Газопоршневой двигатель принцип действия: Газопоршневые двигатели – конструкция и принцип работы

Содержание

Газопоршневые двигатели – конструкция и принцип работы

Газопоршневый двигатель – это двигатель внутреннего сгорания с системой внешнего образования топливно-воздушной смеси и искровым зажиганием. В качестве топлива использует природный магистральный газ и др. виды газового топлива, что обеспечивает экономичность, высокий ресурс работы и минимальный уровень шума. В данной статье мы рассмотрим, что представляет собой газопоршневый двигатель, принцип работы и его особенности.

Основные элементы и принцип работы газопоршневого двигателя

Как и у любого ДВС, у газопоршневого двигателя принцип действия основан на сгорании топливовоздушной смеси и поступательном движении поршней за счет энергии расширяющихся газов. С помощью кривошипно-шатунного механизма поступательное движение поршней преобразуется во вращательный выходного вала двигателя.В схеме подачи газа в газопоршневых двигателях основную роль играет газораспределительный механизм, подача газа осуществляется из магистрали или баллонного оборудования.

Чаще всего данный вид двигателей применяется в качестве основного элемента электрогенератора. Так, современные газопоршневые электростанции, характеристики потребления топлива которых делают их наиболее выгодными из всех решений автономного энергообеспечения. Дополнительным преимуществом является возможность выработки тепла или холода для хозяйственных нужд – когенерации и тригенерации. Современный газопоршневой двигатель, принцип работы которого позволяет обеспечить и одновременную тригенерацию, делает оптимальным его применение в приводе холодильной установки. Также применяются они в насосном оборудовании, морском судостроении и др. сферах деятельности.

Особенности газопоршневого двигателя

Наибольшие значения мощности газопоршневых двигателей достигают десятков мегаватт, что достаточно для обеспечения работы мощного оборудования и автономного энергообеспечения производственных и строительных объектов. Важным преимуществом является высокий ресурс работы, достигающий 250 тысяч часов при 80-100 тыс. часов межремонтного интервала (между капитальными ремонтами).

Подача газа в газопоршневых двигателях может быть баллонной или магистральной, а в качестве топлива, помимо метана, применяется:

  • пропан;
  • бутан;
  • коксовый и другие сопутствующие промышленные газы;
  • древесный газ;
  • газы нефтяной промышленности и многие другие виды. 

При этом схема подачи газа в газопоршневых двигателях не требует наличия дожимного компрессора благодаря малому потребному давлению. Благодаря большому выбору вариантов можно гибко использовать оборудование на различных объектах, оперативно адаптировать систему к изменению технических или экономических условий. Перенастройка системы подачи топлива занимает минимум времени, газопоршневый двигатель можно свободно настроить на эксплуатацию на попутном газе, биогазе и др. топливе.

К основным особенностям газопоршневых двигателей можно отнести:

  • Небольшую зависимость КПД от окружающей температуры.
  • Незначительные колебания КПД при снижении нагрузки на 50% и, соответственно, эффективное использование двигателя при любых нагрузках.
  • Малые затраты на эксплуатацию.
  • Неограниченное количество запусков мотора.
  • Возможность параллельного подключения нескольких двигателей и, соответственно, возможность значительного повышения и рационального использования мощности системы.

С каждым годом газопоршневые двигатели получают всё большее применение в различных сферах, в т. ч. в качестве основного элемента газоэлектростанций для коттеджных поселков. Их экономичность и эксплуатационные обеспечивают им солидные преимущества в сравнении с другими вариантами автономного, резервного или аварийного электроснабжения различных объектов.

Газопоршневые двигатели | ООО «М-МОТОРС»

Главная » Газопоршневые двигатели и генераторные установки MITSUBISHI

Газопоршневые двигатели

Одним из направлений деятельности компании «М-МОТОРС» является обеспечение промышленных и социальных объектов, а также морского и речного транспорта газопоршневыми двигателями и электростанциями MITSUBISHI различной мощности и исполнения.

Представленные вашему вниманию решения на сегодняшний день являются наиболее оптимальными с точки зрения технической и экономической эффективности, основаны на использовании наиболее дешевого и доступного топлива – природного и др. видов газа.

Основные части

Это двигатель внутреннего сгорания с системой внешнего образования топливно-воздушной смеси. Имеет искровое зажигание в камере сгорания, использует в качестве топлива природный и др. типа газа.

Основными элементами корпуса являются блок цилиндров и головка блока цилиндров. Вращение коленчатого вала обеспечивает возвратно-поступательное движение кривошипно-шатунного механизма. Подачу газовой смеси и выпуск отработанных газов обеспечивает газораспределительный механизм.
Чаще всего газопоршневой двигатель используется для обеспечения работы газогенераторных установок с комбинированной выработкой электрической и тепловой энергии (электрогенерации и когенерации), а также в аварийных системах электроснабжения. Также данный тип двигателей широко используется в приводах холодильных установок, в насосах и газовых компрессорах.

Применяются они и в морском судостроении.

Особенности

Максимальные значения мощности индустриальных газопоршневых двигателей могут достигать десятков МВт при общем моторесурсе до 250 тыс. и более моточасов. Ресурс до капитального ремонта достигает 80- 100 тыс. часов. Помимо большого моторесурса преимуществами их работы являются:

  • малая зависимость КПД мотора от температуры окружающей среды;
  • малое потребное давление топливного газа без необходимости использования дожимного компрессора;
  • небольшие колебания КПД при уменьшении нагрузки на 50%;
  • неограниченное количество запусков;
  • малые затраты на эксплуатацию оборудования;
  • возможно проведения ремонта на месте;
  • возможность параллельного использования нескольких агрегатов.

Кроме природного газа, такие двигатели могут работать на других видах газа – пропане, бутане, коксовом газе, древесном, газах нефтяной промышленности и т.

д. Благодаря этому существенно расширяются возможности подбора оптимального технико-экономического проектного решения, адаптации оборудования к специфике производства.

Сравнение газопоршневого и газотурбинного оборудования

Помимо газопоршневых двигателей основным техническим решением является газотурбинное оборудование. Но если сравнивать технико-экономические показатели работы, то газопоршневые установки и созданные на их основе газовые электростанции обладают рядом преимуществ, что особенно заметно при установке единичных мощностей до 3 МВт. К основным показателям можно отнести:

  • Более высокий КПД и, следовательно, более экономный расход топлива и меньшее время окупаемости инвестиций.
  • Высокая адаптация к работе на частичных нагрузках.
  • Минимальное влияние изменения наружной температуры на коэффициент полезного действия агрегата.
  • Меньшее время запуска перед набором нагрузки.
  • Меньшая чувствительность к пускам и остановкам.
  • Более чем 2-кратное превышение проектного срока эксплуатации.
  • Меньшие затраты на ремонт и обслуживание, менее трудоемкий процесс текущего и капитального ремонтов.

Представленные вашему вниманию индустриальные и морские газопоршневые двигатели и установки MITSUBISHI характеризуются высоким КПД, вдвое превышающим дизельный аналог – до 42%. При этом газопоршневые установки сохраняют свою эффективность и при двукратном уменьшении нагрузки, в отличие от газотурбинных станций. На КПД не влияет и температурный диапазон, что актуально для предприятий средней полосы России.

виды, принцип работы, особенности :: SYL.ru

Двигатели внешнего сгорания стали использоваться тогда, когда людям потребовался мощный и экономичный источник энергии. До этого использовались паровые установки, однако они были взрывоопасными, так как использовали горячий пар под давлением. В начале 19 века им на смену пришли устройства с внешним сгоранием, а еще через несколько десятков лет были изобретены уже привычные приборы с внутренним сгоранием.

Происхождение устройств

В 19 веке человечество столкнулось с проблемой, которая заключалась в том, что паровые котлы слишком часто взрывались, а также имели серьезные конструктивные недостатки, что делало их использование нежелательным. Выход был найден в 1816 году шотландским священником Робертом Стирлингом. Эти устройства можно также называть "двигателями горячего воздуха", которые применялись еще в 17 веке, однако этот человек добавил к изобретению очиститель, называющийся в настоящее время регенератором. Таким образом, двигатель внешнего сгорания Стирлинга был способен сильно повысить производительность установки, так как он сохранял тепло в теплой рабочей зоне, в то время как рабочее тело охлаждалось. Из-за этого эффективность работы всей системы была значительно увеличена.

В то время изобретение использовалось достаточно широко и находилось на подъеме своей популярности, однако со временем его перестали использовать, и о нем забыли. На смену оборудованию внешнего сгорания пришли паровые установки и двигатели, но уже привычные, с внутренним сгоранием. Вновь о них вспомнили лишь в 20 веке.

Работа установки

Принцип работы двигателя внешнего сгорания заключается в том, что в нем постоянно чередуются два этапа: нагревание и охлаждение рабочего тела в замкнутом пространстве и получение энергии. Данная энергия возникает из-за того, что постоянно изменяется объем рабочего тела.

Чаще всего рабочим веществом в таких устройствах становится воздух, однако возможно использование еще и гелия или водорода. В то время пока изобретение находилось на стадии разработки, в качестве опытов использовались такие вещества, как двуокись азота, фреоны, сжиженный пропан-бутан. В некоторых образцах пытались применять даже обычную воду. Стоит отметить, что двигатель внешнего сгорания, который запускали с водой в качестве рабочего вещества, отличался тем, что у него была достаточно высокая удельная мощность, высокое давление, а сам он был достаточно компактным.

Первый тип двигателя. «Альфа»

Первой моделью, которая использовалась, стала «Альфа» Стирлинга. Особенность его конструкции состоит в том, что она имеет два силовых поршня, находящихся в разных в раздельных цилиндрах. Один из них имел достаточно высокую температуру и был горячим, другой, наоборот, холодным. Внутри теплообменника с высокой температурой располагалась горячая пара цилиндр-поршень. Холодная пара находилась внутри теплообменника с низкой температурой.

Основными преимуществами теплового двигателя внешнего сгорания стало то, что они имели высокую мощность и объем. Однако температура горячей пары при этом была слишком велика. Из-за этого возникали некоторые технические трудности в процессе изготовления таких изобретений. Регенератор данного устройства находится между горячей и холодной соединительными трубками.

Второй образец. «Бета»

Вторым образцом стала модель «Бета» Стирлинга. Основное конструктивное отличие заключалось в том, что имелся лишь один цилиндр. Один из его концов выполнял роль горячей пары, а другой конец оставался холодным. Внутри данного цилиндра перемещался поршень, с которого можно снимать мощность. Также внутри имелся вытеснитель, который отвечал за изменение объема горячей рабочей зоны. В данном оборудовании использовался газ, который перекачивался из холодной зоны в горячую через регенератор. Этот вид двигателя внешнего сгорания обладал регенератором в виде внешнего теплообменника или же совмещался с поршнем-вытеснителем.

Последняя модель. «Гамма»

Последней разновидностью данного двигателя стала «Гамма» Стирлинга. Этот тип отличался не только наличием поршня, а также вытеснителя, а еще и тем, что в его конструкцию входили уже два цилиндра. Как и в первом случае один из них был холодным и использовался он для отбора мощности. А вот второй цилиндр, как в предыдущем случае, был холодным с одного конца и горячим с другого. Здесь же перемещался вытеснитель. В поршневом двигателе внешнего сгорания также имелся регенератор, который мог быть двух типов. В первом случае он был внешним и соединял между собой такие конструктивные части, как горячую зону цилиндра с холодной, а также с первым цилиндром. Второй тип – это внутренний регенератор. Если использовался этот вариант, то он входил в конструкцию вытеснителя.

Использование Стирлингов обосновано в том случае, если необходим простой и небольшой преобразователь тепловой энергии. Также его можно использовать в том случае, если разница температур недостаточно велика, чтобы использовать газовые или же паровые турбины. Стоит отметить, что на сегодняшний день такие образцы стали использоваться чаще. К примеру, используются автономные модели для туристов, которые способны работать от газовой конфорки.

Применение устройств в настоящее время

Казалось бы, что такое старое изобретение не может использоваться в наши дни, однако это не так. NASA заказало двигатель внешнего сгорания типа Стирлинга, однако в качестве рабочего вещества должны использоваться ядерные и радиоизотопные источники тепла. Кроме этого, он также успешно может быть использован в следующих целях:

  • Использовать такую модель двигателя для перекачки жидкости гораздо проще, чем обычный насос. Во многом это благодаря тому, что в качестве поршня можно применять саму перекачиваемую жидкость. Кроме того, она же и будет охлаждать рабочее тело. К примеру, такой вид "насоса" можно использовать, чтобы накачивать воду в ирригационные каналы, используя для этого солнечное тепло.
  • Некоторые изготовители холодильников склоняются к установке таких устройств. Стоимость продукции удастся снизить, а в качестве хладагента можно применять обычный воздух.
  • Если совместить двигатель внешнего сгорания этого типа с тепловым насосом, то можно оптимизировать работу тепловой сети в доме.
  • Довольно успешно Стирлинги используются на подводных лодках ВМС Швеции. Дело в том, что двигатель работает на жидком кислороде, который впоследствии используется для дыхания. Для подводной лодки это очень важно. К тому же такое оборудование обладает достаточно низким уровнем шума. Конечно, агрегат достаточно большой и требует охлаждения, но именно эти два фактора несущественны, если речь идет о подводной лодке.

Преимущества использования двигателя

Если во время конструирования и сборки применить современные методы, то удастся поднять коэффициент полезного действия двигателя внешнего сгорания до 70%. Использование таких образцов сопровождается следующими положительными качествами:

  • Удивительно, однако крутящий момент в таком изобретении практически не зависит от скорости вращения коленчатого вала.
  • В данном силовом агрегате отсутствуют такие элементы, как система зажигания и клапанная система. Также здесь отсутствует распредвал.
  • Достаточно удобно то, что на протяжении всего периода использования не потребуется проводить регулировку и настройку оборудования.
  • Данные модели двигателя не способны "заглохнуть". Простейшая конструкция аппарата позволяет использовать его достаточно продолжительное время в полностью автономном режиме.
  • В качестве источника энергии можно использовать практически все, начиная от дров и заканчивая урановым топливом.
  • Естественно, что в двигателе внешнего сгорания процесс сжигания веществ осуществляется снаружи. Это способствует тому, что топливо дожигается в полном объеме, а количество токсических выбросов минимизируется.

Недостатки

Естественно, что любое изобретение не лишено недостатков. Если говорить о минусах таких двигателей, то они заключаются в следующем:

  1. Из-за того что сгорание осуществляется вне двигателя, отвод получаемого тепла происходит через стенки радиатора. Это вынуждает увеличивать габариты устройства.
  2. Материалоемкость. Для того чтобы создать компактную и эффективную модель двигателя Стирлинг, необходимо иметь качественную жаропрочную сталь, которая сможет выдержать большое давление и высокую температуру. Кроме того, должна быть низкая теплопроводность.
  3. В качестве смазки придется покупать специальное средство, так как обычное коксуется при высоких температурах, которые достигаются в двигателе.
  4. Для получения достаточно высокой удельной мощности придется использовать либо водород, либо гелий в качестве рабочего вещества.

Водород и гелий в качестве топлива

Получение высокой мощности, конечно же, необходимо, однако нужно понимать, что использование водорода или гелия достаточно опасно. Водород, к примеру, сам по себе достаточно взрывоопасен, а при высоких температурах он создает соединения, которые называются металлогидритами. Это происходит, когда водород растворяется в металле. Другими словами, он способен разрушить цилиндр изнутри.

Кроме того, и водород, и гелий – это летучие вещества, которые характеризуются высокой проникающей способностью. Если говорить проще, то они достаточно легко просачиваются сквозь практически любые уплотнения. А потери вещества означают потери в рабочем давлении.

Роторный двигатель внешнего сгорания

Сердце такой машины – это роторная машина расширения. Для двигателей с внешним типом сгорания этот элемент представлен в виде полого цилиндра, который с обеих сторон прикрыт крышками. Сам по себе ротор имеет вид колеса, который посажен на вал. Также у него имеется определенное количество П-образных выдвигающихся пластин. Для их выдвижения используется специальное выдвижное устройство.

Двигатель внешнего сгорания Лукьянова

Юрий Лукьянов – это научный сотрудник Псковского политехнического института. Он уже достаточно давно занимается разработкой новых моделей двигателей. Ученый старался сделать так, чтобы в новых моделях отсутствовали такие элементы, как коробка передач, распредвал и выхлопная труба. Основной недостаток устройств Стирлинга заключался в том, что они имели слишком большие габариты. Именно этот недостаток ученому и удалось устранить за счет того, что лопасти были заменены на поршни. Это помогло уменьшить размер всей конструкции в несколько раз. Некоторые говорят о том, что можно сделать двигатель внешнего сгорания своими руками.

Газопоршневой агрегат или микротурбинная установка?

В этой статье попробуем разобраться в извечном вопросе для энергетиков: «Газопоршневой агрегат или микротурбинная установка?».

Сразу сделаю небольшую ремарку. О преимуществах тех или иных гогенерационных установок и технологий написано немало статей, сложено много мифов. Мы не преследуем коммерческих целей, и данная статья основывается исключительно на нашем опыте в проектировании подобных объектов. А также не устанавливаем себе рамок по поводу объекта, просто сравниваем установки.

Для начала ознакомимся с нашими претендентами.

Газопоршневая электростанция – это система генерации, созданная на основе поршневого двигателя внутреннего сгорания, работающего на природном или другом горючем газе. Возможно получение двух видов энергии, (тепло и электричество) и этот процесс называется «когенерация». В случае если в газопоршневых электростанциях используется технология, позволяющая получать ещё и холод (что очень актуально для вентиляции, холодоснабжения, промышленного охлаждения), то данная технология будет называться «тригенерация».


Внешний вид газопоршневого агрегата (ГПА)
Фото с сайта: manbw. ru

Газотурбинная электростанция — современная высокотехнологичная установка, генерирующая электричество и тепловую энергию. Основу газотурбинной электростанции составляют один или несколько газотурбинных двигателей - силовых агрегатов, механически связанных с электрогенератором и объединенных системой управления в единый энергетический комплекс. Газотурбинная электростанция может иметь электрическую мощность от двадцати киловатт до сотен мегаватт. Она способна также отдавать потребителю значительное количество (вдвое больше электрической мощности) тепловой энергии, если установить на выхлопе турбины котёл-утилизатор.


Внешний вид микротурбины (микро-ГТУ)
Фото с сайта www.capstoneturbine.com

Определяющими критериями для владельцев автономных электростанций являются вопросы расхода топлива, уровень эксплуатационных затрат, а также срок окупаемости оборудования электростанции. А эти вопросы связанны с выгодами и проблемами, которые может иметь владелец электростанции. Поэтому начнем разбираться во все по порядку.

РАУНД 1.ЦЕНА

Так как цена иногда является определяющим фактором в выборе оборудования сравним стоимость ГПА и микро ГТУ.

Удельные капитальные затраты на ГПА составляют от 600-800 долл./кВт.

Микро-ГТУ обходится дороже и эта сумма уже составляет 1300-1800 долл./кВт.

Стоимость зависит от производителя. Иностранные установки обходятся дороже российских аналогов.

В сравнении по цене отдаем предпочтение ГПА.

РАУНД 2. РАСХОД ГАЗА

Сравнивать расход газа для ГПА и микро-ГТУ довольно сложно. Во-первых, большое количество производителей. Во-вторых, у каждого производителя широкий модельный ряд.

Для сравнения возьмем ведущих производителей. Фирмы Jenbacher (производитель ГПА) и Capstone (производитель микро-ГТУ).

Если сравнивать расход газа, то с небольшим преимуществом побеждает ГПА.

2:0 в пользу ГПА

РАУНД 3. ЭФФЕКТИВНОСТЬ

Давайте сравним эффективность все тех же ГПА и микро-ГТУ

Еще одно очко в пользу ГПА.

РАУНД 4. ВЫХОД ТЕПЛА

Когенерационное оборудование устанавливается как для получения электрической энергии, так и тепловой. Поэтому сравним, какая машина дает больше тепловой энергии.

Поэтому, счет становиться 3:1 в пользу ГПА.Напомню, что модельный ряд широкий и цифры могут меняться. Тут приведены значения для выборочных моделей. Среднее соотношение тепловой нагрузки к электрической для ГПА составляет 1,2. Для микро-ГТУ – 1,5-2,2.

РАУНД 5. РЕГУЛИРОВАНИЕ НАГРУЗКИ

Это довольно существенный фактор в выборе оборудования. В реальной жизни нагрузка электрическая и тепловая переменные. Не смотря на то, что генерирующее оборудование подбирается под базовую нагрузку, оно должно иметь гибкий график работы.

Справка: Регулировочный диапазон – минимально допустимая нагрузка, при которой установка способна работать.

Справка: ГПА может работать при нагрузке ниже, но это крайне не желательно. Выдержка из технической документации компании Jenbacher GE: при работе в обособленном (автономном) режиме допускается работа с частичной нагрузкой от 20% до 40% номинальной, но не чаще 6-ти раз в год, и на срок до 24 часов. Работа в автономном режиме с нагрузкой ниже 50% номинальной допускается не чаще одного раза в сутки на срок не более 4 часов.

Микро-ГТУ начинает приближаться к ГПА. Счет 3:2.

РАУНД 6. МОЩНОСТЬ И ТЕМПЕРАТУРА ОКРУЖАЮЩЕЙ СРЕДЫ

Параметры электрической мощности генерирующих установок, по существующим стандартам ISO, измеряются при t +15°C. Поэтому параметры приведенные в техническом паспорте соответствуют температуре +15°C. Посмотрим, как ведет себя мощность установок при различной температуре:

Как видно из графика, мощность ГПА при пониженных температурах остается неизменной.

При значительном повышении температуры окружающей среды мощность газотурбинной установки падает. Но при понижении температуры электрическая мощность наоборот, растет.

Ни кому не присваиваем бала.

РАУНД 7. ЭФФЕКТИВНОСТЬ ПРИ РАЗЛИЧНОЙ ЗАГРУЗКЕ

Загрузка установок в процессе эксплуатации может меняться. Эффективность установок при различных загрузках приведена на рисунке. Этот показатель будет влиять на потребление топлива при разных нагрузках.

Из графика следует, что КПД ГПА остается стабильным до нагрузки 40%, затем начинает снижаться. У микро-ГТУ КПД снижается вместе с загрузкой.

Но не будем забывать о нагрузках ниже 50% для ГПА. Ведь они губительны, а порой и разрушительны для поршневых установок. Эксплуатация поршневых установок на низких нагрузках приводит к наступлению капитального ремонта не через 6 лет, а через 2-3 года. Это очень высокая цена за выигрыш в КПД на малой нагрузке.

Поэтому делаем заключение, что обе машины ведут себя примерно одинаково в диапазоне от 70% до 100%. Что и является рабочим диапазоном. Так что счет остается неизменным после этого раунда.

РАУНД 8. ЭКОЛОГИЯ

Надо отметить, что газопоршневые установки значительно уступают газотурбинным агрегатам по уровню выбросов NOx. Так как моторное масло выгорает в значительных объемах, поршневые агрегаты имеют уровень вредных выбросов в атмосферу в 15-20 раз больший, чем у газотурбинных агрегатов. Содержание СО (при 15% О2) для газопоршневых двигателей находится на уровне 180-210 мг/м3, и это несмотря на наличие в выхлопном тракте GE Jenbacher дорогостоящей каталитической очистки уходящих газов. Для соответствия требованиям по ПДК, при использовании поршневых машин необходимо строить высокие дымовые трубы, а это дополнительные затраты.

Очко за экологию присваиваем микро-ГТУ. Счет сравнивается, 3:3.

РАУНД 9. ШУМ

Шум одна из проблем в работе ГПА. При работе ГПА наблюдается высокий уровень низкочастотного шума, который сопровождается вибрацией. Поэтому для устранения шумовой нагрузки приходится прибегать к строительству шумозащитных кожухов. Это дополнительные затраты. Из-за вибрационных воздействий ГПА не возможно установить на крыше здания.

Микро-ГТУ тоже имеет шумовое воздействие, но оно значительно ниже.

Бал присваиваем микро-ГТУ. И теперь микро-ГТУ выходит вперед, 3:4.

РАУНД 10. НАБРОС НАГРУЗКИ

Наброс нагрузки у ГПА и микро-ГТУ довольно высокий. Для более детальной оценки сравним как ведут себя машины при набросе в 50%.

По цифрам все понятно. Свой бал получает ГПА. Счет становится равным 4:4.

РАУНД 11. МАСЛО

Этот раунд заведомо проигран ГПА. Но без него не куда.

В части эксплуатации газопоршневого двигателя в приводе электростанции особо следует обратить внимание на количество используемого моторного масла. Само собой, масло должно быть рекомендованным для данной газопоршневой установки.

Справка: Фактический расход моторного масла на 1 МВт установке «Jenbacher GE» может достигать 15000 литров в год. Одним из рекомендованных моторных масел для газопоршневых машин является Pegasus 705 (MOBIL). Оптовая цена составляет -4-6 долларов за литр, а специальное моторное масло для газовых поршневых двигателей марки Mysella 15W-40 (Shell)– стоит 1000 долл. за бочку объемом в 208 литров.

Использование не рекомендованного моторного масла ведет к потере заводских гарантий и непредсказуемым последствиям для самого газопоршневого двигателя. Замена моторного масла должна производиться один раз в 2-4 месяца.

Отработанное масло газопоршневых установок нельзя просто вылить на землю - 600 литров на 1 МВт требуют утилизации – это также постоянные расходы для владельцев электростанции.

Явное преимущество микро-ГТУ. 4:5, вперед вырывается микро-ГТУ.

РАУНД 12. ТОПЛИВО

«Микротурбины не так «всеядны» в отличие от своих полноразмерных собратьев и существует ряд ограничений, накладываемых на состав топливного газа», это мнение можно с легкостью найти в любом сравнении ГПА и микро-ГТУ. Однако это не так. Современные микротурбины работают практически на любом газообразном топливе. Конечно для работы потребуется специальная комплектация микро-ГТУ. Но ведь и ГПА серийного производства не будет работать на «кислом» газу. Поэтому это выражение притянуто за «уши» в пользу ГПА.

Но этот раунд включен не просто так. У микро-ГТУ есть существенный недостаток по давлению рабочего газа. Для работы микро-ГТУ необходимо давление газа порядка 5 бар. Если у Вас отсутствует такое давление в системе, то необходимо устанавливать дожимной компрессор. С установкой дожимного компрессора возрастут собственные нужды и капитальные затраты.

Еще один бал получает ГПА. Счет становиться равным 5:5.

РАУНД 13. МАССА

ГПА в отношении размер-масса имеет худшую характеристику по сравнению с микро-ГТУ.

Из представленных габаритов следует, что ГПА требует больше места, т.к. имеет больший вес на единицу мощности.

Счет становится 5:6 в пользу микротурбины.

РАУНД 14. СТОИМОСТЬ ОБСЛУЖИВАНИЯ И РЕМОНТА

Это самый спорный вопрос. Конечно, стоимость эксплуатации зависит от многих факторов: в каких условиях эксплуатируется, как соблюдаются регламентационные предписания производителей. Для нашей оценки возьмем идеальные условия. При эксплуатации соблюдены все требования завода-производителя.

Стоимость эксплуатации микротурбины меньше, чем у ГПА. Это связано с несколькими факторами:

  • Отсутствуют затраты на масло
  • Нет необходимости менять фильтры часто
  • Меньшее количество движущихся частей

Приводить цифры эксплуатационного обслуживания

линейный генератор + свободнопоршневой двигатель

Николай Макаренко

01 декабря 2020, 06:03

Линейный генератор со свободным поршнем, который использует сгорание топлива для непосредственной выработки электроэнергии без использования приводного вала, может обеспечить расширение возможностей электромобилей. Он намного меньше и эффективнее, чем обычный двигатель внутреннего сгорания. Несколько научных групп, в том числе научно-исследовательская группа Toyota, исследуют эту интригующую технологию.

Двигатели внутреннего сгорания, скорее всего, сохранятся в течение довольно долгого времени и будут использоваться в качестве компонента подключаемых гибридных автомобилей и электромобилей с увеличенным запасом хода. Все это, несмотря на большое количество совершенных электромобилей.

 

При этом может быть установлен небольшой бортовой высокоэффективный электрогенератор, чтобы аккумулятор можно было заряжать во время поездки - так называемый «расширитель запаса хода» или, проще говоря, гибридно-электрическая трансмиссия. Это помогает повысить эффективность, а также надежность системы.

Линейное относительное перемещение постоянных магнитов относительно катушек позволяет извлекать энергию, получаемую при сгорании топлива, в виде электроэнергии. Поршень тормозится сжатием среды в камере пневматической пружиной и толкается обратно.

Линейный генератор со свободнопоршневым двигателем - это своеобразный преобразователь энергии, который может генерировать электрическую энергию, и рассматривается как потенциальная технология для решения проблемы ограниченного пробега электромобилей. Избавившись от кривошипно-шатунного механизма, такой двигатель получает ряд преимуществ в виде переменной степени сжатия, компактных размеров и пр.

 

 

Опытный образец - двухтактный линейный генератор

 

Оптимальное решение преобразования энергии нашел профессор Питер Ван Блариган. Он оснастил поршень свободнопоршневого двигателя кольцевыми магнитами из неодимового сплава, а на внешней стенке цилиндра-статора поместил обмотку. Таким образом, появление сверхмощных магнитов из неодимового сплава позволило обойтись без механической связи поршня с трансмиссией, создав генератор электричества. Ван Блариган построил опытный образец - двухтактный линейный генератор мощностью 40 кВт. Термический КПД двигателя-генератора, работающего на пропане достигал 56%. Причем, этот двигатель мог работать не только на пропане, но и на бензине, водороде, дизельном топливе и спирте.

 

Свободнопоршневой двигатель с двумя камерами сгорания на обоих концах свободного поршня и линейный электрический генератор для получения энергии от поршня во время его цикла движения. При возвратно-поступательном движении постоянного магнита, прикрепленного к штоку поршня, происходит колебание магнитного поля, которое индуцирует ток в катушке статора.

Высокий КПД такого двигателя обеспечивается за счет снижения паразитных внутренних потерь. В конструкции отсутствуют вращающиеся массы, которые имеют значительную инерцию. На поршни не действуют боковые силы, которые обычно прижимают их к стенкам цилиндра, благодаря чему уменьшается трение. Подшипники коленчатого вала и шатунов, поршневые пальцы, распределительный вал, кулачки и клапаны - все те узлы классического двигателя, в которых существует трение, - отсутствуют. Кроме того, на каждый цикл работы двигателя со свободным поршнем приходится два рабочих такта. При этом свободнопоршневой двигатель гораздо компактнее, проще и надежнее обычного ДВС. Эффективность преобразования энергии может быть увеличена за счет оптимизации степени сжатия. Кроме того, ключевые характеристики двигателя со свободным поршнем, такие как выходная мощность и эффективность системы могут быть улучшены за счет управления положением поршня.

 

 

Все гениальное…

 

Свободнопоршневой двигатель устраняет всю механическую трансмиссию обычного двигателя, позволяя разрабатывать эффективные циклы сгорания и уменьшая количество деталей и стоимость двигателя.

 

Принцип действия генератора со свободным поршнем, производящим электроэнергию непосредственно из линейного движения поршня без промежуточных механических звеньев достаточно прост. Двухцилиндровый двигатель линейного генератора со свободным поршнем выполнен по оппозитной схеме и имеет поршневую группу, состоящую из двух поршней, соединенных жестким штоком. Циклически повторяющееся давление газов в процессе сгорания топлива сообщает поршневой группе возвратно-поступательное движение. В плоскости симметрии штока, между поршнями на штоке закреплена подвижная магнитная система. Она размещается внутри неподвижного статора с системой обмоток. При возвратно-поступательном движении штока с закрепленной на нем магнитной системой внутри статора вследствие взаимодействия их магнитных полей происходит возникновение электродвижущей силы в обмотках статора.

Генераторы со свободнопоршневым двигателем (FPEG) обладают огромным потенциалом в качестве основного устройства преобразования энергии для выработки электроэнергии из топлива в составе системы трансмиссии гибридного электрического транспортного средства. Основные преимущества заключаются в том, что они теоретически более эффективны, компактнее и легче по сравнению с другими конкурирующими гибридными электромобилями и решениями для увеличения запаса хода (двигатели внутреннего сгорания, роторные двигатели, топливные элементы и т. д.).

Кроме того, электрическая машина, работая в режиме двигателя, обеспечивает старт двигателя внутреннего сгорания. Электронная система управления должна осуществлять контроль движения поршней для обеспечения оптимального термодинамического цикла, а также позиционирование поршней, предотвращая их соударение с головками цилиндров.

 

 

Преимущества этого принципа преобразования энергии значительны:

  • уменьшение числа движущихся деталей за счет исключения кривошипно-шатунного механизма до одного поршневого узла;
  • повышение жесткости и механической надежности конструкции двигателя;
  • повышение ресурса и механического КПД двигателя вследствие отсутствия шатунов, что приводит к исключению боковых сил, действующих на зеркало цилиндра и уменьшению трения в цилиндропоршневой группе;
  • исключение стартера для запуска ДВС, так как электрический генератор может работать и как линейный электродвигатель;
  • возможность динамического изменения степени сжатия в каждом такте не механическими способами, а корректировкой параметров электронной системы управления;
  • возможность работы с различными видами топлива (бензин, природный газ, водород, биогаз, биотопливо) посредством электронной настройки системы управления;
  • реализация оптимальных режимов сгорания топлива, в том числе и гомогенное воспламенение бедных смесей - потенциал для снижения вредных выбросов;
  • снижение расходов на производство.

Вариант двигателя со свободным поршнем оборудован электромагнитными клапанами, впрыском топлива и свечой зажигания. У таких двигателей вместо преобразования линейного движения поршня во вращательное движение коленчатого вала, как в обычном ДВС, устройство преобразует кинетическую энергию поршня непосредственно в электрическую.

Проблемы сложные, но решаемые

 

Серийному выпуску подобных двигателей-генераторов мешает несколько проблем, самая главная из которых - создание системы управления. Дело в том, что в обычном ДВС верхняя мертвая точка траектории поршня задается геометрией кривошипно-шатунного механизма, а в линейном она зависит от степени сжатия и скорости сгорания топливовоздушной смеси. То есть, поршень тормозит, создавая давление в камере. Как следствие, длительность тактов и верхняя мертвая точка могут изменяться. А это значит, что при неточной работе форсунки поршень либо остановится, либо ударится в стенку. Как следствие, свободные поршни нуждаются в специальной системе, которая бы нивелировала разницу в процессе сгорания топлива в каждом из рабочих циклов. Ван Блариган считает, что ключ к решению проблемы управления в контроле за положением и движением поршня через внешний статор. Компьютерное управление вполне может справиться с такой задачей. А тормозить поршень можно с помощью тех же электромагнитов.

 

Полноценный прототип генератора с готовой системой управления обещан с КПД – 50%.

Такой двигатель отлично подходит для автомобиля с элетротрансмиссией. ДВС в таком автомобиле нужен только для зарядки аккумулятора, при пуске он должен сразу выходить на режим максимальной мощности либо максимального момента. Это значит, что нет необходимости обеспечивать его работу на переходных режимах, ту самую, ради которой создаются многоклапанные двигатели, впускные коллекторы переменной длины, управление фазами газораспределения, двойной наддув и прочее. Двигатель, работающий в узком диапазоне оборотов намного проще и, значит, дешевле и надежнее.

Генератор со свободнопоршневым двигателем - это новая система выработки электроэнергии, разработанная для электромобилей, и она отмечена как более эффективная система питания, чем обычные двигатели. В нем может использоваться двухтактный режим с искровым зажиганием. По сравнению с четырехтактным, он имеет более высокую удельную мощность при том же объеме двигателя и массе впрыскиваемого топлива. Набор параллельных механических пружин действует как устройство отскока, чтобы толкать поршень из НМТ в ВМТ

 

Управление решается контроллером итеративного обучения

 

Важной проблемой является стратегия управления возвратно-поступательным движением свободного поршня для обеспечения стабильной работы системы. При отсутствии коленчатого вала несколько поршней должны каким-то образом точно позиционироваться и синхронизироваться. Если движение каждого поршня не контролируется точно, степень сжатия будет меняться, что снижает эффективность работы. Проблема управления была разделена на несколько этапов. Контроллер итеративного обучения был разработан для управления верхним положением, а управление нижним положением было основано на оценке состояний сгорания, при этом управление ходом было основано на конечном автомате. Была решена сложная инженерная задача. Комбинированная имитационная модель, включающая колебания цикла сгорания, была представлена и подтверждена прототипом, а также проанализирована эффективность стратегии управления. Результаты показали, что система обеспечивает стабильную работу, а возвратно-поступательное движение свободного поршня хорошо контролируется.

Количество деталей линейного генератора энергии со свободным поршнем - минимальное.

Задача создания силовой установки, в составе линейного генератора и двигателя внутреннего сгорания со свободным поршнем, представляет собой сложную техническую задачу, решение которой лежит на стыке физики процесса сгорания топлива, теории систем управления быстропротекающими процессами в реальном времени, быстродействующей силовой электроники и техники линейных электроприводов. Однако, к счастью все эти технологии можно считать на сегодняшний день достаточно глубоко разработанными и требуется лишь решить проблему синергетического синтеза систем.

Теоретически КПД двигателя со свободным поршнем перевешает 70%. Они могут работать на любом виде жидкого или газообразного топлива, крайне надежны и великолепно сбалансированы. Кроме того, очевидны их легкость, компактность и простота в производстве.

Устройство линейного генератора энергии со свободным поршнем предельно простое.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!

Email*

Подписаться

Газопоршневые и газотурбинные установки

 
Проектирование и изготовление тепловых пунктов ИТП

Теплораспределительный или тепловой пункт - это комплекс оборудования и контрольно-измерительных приборов, предназначенный для распределения тепла, поступающего от внешней тепловой сети (котельных или ТЭЦ), между системам отопления, горячего водоснабжения или вентиляции промышленных и жилых объектов, коттеджей, офисов, гаражей или других строений с учетом установленных параметров.
01 Декабря 2020 г.

Принимаем заказы на изготовление индивидуальных тепловых пунктов ИТП

Теплораспределительный или тепловой пункт - это комплекс оборудования и контрольно-измерительных приборов, предназначенный для распределения тепла, поступающего от внешней тепловой сети (котельных или ТЭЦ), между системам отопления, горячего водоснабжения или вентиляции промышленных и жилых объектов, коттеджей, офисов, гаражей или других строений с учетом установленных параметров.
05 Ноября 2020 г.

Вентиляционное оборудование для котельных

Для нормальной работы котлов и отопительных установок котельных необходимо обеспечить постоянный приток свежего воздуха определенного объема и утилизацию продуктов горения. Для этого используют приточную и вытяжную вентиляцию котельной.
07 Октября 2020 г.

Автономное отопление дома. Современные отопительные системы

Автономное отопление становится все более популярнее и практичнее, причем размышления об отоплении и горячем водоснабжении актуальны не только в зимний период, когда, собственно, отопление и требуется, но и летом.
05 Февраля 2020 г.

Тепловые пункты

Устройство, принцип работы, оборудование и виды тепловых пунктов для обеспечения потребителей тепловой энергией
05 Декабря 2019 г.

Крышные котельные: плюсы и минусы.

В настоящее время, решая вопрос теплопункта, заказчики все чаще останавливают свой выбор на крышной котельной, мотивируя это их высокой эффективностью.
12 Июля 2019 г.

ГОСТ 30735-2001 Котлы отопительные водогрейные теплопроизводительностью от 0,1 до 4,0 МВт. Общие технические условия


17 Августа 2016 г.

ГОСТ 27590-2005 Подогреватели кожухотрубные водо-водяные систем теплоснабжения. Общие технические условия


24 Июня 2016 г.

ГОСТ 31840-2012 Насосы погружные и агрегаты насосные. Требования безопасности


06 Июня 2016 г.

 

Версия для печати

В диапазоне мощностей от 20 до 30 МВт(э) газопоршневые когенерационные установки стабильно показывают лучшие по сравнению с другими технологиями результаты. Более того, для мощностей 3-5 кВт(э) ничто не может с ними конкурировать. Возникает вполне логичный вопрос: почему? Какие технические характеристики позволяют им быть настолько результативными.

Во-первых, следует отметить высокий показатель электрического КПД.

Наивысших значений электрического КПД (у газовой турбины до 30 %, а у газопоршневого двигателя около 40 % ) оборудование достигает только при работе со 100%-ной нагрузкой (Рис. 2.1). Снижение нагрузки даже до 50%, уменьшает электрический КПД используемой газовой турбины почти в 3 раза. В то время как, в случае использования газопоршневого двигателя такие изменения режима нагрузки ни на общий, ни на электрический КПД практически не влияют.

Pиc. 1. Графики зависимости КПД от нагрузки:

Приведенные графики позволяют нагляно убедиться, что газовые двигатели отличаются более высоким электрическим КПД, показатели которого почти не изменяются при нагрузке от 50 до 100 %.

Вторым важны показателем являются условия размещения.

Номинальная мощность, как газовой турбины, так и газопоршневого двигателя находится в прямой зависимости от температуры воздуха и высоты используемой площадки относительно уровня моря. На графике (рис. 2) ясно видно, что повышение температуры с -30°С до +30°С приводит к падению электрического КПД газовой турбины примерно на 15-20%. При дальнейшем повышении температуры выше +30°С, КПД у газовой турбины становится еще ниже. И в этом случает газопоршневой двигатель выгодно отличается от газовой турбины, имея не только постоянный, но и более высокий электрический КПД на всем интервале температур вплоть до +25°С.

 

Рис. 2. График зависимости электрического КПД газовой турбины от температуры окружающего воздуха

Третий, но не менее важный показатель: условия работы.

Количество запусков: газопоршневой двигатель можно запускать и останавливать неограниченное количество раз, и это не повлияет на общий заявленный моторесурс двигателя, в то время как 100 запусков газовой турбины уменьшат её ресурс примерно на 500 часов.

Время запуска: промежуток времени необходимый для принятия полной нагрузки с момента запуска у газовой турбины составляет примерно 15-17 минут, а у газопоршневого двигателя всего 2-3 минуты.

К четвертым важным показателям относятся: проектный срок службы и интервалы техобслуживания.

Ресурс газовой турбины до первого капитального ремонта составляет от 20 000 до 30 000 рабочих часов. Ресурс же газопоршневого двигателя значительно больше и равен 60 000 рабочих часов (табл. 1). Кроме того и затраты на капитальный ремонт газовой турбины, учитывая стоимость запчастей и материалов, значительно выше.

Полный капремонт газовой турбины - значительно более сложный процесс, чем капремонт необходимый газовому двигателю. Ремонт газовой турбины можно выполнить только на заводе-изготовителе. Более того, для ремонта газовой турбины требуются довольно дорогие запчасти, что увеличивает его стоимость. Все эти факторы увеличивают время простоя газовой турбины по сравнению с газовым двигателем. Затраты на материалы и запчасти необходимые для выполнения капитального ремонта при использовании газового двигателя также заметно ниже.

Таблица №1: Интервалы техобслуживания

Ремонтные работы, интервал (часы) Турбины, авиационные и малые промышленные Турбины, промышленные Газопоршневой двигатель
Ремонт камеры сгорания 5 000 10 000 -
Средний ремонт Ремонт турбины и камеры сгорания Ремонт головок цилиндров
10 000 15 000 30 000
Капитальный ремонт 20 000 30 000 60 000

В-пятых, необходимо упомянуть довольно низкие капиталовложения.

Опираясь на данные расчётов видно, что удельные капиталовложения (Евро/кВт) для производства тепловой и электрической энергии с использованием газопоршневых двигателей ниже. Это их явное преимущество неоспоримо применительно к мощностям до 30 МВт. Таким образом, ТЭЦ мощность которой 10 МВт, оборудованная газопоршневыми двигателями обойдется примерно в 7,5 миллионов ?, если же использоват газовые турбины, то затраты возрастут до 9,5 миллионов ? (рис. 3).

Также важно учитывать, что давление газа в газопроводной сети, как правило, не превышает 4-х атмосфер, что вполне достаточно для работы газового двигателя. А для работы газовой турбины давление подаваемого газа должно быть не меньше 6-10 атмосфер. Таким образом, в случае использования на станции газовой турбины в роли силового агрегата возникает необходимость в установке еще и газовой компрессорной станции, что приводит к дополнительному увеличению капиталовложений.

Рис. 3. Объемы капитальных вложений в ТЭЦ с разными силовыми агрегатами.

Таблица №2: Преимущества и недостатки газовой турбины и поршневого двигателя

Характеристики газовая турбина поршневой двигатель
Мощность единичной машины 0.25 — 300 МВт (э) 0.2 — 20 МВт (э)
Общий КПД 65-87% 70-92%
Преимущества Отсутствие водяной системы охлаждения.
Гибкость в выборе топлива.
Низкая эмиссия вредных веществ.
Работа установки на нескольких видах топлива.
Солидный ресурс.
Достаточно большая возможная единичная мощность.
Наивысшая производительность.
Эффективная работа при малой нагрузке (от 30% до 100%).
Относительно низкий уровень начальных инвестиций за 1 кВт(э).
Широкая линейка моделей по выходной мощности (от 4 кВт).
Возможность автономной работы.
Быстрый запуск (от 15 с, газовым турбинам требуется 0.5-2 ч).
Настоящая гибкость в выборе топлива.
Преобладание производства электроэнергии.
Малые размеры — низкие инвестиционные затраты.
Работа с малым давлением газа (ниже 1 бара).
Относительно простой капитальный ремонт.
Солидный ресурс.
Возможность кластеризации (параллельная работа нескольких установок).
Работа установки на нескольких видах топлива.
Недостатки Нижний порог эффективного применения (от 5 МВт электроэнергии).
Производительность ниже, чем у поршневых двигателей.
Высокий уровень шума.
Требуется подготовка топлива (очистка, осушка, компрессия).
Низкая эффективность при неполной загрузке.
Длительный период запуска (0.5 -2 часа).
Сложный и дорогой капитальный ремонт.
Если тепло не используется, то требуется охлаждение.
Высокий уровень (низкочастотного) шума.
Высокое соотношение вес/выходная мощность.
Относительно малая мощность единичной машины.

14 Декабря 2016 г.

 

10. Двигатели внутреннего сгорания Введение В этом разделе рассматриваются основные характеристики и принципы работы практических систем сгорания,

1 10. Двигатели внутреннего сгорания Введение В этом разделе будут рассмотрены основные особенности и принципы работы практических систем сгорания, в основном двигателей внутреннего сгорания, которые преимущественно используются в качестве силовых установок. Будут описаны двигатели внешнего сгорания, но не будут обсуждаться. Различие между двигателями внутреннего и внешнего сгорания зависит от природы рабочего тела. 10. Двигатели внутреннего сгорания 1 AER 1304 ÖLG

2 Рабочая жидкость, как следует из названия, - производит работу, нажимая на лопатку поршня или турбины, которая, в свою очередь, вращает вал, или - работает как жидкость с большим импульсом, которая используется непосредственно для движущая сила. В двигателях внутреннего сгорания источником энергии является горючая смесь, а продуктами сгорания - рабочее тело.В двигателях внешнего сгорания продукты сгорания используются для нагрева второй жидкости, которая действует как рабочая жидкость. 10. Двигатели внутреннего сгорания 2 AER 1304 ÖLG

3 Согласно этому определению, это наиболее распространенные двигатели внутреннего сгорания: - Бензиновые двигатели (также известные как искровое зажигание, SI): однородный / слоистый заряд. - Дизельные двигатели (также известные как двигатели с воспламенением от сжатия, CI). - Двигатели HCCI (воспламенение от сжатия с однородным зарядом): в настоящее время разрабатываются.- Газотурбинные двигатели: авиационная силовая установка; стационарное производство энергии. - Химические ракеты. 10. Двигатели внутреннего сгорания 3 AER 1304 ÖLG

4 Примеры двигателей внешнего сгорания: - Паровые электростанции. - Домашние отопительные печи, работающие на газе или мазуте. - Двигатели Стирлинга. Что за двигатели следующие? - Солнечная электростанция. - Атомная электростанция. -Топливные элементы. - Ракетная электрическая силовая установка. 10. Двигатели внутреннего сгорания 4 AER 1304 ÖLG

5 Двигатели внутреннего сгорания Двигатели внутреннего сгорания с постоянным потоком: - Газовая турбина -Ramjet / Scramjet - Химические ракеты Двигатели внутреннего сгорания с нестационарным потоком: - Непредмешанный заряд - Предварительный заряд - Стратифицированный заряд 10.Двигатели внутреннего сгорания 5 AER 1304 ÖLG

6 10. Двигатели внутреннего сгорания 6 AER 1304 ÖLG

7 Газотурбинные двигатели Авиационные реактивные двигатели: - Турбореактивные двигатели: все реактивные двигатели, кроме работ, необходимых для турбины, приводящей в действие компрессор. - Турбореактивные двухконтурные двигатели: парреактивный, приводной для привода вентилятора (в дополнение к компрессору). Вентилятор пропускает примерно в 5-6 раз больше воздуха вокруг сердечника двигателя. 10. Двигатели внутреннего сгорания 7 AER 1304 ÖLG

8 - Турбовинтовые двигатели: такие же, как и турбовентиляторные, но скорость воздушного потока через воздушный винт может в 25–30 раз превышать воздушный поток через основной двигатель.Турбовальные двигатели: - Промышленные стационарные двигатели, используемые для производства электроэнергии: выработка электроэнергии; управлять насосом. - Для вращения винта (вертолета) или гребного винта корабля. 10. Двигатели внутреннего сгорания 8 AER 1304 ÖLG

9 10. Двигатели внутреннего сгорания 9 AER 1304 ÖLG

10 10. Двигатели внутреннего сгорания 10 AER 1304 ÖLG

11 Турбовальный двигатель. 10. Двигатели внутреннего сгорания 11 AER 1304 ÖLG

12 10.Двигатели внутреннего сгорания 12 AER 1304 ÖLG

13 Турбореактивный двигатель. 10. Двигатели внутреннего сгорания 13 AER 1304 ÖLG

14 Полное внутреннее давление турбореактивного двигателя. 10. Двигатели внутреннего сгорания 14 AER 1304 ÖLG

15 Историческая тенденция изменения степени сжатия двигателя. 10. Двигатели внутреннего сгорания 15 AER 1304 ÖLG

16 Исторический тренд температуры на входе в турбину.10. Двигатели внутреннего сгорания 16 AER 1304 ÖLG

17 Три основных типа камер сгорания. 10. Двигатели внутреннего сгорания 17 AER 1304 ÖLG

18 Многоканальная камера сгорания. 10. Двигатели внутреннего сгорания 18 AER 1304 ÖLG

19 Кольцевая камера сгорания. 10. Двигатели внутреннего сгорания 19 AER 1304 ÖLG

20 Схема турбореактивного двигателя с форсажной камерой.10. Двигатели внутреннего сгорания 20 AER 1304 ÖLG

21 Сжигание в газовых турбинах: спрей (жидкое топливо) Зажигание Стабильность пламени - шум сгорания Распространение пламени Образование загрязняющих веществ [CO, несгоревшие углеводороды, NO x, сажа] Теплопередача Охлаждение / разбавление 10. Двигатели внутреннего сгорания 21 AER 1304 ÖLG

22 Текущие проблемы сгорания в газовых турбинах: контроль NO x Шум сгорания (гудение) Образование сажи (образование углерода) Точность CFD кодов сгорания Текущие изменения в области горения в газовых турбинах: сжигание с предварительно приготовленной обедненной смесью [NO x контроль, сажа] Обогащение водородом [NO x, эффективность] Более высокие коэффициенты давления [эффективность] 10.Двигатели внутреннего сгорания 22 AER 1304 ÖLG

23 ПВРД Самый простой из воздушно-реактивных двигателей. Диффузор, камера сгорания и выхлопное сопло. Наиболее подходит для сверхзвуковых скоростей. Сжатие ударным эффектом. Впрыск топлива в сжатый поток - пламегасители для стабилизации пламени. Газы сгорания расширяются в сопле с высокой скоростью. 10. Двигатели внутреннего сгорания 23 AER 1304 ÖLG

24 Принципиальная схема ПВРД.10. Двигатели внутреннего сгорания 24 AER 1304 ÖLG

25 Химические ракеты Ракеты на жидком топливе: Топливо и окислитель хранятся в отдельных тонкостенных баках при низком давлении. Перед сгоранием они проходят через турбинные насосы и попадают в камеру сгорания, где сгорают под высоким давлением. Ракеты на твердом топливе: топливный блок Entrire (состоящий из предварительно смешанного топлива и окислителя), хранящийся в камере сгорания. Горение происходит от поверхности частицы пороха со скоростью, которая зависит от давления, температуры и геометрии поверхности горения.10. Двигатели внутреннего сгорания 25 AER 1304 ÖLG

26 Принципиальная схема ракетного двигателя. 10. Двигатели внутреннего сгорания 26 AER 1304 ÖLG

27 Неравновесное расширение: равновесный состав зависит от давления и температуры, для данного топлива и Φ и может включать большие количества диссоциированного материала. В выхлопном сопле диссоциированные соединения имеют тенденцию к рекомбинации из-за падения температуры. Эти экзотермические реакции рекомбинации могут действовать как источник тепла в потоке.На следующем рисунке показана относительная важность энергий диссоциации до и после равновесного расширения стехиометрической смеси H 2 -O 2. 10. Двигатели внутреннего сгорания 27 AER 1304 ÖLG

28 10. Двигатели внутреннего сгорания 28 AER 1304 ÖLG

29 Чтобы продукты сохраняли свой равновесный состав при расширении, реакции рекомбинации должны быть достаточно быстрыми, чтобы идти в ногу с быстрым расширением. Поскольку процесс расширения происходит очень быстро, это условие не всегда выполняется.В пределе, т.е. τ рекомб >> τ экспанс, мы имеем замороженный поток с постоянным составом. Для некоторых порохов разница между равновесным и замороженным потоком может быть заметной. 10. Двигатели внутреннего сгорания 29 AER 1304 ÖLG

30 Текущие проблемы сгорания в ракетах: нестабильности горения: И жидкостные, и твердотопливные ракеты подвержены нестабильности сгорания в виде больших колебаний давления в камере, которые могут привести к отказу двигателя.Низкочастотные колебания (около 100 Гц) из-за связи между системой горения и подачи. Высокочастотные колебания (несколько тысяч Гц): термоакустика, то есть связь между горением и акустикой (и полем потока). 10. Двигатели внутреннего сгорания 30 AER 1304 ÖLG

31 В твердотопливных ракетах скорость горения очень чувствительна к давлению и скорости. Выделение энергии и скорость или характер давления топлива, вызывающие неоднородность, могут взаимодействовать, создавая устойчивые колебания.Такие колебания приводят к высокой скорости эрозионного горения, которое может изменить геометрию камеры для стабильного горения или может привести к отказу двигателя. Скорость горения твердого топлива Распыление / перемешивание в жидкостных ракетах. 10. Двигатели внутреннего сгорания 31 AER 1304 ÖLG

32 Назначение Посетите и прочтите: - Как работают автомобильные двигатели? - Как работают газотурбинные двигатели? - Как работают ракеты? По ссылкам посетите сайты, связанные с газовыми турбинами и ракетными двигателями. 10. Двигатели внутреннего сгорания 32 AER 1304 ÖLG

33 Двигатели с искровым зажиганием и двигателем с воспламенением от сжатия В наше формальное определение двигателей внутреннего сгорания мы включили в эту классификацию газовые турбины и ракеты.Однако обычно термин двигатели внутреннего сгорания используется для двигателей с искровым зажиганием и с воспламенением от сжатия. Двигатели с искровым зажиганием (двигатели с циклом Отто, или бензиновые двигатели, или бензиновые двигатели, хотя могут использоваться и другие виды топлива). Двигатели с воспламенением от сжатия (дизельные двигатели и двигатели HCCI). 10. Двигатели внутреннего сгорания 33 AER 1304 ÖLG

34 10. Двигатели внутреннего сгорания 34 AER 1304 ÖLG

35 Свеча зажигания Передняя часть пламени Топливная форсунка Пламя распыления топлива Топливо + воздушная смесь Только воздух Предварительно смешанный заряд (бензин) Непредмешанный заряд (дизельное топливо) Схемы двигателей SI и CI.10. Двигатели внутреннего сгорания 35 AER 1304 ÖLG

36 Принципиальная схема бензинового двигателя. 10. Двигатели внутреннего сгорания 36 AER 1304 ÖLG

37 Рабочий цикл четырехтактного двигателя SI. 10. Двигатели внутреннего сгорания 37 AER 1304 ÖLG

38 Четырехтактный двигатель SI: большинство поршневых двигателей работают с четырехтактным циклом. Каждому цилиндру требуется четыре хода поршня - два оборота коленчатого вала - для завершения последовательности событий, которые производят один рабочий ход.Оба двигателя SI и CI используют этот цикл. Четыре такта: впуск, сжатие, мощность и выпуск. 10. Двигатели внутреннего сгорания 38 AER 1304 ÖLG

39 Такт всасывания: начинается с поршня в точке TC и заканчивается поршнем BC, который втягивает свежую смесь в цилиндр. Для увеличения массы впускной клапан открывается незадолго до начала хода и закрывается после его завершения. Такт сжатия: оба клапана закрываются, и смесь внутри цилиндра сжимается до небольшой части своего первоначального объема.Ближе к концу такта сжатия начинается сгорание, и давление в цилиндре повышается быстрее. 10. Двигатели внутреннего сгорания 39 AER 1304 ÖLG

40 Рабочий ход: или ход расширения: - начинается с поршня в точке TC и заканчивается в точке BC, когда высокотемпературные газы высокого давления толкают поршень вниз и заставляют кривошип повернуть. - Во время рабочего хода поршня выполняет примерно в пять раз больше работы, чем поршень во время сжатия.- Когда поршень приближается к BC, выпускной клапан открывается, чтобы запустить процесс выпуска и снизить давление в цилиндре до уровня, близкого к давлению выпуска. 10. Двигатели внутреннего сгорания 40 AER 1304 ÖLG

41 Такт выпуска: когда оставшиеся сгоревшие газы выходят из цилиндра: - во-первых, потому что давление в цилиндре может быть значительно выше, чем давление выхлопа; - затем, когда они сметаются поршнем, движущимся в сторону TC. - Когда поршень приближается к TC, впускной клапан открывается.Сразу после TC выпускной клапан закрывается, и цикл начинается снова. 10. Двигатели внутреннего сгорания 41 AER 1304 ÖLG

42 Двухтактный двигатель SI: четырехтактный цикл требует для каждого цилиндра двигателя двух оборотов коленчатого вала на каждый рабочий ход. Чтобы получить более высокую мощность при данном размере двигателя и более простую конструкцию клапана, был разработан двухтактный цикл. Двухтактный цикл (как четырехтактный) применим как к двигателям SI, так и к двигателям CI. Это два хода: сжатие и сила или расширение.10. Двигатели внутреннего сгорания 42 AER 1304 ÖLG

43 Рабочий цикл двухтактного двигателя. 10. Двигатели внутреннего сгорания 43 AER 1304 ÖLG

44 Такт сжатия: начинается с закрытия впускного и выпускного отверстий, затем происходит сжатие содержимого цилиндра и всасывание свежего заряда в картер. По мере приближения поршня к TC начинается сгорание. Мощность или ход расширения: аналогичен таковому в четырехтактном цикле до тех пор, пока поршень не приблизится к BC, когда сначала открываются выпускные отверстия, а затем впускные отверстия.Большая часть сгоревших газов выходит из цилиндра в процессе продувки выхлопных газов. Когда впускные отверстия открыты, свежий заряд, сжатый в картере, перетекает в цилиндр. 10. Двигатели внутреннего сгорания 44 AER 1304 ÖLG

45 Рабочий цикл четырехтактного двигателя CI. 10. Двигатели внутреннего сгорания 45 AER 1304 ÖLG

46 Рабочий цикл двигателя Ванкеля. 10. Двигатели внутреннего сгорания 46 AER 1304 ÖLG

47 Работа двигателя Ванкеля: роторный двигатель Ванкеля работает с четырехтактным циклом.Когда ротор делает один полный оборот, эксцентриковый вал совершает три оборота. Когда ротор делает один оборот, каждая камера производит один рабочий ход. На каждый оборот ротора приходится три импульса мощности; таким образом, на каждый оборот эксцентрикового вала приходится один импульс мощности. 10. Двигатели внутреннего сгорания 47 AER 1304 ÖLG

48 Сжигание в двигателях внутреннего сгорания: подготовка смеси: - Карбурация (больше не используется на рынках Северной Америки). - Портовый впрыск - топливо впрыскивается в воздушный поток непосредственно перед впускным клапаном.- Прямой впрыск - топливо впрыскивается в цилиндр (DISI). Зажигание: свеча зажигания. Развитие ядра пламени и распространение пламени. 10. Двигатели внутреннего сгорания 48 AER 1304 ÖLG

49 Детонация двигателя: -фелоктановое число - степень сжатия двигателя Образование загрязняющих веществ: - оксиды азота, NO x - диоксид углерода, CO - несгоревшие углеводороды, углеводороды Обработка выхлопных газов: - Каталитические нейтрализаторы 10. Двигатели внутреннего сгорания 49 AER 1304 ÖLG

50 Сгоревшее Несгоревшее Поперечное сечение камеры сгорания бензинового двигателя.10. Двигатели внутреннего сгорания 50 AER 1304 ÖLG

51 Сгорание в двигателе CI: прямой впрыск в цилиндр (большие двигатели). Форкамерный впрыск (двигатели легковых автомобилей). Распылительное горение: - Компрессионное зажигание - Задержка воспламенения - Дизельцетановое число Образование загрязняющих веществ: -NO x, CO, HC, сажа (твердые частицы) Уловитель твердых частиц и катализатор. 10. Двигатели внутреннего сгорания 51 AER 1304 ÖLG

52 10. Двигатели внутреннего сгорания 52 AER 1304 ÖLG

53 10.Двигатели внутреннего сгорания 53 AER 1304 ÖLG

54 Тепловыделение при сгорании дизельного двигателя. 10. Двигатели внутреннего сгорания 54 AER 1304 ÖLG

55 Конструкция впускного отверстия для воздуха Конструкция камеры Турбонаддув Движение воздуха / турбулентность в камере сгорания ПРОЦЕСС СМЕШИВАНИЯ ТОПЛИВА и ВОЗДУХА ЗАЖИГАНИЕ ЧАСТИЧНО «ПРЕДВАРИТЕЛЬНОЕ» ПРОЦЕСС СГОРАНИЯ СГОРАНИЯ, ЧАСТИЧНО НЕПРЕРЫВНОЕ РАСПЫЛЕНИЕ ГАЗА Свойства Время впрыска EGR Конструкция системы впрыска Продолжительность впрыска Скорость впрыска ТЕПЛОСДАЧА ОБМЕН ИЗЛУЧЕНИЕМ МЕЖДУ ГОРЯЧИМИ И ХОЛОДНЫМИ КАРМАНАМИ NO X & SOOT FORMATION SOOT OXIDATION Процессы сгорания дизельного двигателя.10. Двигатели внутреннего сгорания 55 AER 1304 ÖLG

56 Дизельный двигатель (воспламенение от сжатия) топливная форсунка Что такое HCCI? Бензиновый двигатель (искровое зажигание) Свеча зажигания Двигатель HCCI (зажигание от сжатия с однородным зарядом) область горячего пламени: оксиды азота + дым Область горячего пламени: оксиды азота Низкотемпературное сгорание со сверхнизкими выбросами 5-9 августа 2001 г. Мастерская DEER Caterpillar Engine Research Diesel & Emissions Технология

Принцип работы -MOS-датчик газа

Резюме

ШАГ1

В чистом воздухе донорные электроны в диоксиде олова притягиваются к кислороду, который адсорбируется на поверхности чувствительного материала, предотвращая прохождение электрического тока.

ШАГ2

В присутствии восстановительных газов поверхностная плотность адсорбированного кислорода уменьшается, поскольку он вступает в реакцию с восстановительными газами. Затем электроны высвобождаются в диоксид олова, позволяя току свободно течь через датчик.

Принцип действия

Когда полупроводниковые частицы (обычно диоксид олова) нагреваются на воздухе при высокой температуре, кислород адсорбируется на поверхности частицы за счет захвата свободных электронов.Образованный таким образом обедненный слой в значительной степени зависит от радиуса используемых полупроводниковых частиц. Если он настолько мал, как обычно используется в датчиках газа (десятки нанометров), истощение может распространяться на всю площадь каждой частицы (уменьшение объема, высокая чувствительность). С другой стороны, если размер намного больше, истощение обычно происходит на периферии каждой частицы (региональное истощение, низкая чувствительность).

На рис. 1 показано, как структура энергетических зон и распределение электронов проводимости изменяются с увеличением парциального давления кислорода от нуля (состояние плоской зоны) до состояния I (региональное обеднение), II (граница) и III (уменьшение объема).До достижения границы адсорбционное равновесие достигается за счет увеличения толщины обедненного слоя. Однако позже (истощение объема) уровень Ферми понижается на p кТл при переходе от II к III, в то время как толщина слоя остается постоянной.

х : Расстояние в радиальном направлении
qV (x) : Потенциальная энергия
: Радиус частицы
[O - ] : Концентрация адсорбированного кислорода
E C : Энергия зоны проводимости
E F : Уровень Ферми
p kT : Сдвиг уровня Ферми
[e] : Концентрация электронов
N д : Плотность доноров

Рисунок 1.Структура энергетических зон (вверху) и распределение электронов проводимости (внизу) для полупроводниковой частицы, что коррелирует с увеличением концентрации адсорбированного кислорода

На этом этапе два важных уравнения выводятся теоретически для сенсорного устройства, состоящего из сферических частиц, следующим образом.

[e] S = N d exp {- (1/6) ( a / L D ) 2 - p } ... (1)

R / R 0 = N d / [e] S ... (2)

Здесь [e] S - поверхностная концентрация электронов частиц, а L D - длина Дебая. R

Поршневые кольца

для уплотнения между поршнем и гильзами в судовом дизельном двигателе

Поршневые кольца для уплотнения между поршнем и гильзами в судовом дизельном двигателе Главная || Дизельные двигатели || Котлы || Системы питания || Паровые турбины || Обработка топлива || Насосы || Охлаждение ||

Поршневые кольца для уплотнения между поршнем и гильзами в судовом дизельном двигателе

Дизельный двигатель - это тип двигателя внутреннего сгорания, который воспламеняет топливо, впрыскивая его в горячий воздух под высоким давлением при сгорании камера.

Как и все двигатели внутреннего сгорания, дизель двигатель работает с фиксированной последовательностью событий, которая может быть достигнута четыре или два хода, ход поршня между его крайними точками. Каждый удар выполняется за половину оборот коленчатого вала.

align = "left"> align = "left"> align = "left"> Эффективность двигателя зависит от эффективного уплотнения между поршнем и гильзами.Утечка снизит давление сжатия и потеряет мощность. Поршневые кольца уплотняют газовое пространство, расширяясь наружу из-за давления газа, действующего за ними. Они также распространяют смазочное масло вверх и вниз по гильзе цилиндра и передают тепло стенкам гильзы. На поршне установлено от трех до шести силовых или компрессионных колец, количество которых зависит от погоды, в которой двигатель работает в двух- или четырехтактном цикле.

Положение верхнего кольца регулируется рабочей температурой и обрезкой выпускного или продувочного порта.В двухтактных двигателях для обрезки портов обычно требуется более высокое положение кольца, чем в четырехтактных двигателях. Основная функция поршневых колец:

i) для обеспечения газового уплотнения компрессионных колец и предотвращения чрезмерного повышения давления в картере, которое приведет к чрезмерному расходу смазочного масла в двигателе с мокрым картером и риску взрыва в случае сухого картера. Установка

ii) Действует как скребок или маслораспределитель вокруг стенки гильзы, что может произойти, если смазка может вытечь через компрессионные кольца и сгореть вместе с мазутом

Рис: Уплотняющая поверхность поршневого кольца

Для обеспечения адекватной смазки рабочая температура не должна превышать 200 ° C, а для этого необходимо, чтобы кольца располагались как можно ниже по поршню.Смазка колец важна, так как она необходима для уменьшения трения и износа для улучшения газового уплотнения. Кольцо обычно вращается на поршне из-за колебаний давления газа. Типичная скорость перемещения составляет 13 мм за цикл.

Диаметр поршневых колец в свободном состоянии немного больше диаметра отверстия цилиндра. Следовательно, когда кольцо вдавливается в гильзу, оно прижимается к стенке цилиндра и стремится запечатать ее.

Это начальное уплотняющее действие значительно улучшается за счет давления сжатых или горючих газов на верхнюю часть кольца, заставляя кольцо опускаться к нижней стороне канавок поршня.Это оставляет зазор вверху, который позволяет давлению газа перемещаться за заднюю часть кольца и прижимать его к стенке гильзы цилиндра, обеспечивая более плотный контакт, таким образом улучшая уплотнение.

Имеются три важных зазора: -

i ) Боковой или осевой зазор
ii) Стыковые зазоры или зазоры
iii) Задние зазоры

Ниже приведены более подробные инструкции по технике безопасности при обращении с поршнями судовых дизельных двигателей :

  1. Конструкция 4-тактного поршня

  2. Для двигателей средней и высокой частоты вращения важен вес материала для снижения нагрузки на вращающиеся части.Высокая теплопроводность алюминиевых сплавов в сочетании с малым весом делают этот материал идеальным. Для поддержания приемлемого уровня тепловых напряжений охлаждающие трубы могут быть отлиты для предотвращения деформации.
    Подробнее .....
  3. Метод охлаждения поршневого масла - основной принцип

  4. Хладагент, используемый для отвода тепла от поршня, может быть пресной водой, дистиллированной водой или смазочным маслом. Вода обладает способностью отводить больше тепла, чем смазочное масло (удельная теплоемкость воды около 4 и смазочного масла 2, а разница температур 14 ° C для воды и 10 ° C для смазочного масла). .

    Подробнее .....

  5. Функция поршневого кольца в судовом дизельном двигателе

  6. Эффективность двигателя зависит от эффективного уплотнения между поршнем и гильзами. Утечка снизит давление сжатия и потеряет мощность. Поршневые кольца уплотняют газовое пространство, расширяясь наружу из-за давления газа, действующего за ними. Они также распределяют смазочное масло вверх и вниз по гильзе цилиндра и передают тепло стенкам гильзы На поршень устанавливаются от трех до шести силовых или компрессионных колец, количество которых зависит от погоды, в которой двигатель работает в 2-тактном или 4-тактном цикле. .

    Подробнее .....

  7. Требования к поршневому кольцу

  8. Поршень образует нижнюю часть камеры сгорания в судовом дизельном двигателе. Он герметизирует цилиндр и передает давление газа на шатун.

    Подробнее .....

  9. Особенности конструкции поршня

  10. Поршень образует нижнюю часть камеры сгорания в судовом дизельном двигателе. Он герметизирует цилиндр и передает давление газа на шатун.

    Подробнее .....

    Неисправности поршня, которых следует избегать
    i) Заедание поршня; слишком часто происходит взрыв смеси смазочного масла и воздуха в картере.ii) Растрескивание днища поршня и боковых стенок из-за циклического изменения напряжения давления, накладываемого на напряжение из-за температурного градиента.

    Подробнее .....

  11. Обнаружение перегрева поршня

  12. Наиболее частые причины перегрева поршня: i) Неадекватная циркуляция охлаждающей среды или недостаточная подача. ii) Чрезмерные отложения в охлаждающем пространстве (окалина или нагар).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *