Газопоршневые двигатели – Газопоршневые двигатели – конструкция и принцип работы

Содержание

Газопоршневые двигатели – конструкция и принцип работы

Газопоршневый двигатель – это двигатель внутреннего сгорания с системой внешнего образования топливно-воздушной смеси и искровым зажиганием. В качестве топлива использует природный магистральный газ и др. виды газового топлива, что обеспечивает экономичность, высокий ресурс работы и минимальный уровень шума. В данной статье мы рассмотрим, что представляет собой газопоршневый двигатель, принцип работы и его особенности.

Основные элементы и принцип работы газопоршневого двигателя

Как и у любого ДВС, у газопоршневого двигателя принцип действия основан на сгорании топливовоздушной смеси и поступательном движении поршней за счет энергии расширяющихся газов. С помощью кривошипно-шатунного механизма поступательное движение поршней преобразуется во вращательный выходного вала двигателя.В схеме подачи газа в газопоршневых двигателях основную роль играет газораспределительный механизм, подача газа осуществляется из магистрали или баллонного оборудования.

Чаще всего данный вид двигателей применяется в качестве основного элемента электрогенератора. Так, современные газопоршневые электростанции, характеристики потребления топлива которых делают их наиболее выгодными из всех решений автономного энергообеспечения. Дополнительным преимуществом является возможность выработки тепла или холода для хозяйственных нужд – когенерации и тригенерации. Современный газопоршневой двигатель, принцип работы которого позволяет обеспечить и одновременную тригенерацию, делает оптимальным его применение в приводе холодильной установки. Также применяются они в насосном оборудовании, морском судостроении и др. сферах деятельности.

Особенности газопоршневого двигателя

Наибольшие значения мощности газопоршневых двигателей достигают десятков мегаватт, что достаточно для обеспечения работы мощного оборудования и автономного энергообеспечения производственных и строительных объектов. Важным преимуществом является высокий ресурс работы, достигающий 250 тысяч часов при 80-100 тыс. часов межремонтного интервала (между капитальными ремонтами).

Подача газа в газопоршневых двигателях может быть баллонной или магистральной, а в качестве топлива, помимо метана, применяется:

  • пропан;
  • бутан;
  • коксовый и другие сопутствующие промышленные газы;
  • древесный газ;
  • газы нефтяной промышленности и многие другие виды. 

При этом схема подачи газа в газопоршневых двигателях не требует наличия дожимного компрессора благодаря малому потребному давлению. Благодаря большому выбору вариантов можно гибко использовать оборудование на различных объектах, оперативно адаптировать систему к изменению технических или экономических условий. Перенастройка системы подачи топлива занимает минимум времени, газопоршневый двигатель можно свободно настроить на эксплуатацию на попутном газе, биогазе и др. топливе.

К основным особенностям газопоршневых двигателей можно отнести:

  • Небольшую зависимость КПД от окружающей температуры.
  • Незначительные колебания КПД при снижении нагрузки на 50% и, соответственно, эффективное использование двигателя при любых нагрузках.
  • Малые затраты на эксплуатацию.
  • Неограниченное количество запусков мотора.
  • Возможность параллельного подключения нескольких двигателей и, соответственно, возможность значительного повышения и рационального использования мощности системы.

С каждым годом газопоршневые двигатели получают всё большее применение в различных сферах, в т. ч. в качестве основного элемента газоэлектростанций для коттеджных поселков. Их экономичность и эксплуатационные обеспечивают им солидные преимущества в сравнении с другими вариантами автономного, резервного или аварийного электроснабжения различных объектов.

mitsubishi-engine.ru

Жми на газ

Последние несколько лет в России и за рубежом все большей популярностью пользуются автономные электростанции с газопоршневыми двигателями. Такие установки просты в обслуживании и расходуют меньше топлива, чем традиционные дизельные агрегаты. Кроме того, на основе газопоршневого двигателя можно собрать комбинированную станцию, одновременно вырабатывающую тепло и электричество. О том, чем газопоршневая установка отличается от бензинового или дизельного двигателя и можно ли ее поставить на обыкновенный автомобиль, мы поговорили с разработчиками из «Трансмашхолдинга», генерального партнера фестиваля «Политех 360». На наши вопросы отвечали Александр Терехин — руководитель управления по развитию дизелестроения АО «Трансмашхолдинг» и Игорь Овчинников — руководитель проектов по развитию дизелестроения АО «Трансмашхолдинг».

По сути, газопоршневые двигатели — это обычные двигатели внутреннего сгорания, в которых для работы используется газ. Первые такие установки появились еще в конце XIX века и использовались преимущественно на заводах для приведение в действие различного производственного оборудования. Позднее их, в основном, вытеснили электромоторы. На транспорте они также не получили широкого распространения. Но в последние годы популярность газопоршневых двигателей начала расти. Причин этому несколько, но главной является рост цен на жидкое углеводородное топливо (бензин, дизель). Сегодня газопоршневые двигатели используются в составе электрогенераторов, теплогенераторов, насосов, компрессоров и холодильных установок.

N + 1: В составе каких установок используются газопоршневые двигатели и зачем?

Газопоршневые двигатели используются в силовых установках практически всех применений: стационарные двигатель-генераторы и электростанции, локомотивные, автомобильные, транспортно-технологические (для тракторов, карьерной техники) и другие.

Запасы природного газа в нашей стране и в мире существенно превышают запасы жидкого углеводородного топлива всех видов. Естественно, и стоимость газового топлива существенно ниже, чем у жидкого углеводородного. В нашей стране многие поколения смогут пользоваться этим видом топлива.

На чем работают такие двигатели?

Для них используется газовое топливо двух видов. Во-первых, это природный газ (в нем большая часть метана), который мы сжигаем, в частности, у себя на кухне. И, во-вторых, нефтяной газ, получаемый при переработке нефти (в нем большая часть пропана и бутана). Именно последний в сжиженном состоянии в большей степени используется в качестве моторного топлива для автомобилей или в баллонах для газовых дачных плит.

Промышленные двигатели, двигатели грузовых автомобилей и автобусов по большей части используют природный сжатый или сжиженный газ. В последнее время появились предложения по переоборудованию легковых автомобилей для использования природного газа.

А чем вообще такой двигатель отличается от двигателя внутреннего сгорания?

Газопоршневой двигатель — тот же двигатель внутреннего сгорания, но с некоторыми конструктивными особенностями, касающимися применения другого вида топлива.

В первую очередь, на конечном изделии (автомобиле, тепловозе и прочем) должны быть смонтированы система хранения газа и газовое оборудование для изменения параметров газа (давление, температура) и подачи его к двигателю.

Изменения в самом двигателе можно разделить на две части. Те, что относятся к первой из них, носят конструктивный характер и касаются изменения степени сжатия, конструкции деталей цилиндро-поршневой группы, настроек воздухоснабжения и турбокомпрессора и других элементов. Вторые связаны с оборудованием двигателя устройствами подачи газа во впускной коллектор или камеру сгорания.

Можно ли поставить газопоршневой двигатель на обычный автомобиль?

Можно. Многие ставят и с успехом ездят. Такие решения используются в автомобилях, тракторах, на локомотивах, коммерческих судах малого дедвейта и других транспортных средствах.

Трансмашхолдинг и газовые двигатели
В 2013 году на заводе Трансмашхолдинга в Брянске был выпущен маневровый тепловоз ТЭМ19. Это первый в мире тепловоз, чей поршневой двигатель работает на природном газе, автономный запас которого хранится в жидком виде, в криогенной емкости.

В настоящее время ТМХ приступил к проекту создания нового газового маневрового тепловоза ТЭМ29 повышенной мощности. В основу его конструкции будет заложен принцип модульности основного оборудования. Он нацелен на снижение затрат привлекаемых ресурсов при проведении технического обслуживания и ремонта в процессе эксплуатации благодаря использованию агрегатированного ремонта.

На своем предприятии в Коломне ТМХ реализует ряд проектов с использованием альтернативных видов топлива, осваивает производство принципиально нового вида продукции — газовых моторов, предназначенных для выработки электрической и тепловой энергии в электростанциях базового, резервного и аварийного назначения.

В настоящее время на Коломенском заводе в стадии создания находится газовый двигатель-генератор 9ГМГ для маневрового тепловоза ТЭМ29.

Двигатели, создаваемые на Коломенском заводе ТМХ, будут использовать в качестве основного топлива дизельное топливо, природный топливный или нефтяной попутный газ, а также сырую нефть в мощностном диапазоне от 1000 до 3500 киловатт.

ТМХ также намерен разработать газовые модификации новых дизелей, созданных при реализации подпрограммы развития дизелестроения ФЦП «Национальная технологическая база».

А почему эти двигатели не используются повсеместно?

Просто исторически сложилось так, что в качестве моторного топлива в основном используются разные виды жидкого углеводородного топлива. Под них создана широкая инфраструктура. Соответственно, для расширения использования газа необходимо расширить инфраструктуру, связанную с его доставкой к месту заправки и, в конечном итоге, к месту сжигания. Этим сейчас активно занимаются.

На настоящий момент наиболее перспективным для эксплуатации локомотивов, работающих на газомоторном топливе, является неэлектрифицированный северный полигон Свердловской железной дороги. В этом регионе имеются все необходимые условия: равнинный профиль, большие объемы грузов, наличие дешевого природного газа, а также производственные мощности, на базе которых можно развернуть производство сжиженного природного газа.

Вообще же применение газа в качестве моторного топлива на всех видах транспорта и создание отечественной газовой транспортной и стационарной техники имеют сегодня большое значение для обновления парка подвижного состава, который должен отвечать международным стандартам безопасности, экологичности и надежности.

По какой причине их часто используют в составе небольших электростанций?

Это выгодно и экономично. Важными вопросами для владельца станции являются расход топлива и эксплуатационные затраты. У газопоршневой установки удельный расход топлива на выработанный киловатт в час при любом нагрузочном режиме меньше, чем у газотурбинной. Это объясняется тем, что КПД поршневых машин составляет 36-45 процентов, а у турбин — лишь 25-34 процентов.

Основное преимущество газопоршневых двигателей перед дизельными — более дешевое топливо. Даже при использовании в качестве резервного топлива газовой смеси пропан-бутан стоимость единицы электрической энергии, произведенной на газопоршневой установке, в 1,3 раза меньше, чем на дизельной.

Для эксплуатации и технического обслуживания газопоршневого агрегата, в отличие от газотурбинного, не требуются высококвалифицированные инженерные кадры. Регламентное обслуживание, промежуточные и капитальные ремонты газопоршневого двигателя могут быть проведены на месте эксплуатации без перемещения агрегата на площадку завода-изготовителя или специализированного предприятия.

Чем обусловлен рост популярности газопоршневых установок в последнее время, при том что сама технология существует уже давно?

Анализ рынка потребителей электрической и тепловой энергии выявил, что около 30 процентов потребителей не нуждаются в десятках и сотнях мегаватт мощности и, следовательно, в обязательном централизованном энергоснабжении, общие потери которого при транспортировке по сетям до потребителя составляют до 25–30 процентов.

Кроме того, пользователей не устраивает высокая цена на подключение к централизованным сетям, и вообще либерализация энергетического рынка в России привела к кризису в эксплуатации крупных систем централизованного энергоснабжения.

Газопоршневые же технологии хорошо подходят для малой энергетики, очень эффективно реализуют концепции «экономной» энергетики с минимальными потерями вырабатываемой тепловой и электрической энергии. Локальные автономные децентрализованные источники комбинированного производства электроэнергии и тепла на базе газопоршневых установок обладают высоким КПД, полностью независимы от региональных энергосетей, а следовательно, и от роста тарифов, надежны, не требуют затрат для строительства подводящих и распределительных сетей.

Газопоршневые двигатели возможно объединять последовательно. Что дает такое объединение по сравнению с раздельным использованием установок?

Объединять в «батареи» можно не только газопоршневые двигатели, но и дизельные. Все зависит от особенностей и требований к стационарной электростанции. В частности, очень часто отдельные модули можно доставить к месту монтажа и эксплуатации только вертолетом. Но есть специальные электростанции, основным требованием к которым является максимально возможная мощность в одном агрегате.

Беседовал Василий Сычёв

nplus1.ru

Газопоршневая электростанция принцип работы — IEC Energy

Газопоршневая установка (ГПУ) — это вид энергетического оборудования, предназначенного для нецентрализованного производства электрической энергии. В зависимости от комплектации ГПУ дополнительными устройствами агрегат также может служить источником дополнительных энергоресурсов:

  • тепловой энергии в виде горячей воды и/или пара;
  • охлаждённой воды как хладагента.

Основу газопоршневой установки составляет приводной двигатель внутреннего сгорания (ДВС), работающий на природном газе. На одной раме с ним установлен синхронный электрический генератор.

Двигатели внутреннего сгорания, использующие в качестве топлива газ, называют газопоршневыми двигателями (ГПД).

Принцип работы двигателя газопоршневой установки

Газопоршневой двигатель, используемый в ГПУ, является конструктивной разновидностью двигателя внутреннего сгорания. По этой причине плюсы и минусы ГПУ имеют общие черты с другими установками, использующими ДВС. Источником энергии, вырабатываемой ГПД, служит теплота сгорания газообразного топлива.

Двигатели газопоршневых установок оборудованы внешней системой образования рабочей газо-воздушной смеси. В функции системы входит подготовка смеси воздуха с горючим газом в требуемой пропорции. Эта работа осуществляется газовым смесителем с трубками Вентури.

В газопоршневых установках производства компании MTU применяются двигатели, оборудованные системой турбонаддува. Вращение турбины происходит за счёт использования энергии выхлопных газов двигателя. Турбина служит приводом компрессора, создающего избыточное давление для нагнетания топливной смеси в цилиндры. Такая схема топливоподачи в сочетании с использованием обеднённой топливной смеси обеспечивает уменьшение удельного расхода топлива в расчёте на 1 кВт вырабатываемой мощности. Для воспламенения топлива применяется искровое высоковольтное зажигание.

Газопоршневые установки MTU оснащены двигателями с V-образным расположением цилиндров, количество которых в зависимости от мощности агрегата может быть от 8 до 20.

Генератор газопоршневой установки

Газопоршневая электростанция — это совместная работа ГПД и синхронного генератора переменного тока. Конструктивно синхронный генератор состоит из следующих элементов:

  • неподвижного статора, содержащего обмотку переменного тока;
  • вращающегося ротора, находящегося внутри статора.

На роторе расположена обмотка постоянного тока, которая питается от внешнего источника и называется обмоткой возбуждения.

Принцип работы газопоршневой электростанции с синхронным генератором заключается в следующем:

  • приводной двигатель вращает вал ротора генератора;
  • ток, протекающий в обмотке возбуждения, создаёт вращающееся электромагнитное поле;
  • поле обмотки ротора индуцирует переменное синусоидальное напряжение в обмотке статора, которое используется для питания нагрузки электростанции.

Особенностью синхронного генератора является совпадение частоты вращения ротора с частотой вращения электрического поля обмотки возбуждения. Неотъемлемая часть синхронного генератора — контактный щёточно-коллекторный механизм. Его наличие связано с необходимостью подачи питания на обмотку возбуждения, вращающуюся вместе с ротором.

Генератор крепится на рамном основании ГПУ в непосредственной близости от ГПД. Валы генератора и двигателя сопряжены соосно.

Основные системы ГПУ

Газопоршневая установка — это не только двигатель и генератор, собранные на одной раме, но и большое количество вспомогательного оборудования. Рассмотрим его подробнее на примере ГПУ GB2145N5/ 20V4000L33 производства MTU Onsite Energy (Германия).

газопоршневая электростанция принцип работы

Мотор без вспомогательных агрегатов

  • Картер мотора из серого чугуна с монтажными отверстиями, картер маховика SAE 00, маховик 21, масляная ванна из серого чугуна.
  • Кованый коленчатый вал.
  • Кованый шатун.
  • Отдельные четырех-клапанные цилиндрические головки, армированные клапаны с устройством вращения клапана Rotocap.
  • Цельный поршень (из легкого сплава) с упрочняющей вставкой для кольца; канал для охлаждения; охлаждение поршня через заправочные жиклеры.

Смесеобразование

  • Всасывание воздуха через установленные на моторе воздухоочистители с сухим фильтрующим элементом.
  • Газовый смеситель с трубками Вентури; подача газа через электрически регулируемый клапан-дозатор.

Наддув

  • Сжатие смеси турбокомпрессором, работающим на отработавших газах.
  • Двухступенчатый смесительный охладитель.
  • Дроссельные клапаны между смесительным охладителем и трубопроводами распределения смеси.

Система отработавшего газа

  • Неохлаждаемые, изолированные выпускные коллекторы в пространстве V-образного ДВС.

Система зажигания

  • Система зажигания высокого напряжения управляется микропроцессором, вкл. распределение низкого напряжения, без движущихся деталей, не изнашивается.
  • Автоматическая регулировка энергии зажигания.
  • Различные моменты зажигания.
  • Датчики на маховике и распределительном вале.
  • Катушки зажигания для каждого цилиндра.
  • Промышленные свечи зажигания.

Система смазки двигателя

Данная система предназначена для обеспечения двигателя смазочным маслом и включает:

  • насос смазочного масла с предохранительным клапаном для циркуляционной смазки под давлением и охлаждения поршней,
  • установленный на моторе водомасляный теплообменник,
  • бумажный масляный фильтр со сменным фильтрующим элементом,
  • система контроля уровня масла (установлена на моторе),
  • указатель уровня масла,
  • охлаждение кривошипной камеры через маслоотделитель в контуре смеси перед турбокомпрессором,
  • соединительные разъемы для заливки и слива масла.

Система пуска, зарядное устройство, аккумулятор

Система пуска двигателя — электро-стартерная. Она состоит из следующих основных компонентов:

  • Стартер — электрический стартер (24 В пост. тока).
  • Аккумуляторы стартера — комплект свинцово-кислотных аккумуляторов на напряжение 24В (согласно DIN 72311), укомплектованных крышками, клеммами и аккумуляторным пробником для контроля плотности.
  • Устройство контроля напряжения аккумулятора.
  • Оборудование для зарядки аккумулятора предназначено для зарядки стартерных батарей с I/U характеристикой и питания всех подключенных потребителей постоянного тока DC.

Генератор 6,3 кВ

Синхронный генератор с внутренними полюсами, саморегулируемый, встроенный бесщеточный возбудитель, регулировка напряжения и cos ϕ. Исполнение согласно VDE0530, степень помех радиоприему N, конструкция с малым количеством гармоник.

1.1 Газовая рампа 200 мбар

газопоршневая установка принцип работы

Газовая рампа низкого давления состоит из предварительно смонтированной на заводе-изготовителе газовой рампы со следующим установленным оборудованием:

  • механический фильтр,
  • регулятор давления газа,
  • блок отсечных клапанов,
  • устройство контроля герметичности,
  • реле давления,
  • гибкий шланг для соединения с двигателем.

1.2 Блок системы охлаждения двигателя (тепловой модуль IEC)

Система охлаждения двигателя предназначена для полезного использования тепловой энергии охлаждения воды рубашки двигателя, охлаждения масла и топливной смеси. Отбор тепловой энергии осуществляется в виде горячей воды с температурой 70/850С с помощью соответствующих теплообменников.

газопоршневая электростанция принцип работы

Блок системы охлаждения двигателя (тепловой модуль IEC) поставляется смонтированным на отдельной раме, которая устанавливается рядом с двигателем, и включает следующее оборудование:

  • пластинчатый теплообменник для подключения к тепловой сети (теплообменник пластинчатого типа, предназначен для подогрева сетевой воды горячей водой двигателя),
  • расширительный бак контура охлаждения двигателя,
  • расширительный бак контура охлаждения топливной смеси,
  • запорную и предохранительную арматуру, КИП,
  • 3-х ходовой клапан контура воды рубашки,
  • 3-х ходовой клапан контура охлаждения смеси,
  • 3-х ходовой клапан контура аварийного охлаждения,
  • насос контура охлаждения двигателя,
  • насос контура охлаждения 2-ой ступени топливной смеси,
  • двигателя,
  • насос сетевой воды,
  • необходимые компенсаторы и гибкие шланги,
  • трубная обвязка блока системы охлаждения двигателя,
  • несущая рама блока системы охлаждения двигателя.

1.3 Радиатор аварийного охлаждения

Система аварийного охлаждения

Данная система предназначена для сброса тепла системы охлаждения двигателя и обеспечения бесперебойной работы когенерационного модуля на режимах как с частичной тепловой нагрузкой, так и без нее через радиатор. Радиатор разработан для температуры окружающей среды 32°С.

газопоршневая установка принцип работы

Система состоит из радиатора (воздушный теплообменник).

1.4 Радиатор охлаждения 2-ой ступени топливной смеси

Система охлаждения 2-ой ступени топливной смеси

Данная система предназначена для сброса тепла из второй ступени промежуточного охладителя топливной смеси через радиатор. Радиатор разработан для температуры окружающей среды 32°C.

газопоршневая электростанция принцип работы

1.5 Блок системы утилизации тепла (тепловой модуль IEC)

газопоршневая установка принцип работы

Блок системы утилизации тепла (тепловой модуль IEC) поставляется смонтированным на отдельной раме, которая устанавливается рядом с двигателем, и включает следующее оборудование:

  • водогрейный котел-утилизатор дымовых газов (80/90),
  • байпас выхлопных газов,
  • глушитель выхлопных газов (65 дБА в 10 м),
  • 3-х ходовой регулирующий клапан контура сетевой воды,
  • запорная и предохранительная арматура, КИП,
  • трубная обвязка блока системы утилизации тепла,
  • несущая рама блока системы утилизации тепла.

Водогрейный котел-утилизатор дымовых газов кожухо-трубного типа устанавливается по ходу выхлопных газов после глушителя выхлопных газов. Предназначен для полезного использования тепла выхлопных газов и нагрева горячей воды до требуемой температуры. Комплектуется системой управления теплообменником, которая интегрируется с систему управления установкой или комплектуется в отдельной панели управления.

Байпас выхлопных газов состоит из двух механически связанных клапанов с одним электроприводом, подключаемых к системе управления двигателя. Основная функция — распределение расхода выхлопных газов между системой утилизации тепла выхлопных газов и байпасным газоходом, в зависимости от режима работы установки. Байпас выхлопных газов активизируется в случае, когда выхлопные газы используются частично или вовсе не используются. Объем поставки:

  • 2 клапана на выхлопе,
  • привод электродвигателя,
  • контроль клапана — ON/OFF.

Глушитель выхлопных газов предназначен для снижения шума выхлопа двигателя. Разработан для остаточного уровня звукового давления 65 дБ(А) в 10 м (как уровня зоны измерения по DIN 45635), измеряемом в выхлопной трубе.

Материал: углеродистая сталь

Состоит из: глушителя выхлопных газов, фланцев, уплотнений, креплений

Изоляция: тепловая изоляция для глушителя выхлопных газов не включена в объем поставки глушителя и должна обеспечиваться по месту.

3-х ходовой регулирующий клапан контура сетевой воды предназначен для исключения резкого снижения температуры сетевой/горячей воды на входе в теплообменник системы охлаждения двигателя, и, соответственно, в теплообменник выхлопные газы/вода, состоит из следующего оборудования:

  • 3-х ходовой регулирующий клапан — 1 шт.
  • датчик температуры — 1 шт.

Комплект запорной, предохранительной и защитной арматуры, КИП блока системы утилизации тепла, необходимый для его нормальной работы, включает:

  • запорный клапан — 2 шт.
  • предохранительный клапан — 1 шт.
  • термометр биметаллический стрелочный — 1 шт.
  • реле максимальной температуры — 1 шт.
  • реле минимальной температуры — 1 шт.
  • манометр стрелочный — 1 шт.
  • реле максимального давления — 1 шт.
  • реле минимального давления — 1 шт.
  • реле минимального потока — 1 шт.
  • преобразователь давления — 1 шт.

1.6 Система вентиляции машинного зала двигателя

газопоршневая электростанция принцип работы

Система вентиляции предназначена для работы при температурах наружного воздуха в диапазоне от –25°C до +30°C. Уровень шума на расстоянии 1 м от машинного зала с учетом работы системы вентиляции 65–75 dB(A).

Функции:

  • Обеспечение требуемым количеством воздуха для процесса горения.
  • Удаление теплоизбытков мотора и генератора (вспомогательного оборудования).

Система забора воздуха поставляется готовым смонтированным блоком и включает:

  • Металлические жалюзи.
  • Воздушный фильтр.
  • Шумоглушитель.
  • Электродвигатель.
  • Нагнетающий вентилятор.
  • Частотный преобразователь электродвигателя вентилятора.

Расчетные параметры системы забора воздуха:

  • Производительность (при нормальных условиях) не менее 66 000 нм3/ч.
  • Напор вентиляторов в рабочей точке не менее 100 кПа.

Система отвода воздуха включает:

  • Шумоглушитель.
  • Металлические жалюзи.

Расчетные параметры системы отвода воздуха:

  • Производительность (при нормальных условиях) — не менее 55 000 нм3/ч.

Шкаф питания и управления системой вентиляции — силовой низковольтный щит, обеспечивающий следующие функции:

  • Питание вентилятора(ов) системы забора воздуха (предусмотрено частотное регулирование с установкой частотного преобразователя).
  • Автоматический запуск/остановка системы вентиляции по сигналу от системы управления двигателя.
  • Автоматическое регулирование производительности вентиляторов в зависимости от температуры воздуха внутри машинного зала.

1.7 Система маслохозяйства

Данная система предназначена для хранения расходного объема чистого масла, автоматического пополнения картеров двигателей, проведения замены масла в картерах.

газопоршневая установка принцип работы

Включает следующее оборудование:

  • бак чистого масла емкостью 750 л,
  • электрический насос заполнения / слива / подачи масла,
  • резервный ручной насос заполнения / слива / подачи масла,
  • датчик уровня бака чистого масла,
  • комплект необходимой запорной арматуры,
  • несущая рама системы маслохозяйства,
  • трубная обвязка системы маслохозяйства,
  • шкаф управления системой маслохозяйства.

Возможны следующие функции:

  • Заполнение бака чистого масла из цистерны.
  • Заполнение маслобака из цистерны.
  • Опустошение картера двигателя в цистерну.

1.8 Система управления двигателем

Каждая установка MTU Onsite Energy комплектуется системой управления. Она обеспечивает подачу питания, управление и сбор информации от оборудования двигателя, генератора и всего вспомогательного оборудования, поставляемого не смонтированным, комплектно с установкой.

газопоршневая электростанция принцип работы

Основные функции системы управления:

  • управление и визуализация,
  • настройка вспомогательных электроприводов (BHKW / внешн.),
  • подключение генератора к сети / отключение генератора от сети,
  • управление защитой генератора:
    • перегрузка/короткое замыкание,
    • повышение напряжения,
    • понижение напряжения,
    • асимметричность напряжения,
    • превышение частоты,
    • понижение частоты,
  • регулировка скорости вращения,
  • регулировка смеси по универсальным характеристикам,
  • операции пуска и выключения мотора операции аварийной остановки,
  • контроль мотора (температура, давление, скорость и т. д.),
  • контроль отработавших газов по каждому цилиндру,
  • подготовка работы интерфейса CANOPEN,
  • долив масла,
  • контроль минимальной нагрузки,
  • электронное устройство зажигания,
  • настройка момента зажигания,
  • контроль скорости вращения,
  • акустическая система контроля стука,
  • настройка момента зажигания по цилиндрам.

Система управления серии 4000 состоит из шкафов управления MMC (MTU — модуль управления) и MIP (MTU — интерфейсная панель). Шкаф управления MMC поставляется отдельно и устанавливается обычно вне машинного зала. Панель MIP смонтирована на раме агрегатов, образуя функциональный узел.

MMC служит в основном для:

  • Управления и индикации.
  • Управления вспомогательными приводами.

MIP служит в основном для:

  • Связи с регулятором двигателя ECU и устройством контроля работы двигателя EMU.
  • Синхронизации и включения генератора в сеть.
  • Управления вспомогательными приводами на блоке ТЭЦ.
  • Функций генератора и защиты сети.

MTU интерфейсная панель (MIP)

MIP включает в себя следующие основные компоненты:

  • Органы управления (аварийный выключатель, главный выключатель).
  • Центральный блок ПЛК (программируемый модуль управления компьютером с различными интерфейсами и модулями ввода / вывода).
  • EMM (энергоизмерительный модуль — устройство защиты генератора и сети, устройство синхронизации). Соответствует нормам BDEW (Союза энергетиков).
  • Связь с регулятором двигателя ECU и устройством контроля работы двигателя EMU осуществляется через аппаратные сигналы и шину CAN.
  • Интерфейсы для присоединения к внешним системам (беспотенциальные контакты).
  • Управление вспомогательными приводами, установленными на агрегате.
газопоршневая установка принцип работы

Фактическая программа управления работает самостоятельно в центральном блоке ПЛК. Таким образом, в случае выхода из строя ППК (промышленного компьютера) можно и дальше эксплуатировать систему с ранее установленными параметрами.

MIP (MTU Interface Panel) — интерфейсная панель

Основной орган управления ГПУ, является связующим звеном между панелью управления MMC и двигателем.

MIP включает в себя следующие основные компоненты:

  • Органы управления (аварийный выключатель, главный выключатель).
  • Центральный блок ПЛК (программируемый модуль управления компьютером с различными интерфейсами и модулями ввода / вывода).
  • EMM (энергоизмерительный модуль — устройство защиты генератора и сети, устройство синхронизации). Соответствует нормам BDEW (Союза энергетиков).
  • Связь с регулятором двигателя ECU и устройством контроля работы двигателя EMU осуществляется через аппаратные сигналы и шину CAN.
  • Интерфейсы для присоединения к внешним системам (беспотенциальные контакты).
  • Управление вспомогательными приводами, установленными на агрегате.

Фактическая программа управления работает самостоятельно в центральном блоке ПЛК. Таким образом, в случае выхода из строя ППК (промышленного компьютера) можно и дальше эксплуатировать систему с ранее установленными параметрами.

AUX (Auxiliaries supply) — шкаф питания вспомогательного оборудования двигателя

Система обеспечивает подачу питания на основные панели управления и вспомогательное оборудование двигателя.

Силовой низковольтный щит, обеспечивающий подачу питания на следующее вспомогательное оборудования двигателя:

  • Циркуляционный насос контура охлаждения двигателя.
  • Циркуляционный насос контура охлаждения 2-ой ступени топливной смеси.
  • Циркуляционный сетевой насос.
  • Электродвигатели вентиляторов радиатора аварийного охлаждения (предусмотрено частотное регулирование с установкой частотного преобразователя).
  • Электродвигатели вентиляторов радиатора охлаждения 2-ой ступени топливной смеси (предусмотрено частотное регулирование с установкой частотного преобразователя).
  • Привода 3-х ходовых клапанов.
газопоршневая электростанция принцип работы

MMC (MTU Modul Control) — модуль управления

Модуль обеспечивает управление и сбор информации от оборудования двигателя, генератора и всего вспомогательного оборудования.

Щит MMC включает в себя следующие компоненты:

газопоршневая установка принцип работы
  • Промышленный ПК (IPC) с сенсорным экраном.
  • Устройства управления (замок-выключатель, кнопочный выключатель, кнопка аварийной остановки).
  • Дополнительные модули ПЛК-управления с цифровыми и аналоговыми входами и выходами.
  • Интерфейсы для присоединения к внешним системам (беспотенциальные контакты). Опционально возможна передача информации в систему верхнего уровня по интерфейсам Modbus. Profibus.
  • Контроль периферийных приводов через беспотенциальные контакты или силовые узлы.

Функции MMC:

  • Визуализация системы управления.
  • Управление вспомогательным оборудованием контуров аварийного охлаждения и охлаждения 2-ой ступени топливной смеси (электродвигатели радиаторов, электродвигатели насосов, трехходовые клапана, датчики температуры и давления).
  • Управление вспомогательным оборудованием теплообменника выхлопные газы/вода (опционально).
газопоршневая установка принцип работы

1.9 Панель с генераторным выключателем 

Распределительное устройство 

Для подключения генераторов и распределения электрической энергии переменного трёхфазного тока промышленной частоты 50 Гц напряжением. РУ выполнено по схеме простой системы сборных шин, с вакуумным/элегазовым выключателем. Комплектация генераторного выключателя в соответствии с требованием завода-изготовителя газовых двигателей MTU Onsite Energy.

газопоршневая электростанция принцип работы

Состав РУ:

  • ввод линии генератора — 1 шт.
  • выключатель ввода генератора — 1 шт.
  • ввод линии от сети — 1 шт.
  • трансформатора напряжения (ТН)  — 2 шт.

В объем поставки входят следующие микропроцессорные устройства защиты, устанавливаемые в релейных отсеках ячеек:

  • защиты генератора;
  • защиты трансформаторов напряжения шин РУ.

В релейных отсеках ячеек размещены все необходимые электроизмерительные приборы, на лицевой части выполнены активные мнемосхемы. В релейном отсеке ячейки ввода генераторов предусмотрено место для установки расчётных электронных счётчиков электрической энергии и клеммные колодки с возможностью опломбировки. Комплектация ячеек распределительного устройства в соответствии с электрической схемой.

Генераторный выключатель соответствует следующим основным требованиям:

  • Тип выключателя — вакуумный/элегазовый.
  • Генераторный выключатель пригоден для работы в режиме синхронизации с электрической сетью.
  • Максимальное время включения 70 мсек после подачи сигнала включения.
  • Максимальное время отключения 60 мсек после подачи сигнала выключения.
  • Оснащение катушками включения, выключения и катушкой минимального напряжения.
  • Не менее 6 пар блок-контактов типа (нормально открытый — НО) и (нормально закрытый — НЗ).
  • Механический ресурс не менее 10 000 операций (МЭК 56).
  • Коммутационный ресурс не менее 40 операций при 12,5-кА (МЭК 56) или не менее 10 000 операций при Iном.

Купить газопоршневую электростанцию c нужными характеристиками вы можете в компании IEC Energy. Все интересующие вас вопросы задавайте по телефону +7 495 799 74 64.


iec-energy.ru

Газопоршневой двигатель Custoku

Газопоршневой двигатель - двигатель внутреннего сгорания, изготовленный для работы на магистральном газе(метане). Газовый двигатель работает тише и имеет больший ресурс наработки на отказ.

Использование газопоршневых двигателей

В цилиндрах тепловая энергия преобразуется в механическую энергию вращения, которую используют для вращения вала электрического генератора для выработки электричества. Мотор и электрогенератор могут быть легко соеденены вместе в газопоршневой агрегат. В электростанции агрегат крепится на раме и оборудуется пультом управления установкой. Это образует газопоршневую установку.

Режимы работы газопоршневых двигателей

Оптимальный режим работы для газопоршневого двигателя это 50 - 90% от номинала (номинальной нагрузки). В этом режиме мотор меньше изнашивается и КПД достигает максимума. При такой нагрузке газопоршневая электростанция имеет запас для скачка нагрузки, угар масла достигает минимума и масло реже требует замены, это повышает общую экономическую эффективность примененения. Нагрузка не должна повышаться сразу на 100%, нагрузка подключается поэтапно. В тоже время агрегат не должен работать при нагрузке менее 25%. Это учитывают при проектировании газопоршневой электростанции и подборе количества и единичной мощности газопоршневых установок. Газопоршневой двигатель может работать как на магистральном газе(метане), так и на сжиженном газе(смесь пропана и бутана). Перенастройка топливной аппаратуре занимает минимальное время и легко настраивается на попутный газ, генераторный газ или на биогаз.

Система когенерации тепла

При работе газопоршневого агрегата часть энергии газа выделяется в виде тепловой энергии, которую можно использовать. Тепло от выхлопных газов и тепло системы охлаждения собирают с использованием специальной когенерационной установки, называемой системой утилизации тепла. Система когенерации позволяет нагревать жидкость до температуры 80-95 градусов. Сначала теплоноситель (чаще всего это вода) попадает в водяной теплообменник типа Вода-Вода, где греющей средой является антифриз двигателя. Далее теплоноситель подется в газовый теплообменник типа Газ-Вода, где греющей средой является выхлопные газы. Газоми вода нагревается до окончательной температуры.

Газопоршневой двигатель в сборе

Газопоршневой двигатель представлен на рисунках №1, №2 и №3. На рисунках отмечены детали и агрегаты.

Система зажигания газопоршневых двигателей

В системе зажигания используется принцип искрового зажигания электрической свечой. Использование сильно обедненной газовоздушной смеси значительно сокращает выбросы и повышает эффективность газового двигателя. Для управления зажиганием используется программируемый контроллер систем приготовления и воспламенения топлива.

Моторное масло для газопоршневых двигателей

Масло в газовом двигателе используется минеральное с вязкостью 15W40. Рекомендуемое масло от производителя: TOTAL LMG-405 или Mobil Delvac super GEO. Замена масла осуществляется каждые 500 рабочих часов.

Характеристики газопоршневых двигателей

Характеристики разных моделей сильно отличаются в зависимости от фирмы производителя. Основные параметры: мощность, надежность, наработка до капремонта, стоимость оборудования и стоимость обслуживания. Подобрать газопоршневую установку с определенным двигателем можно здесь.

Обслуживание газопоршневых двигателей

Когда вы думаете приобрести ли генераторную установку - встает вопрос стоимости обслуживания электростанции".
Конечно это зависит от многих факторов:

    1. мощность установки;
    2. количество установок;
    4. кто будет проводить сервисные работы: сервисная служба или самостоятельно.
Для самостоятельного обслуживания Вам обязательно пригодится график обслуживания и каталог основных запчастей.

mvvb.ru

Газопоршневые двигатели для мини-ТЭЦ на природном газе и биогазе - Журнал АКВА-ТЕРМ

Выход биогаза и электроэнергии из органического сырья

Наименование

сырья

Объем биогаза, м3, на тонну сырья

Выработка электроэнергии на тонну влажного сырья, кВт×ч

сухого

влажного

Навоз:

рогатого скота

куриный

 

210

340

 

25

10

 

50

140

Трава

500

110

220

Клевер

420

90

180

Зерновые культуры

650

250

500

Листва картофеля

500

110

220

Силос:

травяной

зерновой

 

450

590

 

190

200

 

380

400

Отходы:

биологические

пищевые

 

250

480

 

130

110

 

260

220

Примечание. По информационным материалам компании GE Jenbacher (Австрия).

В состав биогаза входят следующие компоненты: метан (СН4) как горючая основа, уг-лекислый газ (СО2) и сравнительно малое количество сопутствующих при получении биогаза примесей (азот, водород, ароматические и галогенные углеводородные соединения). В зави-симости от сырьевой базы, выход биогаза в процессе анаэробной деструкции может варьиро-ваться. В табл. 1 приведены некоторые оценочные величины по этому показателю, а также по удельной выработке электроэнергии из расчета на единицу первичного органического сырья в системе «биогазовая установка–биогазопоршневая электростанция».

Непосредственно технологии когенерации и тригенерации на газопоршневых элек-тростанциях базируются на использовании водогрейных котлов-утилизаторов и абсорбцион-ных холодильных установок. Последние обеспечивают возможность полезной утилизации теплоты выхлопных газов от газопоршневого двигателя, снижая их температуру при сбросе в атмосферу. Кроме этого, конструкции современных газопоршневых двигателей допускают возможность полезного использования низкопотенциальной теплоты от систем охлаждения и смазки. Газопоршневые двигатель-электрогенераторные агрегаты, в том числе для когене-рационных установок, разрабатывают, выпускают и предоставляют им сервисную поддерж-ку многие известные за рубежом и в России компании, например, MWM GmbH (Германия), GE Jenbacher (Австрия), MTU Onsite Energy GmbH (Германия). Ниже рассмотрены некото-рые особенности конструкций, характеристики и реализованные проекты с применением та-кой газопоршневой энергетической техники.

Биогаз или природный газ?

Германская компания MWM GmbH является одним из лидирующих мировых разра-ботчиков и производителей газопоршневых систем для выработки электрической и тепловой энергии из биогаза. Постоянное сокращение запасов невозобновляемых углеводородных ис-точников энергии и рост энергопотребления в общемировом масштабе ведет к увеличению со стороны потребителей спроса на альтернативные топлива (например, биогаз), получаемые из возобновляемых энергетических ресурсов, в том числе, отходов. Поэтому оборудование, с помощью которого можно эффективно производить биогаз и энергию, не остается без вни-мания заказчиков установок децентрализованного энергоснабжения.

Газопоршневые электроагрегаты компании MWM GmbH, один из которых показан на рис. 1, с синхронными генераторами успешно эксплуатируются, в частности,  в Европе, при-чем работают они, в том числе на мини-ТЭЦ, не только на природном газе, но и биогазе. Вы-рабатываемая электроэнергия может передаваться в централизованные электроэнергетиче-ские системы. Реализация процесса получения биогаза в составе единого локального генери-рующего комплекса осуществляется на собственном энергообеспечении. Например, в Гер-мании успешно работает биогазопоршневая мини-ТЭЦ фирмы Nawaro Kletkamp GmbH & Co. KG (Kletkamp biogas CHP plant – англ.) с двигателем TCG 2016 B V12 компании MWM GmbH, имеющая электрическую мощность 568 кВт. На ней ежедневно утилизируется около 20 т зернового силоса (corn silage – англ.), а тепловой энергией обеспечивается часть потре-бителей соседнего германского города Лютьенбург (Lütjenburg – нем.). Используется эта те-пловая энергия и для сушки зерна, а также запасается в теплоаккумулирующем сооружении. Побочный продукт, образуемый в процессе анаэробной ферментации исходного для получе-ния биогаза сырья, представляет собой остатки субстрата и используется как органическое удобрение, вырабатываемое таким методом в годовом количестве около 7 тыс. т.

Рис. 1. Газопоршневой двигатель-генераторный агрегат компании MWM GmbH (Германия)

Специально для работы на биогазе адаптированы и рассчитаны детали и узлы соот-ветствующих газопоршневых двигателей компании MWM GmbH. Например, конструкция поршня приспособлена для работы с повышенной степенью сжатия. Для обеспечения высо-ких ресурсных показателей деталей и узлов двигателей используются, в частности, гальвани-ческие покрытия. Высокие энергетические параметры биогазопоршневых генераторных ус-тановок этой компании (табл. 2) достигаются, в том числе за счет исключения процесса предварительного сжатия биогаза.

Таблица 2

 Номинальные параметры электроагрегата компании MWM GmbH с двигателем типа TCG 2016 V08 C для мини-ТЭЦ

Наименование,

единица измерения

Значение при работе на топливе

Биогаз

(60 % СН4, 32 % СО2)

Природный

газ

Электрическая мощность, кВт

400

Род тока

Переменный, трехфазный

Напряжение, В

400

Частота тока, Гц

50

Частота вращения вала двигателя и генератора, об/мин

1500

Среднее эффективное давление, бар

19

Тепловая мощность, кВт

398

427

КПД по низшей теплоте сгорания, %:

электрический

тепловой

общий

 

42,5

42,3

84,8

 

42,2

45,0

87,2

Сухая масса, кг

4 650

Примечание. По информационным проспектам компании MWM GmbH (Германия).

Старший модельный ряд в линейке газопоршневых двигателей компании MWM GmbH представлен серией TCG 2016. Данные двигатели могут работать с весьма высокими значениями КПД, как видно из табл. 2, что достигается и за счет применения оптимизиро-ванных конструкций распределительного вала, камеры сгорания и свечей зажигания. Фир-менная «общая электронная система управления» под зарегистрированным товарным знаком TEM (Total Electronic Management – англ.) обеспечивает координацию и работу всей двига-тель-генераторной установки. Предусмотрен температурный мониторинг для каждого из ци-линдров. Функционирует также система, благодаря которой двигатель может эффективно работать при колебаниях и изменениях газового состава топливовоздушной смеси. Это осо-бенно важно, когда в качестве топлива предполагается использовать такие «проблематич-ные» газы, как, например, каменноугольные или из отходов органического происхождения.

Революционная конфигурация

Инновационные газопоршневые двигатели с мировой известностью под маркой Jen-bacher (рис. 2) разрабатывает и выпускает австрийская компания GE Jenbacher, входящая в состав подразделения GE Energy компании General Electric. Установки децентрализованного энергоснабжения на базе таких двигателей приспособлены для работы как на природном га-зе, так и других газообразных топливах, в число которых входит и биогаз. Особенно положи-тельный экономический эффект от внедрения таких установок достигается при их работе по когенерационному или тригенерационному циклу. Во многих развитых странах, например, Австрии и Германии успешно эксплуатируются газопоршневые электростанции с двигатель-генераторными агрегатами Jenbacher в комплексе с биогазовыми установками, в частности, при электрических и тепловых мощностях от порядка трех сотен до полутора-двух тысяч ки-ловатт.

Рис. 2. Газопоршневой двигатель Jenbacher в составе электроагрегата

Революционная, как называют ее сами разработчики, трехмодульная конфигурация современных электроагрегатов Jenbacher и инженерная концепция достижения цели повы-шения эффективности функционирования двигателей через повышение их КПД, надежности работы и снижение эмиссии вредных выбросов в атмосферу привели к созданию нового га-зопоршневого двигателя J920 с двухступенчатым турбонаддувом и наивысшим в классе га-зопоршневых двигателей электрическим КПД (табл. 3). Трехмодульная компоновка элек-троагрегата с этим двигателем включает в себя следующие последовательно расположенные элементы: модуль с синхронным электрогенератором, оснащенным воздушным охлаждени-ем и цифровой системой управления; двадцатицилиндровый газопоршневой силовой модуль собственно на базе двигателя J920; вспомогательный модуль с двухступенчатым турбонад-дувным агрегатом. Благодаря такой компоновке отдельные элементы могут быть заменены без разборки электроагрегата в целом.

Двигатель J920 имеет секционированный распределительный вал, что допускает удобную его замену через эксплуатационное окно, расположенное в верхней части картера. К другим базовым деталям и узлам двигателя тоже предусмотрен удобный доступ. Обшир-ный накопленный опыт разработки и практики эксплуатации системы сжигания топлива для газопоршневых двигателей Jenbacher типа 6 позволили оборудовать рассматриваемый двига-тель передовой форкамерной системой сгорания с искровым зажиганием, допускающей дли-тельную эксплуатацию. Кроме этого, предусмотрен оперативный контроль функционирова-ния системы с использованием специальных датчиков для каждого из цилиндров, что позво-ляет добиваться оптимальных характеристик при сгорании топлива. Система зажигания – электронная, обеспечивающая подбор момента времени зажигания с адаптацией к составу и (или) разновидности используемого газообразного топлива.

Таблица 3

Номинальные параметры электроагрегата с двигателем Jenbacher J920 для мини-ТЭЦ на природном газе (метановое число MN > 80)

Наименование, единица измерения

Значение

Электрическая мощность, кВт

9500

Род тока

Переменный, трехфазный

Частота тока, Гц

50

Частота вращения вала двигателя и генератора, об/мин

1000

Тепловая мощность, кВт

8100

КПД по низшей теплоте сгорания, %:

электрический

общий

 

48,7

90,0

Габаритные размеры (ориентировочно), мм:

длина

ширина

высота

 

16 580

6490

3410

Сухая масса (ориентировочно), кг

163 894

Примечание. По информации компании GE Energy (www.ge-energy.com).

Из выхлопного коллектора часть отработавших в газопоршневом двигателе газов ис-пользуется для привода турбокомпрессорного (турбонаддувного) агрегата. Последний при своей работе обеспечивает прирост удельной мощности двигателя, а, следовательно, в ко-нечном итоге, и электрического КПД двигатель-генераторного агрегата. Применение в дви-гателе фирменной запатентованной технологии под зарегистрированным товарным знаком LEANOX (Lean mixture combustion – англ.) дало возможность реализовать процесс эффек-тивного управления соотношением содержания компонентов «воздух/газовое топливо» в то-пливовоздушной смеси с целью минимизации эмиссии вредных для экологии выхлопных га-зов в атмосферу. Такой экологический эффект достигается за счет функционирования двига-теля на обедненной топливной смеси (соотношение «воздух/газовое топливо» корректирует-ся ниже границы всех рабочих величин) до тех пор, пока он работает устойчиво.

Фирменная двухступенчатая технология турбонаддува дает возможность обеспечи-вать двигателю более значительный прирост удельной мощности, чем это реализуется при одноступенчатом турбонаддуве. Кроме этого, если речь идет о когенерационных установках, то при реализации данной технологии турбонаддува повышается и общий КПД электроагре-гата, достигая величины 90 %, что практически на 3 % выше, чем у газопоршневых электро-агрегатов с одноступенчатым турбонаддувом.

Система управления двигателем J920 от компании General Electric всесторонне отла-жена и оборудована, в частности, программируемым логическим блоком, панелью управле-ния и отображения информации. Помимо всего этого, двигатели J920 разработаны с учетом допускаемой возможности их эксплуатации в составе многодвигательных электроагрегатов, в том числе, на ТЭЦ. Многодвигательная структура электростанций делает их более адап-тивными к нагрузкам – от базовых до циклических и пиковых. Время пуска двигателя до вы-хода на номинальный режим составляет 5 мин.

Рекордная энергоэффективность

Германская компания MTU Onsite Energy GmbH тоже занимается разработкой и про-изводством высокоэффективных современных газопоршневых агрегатов (рис. 3), в том числе предназначенных для работы в составе мини-ТЭЦ. Весьма интересно, что ее специалисты создали газопоршневой энергетический агрегат типа GC 849 N5 (табл. 4), с использованием которого в Германии на Фаубанской мини-ТЭЦ (Vauban HKW) удалось достичь действи-тельно рекордного показателя по преобразованию первичной энергии сгорания топлива (природного газа) в электрическую и полезно утилизируемую тепловую энергию: коэффици-ент полезного использования теплоты сгорания топлива составил около 96 %! Такой высо-кий показатель обеспечивается за счет использования на мини-ТЭЦ, помимо самого газо-поршневого агрегата, и оборудования для глубокой утилизации теплоты от выхлопных газов и смазочно-охлаждающих систем двигателя. Кроме этого, теплота от двигателя и еще син-хронного генератора утилизируется с помощью электрического теплового насоса, обеспечи-вающего, по крайней мере, охлаждение пространства вокруг когенерационного агрегата. С учетом всех ступеней и контуров теплоутилизации, при номинальных режимах работы по электрической и тепловой нагрузкам мини-ТЭЦ, отмеченный коэффициент и достигает ре-кордного значения – вплоть до 96 %.

Рис. 3. Газопоршневой агрегат компании MTU Onsite Energy GmbH (Германия)

Таблица 4

Номинальные параметры агрегата типа GC 849 N5 компании MTU Onsite Energy GmbH для мини-ТЭЦ на природном газе (расчетное метановое число MN ≥ 80

Наименование, единица измерения

Значение

Электрическая мощность, кВт

849

Род тока

Переменный, трехфазный

Напряжение, В

400

Частота тока, Гц

50

aqua-therm.ru

Газопоршневые двигатели | ООО «М-МОТОРС»

Главная » Газопоршневые двигатели и генераторные установки MITSUBISHI Газопоршневые двигатели индустриального исполнения Газопоршневые двигатели морского исполнения Газопоршневые электростанции Mitsubishi Индустриальные газопоршневые генераторные установки

Газопоршневые двигатели

Одним из направлений деятельности компании «М-МОТОРС» является обеспечение промышленных и социальных объектов, а также морского и речного транспорта газопоршневыми двигателями и электростанциями MITSUBISHI различной мощности и исполнения. Представленные вашему вниманию решения на сегодняшний день являются наиболее оптимальными с точки зрения технической и экономической эффективности, основаны на использовании наиболее дешевого и доступного топлива – природного и др. видов газа.

Основные части

Это двигатель внутреннего сгорания с системой внешнего образования топливно-воздушной смеси. Имеет искровое зажигание в камере сгорания, использует в качестве топлива природный и др. типа газа.

Основными элементами корпуса являются блок цилиндров и головка блока цилиндров. Вращение коленчатого вала обеспечивает возвратно-поступательное движение кривошипно-шатунного механизма. Подачу газовой смеси и выпуск отработанных газов обеспечивает газораспределительный механизм.
Чаще всего газопоршневой двигатель используется для обеспечения работы газогенераторных установок с комбинированной выработкой электрической и тепловой энергии (электрогенерации и когенерации), а также в аварийных системах электроснабжения. Также данный тип двигателей широко используется в приводах холодильных установок, в насосах и газовых компрессорах. Применяются они и в морском судостроении.

Особенности

Максимальные значения мощности индустриальных газопоршневых двигателей могут достигать десятков МВт при общем моторесурсе до 250 тыс. и более моточасов. Ресурс до капитального ремонта достигает 80- 100 тыс. часов. Помимо большого моторесурса преимуществами их работы являются:

  • малая зависимость КПД мотора от температуры окружающей среды;
  • малое потребное давление топливного газа без необходимости использования дожимного компрессора;
  • небольшие колебания КПД при уменьшении нагрузки на 50%;
  • неограниченное количество запусков;
  • малые затраты на эксплуатацию оборудования;
  • возможно проведения ремонта на месте;
  • возможность параллельного использования нескольких агрегатов.

Кроме природного газа, такие двигатели могут работать на других видах газа – пропане, бутане, коксовом газе, древесном, газах нефтяной промышленности и т. д. Благодаря этому существенно расширяются возможности подбора оптимального технико-экономического проектного решения, адаптации оборудования к специфике производства.

Сравнение газопоршневого и газотурбинного оборудования

Помимо газопоршневых двигателей основным техническим решением является газотурбинное оборудование. Но если сравнивать технико-экономические показатели работы, то газопоршневые установки и созданные на их основе газовые электростанции обладают рядом преимуществ, что особенно заметно при установке единичных мощностей до 3 МВт. К основным показателям можно отнести:

  • Более высокий КПД и, следовательно, более экономный расход топлива и меньшее время окупаемости инвестиций.
  • Высокая адаптация к работе на частичных нагрузках.
  • Минимальное влияние изменения наружной температуры на коэффициент полезного действия агрегата.
  • Меньшее время запуска перед набором нагрузки.
  • Меньшая чувствительность к пускам и остановкам.
  • Более чем 2-кратное превышение проектного срока эксплуатации.
  • Меньшие затраты на ремонт и обслуживание, менее трудоемкий процесс текущего и капитального ремонтов.

Представленные вашему вниманию индустриальные и морские газопоршневые двигатели и установки MITSUBISHI характеризуются высоким КПД, вдвое превышающим дизельный аналог – до 42%. При этом газопоршневые установки сохраняют свою эффективность и при двукратном уменьшении нагрузки, в отличие от газотурбинных станций. На КПД не влияет и температурный диапазон, что актуально для предприятий средней полосы России.

mitsubishi-engine.ru

Газопоршневые электростанции. Устройство, принцип действия, топливо

Газопоршневая электростанция (ГПУ) или теплоэлектростанция представляет из себя электрогенератор, который приводится в действие двигателем внутреннего сгорания, работающим на природном газе.

Кроме выработки генератором электроэнергии ГПУ также производит тепло за счет охлаждения двигателя, которое может быть использовано в производственных целях, а может просто выбрасываться в атмосферу.

В случае если двигатель, приводящий генератор в действие не является газовым, а работает на дизельном топливе, то подобная станция называется дизель-генераторной установкой (ДГУ).

Благодаря применению газопоршневой или дизель-генераторной установки можно обеспечить независимость объекта от центральных электро- и теплосетей.

ГПУ мощностью от 88 кВт до 4 МВт и полный комплекс работ предлагает российский производитель тепловых электростанций ООО "ПКТ" - www.ooopkt.ru. В результате сотрудничества вы получите готовую к работе установку полностью соответствующую вашим потребностям.

Другими преимуществами установок являются их высокий КПД, экономичность вырабатываемой электроэнергии, быстрая окупаемость (особенно на промышленных объектах) с высоким потреблением электроэнергии, низкие эксплуатационные расходы.

К минусам же можно отнести высокую стоимость оборудования. Подобные проблемы, зачастую решают приобретая теплоэлектростанции, газопоршневые установки и дизель-генераторы в лизинг или привлекая кредитные средства.

Принцип работы газопоршневой установки

В камерах двигателя, работающего на газу, в процессе работы сгорает топливо, а полученная энергия вращая коленчатый вал двигателя передает вращение на вал генератора, который, в свою очередь, вырабатывает электроэнергию.

Когенерация в газопоршневых установках

Когда выделяемая тепловая энергия используется для отопления помещений, горячего водоснабжения или других производственных нужд газопоршневая установка называется когенерационной.

Тригенерация в ГПУ

Если не использовать в теплое время года тепловую энергию, выделяемую электростанцией, можно использовать абсорбционную технологию для получения холода для кондиционирования помещений объекта.

Для преобразования тепла в холод используются абсорбционные охладители (чиллеры).

Альтернативное топливо для газопоршневых электростанций

Кроме природного газа двигатели электростанций могут работать и на других видах топлива: пропан, бутан, попутный природный газ, коксовый, древесный, пиролизный газы, газы мусорных свалок и сточных вод.

Преимущества газопоршневых электростанций

Локальная выработка электроэнергии позволяет избежать потерь при транспортировки дорогой энергии на объект, которые могут составлять до 28%.

При использовании блочно-модульного варианта установки ГПУ можно использовать несколько установок вместо одной мощной и более экономично и эффективно регулировать их работу, увеличивая общий ресурс работы и экономя ресурсы.

Производители газопоршневых электростанций

Готовые комплексные установок предлагают многие производители оборудования. Двигатели же для газопоршневых электростанций выпускают несколько крупных мировых компаний: MWM (Германия), LiebHerr (Германия), Tedom (Чехия), CAT (США), Cummins (США), Daewoo (Корея) и д.р.

www.vseznaniya.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о