантия: минимум 5 лет
• Цена: прикиньте, что лучше всего подходит для вашего бюджета

Дополнительно:
• Безвентиляторный режим (от низкой до средней мощности)
• Полумодульные или полностью модульные кабели
• Размер: оставайтесь с ATX, если вам не нужен меньший блок

Примечание. Лично я предпочитаю, чтобы охлаждающий вентилятор блока питания постоянно вращался, чтобы воздух не двигался.Что касается кабелей, я предпочитаю полумодульный с фиксированным 24-контактным ATX, 4 + 4-контактным процессором и парой фиксированных PCI-E. Все остальное может быть модульным.

В заключение мы надеемся, что эта статья показалась вам интересной и информативной. И еще раз благодарим be quiet! за то, что позволили нам использовать некоторые из их графики. Включить!

Что такое импульсный блок питания против линейного, как он работает?

Когда нам нужен высокоэффективный блок питания небольшого размера. Многие выбирают импульсный блок питания.Раньше мне нравились линейные блоки питания. Но иногда я должен пробовать другие способы.

В этом посте мы узнаем, что такое импульсный источник питания по сравнению с линейным, как это работает?

Тебе может он нравится так же, как и мне. После прочтения этой статьи.

Какие бывают типы блоков питания

Блок питания является источником энергии для различных цепей. Он преобразует сеть переменного тока в напряжение постоянного тока. Это постоянное или переменное напряжение, применяемое в вашей работе.

Существует 2 основных типа источников питания:

  • Обычно используется линейный источник питания.
    Это простые схемы не сложные. Но они большие и низкий КПД всего около 50% и более. При их работе наблюдаются потери в виде сильного нагрева.
  • Импульсный блок питания В настоящее время
    Многие работники выбирают этот тип блока питания. Потому что маленький Высокий КПД составляет около 85% и более. Представьте, что мы вводим 100% электроэнергии. Его можно преобразовать в 85% энергии. И 15% теряется в виде тепла.

Но схема коммутации питания довольно сложная.Раньше я старался избегать этого, потому что не был уверен, смогу ли я легко это объяснить.

Готовы начать?

Для начала рассмотрим блок-схему импульсного блока питания. Хотя конструкция выглядит сложной. Но если схему можно разделить на части, это будет проще для понимания.

Блок-схема импульсного блока питания

Изюминка этой схемы - работа с высокой частотой. Поэтому имеет трансформатор меньшего размера. Имеется система переключения с высокими частотами.

А входная и выходная цепи включают в себя схему выпрямителя и фильтра. и детектор напряжения ошибки для контроля стабильного напряжения.

Конечно, сейчас можно не понять. Но когда вы прочтете следующий раздел, друзья поймут больше.

Что еще?

В импульсном блоке питания есть 4 типа выпрямительных цепей.

Meet Выпрямитель переменного тока в постоянный, простой, но очень полезный

Импульсный блок питания будет иметь выпрямительную схему как на входе, так и на выходе.По большей части это схема мостового выпрямителя.

Части преобразуют переменный ток в постоянный ток выпрямителя. В линейной схеме эта схема важна. В схеме импульсного питания также важна выпрямительная схема.

Важным устройством является диод, который представляет собой полупроводниковое устройство, позволяющее току течь только в одном направлении. Затем через фильтр будет протекать постоянное напряжение, сглаживая ток.

Рекомендуется: Как работает схема выпрямителя

В импульсном блоке питания есть 4 типа схем выпрямителя:

1 #

От сети переменного тока к импульсному постоянному току Мостовой выпрямитель

Обычно мы сначала находим схему выпрямителя.Входная сторона импульсного источника питания, как показано на принципиальной схеме ниже.

Вход переменного тока в импульсное напряжение постоянного тока с использованием мостового выпрямителя.

Входное напряжение переменного тока 220 В RMS или 311 В пик выпрямляется до импульсного напряжения постоянного тока 160 В пик. Затем мы переходим к принципиальной схеме радиочастотного переключателя.

2 #

Полупериодный выпрямитель из РЧ-сигнала переменного тока

В импульсном источнике питания входной сигнал постоянного тока будет переключаться на высокочастотный РЧ-сигнал. Затем понижающий трансформатор преобразует его в переменный ток низкого напряжения. Затем он также поступает на полуволновой выпрямитель для импульса постоянного тока.

3 # Двухполупериодный выпрямитель с центральным отводным трансформатором

Он разработан на основе однополупериодного выпрямителя. Мы часто будем видеть такой выпрямитель. И обратите внимание, что он использует центральный отвод вторичного трансформатора. Это ссылка на землю.

4 # Двухполупериодный мостовой выпрямитель из понижающего трансформатора

Этой схеме не нужен центральный трансформатор отвода, но нам нужно использовать еще 2 диода.

Выбор диодов для схемы выпрямителя

Есть 2 важных фактора:

Пиковое обратное напряжение - PIV

Это максимальное напряжение, которое может выдерживать диод.Пока он получает обратный уклон. Или когда диод выключен.

Значение PIV используемого диода должно выдерживать как минимум 2-кратное рабочее напряжение. И при расчете безопасность тоже нужно увеличить на 50%.

При входном напряжении переменного тока 220 В среднеквадратичное пиковое напряжение составляет 1,414 x В среднеквадратичного значения = 311 В пик.

Мы должны выбрать диод со значением:

Piv = (311Vpkx2) + (311Vpkx0,5)
= 777,5Vpiv

Прямой ток-IF

Это ток, который диод позволяет течь через него при получении форвард без повреждений.И что еще более важно, не забудьте добавить значение безопасности на 50%.

Например, входной выпрямитель с током 1А. Мы должны выбрать диод с током пересылки:
IF = 1+ (1 × 0,5) = 1,5A

Насколько важен фильтр

Напряжение с выпрямителя - постоянное. Но мы не можем его использовать. Нам нужно сгладить его конденсатором фильтра. Его необходимо использовать как для линейного, так и для импульсного источника питания.

Конденсатор - это устройство, используемое для хранения энергии. Он заряжает энергию внутри него до тех пор, пока не достигнет максимального значения импульсного напряжения.И отпустит при загрузке.

Эффект фильтрации импульсного сигнала постоянного тока и ответный ток нагрузки

На изображении показан эффект фильтрации конденсатора в ритме зарядки и разрядки. При подключении к нагрузке. Пульсация напряжения на конденсаторе называется пульсацией.

  • Имеется высокая пульсация. Если ток нагрузки высокий
  • Напротив, пульсации низкие. Если это низкий ток нагрузки.

А если посмотреть на блок-схему работы.В цепи фильтра на переменное напряжение 50-60 Гц. Мы будем использовать конденсатор довольно большого размера.

Обычно в диапазоне от 1000 до 2000 мкФ. Это зависит от тока нагрузки.

Читать далее: Как спроектировать нерегулируемый источник питания

Увеличение его значения (параллельно) уменьшает время разряда между импульсами, что также приводит к меньшим значениям пульсаций напряжения

Норма рабочего напряжения
Важно отметить, что нам необходимо использовать номинальное рабочее напряжение конденсатора, более высокое напряжение при рабочем токе составляет примерно 50%

Высокочастотный трансформатор

Трансформатор - это устройство, которое используется для преобразования высокого напряжения на первичной обмотке в низкое напряжение на вторичной обмотке, как показано на рисунке ниже.

RF Высокочастотные трансформаторы соединяют связь между входом и выходом.

Это форма соединения трансформатора с входом и выходом. Мы используем его Импульсный источник питания для переключения на высоких частотах 20 кГц и более.

Обычно широко используемые трансформаторы 50 Гц не могут использоваться на высоких частотах.

Хотя размер и форма переключающих трансформаторов отличаются от трансформаторов 50 Гц. Но в работе по-прежнему используются те же основные принципы связи магнитного поля.

Это высокое напряжение, подключенное к первичной катушке. И он будет накапливать энергию и создавать магнитные поля, чередующиеся между фазами включения и выключения.

Какой сердечник трансформатора действует как магнитное поле, наводимое на вторичную обмотку в виде трансформатора связи.

Что такое импульсный регулятор RF

Основой импульсного источника питания является RF регулятор. Также известен как импульсный регулятор.

Импульсный стабилизатор с широтно-импульсной модуляцией

Хотя существует множество различных схем переключения.Но обычно используется ШИМ-широтно-импульсная модуляция.

Это базовая блок-схема импульсного регулятора с широтно-импульсной модуляцией (ШИМ). Он поддерживает уровень напряжения с замкнутым контуром.

Для получения постоянного выходного напряжения. Эта схема обнаружит ошибку напряжения. Этот сигнал ошибки используется для управления шириной импульса схемы переключения. Это изменение ширины импульса в цепи генератора в регуляторе.

Ширина импульсов, изменяемых генератором, отправляется для управления транзистором, действующим как переключатель.В котором изменение ширины импульса вызывает соответствующее изменение среднего выходного напряжения.

Высокочастотные трансформаторы понижают напряжение в сигнал переменного тока, затем он выпрямляется и снова фильтруется.

Для конечного вывода постоянного напряжения. Результат снова будет рандомизирован. И отрегулирует последующий сигнал ошибки. До получения постоянного напряжения по мере необходимости.

Это означает, что схема будет работать в замкнутом контуре. Выходное напряжение постоянно контролируется до нормальной работы.

Теперь мы можем узнать основной принцип работы импульсного регулятора. Как это работает? Так, что дальше? Возможно, нам пора применить его.

Читайте также: Схема импульсного источника питания постоянного тока 0-45 В, 8 А

Гибридный импульсный регулятор Принцип работы

Не всегда необходимо использовать высокочастотный трансформатор для разработки импульсного источника питания.

Обычно трансформатор используется для изменения напряжения импульса с высокого напряжения на более низкое.

Если входное напряжение постоянного тока близко к фактическому рабочему напряжению. Высокочастотный трансформатор не нужен.

Мы можем использовать понижающий трансформатор напряжения 50 Гц, чтобы снизить напряжение до более низкого значения. Перед подачей его на вход выпрямительной схемы.

Посмотрите на схему гибридного импульсного регулятора, вход схемы имеет характеристики, аналогичные характеристикам линейного источника питания. Но это повышает производительность.

Гибридный импульсный стабилизатор 5 В, 500 мА

Посмотрите на реальные примеры использования, гибридный импульсный регулятор 5 В, 500 мА.В схеме используется LM341 NS. Как правило, это трехконтактный стабилизатор положительного напряжения.

Не люблю читать текст. Но мне нравится изучать его работу по принципиальным и структурным схемам. Ты такой же, как я? Давайте посмотрим на схему. Мы еще разберемся.

Но это служит генератору. Частота генератора в цепи определяется соотношением сопротивлений R2 и R3.

Выходное напряжение возвращается через дроссель L1. Транзистор Q1 служит реальным переключающим устройством в схеме.

Ознакомьтесь также с этими связанными статьями:

Learn Flyback Switching Regulator Works

Если вам нужен импульсный стабилизатор, который использует несколько компонентов. А вашей нагрузке требуется мощность менее 100 Вт.

Посмотрите на блок-схему ниже.

Это схема импульсного источника питания с обратным ходом.

Высокочастотный трансформатор очень важен в этой схеме. Потому что он имеет 3 основные функции:

  • Снижение напряжения.
  • Разделите входную и выходную цепи.
  • Ограничьте также сетевой ток переменного тока.

В котором первичная и вторичная обмотки намотаны в противоположных направлениях.

При наличии импульсного управляющего сигнала для смещения транзистор работает. Ток будет проходить через высокочастотный трансформатор. Но выходной выпрямитель не проводит ток.

Напротив, когда транзистор выключен. Первичное напряжение меняется на противоположное. И этот результат вызывает обратный ток, протекающий через выход выпрямителя и выход фильтра.Мы можем контролировать ширину импульса через трансформатор. Для поддержания постоянного выходного напряжения.

Импульсный источник питания с обратным ходом имеет ограниченную номинальную мощность 100 Вт. Из-за тока трансформатора. И ограничение на пиковое значение тока переключения транзистора.

Для приложений мощностью более 100 Вт. Мы будем использовать другие схемы импульсного регулятора. Это будет объяснено в следующей схеме.

Отобранные вручную связанные схемы, которые вы можете прочитать:

Схема прямого импульсного регулятора мощностью от 80 до 200 Вт

Посмотрите на прямой импульсный регулятор на блок-схеме ниже.Это высокая мощность от 80 Вт до 200 Вт. Мы можем улучшить пульсацию, чтобы уменьшить ее. Потому что мы используем схему мостового выпрямителя. У которого пульсация ниже, чем у однополупериодного выпрямителя импульсного регулятора обратного хода.

Кроме того, мы можем уменьшить пульсации еще больше, подключив дроссель дросселя последовательно с конденсаторным фильтром.

Когда транзистор работает (ВКЛ). Выход схемы будет проводить ток и иметь напряжение на себе.

А при остановке транзистора (ВЫКЛ).Ток перестанет течь в выходном выпрямителе. Напряжение на дросселе изменит полярность. И поставляет в нагрузку. Вот почему он снижает пульсацию.

Имеется небольшая разница в схеме импульсного управления регулятора прямого включения.

На практике необходимо изменить синхронизацию импульсов выхода, чтобы соответствовать разным размерам выхода. Для наилучшего результата.

Вот несколько связанных сообщений, которые вы, возможно, захотите прочитать:

Двухтактный импульсный источник питания

Если вам нужна мощность более 200 Вт.Эта схема рассчитана на мощность до 600 Вт.

Посмотрите на блок-схему. Он состоит из двух импульсных регуляторов с широтно-импульсной модуляцией, работающих вместе для управления переключающим транзистором с каждой стороны.

Этот тип подключения цепи позволит пропускать больший ток.

Пульсации в двухтактной схеме переключения можно уменьшить. Обеспечивая балансировку схемы для каждой широкой импульсной модуляции.

Обычно в двухтактных коммутационных схемах пульсация меньше всего.По сравнению с другими схемами импульсного питания.

И выпрямители, и схемы фильтрации импульсов с импульсной модуляцией одинаковы. С точкой получить ошибку напряжения на выходе такая же точка.

Заключение

Импульсный источник питания имеет недостаток - сигнал РЧ-шума. Что он может распространяться и мешать другим цепям. Если не хорошо экранирован.

Значения стабилизации и пульсации аналогичны линейным цепям.

Таким образом, импульсный источник питания подходит для приложений, требующих небольшого размера и высокой эффективности, низкого нагрева.

Кроме того, вот несколько связанных сообщений, которые вы тоже должны прочитать:

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

компонентов - Импульсный источник питания работает только в тепле

Обновление

С помощью мультиметра и устойчивой руки я обнаружил, что на выводе Vcc контроллера ШИМ 3843B напряжение 12 В при включенном питании и 8,2 В при подключении, но холодном.В техническом описании указано, что для запуска требуется 8,4 В постоянного тока, поэтому при нагревании его достаточно для снижения пускового напряжения или увеличения напряжения постоянного тока.

Чтобы проверить теорию, я подал на вывод внешнее питание 9 В, чтобы «запустить» источник питания. Это сработало!

Итак, теперь я думаю, мне нужно найти, откуда это 8,2 В, чтобы я мог решить, как поднять его еще немного, может быть, заменив диод или что-то в этом роде.

Как этот «пусковой ток» обычно генерируется в источниках питания? Может быть, по фотографиям вы сможете указать на какие-нибудь вероятные места, где мне стоит поискать? В чем может быть причина низкого пускового напряжения? Заранее спасибо.


Ладно, это странно. Впервые на этой бирже стека вы работаете с информатикой и обладаете только базовыми электрическими знаниями, поэтому остерегайтесь любых возможных недоразумений ниже.

Некоторый контекст

У меня есть "универсальный" блок питания для ноутбука, вы выбираете желаемое выходное напряжение переключателем, оно идет от 12 до 24V. С некоторого времени он заработал только при прогреве. Поэтому, чтобы начать его использовать, мне пришлось согреть его феном, а затем нельзя было оставлять его выключенным слишком долго, иначе он остыл.

Я решил исправить это навсегда, потому что со временем ситуация ухудшалась (для запуска требовалась более высокая температура), это выглядит забавно, и я разорен. Я открыл его, вооружился мультиметром и начал зондировать. Он принимает входной переменный ток 110/220 В, выпрямляет его, а затем пропускает через полевой МОП-транзистор (вентиль, я полагаю, подключен к какому-то генератору сигналов, частота которого может определяться переключателем напряжения) и на основную катушку, что дает нам выходное напряжение, которое снова выпрямляется, фильтруется и затем выключается.Итак, проблема в том, что все, что управляет этим MOSFET, не работает в холодном состоянии. Я сузил проблему до трех микросхем и поступил логично: прогрел их одну за другой зажигалкой, чтобы найти, какая из них проблематична.

TL; DR: Актуальный вопрос

Итак, я сузил проблему до микросхемы под названием «3843B», которая оказалась «высокопроизводительным ШИМ-контроллером в токовом режиме». Таким образом, нагрев этой микросхемы (или чего-то близкого к ней) приводит в действие источник питания. После того, как заработает, то все ок.Ниже фото этого.

Что могло быть причиной этого? Какой из подозрительных компонентов на фотографии может иметь режим отказа, который заставляет его работать только после того, как он нагревается? Что я могу сделать или какие компоненты мне заменить?

Крупный план подозреваемого

Обзор платы

Apple не произвела революцию в источниках питания; новых транзисторов сделал

Новая биография Стив Джобс содержит замечательное заявление о блоке питания Apple II и его разработчике Роде Холте: [1]
Вместо обычного линейного источника питания Холт построил тот, который используется в осциллографах.Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему сохранять энергию в течение гораздо меньшего времени и, следовательно, отбрасывать меньше тепла. «Этот импульсный источник питания был столь же революционным, как и материнская плата Apple II», - сказал позже Джобс. «Род не получил большого признания за это в учебниках истории, но он должен. Теперь каждый компьютер использует импульсные блоки питания, и все они копируют дизайн Рода Холта».
Мне показалось удивительным то, что в компьютерах теперь используются блоки питания, основанные на дизайне Apple II, поэтому я провел небольшое расследование.Оказывается, блок питания Apple не был революционным ни в концепции использования импульсного блока питания для компьютеров, ни в конкретной конструкции блока питания. Современные компьютерные блоки питания совершенно разные и не копируют дизайн Рода Холта. Оказывается, Стив Джобс делал свое обычное заявление о том, что все воруют революционные технологии Apple, что полностью противоречит действительности.

История импульсных блоков питания оказывается довольно интересной.Хотя большинство людей рассматривают блок питания как скучную металлическую коробку, на самом деле за этим стоит много технологических разработок. Фактически произошла революция в источниках питания в конце 1960-х - середине 1970-х годов, когда импульсные источники питания пришли на смену простым, но неэффективным линейным источникам питания, но это произошло за несколько лет до выхода Apple II в 1977 году. Для этой революции следует перейти к достижениям в полупроводниковой технологии, в частности, к усовершенствованию переключающих транзисторов, а затем и к инновационным ИС для управления импульсными источниками питания.[2]

Некоторые сведения об источниках питания

В стандартном настольном компьютере источник питания преобразует сетевое напряжение переменного тока в постоянное, обеспечивая несколько тщательно регулируемых низких напряжений при высоких токах. Источники питания могут быть построены различными способами, но линейные и импульсные источники питания - это два метода, относящиеся к этому обсуждению. (См. Примечания для получения дополнительной информации об устаревших технологиях, таких как большие механические мотор-генераторные системы [3] и феррорезонансные трансформаторы [4] [5].)

Типичный линейный источник питания использует громоздкий силовой трансформатор для преобразования 120 В переменного тока в низкое напряжение переменного тока, преобразует его в постоянное напряжение низкого напряжения с помощью диодного моста, а затем использует линейный регулятор для понижения напряжения до желаемого уровня.Линейный стабилизатор - это недорогой, простой в использовании компонент на основе транзистора, который превращает избыточное напряжение в отходящее тепло для получения стабильного выходного сигнала. Линейные источники питания почти несложно спроектировать и изготовить. [6] Однако одним большим недостатком является то, что они обычно расходуют около 50-65% энергии в виде тепла [7], часто требуя больших металлических радиаторов или вентиляторов для отвода тепла. Второй недостаток - они большие и тяжелые. С другой стороны, компоненты (кроме трансформатора) в линейных источниках питания должны работать только с низким напряжением, а выход очень стабильный и бесшумный.

Импульсный источник питания работает по совершенно другому принципу: быстрое включение и выключение питания, а не превращение избыточной мощности в тепло. В импульсном источнике питания входная линия переменного тока преобразуется в высоковольтный постоянный ток, а затем источник питания включает и выключает постоянный ток тысячи раз в секунду, тщательно контролируя время переключения, чтобы выходное напряжение в среднем составляло желаемое значение. Теоретически энергия не тратится зря, хотя на практике КПД составляет 80% -90%.Импульсные источники питания намного эффективнее, выделяют гораздо меньше тепла и намного меньше и легче линейных источников питания. Основным недостатком импульсного источника питания является то, что он значительно сложнее линейного источника питания и намного сложнее в проектировании [8]. Кроме того, он предъявляет гораздо более высокие требования к компонентам, требуя транзисторов, которые могут эффективно включаться и выключаться на высокой скорости при большой мощности. Переключатели, катушки индуктивности и конденсаторы в импульсном источнике питания могут быть расположены в нескольких различных схемах (или топологиях) с такими названиями, как понижающий, повышающий, обратный, прямой, двухтактный, полуволновой и полноволновой.[9]

История импульсных источников питания до 1977 года

Принципы импульсных источников питания были известны с 1930-х годов [6] и строились из дискретных компонентов в 1950-х. [10] В 1958 году в компьютере IBM 704 использовался примитивный импульсный стабилизатор на основе электронных ламп. [11] Компания Pioneer Magnetics начала производство импульсных источников питания в 1958 году [12] (а спустя десятилетия внесла ключевое новшество в блоки питания для ПК [13]). Компания General Electric опубликовала первый проект импульсного источника питания в 1959 году.[14] В 1960-х годах аэрокосмическая промышленность и НАСА [15] были основной движущей силой разработки импульсных источников питания, поскольку преимущества небольшого размера и высокой эффективности компенсировали высокую стоимость. [16] Например, НАСА использовало переключатели питания для спутников [17] [18], таких как Telstar в 1962 году. [19]

Компьютерная промышленность начала использовать импульсные блоки питания в конце 1960-х годов, и их популярность неуклонно росла. Примеры включают миникомпьютер PDP-11/20 в 1969 году [20] Honeywell h416R в 1970 году [21] и миникомпьютер Hewlett-Packard 2100A в 1971 году.[22] [23] К 1971 году компании, использующие импульсные регуляторы, «читали как« Кто есть кто »компьютерной индустрии: IBM, Honeywell, Univac, DEC, Burroughs и RCA, и это лишь некоторые из них» [21]. В 1974 году HP использовала импульсный источник питания для миникомпьютера 21MX, [24] Data General для Nova 2/4, [25] Texas Instruments для 960B, [26] и Interdata для своих мини-компьютеров. [27] В 1975 году HP использовала автономный импульсный источник питания в дисплейном терминале HP2640A, [28] Matsushita для своего миникомпьютера управления трафиком [29] и IBM для своего типа пишущей машинки Selectric Composer [29] и портативного компьютера IBM 5100. .[30] К 1976 году Data General использовала импульсные блоки питания для половины своих систем, Hitachi и Ferranti использовали их [29], настольный компьютер Hewlett-Packard 9825A [31] и калькулятор 9815A [32] использовали их, а decsystem 20 [33] - большой импульсный блок питания. К 1976 году в жилых комнатах появились импульсные источники питания, питающие цветные телевизионные приемники. [34] [35]

Импульсные блоки питания также стали популярными продуктами для производителей блоков питания, начиная с конца 1960-х годов.В 1967 году RO Associates представила первый импульсный источник питания 20 кГц [36], который, как они утверждают, также был первым коммерчески успешным импульсным источником питания [37]. NEMIC начала разработку стандартизированных импульсных источников питания в Японии в 1970 году [38]. К 1972 году большинство производителей блоков питания предлагали импульсные блоки питания или собирались предложить их. [5] [39] [40] [41] [42] HP продала линейку импульсных блоков питания мощностью 300 Вт в 1973 году [43], а также компактный импульсный источник питания мощностью 500 Вт [44] и импульсный блок питания мощностью 110 Вт [45] в 1975 году.К 1975 году импульсные блоки питания составляли 8% рынка блоков питания и быстро росли благодаря улучшенным компонентам и желанию использовать блоки питания меньшего размера для таких продуктов, как микрокомпьютеры. [46]

Импульсные источники питания были представлены в журналах по электронике той эпохи, как в рекламе, так и в статьях. Electronic Design рекомендовал импульсные источники питания в 1964 году для повышения эффективности [47]. На обложке журнала Electronics World за октябрь 1971 года был представлен импульсный блок питания мощностью 500 Вт и статья «Блок питания импульсного регулятора».В длинной статье о блоках питания в Computer Design 1972 года подробно обсуждались импульсные источники питания и растущее использование импульсных источников питания в компьютерах, хотя в ней упоминается, что некоторые компании все еще скептически относились к импульсным источникам питания [5]. В 1973 г. в журнале Electronic Engineering была опубликована подробная статья «Импульсные источники питания: зачем и как» [42]. В 1976 году обложка журнала Electronic Design [48] была озаглавлена ​​«Внезапно переключиться стало проще», описывая новые ИС контроллера импульсного источника питания, Электроника опубликовала длинную статью об импульсных источниках питания, [29] Powertec разместила двухстраничную рекламу преимуществ своих импульсных источников питания с крылатой фразой «Большой переключатель - это переключатели» [49], а журнал Byte объявил о импульсных источниках питания Boschert для микрокомпьютеров.[50]

Ключевым разработчиком импульсных блоков питания был Роберт Бошерт, который бросил свою работу и в 1970 году начал собирать блоки питания на своем кухонном столе [51]. Он сосредоточился на упрощении импульсных источников питания, чтобы сделать их экономически выгодными по сравнению с линейными источниками питания, и к 1974 году он начал массовое производство недорогих источников питания для принтеров [51] [52], за которым последовала недорогая коммутация мощностью 80 Вт. электроснабжение в 1976 г. [50] К 1977 году Boschert Inc выросла до компании с 650 сотрудниками [51], которая производила блоки питания для спутников и истребителей F-14 [53], а затем блоки питания для таких компаний, как HP [54] и Sun.Люди часто думают, что настоящее время - уникальное время для технологических стартапов, но Бошерт показывает, что стартапы на кухонном столе происходили даже 40 лет назад.

Развитие импульсных источников питания в 1970-х годах было в значительной степени обусловлено новыми компонентами. [55] Номинальное напряжение переключаемых транзисторов часто было ограничивающим фактором [5], поэтому появление в конце 1960-х - начале 1970-х годов высокоэффективных, высокоскоростных и мощных транзисторов по низкой цене значительно увеличило популярность импульсных источников питания.[5] [6] [21] [16] Технология транзисторов развивалась так быстро, что коммерческий источник питания мощностью 500 Вт, изображенный на обложке Electronics World в 1971 году, не мог быть построен с транзисторами всего 18 месяцев назад [21]. Как только силовые транзисторы смогут выдерживать сотни вольт, источники питания смогут отказаться от тяжелого силового трансформатора с частотой 60 Гц и работать в автономном режиме непосредственно от сетевого напряжения. Более высокие скорости переключения транзисторов позволили использовать более эффективные и гораздо меньшие блоки питания. Введение интегральных схем для управления импульсными источниками питания в 1976 году широко рассматривается как начало эры импульсных источников питания за счет их радикального упрощения.[10] [56]

К началу 1970-х годов стало ясно, что происходит революция. Производитель блоков питания Уолт Хиршберг заявил в 1973 году, что «революция в конструкции блоков питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен» [57]. В 1977 году во влиятельной книге по источникам питания говорилось, что « считалось, что импульсные регуляторы совершают революцию в отрасли электроснабжения »[58].

Apple II и его блок питания

Персональный компьютер Apple II был представлен в 1977 году.Одной из его особенностей был компактный импульсный блок питания без вентилятора, который обеспечивал мощность 38 Вт при 5, 12, -5 и -12 вольт. Блок питания Холта Apple II имеет очень простую конструкцию с автономной топологией обратноходового преобразователя. [59]

Стив Джобс сказал, что теперь каждый компьютер копирует революционный дизайн Рода Холта [1]. Но революционен ли этот дизайн? Был ли он сорван с любого другого компьютера?

Как показано выше, импульсные блоки питания использовались на многих компьютерах к моменту выпуска Apple II.Конструкция не является особенно революционной, поскольку аналогичные простые автономные обратноходовые преобразователи продавались Boschert [50] [60] и другими компаниями. В долгосрочной перспективе создание схемы управления из дискретных компонентов, как это сделала Apple, было тупиковой технологией, поскольку будущее импульсных источников питания было за ИС контроллеров ШИМ [2]. Удивительно, что Apple продолжала использовать дискретные генераторы в источниках питания даже через Macintosh Classic, так как контроллеры IC были представлены в 1975 году. [48] Apple действительно перешла на контроллеры IC, например, в Performa [61] и iMac.[62]

Блок питания, который Род Холт разработал для Apple, был достаточно инновационным, чтобы получить патент [63], поэтому я подробно изучил патент, чтобы увидеть, есть ли какие-нибудь менее очевидные революционные особенности. В патенте описаны два механизма защиты источника питания от неисправностей. Первый (пункт 1) - это механизм безопасного запуска генератора через вход переменного тока. Второй механизм (пункт 8) возвращает избыточную энергию от трансформатора к источнику питания (особенно при отсутствии нагрузки) через зажимную обмотку на трансформаторе и диод.

Это блок питания AA11040-B для Apple II Plus. [59] Питание переменного тока поступает слева, фильтруется, проходит через большой переключающий транзистор к трансформатору обратного хода в середине, выпрямляется диодами справа (на радиаторах), а затем фильтруется конденсаторами справа. Схема управления находится внизу. Фотография использована с разрешения kjfloop, Copyright 2007.

Механизм запуска переменного тока не использовался Apple II, [59] но использовался Apple II Plus, [64] Apple III, [65] Lisa, [66] Macintosh, [67] и Mac 128K через Classic.[68] Я не смог найти никаких источников питания сторонних производителей, которые использовали бы этот механизм, [69] кроме блока питания телевизора 1978 года, [70] и он стал устаревшим контроллерами IC, так что этот механизм, похоже, не повлиял на дизайн блока питания компьютера.

Второй механизм в патенте Холта, зажимная обмотка и диод для возврата мощности в обратном преобразователе, использовался в различных источниках питания до середины 1980-х годов, а затем исчез. Некоторые примеры - источник питания Boschert OL25 (1978), [60] Apple III (1980), [65] Документация по источникам питания Apple (1982 г.), [59] Жесткий диск Tandy (1982 г.), [71] Тэнди 2000 (1983), [72] [73] Яблочная Лиза (1983), [66] Apple Macintosh (1984 г.), [67] Commodore Model B128 (1984), [74] Тэнди 6000 (1985), [75] и От Mac Plus (1986) до Mac Classic (1990).[68] Эта обмотка с обратным зажимом, по-видимому, была популярна в Motorola в 1980-х годах, она фигурирует в техническом описании микросхемы контроллера MC34060 [76], руководстве разработчика 1983 года [77] (где обмотка описывалась как обычная, но необязательная) и в примечании к применению 1984 года. . [78]

Является ли этот зажим обратного хода намоткой на инновации Холта, которые сорвали другие компании? Я так и думал, пока не нашел книгу по источникам питания 1976 года, в которой подробно описывалась эта обмотка [35], которая испортила мой рассказ. (Также обратите внимание, что в прямых преобразователях (в отличие от обратных преобразователей) эта зажимная обмотка использовалась еще в 1956 году [79] [80] [81], поэтому ее применение в обратном преобразователе в любом случае не кажется большим скачком .)

Одним из озадачивающих аспектов обсуждения источников питания в книге Стива Джобса [1] является утверждение, что источник питания Apple II «похож на те, что используются в осциллографах», поскольку осциллографы - всего лишь одно небольшое применение для переключения источников питания. Это заявление, по-видимому, возникло из-за того, что Холт ранее разработал импульсный источник питания для осциллографов [82], но нет другой связи между источником питания Apple и источниками питания осциллографов.

Наибольшее влияние Apple II на индустрию блоков питания оказала Astec - гонконгская компания, производившая блоки питания.До выхода Apple II Astec была малоизвестным производителем импульсных инверторов постоянного тока. Но к 1982 году Astec стала ведущим в мире производителем импульсных источников питания, почти полностью опираясь на бизнес Apple, и удерживала первое место в течение ряда лет. [83] [84] В 1999 году Astec была приобретена компанией Emerson [85], которая в настоящее время является второй по величине компанией в области энергоснабжения после Delta Electronics. [86]

Малоизвестный факт об источнике питания Apple II заключается в том, что он был первоначально собран калифорнийскими домохозяйками среднего класса как сдельная.[83] Однако по мере роста спроса строительство источника питания было передано Astec, хотя оно стоило на 7 долларов больше. К 1983 году Astec производила 30 000 блоков питания Apple в месяц. [83]

Блоки питания post-Apple

В 1981 году был выпущен IBM PC, который оказал долгосрочное влияние на конструкции блоков питания компьютеров. Блоки питания для оригинального ПК IBM 5150 производились компаниями Astec и Zenith. [83] В этом источнике питания мощностью 63,5 Вт используется обратная схема, управляемая микросхемой контроллера источника питания NE5560.[87]

Я буду подробно сравнивать блок питания для ПК IBM 5150 с блоком питания Apple II, чтобы показать их общие черты и различия. Оба они представляют собой автономные источники питания с обратным ходом и несколькими выходами, но это почти все, что у них общего. Несмотря на то, что в блоке питания ПК используется контроллер IC, а в Apple II используются дискретные компоненты, в блоке питания ПК используется примерно вдвое больше компонентов, чем в блоке питания Apple II. В то время как в блоке питания Apple II используется генератор переменной частоты, построенный на транзисторах, в блоке питания ПК используется генератор ШИМ фиксированной частоты, обеспечиваемый микросхемой контроллера NE5560.В ПК используются оптоизоляторы для обеспечения обратной связи по напряжению с контроллером, а в Apple II используется небольшой трансформатор. Apple II напрямую управляет силовым транзистором, в то время как ПК использует управляющий трансформатор. ПК проверяет все четыре выхода мощности на соответствие нижнему и верхнему пределам напряжения, чтобы убедиться, что питание хорошее, и выключает контроллер, если какое-либо напряжение выходит за пределы спецификации. Apple II вместо этого использует лом SCR на выходе 12 В, если это напряжение слишком высокое. В то время как обратноходовой трансформатор ПК имеет одну первичную обмотку, Apple II использует дополнительную первичную фиксирующую обмотку для возврата мощности, а также другую первичную обмотку для обратной связи.ПК обеспечивает линейное регулирование от источников питания 12 В и -5 В, а Apple II - нет. В ПК используется вентилятор, а в Apple II - нет. Понятно, что блок питания IBM 5150 не «сдирает» конструкцию блоков питания Apple II, поскольку между ними почти нет ничего общего. А позже конструкции блоков питания стали еще более разными.

Блок питания IBM PC AT стал де-факто стандартом для блоков питания компьютеров. В 1995 году Intel представила спецификацию материнской платы ATX [88], а блок питания ATX (вместе с вариантами) стал стандартом для блоков питания настольных компьютеров, при этом компоненты и конструкции часто ориентированы именно на рынок ATX.[89]

Компьютерные системы питания стали более сложными с появлением в 1995 году модуля регулятора напряжения (VRM) для Pentium Pro, который требовал более низкого напряжения при более высоком токе, чем источник питания мог обеспечить напрямую. Для обеспечения этого питания Intel представила VRM - импульсный стабилизатор постоянного тока, установленный рядом с процессором, который снижает 12 вольт от источника питания до низкого напряжения, используемого процессором [90]. (Если вы разгоняете свой компьютер, именно VRM позволяет поднять напряжение.) Кроме того, видеокарты могут иметь собственный VRM для питания высокопроизводительного графического чипа. Быстрому процессору может потребоваться 130 Вт от VRM. Сравнение этого с половиной ватта мощности, используемой процессором Apple II 6502 [91], показывает огромный рост энергопотребления современных процессоров. Один только современный процессорный чип может использовать более чем в два раза мощность всего компьютера IBM 5150 или в три раза больше, чем Apple II.

Поразительный рост компьютерной индустрии привел к тому, что потребление энергии компьютерами стало причиной для беспокойства об окружающей среде, что привело к появлению инициатив и нормативных актов, направленных на повышение эффективности источников питания.[92] В США сертификация Energy Star и 80 PLUS [93] подталкивает производителей к производству более эффективных «зеленых» источников питания. Эти источники питания обеспечивают большую эффективность с помощью различных методов: более эффективное резервное питание, более эффективные схемы запуска, резонансные схемы (также известные как мягкое переключение и ZCT или ZVT), которые снижают потери мощности в переключающих транзисторах за счет отсутствия питания протекает через них, когда они выключаются, и схемы «активного зажима» для замены переключающих диодов более эффективными транзисторными схемами.[94] Усовершенствования в технологии MOSFET-транзисторов и высоковольтных кремниевых выпрямителей за последнее десятилетие также привели к повышению эффективности. [92]

Источники питания могут более эффективно использовать мощность сети переменного тока с помощью метода коррекции коэффициента мощности (PFC). [95] Активная коррекция коэффициента мощности добавляет еще одну схему переключения перед основной схемой источника питания. Специальная микросхема контроллера PFC переключает его с частотой до 250 кГц, аккуратно извлекая плавное количество энергии из источника питания для создания высокого напряжения постоянного тока, которое затем подается в обычную схему импульсного источника питания.[13] [96] PFC также иллюстрирует, как блоки питания превратились в товар с очень тонкой маржой, где доллар - это большие деньги. Активная коррекция коэффициента мощности считается особенностью высокопроизводительных источников питания, но ее фактическая стоимость составляет всего около 1,50 доллара США [97].

На протяжении многих лет для блоков питания IBM PC использовалось множество различных микросхем контроллеров, конструкций и топологий, как для поддержки различных уровней мощности, так и для использования преимуществ новых технологий. [98] Микросхемы контроллеров, такие как NE5560 и SG3524, были популярны в ранних ПК IBM.[99] Микросхема TL494 стала очень популярной в конфигурации полумоста, [99] самой популярной конструкции в 1990-х. [100] Серия UC3842 также была популярна для конфигураций прямого преобразователя. [99] Стремление к повышению эффективности сделало двойные прямые преобразователи более популярными [101], а коррекция коэффициента мощности (PFC) сделала контроллер CM6800 очень популярным [102], поскольку одна микросхема управляет обеими цепями. В последнее время стали более распространены прямые преобразователи, которые генерируют только 12 В, с использованием преобразователей постоянного тока для получения очень стабильных 3.Выходы 3 В и 5 В. [94] Более подробную информацию о современных источниках питания можно получить из многих источников. [103] [104] [98] [105]

В этом типичном блоке питания XT мощностью 150 Вт используется популярная полумостовая конструкция. Фильтр переменного тока на входе справа. Слева от него находится схема управления / драйвера: микросхема TL494 вверху управляет маленьким желтым приводным трансформатором внизу, который управляет двумя переключающими транзисторами на радиаторах внизу. Слева от него находится больший желтый главный трансформатор с вторичными диодами и регулятором на радиаторах и выходной фильтром слева.Этот полумостовой блок питания полностью отличается от конструкции Apple II с обратной связью. Авторское право на фотографию: larrymoencurly, использовано с разрешения.

Современные компьютеры содержат удивительный набор импульсных источников питания и регуляторов. Современный источник питания может содержать переключающую схему PFC, переключающий обратноходовой источник питания для резервного питания, переключаемый прямой преобразователь для выработки 12 вольт, переключающий преобразователь постоянного тока в постоянный для выработки 5 вольт и переключающий преобразователь постоянного тока в постоянный для выработки 3 .3 вольта, [94] поэтому блок питания ATX можно рассматривать как пять различных импульсных блоков питания в одной коробке. Кроме того, на материнской плате есть импульсный регулятор VRM для питания процессора, а на видеокарте есть еще один VRM, всего семь коммутируемых источников питания в типичном настольном компьютере.

Технология импульсных источников питания продолжает развиваться. Одно из разработок - цифровое управление и цифровое управление питанием. [106] Вместо использования аналоговых схем управления микросхемы цифрового контроллера оцифровывают управляющие входы и используют программные алгоритмы для управления выходами.Таким образом, проектирование контроллера источника питания становится вопросом программирования не меньше, чем проектирования аппаратного обеспечения. Цифровое управление питанием позволяет источникам питания обмениваться данными с остальной системой для повышения эффективности и ведения журнала. Хотя сейчас эти цифровые технологии в основном используются для серверов, я ожидаю, что в конечном итоге они перейдут на настольные компьютеры.

Подводя итог, можно сказать, что исходный блок питания для ПК IBM 5150 почти во всех отношениях отличался от блока питания Apple II, за исключением того, что оба блока питания были обратноходовыми.Более современные блоки питания не имеют ничего общего с Apple II. Абсурдно утверждать, что блоки питания копируют дизайн Apple.

Известные конструкторы импульсных источников питания

Стив Джобс сказал, что Род Холт должен быть более известен тем, что разработал блок питания для Apple II: «Род не получил большого признания за это в учебниках истории, но должен» [1] Но даже в лучшем случае разработчики блоков питания не известны за пределами очень небольшого сообщества. Роберт Бошерт был занесен в Зал славы электронной инженерии Electronic Design в 2009 году за работу в области энергоснабжения.[51] Роберт Маммано получил награду за заслуги перед Power Electronics Technology в 2005 году за начало производства ИС для контроллеров с ШИМ [10]. В 2008 году Руди Севернс получил награду за заслуги перед Power Electronics Technology за свои инновации в импульсных источниках питания. [107] Но никто из этих людей даже не известен в Википедии. Другим крупным новаторам в этой области уделяется еще меньше внимания. [108] Я неоднократно сталкивался с работой Эллиота Джозефсона, который проектировал спутниковые системы питания в начале 1960-х годов [18], имеет множество патентов на источники питания, включая Tandy 6000 [75], и даже номер его патента напечатан на Apple II Plus. и платы источника питания Osborne 1 [59], но он, похоже, полностью не распознан.

Ирония в комментарии Стива Джобса о том, что Роду Холту не уделяют должного внимания, заключается в том, что работа Рода Холта описана в десятках книг и статей об Apple, от Revenge of the Nerds, в 1982 [109] до лучших 2011-го. продавая биографию Стива Джобса, что делает Рода Холта самым известным дизайнером блоков питания за всю историю.

Заключение

Источники питания - это не скучные металлические коробки, как думает большинство людей; у них много интересной истории, во многом обусловленной усовершенствованием транзисторов, которые сделали импульсные источники питания практичными для компьютеров в начале 1970-х годов.Совсем недавно стандарты эффективности, такие как 80 PLUS, вынудили источники питания стать более эффективными, что привело к появлению новых конструкций. Apple II продавал огромное количество импульсных блоков питания, но его конструкция блока питания была технологическим тупиком, который не был «сорван» другими компьютерами.

Если вас интересуют источники питания, вам также может понравиться моя статья «Крошечный, дешевый и опасный: внутри (поддельного) зарядного устройства для iPhone».

Примечания и ссылки

Я потратил слишком много времени на изучение источников питания, анализ схем и копание в старых журналах по электронике.Вот мои заметки и ссылки на случай, если они кому-то пригодятся. Мне было бы интересно услышать от разработчиков источников питания, которые имели непосредственный опыт разработки источников питания в 1970-х и 1980-х годах.

[1] Стив Джобс , Уолтер Исааксон, 2011. Дизайн блока питания Рода Холта для Apple II обсуждается на странице 74. Обратите внимание, что описание импульсного блока питания в этой книге довольно искажено.

[2] ШИМ: от одного чипа к гигантской отрасли, Джин Хефтман, Power Electronics Technology, стр 48-53, октябрь 2005 г.

[3] Предварительное планирование площадки: компьютер Cray-1 (1975) В Cray-1 использовались два мотор-генератора мощностью 200 л.с. (150 кВт) для преобразования входного переменного тока 250 А 460 В в регулируемую мощность 208 В, 400 Гц; каждый мотор-генератор был примерно 3900 фунтов. Мощность 208 В, 400 Гц подавалась на 36 отдельных источников питания, в которых использовались двенадцатифазные трансформаторы, но не было внутренних регуляторов. Эти блоки питания образуют 12 верстаков вокруг компьютера Cray. Фотографии силовых компонентов Cray можно найти в Справочном руководстве по аппаратному обеспечению Cray-1 серии S (1981).Эта установка высокочастотный двигатель-генератор может показаться странной, но в IBM 370 использовалась аналогичная установка, см. Объявление: IBM System / 370 Model 145.

[4] Во многих более крупных компьютерах для регулирования использовались феррорезонансные трансформаторы. Например, в источнике питания для компьютера IBM 1401 использовался феррорезонансный регулятор мощностью 1250 Вт, см. Справочное руководство, 1401 Data Processing System (1961), стр. 13. В HP 3000 Series 64/68/70 также использовались феррорезонансные трансформаторы, см. Руководство по установке компьютеров Series 64/68/70 (1986), стр. 2-3.DEC использовала феррорезонансные и линейные источники питания почти исключительно в начале 1970-х годов, в том числе и для PDP-8 / A (рисунок в «Выбор источника питания очень важен в сложных конструкциях», Electronics , октябрь 1976 г., том 49, стр. 111).

[5] «Источники питания для компьютеров и периферийных устройств», Computer Design , июль 1972 г., стр. 55-65. В этой длинной статье о блоках питания много говорится об импульсных блоках питания. Он описывает понижающую (последовательную), повышающую (шунтирующую), двухтактную (инверторную) и полную мостовую топологии.В статье говорится, что номинальное напряжение переключающего транзистора является ограничивающим параметром во многих приложениях, но «высоковольтные высокоскоростные транзисторы становятся все более доступными по низкой цене, что является важным фактором более широкого использования источников импульсных стабилизаторов». В нем делается вывод, что «Доступность высоковольтных, высокомощных переключающих транзисторов по умеренным ценам дает дополнительный импульс использованию высокоэффективных импульсных обычных [sic] источников питания. В этом году ожидается существенное увеличение их использования."

В статье также говорится: «Одной из наиболее спорных тем является продолжающаяся дискуссия о ценности импульсных источников питания для компьютерных приложений по сравнению с обычными последовательными транзисторными регуляторами». Это подтверждается некоторыми комментариями производителей. Одним из скептиков была компания Elexon Power Systems, которая «не считает импульсные регуляторы« ответом ». В ближайшем будущем они планируют раскрыть совершенно новый подход к источникам питания ». Другой был Modular Power Inc, который «не рекомендовал переключать регуляторы, за исключением случаев, когда малый размер, легкий вес и высокая эффективность являются основными соображениями, как в портативном и бортовом оборудовании.«Sola Basic Industries» заявила, что «их инженеры очень скептически относятся к долговременной надежности импульсных стабилизаторов в практических проектах массового производства и прогнозируют проблемы с отказом транзисторов».

Раздел статьи, посвященный комментариям производителей, дает представление о технологиях в отрасли электроснабжения в 1972 году: Hewlett Packard »указывает, что сегодня большое влияние оказывает доступность высокоскоростных, сильноточных и недорогих транзисторов, ускоряемая нынешней тенденцией к использованию регуляторов импульсного типа.Компания широко использует переключатели в полном спектре конструкций с высокой мощностью ». Lambda Electronics «широко использует импульсные регуляторы на выходную мощность более 100 Вт», которые предназначены для предотвращения охлаждения вентилятором. Компания Analog Devices предложила прецизионные расходные материалы, в которых для повышения эффективности используются методы переключения. RO Associates «считает, что рост числа импульсных источников питания является серьезным изменением в области проектирования источников питания». Они предлагали миниатюрные источники на 20 кГц и недорогие источники на 60 кГц. Sola Basic Industries »прогнозирует, что производители мини-компьютеров будут использовать больше бестрансформаторных импульсных регуляторов в 1972 году для повышения эффективности и уменьшения размера и веса." Trio Laboratories «указывает на то, что производители компьютеров и периферийных устройств обращаются к переходным типам, потому что цены сейчас более конкурентоспособны, а приложения требуют меньшего размера».

[6] Практическая конструкция импульсного источника питания, Марти Браун, 1990, стр. 17.

[7] См. Раздел комментариев для подробного обсуждения эффективности линейного источника питания.

[8] Справочник по источникам питания , Марти Браун, 2001. На странице 5 обсуждается относительное время разработки для различных технологий электропитания, при этом линейный регулятор занимает 1 неделю общего времени разработки, а импульсный стабилизатор с ШИМ требует 8 человеко-месяцев.

[9] Сводка различных топологий находится в обзорах SMPS и топологиях источников питания. Подробности см. В Microchip AN 1114: Топологии SMPS и Топологии импульсных источников питания

[10] Лауреат премии за выслугу лет Роберт Маммано, Power Electronics Technology , сентябрь 2005 г., стр. 48-51. В этой статье Silicon General SG1524 (1975) описывается как ИС, открывшая эру импульсных регуляторов и импульсных источников питания.

[11] Справочное руководство по проектированию заказчиков IBM: Блок питания 736, Блок питания 741, Блок распределения питания 746 (1958), стр. 60-17.Блок питания для компьютера 704 состоит из трех шкафов размером с холодильник, заполненных электронными лампами, предохранителями, реле, механическими таймерами и трансформаторами, потребляющими мощность 90,8 кВА. Он используется несколько методов регулирования, включая трансформаторы насыщаемых-реакторы и термистор на основе опорного напряжения. Выходы постоянного тока регулировались переключающим механизмом тиратрона с частотой 60 Гц. Тиратроны - это переключающие вакуумные лампы, которые управляют выходным напряжением (подобно триакам в обычном диммерном переключателе). Это можно рассматривать как импульсный источник питания (см. Источники питания, импульсные регуляторы, инверторы и преобразователи , Irving Gottlieb, pp 186-188).

[12] В своей рекламе Pioneer Magnetics заявляет, что они разработали свой первый импульсный источник питания в 1958 году. Например, см. Electronic Design , V27, p216.

[13] Источник питания с коэффициентом мощности Unity, патент 4677366. Pioneer Magnetics подала этот патент в 1986 году на активную коррекцию коэффициента мощности. См. Также статью Pioneer Magnetics «Почему PFC? страница.

[14] Один из первых импульсных источников питания был описан в «Транзисторный преобразователь-усилитель мощности», Д. А. Пейнтер, General Electric Co., Конференция по твердотельным схемам , 1959, стр. 90-91. Также см. Соответствующий патент 1960 г. 3067378 «Транзисторный преобразователь».

[15] Исследование бездиссипативного преобразователя постоянного тока в преобразователь постоянного тока, Центр космических полетов Годдарда, 1964. Этот обзор транзисторных преобразователей постоянного тока показывает около 20 различных схем переключения, известных в начале 1960-х годов. Обратный преобразователь заметно отсутствует. Многие другие отчеты НАСА о преобразователях энергии за этот период доступны на сервере технических отчетов НАСА.

[16] Подробная история импульсных источников питания представлена ​​в S.J. M.Phil Уоткинса. дипломная работа Автоматическое тестирование импульсных источников питания, в главе История и развитие импульсных источников питания до 1987 г.

[17] История развития импульсных источников питания, TDK Power Electronics World. Это дает очень краткую историю импульсных источников питания. В TDK также есть удивительно подробное обсуждение импульсных источников питания в комической форме: TDK Power Electronics World.

[18] «Спутниковый источник питания с регулируемой шириной импульса», Электроника , февраль 1962 г., стр. 47-49. В этой статье Эллиота Джозефсона из Lockheed описывается ШИМ-преобразователь постоянного тока с постоянной частотой для спутников. См. Также патент 3219907 Устройство преобразования мощности.

[19] Система электропитания космического корабля, Telstar, 1963. Спутник Telstar получал энергию от солнечных элементов, сохраняя энергию в никель-кадмиевых батареях. Эффективность была критической для спутника, поэтому использовался импульсный стабилизатор напряжения постоянного тока с понижающим преобразователем, преобразующим переменное напряжение батареи в стабильное -16 В постоянного тока при мощности до 32 Вт при КПД до 92%.Поскольку спутнику требовался широкий диапазон напряжений, до 1770 вольт для ВЧ усилителя, были использованы дополнительные преобразователи. Регулируемый постоянный ток преобразовывался в переменный, подавался на трансформаторы и выпрямлялся для получения необходимых напряжений.

[20] В некоторых моделях PDP, таких как PDP-11/20, использовался источник питания H720 (см. Руководство по PDP, 1969). Этот источник питания подробно описан в Руководстве по блоку питания и монтажной коробке H720 (1970). В источнике питания весом 25 фунтов используется силовой трансформатор для генерации 25 В постоянного тока, а затем импульсные регуляторы (понижающий преобразователь) для генерации 230 Вт регулируемого напряжения +5 и -15 вольт.Поскольку транзисторы той эпохи не могли работать с высоким напряжением, напряжение постоянного тока пришлось снизить до 25 вольт с помощью большого силового трансформатора.

[21] «Источник питания импульсного регулятора», Electronics World v86 October 1971, p43-47. Эта длинная статья об импульсных источниках питания была размещена на обложке журнала Electronics World . Статью стоит поискать хотя бы для изображения импульсного источника питания самолета F-111, которое выглядит настолько сложным, что я почти ожидал, что он посадит самолет.Импульсные источники питания, обсуждаемые в этой статье, сочетают в себе импульсный инвертор постоянного и переменного тока с трансформатором для изоляции с отдельным понижающим или повышающим импульсным стабилизатором. В результате в статье утверждается, что импульсные блоки питания всегда будут дороже линейных блоков питания из-за двух каскадов. Однако современные блоки питания сочетают в себе оба этапа. В статье обсуждаются различные источники питания, в том числе импульсный блок питания мощностью 250 Вт, используемый в Honeywell h416R. В статье говорится, что импульсный стабилизатор питания достиг совершеннолетия благодаря новым достижениям в области быстродействующих и мощных транзисторов.На обложке изображен импульсный блок питания мощностью 500 Вт, который, согласно статье, не мог быть построен с транзисторами, доступными всего полтора года назад.

[22] Источник питания Bantam для мини-компьютера, Hewlett-Packard Journal , октябрь 1971 г. Подробная информация о схемах в патенте «Высокоэффективный источник питания» 3 852 655. Это автономный источник питания мощностью 492 Вт, использующий инверторы, за которыми следуют импульсные стабилизаторы на 20 В.

[23] HP2100A был представлен в 1971 году с импульсным источником питания (см. Основные характеристики HP2100A).Утверждается, что он имеет первый импульсный источник питания в миникомпьютере 25 лет работы в режиме реального времени, но PDP-11/20 был раньше.

[24] Компьютерная система питания для тяжелых условий эксплуатации, стр. 21, Hewlett-Packard Journal , октябрь 1974 г. В миникомпьютере 21MX использовался автономный переключающий пререгулятор мощностью 300 Вт для выработки регулируемого 160 В постоянного тока, который подавался на переключающие преобразователи постоянного тока в постоянный.

[25] Общее техническое руководство по данным Nova 2, 1974. В Nova 2/4 использовался импульсный стабилизатор для генерации 5 В и 15 В, в то время как в более крупном 2/10 использовался трансформатор постоянного напряжения.В руководстве говорится: «При более высоких потерях тока, связанных с компьютером, потери [от линейных регуляторов] могут стать чрезмерными, и по этой причине часто используется импульсный стабилизатор, как в NOVA 2/4».

[26] Модель 960B / 980B для обслуживания компьютеров Модель: источник питания В блоке питания миникомпьютера Texas Instruments 960B использовался импульсный стабилизатор для источника питания 5 В мощностью 150 Вт и линейные регуляторы для других напряжений. Импульсный стабилизатор состоит из двух параллельных понижающих преобразователей, работающих на частоте 60 кГц и использующих переключающие транзисторы 2N5302 NPN (введены в 1969 году).Поскольку транзисторы имеют максимальное напряжение 60 В, в блоке питания используется трансформатор, чтобы понижать напряжение до 35 В, которое подается на регулятор.

[27] Руководство по эксплуатации импульсных регулируемых источников питания M49-024 и M49-026, Interdata, 1974. Эти автономные полумостовые источники питания обеспечивали мощность 120 Вт или 250 Вт и использовались миникомпьютерами Interdata. В генераторе переключения используются микросхемы таймера 555 и 556.

[28] Блок питания 2640A, Hewlett-Packard Journal , июнь 1975 г., стр. 15.«Импульсный источник питания был выбран из-за его эффективности и занимаемой площади». Также техническая информация о терминале данных. Другой интересный момент - это корпус, отлитый из структурной пены (p23), который очень похож на пластиковый корпус Apple II (см. Стр. 73 из Steve Jobs ) и парой лет назад.

[29] «В сложных конструкциях большое значение имеет выбор источников питания», Электроника , октябрь 1976 г., том 49. p107-114. В этой длинной статье подробно рассматриваются источники питания, в том числе импульсные.Обратите внимание, что Selectric Composer сильно отличается от популярной пишущей машинки Selectric.

[30] Информационное руководство по обслуживанию портативного компьютера IBM 5100. IBM 5100 был портативным компьютером весом 50 фунтов, который использовал BASIC и APL, а также включал монитор и ленточный накопитель. Блок питания описан на стр. 4-61 как небольшой, высокомощный, высокочастотный импульсный импульсный стабилизатор, обеспечивающий 5 В, -5 В, 8,5 В, 12 В и -12 В.

[31] Настольный компьютер HP 9825A 1976 года использовал импульсный стабилизатор для источника питания 5 В.Он также использовал формованный корпус из пеноматериала, предшествующий Apple II; см. 98925A Product Design, Hewlett-Packard Journal , июнь 1976 г., стр. 5.

[32] Калькулятор среднего уровня обеспечивает большую мощность при меньших затратах, В журнале Hewlett-Packard Journal , июнь 1976 г. обсуждается импульсный источник питания 5 В, используемый в калькуляторе 9815A.

[33] Блок питания DEC H7420 описан в Decsystem 20 Power Supply System Description (1976). Он содержит 5 импульсных регуляторов для обеспечения нескольких напряжений и обеспечивает мощность около 700 Вт.В источнике питания используется большой трансформатор для снижения линейного напряжения до 25 В постоянного тока, которое передается на отдельные импульсные регуляторы, которые используют понижающую топологию для получения желаемого напряжения (+5, -5, +15 или +20).

Миникомпьютер decsystem 20 представлял собой большую систему, состоящую из трех шкафов размером с холодильник. Потребовалось внушительное трехфазное питание мощностью 21,6 кВт, которое регулируется комбинацией импульсных и линейных регуляторов. Он содержал семь источников питания H7420 и около 33 отдельных импульсных регуляторов, а также линейный регулятор для ЦП, который использовал -12 В постоянного тока при 490 А.

[34] Импульсные источники питания для телевизионных приемников стали набирать обороты примерно в 1975–1976 годах. Philips представила TDA2640 для телевизионных импульсных источников питания в 1975 году. Philips опубликовала книгу Импульсные источники питания в телевизионных приемниках в 1976 году. Одним из недостатков все более широкого использования импульсных источников питания в телевизорах было то, что они вызывали помехи. с любительским радио, как обсуждалось в Wireless World, v82, p52, 1976.

[35] «Электронное управление мощностью и цифровые методы», Texas Instruments, 1976.В этой книге подробно рассматриваются импульсные источники питания.

В главе IV «Системы инвертора / преобразователя» описан простой источник обратноходового питания мощностью 120 Вт, использующий силовой транзистор BUY70B, управляемый тиристором. Следует отметить, что в этой схеме используется дополнительная первичная обмотка с диодом для возврата неиспользованной энергии источнику.

В главе V «Импульсные источники питания» описана конструкция импульсного источника питания 5 В 800 Вт на основе автономного импульсного шунтирующего регулятора, за которым следует преобразователь постоянного тока в постоянный.Здесь также описывается довольно простой обратноходовой источник питания с несколькими выходами, управляемый SN76549, разработанный для цветного телевидения с большим экраном.

[36] Основные этапы развития силовой электроники, Ассоциация производителей источников энергии.

[37] В 1967 году RO Associates представила первый успешный импульсный источник питания, импульсный источник питания 20 кГц, 50 Вт, модель 210 (см. «RO сначала в импульсные источники питания», Electronic Business , Volume 9, 1983, p36 К 1976 году они претендовали на лидерство в производстве импульсных блоков питания.В их патенте 1969 года 3564384 «Высокоэффективный источник питания» описан полумостовой импульсный источник питания, который удивительно похож на источники питания ATX, популярные в 1990-х годах, за исключением того, что схемы усилителя управляют ШИМ, а не широко распространенной ИС контроллера TL494.

[38] Компания Nippon Electronic Memory Industry Co (NEMIC, которая в итоге стала частью TDK-Lambda) начала разработку стандартизированных импульсных источников питания в 1970 году. История корпорации ТДК-Лямбда.

[39] «Я прогнозирую, что большинство компаний, после нескольких неудачных попыток в области источников питания, к концу 1972 года предложат ряд импульсных источников питания с приемлемыми характеристиками и ограничениями радиопомех.", стр. 46, Электронная инженерия , том 44, 1972.

[40] Производитель блоков питания Coutant построил блок питания под названием Minic, используя «относительно новую технику импульсного стабилизатора». Инструментальная практика для АСУ ТП и автоматизации , Том 25, стр. 471, 1971 г.

[41] «Импульсные источники питания выходят на рынок», стр. 71, Electronics & Power , февраль 1972 г. Первый «бестрансформаторный» импульсный источник питания появился на рынке Великобритании в 1972 году, APT SSU1050, который представлял собой регулируемый импульсный источник питания мощностью 500 Вт с использованием полумостовой топологии.Этот 70-фунтовый блок питания считался легким по сравнению с линейными блоками питания.

[42] В этой статье подробно рассказывается о импульсных источниках питания и описываются преимущества автономных источников питания. В нем описан миниатюрный импульсный источник питания полумоста MG5-20, созданный Advance Electronics. В статье говорится: «Широкое применение микроэлектронных устройств подчеркнуло огромное количество обычных источников питания. Переключаемые преобразователи теперь стали жизнеспособными и предлагают заметную экономию в объеме и весе." «Импульсные источники питания: почему и как», Малкольм Бёрчалл, технический директор подразделения источников питания, Advance Electronics Ltd. Electronic Engineering , Volume 45, Sept 1973, p73-75.

[43] Высокоэффективные модульные источники питания с использованием импульсных регуляторов, Hewlett-Packard Journal , декабрь 1973 г., стр. 15-20. Серия 62600 обеспечивает мощность 300 Вт при использовании автономного импульсного источника питания с полумостовой топологией. Ключевым моментом было внедрение транзисторов на 400 В, 5 А с субмикросекундным временем переключения.«Полный импульсный регулируемый источник питания мощностью 300 Вт едва ли больше, чем просто силовой трансформатор эквивалентного источника с последовательным регулированием, и он весит меньше - 14,5 фунтов против 18 фунтов трансформатора».

[44] Сильноточный источник питания для систем, в которых широко используется 5-вольтовая ИС-логика, Hewlett-Packard Journal , апрель 1975 г., стр. 14-19. Импульсный источник питания 62605M мощностью 500 Вт для OEM-производителей, размер и вес которых составляет 1/3 и 1/5 от линейных источников питания. Использует автономную полумостовую топологию.

[45] Модульные источники питания: модели 63005C и 63315D: в этом источнике питания мощностью 110 Вт 5 В использовалась топология автономного прямого преобразователя и конвекционное охлаждение без вентилятора.

[46] «Проникновение коммутационных источников питания на рынок источников питания США вырастет с 8% в 1975 году до 19% к 1980 году. Это растущее проникновение соответствует мировой тенденции и представляет собой очень высокие темпы роста». Для такого прогнозируемого роста было названо несколько причин, в том числе «доступность более качественных компонентов, снижение [...] общей стоимости и появление продуктов меньшего размера (таких как микрокомпьютеры), которые делают желательными блоки питания меньшего размера». Электроника, Том 49. 1976. Стр. 112, врезка «Что насчет будущего?»

[47] Сеймур Левин, "Импульсные регуляторы питания для повышения эффективности"."Electronic Design, 22 июня 1964 года. В этой статье описывается, как импульсные регуляторы могут повысить эффективность с менее чем 40 процентов до более чем 90 процентов с существенной экономией в размере, весе и стоимости.

[48] На обложке документа Electronic Design 13 от 21 июня 1976 г. написано: «Внезапно переключение стало проще. Импульсные источники питания могут быть сконструированы с использованием на 20-50 дискретных компонентов меньше, чем раньше. Одна ИС выполняет все функции управления, необходимые для двухтактный выходной дизайн.ИС называется регулирующим широтно-импульсным модулятором. Чтобы узнать, предпочитаете ли вы переключение, перейдите на страницу 125 ». На странице 125 есть статья« Управление импульсным источником питания с помощью одной схемы LSI », в которой описаны ИС импульсных источников питания SG1524 и TL497.

[49] В 1976 году Powertec запустила двухстраничную рекламу, описывающую преимущества импульсных источников питания, под названием «Большой переход к коммутаторам». В этой рекламе описывались преимущества блоков питания: с удвоенной эффективностью они выделяли 1/9 тепла.У них были 1/4 размера и веса. Это обеспечило повышенную надежность, работало в условиях обесточивания и могло выдерживать гораздо более длительные перебои в подаче электроэнергии. Powertec продала линейку импульсных блоков питания мощностью до 800 Вт. Они предложили импульсные источники питания для систем с дополнительной памятью, компьютерных мэйнфреймов, телефонных систем, дисплеев, настольных приборов и систем сбора данных. Страницы 130-131, Электроника в49, 1976.

[50] Byte magazine, p100 В июне 1976 года был анонсирован новый импульсный блок питания Boschert OL80, обеспечивающий 80 Вт при двухфунтовом блоке питания по сравнению с 16 фунтами для менее мощного линейного блока питания.Это также было объявлено в Microcomputer Digest, февраль 1976 г., стр. 12.

[51] Роберт Бошерт: Человек многих шляп меняет мир источников питания: он начал продавать импульсные источники питания в 1974 году, сосредоточившись на том, чтобы сделать импульсные источники питания простыми и недорогими. В заголовке говорится, что «Роберт Бошерт изобрел импульсный источник питания», что должно быть ошибкой редактора. В статье более обоснованно утверждается, что Бошерт изобрел недорогие импульсные источники питания для массового использования. В 1974 году он произвел в больших объемах недорогой импульсный источник питания.

[52] Руководство по техническому обслуживанию коммуникационного терминала Diablo Systems HyTerm модели 1610/1620 показаны двухтактный источник питания Boschert 1976 года и полумостовой источник питания LH Research 1979 года.

[53] Опыт Boschert с F-14 и спутниками рекламировался в рекламе Electronic Design , V25, 1977, где также упоминалось серийное производство для Diablo и Qume.

[54] Необычный импульсный источник питания использовался в компьютере HP 1000 A600 (см. Техническую и справочную документацию) (1983).Блок питания 440 Вт обеспечивал стандартные выходы 5 В, 12 В и -12 В, а также выход переменного тока 25 кГц 39 В, который использовался для распределения мощности на другие карты в системе, где она регулировалась. В автономном двухтактном источнике питания, разработанном Boschert, использовалась специальная микросхема HP IC, чем-то напоминающая TL494.

[55] В 1971 году для поддержки автономных импульсных источников питания были представлены многочисленные линейки переключающих транзисторов 450 В, такие как серия SVT450, серия 40850 - 4085 от RCA и серия 700V SVT7000.

[56] ШИМ: от одного чипа к гигантской отрасли, Power Electronics Technology , октябрь 2005 г. В этой статье описывается история создания ИС управления источником питания, от SG1524 в 1975 году до индустрии с многомиллиардным оборотом.

[57] «Революция в конструкции источников питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен», - Вальтер Хиршберг, ACDC Electronics Inc., Калифорния. «Новые компоненты вызывают революцию в источниках питания», p49, Canadian Electronics Engineering , v 17, 1973.

[58] Импульсный и линейный источник питания, конструкция преобразователя мощности , Pressman 1977 «Импульсные регуляторы, которые совершают революцию в отрасли электроснабжения из-за их низких внутренних потерь, небольшого размера, веса и стоимости, конкурентоспособной по сравнению с традиционными последовательными или линейными источниками питания».

[59] Несколько источников питания Apple описаны в документе Apple Products Information Pkg: Astec Power Supplies (1982). Источник питания Apple II Astec AA11040 - это простой дискретный источник питания с обратным ходом и несколькими выходами.В нем используется переключающий транзистор 2SC1358. Выход 5 В сравнивается с стабилитроном и обратной связью управления и изолируется через трансформатор с двумя первичными обмотками и одной вторичной. В нем используется зажимная обмотка обратного диода.

AA11040-B (1980) имеет существенные модификации схемы обратной связи и управления. Он использует переключающий транзистор 2SC1875 и опорного напряжения TL431. AA11040-B, по-видимому, использовался для Apple II + и Apple IIe (см. Форум hardwaresecrets.com).Шелкография на печатной плате источника питания говорит о том, что она защищена патентом 4323961, который, как оказалось, является «автономным источником питания постоянного тока с обратным ходом», выданным Эллиотом Джозефсоном и переданным Astec. Схема в этом патенте в основном представляет собой немного упрощенный AA11040-B. Изолирующий трансформатор обратной связи имеет одну первичную и две вторичные обмотки, противоположные AA11040. Этот патент также напечатан на плате блока питания Osborne 1 (см. Разборку Osborne 1), которая также использует 2SC1875.

В Apple III Astec AA11190 используется фиксирующая обмотка обратного диода, но не схема запуска переменного тока Холта.Используется переключающий транзистор 2SC1358; схема обратной связи / управления очень похожа на AA11040-B. В источнике питания дисковода Apple III Profile AA11770 использовалась фиксирующая обмотка обратного диода, переключающий транзистор 2SC1875; опять же, схема обратной связи / управления очень похожа на AA11040-B. AA11771 аналогичен, но добавляет еще один TL431 для выхода AC ON.

Интересно, что в этом документе Apple перепечатывает десять страниц «Руководства по источникам питания постоянного тока» HP (версия 1978 года, используемая Apple), чтобы предоставить справочную информацию о импульсных источниках питания.

[60] Обратные преобразователи: твердотельное решение для недорогого импульсного источника питания, Electronics , декабрь 1978 г. В этой статье Роберта Бошерта описывается источник питания Boschert OL25, который представляет собой очень простой дискретно-компонентный источник обратноходового питания мощностью 25 Вт с 4 выходами. Он включает в себя зажимную обмотку обратного диода. Он использует опорный сигнал TL430 напряжения и оптрон для обратной связи с выхода 5V. В нем используется переключающий транзистор MJE13004.

[61] В Macintosh Performa 6320 использовалась микросхема контроллера SMPS AS3842, как видно на этом рисунке.AS3842 - это версия контроллера тока UC3842 от Astec, который был очень популярен для прямых преобразователей.

[62] Детали блока питания для iMac найти сложно, и используются разные блоки питания, но, если собрать воедино различные источники, iMac G5, похоже, использует контроллер PFC TDA4863, пять силовых МОП-транзисторов 20N60C3, ШИМ-контроллер SG3845, напряжение TL431. ссылки и контроль мощности с помощью WT7515 и LM339. Также используется 5-контактный встроенный коммутатор TOP245, вероятно, для питания в режиме ожидания.

[63] Источник питания постоянного тока, №4130862. который был подан в феврале 1978 г. и выдан в декабре 1978 г. Блок питания, указанный в патенте, имеет некоторые существенные отличия от блока питания Apple II, созданного Astec. Большая часть управляющей логики находится на первичной стороне в патенте и вторичной стороне в фактическом источнике питания. Кроме того, в патенте обратная связь является оптической, и в ее источнике питания используется трансформатор. Блок питания Apple II не использует обратную связь по переменному току, описанную в патенте.

[64] Подробное обсуждение блока питания Apple II Plus можно найти на сайте applefritter.com. В описании источник питания ошибочно называется топологией прямого преобразователя, но это топология обратного хода. Неудобно, что это обсуждение не соответствует схемам блока питания Apple II Plus, которые я нашел. Заметные различия: в схеме используется трансформатор для обеспечения обратной связи, в то время как в обсуждении используется оптоизолятор. Кроме того, обсуждаемый источник питания использует вход переменного тока для запуска колебаний транзистора, а схема - нет.

[65] Яблоко III (1982 г.). Этот блок питания Apple III (050-0057-A) практически полностью отличается от блока питания Apple III AA11190. Это дискретный источник питания обратного хода с переключающим транзистором MJ8503, управляемым тиристором, фиксирующей обмоткой обратного хода и 4 выходами. Он использует схему запуска переменного тока Холта. Обратная связь переключения контролирует выход -5 В с операционным усилителем 741 и подключается через трансформатор. Он использует линейный регулятор на выходе -5 В.

[66] Яблочная Лиза (1983).Еще один дискретный источник питания с обратным ходом, но значительно более сложный, чем Apple II, с такими функциями, как резервное питание, дистанционное включение через симистор и выход +33 В. Для переключения в нем используется силовой транзистор MJ8505 NPN, управляемый тиристором. Он использует схему запуска переменного тока Холта. Обратная связь по переключению контролирует напряжение + 5 В (по сравнению с линейно регулируемым выходом -5 В) и подключается через трансформатор.

[67] Блок питания Macintosh. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта.В нем используется переключающий транзистор 2SC2335, управляемый дискретным генератором. Коммутационная обратная связь контролирует выход +12 В с помощью стабилитронов и операционного усилителя LM324 и подключается через оптоизолятор.

[68] Схема Mac 128K, Обсуждение Mac Plus. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта. В нем используется переключающий транзистор 2SC2810, управляемый дискретными компонентами. Обратная связь по переключению контролирует выход 12 В и подключается через оптоизолятор.Интересно, что в этом документе утверждается, что блок питания, как известно, был склонен к сбоям из-за того, что в нем не использовался вентилятор. Блок питания Mac Classic выглядит идентичным.

[69] TEAM ST-230WHF 230 Вт импульсный источник питания. Эта схема - единственный компьютерный блок питания стороннего производителя, который я обнаружил, который подает необработанный переменный ток в схему привода (см. R2), но я уверен, что это всего лишь ошибка чертежа. R2 должен подключаться к выходу диодного моста, а не к входу. Сравните с R3 в почти идентичной схеме привода в этом блоке питания ATX.

[70] Микропроцессоры и микрокомпьютеры и импульсные источники питания , Брайан Норрис, Texas Instruments, McGraw-Hill Company, 1978 г. В этой книге описываются импульсные источники питания для телевизоров, которые используют сигнал переменного тока для запуска колебаний.

[71] Блок питания жесткого диска Tandy (Astec AA11101). В этом обратноходовом источнике питания мощностью 180 Вт используется обмотка с зажимом диода. В нем используется переключающий транзистор 2SC1325A. В генераторе используются дискретные компоненты. Обратная связь от шины 5 В сравнивается с опорным напряжением TL431, а обратная связь использует трансформатор для изоляции.

[72] Блок питания Tandy 2000 (1983 г.). Этот источник питания с обратным ходом мощностью 95 Вт использует микросхему контроллера MC34060, переключающий транзистор MJE12005 и имеет обмотку фиксатора обратного хода. Он использует MC3425 для контроля напряжения, имеет линейный регулятор для выхода -12 В и обеспечивает обратную связь на основе выхода 5 В по сравнению с опорным сигналом TL431, проходящим через оптоизолятор. На выходе 12 В используется стабилизатор магнитного усилителя.

[73] В «Искусстве электроники» подробно обсуждается блок питания Tandy 2000 (стр. 362).

[74] Модель Commodore B128. В этом источнике питания обратного хода используется обмотка с зажимом диода. Он использует MJE8501 переключающий транзистор, управляемый дискретных компонентов, а также переключающие мониторы обратной связи выходного 5V с использованием опорного TL430 и изолирующий трансформатор. Выходы 12 В и -12 В используют линейные регуляторы.

[75] Tandy 6000 (Astec AA11082). В этом блоке питания с обратным ходом мощностью 140 Вт используется обмотка с зажимом диода. Схема представляет собой довольно сложную дискретную схему, поскольку в ней используется повышающая схема, описанная в патенте Astec 4326244, также разработанном Эллиотом Джозефсоном.В нем используется переключающий транзистор 2SC1325A. У него немного необычный выход 24 В. Один выход 12 В линейно регулируется LM317, а выход -12 В управляется линейным регулятором MC7912, но другой выход 12 В не имеет дополнительной регулировки. Обратная связь осуществляется с выхода 5 В с использованием источника напряжения TL431 и развязывающего трансформатора. Здесь есть красивая фотография блока питания.

[76] Документация на микросхему контроллера MC34060 (1982 г.).

[77] Руководство разработчика по переключению цепей и компонентов источника питания, The Switchmode Guide , Motorola Semiconductors Inc., Паб. № SG79, 1983. R J. Haver. Для обратного преобразователя фиксирующая обмотка описывается как дополнительная, но «обычно присутствует, чтобы позволить энергии, накопленной в реактивном сопротивлении утечки, безопасно вернуться в линию, вместо того, чтобы лавина переключающего транзистора».

[78] «Обеспечение надежной работы силовых полевых МОП-транзисторов», примечание к приложению Motorola 929, (1984) показывает источник питания с обратным ходом, использующий MC34060 с зажимной обмоткой и диодом. Его можно скачать с datasheets.org.uk.

[79] Для получения дополнительной информации о форвард-конвертерах см. История прямого преобразователя, Switching Power Magazine , vol.1, No. 1, pp. 20-22, июл 2000 г.

[80] Первый импульсный преобразователь с диодной обмоткой был запатентован в 1956 году компанией Philips, патент 2,920,259 «Преобразователь постоянного тока».

[81] Другим патентом, показывающим обмотку с возвратной энергией с диодом, является патент Hewlett-Packard от 1967 года 3313998. Импульсно-регуляторный источник питания с цепью возврата энергии

[82] Маленькое королевство: частная история Apple Computer Майкл Мориц (1984) говорит, что Холт проработал в компании на Среднем Западе почти десять лет и помог разработать недорогой осциллограф (стр. 164).Стив Джобс, «Путешествие - награда», Джеффри Янг, 1988 г., утверждает, что Холт разработал импульсный источник питания для осциллографа за десять лет до прихода в Apple (стр. 118). Учитывая состояние импульсных источников питания в то время, это почти наверняка ошибка.

[83] «Коммутационные блоки растут в чреве компьютеров», Электронный бизнес , том 9, июнь 1983 г., стр. 120-126. В этой статье подробно описывается бизнес-сторона импульсных источников питания. В то время как Astec была ведущим производителем импульсных блоков питания, Lambda была ведущим производителем блоков питания переменного и постоянного тока, поскольку она продавала большие партии как линейных, так и импульсных источников питания.

[84] «Стандарты: переключение вовремя для поставок», Electronic Business Today , vol 11, p74, 1985. В этой статье говорится, что Astec является ведущим в мире производителем блоков питания и лидером в области импульсных блоков питания. Astec выросла почти исключительно на поставках блоков питания Apple. В этой статье также упоминаются компании-поставщики электроэнергии из «большой пятерки»: ACDC, Astec, Boschert, Lambda и Power One.

[85] Astec становится 100% дочерней компанией Emerson Electric, Business Wire , 7 апреля 1999 г.

[86] Отраслевой отчет о крупнейших энергоснабжающих компаниях за 2011 год - Power Electronics Industry News, v 189, март 2011 г., консультанты по микротехнике. Также, Энергетическая промышленность продолжает марш к консолидации, Power Electronics Technology, май 2007 обсуждает различные консолидации.

[87] Документация SAMS по фотофакту для IBM 5150 содержит подробную схему источника питания.

[88] В Википедии представлен обзор стандарта ATX. Официальная спецификация ATX находится в формфакторах.орг.

[89] ON Semiconductor имеет эталонные образцы блоков питания ATX, как и Fairchild. Некоторые ИС, разработанные специально для приложений ATX, - это SG6105 Power Supply Supervisor + Regulator + PWM, NCP1910 High Performance Combo Controller for ATX Power Supplies, ISL6506 Multiple Linear Power Controller with ACPI Control Interfaces, и SPX1580 Ultra Low Dropout Voltage Regulator.

[90] Корпорация Intel представила рекомендацию о коммутационном преобразователе постоянного тока рядом с процессором в документе Intel AP-523 Pentium Pro Processor Power Distribution Guidelines, в котором приведены подробные спецификации модуля регулятора напряжения (VRM).Подробная информация об образце VRM приведена в разделе «Заправка мегапроцессора - обзор конструкции преобразователя постоянного тока в постоянный ток» с использованием UC3886 и UC3910. Более свежие спецификации VMR содержатся в Рекомендациях по проектированию Intel Voltage Regulator Module (VRM) и Enterprise Voltage Regulator-Down (EVRD) 11 (2009).

[91] В техническом описании микропроцессоров R650X и R651X указано типичное значение рассеиваемой мощности 500 мВт.

[92] Технологии преобразования энергии для компьютерных, сетевых и телекоммуникационных систем питания - прошлое, настоящее и будущее, М.М. Йованович, Лаборатория силовой электроники Delta, Международная конференция по преобразованию энергии и приводам (IPCDC), Санкт-Петербург, Россия, 8-9 июня 2011 г.

[93] Программа 80 Plus описана в разделе «Сертифицированные источники питания и производители 80 PLUS», где описаны различные уровни 80 PLUS: бронзовый, серебряный, золотой, платиновый и титановый. Базовый уровень требует КПД не менее 80% при различных нагрузках, а более высокие уровни требуют все более высокого КПД. Первые блоки питания 80 PLUS вышли в 2005 году.

[94] Несколько случайных примеров источников питания, которые сначала генерируют всего 12 В и используют преобразователи постоянного тока для генерации выходных сигналов 5 В и 3,3 В: Эталонный дизайн высокоэффективного блока питания ATX 255 Вт от ON Semiconductor (80 Plus Silver), NZXT HALE82 power обзор блока питания, обзор блока питания SilverStone Nightjar.

[95] Источники питания используют только часть электроэнергии, подаваемой по линиям электропередач; это дает им плохой «коэффициент мощности», который тратит энергию и увеличивает нагрузку на нижние линии.Вы можете ожидать, что эта проблема возникает из-за быстрого включения и выключения импульсных источников питания. Однако плохой коэффициент мощности на самом деле происходит из-за начального выпрямления переменного и постоянного тока, которое использует только пики входного переменного напряжения.

[96] Основы коррекции коэффициента мощности (PFC), Указания по применению 42047, Fairchild Semiconductor, 2004.

[97] Правильный выбор размеров и разработка эффективных источников питания утверждает, что активная коррекция коэффициента мощности добавляет около 1,50 доллара к стоимости источника питания мощностью 400 Вт, активный фиксатор добавляет 75 центов, а синхронное выпрямление добавляет 75 центов.

[98] Многие источники схем электроснабжения доступны в Интернете. Некоторые андизм danyk.wz.cz, и smps.us. Несколько сайтов, которые предоставляют загрузку схем источников питания, - это eserviceinfo.com и elektrotany.com.

[99] Информацию о типовой конструкции блока питания ПК см. В FAQ по SMPS. В разделах «Описание Боба» и «Комментарии Стива» обсуждаются типичные блоки питания для ПК на 200 Вт, использующие микросхему TL494 и конструкцию полумоста.

[100] В тезисе 1991 г. говорится, что TL494 все еще использовался в большинстве импульсных блоков питания ПК (по состоянию на 1991 г.).Разработка импульсного источника питания 100 кГц (1991 г.). Мыс Техникон Тезисы и диссертации. Документ 138.

[101] Введение в двухтранзисторную прямую топологию для источников питания с эффективностью 80 PLUS, EE Times, 2007.

[102] hardwaresecrets.com заявляет, что CM6800 является самым популярным контроллером PFC / PWM. Это замена ML4800 и ML4824. CM6802 - более «зеленый» контроллер в том же семействе.

[103] Анатомия импульсных источников питания, Габриэль Торрес, Hardware Secrets, 2006.В этом учебном пособии очень подробно описывается работа и внутреннее устройство блоков питания ПК с подробными изображениями реальных внутренних устройств блока питания. Если вы хотите точно знать, что делает каждый конденсатор и транзистор в блоке питания, прочтите эту статью.

[104] Презентация источника питания ON Semiconductor's Inside представляет собой подробное математическое руководство по работе современных источников питания.

[105] Справочное руководство по источнику питания SWITCHMODE, ON Semiconductor. Это руководство содержит большое количество информации по источникам питания, топологиям и множеству примеров реализации.

[106] Некоторые ссылки на цифровое управление питанием: «Дизайнеры обсуждают достоинства цифрового управления питанием», EE Times , декабрь 2006 г. Глобальный рынок ИС для цифрового управления питанием к 2017 году достигнет 1,0 миллиарда долларов. Системный контроллер цифровой ШИМ TI UCD9248. Эталонная схема цифрового питания переменного / постоянного тока с универсальным входом и коррекцией коэффициента мощности, EDN , апрель 2009 г.

[107] Руди Севернс, лауреат премии за выслугу лет, Power Electronics Technology , сентябрь 2008 г., стр. 40-43.

[108] Куда ушли все гуру ?, Power Electronics Technology , 2007. В этой статье обсуждается вклад многих новаторов в области источников питания, включая Сола Гиндоффа, Дика Вайса, Уолта Хиршберга, Роберта Окада, Роберта Бошерта, Стива Голдмана, Аллена Розенштейна, Уолли Херсома , Фил Кётч, Яг Чопра, Уолли Херсом, Патрицио Винчиарелли и Марти Шлехт.

[109] История разработки Холтом источника питания для Apple II впервые появилась в статье Пола Чотти Revenge of the Nerds (не имеющей отношения к фильму) в журнале California в 1982 году.

Конструкция источника питания

: импульсный и линейный

Источники питания постоянного тока

доступны как в импульсном (также называемом импульсным), так и в линейном исполнении. Хотя оба типа обеспечивают питание постоянного тока, методы, используемые для получения этой мощности, различаются. В зависимости от области применения каждый тип источника питания имеет преимущества перед другим. Давайте посмотрим на различия между этими двумя технологиями, а также на соответствующие преимущества и недостатки каждой конструкции.

Импульсный источник питания преобразует мощность сети переменного тока непосредственно в напряжение постоянного тока без трансформатора, и это исходное напряжение постоянного тока затем преобразуется в сигнал переменного тока более высокой частоты, который используется в цепи регулятора для получения желаемого напряжения и тока. .В результате получается гораздо более компактный и легкий трансформатор для повышения или понижения напряжения, чем то, что было бы необходимо при частоте сети переменного тока 60 Гц. Эти меньшие трансформаторы также значительно более эффективны, чем трансформаторы на 60 Гц, поэтому коэффициент преобразования мощности выше.

Линейный источник питания подает напряжение сети переменного тока на силовой трансформатор для повышения или понижения напряжения перед подачей на схему регулятора. Поскольку размер трансформатора косвенно пропорционален рабочей частоте, это приводит к более мощному и тяжелому источнику питания.

Каждый тип работы блока питания имеет свой набор достоинств и недостатков. Импульсный источник питания на 80% меньше и легче соответствующего линейного источника питания, но он генерирует высокочастотный шум, который может мешать работе чувствительного электронного оборудования. В отличие от линейных источников питания, импульсные источники питания способны выдерживать небольшие потери переменного тока в диапазоне 10-20 мс, не влияя на выходы.

Линейный источник питания требует более крупных полупроводниковых устройств для регулирования выходного напряжения и, следовательно, выделяет больше тепла, что приводит к снижению энергоэффективности.Линейный источник питания обычно работает с КПД около 60% для выходов 24 В, тогда как импульсный источник питания работает с 80% или более. Линейные источники питания имеют время отклика до 100 раз быстрее, чем их аналоги, работающие в режиме переключения, что важно в некоторых специализированных областях.

В общем, импульсный источник питания лучше всего подходит для портативного оборудования, поскольку он легче и компактнее. Поскольку электрический шум ниже и его легче сдерживать, линейный источник питания лучше подходит для питания чувствительных аналоговых цепей.

Импульсные источники питания

Начиная с 27,95 $

Компактный, легкий и эффективный. Купить сейчас>

Линейные источники питания

Начиная с 49,00 $

Низкая пульсация и шум, высокая надежность. Купить сейчас>

Импульсные источники питания

для начинающих: руководство по эффективности, часть 1

Энергетическая эффективность является фундаментальной характеристикой любого импульсного источника питания (SMPS), и ее мера обычно определяет качество устройства преобразования.Высокие числа дают право хвастаться успешному инженеру, в то время как низкие числа обычно указывают на необходимость модификации или перепроектирования.

Максимальная эффективность является основным критерием для всех SMPS, но тем более для тех, которые используются в портативных устройствах, где необходимо продлить срок службы батареи, чтобы обеспечить потребителям увеличенное время работы при использовании их любимых гаджетов и игрушек. Высокая эффективность также является обязательным условием для тех конструкций, которые требуют улучшенного управления температурным режимом или где затраты на подачу электроэнергии вызывают озабоченность.

Чтобы достичь максимальной эффективности преобразования в конструкции SMPS, инженер должен понимать элементарные механизмы потери мощности, присущие этим преобразователям, и то, что можно сделать, чтобы уменьшить их влияние. Кроме того, знакомство с обычными функциями ИС SMPS, которые способствуют повышению эффективности, позволяет инженеру делать лучший выбор, когда сталкивается с конструкцией импульсного преобразователя.

В этом обсуждении, состоящем из двух частей, объясняются основные факторы, влияющие на эффективность SMPS, и дается руководство о том, как начать новую конструкцию.Потери мощности вводных материалов и коммутационных компонентов покрываются в этом первом взносе.

Ожидаемая эффективность

Энергетические потери являются неотъемлемой частью систем преобразования энергии. Неидеальности естественного мира не позволяют нам получить конечную награду в виде 100% эффективности преобразования. Тем не менее, хорошо спроектированные блоки питания могут достигать весьма значительной эффективности, обычно приближающейся к процентным значениям в диапазоне от среднего до высокого уровня 90-х годов.

Для любознательных людей эталонную эффективность можно получить, изучив типичные рабочие характеристики, указанные в таблицах данных, предоставляемых производителями ИС источников питания.Например, схема понижающего преобразователя в (рис. 1 ) обеспечивает КПД до 97% для определенных выходных конфигураций и дает высокий КПД для очень легких нагрузок.

Как реализованы такие высокие показатели эффективности? Уделять особое внимание фундаментальным потерям, общим для всех SMPS, - отличное начало. Эти потери в основном обнаруживаются в переключающих компонентах (полевые МОП-транзисторы и диоды) и, в меньшей степени, в катушках индуктивности и конденсаторах общей схемы SMPS. В зависимости от ИС могут быть выбраны специальные функции, которые будут бороться с потерями в эффективности, например варианты архитектуры управления и интеграция компонентов.Например, в схеме (рис. 1) используются несколько методов борьбы с собственными потерями, включая синхронное выпрямление, интегрированные полевые МОП-транзисторы с низким сопротивлением, низкое потребление тока покоя и архитектуру управления с пропуском импульсов, преимущества которой будут описаны ниже. эта статья разворачивается.

Краткий обзор SMPS с понижающим преобразователем

Хотя потери, которые будут обсуждаться, применимы ко всем базовым топологиям SMPS, следующий текст поясняется со ссылкой на общую схему понижающего преобразователя понижающего преобразователя в Рис.2 . На рисунке также показаны некоторые формы сигналов переключения схемы, которые будут использоваться в расчетах, представленных позже.

Понижающий преобразователь снижает более высокое входное постоянное напряжение до более низкого выходного постоянного напряжения. При этом MOSFET включается и выключается с постоянной частотой модуляции (f S ) прямоугольным сигналом с широтно-импульсной модуляцией (PWM). Короче говоря, когда полевой МОП-транзистор включен, входной источник питания заряжает катушку индуктивности и конденсатор и подает мощность на нагрузку.В течение этого времени величина тока катушки индуктивности нарастает по мере его прохождения через контур 1, как показано на рис. 2 .

Когда полевой МОП-транзистор выключается, питание на входе отключается от выхода, а индуктор и выходной конденсатор поддерживают нагрузку. Величина тока катушки индуктивности снижается по мере прохождения через диод в соответствии с направлением, указанным в контуре 2. Доля периода переключения, в которой включен полевой МОП-транзистор, определяется скважностью (D) сигнала ШИМ.D делит каждый период переключения (t S ) на интервалы [D xt S ] и [(1-D) xt S ], которые связаны с проводимостью MOSFET (петля 1) и проводимостью диода (петля 2). , соответственно.

Во всех топологиях SMPS это разделение периода переключения используется для преобразования выходного напряжения. Для понижающего преобразователя, чем больше рабочий цикл, тем больше энергии подводится к нагрузке и увеличивается среднее выходное напряжение. И наоборот, когда рабочий цикл уменьшается, среднее выходное напряжение уменьшается.

Из-за этого отношения коэффициенты преобразования для понижающего SMPS составляют:
V ВЫХ = D x V IN
I IN = D x I OUT .

Важно отметить, что чем дольше какой-либо ИИП остается в определенном интервале, тем больше относительные потери, совпадающие с этим интервалом. Для понижающего преобразователя низкий D означает большие относительные потери в контуре 2, поскольку этот контур доминирует в периоде переключения.

Потери коммутационных компонентов

МОП-транзистор и диод, изображенные на рис. 2 (и в большинстве других базовых топологий преобразователей), как правило, вызывают наибольшее снижение эффективности из-за природы этих полупроводниковых устройств. Оба являются жертвами двух видов потери мощности: потери проводимости и потери переключения.

Более простой для понимания - это потеря проводимости. Интуитивно понятно, что там, где есть ток, естественно будет противодействие току, и в результате будет тратиться энергия.И полевой МОП-транзистор, и диод действуют как переключатели, которые направляют ток через цепь, когда какое-либо устройство включено в течение каждого интервала переключения. Следовательно, при включении этого конкретного устройства будут возникать потери проводимости из-за сопротивления открытого МОП-транзистора (R DSon ) и прямого напряжения диода.

Поскольку ток полевого МОП-транзистора протекает только во включенном состоянии, потери проводимости полевого МОП-транзистора (P CONDmosfet ) приблизительно равны произведению R DSon , рабочего цикла и квадрата тока в открытом состоянии:

P CONDmosfet = I MOSFETon (средн.) 2 x R DSon x D

, где I MOSFETon (avg) - средний ток MOSFET за интервал включения.Что касается понижающего преобразователя в рис.2 , MOSFET проводит выходной ток (I OUT ), когда он включен, в результате чего предполагаемые потери проводимости MOSFET составляют:

P CONDmosfet = I OUT 2 x R DSon x (V OUT / V IN )

В то время как потери проводимости MOSFET пропорциональны рассеиванию на его низком R DSon , потери проводимости диода зависят от сравнительно большего прямого напряжения (V F ).Таким образом, диоды обычно имеют большие потери проводимости, чем полевые МОП-транзисторы. Потери проводимости диода пропорциональны прямому току, VF и времени проводимости. Поскольку диод будет проводить, когда MOSFET выключен, потери проводимости диода (P CONDdiode ) приблизительно равны:

P CONDдиод = I DIODEon (avg) x V F x (1-D)

, где I DIODEon (avg) - средний ток диода за интервал включения. В Рис. 2 средний прямой ток диода равен I OUT во время его интервала проводимости.Следовательно, P CONDдиод для понижающего преобразователя оценивается как:

P CONDдиод = I OUT x V F x (1 - V OUT / V IN )

Из этих уравнений очевидно, что чем дольше какое-либо устройство остается включенным в течение каждого интервала переключения, тем больше относительные потери проводимости этого устройства. Для понижающего преобразователя, чем ниже установлено выходное напряжение (для постоянного входного напряжения), тем больше диод способствует потере мощности, поскольку он проводит большую часть интервала переключения.

Возможно, менее интуитивно понятны потери переключения MOSFET и диодов, которые возникают из-за неидеальности их характеристик переключения. Для перехода устройств из полностью выключенного состояния в полностью включенное и наоборот требуется время, что приводит к потреблению энергии при изменении состояния устройства.

Упрощенный график напряжения сток-исток (V DS ) и тока сток-исток (I DS ) обычно дается для объяснения потерь при переключении, встречающихся в полевых МОП-транзисторах.Верхний график рис. 3 изображает такие формы сигналов, где не мгновенные переходы напряжения и тока происходят во время t SWon и t SWoff из-за зарядки и разрядки емкостей, обнаруженных в MOSFET.

Как показано на графиках, ток полной нагрузки (I D ) должен быть передан на полевой МОП-транзистор до того, как его V DS снизится до конечного значения в открытом состоянии (= I D x R DSon ). И наоборот, переход выключения требует, чтобы V DS увеличился до своего конечного значения выключенного состояния до того, как ток будет передан от полевого МОП-транзистора.Эти переходы приводят к перекрытию форм сигналов напряжения и тока и приводят к рассеянию мощности, как показано на нижнем графике рис. 3 .

Времена перехода при переключении более или менее постоянны по частоте, что приводит к увеличению потерь при переключении по мере увеличения частоты SMPS. Это можно понять, отметив, что постоянные периоды перехода потребляют больше доступного периода переключения по мере того, как этот период переключения сокращается.

Переключение переключения, которое требует только одну двадцатую рабочего цикла, будет иметь гораздо меньшее влияние на эффективность, чем переключение, которое потребляет одну десятую рабочего цикла.Из-за своей частотной зависимости коммутационные потери преобладают над потерями проводимости на высоких частотах.

Потери переключения полевого МОП-транзистора

(P SWmosfet ) оцениваются путем применения треугольной геометрии к (рис. 3) для получения следующего уравнения:

P SWmosfet 0,5 x V D x I D x (t SWon + t SWoff ) x f s

, где V D - напряжение сток-исток полевого МОП-транзистора во время отключения, I D - ток канала во время работы, а t SWon и t SWoff - включение и выключение. -время перехода соответственно.Для понижающего преобразователя V IN подается на полевой МОП-транзистор в выключенном состоянии, и он передает I OUT , когда он включен.

Чтобы продемонстрировать вышеупомянутые уравнения проводимости полевого МОП-транзистора и потерь переключения, был использован осциллограф для захвата форм сигналов V DS и I DS типичного интегрированного полевого МОП-транзистора высокого напряжения в понижающем преобразователе. Условия схемы были следующие: V IN = 10 В, V OUT = 3,3 В, I OUT = 500 мА, R DSon = 0.1 Ом, f S = 1 МГц, и переходный процесс переключения (t ON + t OFF ) составляет 38 нс.

Как видно из Рис. 4 , переключение не является мгновенным, и перекрытие форм сигналов тока и напряжения приводит к потере мощности, обозначенной нижним сигналом. Форма волны тока нарастает, поскольку I DS следует за током катушки индуктивности в течение цикла «включено» ( рис. 2 ), что приводит к большим потерям переключения, возникающим во время переходного процесса «выключено».

Используя ранее упомянутые приближения, вычисляются общие средние потери MOSFET:

P Tmosfet = P CONDmosfet + P SWmosfet

= I OUT 2 x R DSon x (V OUT / V IN ) + 0,5 x V IN x I OUT x (t SWon + t SWoff ) xf с

= 0,5 2 x 0,1 x 0,33 + 0,5 x 10 x 0,5 x (38 x 10 -9 ) x 1 x 10 6

8.3 мВт + 95 мВт

P Tmosfet = 103,3 мВт

Результат соответствует среднему значению 117,4 мВт нижней кривой. Обратите внимание, что в этом случае f S достаточно велико, чтобы P SWmosfet преобладал над потерями проводимости.

Как и полевой МОП-транзистор, диод также демонстрирует потери при переключении. Однако эти потери в значительной степени зависят от времени обратного восстановления (t RR ) используемого диода. Потери при переключении диода возникают при переходе диода из состояния прямого смещения в обратное.

Заряд, присутствующий в диоде из-за прямого тока, должен быть снят с перехода, поскольку к нему прикладывается обратное напряжение, что приводит к всплеску тока (I RRpeak ), противоположному прямому току. Это действие приводит к потере мощности V × I, поскольку во время этого события обратного восстановления на диод подается обратное напряжение. На рис. 5 представлен упрощенный график периода обратного восстановления pn-диода.

Когда известны характеристики обратного восстановления диода, для оценки потерь мощности переключения (P SW диод ) диода используется следующее уравнение:

P SW диод 0.5 x V REVERSE x I RRpeak x t RR2 x f s

, где V REVERSE - напряжение обратного смещения на полевом МОП-транзисторе, I RRpeak - пиковый ток обратного восстановления, t RR2 - это часть времени обратного восстановления после пиков I RR . Для понижающего преобразователя V IN смещает диод в обратном направлении после включения полевого МОП-транзистора.

Чтобы продемонстрировать уравнения диодов, Рис. 6 показывает формы сигналов напряжения и тока, наблюдаемые для pn-переключающего диода в типичном понижающем преобразователе.В IN = 10 В, В OUT = 3,3 В, измерено I RRpeak = 250 мА, I OUT = 500 мА, f S = 1 МГц, t RR2 = 28 нс и В F = 0,9 В. Используя эти значения:

P TOTAL диод = P SW диод + P COND диод

(1 - V OUT / V IN ) x I OUT x V F + 0,5 x V IN x I RRpeak x t RR2 x f S

= (1-0.33) x 0,5 x 0,9 + 0,5 x 10 x 0,25 x 28 x 10 -9 x 1 x 10 6

= 301,5 мВт + 35 мВт

= 336,5 мВт

Этот результат совпадает со средней потерей мощности 358,7 мВт, указанной на нижнем графике в Рис. 6 . Из-за большого значения V F и большого интервала проводимости диода, а также из-за того, что t RR является относительно быстрым, потери проводимости (P SW диод ) преобладают в диоде.

Учитывая предыдущее обсуждение, что можно сделать, чтобы уменьшить потери, вызванные переключающими компонентами источника питания? Простой ответ - выбирайте полевые МОП-транзисторы с низким R DSon и быстрыми переходными процессами, а также диоды с низким V F и быстрым периодом восстановления.

Несколько явлений напрямую влияют на сопротивление полевого МОП-транзистора в открытом состоянии. Естественно, что R DSon увеличивается с увеличением размеров кристалла и напряжения пробоя сток-исток (V BRdss ) из-за увеличения количества полупроводникового материала в устройстве. Таким образом, увеличение размера полевого МОП-транзистора может привести к снижению эффективности, которого могло бы не быть у меньшего по размеру, правильно выбранного устройства.

Кроме того, из-за положительного температурного коэффициента MOSFET R DSon увеличивается с увеличением температуры кристалла.Таким образом, необходимо соблюдать надлежащие методы управления температурным режимом, чтобы поддерживать низкие температуры перехода и гарантировать, что R DSon не будет чрезмерно расти.

Сопротивление в открытом состоянии также изменяется обратно пропорционально смещению затвор-исток, вплоть до определенного значения. Поэтому рекомендуется максимальное напряжение управления затвором для достижения самого низкого значения R DSon , с учетом увеличенных потерь управления затвором, возникающих при этом. Однако напряжение управления затвором в ИИП часто не регулируется. То есть, если только опция не позволяет пользователю сделать это, например, самонастройка источника питания IC, или когда внешний драйвер затвора используется для проекта SMPS.

Потери при переключении полевого МОП-транзистора

зависят от емкости устройства. Большие емкости заряжаются медленнее, в результате чего переходы при переключении длятся дольше и рассеивают больше энергии. Емкость Миллера, обычно называемая емкостью обратной передачи (C RSS ) или емкостью затвор-сток (C GD ) в таблицах данных MOSFET, является основным фактором времени перехода во время переключения.

Заряд, необходимый для емкости Миллера, обозначается Q GD и, как и в случае емкости Миллера, должен быть минимальным для более быстрого переключения.Поскольку емкость полевого МОП-транзистора также зависит от размера кристалла, обычно рассматривается компромисс между потерями проводимости и коммутационными потерями, при этом особое внимание уделяется частоте коммутации схемы.

Для диода прямое напряжение должно быть минимизировано, так как потери из-за него могут быть большими. Прямое напряжение обычно находится в диапазоне от 0,7 В до 1,5 В для небольших диодов с более низким номиналом. Опять же, размеры, процесс и номинальное напряжение влияют на прямое напряжение и время обратного восстановления, при этом более высокие номиналы и большие размеры демонстрируют более высокие V F и t RR , что приводит к большим потерям.

Переключающие диоды, предназначенные для высокоскоростных приложений, часто классифицируются по скорости, а именно: быстрые, сверхбыстрые и сверхбыстрые восстанавливающиеся диоды, причем время обратного восстановления уменьшается с увеличением скорости. Быстрые диоды имеют тенденцию иметь t RR за сотни наносекунд, в то время как сверхбыстрые диоды имеют тенденцию к нескольким десяткам наносекунд.

Несмотря на то, что pn-диоды обычно имеют большие падения напряжения в прямом направлении, они также доступны с большими номинальными значениями напряжения и тока, что делает их пригодными для приложений с более высокой мощностью.Но даже с оптимизированными диодами V F и RR , обычно не встретишь высокоскоростной восстанавливающий диод в маломощных или портативных устройствах, поскольку потери энергии слишком велики.

В качестве возможной альтернативы диодам с быстрым восстановлением в маломощных приложениях диоды Шоттки предлагают практически полное время восстановления и V F , что почти вдвое меньше, чем у диодов с быстрым восстановлением (часто от 0,4 В до 1 В), но недоступно с такими высокими номинальными напряжениями, как у диодов с быстрым восстановлением.Из-за преимуществ диоды Шоттки широко используются в приложениях с низким энергопотреблением, чтобы значительно снизить потери мощности, связанные с переключающим диодом, особенно в приложениях с малым рабочим циклом.

Однако даже при низком падении прямого напряжения диод Шоттки может иметь недопустимые потери проводимости в низковольтных устройствах. Рассмотрим понижающий выход 1,5 В, где используется типичный диод Шоттки 0,5 В. Это 33% выходного напряжения во время диодной проводимости!

Эту ситуацию с высокими потерями можно улучшить, воспользовавшись преимуществом низкого R DSon полевого МОП-транзистора в методе, называемом синхронным выпрямлением.Здесь полевой МОП-транзистор заменяет диод (сравните рис. 1, и рис. 2, ) и синхронизируется с другим полевым МОП-транзистором, так что оба полевого МОП-транзистора проводят попеременно во время соответствующих интервалов переключения. Теперь относительно высокое значение V F диода заменено гораздо меньшим падением напряжения R DSon (в зависимости от тока) полевого МОП-транзистора, компенсируя потерю эффективности из-за проводимости диода.

Однако у синхронного выпрямления есть свои компромиссы, такие как повышенная сложность и стоимость, и он может не оказаться значительным преимуществом для очень высоких уровней тока, поскольку потери проводимости полевого МОП-транзистора возрастают пропорционально квадрату его тока.Кроме того, поскольку мощность расходуется при включении затвора синхронного выпрямителя, инженер должен взвесить эффективный штраф дополнительного привода затвора.

Лист данных

До сих пор обсуждались потери мощности, присущие двум основным компонентам универсального импульсного источника питания, полевому МОП-транзистору и диоду. Вспоминая схему понижения на рис. 1 , несколько важных аспектов ИС контроллера, которые помогают в ее очень эффективной работе, можно связать, обратившись к ее техническому описанию.

Во-первых, коммутационные компоненты интегрированы в корпус ИС, что позволяет сэкономить место и снизить паразитные потери. Во-вторых, используются полевые МОП-транзисторы DSon с низким R . Они указаны на 0,27 Ом (тип.) И 0,19 Ом (тип.) Для NMOS и PMOS, соответственно. В-третьих, используется синхронное выпрямление. Для 50% рабочего цикла и нагрузки 500 мА это снижает более низкие потери проводимости переключателя с 250 мВт при использовании диода 1 В до примерно 34 мВт из-за низкого R DSon синхронного транзистора NMOS.

Хотя коммутационные компоненты сильно влияют на эффективность SMPS, есть больше областей, в которых инженер может бороться с агрессивными эффектами потери мощности. Во второй части этой статьи будут рассмотрены потери в пассивных компонентах и ​​важные особенности повышения эффективности микросхем SMPS.

Список литературы

Mohan, Ned; Undeland, Tore M .; и Роббинс, Уильям П. Силовая электроника: преобразователи, приложения и конструкция , главы 2, 7, 20 и 22, John Wiley & Sons, третье издание, 2003 г.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *