Импульсное зарядное устройство схема lay: Мощное импульсное зарядное устройство для автомобильного аккумулятора

Содержание

Схема зарядного устройства на микросхеме 2153 с

Схема работает от сети переменного напряжения 220 Вольт, ее выходная мощность около 250 ватт, а это около 20 Ампер при 14 Вольтах выходного напряжения, чего вполне достаточно для зарядки автомобильных аккумуляторов.

На входе имеется сетевой фильтр, и защита от бросков напряжения и перегруза блока питания. Термистор защищает ключи во время начального момента включения схемы в сеть 220 Вольт. Затем сетевое напряжение выпрямляется диодным мостом.

Через ограничительное сопротивление 47 кОм напряжение проходит на микросхему генератора. Импульсы определенной частоты следуют на затворы высоковольтных ключей, которые срабатывая пропуская напряжение в сетевую обмотку трансформатора. На вторичной обмотке мы имеем требуемое для заряда аккумуляторов напряжение.

Выходное напряжение ЗУ зависит от количества витков во вторичной обмотке и рабочей частоты генератора. Но частоту не следует поднимать выше 80кГц, оптимально 50-60кГц.

Высоковольтные ключи IRF740 или IRF840. Меняя емкость конденсаторов во входной цепи можно увеличить или уменьшить выходную мощность зарядного устройства, при необходимости можно достичь 600 ваттной мощности. Но нужны конденсаторы 680 мкФ и мощный диодного мост.

Трансформатор можно взять готовый из компьютерного блока питания. А можно и его сделать самому. Первичная обмотка содержит 40 витков провода диаметром 0,8 мм, затем накладываем слой изоляции наматываем вторичную обмотку – где то 3,5-4 витка из довольно толстого провода или использовать многожильный провод.

После выпрямителя в схеме установлен фильтрующий конденсатор, емкость не более 2000 мкФ.

На выходе необходимо поставить импульсные диоды с током не менее 10-30А, обычные сразу сгорят.

Внимание схема ЗУ не имеет защиты от короткого замыкания и сразу выйдет из строя, если такое произойдет.

Эту схему можно считать упрощенным вариантом от выше рассмотренной.

Диодный мост состоит из любых выпрямительных диодов с током не менее 2А, можно и больше и с обратным напряжением 400 Вольт, можно использовать готовый диодный мост из старого компьютерного блока питания в нем обратное напряжение 600 Вольт при токе 6 А.

Для обеспечения требуемых параметров питания микросхемы необходимо взять сопротивление 45-55 кОм с мощностью 2 ватт, если таких не можете найти, соедините последовательно несколько маломощных резисторов.

Диод VD2 рассчитан на ток не менее 1 А и с обратным напряжением 300 Вольт, я использовал диоды HER207, который заимствовал из старого телевизора Sony. Полевые транзисторы применил высоковольтные, типа IRF840 или IRF740. Дроссель имеет две одинаковые обмотки, но независимые друг от друга, каждая из которых по 15 витков провода диаметром 0,7мм.

Зарядное устройство желательно дополнить регулятором мощности и защитой от перегруза и короткого замыкания.

– Интересно, а что можно увидеть, если низе́нько пролететь над глухим бурятским селением тарбагатайского района, вооружившись комплексом радиолокационного наблюдения?
– Что, что? Узкораспахнутые глаза нескольких офонаревших финно-угров, а так же электромагнитную мешанину помех в полосе частот 1. 100 МГц.
Железный конь пришёл на смену крестьянской лошадке! Энергосберегающие лампы, телевизоры, компьютеры, зарядные устройства и прочий хай-тек с импульсными источниками питания – на смену лампочке Ильича!
Вот и приходится бедолаге-радиолюбителю уживаться с разномастными ИБП, излучающими в эфир интенсивный высокочастотный шлак во всех КВ-диапазонах.

А что тут попишешь? Прогресс как-никак. технологичность, блин. массогабариты, мать их за ногу.

И чтобы не застрять на обочине инновационного пути, поклонимся и припадём к импульсным блокам питания и мы. А начнём с двуполярного импульсного источника для мощного усилителя мощности.

Что нужно правильному ИПБ для комфортного выполнения своих непосредственных обязанностей?

1. Мягкий, он же плавный, пуск при включении импульсного блока питания, предотвращающий превышение допустимых токов полупроводников от работы на фактически короткозамкнутую нагрузку, образующуюся вследствие мгновенного заряда ёмкостей выпрямителя.
Часто используемые для этих целей термисторы не так уж и хороши, в силу инерционной зависимости изменения сопротивления от температуры. Результат – кирдык блоку питания из-за того, что просто выключили и тут же включили БП тумблером.

2. Правильная и быстрая защита ИБП от токовых перегрузок и КЗ, полностью отключающая устройство от сети при возникновении нештатных ситуаций.
Распространённое шунтирование на землю точки питания микросхемы-драйвера, управляющего ключевыми транзисторами, может выручить далеко не во всех ситуациях. Слабым звеном здесь оказывается наличие электролитического конденсатора в цепи питания, приводящего к существенной задержке такого обесточивания микросхемы со всеми вытекающими невесёлыми последствиями.

3. Наличие входных и выходных LC-фильтров для предотвращения проникновения импульсных помех в сеть и нагрузку.

4. Компактность, надёжность и радующая глаз простота исполнения.

Тезисы оформлены без нарушений требований, переходим к схеме электрической принципиальной импульсного блока питания.


Рис.1

Начнём со схемы (Рис.1), обеспечивающей мягкий и плавный пуск ИБП. Она же является устройством защиты импульсного блока питания от токовых перегрузок и КЗ, она же содержит элементы, предотвращающие проникновение импульсных помех в питающую сеть, она же формирует необходимые постоянные напряжения, необходимые для работы драйвера и ключевых транзисторов.

– Так, а что там, собственно-то, осталось? С гулькин хрен! Надо ж было сразу всё рисовать, а не размножать всякие писульки! – резонно зафиксирует мысль подготовленный радиолюбитель.

Торопиться не надо!
Во-первых, приведённая схема сгодится не только для преобразователей, собранных на IR2153, но и для любых других устройств, независимо от используемой элементной базы. Низковольтное напряжение (15В) может быть выбрано любой величины, посредством замены D2 на стабилитрон с соответствующим напряжением пробоя.

Во-вторых, даже при изготовлении источника питания на заявленной в заголовке микросхеме IR2153, имеет серьёзный резон сначала собрать приблуду, приведённую на Рис.1, десяток раз проверить соответствие принципиальной схеме, прозвонить тестером на отсутствие КЗ между дорожками платы, далее, подключившись к сети, убедиться в наличии работоспособности, а затем уже продолжать все дальнейшие манипуляции.
Настройки схема не требует, при отсутствии ошибок сразу запашет как зверь!

А вот теперь можно повеселиться по полной программе! Любые дефективные двигания шаловливыми ручонками при сборке преобразователя, ключевых транзисторов и импульсного трансформатора будут моментально зафиксированы устройством защиты и не приведут к каким-либо серьёзным последствиям для элементов схемы. Ручонки могут пострадать, элементы – вряд ли!

Как это всё работает?

Переключатель S1 – это тумблер без фиксации, алгоритм работы (on)-off-(on), количество контактных групп – 2.

В момент перевода тумблера в состояние "вкл" через сопротивление R1 и двухполупериодный выпрямитель Br1 начинается заряд входного сглаживающего конденсатора C3.
Номинал резистора выбран такой величины, чтобы максимальный импульсный ток, протекающий через элементы в начальный момент включения, не превышал 10А.

По мере заряда конденсатора увеличивается и ток через последовательную цепочку R2, LED1, Ref1, D2. Через несколько десятков миллисекунд этот ток достигает значения, достаточного для включения реле Ref1. После включения реле, его контакты К1 замыкают и R1, и контакты тумблера. Всё – плавный пуск импульсного блока питания завершён, светодиод горит, можно отпускать пипку переключателя.

Выключение блока питания у нас завязано на схеме защиты, реализованной на транзисторах Т1, Т2, включённых по схеме эквивалента тиристора. Какой должна быть эта схема для предотвращения ложных срабатываний, мы подробно рассмотрели на странице Ссылка на страницу .

Схема обладает небольшим и предсказуемым током включения (около 100мкА), что позволяет отказаться от построечных резисторов при выборе необходимого порога срабатывания. Величина сопротивления R=R6IIR7 выбирается исходя из формулы R=0,77/Iср, т.е. в нашем случае Iср=0,77/0,5=1,54А.

Механизмы выключения ИБП – что при нажатии кнопки S1 в положение "выкл", что при срабатывании защиты абсолютно идентичны. Под воздействием напряжения, превышающем пороговый уровень на переходе база-эмиттер транзистора Т1, аналог тиристора переходит в проводящее состояние, верхний вывод реле замыкается на нулевую точку, реле отщёлкивается, блок питания от сети полностью отключается.

П-образный фильтр С1, Др1, С2 служит для предотвращения проникновения импульсных помех в сеть. Я использовал готовый 2х2.2мГн, 2A фирмы Epcos, позволяющий работать с мощностями до 600Вт. Если не влом заняться самообразованием, то можно намотать и самостоятельно на Amidon-овских кольцах их карбонильного железа марок: 26, 38, 40, 45, 52. Всю необходимую информацию можно найти на сайте производителя.

Диодный мост должен быть рассчитан на постоянное обратное напряжение не менее 400В, у меня под рукой оказалась радиодеталь с большим запасом по мощности – BR1004 на 10А.

Реле должно выдерживать необходимый максимальный коммутируемый ток и не гнушаться работой с сетевым напряжением. Ток срабатывания не должен превышать 20мА, как правило в документации такие реле называются – High Sensitive. У меня выбор пал на NRP05-A-12D, 12V / 5A, 250VAC.

Ограничений по максимальной мощности импульсного блока питания у приведённой схемы защиты и плавного пуска – нет. Естественным образом следует озаботиться выбором элементов Др1 и Br1, соответствующих максимальным токам, гуляющим по высоковольтным цепях устройства.

Принято считать, что минимальная величина ёмкости электролитического конденсатора С3 должна составлять 100МкФ на каждые 100Вт мощности. Увеличение этого значения в 1,5 – 2 раза, пойдёт только на пользу характеристикам ИБП, хотя и излишний фанатизм не приветствуется во избежание чрезмерного увеличения массогабаритных характеристик.

Стабилитрон D1 я пририсовал на схеме на всякий пожарный уже в процессе написания статьи для исключения возможного включения реле обратным напряжением, накопленным на С4 в момент срабатывания транзисторной защёлки. В оригинале всё прекрасно работает и без него!

Что-то, как-то слишком многословно получилось.
«Краткость есть душа ума. ». Ну да ладно, продолжим разговор на следующей странице.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.

Импульсное зарядное устройство_схема_описание

Для радиолюбителей, отдающих предпочтение импульсной технике, предлагаем ознакомиться с принципиальной схемой малогабаритного зарядного устройства, способного заряжать аккумуляторы током до 7 Ампер, при этом ток потребления устройством от сети 220 Вольт не превышает 2 Ампер, и остается работоспособным при снижении питающего напряжения примерно до 170 Вольт.

Принципиальная схема зарядного устройства изображена на следующем рисунке:

Установив необходимый ток заряда, данным устройством можно заряжать не только автомобильные, но и другие аккумуляторы, например, блоков бесперебойного питания, аккумуляторы электроинструмента, и т.д. Зарядный ток контролируется с помощью встроенного амперметра, в роли которого можно использовать стрелочный индикатор от магнитофона с соответствующим шунтом, и шкалой, отградуированной в амперах.

Вернемся к принципиальной схеме. Входная часть – высоковольтная. На входе стоит выпрямитель D1, рассчитанный на ток до 10 Ампер, и пара сглаживающих емкостей С1 и С2. Выпрямленное напряжение получается порядка 290 Вольт. На транзисторах Т1 и Т2 собран блокинг-генератор, на выходе которого стоит импульсный трансформатор. Обмотка III является нагрузкой генератора, обмотки II и IV обеспечивают поочередное открывание транзисторов генератора, частота которого лежит в пределах 25…30 кГц. Диоды D2 и D3 обеспечивают защиту транзисторных ключей от пробоя обратным напряжением, это связано с индуктивными выбросами, которые могут возникать в импульсном трансформаторе. R2 и R3 стоят как ограничители тока, протекающего через ключи, а резисторы R4 и R5 – ограничители токов баз Т1 и Т2 соответственно.

Далее по схеме идет низковольтная часть. С обмоток импульсного трансформатора V и VI
Переменное напряжение поступает на выпрямитель D4, фильтруется емкостью С4 и поступает на ШИМ-регулятор (транзисторы Т3 и Т4). Переменный резистор изменяет скважность импульсов, которыми управляется полевой транзистор Т5. От номиналов емкостей С6 и С7 зависит частота генерации широтно-импульсного модулятора, она должна лежать в диапазоне 5…7 кГц.

Лампа HL1 – визуальный контроль работы зарядного устройства.

На низковольтном выпрямителе получается порядка 18 Вольт, поэтому последовательно с вентилятором, рассчитанным на напряжение 12 Вольт, включен резистор номиналом 10 Ом.

Чуть не забыли написать про кнопку S1. С ее помощью производится запуск генератора, и, соответственно пуск зарядного устройства в работу. Эта кнопка не фиксированная, запуск осуществляется коротким нажатием, то есть импульсом. Если на выходе будет короткое замыкание, генерация сорвется, и блокинг-генератор прекратит работу. После устранения КЗ пусковая кнопка нажимается заново.

Основой для намотки служит ферритовое кольцо, наружный диаметр которого 30 мм. Параметры намотки следующие:

● Обмотка III – 140 витков, провод ПЭЛ-0,31 мм, мотается первой, далее слой фторопластовой ленты.

● Обмотки I, II, IV – по 2 витка каждая, можно использовать жилы от телефонного кабеля.

● Обмотки V, VI – по 18 витков каждая, диаметр провода 3,6 мм. Для удобства в намотке скрутите жгут из 20-ти жил провода диаметром 0,18 мм, намотать будет гораздо легче. Для скручивания жгута используйте шуруповерт.

В результате должно получиться примерно так:

Импульсный трансформатор для зарядного устройства

Ключевые транзисторы Т1 и Т2 – биполярные, типа MJE13007, устанавливаются на небольшие радиаторы. Можно заменить на EN13007, EN13009.
Транзисторы Т3 и Т4 – биполярные, 2SC1815. Можно заменить на КТ315.
Транзистор T5 – полевой, типа N302AP, тоже можно установить на небольшой радиатор.
Диодный мост D1 – KBP208G, или аналогичный на ток 10 Ампер.
Диоды D2 и D3 – 1N4007, можно заменить на отечественные КД226Д.
Резисторы R1, R4, R5, R7, R8, R9, R10, R11, R12 – типа МЛТ-0,25.
Резисторы R2, R3, R6 – типа МЛТ-0,5.
Конденсаторы С1 и С2 – 33 мкФ, на напряжение не ниже 250 Вольт.
Конденсатор С3 – 2200 пФ на 400 Вольт.

Ниже на снимках показан внешний вид печатной платы:

Печатная плата зарядного устройства

Печатная плата зарядного устройства_сторона элементов

. Печатную плату в формате LAY и принципиальную схему можно скачать одним файлом по прямой ссылке с нашего сайта. Размер файла архива – 0,045 Mb.

Далее на снимках показана собранная печатная плата (вид со стороны элементов, и вид со стороны дорожек):

Импульсное зарядное устройство в сборе

. Будьте аккуратны при отладке зарядного устройства, помните, что входные цепи находятся под напряжением питающей сети, ведь правила электробезопасности еще никто не отменял.

Схема импульсного зарядного устройства для автомобильных аккумуляторов

У каждого автолюбителя есть зарядное устройство для АКБ 12 В. Все эти старые зарядки с различным успехом работают и выполняют свои функции, но есть у них общий недостаток – слишком большие габариты и вес. Это не удивительно, ведь один только силовой трансформатор на 200 ватт может весить до 5 кг. Поэтому и задумал собрать импульсное зарядное для автоаккумулятора. На просторах инета, точнее на форуме Kazus нашел схему этого ЗУ.

Схема принципиальная ЗУ – клик для увеличения размера

Собрал, работает прекрасно! Заряжал автомобильный аккумулятор, настроил зарядник на 14.8 в и на ток около 6 А, перезаряда или недозаряда нет, при достижении и напряжения на клемах аккумулятора 14.8 в, ток зарядки падает автоматически. Также заряжал гелиевый свинцовый аккумулятор от бесперебойника ПК – нормально. Замыканий на выходе данный зарядник не боится. А вот от переполюсации надо защиту делать, сам сделал на реле.

Печатная плата, даташиты на некоторые радиоэлементы и другие файлы смотрите на форуме.

В общем всем советую его сделать, так как у этого ЗУ много преимуществ: малые размеры, база радиоэлементов не дефицит, многое можно купить и в том числе готовый импульсный трансформатор. Сам его приобрёл в интернет магазине – прислали быстро и дёшево. Оговорюсь сразу, вместо диода Шоттки VD6 (термостабилизация), поставил просто сопротивление на 100 Ом, зарядное и с ним работает прекрасно! Схему собрал и испытал: Demo .

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Статистика

Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.

Импульсное зарядное устройство_схема_описание

Для радиолюбителей, отдающих предпочтение импульсной технике, предлагаем ознакомиться с принципиальной схемой малогабаритного зарядного устройства, способного заряжать аккумуляторы током до 7 Ампер, при этом ток потребления устройством от сети 220 Вольт не превышает 2 Ампер, и остается работоспособным при снижении питающего напряжения примерно до 170 Вольт.

Принципиальная схема зарядного устройства изображена на следующем рисунке:

Установив необходимый ток заряда, данным устройством можно заряжать не только автомобильные, но и другие аккумуляторы, например, блоков бесперебойного питания, аккумуляторы электроинструмента, и т.д. Зарядный ток контролируется с помощью встроенного амперметра, в роли которого можно использовать стрелочный индикатор от магнитофона с соответствующим шунтом, и шкалой, отградуированной в амперах.

Вернемся к принципиальной схеме. Входная часть – высоковольтная. На входе стоит выпрямитель D1, рассчитанный на ток до 10 Ампер, и пара сглаживающих емкостей С1 и С2. Выпрямленное напряжение получается порядка 290 Вольт. На транзисторах Т1 и Т2 собран блокинг-генератор, на выходе которого стоит импульсный трансформатор. Обмотка III является нагрузкой генератора, обмотки II и IV обеспечивают поочередное открывание транзисторов генератора, частота которого лежит в пределах 25…30 кГц. Диоды D2 и D3 обеспечивают защиту транзисторных ключей от пробоя обратным напряжением, это связано с индуктивными выбросами, которые могут возникать в импульсном трансформаторе. R2 и R3 стоят как ограничители тока, протекающего через ключи, а резисторы R4 и R5 – ограничители токов баз Т1 и Т2 соответственно.

Далее по схеме идет низковольтная часть. С обмоток импульсного трансформатора V и VI
Переменное напряжение поступает на выпрямитель D4, фильтруется емкостью С4 и поступает на ШИМ-регулятор (транзисторы Т3 и Т4). Переменный резистор изменяет скважность импульсов, которыми управляется полевой транзистор Т5. От номиналов емкостей С6 и С7 зависит частота генерации широтно-импульсного модулятора, она должна лежать в диапазоне 5…7 кГц.

Лампа HL1 – визуальный контроль работы зарядного устройства.
На низковольтном выпрямителе получается порядка 18 Вольт, поэтому последовательно с вентилятором, рассчитанным на напряжение 12 Вольт, включен резистор номиналом 10 Ом.

Чуть не забыли написать про кнопку S1. С ее помощью производится запуск генератора, и, соответственно пуск зарядного устройства в работу. Эта кнопка не фиксированная, запуск осуществляется коротким нажатием, то есть импульсом. Если на выходе будет короткое замыкание, генерация сорвется, и блокинг-генератор прекратит работу. После устранения КЗ пусковая кнопка нажимается заново.

Основой для намотки служит ферритовое кольцо, наружный диаметр которого 30 мм. Параметры намотки следующие:

● Обмотка III – 140 витков, провод ПЭЛ-0,31 мм, мотается первой, далее слой фторопластовой ленты.

● Обмотки I, II, IV – по 2 витка каждая, можно использовать жилы от телефонного кабеля.

● Обмотки V, VI – по 18 витков каждая, диаметр провода 3,6 мм. Для удобства в намотке скрутите жгут из 20-ти жил провода диаметром 0,18 мм, намотать будет гораздо легче. Для скручивания жгута используйте шуруповерт.

В результате должно получиться примерно так:

Импульсный трансформатор для зарядного устройства

Ключевые транзисторы Т1 и Т2 – биполярные, типа MJE13007, устанавливаются на небольшие радиаторы. Можно заменить на EN13007, EN13009.
Транзисторы Т3 и Т4 – биполярные, 2SC1815. Можно заменить на КТ315.
Транзистор T5 – полевой, типа N302AP, тоже можно установить на небольшой радиатор.
Диодный мост D1 – KBP208G, или аналогичный на ток 10 Ампер.
Диоды D2 и D3 – 1N4007, можно заменить на отечественные КД226Д.
Резисторы R1, R4, R5, R7, R8, R9, R10, R11, R12 – типа МЛТ-0,25.
Резисторы R2, R3, R6 – типа МЛТ-0,5.
Конденсаторы С1 и С2 – 33 мкФ, на напряжение не ниже 250 Вольт.
Конденсатор С3 – 2200 пФ на 400 Вольт.

Ниже на снимках показан внешний вид печатной платы:

Печатная плата зарядного устройства

Печатная плата зарядного устройства_сторона элементов

. Печатную плату в формате LAY и принципиальную схему можно скачать одним файлом по прямой ссылке с нашего сайта. Размер файла архива – 0,045 Mb.

Далее на снимках показана собранная печатная плата (вид со стороны элементов, и вид со стороны дорожек):

Импульсное зарядное устройство в сборе

. Будьте аккуратны при отладке зарядного устройства, помните, что входные цепи находятся под напряжением питающей сети, ведь правила электробезопасности еще никто не отменял.

Такой блок питания был создан после того, как сгорел мой лабораторный БП, который прослужил всего пару месяцев. Было решено из подручных средств собрать мощный сетевой ИБП, который при желании можно было использовать в качестве зарядного устройства для автомобильных аккумуляторов.

За основу была взята схема полумостового инвертора на драйвере IR2153. По идее, такой инвертор можно собрать из подручного хлама, почти все основные компоненты можно снять из компьютерного блока питания.

На входе питания собран простой сетевой фильтр, пленочные конденсаторы 0,1мкФ подобраны с рабочим напряжением 400 Вольт до и после дросселя, сам дроссель выпаян из платы компьютерного блока питания. На кольце намотаны две независимые обмотки проводом 0,9мм, количество витков каждой обмотки – 10.

Термистор на входе питания защищает полевые ключи от бросков напряжения во время включения схемы.
Диодный мост – можно взять готовый или же собрать из 4-х выпрямительных диодов с обратным напряжением не менее 400 вольт и током 1,5-3 А, в моем случае использован готовый диодный мост на 600 Вольт 4А.

От емкости электролитов зависит основная мощность, электролиты легко можно найти в любом компьютерном блоке питания. Мощность инвертора с таким раскладом компонентов составляет порядка 200ватт.

Трансформатор тоже был взят готовый, от того же компового блока питания. Поскольку ИБП должен работать в качестве лабораторного БП, то диапазон выходных напряжений должен быть широким. Трансформатор от компьютерного БП позволяет получить 24 Вольт без переделок, чего вполне достаточно для штатных радиолюбительских дел. Увеличить выходное напряжение можно двумя способами – повышением рабочей частоты генератора или же перемоткой импульсного трансформатора.

Ограничительный резистор 47К брать с мощностью 2 ватт, он обеспечивает питание микросхемы, номинал резистора может отклоняться на 10% в ту или иную сторону.
В качестве диодного выпрямителя использована мощная сборка Шоттки, которая в себе содержит два мощных диода по 30А.

После выпрямителя напряжение сглаживается конденсатором 50Вольт 1000мкФ, чего вполне достаточно, но при желании можно увеличить емкость.

Полевые ключи обязательно должны быть высоковольтными, можно использовать ключи типа IRF740/IRF840 и другие.
Хочу также заметить, что мощность такого блока питания можно поднять до 400 ватт, при этом заменяя только электролиты, крайне не советую повышать мощность более 500 ватт.

Какой же блок питания без защиты от КЗ? Изначально думал реализовать защиту в первичной цепи схемы, но это будет уже трудно настраиваемая схема, поскольку у многих возникают проблемы связанные именно с защитой, а поскольку изначально мне захотелось собрать устройство, которое бы могли повторить радиолюбители не имеющие нужного опыта работы с ИИП, то решил отказаться от идеи, этим не портить и не усложнять основную схему.

Сама защита реализована на отдельной плате, состоит из двух транзисторов. Номиналом шунта можно грубо настроить ток срабатывания защиты, номиналом переменника, можно более точно настроить на нужный ток срабатывания.

При КЗ и перегрузке блока питания, загорится индикатор и питание отключается, блок выходит из защиты моментально, при отсутствии кз или перегруза на выходе.

Полевой транзистор практически любой, с током 20-100A, можно использовать ключи типа irfz44, irfz40, irfz24, irfz46, irfz48, irf3205 и другие.
Регулятор мощности – одна из важнейших частей блока питания. За основу взял схему ШИМ регулятора, поскольку такое управление имеет очень много плюсов.

.

ШИМ – регулятор построен на таймере 555 и мощном ключе IRFZ44, напряжение плавно можно регулировать от . до максимального выходного напряжения с трансформатора.

Данный блок справляется с любыми задачами, которые могут возникнуть в радиолюбительской практике – легкий, мощный и компактный, вольт/амперметр будет цифровым, заказан отдельно на интернет магазине, будет установлен на блок в ближайшее время.

ДЕСУЛЬФАТИРУЮЩЕЕ ЗАРЯДНОЕ УСТРОЙСТВО

   Недавно собрал зарядно-десульфатирующий автомат, практически под все 12-ти вольтовые аккумуляторы, так как есть плавная регулировка тока. Автомат успешно заряжает как гелевые АБ 12В 4,5А/ч для безперебойника, так и аккумуляторные батареи для автомобиля - 80А/ч. Не содержит дорогих и дефицитных деталей и нескложен в сборке. Выкладываю схему и фото внешнего вида ЗУ.


   Рисунки печатных плат десульфатирующего зарядного устройства показаны ниже. Если требуется - можете скачать их в формате Lay.


Модуль контроля напряжения


   Для более стабильной работы автомата поставил маленький кулер от процессора, что вполне оправдало себя. Теперь температура стабильная, а значит и параметры заряда практически не меняются от нагрева.


   При выборе схемы хотелось сделать полный автомат и обязательно с десульфатацией, чтобы заряжал асиметричным током. Данный зарядный автомат работает стабильно, испытывал 3 недели в непрерывном цикле. Функция десульфации тоже работает исправно - вылечил один аккумулятор, который начал брать ток и держать ёмкость. 


   Микросхема 554СА3 здесь работает стабильно, особенно если грамотно и чётко настроить. При проектировании устройства учтите, что тепла эта микросхема не любит, её нужно устанавливать в том месте, где тепло не доходит. Желательно внизу и подальше от греющихся резисторов.


   Корпус десульфатирующего ЗУ можно использовать металлический, а можно и из прочной пластмассы. Естественно надо предусмотреть отверстия для вентиляции.


   Обязательно снабдите зарядное устройство стрелочными индикаторами тока и напряжения. Это будет удобно и наглядно. Сразу видна динамика процесса заряда и восстановления АКБ. Автор конструкции: nbotsman

   Форум по зарядным устройствам

   Форум по обсуждению материала ДЕСУЛЬФАТИРУЮЩЕЕ ЗАРЯДНОЕ УСТРОЙСТВО

Зарядное устройство на импульсном блоке питания - Зарядные устройства (для авто) - Источники питания

В статье рассматриваются принципы построения обратно- ходового импульсного источника питания для зарядки автомо­бильных аккумуляторов с использованием инвертора, состоя­щего из генератора на однопереходном транзисторе и мощно­го транзисторного ключа. Схема разрабатывалась как малобюджетная с минималь­ным количеством радиодеталей.

                                     Зарядное устройство на импульсном блоке питания

Введение

Конструирование источников питания на силовых трансформа­торах прекратилась еще в про­шлом веке, ввиду больших габари­тов и массы и потерями электро­энергии на нагрев стабилизирую­щих элементов. Разработка мощ­ных высокочастотных транзисто­ров привела к использованию их в легких малогабаритных источни­ках тока с применением ферритовых высокочастотных трансформа­торов, которые позволяют выпол­нить инвертирование энергии в на­грузку на частотах, соизмеримых с длиной радиоволн. Малогабарит­ное исполнение трансформатора инвертора позволило выполнить источники тока карманного габари­та. Как и всем инновациям, импуль­сным источникам тока присущи не­которые недостатки, устранимые схемными решениями. Дальнейшее продвижение новых технологий привело к выполнению инвертора на одном кристалле, с повышени­ем частоты преобразования и уменьшением габаритов до разме­ров спичечного коробка.

Новые технологии зарядки и восстановления аккумуляторов по­зволяют снизить мощность на ре­генерацию пластин, хотя зарядка аккумуляторов в современных ав­томобилях не претерпела суще­ственных изменений, что, как и раньше, приводит аккумуляторы к преждевременной кристаллиза­ции, повышению внутреннего со­противления и ухудшению пуско­вых характеристик.

Трехфазный генератор перемен­ного тока автомобиля при выпрям­лении и стабилизации выходного напряжения не имеет циклической составляющей с определенной скважностью для импульсного ре­жима восстановления аккумулято­ра, возможно, это боязнь повредить электронную начинку автомобиля, аккумулятор в автомобилях заря­жается без снятия крупнокристал­лической сульфатации.

Помехи импульсного источника питания компьютера или иного ус­тройства легко устраняются введе­нием фильтров в блоках питания и подачей энергии в нагрузку при от­ключенном инверторе, то есть при отсутствии преобразования - сни­жении тока преобразования почти до нуля, и устранением паразитных колебаний, вызванных резонансом контура обмоток высокочастотно­го трансформатора.

Для борьбы с этим отрицатель­ным эффектом используется спе­циальный порядок намотки обмо­ток трансформатора с применени­ем внутренних межобмоточных эк­ранов, снижением поверхностного эффекта тока простым расщепле­нием проводников на большее ко­личество с меньшим сечением.

Принцип работы

В однотактный преобразова­тель входит два основных элемен­та - тактовый генератор на однопереходном транзисторе и блокинг-генератор на мощном транзи­сторе. Инвертирование энергии происходит многократно: энергия электросети выпрямляется диод­ным мостом и подается на ключе­вой преобразователь в виде посто­янного напряжения.

Высокочастотный ключ инвер­тора на транзисторе преобразует постоянное напряжение питания в импульсный ток первичной обмот­ки трансформатора. Вторичное на­пряжение выпрямляется и подает­ся на нагрузку.

В обратноходовых инверторах (см. [1]), в период замкнутого состо­яния транзисторного ключа, идет накопление энергии в трансформа­торе. Передача накопленной в трансформаторе энергии в нагруз­ку происходит при нахождении транзисторного ключа в разомкну­том состоянии.

Однополярное намагничивание феррита трансформатора приво­дит к остаточной намагниченности трансформатора после магнитного насыщения магнитопровода.

Для однополярного намагничи­вания важно наличие немагнитно­го зазора в замкнутом магнитопроводе, он уменьшает остаточную магнитную индукцию, в результате чего можно снимать гораздо боль­ший ток нагрузки без насыщения трансформатора.

Энергия, запасенная в трансфор­маторе за время коммутирующего импульса, не всегда успевает рассе­яться за время паузы, это может при­вести к насыщению трансформатора и потере магнитных свойств. Для устранения этого эффекта первич­ная цепь трансформатора шунти­рована быстродействующим дио­дом с реэистивной нагрузкой.

Дополнительное действие ока­зывает отрицательная обратная связь с эмиттера ключевого тран­зистора на его базу через парал­лельный стабилизатор.

Данное решение позволяет ключевому транзистору переклю­чится до насыщения магнитопровода, что снижает его температуру и улучшает рабочее состояние уст­ройства в целом.

Вторичное высокочастотное на­пряжение трансформатора вып­рямляется и подается в нагрузку. Для защиты транзисторного ключа в электронную схему вводятся эле­менты от теплового и электричес­кого пробоя. В момент переключе­ния транзисторного ключа на об­мотке индуктивного реактора воз­никают колебания импульсных на­пряжений, превышающие напряже­ние питания в несколько раз, что может привести к пробою транзис­торного ключа.

В этом случае обязательно ус­танавливается демпфирующий диод для симметрии протекающе­го двухполярного тока.

Управление почти всей мощно­стью преобразования одним тран­зистором требует выполнение не­которых условий его безаварийной работы [2]:

- ограничение базовых и кол­лекторных токов до допустимых пределов;

- отсутствие дефектов в элект­ронных компонентах;

- правильно рассчитанный транс­форматор;

- устранение возможного про­боя импульсными напряжениями преобразователя;

- снижение перегрева ключево­го транзистора;

- переключение ключевого транзистора до момента насыще­ния магнитопровода.

Источником высокочастотных электромагнитных помех [3] явля­ется паразитный высокочастотный резонанс контура, образованного индуктивностью рассеивания и вы­ходной емкостью цепей транзисто­ра и трансформатора, возникаю­щих в процессе преобразования энергии.

Необходимо оптимизировать конструкцию трансформатора для максимального снижения индук­тивности рассеивания, выполнить выбор сечения и количества про­водников, уменьшить собственную емкость трансформатора, правиль­но выбрать транзисторный ключ и элементы кламперной цепи, подав­ляющей выброс обратного напря­жения.

Принципиальная схема

В состав принципиальной схе­мы (рис. 1) входит сетевой выпря­митель напряжения электросети на диодной сборке VD4.

     

  Коммутаци­онные помехи в импульсных источ­никах питания возникают как след­ствие применения переключающе­го режима работы мощных регули­рующих элементов [4]. Для защи­ты сети и преобразователя от им­пульсных помех установлен сете­вой фильтр на двухобмоточном дросселе Т2 с конденсаторами С7, С8, СЮ для подавления несиммет­ричных помех.

 Двухобмоточный дроссель Т2 с синфазно включенными обмотка­ми служит для подавления симмет­ричных помех.

Ограничение зарядного тока конденсатора фильтра С4 выпол­нено на позисторе RT1, сопротив­ление которого падает с повыше­нием температуры корпуса.

Импульсные помехи преобразо­вателя, образованные ключевым транзистором VT2 и обмотками трансформатора Т1, в моменты пе­реключения токов устраняются па­раллельными RC-цепями - VD2, С5, R11 и С6, R13.

Снижение импульсных помех преобразования в низковольтных цепях нагрузки устраняются введе­нием индуктивности L1 в одну из цепей. Длительность пауз между импульсами выходного тока при этом незначительно увеличивает­ся без ухудшения преобразования.

Возможно использование в схе­ме магнитных дросселей из амор­фного сплава.

Двунаправленный индикатор на светодиоде HL1 и цепь стабилит­рона VD1 снижают уровень помех в цепях питания инвертора. Форми­рователь импульсов запуска ин­вертора выполнен на однопереходном транзисторе VT1. Импульсный блокинг-генератор собран на тран­зисторе VT2.

Стабилизация выходного на­пряжения выполняется оптопарой U1, вторичное напряжение, с галь­ваническим разделением, через оптопару автоматически поддер­живает поступление напряжения обратной связи с обмотки 2Т1 на вход транзистора VT2. При подаче сетевого питания напряжение с конденсатора фильтра С4 через обмотку 1Т1 поступает на коллек­тор транзистора VT2 инвертора.

Зарядно-разрядный цикл кон­денсатора С1 создает на резисто­ре R4 последовательность импуль­сов с частотой, зависящей от со­противления резисторов R1, R2 и конденсатора С1.

Конденсатор С2 ускоряет пере­ходный процесс переключения транзистора VT1.

Напряжение питания генерато­ра на однопереходном транзисто­ре стабилизировано диодом VD1. Импульсное напряжение с резисто­ра R4 открывает транзистор VT2 на несколько микросекунд, ток кол­лектора VT2 возрастает до 3-4 А.

Протекание коллекторного тока через обмотку 1Т1 [5] сопровожда­ется накоплением энергии в магнит­ном поле сердечника, после окон­чания положительного импульса ток коллектора прекращается.

Прекращение тока вызывает появление в катушках ЭДС само­индукции, которая создает на вто­ричной обмотке ЗТ2 положитель­ный импульс.

При этом через диод VD5 про­текает положительный ток. Поло­жительный импульс обмотки 2Т1 через резисторы R5, R9, R14 посту­пает на базовый вывод транзисто­ра VT2. Конденсатор СЗ поддержи­вает устойчивость работы блокинг - генератора, и схема переходит в режим автоколебаний. Повышение напряжения нагрузки приводит к открытию светодиода оптопары U1, фотодиод шунтирует сигнал с обмотки 2Т2 на минус источника питания, уровень импульсного на­пряжения на базе транзистора VT2 понижается со снижением зарядно­го тока аккумулятора GB1. Пере­грузка транзистора VT2 токами приводит к увеличению уровня им­пульсного напряжения на резисторе R12 цепи эмиттера, открыванию параллельного стабилизатора на­пряжения на таймере DA1. Шунти­рование импульсного напряжения на входе транзистора VT2 приве­дет к снижению энергии в сердеч­нике трансформатора, вплоть до форсированной остановки режима автоколебаний.

Напряжение отсечки тока тран­зистора VT2 корректируется рези­стором R10.

После устранения сбоя про­изойдет повторный запуск блокинг-генератора от формировате­ля импульсов запуска на транзис­тор VT1.

Выбор высокочастотного транс­форматора зависит от мощности нагрузки.

При эффективном токе нагруз­ки в десять ампер и напряжении вторичной обмотки 16В мощность трансформатора составит 160 Вт. С учетом действия тока заряда на аккумулятор для его восстановле­ния достаточно мощности не более 100 Вт.

Мощность трансформатора на­прямую зависит от частоты автоге­нератора и марки феррита, и при увеличении частоты в десять раз мощность увеличивается почти в четыре раза. Ввиду сложности са­мостоятельного изготовления в схеме использован трансформатор от монитора, возможно использо­вание и от телевизоров.

Рекомендации по самостоятель­ному изготовлению высокочастотно­го трансформатора приведены в [6].

Примерные данные трансфор­матора Т1: Б26М1000 с зазором в центральном стержне, 1-56 вит­ков ПЭВ-2 0,51,2-4 витка ПЭВ-2 0,18, 3 — 14 витков ПЭВ-2 0,31*3.

Наладка

Наладку схемы начинают с про­верки платы печатного монтажа, в цепь разрыва сетевого питания включают лампочку 220 В любой мощности, вместо нагрузки - лам­почку от автомобиля 12 В 20 све­чей. При первом включении и не­исправных деталях сетевая лам­почка загорит ярким светом - ав­томобильная не горит, при исправ­ной схеме сетевая лампочка может гореть слабым накалом, а автомо­бильная ярко.

Яркость лампочки - напряжение нагрузки, можно увеличить или уменьшить резистором R1.

Защита от перегрузки по току устанавливается резистором R10, стабилизация напряжения под мак­симальной нагрузкой регулируется резистором R5.

Резистором R15, при установке иных оптопар, корректируется ток светодиода оптопары U1 в преде­лах 5-6 мА.

При наличии осциллографа удобно проверить работу генерато­ра на транзисторе VT1 с времен­ной подачей на инвертор напряже­ния питания 30-50 В, частоту гене­ратора можно изменить резисто­ром R1 или конденсатором С1.

При слабой обратной связи (ве­лико значение сопротивления ре­зистора R5) или неверном подклю­чении обмотки 2Т2 в режиме блокинг-генератора транзистор VT2 может отключиться от кратковре­менной перегрузки и не работать, повторный запуск произойдет пос­ле повторного включения схемы, обратная связь с обмотки 2Т1 по­зволяет работать схеме в режиме автозапуска и последующего выбо­ра устойчивого состояния работы схемы установкой значения резис­тора R5.

Печатная плата

Печатный монтаж двухсторон­ний, плата размерами 110x65 мм (рис. 2), перемычки расположены со стороны радиокомпонентов.

     

Радиатор ключевого транзисто­ра VT2 использован от северного моста сопроцессора компьютера, бюджетный вентилятор компьютер­ного блока питания можно исполь­зовать по назначению с подключе­нием к источнику питания 13,8 В через резистор 33-56 Ом.

Внешний вид собранного на ма­кетной плате устройства представ­лен на рис. 3.

Рисунок печатной платы (файл zuibp_lay.zip) вы можете загрузить с сайта нашего журнала.

http://www.radioiiga.com

(раздел "Программы")

Литература

1.   С.Косенко. Особенности работы индуктивных элементов в однотактных преобразователях. - Радио, №7, 2005, с.30-32.

2.   В.Старков. Диагностика и ремонт строчной развертки мониторов. - Радиодело, №10-11, 2006, с.74-82.

3.   В.Рентюк. Уменьшение паразитных колебаний в обратноходовых импульсных источниках питания. - Ра­диохобби, №3, 2009, с. 53-56.

4.   М.Дорофеев. Снижение уровня помех от импульсных источников питания. - Радио, №9, 2006, с.38-40.

5.   С.А. Ельяшкевич. Цветные телевизоры ЗУСЦТ. - Радио и связь, 1989 г., с.80.

6.   А.Петров. Индуктивности, дроссели, трансформаторы. Радиолюбитель, №1, 1996, с.13-14.

Творческая лаборатория "Автоматика и телемеханика"

Владимир Коновалов, Александр Вантеев

г. Иркутск-43, а/я 380

Зарядное устройство Li-ion аккумуляторов стандарта 18650 « схемопедия


   Современные Li-ion аккумуляторы имеют высокие массогабаритные показатели и обладают хорошей энергоёмкостью. На данный момент это наиболее эффективные портативные источники тока, способные питать устройства высокой мощности. Данные аккумуляторы появились у меня после поломки ноутбука, а именно я их снял с аккумуляторной батареи, и появился вопрос, как же зарядить эти аккумуляторы? Покупать специализированное зарядное устройство мне как всегда не хотелось, и, решил начать сборку ЗУ для Li-ion аккумуляторов. На рисунке ниже представлена принципиальная схема зарядного устройства, данная схема отличается высокой повторяемостью и надежностью, детали легкодоступные, а главное недорогие.

Для того, чтобы Li-ion аккумуляторы долго служили, необходимо их правильно заряжать. К концу завершения зарядки, напряжение должно уменьшаться, а когда аккумулятор зарядился, т.е. ток заряда станет почти нулевой, зарядка должна остановиться. Данная схема полностью удовлетворяет этим требованиям. Подключенное к нему разряженное АКБ заряжается током ~300ма, к концу заряда ток уменьшается до 30ма и дальше загорается светодиод VD2, который сигнализирует о завершении зарядки.

Светодиод VD1 сигнализирует о работе устройства, VD3 загорается при подключении АКБ.

В схеме используется операционный усилитель LM358N, его аналогом является КР1040УД1. Но если под рукой не окажется ни того ни другого, можно заменить на КР574УД2, только расположение выводов у него отличается. Транзистор VT1 S8550 или любой другой подходящий по параметрам. Светодиоды на напряжение 1,5 вольт, красного, зеленого и желтого цветов. Схема после сборки наладки не требует и начинает работать сразу. Среднее время зарядки аккумулятора 18650 емкостью 2200мА*час – 2 часа.

Данная статья является дополненной версией статьи USB зарядка Li-ion аккумуляторов на ОУ LM358

Скачать печатную плату в формате Lay и PDF

Автор: Романов А.С. (г. Чебоксары)

Зарядное устройство для шуруповерта можно сделать своими руками

Шуруповерт есть в каждом доме, где выполняются элементарный ремонт. Любому электроприбору требуется стационарное электричество или блок питания. Поскольку наиболее популярными являются аккумуляторные шуруповерты — требуется еще и зарядник.

Он идет в комплекте с дрелью, и как любой электроприбор может выйти из строя. Чтобы вы не столкнулись с проблемой неработающего оборудования, изучим общее описание зарядных устройств для шуруповерта.

Виды зарядников

Аналоговые со встроенным блоком питания

Их популярность обусловлена низкой стоимостью. Если дрель (шуруповерт) не предназначена для профессионального использования, продолжительность работы — не самый первый вопрос. Задача простого зарядника — получить постоянное напряжение с достаточной для зарядки аккумулятора токовой нагрузкой.

Важно! Для начала заряда, напряжение на выходе блока питания должно быть выше номинального значения аккумулятора.

Работает такая зарядка по принципу обычного стабилизатора. Для примера рассмотрим схему зарядника для аккумулятора на 9-11 вольт. Тип батарей не имеет значения.

Такой блок питания (он же зарядник) можно собрать своими руками. Спаять схему можно на универсальной монтажной плате. Для рассеивания тепла микросхемы стабилизатора, достаточно медного радиатора площадью 20 см².

Обратите внимание

Стабилизаторы такого типа работают по компенсационному принципу — лишняя энергия отводится в виде тепла.

Входной трансформатор (Тр1) понижает переменное напряжение 220 вольт до значения 20 вольт. Мощность трансформатора рассчитывается по току и напряжению на выходе зарядного устройства.

Далее переменный ток выпрямляется при помощи диодного моста VD1. Обычно производители (особенно китайские) используют сборку диодов Шоттки.

После выпрямления ток будет пульсирующим, это вредно для нормального функционирования схемы. Пульсации сглаживаются фильтрующим электролитическим конденсатором (С1).

Роль стабилизатора выполняет микросхема КР142ЕН, на радиолюбительском слэнге — «кренка». Для получения напряжения 12 вольт, индекс микросхемы должен быть 8Б. Управление собрано на транзисторе (VT2) и подстроечных резисторах.

Автоматика на подобных устройствах не предусмотрена, время зарядки аккумулятора определяет пользователь. Для контроля заряда собрана несложная схема на транзисторе (VT1) и диоде (VD2). При достижении напряжения заряда, индикатор (светодиод HL1) гаснет.

Более продвинутые системы имеют в своем составе коммутатор, отключающий напряжение по окончанию заряда в виде электронного ключа.

В комплекте с шуруповертами эконом класса (произведенными в Поднебесной), встречаются зарядники и попроще. Немудрено, что процент выхода из строя довольно высок.

У владельца появляется перспектива остаться с относительно новым неработоспособным шуруповертом. По приложенной схеме вы сможете собрать зарядное устройство для шуруповерта своими руками, которое прослужит дольше фабричного.

Меняя трансформатор и стабилизатор, вы сможете подобрать необходимое значение для вашего аккумулятора.

Аналоговые с внешним блоком питания

Сама по себе схема зарядного устройства примитивна, насколько это возможно. В комплект входит сетевой блок питания, и собственно зарядник, в корпусе фиксаторе модуля аккумуляторных батарей.

Блок питания рассматривать нет смысла, его схема стандартная – трансформатор, диодный мост, конденсаторный фильтр и выпрямитель. На выходе, как правило, 18 вольт, для классических 14 вольтовых аккумуляторных батарей.

Плата управления зарядом занимает площадь спичечного коробка:

Как правило, никакого теплоотвода на таких сборках нет, разве что нагрузочный резистор большой мощности. Поэтому подобные устройства часто выходят из строя. Возникает вопрос: как зарядить шуруповерт без зарядного устройства?

Решение простое для человека, умеющего держать в руках паяльник:

  • Первое условие – наличие источника питания. Если «родной» блок исправен, достаточно собрать несложную схему управления. В случае выхода из строя всего комплекта – можно использовать блок питания для ноутбука. На выходе требуемые 18 вольт. Мощности такого источника хватит за глаза для любого комплекта аккумуляторов
  • Второе условие – элементарные навыки сборки электросхем. Детали самые доступные, можно выпаять из старой бытовой техники, или купить на радиорынке буквально за копейки.

Принципиальная схема блока управления:

На входе стабилитрон на 18 вольт. Схема управления на транзисторе KT817, усиление обеспечивает мощный транзистор КТ818. Его необходимо снабдить радиатором. В зависимости от тока заряда, не нем может рассеиваться до 10 Вт, поэтому потребуется радиатор площадью 30-40 см².

Именно экономия «на спичках» делает китайские зарядники такими ненадежными. Подстроечник 1 КОм необходим для точной установки тока заряда. Резистор 4,7 Ом, стоящий на выходе цепи, также должен рассеивать достаточно тепла. Мощность не менее 5 Вт. Об окончании заряда оповестит светодиодный индикатор, он погаснет.

Собранную схему легко разместить в корпус штатной зарядки. Радиатор транзистора выносить не обязательно, главное обеспечить циркуляцию воздуха внутри корпуса.

Экономия заключается в том, что блок питания от ноутбука, по прежнему используется по назначению.

Важно! Общий недостаток аналоговых зарядных устройств – долгий процесс заряда.

Для бытового шуруповерта это не страшно. Оставил заряжаться на ночь перед началом работ – на сборку шкафа хватит. Среднее время заряда китайской аккумуляторной дрели – 3-5 часов.

Импульсные

Переходим к тяжелому вооружению. Профессиональные шуруповерты используются интенсивно, и простой в работе по причине разряженного аккумулятора недопустим. Ценовой вопрос опускаем, любая серьезная техника стоит дорого. Тем более что в комплекте обычно два аккумулятора. Пока один в работе – второй на подзарядке.

Импульсный блок питания в комплекте с интеллектуальной схемой управления зарядом, заполняет батарею на 100% буквально за 1 час. Можно собрать и аналоговый зарядник с такой же мощностью. Но его вес и размеры будут сопоставимы с шуруповертом.

Всех этих недостатков лишены импульсные зарядники. Компактный размер, высокие токи заряда, продуманная защита. Проблема одна: сложность схемы, и как следствие – высокая цена. Тем не менее, можно собрать и такое устройство. Экономия минимум в 2 раза.

Предлагаем вариант для «продвинутых» никель кадмиевых аккумуляторов, снабженных третьим сигнальным контактом.

Схема собрана на популярном контроллере MAX713. Предложенная реализация рассчитана на входное напряжение 25 вольт постоянного тока. Собрать такой источник питания не сложно, поэтому его схему опускаем.

Зарядное устройство интеллектуально. После проверки уровня напряжения, запускается режим ускоренного разряда (для предотвращения эффекта памяти). Заряд происходит за 1-1,15 часа.

Особенностью схемы является возможность выбора напряжения заряда и типа батарей. В описании на рисунке указано положение перемычек и значение резистора R19 для смены режимов.

Если фирменная зарядка профессионального шуруповерта выйдет из строя – вы сможете сэкономить на ремонте, собрав схему своими руками.

Блок питания для шуруповерта – схема и порядок сборки

Многим знакома ситуация: шуруповерт жив-здоров, а блок аккумуляторов приказал долго жить. Есть масса способов восстановления АКБ, но не всем нравится возиться с токсичными элементами.

Как использовать электроприбор

Ответ прост: подключить внешний блок питания. Если у вас типичный китайский прибор с аккумуляторами 14,4 вольта – можно использовать автомобильный аккумулятор (удобно для работы в гараже). А можно подобрать трансформатор с выходом 15-17 вольт, и собрать полноценный БП.

Набор деталей самый недорогой. Выпрямитель (диодный мост) и термостат для защиты от перегрева. Остальные элементы имеют сервисную задачу – индикация входного и выходного напряжения. Стабилизатор не требуется – электродвигатель вашего шуруповерта не такой требовательный, как аккумулятор.

Обратите внимание

Как видите, оживить аккумуляторную дрель не так уж и сложно. Главное не принимать поспешного решения: «выбросить и купить новый электроприбор»

Если у вас полностью вышли из строя аккумуляторы шуруповерта, то вы можете переделать его на сетевой как сделать такой блок питания смотрите в этом видео

Тут можете скачать печатную плату в формате lay

Так выглядит схема переделки зарядного устройства.

About sposport

View all posts by sposport

Схемы импульсных зарядных устройств для шуруповертов. Универсальная зарядка для аккумулятора шуруповерта. Напряжение заряда и форм-фактор

Шуруповерт - инструмент, который есть почти у каждого домашнего мастера. Как и другие электрические приборы, он требует подключения к сети либо аккумулирует заряд. Наиболее распространен последний вариант. Для подпитки съемного аккумулятора нужно зарядное устройство. Обычно оно есть в наборе. Однако, как и любое другое устройство, зарядка для шуруповерта не застрахована от поломки. Чтобы восстановить работоспособность инструмента, придется приобрести замену или сделать его самостоятельно.

Виды

Существует множество зарядок, подходящих для определенных марок и моделей инструментов. Все их можно разбить на основные виды.

Аналоговые со встроенным блоком питания

Аналоговые со встроенным блоком питания - довольно востребованы. Это объясняется невысокой стоимостью . Обычно не относятся к профессиональному оборудованию, быстро выходят из строя и «не хватают звезд с неба». Минимальная задача, которую, как правило, ставят их производители - получить постоянное напряжение и токовую нагрузку, необходимую для работы.

Устройства работают по принципу стабилизатора . Можно сделать самостоятельно, используя приведенную схему. Для работы нужно запомнить:

  1. Напряжение на выходе блока-зарядки - больше номинала батареи.
  2. Подходит любой тип аккумулятора.
  3. Можно использовать обычную монтажную плату.
  4. Такие стабилизаторы применяют компенсационный принцип: ненужная энергия, тепло отводится. Для его рассеивания можно взять, например, медный радиатор. Площадь - 20 см².
  5. Трансформатор на входе (Тр1) изменяет напряжение с 220 до 20 В. Его мощность определяется по току и напряжению на выходе.
  6. Ток выпрямляется диодным мостом (VD1).
  7. Можно позаимствовать решение производителей: сборку диодов Шоттки.
  8. После выпрямления ток - пульсирующий, что вредно. Для сглаживания нужен электролитический конденсатор (С1).
  9. В качестве стабилизатора идет КР142ЕН. Для 12 В ее индекс - 8Б.
  10. Управление - на основе транзистора (VT2) и резисторов (подстроечных).
  11. Автоматическое отключение после зарядки обычно не предусматривается. Придется самостоятельно определять необходимое время. Как вариант, можно использовать цепь, включающую диод (VD2), транзистор (VT1). После зарядки светодиод (HL1) тухнет. Есть и более серьезные варианты с коммутатором и электронным ключом, отключающиеся автоматически.

Если инструмент - бюджетный, схема его «родного» зарядника может быть проще. Неудивительно, что такие изделия быстро выходят из строя. Иногда без зарядки остается сравнительно новый шуруповерт. Используя рассмотренную выше схему, можно ответственно подойти к вопросу и устройство, скорее, прослужит дольше покупного. Подходящие трансформатор и стабилизатор определяются индивидуально для конкретного шуруповерта.

Аналоговые с внешним блоком, как видно из названия, состоят:

Блок - обычный, включает:

  • трансформатор;
  • диодный мост;
  • выпрямитель;
  • конденсаторный фильтр.

В фабричных сборках обычно нет теплоотвода . Его роль может выполнять резистор повышенной мощности. Одна из типичных причин поломок - в тепловом режиме.

Чтобы исправить ситуацию, для начала нужно выяснить, работает ли источник питания. Если функционирует, его дополняют схемой управления, если нет - ищется другой. Вполне подойдет, например, от ноутбука. Он имеет 18 В на выходе, что вполне достаточно. Остальные детали обычно найти не составляет труда. Они очень мало стоят, можно позаимствовать из другой техники.

Схема блока управления представлена ниже. Используется транзистор KT817, для усиления - КТ818. Нужен радиатор . Примерная площадь - 30−40 см². Здесь будет рассеиваться до 10 Вт

Многие китайские производители пытаются экономить буквально на каждой мелочи. Этого нужно избегать, если нужно более или менее достойное качество. В самодельной схеме есть подстроечник на 1 кОм. Он нужен для точной установки тока. На выходе - резистор на 4,7 Ом. Он рассеивает тепло. Светодиод оповестит об окончании зарядки

Полученная плата управления - примерно со спичечный коробок. Она вполне уместится в заводской коробке. Радиатор для транзистора выносить наружу нет необходимости. Достаточно движения воздуха внутри корпуса

Импульсные

Аналоговые устройства долго заряжаются: в среднем - 3−5 часов. Хотя для бытовых целей это не страшно. Другое дело - профессиональная сфера, где «время - деньги». Стоит такая продукция - соответствующе, в наборе обычно два аккумулятора.

Профессионалы чаще используют импульсные зарядные устройства. Они обладают интеллектуальной схемой управления процессом . Время полной зарядки впечатляет: около одного часа. Конечно, можно сделать такой же быстрый аналоговый зарядник, но тогда впечатлять будут его вес и размеры.

Импульсные устройства компактны и безопасны. Высокие качества требуют продуманной, сложной схемы. Однако можно повторить и ее. Схема ниже подходит для работы с никель-кадмиевыми аккумуляторами с третьим сигнальным контактом.

Применяется известный контроллер MAX713. Входное напряжение -25 В. Источник питания - простой , поэтому его схемы здесь нет.

Полученное в итоге зарядное для шуруповерта «отличается умом и сообразительностью». Оно проверяет напряжение и включает режим ускоренного заряда. Аккумулятор готов примерно через 1−1,5 часа. Схема позволяет выбирать:

  • напряжение заряда;
  • тип батареи.

На ней указано значение резистора (R 19) для переключения режимов и положение перемычек. Используя предложенный рисунок, можно отремонтировать поломку. Дополнительным стимулом станет финансовый вопрос. Экономия как минимум в два раза.

Зарядка при неисправном аккумуляторе

Иногда бывает так, что сам шуруповерт работает, но сломался аккумулятор. Есть несколько вариантов решения проблемы:

Модели с разным напряжением

Мало определиться с типом зарядника и маркой производителя, для приобретения нужно знать еще напряжение своего шуруповерта. Самые распространенные варианты - 12, 14 и 18 В.

Зарядки на 12 В

Цепь может состоять из транзисторов до 4,4 пФ. Это видно на схеме зарядного устройства для шуруповерта 12 вольт. Проводимость в цепи - 9 мк. Конденсаторы нужны , чтобы контролировать скачки тактовой частоты. Применяемые резисторы - обычно полевые. У зарядных устройств на тетродах есть дополнительный фазовый резистор. Он защищает от электромагнитных колебаний.

Зарядки на 12 В работают с сопротивлением до 30 Ом. Нередко их можно встретить на аккумуляторах на 10 мАч. Среди известных производителей чаще применяет Makita.

Зарядки на 14 В

На схеме видно, что для зарядок на 14 В нужно пять транзисторов. Другие особенности цепи:

  • микросхема подходит только четырехканальная;
  • конденсаторы - импульсные;
  • для работы с аккумуляторами на 12 мАч нужны тетроды;
  • два диода;
  • проводимость - около 5 мк;
  • средняя емкость резистора - не более 6,3 пФ.

Устройства, созданные по схеме, выдерживают ток до 3,3 А. Триггеры включаются в цепь редко. Исключением является продукция Bosch. У изделий Makita триггеры с успехом заменяются волновыми резисторами.

Зарядки на 18 В

Зарядное устройство для шуруповерта 18 вольт использует в схеме лишь транзисторы переходного типа. К другим особенностям изделий относятся:

  • три конденсатора;
  • тетрод и диодный мост;
  • сеточный триггер;
  • проводимость тока - около 5,4 мк, иногда для ее увеличения применяются хроматические резисторы.

Использование трансиверов повышенной проводимости является особенностью отечественной компании «Интерскол». Токовая нагрузка может доходить до 6 А. Makita часто использует в своих моделях дипольные транзисторы высокого качества.

Какой бы производитель шуруповерта ни был выбран, проблему с заменой зарядного устройства можно легко решить. Для этого достаточно хотя бы знать некоторые особенности своего инструмента.

Емкость их в среднем составляет 12 мАч. Для того чтобы устройство всегда оставалось в рабочем состоянии, необходимо зарядное устройство. Однако по напряжению они довольно сильно отличаются.

В наше время выпускаются модели на 12, 14 и 18 В. Также важно отметить, что производители применяют различные комплектующие элементы для зарядных устройств. Для того чтобы разобраться в этом вопросе, следует взглянуть на стандартную схему зарядного.

Схема зарядки

Стандартная электрическая схема зарядного устройства шуруповерта включает в себя микросхему трехканального типа. В данном случае транзисторов для модели на 12 В потребуется четыре. По емкости они могут довольно сильно отличаться. Для того чтобы устройство могло справляться с высокой тактовой частотой, на микросхеме крепятся конденсаторы. Они для зарядок используются как импульсного, так и переходного типа. В данном случае важно учитывать особенности конкретных аккумуляторных батарей.

Непосредственно тиристоры используются в устройствах для стабилизации тока. В некоторых моделях установлены тетроды открытого типа. По проводимости тока они отличаются между собой. Если рассматривать модификации на 18 В, то там часто имеются дипольные фильтры. Указанные элементы позволяют с легкость справляться с перегрузками в сети.

Модификации на 12В

На 12 В шуруповерта (схема показана ниже) представляет собой набор транзисторов емкостью до 4.4 пФ. В данном случае проводимость в цепи обеспечивается на уровне 9 мк. Для того чтобы тактовая частота резко не повышалась, применяются конденсоры. Резисторы у моделей используются в основном полевые.

Если говорить про зарядки на тетродах, то там дополнительно имеется фазовый резистор. С электромагнитными колебаниями он справляется хорошо. Отрицательное сопротивление зарядками на 12 В выдерживается в 30 Ом. Используются они чаще всего для аккумуляторных батарей на 10 мАч. На сегодняшний день они активной применяются в моделях торговой марки "Макита".

Зарядные устройства на 14 В

Схема зарядного устройства для шуруповерта на 14 В транзисторов в себя включает пять штук. Непосредственно микросхема для преобразования тока подходит лишь четырехканального типа. Конденсаторы у моделей на 14 В используются импульсные. Если говорить про батареи с емкостью в 12 мАч, то там дополнительно устанавливаются тетроды. В данном случае диодов на микросхеме предусмотрено два. Если говорить про параметры зарядок, то проводимость тока в цепи, как правило, колеблется в районе 5 мк. В среднем емкость резистора в цепи не превышает 6.3 пФ.

Непосредственно нагрузки тока зарядки на 14 В способны выдерживать в 3.3 А. Триггеры в таких моделях устанавливаются довольно редко. Однако если рассматривать шуруповерты торговой марки "Бош", то там они используются часто. В свою очередь у моделей "Макита" они заменяются волновыми резисторами. С целью стабилизации напряжения они подходят хорошо. Однако частотность зарядки может изменяться сильно.

Схемы моделей на 18 В

На 18 В схема зарядного устройства для шуруповерта предполагает использование транзисторов только переходного типа. Конденсаторов на микросхеме имеется три. Непосредственно тетрод устанавливается с Для стабилизации предельной частоты в устройстве применяется сеточный триггер. Если говорить про параметры зарядки на 18 В, то следует упомянут о том, что проводимость тока колеблется в районе 5.4 мк.

Если рассматривать зарядки для шуруповертов компании "Бош", то данный показатель может быть выше. В некоторых случаях для улучшения проводимости сигнала применяются хроматические резисторы. В данном случае емкость конденсаторов не должна превышать 15 пФ. Если рассматривать зарядные устройства торговой марки "Интерскол", то в них трансиверы используются с повышенной проводимостью. В данном случае параметр максимальной токовой нагрузки может доходить до 6 А. В конце следует упомянуть об устройствах компании "Макита". Многие из аккумуляторных моделей оснащаются качественными дипольными транзисторами. С повышенным отрицательным сопротивлением они справляются хорошо. Однако проблемы в некоторых случаях возникают с магнитными колебаниями.

Зарядные устройства "Интрескол"

Стандартное зарядное устройство шуруповерта "Интерскол" (схема показана ниже) включает в себя двуканальную микросхему. Конденсаторы подбираются для нее все с емкостью в 3 пФ. В данном случае транзисторы у моделей на 14 В используются импульсного типа. Если рассматривать модификации на 18 В, то там можно встретить переменные аналоги. Проводимость у данных устройств способна доходить до 6 мк. В данном случае батареи используются в среднем на 12 мАч.

Схема для модели "Макита"

Схема зарядного устройства имеет микросхему трехканального типа. Всего транзисторов в цепи предусмотрено три. Если говорить про шуруповерты на 18 В, то в данном случае конденсаторы устанавливаются с емкостью 4.5 пФ. Проводимость обеспечивается в районе 6 мк.

Все это позволяет снять нагрузку с транзисторов. Непосредственно тетроды применяются открытого типа. Если говорить про модификации на 14 В, то зарядки выпускаются со специальными триггерами. Данные элементы позволяют отлично справляться с повышенной частотностью устройства. При этом скачки в сети им не страшны.

Устройства для зарядки шуруповертов "Бош"

Стандартная шуруповерта "Бош" включает в себя микросхему трехканального типа. В данном случае транзисторы имеются импульсного типа. Однако если говорить про шуруповерты на 12 В, то там установлены переходные аналоги. В среднем пропускная способность у них имеется на уровне 4 мк. Конденсаторы в устройствах применяются с хорошей проводимостью. Диодов у зарядок представленного бренда имеется два.

Триггеры в устройствах используются только на 12 В. Если говорить про систему защиты, то трансиверы применяются лишь открытого типа. В среднем токовую нагрузку они способны переносить в 6 А. В данном случае отрицательное сопротивление в цепи не превышает 33 Ом. Если отдельно говорить про модификации на 14 В, то выпускаются они под батареи на 15 мАч. Триггеры не используются. При этом конденсаторов в схеме имеется три.

Схема для модели "Скил"

Схема зарядного устройства включает в себя трехканальную микросхему. В данном случае модели на рынке представлены на 12 и 14 В. Если рассматривать первый вариант, то транзисторы в цепи используются импульсного типа. Приводимость тока у них равняется не более 5 мк. В данном случае триггеры во всех конфигурациях используются. В свою очередь тиристоры применяются только для зарядок на 14 В.

Конденсаторы у моделей на 12 В устанавливаются с варикапом. В данном случае больших перегрузок они не способны выдержать. При этом транзисторы перегреваются довольно быстро. Непосредственно диодов в зарядке на 12 В имеется три.

Применение регулятора LM7805

Схема зарядного устройства для шуруповерта с регулятором LM7805 включает в себя только двухканальные микросхемы. Конденсаторы используются на ней с емкостью от 3 до 10 пФ. Встретить регуляторы данного типа чаще всего можно у моделей торговой марки "Бош". Непосредственно для зарядок на 12 В они не подходят. В данном случае параметр отрицательного сопротивления в цепи доходит до 30 Ом.

Если говорить про транзисторы, то они у моделей применяются импульсного типа. Триггеры для регуляторов использоваться могут. Диодов в цепи предусмотрено три. Если говорить про модификации на 14 В, то тетроды для них подходят лишь волнового типа.

Использование транзисторов BC847

Схема зарядного устройства для шуруповерта на транзисторах BC847 является довольно простой. Используются указанные элементы чаще всего компанией "Макита". Подходят они для аккумуляторов на 12 мАч. В данном случае микросхемы используются трехканального типа. Конденсаторы применяются с двоенными диодами.

Непосредственно триггеры используются открытого типа, а проводимость тока у них находится на уровне 5.5 мк. Всего транзисторов для зарядки в 12 В потребуется три. Один из них устанавливается у конденсаторов. Остальные в данном случае находятся за опорными диодами. Если говорить про напряжение, то зарядки на 12 В перегрузки с данным транзисторами способны переносить в 5 А.

Устройство на транзисторах IRLML2230

Схемы зарядки с транзисторами данного типа встречаются довольно часто. Компания "Интрескол" использует их в модификациях на 14 и 18 В. В данном случае микросхемы применяются только трехканального типа. Непосредственно емкость указанных транзисторов равняется 2 пФ.

Перегрузки тока от сети они переносят хорошо. В данном случае показатель проводимости в зарядках не превышает 4 А. Если говорить про другие компоненты, то конденсаторы устанавливаются импульсного типа. В данном случае их потребуется три. Если говорить про модели на 14 В, то в них тиристоры для стабилизации напряжения имеются.

Содержание:

Все шуруповерты, работающие от аккумуляторов комплектуются зарядными устройствами. Однако некоторые из них очень медленно выполняют зарядку аккумулятора, что при интенсивном использовании инструмента создает определенные неудобства. В этом случае даже два аккумулятора, входящие в комплект, не позволяют настроить нормальный рабочий цикл. Наилучшим выходом из подобной ситуации будет зарядное для шуруповерта, изготовленное своими руками, по наиболее подходящей схеме.

Устройство шуруповерта

Несмотря на разнообразие моделей, общее устройство шуруповертов довольно универсальное, а принцип действия практически одинаковый. Они могут различаться только внешним видом, компоновкой отдельных деталей, наличием или отсутствием дополнительных функций.

Питание шуруповертов может быть сетевым от напряжения 220В или аккумуляторным. Общая конструкция шуруповерта включает следующие элементы и составляющие:

  • Корпус. Изготавливается из твердых пластмасс, что способствует облегчению конструкции и снижению себестоимости. В некоторых моделях применяются металлические сплавы, придающие конструкции повышенную прочность. Представляет собой пистолет с удобной рукояткой, при разборке разделяется на две половинки.
  • Патрон. В нем закрепляются насадки, которым затем передается вращательное движение. Обычно используется трехкулачковое, самозажимное и самоцентрирующееся устройство. Внутри имеется шестигранное углубление, куда вставляется хвостовик насадки. Для закрепления в патроне насадки вставляются между кулачками и зажимаются вращением муфты.
  • Электрическая часть. Состоит из малогабаритного электрического . В устройствах, работающих от сети используются двухфазные двигатели переменного тока, рассчитанные на 220В. Их запуск осуществляется с помощью пускового конденсатора. В аккумуляторных шуруповертах устанавливаются электродвигатели постоянного тока. Постоянный ток поступает от аккумулятора, выполненного в виде набора элементов, объединенных в общем корпусе. Мощность шуруповерта определяется по выходному напряжению батареи.
  • Элементы цепи. Для включения используется специальная кнопка, расположенная на рукоятке. Обычно кнопочные выключатели работают в паре с регуляторами напряжения. То есть, величина напряжения, подаваемого на двигатель, зависит от усилия, прилагаемого при нажатии кнопки. Здесь же устанавливается и рычаг переключения, обеспечивающий реверс вращения вала за счет изменения полярности электрического сигнала. От кнопки сигнал поступает непосредственно на ротор через коллектор. Электрический контакт обеспечивается графитными щетками определенных размеров.
  • Механические части и детали. Основой конструкции является редуктор планетарного типа, с помощью которого крутящий момент передается от вала к выходному шпинделю. В качестве дополнительных элементов используются водило, кольцевая шестерня и сателлиты. Все детали находятся внутри корпуса и по очереди взаимодействуют друг с другом.

Важной составной частью считается муфта регулировки вращения, устанавливающая определенный крутящий момент. С ее помощью прекращается вращение вала после вкручивания шурупа. Остановка происходит из-за увеличения сопротивления вращению. Данная мера предотвращает срыв резьбовой части шурупа и выход из строя самого шуруповерта.

Схемы зарядных устройств для шуруповертов

В одних и тех же шуруповертах могут использоваться различные типы аккумуляторов, отличающихся параметрами и техническими характеристиками. В связи с этим, к ним требуются разные зарядные устройства. Поэтому перед тем как приобрести или сделать зарядник для шуруповерта своими руками, нужно определить тип батареи и условия эксплуатации. Кроме того, рекомендуется изучить основные схемы, чаще всего используемые в зарядных устройствах.

Зарядка на микроконтроллере. Размещается в обычном корпусе, оборудована звуковой и световой сигнализацией о начале и окончании заряда. Данная схема обеспечивает корректную зарядку батареи. В начале работы загораются а затем гаснут светодиоды. Индикация сопровождается звуковым сигналом. Таким образом выполняется тестирование работоспособности устройства. После этого светодиод красного цвета начинает равномерно мигать, что указывает на нормальный процесс зарядки.

По достижении аккумулятором полного заряда, красный светодиод перестает мигать, а вместо него загорается зеленый, сопровождающийся звуковым сигналом. Это означает, что зарядка окончена.

Установка уровня напряжения, который должен быть при полной зарядке, осуществляется с помощью переменного резистора. При этом значение входного напряжения равно напряжению полностью заряженной батареи плюс один вольт. В схеме используется любой , имеющий Р-канал и наиболее подходящий по токовым характеристикам.

Для того чтобы обеспечить зарядку на уровне 14В, напряжение, подаваемое на вход должно составлять не менее 15-16В. Порог срабатывания, отключающий зарядное устройство, устанавливается с помощью переменного резистора на уровне 14,4В. Сам процесс зарядки протекает в виде импульсов, отображаемых на светодиоде. В промежутках между импульсами контролируется напряжение на батарее и по достижении нужного значения происходит подача звукового сигнала совместно с миганием светодиода об окончании зарядки.

Существуют и другие схемы зарядных устройств. Например, зарядка для дрели-шуруповерта работает с напряжением 18 вольт. При зарядке батареи на 14,4В зарядный ток подбирается с помощью резистора.

Зарядка для шуруповерта своими руками

Проблема собственноручного изготовления зарядного устройства возникает не так уж и часто, в связи с большим количеством вариантов, подходящих практически для всех моделей шуруповертов. Просто иногда возникают ситуации, когда зарядка отсутствует, или она неожиданно вышла из строя, а приобрести новую нет возможности. В этом случае можно попытаться самостоятельно изготовить зарядное устройство.

Предварительно следует запастись всеми необходимыми материалами. Потребуется батарея в нерабочем состоянии, стакан от аккумулятора, паяльник, термопистолет, обычная крестовая отвертка, дрель и острый нож со сменными лезвиями. После этого можно приступать к изготовлению зарядного устройства. В первую очередь выполняется вскрытие зарядного стакана, после этого от клемм отпаиваются все проводники. Далее производится удаление внутренней электроники. При выполнении этой операции нужно соблюдать полярность клемм, чтобы в дальнейшем не возникло путаницы и ошибок.

Корпус нерабочей батареи нужно вскрыть и аккуратно отпаять провода от клемм. Для дальнейшей работы потребуется разъем и верхняя крышка. Плюс и минус на клеммах отмечаются карандашом или маркером. В основании зарядного стакана намечаются отверстия, через которые будет крепиться заготовленная крышка и выводы питающих проводов. Проводники аккуратно пропускаются через отверстия с соблюдением полярности, после чего они соединяются с клеммами и разъемами методом пайки.

Далее корпус нужно скрепить специальным термоклеем, крепление нижней крышки к основанию стакана осуществляется с помощью саморезов. Получившуюся конструкцию нужно вставить в аккумулятор и начинать процесс зарядки. Мигающий индикатор будет указывать на правильную сборку устройства. Лишь немногие зарядники укомплектованы так называемыми умными системами, существенно продлевающими срок эксплуатации батареи. Эту проблему может решить зарядное устройство для шуруповерта 18 вольт.

В конструкцию обычной зарядки добавляется система стабилизации напряжения и ограничение заряжающего тока. В итоге получается конструкция никель-кадмиевого аккумулятора, емкость которого составляет 1200 мАч. Зарядка будет выполняться в безопасном режиме, максимальным током не выше 120 мА, но времени для этого будет затрачиваться больше, чем обычно.

Шуруповерт есть в каждом доме, где выполняются элементарный ремонт. Любому электроприбору требуется стационарное электричество или блок питания. Поскольку наиболее популярными являются аккумуляторные шуруповерты — требуется еще и зарядник.

  • 1 Виды зарядников
    • 1.1 Аналоговые со встроенным блоком питания
    • 1.2 Аналоговые с внешним блоком питания
    • 1.3 Импульсные
  • 2 Блок питания для шуруповерта – схема и порядок сборки
    • 2.1 Как использовать электроприбор

Он идет в комплекте с дрелью, и как любой электроприбор может выйти из строя. Чтобы вы не столкнулись с проблемой неработающего оборудования, изучим общее описание зарядных устройств для шуруповерта.

Виды зарядников

Аналоговые со встроенным блоком питания

Их популярность обусловлена низкой стоимостью. Если дрель (шуруповерт) не предназначена для профессионального использования, продолжительность работы — не самый первый вопрос. Задача простого зарядника — получить постоянное напряжение с достаточной для зарядки аккумулятора токовой нагрузкой.

Важно! Для начала заряда, напряжение на выходе блока питания должно быть выше номинального значения аккумулятора.

Работает такая зарядка по принципу обычного стабилизатора. Для примера рассмотрим схему зарядника для аккумулятора на 9-11 вольт. Тип батарей не имеет значения.

Такой блок питания (он же зарядник) можно собрать своими руками. Спаять схему можно на универсальной монтажной плате. Для рассеивания тепла микросхемы стабилизатора, достаточно медного радиатора площадью 20 см?.

Обратите внимание Стабилизаторы такого типа работают по компенсационному принципу — лишняя энергия отводится в виде тепла.

Входной трансформатор (Тр1) понижает переменное напряжение 220 вольт до значения 20 вольт. Мощность трансформатора рассчитывается по току и напряжению на выходе зарядного устройства. Далее переменный ток выпрямляется при помощи диодного моста VD1. Обычно производители (особенно китайские) используют сборку диодов Шоттки.


После выпрямления ток будет пульсирующим, это вредно для нормального функционирования схемы. Пульсации сглаживаются фильтрующим электролитическим конденсатором (С1).

Роль стабилизатора выполняет микросхема КР142ЕН, на радиолюбительском слэнге — «кренка». Для получения напряжения 12 вольт, индекс микросхемы должен быть 8Б. Управление собрано на транзисторе (VT2) и подстроечных резисторах.

Автоматика на подобных устройствах не предусмотрена, время зарядки аккумулятора определяет пользователь. Для контроля заряда собрана несложная схема на транзисторе (VT1) и диоде (VD2). При достижении напряжения заряда, индикатор (светодиод HL1) гаснет.

Более продвинутые системы имеют в своем составе коммутатор, отключающий напряжение по окончанию заряда в виде электронного ключа.

В комплекте с шуруповертами эконом класса (произведенными в Поднебесной), встречаются зарядники и попроще. Немудрено, что процент выхода из строя довольно высок. У владельца появляется перспектива остаться с относительно новым неработоспособным шуруповертом. По приложенной схеме вы сможете собрать зарядное устройство для шуруповерта своими руками, которое прослужит дольше фабричного. Меняя трансформатор и стабилизатор, вы сможете подобрать необходимое значение для вашего аккумулятора.

Аналоговые с внешним блоком питания

Сама по себе схема зарядного устройства примитивна, насколько это возможно. В комплект входит сетевой блок питания, и собственно зарядник, в корпусе фиксаторе модуля аккумуляторных батарей.

Блок питания рассматривать нет смысла, его схема стандартная – трансформатор, диодный мост, конденсаторный фильтр и выпрямитель. На выходе, как правило, 18 вольт, для классических 14 вольтовых аккумуляторных батарей.

Плата управления зарядом занимает площадь спичечного коробка:


Как правило, никакого теплоотвода на таких сборках нет, разве что нагрузочный резистор большой мощности. Поэтому подобные устройства часто выходят из строя. Возникает вопрос: как зарядить шуруповерт без зарядного устройства?

Решение простое для человека, умеющего держать в руках паяльник.

  • Первое условие – наличие источника питания. Если «родной» блок исправен, достаточно собрать несложную схему управления. В случае выхода из строя всего комплекта – можно использовать блок питания для ноутбука. На выходе требуемые 18 вольт. Мощности такого источника хватит за глаза для любого комплекта аккумуляторов
  • Второе условие – элементарные навыки сборки электросхем. Детали самые доступные, можно выпаять из старой бытовой техники, или купить на радиорынке буквально за копейки.

Принципиальная схема блока управления:

На входе стабилитрон на 18 вольт. Схема управления на транзисторе KT817, усиление обеспечивает мощный транзистор КТ818. Его необходимо снабдить радиатором. В зависимости от тока заряда, не нем может рассеиваться до 10 Вт, поэтому потребуется радиатор площадью 30-40 см?.

Именно экономия «на спичках» делает китайские зарядники такими ненадежными. Подстроечник 1 КОм необходим для точной установки тока заряда. Резистор 4,7 Ом, стоящий на выходе цепи, также должен рассеивать достаточно тепла. Мощность не менее 5 Вт. Об окончании заряда оповестит светодиодный индикатор, он погаснет.

Собранную схему легко разместить в корпус штатной зарядки. Радиатор транзистора выносить не обязательно, главное обеспечить циркуляцию воздуха внутри корпуса.

Экономия заключается в том, что блок питания от ноутбука, по прежнему используется по назначению.

Важно! Общий недостаток аналоговых зарядных устройств – долгий процесс заряда.

Для бытового шуруповерта это не страшно. Оставил заряжаться на ночь перед началом работ – на сборку шкафа хватит. Среднее время заряда китайской аккумуляторной дрели – 3-5 часов.

Импульсные

Переходим к тяжелому вооружению. Профессиональные шуруповерты используются интенсивно, и простой в работе по причине разряженного аккумулятора недопустим. Ценовой вопрос опускаем, любая серьезная техника стоит дорого. Тем более что в комплекте обычно два аккумулятора. Пока один в работе – второй на подзарядке.

Импульсный блок питания в комплекте с интеллектуальной схемой управления зарядом, заполняет батарею на 100% буквально за 1 час. Можно собрать и аналоговый зарядник с такой же мощностью. Но его вес и размеры будут сопоставимы с шуруповертом.

Всех этих недостатков лишены импульсные зарядники. Компактный размер, высокие токи заряда, продуманная защита. Проблема одна: сложность схемы, и как следствие – высокая цена.
Тем не менее, можно собрать и такое устройство. Экономия минимум в 2 раза.

Предлагаем вариант для «продвинутых» никель кадмиевых аккумуляторов, снабженных третьим сигнальным контактом.

Схема собрана на популярном контроллере MAX713. Предложенная реализация рассчитана на входное напряжение 25 вольт постоянного тока. Собрать такой источник питания не сложно, поэтому его схему опускаем.

Зарядное устройство интеллектуально. После проверки уровня напряжения, запускается режим ускоренного разряда (для предотвращения эффекта памяти). Заряд происходит за 1-1,15 часа. Особенностью схемы является возможность выбора напряжения заряда и типа батарей. В описании на рисунке указано положение перемычек и значение резистора R19 для смены режимов.

Если фирменная зарядка профессионального шуруповерта выйдет из строя – вы сможете сэкономить на ремонте, собрав схему своими руками.

Блок питания для шуруповерта – схема и порядок сборки

Многим знакома ситуация: шуруповерт жив-здоров, а блок аккумуляторов приказал долго жить. Есть масса способов восстановления АКБ, но не всем нравится возиться с токсичными элементами.

Как использовать электроприбор

Ответ прост: подключить внешний блок питания. Если у вас типичный китайский прибор с аккумуляторами 14,4 вольта – можно использовать автомобильный аккумулятор (удобно для работы в гараже). А можно подобрать трансформатор с выходом 15-17 вольт, и собрать полноценный БП.

Набор деталей самый недорогой. Выпрямитель (диодный мост) и термостат для защиты от перегрева. Остальные элементы имеют сервисную задачу – индикация входного и выходного напряжения. Стабилизатор не требуется – электродвигатель вашего шуруповерта не такой требовательный, как аккумулятор.

Обратите внимание Как видите, оживить аккумуляторную дрель не так уж и сложно. Главное не принимать поспешного решения: «выбросить и купить новый электроприбор»

Если у вас полностью вышли из строя аккумуляторы шуруповерта, то вы можете переделать его на сетевой как сделать такой блок питания смотрите в этом видео

Тут можете скачать печатную плату в формате lay

Так выглядит схема переделки зарядного устройства.

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы "Интерскол".

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил .

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE , которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки "Пуск" микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки "Пуск" напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007 ) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки "Пуск" разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007 ) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD . Маркировка термовыключателя JJD-45 2A . Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки "Пуск" электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому "эффекту памяти" у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован .

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature ), напряжение на его выводах (voltage ) и относительное давление (relative pressure ).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV . На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за "эффекта памяти". При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством , например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 "Пуск" начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он "звонился" как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на "пробой" можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор "Сеть" (зелёный). Вынимаем АКБ и делаем "контрольный" замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у

Как заряжать iPhone по беспроводной сети - служба поддержки Apple

Узнайте, как заряжать iPhone по беспроводной сети с помощью аксессуаров для зарядки, сертифицированных Qi.

Что вам понадобится

Ваш iPhone 8 или новее оснащен встроенной беспроводной зарядкой, которая обеспечивает простую и интуитивно понятную зарядку.

  • iPhone 12
  • iPhone 12 mini
  • iPhone 12 Pro
  • iPhone 12 Pro Max
  • iPhone SE (2-го поколения)
  • iPhone 11
  • iPhone 11 Pro
  • iPhone 11 Pro Max
  • iPhone XS
  • iPhone XS Max
  • iPhone XR
  • iPhone X
  • iPhone 8
  • iPhone 8 Plus

Беспроводная зарядка

  1. Подключите зарядное устройство к источнику питания.Используйте адаптер питания, поставляемый с вашим аксессуаром, или адаптер питания, рекомендованный производителем.
  2. Поместите зарядное устройство на ровную поверхность или в другое место, рекомендованное производителем.
  3. Поместите iPhone в зарядное устройство дисплеем вверх. Для оптимальной работы поместите его в центр зарядного устройства или в место, рекомендованное производителем.
  4. Ваш iPhone должен начать заряжаться через несколько секунд после того, как вы положите его на беспроводное зарядное устройство.

Вы должны увидеть в строке состояния.

Узнать больше

  • Для беспроводной зарядки iPhone используется магнитная индукция. Не помещайте ничего между iPhone и зарядным устройством. Магнитные крепления, магнитные чехлы или другие предметы между вашим iPhone и зарядным устройством могут снизить производительность или повредить магнитные полосы или чипы RFID, подобные тем, которые используются в некоторых кредитных картах, бейджах безопасности, паспортах и ​​брелках.Если в вашем чехле есть какие-либо из этих чувствительных предметов, снимите их перед зарядкой или убедитесь, что они не находятся между задней частью iPhone и зарядным устройством.
  • Если iPhone не заряжается или заряжается медленно, а у iPhone толстый чехол, металлический корпус или аккумуляторный отсек, попробуйте снять его.
  • Если ваш iPhone вибрирует - например, при получении уведомления - ваш iPhone может сместиться. Это может привести к тому, что коврик для зарядки перестанет подавать питание на iPhone. Если это происходит часто, попробуйте отключить вибрацию, включить режим «Не беспокоить» или использовать чехол для предотвращения движения.
  • В зависимости от зарядного коврика вы можете услышать слабый шум во время зарядки iPhone.
  • Ваш iPhone может немного нагреваться во время зарядки. Чтобы продлить срок службы батареи, если она слишком нагревается, программное обеспечение может ограничить зарядку выше 80 процентов. Ваш iPhone снова зарядится, когда температура упадет. Попробуйте переместить iPhone и зарядное устройство в более прохладное место.
  • Ваш iPhone не заряжается по беспроводной сети при подключении к USB. Если ваш iPhone подключен к компьютеру через USB-порт или к адаптеру питания USB, ваш iPhone будет заряжаться через USB-соединение.

Информация о продуктах, произведенных не Apple, или о независимых веб-сайтах, не контролируемых и не проверенных Apple, предоставляется без рекомендаций или одобрения. Apple не несет ответственности за выбор, работу или использование сторонних веб-сайтов или продуктов.Apple не делает никаких заявлений относительно точности или надежности сторонних веб-сайтов. Свяжитесь с продавцом для получения дополнительной информации.

Дата публикации:

1991 Схема подключения Isuzu Impulse - схема подключения нагрузка-зажигание

1991 Схема подключения Isuzu Impulse Что нового

1991 Схема подключения Isuzu Impulse -.. . . . . .

1991 Схема подключения импульсной системы Isuzu -

1991 Схема подключения импульсной системы Isuzu -

Схема подключения - это метод описания конфигурации установки электрического оборудования, например, электроустановочного оборудования на подстанции на CB, от панели к коробке CB который охватывает аспекты телеуправления и телесигнализации, телеметрию, все аспекты, требующие схемы подключения, используемые для обнаружения помех, новое вспомогательное оборудование и т. д. 1991 Схема импульсной проводки isuzu Эта схематическая диаграмма служит для понимания функций и работы установки в детали, описывающие оборудование / детали установки (в виде символов) и соединения. 1991 Схема электрических соединений isuzu impulse Эта принципиальная схема показывает общее функционирование цепи. Все его основные компоненты и соединения проиллюстрированы графическими символами, расположенными для максимально ясного описания операций, но без учета физической формы различных элементов, компонентов или соединений.

1991 Схема подключения isuzu Impulse Схема подключения 3-контактного удлинителя для схемы подключения 1991 Схема подключения Isuzu Impulse Схема подключения 3-контактного удлинителя для схемы подключения 1991 Схема подключения Isuzu Impulse Схема подключения 3-штырькового удлинителя для электрической схемы 1991 Isuzu Impulse Wiring схема Схема подключения удлинителя с 3 штырьками для принципиальных схем 1991 Схема подключения импульсного шнура isuzu Схема подключения шнура с 3 штырьками для схемы электрических схем 1991 Схема подключения шнура с 3 штырьками Схема подключения шнура с 3 штырьками для схемы электрических схем 1991 Схема подключения импульсного шнура Isuzu 3 шнура удлинителя электрическая схема для электрических схем 1991 isuzu импульсная схема подключения 3-контактный удлинитель схема подключения для электрических схем

Лучшее беспроводное зарядное устройство 2021: зарядные площадки и подставки для iPhone, Android

Представленные продукты выбираются нашей редакционной группой независимо, и мы можем получать комиссию за покупки, сделанные по нашим ссылкам; розничный торговец может также получать определенные данные, подлежащие аудиту, для целей бухгалтерского учета.

В наши дни никто не хочет быть связанным, особенно когда дело касается шнуров и кабелей. В то время как беспроводные наушники доминируют в аудиопространстве, зарядные устройства для беспроводных телефонов (также известные как зарядные площадки или подставки для зарядки) начинают выходить на рынок в качестве удобного - и да, беспроводного - решения для включения ваших устройств.

Беспроводные зарядные устройства

работают за счет электромагнитной индукции, передавая энергию от зарядного устройства на ваш телефон через катушки, расположенные в обоих устройствах.Индукционная катушка зарядного устройства вырабатывает энергию, которую катушка приемника в вашем телефоне преобразует в электричество для передачи в аккумулятор. Звучит сложно, но это похоже на то, как вы, скажем, заряжаете электрическую зубную щетку или включаете Apple Watch без проводов .

Вам все равно придется подключить зарядное устройство к розетке, но ваш телефон сможет опираться на зарядную площадку без кабеля. Готовы получить питание?

Какие беспроводные зарядные устройства самые лучшие?


При выборе подходящего для вас беспроводного зарядного устройства необходимо учитывать множество факторов; Ниже приведены наиболее важные из них, которые мы рассматривали при изучении этого списка.

У вас должен быть совместимый телефон. : Чтобы пользоваться преимуществами беспроводного зарядного устройства, у вас должно быть устройство с поддержкой Qi. Qi (произносится как «чи») - это отраслевой стандарт индуктивной зарядки на очень короткие расстояния (менее 40 мм). Зарядка с поддержкой Qi доступна, в частности, на Apple iPhone 8 и новее, Samsung Galaxy S7 и новее, Sony Xperia XZ2 и новее. Бонус: многие из этих беспроводных зарядных устройств работают с вашими Apple Watch и другими интеллектуальными устройствами с поддержкой Qi.

Форм-фактор: Большинство беспроводных зарядных устройств имеют одну из двух форм: зарядная панель, которая выглядит как диск, заряжает ваш телефон, когда он лежит ровно, и подставка для зарядки, которая поддерживает ваш телефон во время зарядки. Оба работают одинаково (передают электричество между катушкой в ​​вашем устройстве и катушкой в ​​зарядном устройстве), но они различаются по размеру. Подушки для зарядки более портативны, но вам придется поднять телефон, чтобы посмотреть уведомления; Подставки для зарядки более громоздкие, но вы можете сразу проверить свой телефон.

Скорость зарядки: Беспроводная зарядка по-прежнему не такая быстрая, как подключение телефона к электросети с помощью кабеля, но современные аксессуары для беспроводной зарядки заполняют этот пробел. Максимальная скорость зарядки, поддерживаемая в настоящее время устройствами беспроводной зарядки и , составляет 15 Вт. Этим зарядным устройствам для достижения максимальной скорости требуется адаптер питания QuickCharge, который может не входить в комплект поставки. Большинство устройств Android имеют максимальную мощность 10 Вт, а самый последний iPhone - 7,5 Вт, поэтому использование зарядного устройства максимальной мощности может не иметь смысла в зависимости от вашего устройства.

Толщина корпуса телефона: Все рекомендуемые нами беспроводные зарядные устройства будут работать, если у вас есть чехол на телефоне, но его толщина может снизить скорость зарядки устройства.

1. ЛУЧШИЙ В ЦЕЛОМ: Подставка для быстрой беспроводной зарядки Anker PowerWave II

Amazon

PowerWave

Anker - это универсальное решение для людей, которым нужна мощная подставка для беспроводной зарядки.

Он имеет максимальную скорость 15 Вт (в комплект входит быстрое зарядное устройство) и две катушки, поэтому вы можете заряжать свой телефон, когда он расположен горизонтально или вертикально.Благодаря функции под названием PowerWave зарядное устройство автоматически переключается между скоростью зарядки 5 Вт, 7,5 Вт, 10 Вт и 15 Вт в зависимости от вашего устройства. Специальная система безопасности Anker MultiProtect защитит ваш телефон от перегрева или повреждения аккумулятора.

Зарядное устройство изготовлено из удобной нескользящей поверхности, обеспечивающей устойчивость телефона, а его катушки расположены таким образом, чтобы устройство оставалось заряженным, независимо от того, размещаете ли вы его на подставке вертикально или горизонтально. Анкер говорит, что зарядное устройство также может работать, даже если на вашем телефоне толстый чехол.Это не сработает, если вы воспользуетесь металлическим футляром, ручкой, держателем кредитной карты или магнитом.

Подставка для быстрой беспроводной зарядки Anker PowerWave II, $ 35,99, доступна на Amazon

2. Лучший аккумулятор для беспроводной зарядки: AUKEY Wireless Power Bank

Amazon

Большинство беспроводных зарядных устройств требуют подключения их к источнику питания, например к розетке или компьютеру, но AUKEY встроен в аккумуляторную батарею, поэтому он полностью портативен. Аккумулятор имеет аккумулятор емкостью 20000 мАч с двумя портами USB (один USB-C, один USB-A), которого достаточно для полной шестикратной подзарядки iPhone 11.

В верхней части аккумулятора находится беспроводное зарядное устройство, которое работает так же, как беспроводная зарядная панель. Поместите телефон или аксессуар на аккумулятор, и он начнет заряжаться.

Максимальная скорость беспроводной зарядки составляет 10 Вт, что очень быстро для беспроводного зарядного устройства. Ваш телефон будет заряжаться быстрее, если вы подключите его с помощью кабеля, но приятно иметь удобство беспроводной зарядки, когда вам это нужно.

Plus, вы можете заряжать несколько устройств - проводных и беспроводных - одновременно.

Беспроводное портативное зарядное устройство
AUKEY, 45,99 долларов США, доступно на Amazon

3. ЛУЧШЕЕ БЕСПРОВОДНОЕ ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ МНОГОУСТРОЙСТВ: Nomad Base Station Pro

Кочевник

Если вы хотите заряжать по беспроводной сети более одного устройства одновременно, Nomad's Base Station Pro - лучший вариант.

Он имеет 18 зарядных катушек под поверхностью, поэтому вы можете разместить до трех устройств в любом месте, и они начнут заряжаться. Я испытал это зарядное устройство на себе и был впечатлен его производительностью и простотой использования.

Base Station Pro может заряжать устройства мощностью до 7,5 Вт, хотя толщина корпуса телефона может снизить эту скорость. Nomad использует передовые технологии для обеспечения работы своего зарядного устройства и заявила, что со временем выпустит обновления программного обеспечения, чтобы улучшить это оборудование. Вам нужно будет подключить его к компьютеру для установки обновлений, но я прошел через этот процесс, и он очень простой.

Это беспроводная зарядная панель, а это значит, что вам придется смотреть на свои устройства, когда вы получаете уведомления, но это довольно небольшой компромисс, учитывая главную особенность этого беспроводного зарядного устройства.Nomad также заслуживает похвалы за эстетику: Base Station Pro черного цвета, с алюминиевой рамой и мягкой кожаной поверхностью. Это самое красивое беспроводное зарядное устройство, которое мы рекомендуем.

Если вы используете несколько устройств, поддерживающих беспроводную зарядку, или хотите, чтобы одна беспроводная зарядная панель, которую вы и другие люди, с которыми вы живете, могли использовать одновременно в общественном месте, мы рекомендуем Nomad Base Station Pro.

Nomad Base Station Pro, 199,95 долл. США, доступно в Nomad

Примечание. Nomad выпускает крепление для Apple Watch, которое крепится к базовой станции Pro, которое будет доставлено в феврале 2020 года.Вам понадобится зарядный кабель, но зажим позволяет легко хранить все ваши устройства в одном месте, пока вы их заряжаете. Вы можете добавить крепление для Apple Watch при заказе базовой станции Pro, но оно будет поставляться отдельно.

4. ЛУЧШАЯ ПОДСТАВКА ДЛЯ БЕСПРОВОДНОЙ ЗАРЯДКИ: Samsung Fast Charge


Amazon

Подставка для быстрой зарядки Samsung - это роскошное беспроводное зарядное устройство, которое приносит баллы за красивый внешний вид и даже лучшую возможность подключения.Он поддерживает скорость зарядки до 10 Вт и поставляется с быстрым адаптером питания в коробке. Его двойные зарядные катушки обеспечивают более сильный и быстрый заряд, который равномерно распределяется под корпусом. Что это означает для вас: положите телефон в любом месте планшета и в любом направлении, не прерывая зарядки.

Samsung утверждает, что зарядное устройство удобно расположено, чтобы пользователи могли читать тексты, просматривать социальные сети или отвечать на звонки, не снимая его с подставки. Тем временем незаметный светодиодный индикатор меняет цвет, отображая состояние зарядки, а встроенный вентилятор охлаждает телефон во время зарядки.

Подставка для быстрого беспроводного зарядного устройства Samsung, $ 47,87, доступна на Amazon

5. Лучшее для iPhone: подставка для зарядного устройства Lamicall MagSafe

Amazon

Если вы используете iPhone и предпочитаете беспроводную зарядку с помощью кабеля, вам подойдет подставка для зарядки MagSafe от Lamicall. Алюминиевая подставка имеет высоту чуть более пяти дюймов и имеет регулируемую верхнюю часть, так что вы можете наклонить телефон под правильным углом.

Чтобы использовать подставку, вам понадобится одна из шайб Apple MagSafe Charging, которую вы вставляете в отверстие в верхней части подставки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *