Газотурбинные установки для производства электроэнергии и тепла – Газовая турбина для производства электричества и тепла

Содержание

Газовая турбина для производства электричества и тепла

Газовые турбины Siemens серии SGT - это полностью укомплектованная электростанция. Установки применяются как основной или аварийный источник электроснабжения в промышленном секторе, также могут успешно использоваться в сфере ЖКХ. Они достаточно мобильны и легко монтируются на новых строительных площадках. Системы управления силовым агрегатом и генератором установлены на общей раме. Все установки проходят контрольные испытания на заводе. Модульные газотурбинные электростанции несложны в обслуживании - доступ для проведения пусконаладочных работ и сервиса есть всюду. Инженерами предусмотрены технологические лючки и специальные легкосъёмные панели. Газовые турбины - отличное решение для промышленных предприятий и коммунальных служб. За последние 6 лет компания установила в России свыше десятка газовых турбин SGT-800.

 

Промышленно-энергетические турбины Siemens

Все газовые турбины можно разделить на промышленные и энергетические. В модельный ряд промышленных моделей входят 8 турбинных установок мощностью от 5 до 47 МВт. Это идеальное решение для их применения в качестве резервных энергетических систем, производства энергии в режиме базовой нагрузки, комбинированного производства тепловой и электрической энергии, в парогазовых установках, в качестве механического привода, а также источника сушильного агента для технологических нужд.

Газовая турбина SGT-100

Производительность энергии 5,25 МВт (мощность)
Топливо природный газ*
Частота: 50/60 Гц
Энергоэффективность 30,5%
Теплопотребление 11815 кДж/кВтч
Скорость турбины 17384 об/мин
Соотношение давления 14,6:1
Количество выброса 20,8 кг/с
Температура выброса 530°С
Выбросы NOX (по технологии DLE) ≤25 дм
Возможна поставка установок мощностью 4,35 МВт, 4,7 МВт, 5,05 МВТ *также возможно использование иного газового топлива

Газовая турбина SGT-200

Производство энергии 6,75 МВт (мощность)
Топливо природный газ*
Частота 50/60 Гц
Энергоэффективность 31,5
Теплопотребление 11418 кДж/кВтч
Скорость турбины 11053 об/мин
Соотношение давления 12,2:1
Количество выброса 29,3 кг/с
Температура выброса 466°С
Выбросы NOX (по технологии DLE) ≤25 дм
*также возможно использование иного газового топлива

Газовая турбина SGT-300

Производство энергии 7,90 МВт (мощность)
Топливо природный газ*
Частота 50/60 Гц
Энергоэффективность 31,2%
Теплопотребление 11532 кДж/кВтч
Скорость турбины 140104 об/мин
Соотношение давления 13,7:1
Количество выброса 29,8 кг/с
Температура выброса 537°С
Выбросы NOX (по технологии DLE) ≤15 дм
*также возможно использование иного газового топлива

Газовая турбина - SGT-400

Производство энергии 12,9 МВт (мощность)
Топливо природный газ*
Частота 50/60 Гц
Энергоэффективность 34,8%
Теплопотребление 10355 кДж/кВтч
Скорость турбины 9500 об/мин
Соотношение давления 16,8:1
Количество выброса 39,4 кг/с
Температура выброса 555°С
Выбросы NOX (по технологии DLE) ≤15 дм
*также возможно использование иного газового топлива

Газовая турбина - SGT-500

Производство энергии 17,18 МВт и 18,60 МВт
Топливо природный газ*
Частота 50/60 Гц
Энергоэффективность 32,2%
Теплопотребление 11180 кДж/кВтч
Скорость турбины 3600 об/мин
Соотношение давления 12:1
Количество выброса 92,3 кг/с
Температура выброса 375°С
Выбросы NOX (по технологии DLE) ≤42 дм
*также возможно использование иного газового топлива

Газовая турбина - SGT-600

Производство энергии 24,77 МВт (мощность)
Топливо природный газ*
Частота 50/60 Гц
Энергоэффективность 34,2%
Теплопотребление 10533 кДж/кВтч
Скорость турбины 7700 об/мин
Соотношение давления 14:1
Количество выброса 80,4 кг/с
Температура выброса 543°С
Выбросы NOX (по технологии DLE) ≤25 дм
*также возможно использование иного газового топлива

Газовая турбина SGT-700

Производство энергии 31,21 МВт (мощность)
Топливо природный газ*
Частота 50/60 Гц
Энергоэффективность 36,4%
Теплопотребление 9882 кДж/кВтч
Скорость турбины 6500 об/мин
Соотношение давления 18,6:1
Количество выброса 94 кг/с
Температура выброса 528°С
Выбросы NOX (по технологии DLE) ≤15 дм
*также возможно использование иного газового топлива

Газовая турбина - SGT-800

Производство энергии 47,0 МВт (мощность)
Топливо природный газ*
Частота 50/60 Гц
Энергоэффективность 37,5%
Теплопотребление 9597 кДж/кВтч
Скорость турбины 6608 об/мин
Соотношение давления 19:1
Количество выброса 131,5 кг/с
Температура выброса 544°С
Выбросы NOX (по технологии DLE) ≤15 дм
*также возможно использование иного газового топлива

Газовые турбины Siemens используются

Преимущества:

  • более чем 50-летний опыт проектирования и изготовления;
  • продано более 3700 установок, из них 2200 для производства энергии;
  • надёжное энергоснабжение 96 стран мира в течение сотен миллионов часов;
  • низкий уровень выбросов NOx и CО;
  • высокая надёжность/готовность;
  • возможность технического обслуживания и ремонта на площадке Заказчика;
  • компактное модульное исполнение, быстрый монтаж;
  • высокий КПД в простых, когенерационных и парогазовых циклах;
  • возможность сжигания нескольких видов топлива.

Газовые турбины Siemens (Мощность МВт)

 

Все модификации турбинных генераторов Siemens, кроме выработки электроэнергии, выдают пар для технологических нужд предприятий и ГВС для жилого сектора. Компания применяет технологию когенерации – это означает, что все газотурбинные установки Siemens – теплоэлектростанции.

Технические особенности:

  • Газотурбинные установки Siemens могут работать на двух видах топлива.
  • Оборудование имеет сухое подавление выбросов, что обеспечивает низкое воздействие на экологию.
  • Сервис может осуществляться на месте.
  • Общий тепловой КПД достигает 97 %.
  • ГТД можно заменить достаточно быстро.
  • Загрязнение компрессора ГТД может устраняться при работе и в отключенном состоянии.
  • Установки компактны.
  • Имеют низкое соотношение расходы – мощность.
  • Затраты на установку относительно невелики.

zavodagt.ru

принцип работы, плюсы и минусы

Содержание:

  1. Типовая схема агрегата
  2. Как действует газотурбинная установка
  3. Основные виды газотурбинных агрегатов
  4. Преимущества и недостатки ГТЭС

Довольно часто возникают ситуации, когда некоторые промышленные и хозяйственные объекты вынужденно располагаются на больших расстояниях от основных электрических сетей. В таких случаях питание подается с помощью передвижных и стационарных установок. В этом списке широко используется газотурбинная электростанция, представляющая собой высокотехнологичную современную конструкцию, обладающую высоким коэффициентом полезного действия. Установки этого типа успешно генерируют электрическую и тепловую энергию, обеспечивая нормальное функционирование закрепленных за ними объектов.


Типовая схема агрегата

Стандартная газотурбинная установка представляет собой тепловую машину, где используется теплоноситель, находящийся в газообразном состоянии, нагретый до высокой температуры. В результате определенных процессов, которые будут рассмотрены ниже, его энергия превращается в механическую.

Конструкция такой электростанции состоит из следующих частей: компрессора, камеры сгорания и самой газовой турбины. Взаимодействие этих компонентов и управление ими в процессе работы обеспечивается специальными вспомогательными системами, входящими в конструкцию установки. Газотурбинная установка и электрический генератор образуют в совокупности газотурбинный агрегат. Мощностью от нескольких десятков киловатт до показателей, измеряемых в мегаваттах. Электростанция, в зависимости от целевого назначения и количества потребителей, имеет одну или несколько газотурбинных установок.

Сама газотурбинная установка разделяется на две части, размещенные в общем корпусе: газогенератор и силовая турбина. Газогенератор состоит из камеры сгорания и турбокомпрессора. Именно здесь создается газовый поток с высокой температурой, оказывающий воздействие на лопатки турбины. Выхлопные газы утилизируются в теплообменнике, и одновременно производят нагрев паровых или водогрейных котлов. Газотурбинные установки могут работать на жидком или газообразном топливе. В стандартном рабочем режиме используется газ, а в критических ситуациях установка автоматически переходит на жидкое топливо.

В нормальных условиях ГТЭС осуществляет комбинированное производство электричества и тепловой энергии. Как правило, они работают в базовом режиме, но при необходимости успешно перекрывают пиковые нагрузки. Вырабатываемое тепло, в количественном отношении существенно выше, чем производимое обычными поршневыми устройствами.


Как работает газотурбинная установка

По сравнению с переносными бензиновыми или дизельными электростанциями, газотурбинные установки имеют более сложную конструкцию и принципиальную схему. Тем не менее, основная задача у тех и других агрегатов совершенно одинаковая: преобразование исходного топлива в электрическую энергию.

Преимуществом газотурбинных установок является возможность дополнительно вырабатывать тепло.

Работа агрегатов этого типа происходит в следующем алгоритме:

  • Газ, поступающий в качестве топлива, вначале воспламеняется, а затем переходит в стадию горения. Образуется газовый поток с высокой температурой, представляющий собой тепловую энергию.
  • Попадая в турбину, раскаленный газ начинает вращать вал, создавая тем самым механическую энергию.
  • С вала турбины вращательный момент передается на ротор генератора, который начинает вырабатывать уже электрическую энергию. Далее она уходит к трансформатору, и пройдя через него, поступает к потребителям.

Газ в турбинный двигатель поступает непрерывным потоком. Вначале воздух сжимается компрессором, смешивается с топливом и в таком виде попадает в камеру сгорания. Смесь воспламеняется, а высокое давление обеспечивает большой выход энергии в виде продуктов горения. Современные модификации агрегатов могут работать не только на газе. В качестве горючего используется дизельное топливо, керосин, нефть. Эти установки отличает высокая производительность и надежность в работе. При поломке какого-либо элемента, ремонт легко производится на месте, что существенно снижает эксплуатационные расходы.

Газотурбинные установки малой мощности отличаются низким расходом смазочных материалов, им не требуется водяное охлаждение. При соблюдении рекомендация завода-изготовителя, они могут безопасно работать в течение длительного времени, без аварий и поломок.


Основные виды газотурбинных агрегатов

Газотурбинные электростанции нашли широкое применения в самых разных сферах. Они снабжают электроэнергией крупные объекты промышленного назначения, удаленные здания и сооружения. В случае необходимости, газотурбинная электростанция в состоянии обеспечить электричеством целые населенные пункты. Агрегаты малой мощности нередко используются в частном секторе и на сельскохозяйственных объектах.

Основным критерием классификации электростанций являются их размеры, в соответствии с которыми выбирается и место их использования:

  • Стационарные установки и сопутствующее оборудование. Монтируются на капитальных неподвижных фундаментах. На них устанавливаются самые мощные турбины и электрические генераторы.
  • Передвижные или мобильные установки. Также обладают высокой мощностью, но при этом могут перемещаться с места на место. Работают не только на газе, но и на жидком топливе.
  • Мини-установки или микротурбины. Вырабатывают электрическую и тепловую энергию, но при этом отличаются компактными размерами и низким уровнем шума во время работы. Последнее качество дает возможность размещать такие агрегаты в непосредственной близости от частных домов. Они могут работать в режиме когенерации, вырабатывая воду и пар для систем отопления, и в режиме тригенерации, преимущественно, в вентиляционных системах.

Преимущества и недостатки ГТЭС

К несомненным плюсам можно отнести следующие:

  • Максимально простое устройство. В отличие от паровой установки, котел не нужен. В связи с этим отсутствуют градирни, паропроводы и другие приспособления. Существенно снижена масса и материалоемкость таких установок.
  • Вода расходуется в минимальном количестве, охлаждая смазку в подшипниках.
  • Быстрый монтаж и ввод в эксплуатацию. Мощный турбогенератор запускается в работу в течение 15-20 минут, а паровая турбина – в течение нескольких часов.
  • Возможность дополнительно производить тепловую энергию, что способствует более быстрой окупаемости установки.
  • Токсичные выбросы отсутствуют, вибрация незначительная. Можно без ограничений использовать в населенных пунктах.
  • Доступное газовое топливо.
  • Использование в труднодоступных районах, где отсутствует центральное электроснабжение.

Тем не менее, нельзя сбрасывать со счетов и определенные минусы, характерные для данного типа установок:

  • Для достижения полезной мощности изначально требуется высокая температура газа – свыше 550 градусов. В связи с этим, для изготовления турбины используются жаростойкие материалы. Требуется система охлаждения мест, подверженных сильному нагреву.
  • Фактическая полезная мощность довольно низкая, поскольку ее значительная часть расходуется на привод компрессорной установки.
  • Твердым видам топлива необходима предварительная обработка.
  • Большие турбины отличаются высоким уровнем шума.

electric-220.ru

Мини ТЭЦ (типы, области применения). Газотурбинные мини-ТЭЦ. Использование биотоплива для производства энергии на мини-ТЭЦ



Мини ТЭЦ (Общая информация)

В последнее время развивается энергоснабжение, которое базируется на установках мини-ТЭЦ. Система утилизации тепла мини-ТЭЦ предусматривает также производство горячей воды или пара для отопления (когенерация) и холода для систем кондиционирования и вентиляции (тригенерация).

Типы мини ТЭЦ

Различают следующие типы мини-ТЭЦ:

  • паротурбинную с противодавленческой турбиной с отпуском тепловым потребителям всего или части отработавшего в ней пара;
  • паротурбинную с конденсационной турбиной, имеющей теплофикационный отбор или отборы для отпуска пара тепловым потребителям;
  • газотурбинную с использованием тепла выхлопных газов в котле-утилизаторе или непосредственно в технологическом процессе;
  • дизельную с производством высокопотенциального тепла благодаря энергии выхлопных газов и низкопотенциального - из контуров охлаждения двигателя;
  • парогазовую с использованием тепла выхлопных газов для производства пара, который полностью или частично направляется в одну или несколько паровых турбин.

В настоящее время используются также следующие виды установок для производства электроэнергии и теплоты малой и средней мощности:

  • теплофикационные ГТУ на базе газотурбинных двигателей самолетов и судов единичной электрической мощностью от 50 до 6000 кВт и тепловой мощностью от 0,6 до 50 МВт для установки в местах размещения отопительных и промышленных котельных, работающих на природном газе;
  • теплофикационные паросиловые установки малой мощности с противодавлением на промышленные параметры пара электрической мощностью до 1200 кВт и тепловой мощностью до 12 МВт, работающих на мазуте и твердом топливе;
  • теплофикационные дизельные установки для энергоснабжения на базе двигателей судов, колесных и гусеничных машин электрической мощностью до 600 кВ;
  • паросиловой и газотурбинный привод с утилизацией тепла мощностью от 5 до 20000 кВт для энергоснабжения нефтяных газодобывающих комплексов.

Перспективными альтернативными решениями являются мини-ТЭЦ, например на основе газо-дизель-генераторов. Для получения тепловой энергии в камере сгорания используется дизельное топливо, природный или сжиженный газ. Особенно перспективны мини-ТЭЦ для отдаленных районов сельской местности. В качестве альтернативного топлива в этом случае возможно использовать биотопливо, например, метан, полученный в метантенках из отходов сельского хозяйства.

В последние годы также внедряются микро-ТЭЦ мощностью 45-100 кВт для автономного энергоснабжения на базе микротурбин и электротехнических генераторов.

В малой энергетике нецелесообразно рассматривать возможности применения сложных комбинированных циклов ПГУ для производств электроэнергии, а газовые турбины как приводы электрогенераторов существенно проигрывают газовым двигателям по КПД и эксплуатационным характеристикам при малых мощностях. В широком диапазоне мощностей (от сотен киловатт до десяток мегаватт) КПД моторного привода на 13-17% выше, чем газотурбинного; при снижении нагрузки со 100 до 50% КПД электрогенератора с приводом от газового двигателя меняется слабо, КПД газового двигателя практически не изменяется до температуры воздуха 25 0С. Мощность газовой турбины падает при изменении температуры воздуха от -30 до 30 0С, при температурах выше 40 0С уменьшение мощности газовой турбины (от номинальной 15 0С) составляет 20%.

Газотурбинные мини-ТЭЦ

Газовые турбины находят широкое применение в производстве электроэнергии. Электрический КПД больших установок составляет 35 -38%, характеристики при частичной нагрузке скорее неудовлетворительные. Большой срок службы, очень незначительные инвестиционные затраты в широком диапазоне мощностей, большая доля пригодной для использования энергии уходящих газов и очень небольшая эмиссия вследствие непрерывного горения являются достоинствами этой технологии. До настоящего времени было нецелесообразно применять турбины в диапазоне мощностей менее 500 кВт. Это стало возможным только в результате комбинации двух мероприятий: рекуперации и обратной подачи части объемного потока уходящего газа в компрессор с одной стороны и прямого присоединения генератора. В сочетании с не зависящим от скорости вращения инвертированием тока посредством силовой электорники достигаются наряду с приемлемыми показателями электрического КПД более 25% и общего КПД более 70% также хорошие показатели КПД при неполной нагрузке. Эти параметры имеют решающее значение для использования на не больших объектах.

Возможность получения большой мощности при небольших размерах и массе, высокая надежность и экономичности газотурбинных установок позволяют широко использовать их в промышленной энергетике. В частности на промышленных предприятиях их можно применять как для отдельной, так и комбинированной выработки тепловой и электрической энергии, в качестве источников питания, для покрытия пиков нагрузок, в качестве надстроек на водогрейных котельных.

Мини-ТЭЦ на базе ДВС

Принцип выработки электрической к тепловой энергии с использованием ДВС известен уже несколько десятилетий. Первые установки этого типа использовались на кораблях, в тепловозах, для аварийного электроснабжения.

В области мощностей от 10 кВт до 4 МВт существенные преимущества перед газотурбинными установками имеют поршневые приводы. У таких установок меньшие расходы топлива и эксплуатационные затраты.

Это объясняется тем, что КПД поршневых машин составляет 36-45%, а газовых турбин - 25-34%. Установки газовых турбин требуют высоких давлений газа (до 2,0 МПа), в то время как газопоршневые установки работают на газе с низким давлением и им не требуется установка для газа дожимного копрессора.

Поршневые газовые двигатели могут работать на газе среднего давления, промышленном газе (коксовый, биогаз, шахтный), пропан-бутановых смесях и попутном газе. Любой применяемый газ должен иметь метановое число не менее 30 и подаваться в двигатель под давлением 1,0-2,5 кгс/см2 (0,1-0,25 МПа).

Мини-ТЭЦ на базе ДВС состоит из моноблока двигатель-генератор с теплообменниками, в которых утилизируется тепловая энергия.

Утилизация тепла выхлопных газов, газовоздушной смеси, тепла в рубашке охлаждения двигателя, масла в специальном водяном утилизационном контуре позволяет нагревать воду до 95'С и использовать ее тепло в системах теплоснабжения. Газопоршневой двигатель это дизельный двигатель, переоборудованный для работы на газе (94%) и использующий лишь 6% дизельного (запального) топлива. Дизельное топливо может служить в нем в качестве резервного топлива.

Газопоршневые мини ТЭЦ, представляют собой электрогенераторные установки с первичным двигателем, работающим на природном газе, а также утилизирукнцие выделяемое тепло. Потребление топлива составляет 0,25-0,3 н.м3 на кВт-час выработанной электрической энергии.

Экономически оправданные системы утилизации тепла позволяют использовать 1 Гкал тепла на 1 МВт-час выработанной электроэнергии (75% от выделяемого тепла).

Расход смазочного масла от 3 г до 0,3 г на 1 кВт-час. Межремонтный ресурс 20-40 тыс. моточасов. Поэтапный ресурс достигает сотен тысяч часов. Стоимость ремонта составляет 5-20% от общих капитальных затрат. Электрический КПД достигает 38-42%. Оставшиеся тепловые потери, около 60%, приходятся на:

  • 1. Тепло, отбираемое охлаждающей жидкостью 38-44%
  • 2. Тепло выхлопа 15-10%(охлаждаемые выхлопные коллекторы)
  • 3. Тепло наддувочного воздуха (в системах с турбонаддувом) 5-6%
  • 4. Тепло смазочного масла (в системах с масляным радиатором) 3-6%.

Альтернативные источники энергоснабжения

Вот уже несколько лет в установках мини-ТЭЦ применяется тепловые насосы с целью использования низкопотенциальной энергии для отопления и горячего водоснабжения.

Тепловые насосы, предназначенные для работы в системах мини-ТЭЦ, бывают двух типов: парокомпрессионные (использующие механическую энергию в качестве энергии высокого потенциала) и абсорбционные (относительно высокопотенциальным теплоносителем является пар, отопительная вода или продукты сгорания).

Компрессионные тепловые насосы могут работать с приводом от тепловых двигателей. В этом случае весь агрегат состоит из компрессионного теплового насоса и теплового двигателя. Преобразование химической энергии топлива в теплоту происходит непосредственно внутри теплового двигателя (например, в цилиндре двигателя внутреннего сгорания) или снаружи, причем теплота горючего газа передается к рабочему телу двигателя.

В двигателе в соответствии с термодинамическим круговым циклом часть теплоты переходит в механическую энергию, которая приводит в действие собственно компрессионный тепловой насос, благодаря чему повышается полезный температурный уровень низкотемпературное окружающей среды или отработанной теплоты. Отработанная теплота двигателя также может быть использована в качестве полезного тепла. Теплообменник или теплообменники отработанной теплоты в зависимости от температурных условий подключаются параллельно или последовательно с конденсатором компрессионного теплового насоса или теплота подводится к специальным.

В качестве приводов могут быть использованы тепловые двигатели всех типов, однако наиболее удобны газовые и дизельные двигатели, так как они работают на природном газе и нефти- высококачественных носителях первичной энергии, применяемых в настоящее время для отопления.

В связи с уменьшением запасов топлива и ростом цен важно обеспечить значительную экономию топливных ресурсов. Получение тепла с помощью такой двигательной отопительной установки может сократить расход первичной энергии примерно вдвое по сравнению с обычным способом получения тепла при сжигании топлива.

В тепловых насосах с приводом от газовых двигателей в качестве привода применяют как специальные газовые двигатели для больших мощностей, так и модифицированные карбюраторные двигатели грузовых автомобилей с повышенным сроком службы для небольших мощностей.

Применение тепловых насосов с газовым двигателем при наличии природного газа позволяет значительно снизить расход первичной энергии для отопительных установок. Использование городского газа намного уменьшает эффективного системы из-за низкого коэффициента полезного действия при получении газа из угля.

Для тепловых насосов с приводом от дизельного двигателя наиболее часто применяют двигатели грузовых автомобилей, которые имеют разветвленную сеть пунктов по техническому обслуживанию.По конструкции тепловые насосы с дизельным двигателем почти не отличаются от тепловых насосов с газовым двигателем.

Особой проблемой в тепловых насосах с приводом от двигателя внутреннего сгорания является конструкция теплообменника отработавших газов, который в зависимости от вида газа или дизельного топлива и его сгорания в двигателе должен иметь достаточный срок службы.

В последнее время в области малых мощностей представляют интерес мини-ТЭЦ на базе топливных элемемнтов.

Топливные элементы представляют собой электрохимические преобразователи с непрерывной подачей продуктов реакции. Они непосредственно преобразуют поступающие прдукты реакции (водород и кислород) в электричество, тепло и воду. В результате этого проявляется такие важные свойства топливных элементов как высокий электрический КПД при полной и частичной загрузке при очень незначительной эмиссии вредных веществ, которая возникает из-за подключения горелочного устройства для подготовки водорода из жидких энергоносителей. Кислород получают из окружающего воздуха, а водород - недорого и с минимальной эмиссией - из природного газа Отсутствие механических компонентов в батарее элементов дает основание ожидать, что они почти не будут нуждаться в техобслуживании и будут иметь продолжительный срок эксплуатации.

Области применения и схемы автономных мини-ТЭЦ

Мини-ТЭЦ на базе ДВС можно использовать в различных областях промышленного производства, особенно эффективны они могут быть в отдаленных районах страны с холодным климатом. Особенностью таких установок, является способность работать автономно, с использованием практически любого топлива. Кроме того, они мобильны, передвижные мини-ТЭЦ малой мощности за несколько часов вводятся в эксплуатацию. Для обслуживания таких установок требуется малое количество людей. Особенно выгодно применение мини-ТЭЦ для использования в чрезвычайных ситуациях.

При проектировании мини-ТЭЦ должны учитываться следующие основные факторы:

  • 1.Наличие местных видов топлива. Наличие таких источников как биомасса или отходов из которых можно получать газ, существенно снизят затраты на мини-ТЭЦ. Если таких источников нет, или не возможно их использовать, то надо выбрать вариант с меньшими транспортными затратами на доставку топлива. Мини-ТЭЦ на базе ДВС могут работать на многих видах топлива (бензин, дизельное топливо, природный газ, газах, получаемых из биомассы и органических отходах производств). Необходимо выбрать вариант с меньшими капитальными затратами. Подобрать поршневую мини-ТЭЦ можно фактически для любого топлива, используя различные схемы работы установки.
  • 2. Важным фактором является соотношение электрической и тепловой нагрузок потребителя.
  • 3. Необходимо учитывать и характер нагрузки, колебание по часам суток.
  • 4. Важным фактором для выбора мини-ТЭЦ являются климатические условия, в которых будет работать установка. Прежде всего, этот фактор влияет на выбор типа ДВС.

Использование биотоплива для производства энергии на мини-ТЭЦ

Перспективным топливом, для производства энергии на мини-ТЭЦ является газ, полученный из органических отходов путем их переработки. Конвертирование биомассы в топливо может производиться различными способами.

Основные способы это термохимическая конверсия биомассы в топливо (прямое сжигание, пиролиз, газификация, снижение) и биотехнологическая конверсия при влажности от 75% и выше (низкоатомные спирты, жирные кислоты, биогаз). Переработка биоммассы может нести существенную энергетическую и социальную пользу.

Для производств биогаза можно использовать органическую часть бытовых отходов, а также отходы животноводства, птицеводства (экскременты животных и остался корма), растениеводства и овощеводства (солома, ботва, фрукты, овощи), древесина, отходы лесной и деревообрабтывающей промышленности, канализационные стоки. Какие-то из перечисленных отходов обязательно существуют в любой местности.

Один из наиболее эффективных способов переработки биомассы - ее конверсия в биогаз, который используется для выработки энергии в мини- ТЭЦ. Техническая реализация биогазовых технологий проста и они могут применяется как в малом фермерском хозяйстве, так и в крупных животноводческих и пищеводческих комплексах. Анаэробная бактериальнохимическая система при температуре 30-55 0С за время 5-20 суток разлагает до 50% органического вещества в биогаз, который содержит 55-80% метана и 20-45% углекислого газа. Современные мембранные технологии позволяют разделить биогаз на горючий метан и инертную кислоту имеющую спрос на рынке удобрений. Теплотворная способность биогаза составляет 5-6000 ккал/м3. По теплоотдаче 1м3 биогаза эквивалентен 0,7 м3 природного газа, 0.7 кг мазута, 0,6 кг керосина, 0,4 кг бензина, 3.5 кг дров. Технология производство биогаза сбраживанием неплохо освоена и находит применение.

Дня приготовления пиши на семью из 3-4 человек в день необходимо сжигать 3-4 м3 биогаза, для отопления дома площадью 50-60 м3 затрачивается 10-11 м3 биогаза в сутки.

Еще одним эффективным способом получения топлива для мини-ТЭЦ является использование отходов лесозаготовительных и лесоперерабатывающих предприятий. По данным исследований капитальные вложения в производство электроэнергии на базе древесного генераторного газа окупаются за 1 год.

Себестоимость единицы электроэнергии при этом снижается на 60%, а тепловой на 70%.

Лесные регионы, как правило, оторваны от линий электропередач, электроснабжение в этих местах осуществляется дизельными электростанциями, а отопление - путем сжигания древесины. Доставка дорогого и дефицитного топлива для этих регионов является довольно трудной задачей. В связи с этим, предлагается строительство мини-ТЭЦ, использующих отходы деревообработки в качестве топлива. Важным достоинством такой технологии является, то что в большинстве случаев не требуется создания новых установок. Технологический процесс можно организовать на базе имеющегося оборудования.

Основные преимущества мини-ТЭЦ по сравнению со стандартными схемами энергоснабжения Эффективность использования установок малой и средней мощности, устанавливаемых непосредственно у потреблителей в качестве альтернативы централизованному энергоснабжению, определяется следующими факторами:

  • снижение себестоимости производства электроэнергии и теплоты за счет комбинированной их выработки и использования более совершенного оборудования;
  • повышение надежности энергоснабжения;
  • независимость режима работы потребителя от режима работы энергосистем;
  • снижение масштабов отчуждения территорий под крупное энергетическое строительство;
  • более просто решаются вопросы обеспечения экологической безопасности и снижение затрат на охрану окружающей среды.

Мини-ТЭЦ является альтернативными источниками получения тепловой и электрической энергии, предназначенными для использования в различных областях народного хозяйства.

По сравнению с традиционными способами производства электроэнергии и тепла мини-ТЭЦ выбрасывают в атмосферу на 60 % меньше СО2 и NOx, значительно сокращая потребление топлива, благодаря этому они становятся перспективной альтернативой существующих ТЭЦ.

Мини-ТЭЦ позволяют добиться весьма высокого использования первичной энергии до 90 % и выше. При этом 30-35 % энергии прообразовывается в электрический ток и до 60% в тепловую энергию.



www.gigavat.com

Домашняя ТЭЦ на микротурбине | Инженерный Дом

Возможно ли дома иметь собственную надежную, компактную систему генерации тепла и электричества? Компания MTT Micro Turbine Technology BV (Нидерланды) на этот вопрос ответила утвердительно, создав установку EnerTwin  на основе микротурбины, одновременно генерирующей 3 кВт электричества  и 15 кВт  тепла.  Микро-ТЭЦ EnerTwin разработана для замены отопительных котлов для малого бизнеса и домашних хозяйств. Основное внимание уделяется низкой себестоимости, надежности, снижению уровня шума и низким эксплуатационным расходам.

Выглядит МикроТЭЦ как обычный бытовой прибор

Микро-ТЭЦ одновременно генерирует (когенерирует) тепловую и электрическую энергию в местах, где они обе востребованы. Как правило, основным   потребителем энергии микро-ТЭЦ является система отопления. Электричество, в этом случае, становится побочным продуктом, производимым по очень низкой себестоимости. Основное преимущество микро-ТЭЦ в том, что энергия топлива используется практически полностью. В этом состоит основное отличие от обычных электростанций, где значительное количество тепла теряется в атмосферу. Кроме того, микро-ТЭЦ экономит на передаче электроэнергии от электростанций до конечных пользователей, за счет уменьшения потерь.  Любое превышение выработки электроэнергии от микро-ТЭЦ можно экспортировать в электрическую сеть (в Европе, США и др.). Существуют специальные программы стимулирования для поставщиков электроэнергии. Например в Германии, для тех кто поставляет излишки генерируемой электроэнергии в сеть, дополнительно предоставляются льготы. Это делает преимущества когенерации еще большими.

Распределенная система генерации энергии на базе микро-ТЭЦ EnerTwin

Технология

EnerTwin система микро-ТЭЦ построена на основе микротурбины. Принцип работы заключается в следующем:

Основная схема рабочих узлов микро-ТЭЦ

  1. Окружающий воздух поступает и сжимается в компрессоре.
  2. Сжатый воздух предварительно нагревают в рекуператоре. 
  3. В камере сгорания, добавляется тепло при сгорании топлива. 
  4. Горячий сжатый газ расширяется в турбине, что обеспечивает механическую энергию для компрессора и генератора. «Инвертер» преобразует энергию, подаваемую генератором в напряжение и частоту электросети (23050 Гц).
  5. Расширенный газ после турбины нагревает воздух, сжатый компрессором в рекуператоре (см.2). 
  6. Остаточное тепло, оставшееся в выходном газе после рекуператора,  поглощается в теплообменнике с водой. 
  7. Горячая вода используется для центрального отопления и /или горячего водоснабжения.

Внутреннее устройство EnerTwin

Турбина

Газовые турбины известны своей высокой мощностью, низким весом и эксплуатационными расходами. Использование технологии турбонаддува, разработка которой финансировалась государством, приводит к низкой себестоимости производства. Газотурбинные компоненты оптимизировались для применения в турбогенераторе. Высокоскоростной турбогенератор при частоте вращения 240 тысяч оборотов в минуту  имеет чистый электрический к.п.д. 15% (19% эффективность мощности на валу). Вместе с низкими затратами, это обеспечивает большой потенциал для экономически эффективных микро-ТЭЦ систем.

Новая концепция

При создании EverTwin компания применила нетрадиционный подход для разработки эффективного, очень малого газотурбинного двигателя. Этот проект основан на вращающейся камере сгорания в сочетании с эффективным компрессором.

Эффективность газовой турбины  в значительной степени зависит от потерь из-за утечек потока, тепловых потерь и трения. Эти потери становятся еще существенней при попытках создать турбины микро-мощности, масштабируя обычные газовые турбины. При уменьшении турбины соотношение зазоров и размеров лопастей турбины уменьшается. Кроме того, при уменьшении размера (снижается число Рейнольдса) вязкие потери на трение становятся больше, чем в обычных турбогенераторах. В результате , существует фундаментальное ограничение на эффективность микротурбин с обычной конфигурацией.

В концепции вращающейся камеры сгорания вышеуказанные масштабные эффекты не так заметны. Ключевой особенностью является монолитный ротор.

Монолитный ротор микротурбины

Монолитный ротор в разрезе

В основном , турбина состоит из одного ротора, в котором расположены центробежный компрессор, вращающаяся камера сгорания и реакционная турбина. У вращающейся камеры сгорания, компрессор не имеет диффузора и турбина не имеет лопаток.

Электрогенератор

Эффективный высокочастотный генератор на постоянных магнитах преобразует механическую энергию микротурбины в электроэнергию.
Генератор полностью интегрирован в ротор турбины, избегая затрат и потерь от дополнительных подшипников и муфт.

Уровень шума

Микротурбины излучают только высокочастотный шум, который может быть эффективно заглушен. По сравнению с обычными генераторами и турбинами, EnerTwin имеет очень низкий уровень шума.

Спецификация EnerTwin

  • Электрическая мощность (макс/мин) — 3,0 /1,0 кВт
  • Тепловая мощность  (макс/мин) — 14,4 /5,0 кВт
  • Электрический КПД (макс/мин) — 15 /10 %
  • Максимальный суммарный КПД — 87% (зависит от параметров системы отопления, например температуры обратного трубопровода)
  • Скорость вращения ротора (макс/ мин) — 240 / 180 тысяч об/мин
  • Потребление газа (38.5 MJ/nm3,  макс/мин) — 1,87 /0,84 nm3/h
  • Топливо — природный газ
  • Параметры системы отопления (подающая/обратная труба) — 8060 °С
  • Шум — 55 dB(A) 1m
  • Размеры  — 970 x 610 x 1120мм
  • Вес — 225 кг
  • Диаметр дымохода — 100мм
  • Электросеть — 230 В/50 Гц

Основное применение

По мнению разработчика основное применение микро-ТЭЦ:

  • Малые и средние предприятия;  
  • Отрасли с относительно небольшим устойчивым требования тепла;  
  • Конференц-залы; 
  • Большие жилые дома;
  • Дома с бассейном и /или сауной;
  • Коттеджи; 
  •  Школы, спортивные школы, спортивные залы, студии и кружки;  
  • Коммунальные здания; 
  • Автозаправочные станции;
  • Гостиницы и рестораны;
  • Магазины;
  • Оздоровительные центры;
  • Дома престарелых; 
  • Правительственные здания, такие как залы, полицейские станции, библиотеки.

Сертификация

В феврале 2013 года EnerTwin получили сертификат CE для полевых испытаний. Получение этого сертификата представляет собой важную веху в развитии EnerTwin. Сертификат был выдан по KIWA после всесторонних испытаний работы турбин на газообразном топливе и вопросам безопасности труда. Свидетельство KIWA действительно для всех стран Европейского Союза, а также в Норвегии, Хорватии, Турции и Швейцарии.

Европейский сертификат безопасности KIWA

Где посмотреть?

МТТ скоро будет участвовать на выставках:

  • Hannover Messe в Германии с 7 по 11 апреля 2014 года, павильон Holland Energy House, холл 27 G24
  • MCE в Милане с 18 по 21 марта  2014 г. в павильоне 5, стенд №. E02 10.
Читайте также:

www.joule-watt.com

Автономные источники тепла и электроэнергии

Процесс получения, преобразования и передачи энергии весьма сложен и трудоемок.

От его организации на каждом отдельном этапе напрямую зависят затраты конечного потребителя. Транспортировка до места использования больше всего влияет на удорожание энергии. Поэтому для предприятий стоимость тепла и электроэнергии от собственных источников оказывается значительно более низкой, чем при покупке у традиционных поставщиков. Это - первое преимущество автономных энергетических установок. Вторым является тот факт, что в случае нового строительства их приобретение, монтаж и наладка могут обойтись дешевле сооружения питающих линий, подстанций и платы за подключение к централизованным сетям. В российских условиях на стремление предприятий обзавестись собственными источниками энергии влияет также ненадежность централизованных энергетических сооружений и непредсказуемая тарифная политика энергоснабжающих организаций.

Наибольший экономический эффект достигается при совместной выработке на месте потребления электричества и тепла. Данный процесс получил название когенерации В этом случае есть возможность использовать бросовую энергию - тепло выхлопных газов и систем охлаждения агрегатов, приводящих в движение электрические генераторы, или излишнее давление в трубопроводах. Утилизируемую тепловую энергию можно использовать также для производства холода в абсорбционных машинах (тригенерация).

Сегодня в промышленной энергетике широко применяется три вида оборудования для когенерации: газотурбинные установки, энергоблоки на базе двигателей внутреннего сгорания, а также сочетание паровых котлов и турбин. Существуют и другие решения, например, турбодетандер, который утилизирует избыточное давление природного газа и в некоторых случаях также может использоваться в качестве основного источника электроэнергии. 

Газотурбинные установки

Газотурбинные двигатели (ГТД) традиционно используются в энергетике. Если коротко говорить об устройстве и принципе действия ГТД, следует разделить двигатель на две основные части - газогенератор и силовую турбину, - размещенные в одном корпусе. Первая составляющая включает турбокомпрессор и камеру сгорания; здесь создается высокотемпературный поток газов, который воздействует на лопатки силовой турбины. 
В зависимости от конструкции газотурбинный двигатель может быть одновальным или с так называемым разрезным валом. Во втором случае обычно применяются два механически не связанных между собой и с силовой турбиной турбокомпрессора, которые приводятся в движение отдельными турбинами (рис. 1). В энергетике большим предпочтением пользуются одновальные ГТД. 
Значительная часть газотурбинных теплоэлектростанций малой и средней мощности создана на базе авиационных и судовых двигателей, но существуют также ГТД, изначально разработанные как энергетические.

В настоящее время для промышленной и коммунальной энергетики выпускаются газотурбинные установки (ГТУ) электрической мощностью от 0,8 до 30 МВт. Нижний уровень обусловлен неэффективностью менее мощных теплоэлектростанций данного типа, верхний не является конечным, поскольку автономная станция может включать несколько энергоблоков.

Схема когенераторной ГТУ показана на рис. 2. Тепловая производительность обеспечивается утилизацией тепла выхлопных газов с помощью теплообменника, водогрейного или парового котла-утилизатора. Мощность может быть увеличена за счет применения пиковых котлов или дополнительного сжигания топлива в потоке выхлопных газов перед утилизационным аппаратом.

Автономные газотурбинные теплоэлектростанции выпускаются в виде модулей полной заводской готовности для стационарного размещения или в блочно-контейнерном исполнении {рис. 3). 
Они включают все необходимое оборудование (электрическое, водоподготовительное и т. д.) и легко транспортируются. Подробнее о представленных на российском рынке газотурбинных когенераторных установках можно узнать из обзора на с. 52.

Недостатками малых ТЭЦ с газотурбинными двигателями являются довольно низкий электрический КПД (около 30%) и относительно высокий расход топлива. Дополнительные расходы связаны с необходимостью подавать топливный газ под высоким давлением (например, для газотурбинной электростанции «Урал» мощностью 2,5 МВт оно составляет 10-12 кг/см2; для более мощных установок этот показатель выше). Следует учесть также значительные затраты, обусловленные необходимостью приглашать для технического обслуживания ГТД специалистов из сторонних организаций.

К достоинствам данного оборудования следует отнести его способность работать на различном топливе, в том числе - на мазуте, относительно небольшой удельный вес, высокий потенциал утилизируемого тепла. Благодаря последнему свойству, ГТУ предпочтительнее там, где на выходе требуется пар. В качестве преимущества необходимо отметить также продолжительность периода, на протяжении которого допускается эксплуатировать данные машины без остановки (в среднем - до года). 

Поршневые когенераторы

Двигатели внутреннего сгорания уже давно используются для привода автономных электростанций. В наиболее известном случае это - дизельные моторы, которые традиционно применяются районах, где отсутствует централизованное энергоснабжение, и резервные источники электрической энергии. Они бывают оснащены теплообменным оборудованием и тогда представляют собой мини-ТЭЦ. При этом находит применение бросовое тепло выхлопных газов (их температура обычно составляет 450-500°С), а в моделях с глубокой утилизацией - также тепло систем охлаждения и смазки двигателя. Тепловая энергия от таких энергоагрегатов идет на отопление и горячее водоснабжение. 

Кроме дизелей в качестве базы для мини-ТЭЦ используют газовые (рис. 4) и газодизельные двигатели внутреннего сгорания. В так называемом газовом режиме газодизели обычно действуют на смеси газа и небольшого количества (от 1 до 10%) дизельного топлива. 
С точки зрения капитальных затрат наиболее дешевыми являются дизельные мини-ТЭЦ. Однако из-за дороговизны солярки, большего расхода масла и высоких эксплуатационных затрат себестоимость вырабатываемой ими электроэнергии оказывается в несколько раз выше, чем у газовых установок (обладающих к тому же большим ресурсом до капремонта). Таким образом, дизельные когенераторы лучше использовать в негазифицированных районах. Энергия, получаемая от газодизельных мини-ТЭЦ, также дороже той, что вырабатывают установки на чистом газе. 
Энергоблоки на базе двигателей внутреннего сгорания поставляются в блочно-модульном исполнении для стационарной установки или в транспортабельных контейнерах. Кроме того, часто применяются специальные кожухи, поглощающие шум. 
На российском рынке представлены газовые когенераторные установки на базе двигателей внутреннего сгорания электрической мощностью от 8 кВт до 5 МВт (см. обзор на с. 52). Их электрический КПД составляет порядка 40%, а общий коэффициент использования топлива достигает 90%.

Техническое обслуживание поршневых машин проводится чаще, чем обслуживание газотурбинных мини-ТЭЦ (через каждые 1000-2000 ч, в зависимости от уровня изготовления). Однако общие эксплуатационные затраты, включающие оплату работы специалистов и стоимость запасных частей, оказываются на 30-40% ниже. Они также уменьшаются при проведении ТО собственными силами предприятия.

С точки зрения использования различных видов топлива и простоты перехода с одного из них на другое поршневые двигатели также обладают большими возможностями. В качестве горючего могут быть использованы природный газ, биогаз, газы мусорных свалок, пиролизные газы, пропан, бутан, дизельное топливо, топочные мазуты, сырая нефть и т. д.

Обычно мини-ТЭЦ с газовыми двигателями внутреннего сгорания оказываются эффективнее и экономичнее газотурбинных установок. Исключение составляют случаи, когда на предприятии есть потребность в получении постоянного количества теплоносителя с температурой более 110°С, при большой потребляемой мощности, а также при ограниченном количестве пусков.

Паровые турбины

Небольшие паровые турбины позволяют создавать мини-ТЭЦ на базе уже действующих паровых котлов, давление пара на выходе из которых обычно значительно выше, чем необходимо для промышленных нужд. Избыток гасится специальным дроссельным устройством, при этом на каждой тонне пара теряется 40-50 кВт энергии. Установив параллельно дроссельному устройству турбину с генератором, можно получать электроэнергию. В других случаях может оказаться целесообразным специально установить паровой котел и турбину. В частности, это позволяет использовать для когенерации альтернативное топливо типа древесных отходов. Этим не исчерпываются возможные варианты. Например, для получения электрической энергии с наиболее эффективным использованием топлива разработаны комбинированные парогазотурбинные установки. В них тепло выхлопных газов газотурбинного двигателя утилизируется в паровом котле, а пар приводит в движение отдельно стоящую турбину с собственным электрогенератором.

Таким образом, получается три варианта использования паровой турбины: генераторный, турбоприводный и комбинированный. Генераторный вариант (Г) включает паровую турбину, приводящую в действие электрический генератор асинхронного или синхронного типов, подключенный на шины котельной, а трубопроводы отработавшего пара и промежуточных отборов - на трубопроводы соответствующих потребителей по уровням давления пара. Вырабатываемая электроэнергия, поступая на шины котельной вытесняет потребляемую из энергосистемы, а при ее избытке выдается в энергосистему через существующие электрические связи. Турбопроиводный (ТП) вариант включает паровую турбину, приводящую в действие механизм собственных нужд котельной и (или) другие механизмы. Такими механизмами являются питательные и сетевые насосы, дутьевые вентиляторы и дымососы, а также другое оборудование. Комбинированный вариант (К) включает паровую турбину, приводящую в действие генератор и механизм.

Типовыми, наиболее эффективными мощностями, на которых имеет смысл использовать паровые турбины, является диапазон мощностей от 5 мВт до 25 мВт.

Преимущества паровой турбины: высокая производительность, гибкость по отношению к типу сжигаемого топлива, длительный срок службы. Недостатки: высокая инертность (длительный период запуска), высокая стоимость, производство тепла преобладает над электроэнергией, нижний порог эффективного применения (от 5 мвт электроэнергии).

Микротурбины

Микротурбина используется в качестве двигателя компактных модульных генераторов электроэнергии, работающих в диапазоне мощностей от 25 до 200 квт.

Все движущиеся части микротурбинного двигателя - воздушный компрессор, генератор и сама турбина - расположены на одном валу, скорость вращения которого находится в диапазоне 45000-96000 оборотов в минуту. Вал закреплен на воздушных подшипниках, что позволяет отказаться от жидкостной смазки и использовать для этого воздух. Воздух также обеспечивает охлаждение двигателя и управляющей электроники. Это позволяет значительно снизить стоимость обслуживания оборудования по сравнению с другими технологиями. Для микротурбин стандартным считается проведение регламентных работ не чаще чем 1 раз в год, что обеспечивает работоспособность не ниже 99%.

Основным видом топлива для микротурбин является природный газ, но они также могут эффективно работать и на другом коммерческом или условно бесплатном углеводородном топливе (попутный нефтяной, биологический газы, шахтный метан, сжиженный пропан, бутан). Микротурбины демонстрируют наилучшие показатели по экологическим параметрам по сравнению с остальными приведенными в настоящем обзоре технологиями: содержание N0X в отходящих газах не превышает 9 ppm, CO - 40 ppm (частей на миллион), что в 10 раз лучше, чем у поршневых двигателей и в 5 - чем у индустриальных турбин.

Микротурбины не вибрируют, акустическая эмиссия не превышает 65 ДБ и легко гасится с помощью дополнительных кожухов. Корпус микротурбины имеет защиту от влаги и позволяет устанавливать оборудование на открытой площадке, снижая тем самым расходы на организацию специальных помещений.

По совокупности все эти преимущества позволяют применять микротурбины в качестве постоянно работающего основного генератора даже в густонаселенных городских центрах внутри и вне помещений, отводя сети роль резерва.

К стандартным, и серьёзным минусам микротурбин относят:

  • Высокую стоимость капиталовложений.
  • Высокую стоимость аммортизационных отчислений.
  • Высокую стоимость и необходимость регулярной замены аккумуляторных батарей, которые необходимо менять в процессе работы установки.
  • Низкий электрический КПД и высокий расход газа.

Топливные элементы

Топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию без процесса горения - химическим путем, почти так же, как батарейки. Разница лишь в том, что в них используются другие химические вещества, водород и кислород, а продуктом химической реакции является вода. Можно использовать и природный газ, однако при использовании углеводородного топлива, конечно же, неизбежен определенный уровень выбросов двуокиси углерода. 
Поскольку топливные элементы могут работать с высоким КПД и без вредных выбросов, с ними связаны большие перспективы в отношении экологически рационального источника энергии, который будет способствовать снижению выбросов парниковых газов и других загрязняющих веществ. Основное препятствие на пути широкомасштабного использования топливных элементов это их высокая стоимость по сравнению с другими устройствами, вырабатывающими электричество.

На базе топливных ячеек в настоящее время доступны когенераторные установки в диапазоне электрических мощностей 0,3-10 МВт. Достоинства данной технологии:

  • Высокий электрический КПД (до 54%)
  • Высокая экологичность (выхлопные газы представляют собой водяной пар и углекислый газ)
  • Низкие эксплуатационные издержки
  • Абсолютная безопасность
  • Компактность
  • Низкий уровень шума
  • Отсутствие вибраций

Выбор установки

В ходе разработки технико-экономического обоснования на строительство автономной теплоэлектростанции необходимо в первую очередь рассчитать возможный экономический эффект. Для этого сравниваются различные варианты покрытия потребности предприятия в тепловой и электрической энергии. В каждом случае учитываются затраты на энергоносители и материалы (электричество, газ, тепло, моторное масло и т. д.), на проектирование, приобретение, монтаж, наладку оборудования, прокладку инженерных коммуникаций, эксплуатационные издержки. Для всех вариантов определяется конечная себестоимость тепла и электричества, производится расчет годовой экономии и срока окупаемости капитальных вложений. Рассматриваются также вопросы надежности энергоснабжения. Здесь особого внимания заслуживает тема общего ресурса оборудования и интервала между капремонтами.

По заявлениям мировых изготовителей, после проведения капитального ремонта в полном объеме и с рекомендуемой инструкциями периодичностью работоспособность техники полностью восстанавливается. Как правило, общий срок службы рассчитан не менее чем на три кап. ремонта (при правильной эксплуатации может быть более продолжительным) Следует помнить, что ресурс до капитального ремонта диктуется вероятностью отказа оборудования в результате износа. Для газовых моторов западного производства он составляет порядка 60 тыс. ч. У газотурбинных установок этот показатель равняется обычно 25-35 тыс. ч. Требованием надежности обусловливается также выбор числа и единичной мощности энергетических агрегатов. Ему должно предшествовать решение о том, будет мини-ТЭЦ работать автономно или параллельно с централизованной сетью (если такой режим возможен). Для этого следует сравнить расходы на энергию, потребляемую из сети, и оплату резервирования мощности при параллельной работе с расходами на приобретение, установку и обслуживание резервного агрегата, необходимого в случае полной автономности.

В расчете числа и единичной мощности установок следует учитывать следующее:
  • Единичная электрическая мощность агрегата должна в 2,0- 2,5 раза превышать минимальную потребность предприятия; общая мощность агрегатов должна превышать максимальную потребность предприятия на 5-10%;
  • Агрегаты по возможности должны быть одинаковой мощности. Перечисленные моменты в большей мере относятся к автономному режиму, но их желательно учитывать и при работе параллельно с сетью.
  • Мини-ТЭЦ на базе газового двигателя должна покрывать приблизительно 30-50% максимальной ежегодной потребности предприятия в тепловой энергии; остальная тепловая нагрузка обеспечивается пиковыми водогрейными котлами.

Российские проблемы автономного энергоснабжения

В большинстве развитых стран (Германия, Австрия, Великобритания и т. д.) автономные когенераторные установки уже нашли широкое применение. На Западе понимают, что это выгодно не только предприятиям, использующим данную технику, но и обществу в целом: снижаются потери энергии, выбросы в атмосферу вредных веществ, себестоимость выпускаемой продукции. 
В нашей стране на пути к энергетической независимости существует ряд административных препятствий, порой непреодолимых. Во-первых, речь идет о так называемых лимитах на газ. Поскольку в настоящее время продавать газ за рубеж выгоднее, чем реализовывать его в России, газовые монополисты неохотно идут на дополнительные поставки этого топлива отечественным предприятиям. Хотя, в целом по стране увеличение числа малых ТЭЦ позволило бы снизить потребление газа менее рентабельными крупными электростанциями. 
Во-вторых, нередки случаи, когда построить автономную теплоэлектростанцию невозможно из-за сопротивления организаций централизованного энергоснабжения, которым невыгодно терять клиентов, ведь именно они выдают необходимые разрешения (например, на параллельную работу мини-ТЭЦ с сетью). 

В то же время, энергетика является основой экономического развития общества и независимо от формы собственности должна быть подконтрольна государству. Так что окончательные решения, касающиеся автономного энергоснабжения, должны принимать все-таки государственные структуры, с учетом всех аспектов. 

Развитие малой энергетики сдерживается относительно низкой покупательной способностью российского рынка. Данное оборудование окупается за 1-4 года, но требует ощутимых для отдельного предприятия капитальных затрат. Заинтересовать предпринимателей могли бы таможенные и налоговые льготы на покупку и ввоз энергосберегающего оборудования, компенсация расходов из налоговой части бюджетов предприятий и т. д. Принятие таких решений - также прерогатива государства. 

Сегодня реальные льготы действуют при приобретении оборудования в лизинг, но это - тема отдельного материала.

С.В. Беляков И.Н. Плохих. АКВА-ТЕРМ март 2002

www.esist.ru

Газотурбинные установки электростанций :: SYL.ru

Газотурбинные установки (ГТУ) – тепловые машины, в которых тепловая энергия газообразного рабочего тела преобразуется в механическую энергию. Основными компонентами являются: компрессор, камера сгорания и газовая турбина. Для обеспечения работы и управления в установке присутствует комплекс объединенных между собой вспомогательных систем. ГТУ в совокупности с электрическим генератором называют газотурбинным агрегатом. Вырабатываемая мощность одного устройства составляет от двадцати киловатт до десятков мегаватт. Это классические газотурбинные установки. Производство электроэнергии на электростанции осуществляется при помощи одной или нескольких ГТУ.

Устройство и описание

Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, – газогенератора и силовой турбины. В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины. При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел. Работа газотурбинных установок предусматривает использование двух видов топлива – газообразного и жидкого.

В обычном режиме ГТУ работает на газе. В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо. В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. По количеству вырабатываемой тепловой энергии ГТУ значительно превосходят газопоршневые устройства. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.

История создания

Идея использовать энергию горячего газового потока была известна еще с древних времен. Первый патент на устройство, в котором были представлены те же основные составляющие, что и в современных ГТУ, был выдан англичанину Джону Барберу в 1791 году. Газотурбинная установка включала в себя компрессоры (воздушный и газовый), камеру сгорания и активное турбинное колесо, но так и не получила практического применения.

газотурбинные установки

В 19-м и начале 20-го века многие ученые и изобретатели всего мира разрабатывали установку, пригодную для практического применения, но все попытки были безуспешными ввиду низкого развития науки и техники тех времен. Полезная мощность, выдаваемая опытными образцами, не превышала 14% при низкой эксплуатационной надежности и конструктивной сложности.

Впервые газотурбинные установки электростанций были использованы в 1939 году в Швейцарии. В эксплуатацию была введена электростанция с турбогенератором, выполненным по простейшей схеме мощностью 5000 кВт. В 50-х годах эта схема была доработана и усложнена, что позволило увеличить КПД и мощность до 25 МВт. Производство газотурбинных установок в промышленно развитых странах сформировалось в единый уровень и направление развития по мощностям и параметрам турбоагрегатов. Суммарная мощность выпущенных в Советском Союзе и России газотурбинных установок исчисляется миллионами кВт.

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания. Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке. Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться. Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор. Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

работа газотурбинных установок

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу. Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды. Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей. Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ – метан. В аварийном режиме, в случае прекращения подачи газа, ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан). Возможные варианты работы газотурбинной установки: отпуск электроэнергии или совмещенный отпуск электричества и тепловой энергии.

Когенерация

Производство электричества с одновременной выработкой сопутствующей тепловой энергии называется когенерацией. Эта технология позволяет значительно повысить экономическую эффективность использования топлива. В зависимости от нужд газотурбинная установка дополнительно может оснащаться водогрейными или паровыми котлами. Это дает возможность получать горячую воду или пар различного давления.

цикл газотурбинной установки

При оптимальном использовании двух видов энергии достигается максимальный экономический эффект когенерации, а коэффициент использования топлива (КИТ) достигает 90%. В этом случае тепло выхлопных газов и тепловая энергия из системы охлаждения агрегатов, вращающих электрогенераторы (по сути, бросовая энергия), используется по назначению. При необходимости утилизируемое тепло может использоваться для производства холода в абсорбционных машинах (тригенерация). Система когенерации состоит из четырех ключевых частей: первичный двигатель (газовая турбина), электрогенератор, система теплоутилизации, система управления и контроля.

Управление

Выделяют два основных режима работы, при которых эксплуатируются газотурбинные установки:

  • Стационарный. В этом режиме турбина работает при фиксированной номинальной или неполной нагрузке. До недавнего времени стационарный режим был основным для ГТУ. Остановка турбины проводилась несколько раз в год для плановых ремонтов или в случае неполадок.
  • Переменный режим предусматривает возможность изменения мощности ГТУ. Необходимость изменять режим работы турбины может быть вызвана одной из двух причин: если изменилась потребляемая электрогенератором мощность ввиду изменения подключенной к нему нагрузки потребителей, и если изменилось атмосферное давление и температура забираемого компрессором воздуха. К нестационарным режимам, причем наиболее сложным, относится остановка и пуск газотурбинной установки. При последнем машинист газотурбинных установок должен выполнить многочисленные операции перед первым толчком ротора. Перед полноценным пуском установки осуществляется предварительная раскрутка ротора.
газотурбинная энергетическая установка

Изменение режима работы установки осуществляется регулировкой подачи горючего в камеру сгорания. Главной задачей управления ГТУ является обеспечение нужной мощности. Исключением является газотурбинная энергетическая установка, для которой основная задача управления – постоянство частоты ращения, связанного с турбиной электрического генератора.

Применение в энергетике

В стационарной энергетике применяются ГТУ разного назначения. В качестве основных приводных двигателей электрогенераторов на тепловых электростанциях газотурбинные установки используются в основном в районах с достаточным количеством природного газа. Благодаря возможности быстрого пуска ГТУ широко применяются для покрытия пиковых нагрузок в энергосистемах в периоды максимального потребления энергии. Резервные газотурбинные агрегаты обеспечивают внутренние нужды ТЭС во время остановки основного оборудования.

КПД

В целом электрический КПД газовых турбин ниже, чем у других силовых агрегатов. Но при полной реализации теплового потенциала газотурбинного агрегата значимость этого показателя становится менее актуальной. Для мощных газотурбинных установок существует инженерный подход, предполагающий комбинированное использование двух видов турбин за счет высокой температуры выхлопных газов.

производство газотурбинных установок

Вырабатываемая тепловая энергия идет на производство пара для паровой турбины, которая используется параллельно с газовой. Это повышает электрический КПД до 59% и существенно увеличивает эффективность использования топлива. Недостатком такого подхода является конструктивное усложнение и удорожание проекта. Соотношение производимой ГТУ электрической и тепловой энергии примерно 1:2, то есть на 10 МВт электроэнергии выдается 20 МВт энергии тепловой.

Достоинства и недостатки

К преимуществам газовых турбин относятся:

  • Простота устройства. Ввиду отсутствия котельного блока, сложной системы трубопроводов и множества вспомогательных механизмов металлозатраты на единицу мощности у газотурбинных установок значительно меньше.
  • Минимальный расход воды, которая в ГТУ требуется только для охлаждения подаваемого к подшипникам масла.
  • Быстрый ввод в работу. Для газовых турбоагрегатов время пуска из холодного состояния до принятия нагрузки не превышает 20 минут. Для паросиловой установки ТЭС пуск занимает несколько часов.
машинист газотурбинных установок

Недостатки:

  • В работе газовых турбоагрегатов используется газ с весьма высокой начальной температурой – более 550 градусов. Это вызывает трудности при практическом исполнении газовых турбин, так как требуются специальные жаростойкие материалы и особые системы охлаждения для наиболее нагреваемых частей.
  • Около половины развиваемой турбиной мощности расходуется на привод компрессора.
  • ГТУ ограничены по топливу, используется природный газ или качественное жидкое топливо.
  • Мощность одной газотурбинной установки ограничена 150 МВт.

Экология

Позитивным фактором использования ГТУ является минимальное содержание вредных веществ в выбросах. По этому критерию газовые турбины опережают ближайшего конкурента – поршневые электростанции. Благодаря своей экологичности газотурбинные агрегаты без проблем можно размещать в непосредственной близости от мест проживания людей. Низкое содержание вредных выбросов при эксплуатации ГТУ позволяет экономить средства при строительстве дымовых труб и приобретении катализаторов.

газотурбинные установки производство электроэнергии

Экономика ГТУ

На первый взгляд, цены на газотурбинные установки довольно высоки, но при объективной оценке возможностей этого энергетического оборудования все аспекты встают на свои места. Высокие капиталовложения на старте энергетического проекта полностью компенсируются незначительными расходами при последующей эксплуатации. Кроме того, значительно снижаются экологические платежи, уменьшаются затраты на покупку электрической и тепловой энергии, снижается влияние на окружающую среду и население. Вследствие перечисленных причин ежегодно приобретаются и устанавливаются сотни новых газотурбинных установок.

www.syl.ru

Особенности использования газотурбинных установок в качестве источника электроэнергии и тепла

В условиях физического и морального старения основного генерирующего оборудования, ухудшения его технико-экономических показателей, плохого инвестиционного климата, обострения топливного дефицита необходим поиск решений, оптимальных по соотношению затрат и результатов, дающих быстрый эффект и позволяющих в будущем обеспечить снижение зависимости от ввоза первичных энергоресурсов. Согласно данным недавнего отчета, опубликованного Минпромэнерго, к 2010 году выработают свой ресурс около 50% мощности ТЭС и ГЭС, к 2020 году эта цифра вырастет до 70%. Процессы модернизации электрического хозяйства и ввода в эксплуатацию новых мощностей не успевают за ростом потребления электричества.

Подобные обстоятельства заставляют корпоративный сектор с особым вниманием относится к своей энергобезопасности. Соответственно, все большее значение приобретают системы автономного энергоснабжения. Будущее развития энергетической отрасли в России все чаще связывают с малой и альтернативной энергетикой.

В настоящее время ведется активное внедрение более ресурсоемких методов выработки электроэнергии и тепла, основной из них это использование малоразмерных газотурбинных установок (МГТУ).  Создание на базе МГТУ Мини-ТЭЦ позволяет решить проблему дефицита тепловой и электрической энергии отдельных регионов, обеспечить бесперебойное энергоснабжение жилищно-коммунального сектора и промышленных предприятий.

Наибольший экономический эффект от установки МГТУ можно получить при максимальном времени использования ее в течение года. Поэтому на первом этапе выбор мощности МГТУ нужно производить по гарантированному круглогодичному отпуску тепла от тепло источников (это может быть отпуск тепла на горячее водоснабжение в летние месяцы или в виде постоянного отпуска пара на производственные нужды). На последующих этапах можно выбирать мощность МГТУ исходя из покрытия зимних нагрузок.

Основными преимуществами МГТУ являются:

  • Минимальный ущерб для окружающей среды: низкий расход масла, возможность работы на отходах производства; выбросы вредных веществ.
  • Низкий уровень шума и вибраций.
  • Компактные размеры и небольшой вес дают возможность разместить газотурбинную установку на небольшой площади, что позволяет существенно сэкономить средства. Возможны варианты крышного размещения газотурбинных установок небольшой мощности.
  • Возможность работы на различных видах газа позволяет использовать газотурбинный агрегат в любом производстве на самом экономически выгодном виде топлива.
  • Эксплуатация, как в автономном режиме, так и параллельно с сетью.
  • Возможность работы в течение длительного времени при очень низких нагрузках, в том числе в режиме холостого хода.
  • Максимально допустимая перегрузка: 150 % номинального тока в течение                        1 минуты, 110 % номинального тока в течение 2 часов.
  • Способность системы генератора и возбудителя выдерживать не менее 300 % номинального непрерывного тока генератора в течение 10 секунд в случае трехфазного симметричного короткого замыкания на клеммах генератора, тем самым, обеспечивая достаточное время для срабатывания селективных выключателей.

МГТУ предназначается, в основном, для автономной эксплуатации, что не исключает применение ее в различных энергетических сетях, в том числе и крупных.                 В круг потребителей входят:

·       Все предприятия и организации всех сфер деятельности и видов собственности, включая бытовые предприятия.

·         Жилой сектор, включая частных владельцев.

·         Полностью изолированные от энергосетей производственные и жилые объекты, в том числе и базы отдыха.

·          Потребители, использующие автономные энергоустановки, как в базовом, так и в пиковом классе эксплуатации.

·          Потребители, использующие только электроэнергию, электроэнергию и тепло (когенерация).

·         Потребители, для которых наиболее важны технические характеристики установки, и потребители, для которых главным является ее относительно низкая стоимость.

Используемые в настоящее время ГТУ разделяются на три основных типа [1]:

·         Созданные на базе авиационных реактивных газотурбинных двигателей.

·         Созданные на базе газотурбинных двигателей для морского использования.

·         Созданные специально для энергетического использования.

ГТУ, относящиеся к первой и второй категории - более форсированные и легкие установки, отличающиеся простотой обслуживания, меньшими требованиями к инфраструктуре, но также и меньшим ресурсом.

Обычно, общее число независимых валов в ГТУ на базе авиационных двигателей и двигателей морского применения 1-3, причем валы, расположенные в газогенераторе имеют переменную частоту вращения (в зависимости от нагрузки) в диапазоне 6-14 тыс. оборотов/мин.

Конвертированные для газового топлива двигатели морского применения составили так называемый "промежуточный класс", поскольку в спектре газотурбинной техники они заняли нишу между конвертированными авиационными и двигателями созданные специально для энергетического использования. Такие установки имеют достоинства авиационных двигателей (небольшие вес и габариты, легкость замены двигателя целиком или его отдельного модуля для выполнения высококачественного ремонта в условиях специализированного производства, высокая приемистость, что позволяет использовать их в пиковом режиме). Кроме того, технологии, материалы и покрытия, используемые при создании этих двигателей, позволяют применять их в условиях морского климата: на судах, морских платформах, береговых и прибрежных объектах и т.д.

ГТУ, относящиеся к третьей категории - это, как правило, одновальные установки, имеющие постоянную частоту вращения, равную частоте вращения генератора. Для обеспечения надежности, тепловой экономичности, снижения стоимости и эксплуатационных затрат, данные энергетические ГТУ проектируются по простейшему циклу. Технические решения таких установок соответствуют принципам, исторически сложившимся в энергетическом машиностроении: тяжелый жесткий вал, подшипники скольжения, лопатки постоянного профиля на основном протяжении проточной части (кроме первых ступеней компрессора и последних ступеней турбины) и т.п. Основным охладителем для рабочих лопаток и лопаток соплового аппарата является воздух.

ГТУ третьей категории предъявляют значительно более высокие требования к строительным работам и инфраструктуре. Срок службы таких установок значительно выше и соответствует значениям, сложившимся в паротурбинных установках.

 

ГТУ (Мини-ТЭЦ) обладают большим количеством преимуществ по сравнению  ТЭЦ основным из них является меньший выброс вредных веществ, таких как оксид азота (NO) и диоксид азота (NOx). Эти показатели меньше в 2-3 раза, чем на обычных ТЭЦ, но они не являются пределом совершенства для ГТУ - в направлении уменьшения вредных выбросов ведутся постоянные исследования и разработки.

Рассмотрим основные методы борьбы с вредными выбросами газотурбинных установок:

·        разного рода реконструкции камер сгорания;

·        усовершенствование газовой горелки;

·        организацию самого процесса сгорания топлива в камерах;

·        метод предварительного смешения определенной порции воздуха и топлива перед подачей их в камеру сгорания.

Многочисленные исследования процессов горения топлива в камерах сгорания показывают, что основным направлением по снижению выбросов оксидов азота следует считать уменьшение объема зон горения с максимальным уровнем температуры. Это связано, прежде всего, с повышением качества процесса смесеобразования, организацией ступенчатого подвода топлива и воздуха по длине камеры сгорания.

Так, например, реконструкция камер сгорания за счет изменения отверстий горелки, перераспределения воздушных потоков первичного воздуха, использования так называемого «микрофакельного» горения, проведенные на ряде компрессорных станций российских предприятий, позволили снизить содержание оксида азота в выхлопных газах более чем в два раза. Термин «микрофакельное горение» подразумевает организацию сжигания топлива посредством создания целой системы многочисленных малых факелов в камере сгорания. Однако удорожание и усложнение производства таких горелок для снижения выбросов оксидов азота представляется не очень оправданным.

В последние годы предпринимаются попытки создать так называемые двухзонные камеры для сгорания в них топлива. Применение двух стадийного горения топлива в камерах сгорания позволяет снизить выход оксидов азота до 45-50% от начального выхода при сжигании природного газа. Однако двухстадийное сжигание топлива связано с разработкой достаточно сложной конструкции камеры сгорания, что не в полной мере компенсируется снижением эмиссии оксида азота.

В настоящее время наиболее простым и относительно дешевым способом снижения выбросов оксидов азота с продуктами сгорания следует считать способ, основанный на предварительном смешении топлива с воздухом (обедненная смесь) до подачи компонентов в зону горения. Все чаще газотурбинные установки совершенствуют именно таким методом [2].

В заключении можно сказать, что будущее теплоэнергетики за ТЭЦ  на основе газотурбинных установок - это не только с экономической стороны оправданное решение, но и с экологической. Низкие уровни эмиссии и шума, отсутствие вибрации, делают это оборудование единственно возможным для применения в местах плотной застройки, таких как жилые кварталы, деловые и курортные районы. Эти особенности позволяют считать данное оборудование наиболее востребованным и перспективным для применения в энергетических комплексах малой мощности.

 

Литература:

1.    Ольховский Г.Г. Энергетические газотурбинные установки. – М.: Энергопромиздат, 1985. –304 с.

2.    Б.П. Поршаков, А.А. Апостолов, В.И. Никишин. Газотурбинные установки: - М: ГУП Издательство «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2003. – 240 с.

 

Работа выполнена при финансовой поддержке гранта МД-277.2010.8

moluch.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о