Фото диодного моста: Схема диодного моста фото — Морской флот

Содержание

Схема диодного моста фото - Морской флот

Схема диодного моста

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.


Схема диодного моста

Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

В железе это выглядит следующим образом.


Диодный мост из отдельных диодов S1J37

Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «

схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

Как работает диодный мост?

Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

Обозначение диодного моста на схеме.

На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

Диодная сборка.

Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком

«

». Иногда могут иметь обозначение AC (Alternating Current – переменный ток).

Оставшиеся два вывода имеют обозначения « + » и « – ». Это выход выпрямленного, пульсирующего напряжения (тока).

Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

В реальности сборка диодного моста может выглядеть вот так.


Диодная сборка KBL02 на печатной плате


Диодная сборка RS607 на плате компьютерного блока питания

А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.


Условное изображение диодного моста и диодной сборки

Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.

Где применяется схема диодного моста?

Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

В данной статье мы постараемся дать ответ, что же это, диодный мост схема его и каково предназначение. Как сразу слышно, в данном термине присутствует слово «диод». И действительно, главный компонент диодного моста это диоды, для которых основное свойство пропускать напряжение только в одном направлении. Именно по этой характеристике определяют работоспособность диодов.

Предназначение диодного моста — преобразовывать напряжение переменное в напряжение постоянное.

Схема диодного моста

Схема диодного моста состоит из правильно соединенных четырех диодов, а чтобы эта схема была работоспособной, к ней нужно правильно подключить переменное напряжение.

На схеме, как и на корпусе моста две точки для подачи переменного напряжения обозначены значком «

». А с двух других проводов или выходов, плюса и минуса, снимается постоянное напряжение.

Теоретически, сделать из переменного напряжения постоянное можно и одним диодом, но для практики такое выпрямление не желательно. Как известно диод пропускает напряжение, только превышающее ноль, в противоположном случае диод заперт, а переменное напряжение изменяет свою величину в течение времени. Вроде бы все понятно.

Но получается, что при таком методе получения из переменного напряжения постоянный ток, по этой «замечательной» схеме, диод оставляет только положительную полуволну, а отрицательную срезает. Вместе с ней он просто срезает половину мощности тока переменного напряжения. Такая потеря мощности — главный недостаток выпрямления тока одним диодом.

Вышеописанную ситуацию исправляет диодный мост схема которого разрабатывалась специально для того, чтобы отрицательную полуволну перевернуть. Получиться вторая положительная полуволна и вся мощность электрического тока будет сохранена. В результате диодный мост подает постоянный ток, с напряжением, пульсирующем в два раза большей частотой, чем частота сети переменного тока.

Уверен, схема в особом описании не нуждается, главное помнить, куда подключать переменное напряжение, а откуда получают постоянный ток. Теперь давайте посмотрим на работу диода и диодного моста на практике. На корпусе диода, практически любого производителя, катод помечен точкой или полоской. Для безопасности экспериментов используем трансформатор, выдающий двенадцать вольт.

На осциллографе видно, что максимальная амплитуда 16 с половиной вольт, следовательно, простые расчеты (делим на корень из двух максимальное амплитудное значение) говорят, что действующее напряжение имеет значение 11.8 В.

Теперь припаяем к проводу обмотки (вторичной, естественно) трансформатора диод и измеряем осциллографом. Видно, как диод срезал нижнюю, отрицательную часть графика напряжения. Соответственно, потерялась и половина мощности.

Теперь возьмем еще три таких же диода и собираем диодный мост. Подключаем к обмотке трансформатора диодный мост, там, где вход для переменного тока, а с двух оставшихся точек снимаем щупами прибора постоянное напряжение. Смотрим на осциллограф и видим на экране пульсирующее напряжение, но без потери мощности.

Как сделать диодный мост видео

Для того чтобы не возиться с диодами и пайкой, промышленность выпускает готовые диодные мосты в одном корпусе с четырьмя контактами, отечественные — побольше, а импортные покомпактнее. На диодных мостах советского производства промаркированы и контакты постоянного тока, и контакты для переменного напряжения.

Если подключить импортный диодный мост к переменному напряжению и осциллографу, вы увидите, что эта радиодеталь отлично работает, выдавая пульсирующий постоянный ток. Сам диодный мост если проверять, то только прозвонив каждый из четырех диодов.

Итак, теперь вы знаете для чего нужен в радиоэлектронике диодный мост схема и принцип действия которого описаны в данной статье. Следует отметить, что это весьма популярная деталь, широко применяемая в самой разнообразной радиоаппаратуре, подключаемой к электрической сети. Магнитофон, телевизор, зарядное устройство для мобилки — везде используется диодный мост.

Диодный мост

– это мостовая схема соединения диодов, для выпрямления переменного тока в постоянный.

Диодные мосты являются простейшими и самыми распространенными выпрямителями, их используют в радиотехнике, электронике, автомобилях и в других сферах, там, где требуется получение пульсирующего постоянного напряжения.

Для лучшего понимания принципа работы диодного моста, рассмотрим работу одного диода:

Диод как полупроводниковый элемент, имеет один p-n переход, что дает ему возможность проводить ток только в одном направлении. Ток через диод начинает проходить при подключении анода к положительному, а катода к отрицательному полюсу источника. В обратной ситуации диод запирается, и ток через него не протекает.

Схема и принцип работы диодного моста

На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения 220В. В качестве нагрузки подключен резистор Rн.

Переменное напряжение на входе меняется не только по мгновенному значению, но и по знаку. При прохождении положительной полуволны (от 0 до π) к анодам диодов VD2 и VD4 приложено положительное напряжение относительно их катодов, что вызывает прохождение тока Iн через диоды и нагрузку Rн. В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.

В момент, когда входное напряжение пересекает точку π, оно меняет свой знак. В этом случае диоды VD1 и VD3 начинают пропускать ток, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. Это продолжается до точки 2π, где переменное входное напряжение снова меняет свой знак и весь процесс повторяется заново.

Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, т.е. является постоянным.

Но если обратить внимание на график, то можно заметить, что напряжение на выходе является не постоянным, а пульсирующим. Соответственно, выходной ток, появляющийся от такого напряжения и протекающий через активную нагрузку, будет также – пульсирующим. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста. Напряжение на конденсаторе, согласно закону коммутации, не может измениться мгновенно, а значит в данном случае, выходное напряжение примет более сглаженную форму.

⚡ Диодный мост: схема, особенности, назначение

Подавляющее большинство электронной аппаратуры работает на постоянном токе. А источником напряжения может быть как гальванический элемент, так и городская сеть переменного ток 220 В. Вот и приходится переменный ток преобразовывать в постоянный, то есть – «выпрямлять». Для этой цели служит устройство под названием выпрямитель. Это может быть готовый промышленный компонент, а может быть электронная схема, собранная из отдельных, более простых, элементов. Сегодня разберём, что же такое диодный мост, зачем он нужен и как работает.

Содержание статьи

Что такое диодный мост и зачем нужен

Переменный ток в бытовой электросети по синусоидальному закону меняет свою полярность 50 раз в секунду. Диодный мост, собранный из четырёх диодов, 25 раз в секунду пропускает одну положительную полуволну. То есть, превращает ток переменного знака амплитудой, имеющей колебательный характер, в ток одного знака, но с удвоенной частотой колебаний амплитуды. Если потребителя это не устраивает, то после выпрямителя ставится сглаживающий фильтр. Ниже представлена принципиальная электрическая схема диодного моста-выпрямителя.

ФОТО: go-radio.ruСхема диодного моста

Диодный мост можно собрать из отдельных конструктивно законченных диодов, но можно в промышленных условиях сразу изготовить из кристаллов в виде цельного изделия, пригодного к дальнейшей установке в электронную схему. Такая диодная сборка имеет технологические преимущества над предыдущим вариантом. Она компактней, монтаж моста надёжней, стоимость существенно ниже, чем у четырёх диодов.

ФОТО: youtube.comОдин из вариантов исполнения диодаФОТО: youtube.comДиодный мост, собранный из четырёх диодовФОТО: youtube.comДиодный мост в виде одного изделия

Принцип работы

Диодный мост представляет собой электрическую схему из четырёх диодов. Схема построена таким образом, что в каждый полупериод переменного тока соответствующая полуволна проходит по одному плечу моста, в другой полупериод другая полуволна проходит по другому плечу. Но в точках моста, где диоды соединены одинаковой полярностью, знак тока всегда один и тот же.

Основные характеристики

И отдельные диоды, и промышленные диодные сборки описываются стандартным набором технических характеристик:

  • это напряжение обратной полярности, которое можно, не опасаясь пробоя, приложить к устройству;
  • величина тока обратной полярности, который безопасно можно пропустить по устройству;
  • длительность протекания тока по устройству без его перегрева;
  • максимальная температура устройства, при которой оно сохраняет свою работоспособность;
  • максимальная допустимая частота проходящего тока.
ФОТО: go-radio.ruВариант изображения моста на принципиальной электрической схемеФОТО: go-radio.ruСборка «Диодный мост» на печатной плате

Схема диодного моста

И самодельный мост, и промышленная диодная сборка изготавливаются по одной и той же схеме. Два диода последовательно спаиваются разноимёнными полюсами. Потом две пары спаивают одноимёнными полюсами на концах этих пар. К точкам соединения разноимённых полюсов подключается источник переменного напряжения, к точкам соединения одноимённых полюсов подключают нагрузку.

Диодные мосты применяются для выпрямления однофазного и трёхфазного тока.

Однофазный выпрямитель

Этот выпрямитель применяется в бытовой электронной технике чаще всего, так как бытовая электросеть однофазная. Как правило, пульсации выпрямленного тока с частотой 100 Гц не годятся для нормальной работы аппаратуры, появится неприятный звуковой фон – гудение. После выпрямителя следует ставить качественный сглаживающий фильтр из катушки индуктивности (последовательно) и конденсатора достаточной ёмкости (параллельно выходу выпрямителя).

ФОТО: electroinfo.netСхема однофазного моста

Трёхфазный выпрямитель

Трёхфазные выпрямители на выходе дают меньшую частоту пульсаций, чем однофазные. Понижаются требования к сглаживающим фильтрам.

Схемы выпрямителей для трёхфазных цепей бывают однотактные и двухтактные. В однотактной схеме к каждой обмотке трёхфазного трансформатора подключается минус диода. Свободные концы каждой из трёх катушек соединяются в общую точку.  Плюсы диодов тоже соединяются в одну точку. Нагрузка подключается между этими двумя общими точками.

ФОТО: electricalschool.infoПринципиальная схема однотактного трёхфазного моста-выпрямителя

Если требуется выходное напряжение более высокого значения, а пульсации поменьше, то собирается двухтактна схема. Собираются три пары диодов, в каждой паре плюсовой вывод одного подключается к минусу другого.  Плюсовые выводы трёх пар тоже собираются в одну точку, так же объединяются минусы диодов, а общие точки в каждой паре диодов подключаются к свободным концам трёх обмоток вторичной обмотки трансформатора. Нагрузка подключается между общим минусом и плюсом сборки. В такой схеме выходное напряжение несколько выше, а пульсации намного меньше. Иногда можно обойтись без сглаживающего фильтра. Такая схема имеет название «Мостовой трёхфазный выпрямитель Ларионова».

ФОТО: electricalschool.infoПринципиальная схема двухтактного трёхфазного моста-выпрямителяФОТО: electricalschool.infoСборка «Трёхфазный диодный мост»

Где применяется схема диодного моста

Кстати, автомобильный генератор тоже выдаёт переменный ток, а всё электрооборудование автомобиля работает на постоянном токе. После генератора установлен мощный диодный выпрямитель. Мостовая схема диодного выпрямителя широко применяется в бытовой радиоаппаратуре – радиоприёмниках, телевизорах, всевозможных магнитофонах и проигрывателях. Диодные мосты ставят и в трансформаторных, и в импульсных блоках питания.

Как сделать диодный мост своими руками

При необходимости и при наличии нужных диодов и паяльника нетрудно собрать диодный мост своими руками.

Что нужно для работы

Для работы нужно подготовить рабочее место с розеткой для паяльника, паяльник с подставкой, припой, канифоль, пинцет, маленькие кусачки. Конечно, нужны диоды с нужными характеристиками. При большом желании мост можно собрать на печатной плате с готовыми дорожками.

Инструкция по изготовлению

ИллюстрацияОписание действия

ФОТО: youtube.com

Подготовка рабочего места

ФОТО: youtube.com

Пайка схемы

ФОТО: youtube.com

Приборная проверка собранной схемы

ФОТО: youtube.com

Проверка схемы под нагрузкой с конденсатором фильтра

Проверка на работоспособность

Первая проверка всегда визуальная. Проверяется, те ли детали установлены, правильно ли собрана схема, качество пайки. Затем собирается проверочная схема с источником и измерительным прибором. И если этот этап прошёл успешно, то можно подключить нагрузку и провести окончательную проверку результатов своей работы.

Заключение

Работа с электроникой – это очень интересное занятие. И когда результат собственной деятельности начинает успешно функционировать, человек испытывает огромное удовлетворение.

Предыдущая

ОсвещениеПодключение светодиодной ленты: как правильно выполнить, нюансы монтажа

Следующая

ОсвещениеСекреты многоуровневого освещения помещений

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Как проверить диодный мост тестером (фото, видео)

Знать, как проверить диодный мост тестером необходимо для избежания множества последствий при его поломке: прекращение зарядки аккумулятора, сгорание обмотки генератора, разрядку аккумулятора, сгорание предохранителей, пропадание света и сигналов, вплоть до невозможности работы зажигания, плюс самого двигателя.

При разборке генератора мост в сборе извлекается из крышки, противоположной стороне со шкивом. Поскольку генератор интенсивно охлаждается, то в его крышках приходится делать большие отверстия для воздуха. Это приводит к опасности коротких замыканий деталей моста при попадании даже мелких металлических предметов, которые случайно могут попасть туда при обслуживании.

Схема и работа моста

Прежде, чем проверять мост, необходимо ознакомиться с его устройством, а также принципами работы. Это необходимое условие для такой диагностики.

Схема диодного моста

Шины, в которые запрессованы корпуса диодов, выполняют также функцию теплоотвода, так как они греются от проходящего тока. Обратите внимание: плюсовая шина крепится на изоляторах, она изолирована от корпуса генератора! Как полупроводниковый прибор, диод выходит из строя при температурах свыше 100°C. Наступает тепловой пробой. Они также не в состоянии выдерживать большие обратные напряжения. D1, D2, D3, расположены на общей шине, изготовленной из алюминиевых полуколец. Это плюсовая клемма генератора. Аналогично сделана шина с диодами D4, D5, D6. Это минус, он соединяется с корпусом генератора. Корпуса запрессованы в шины. Для плюсовой шины все диоды имеют исполнение, при котором на его корпус подключен катод. Для минусовой шины – это анод. Сами же диоды при этом полностью идентичны друг другу. Через стеклянный изолятор из его корпуса выводится его второй электрод-штырек и сваривается, или запаивается в схему.

Диод открывается прямым приложенным напряжением: к аноду должен быть приложен плюс, а на катод минус цепи. В это время через диод протекает прямой ток, который может быть достаточно большим. Диод запирается обратным приложенным напряжением: анод соединяется с минусом, а катод – с плюсом. В это время через него протекает очень маленький обратный ток, которым в исправном устройстве можно пренебречь, считая, что его нет. На открытом падает небольшое напряжение, порядка 0.5-1.0 В, слабо зависящее от тока (потенциальный барьер p-n перехода).

Таким образом, диод представляет переключающее устройство, действующее как клапан для электрического тока. На этом основана как его работа, так и проверка.

Диодный мост автомобильного генератора является трехфазным выпрямителем (по числу фаз самого генератора). Для любого направления токов от обмоток генератора, всегда открывается один из устройств из каждой пары: D1-D4, D2-D5 и D3-D6, так, что ток цепи выходной клеммы генератора всегда течет только в одном направлении.

Проверка исправности

Для проверки потребуется тестер. Современный тестер – это цифровой мультиметр, который имеет на своем переключателе режимов работы положение для проверки диодов. Оно промаркировано символом диода. Для стрелочных тестеров переключатель необходимо установить в положение 1 кОм. Проследите, чтобы батарейка в тестере была исправной перед измерениями. Выполняемая проверка невозможна без источника питания, каким является батарейка тестера.

Проверка мультиметром

На рисунке показана проверка диодов плюсовой шины. Мост на рисунке использован от четырехфазного генератора, но это нисколько не меняет принципа проверки. Красный провод подключается на клемму V мультиметра, а черный на клемму COM. Подключим зажимом “крокодил” красный провод к шине. Черным проводом со щупом начнем проверять диоды плюсовой шины, подключаясь на их аноды. Какие именно диоды проверять, мы уже знаем из описания устройства. Те, корпуса которых запрессованы в верхнюю шину. Что должен показывать прибор для каждого? Возможные варианты в таблице ниже:

Затем подключим к крокодилу черный провод, а красным щупом проверяем аноды. На этот раз, исправные диоды будут заперты обратным напряжением прибора, а показания будут точно такими, как в первой строке таблицы, то есть, для данного подключения диод будет “оборван”.

Аналогичным способом проверяются диоды отрицательной шины. Только потребуется соответственно изменить подключения: начинаем с подключения к шине черного провода, а затем переходим к красному.

Если хотя бы одно устройство окажется оборванным или пробитым, или хотя бы в обе стороны будет давать низкие показания, он неисправен и нуждается в замене.

Альтернативный способ проверки

Есть еще один, вполне надежный способ проверки. Для него понадобится аккумулятор и лампочка, например, от сигнала поворотов или стопа. А также некоторое количество проводов. Схемы прозвонки лампочкой приводятся ниже.

Пробник из лампы с аккумулятором подключаем к шинам. Если нет ни одной пары одновременно пробитых диодов D1, D4, или D2, D5, или D3, D6, то лампочка гореть не будет.

Схема прозвонки лампочкой, вариант №1

Схема прозвонки лампочкой, вариант №2

Меняем схему подключения. Здесь желательно использовать предохранитель в цепи аккумулятора! Проверка D1 и D5 делается перекидыванием проводов на точках соединения диодов. Если лампа снова горит, то D1 и D5 также исправны. Другими словами, мы имитируем работу генератора. Аналогично проверяются все остальные диоды, как у трехфазного, так и у моста с любым числом фаз. При всех комбинациях подключения по схеме последнего рисунка лампочка должна гореть! Если она не горит, значит один из контактов из соответствующей пары оборван.

Не только при явном выходе из строя диодов, но и при тусклом горении лампы, при ее мерцании, при быстром нагреве диодов или шин, в которых они закреплены, а также при потемнении, обгорании или в случае заметных механических поломок диодов или сборки моста, то его надо признать неисправным и обязательно заменить.

Диодный мост схема

В данной статье мы постараемся дать ответ, что же это, диодный мост схема его и каково предназначение. Как сразу слышно, в данном термине присутствует слово «диод». И действительно, главный компонент диодного моста это диоды, для которых основное свойство пропускать напряжение только в одном направлении. Именно по этой характеристике определяют работоспособность диодов.

Предназначение диодного моста — преобразовывать напряжение переменное в напряжение постоянное.

Схема диодного моста

Схема диодного моста состоит из правильно соединенных четырех диодов, а чтобы эта схема была работоспособной, к ней нужно правильно подключить переменное напряжение.

На схеме, как и на корпусе моста две точки для подачи переменного напряжения обозначены значком «~». А с двух других проводов или выходов, плюса и минуса, снимается постоянное напряжение.

Теоретически, сделать из переменного напряжения постоянное можно и одним диодом, но для практики такое выпрямление не желательно. Как известно диод пропускает напряжение, только превышающее ноль, в противоположном случае диод заперт, а переменное напряжение изменяет свою величину в течение времени. Вроде бы все понятно.

Но получается, что при таком методе получения из переменного напряжения постоянный ток, по этой «замечательной» схеме, диод оставляет только положительную полуволну, а отрицательную срезает. Вместе с ней он просто срезает половину мощности тока переменного напряжения. Такая потеря мощности — главный недостаток выпрямления тока одним диодом.

Вышеописанную ситуацию исправляет диодный мост схема которого разрабатывалась специально для того, чтобы отрицательную полуволну перевернуть. Получиться вторая положительная полуволна и вся мощность электрического тока будет сохранена. В результате диодный мост подает постоянный ток, с напряжением, пульсирующем в два раза большей частотой, чем частота сети переменного тока.

Уверен, схема в особом описании не нуждается, главное помнить, куда подключать переменное напряжение, а откуда получают постоянный ток. Теперь давайте посмотрим на работу диода и диодного моста на практике. На корпусе диода, практически любого производителя, катод помечен точкой или полоской. Для безопасности экспериментов используем трансформатор, выдающий двенадцать вольт.

На осциллографе видно, что максимальная амплитуда 16 с половиной вольт, следовательно, простые расчеты (делим на корень из двух максимальное амплитудное значение) говорят, что действующее напряжение имеет значение 11.8 В.

Теперь припаяем к проводу обмотки (вторичной, естественно) трансформатора диод и измеряем осциллографом. Видно, как диод срезал нижнюю, отрицательную часть графика напряжения. Соответственно, потерялась и половина мощности.

Теперь возьмем еще три таких же диода и собираем диодный мост. Подключаем к обмотке трансформатора диодный мост, там, где вход для переменного тока, а с двух оставшихся точек снимаем щупами прибора постоянное напряжение. Смотрим на осциллограф и видим на экране пульсирующее напряжение, но без потери мощности.

Как сделать диодный мост видео

Для того чтобы не возиться с диодами и пайкой, промышленность выпускает готовые диодные мосты в одном корпусе с четырьмя контактами, отечественные — побольше, а импортные покомпактнее. На диодных мостах советского производства промаркированы и контакты постоянного тока, и контакты для переменного напряжения.

Если подключить импортный диодный мост к переменному напряжению и осциллографу, вы увидите, что эта радиодеталь отлично работает, выдавая пульсирующий постоянный ток. Сам диодный мост если проверять, то только прозвонив каждый из четырех диодов.

Итак, теперь вы знаете для чего нужен в радиоэлектронике диодный мост схема и принцип действия которого описаны в данной статье. Следует отметить, что это весьма популярная деталь, широко применяемая в самой разнообразной радиоаппаратуре, подключаемой к электрической сети. Магнитофон, телевизор, зарядное устройство для мобилки — везде используется диодный мост.

PXPCA005 Мост диодный HYUNDAI Porter генератора PMC - PXPCA005 37380-42001

PXPCA005 Мост диодный HYUNDAI Porter генератора PMC - PXPCA005 37380-42001 - фото, цена, описание, применимость. Купить в интернет-магазине AvtoAll.Ru Распечатать

Артикул: PXPCA005еще, артикулы доп.: 37380-42001скрыть

Код для заказа: 802847

Только самовывоз

Данные обновлены: 07.03.2021 в 01:30

Код для заказа 802847 Артикулы PXPCA005, 37380-42001 Производитель PARTS MALL Каталожная группа: ..Электрооборудование
Электрооборудование

Статьи о товаре

  • Мост диодный: постоянный ток в автомобиле 19 Апреля 2018

    На современных автомобилях используются трехфазные генераторы переменного тока, однако все автомобильные электроприборы работают от постоянного тока. За выпрямление тока в генераторах отвечает диодный мост — об этом узле, его типах, конструкции и работе, а также о выборе и замене, читайте в статье.

Наличие товара на складах и в магазинах, а также цена товара указана на 07.03.2021 01:30.

Цены и наличие товара во всех магазинах и складах обновляются 1 раз в час. При достаточном количестве товара в нужном вам магазине вы можете купить его без предзаказа.

Интернет-цена - действительна при заказе на сайте или через оператора call-центра по телефону 8-800-600-69-66. При условии достаточного количества товара в момент заказа.

Цена в магазинах - розничная цена товара в торговых залах магазинов без предварительного заказа.

Срок перемещения товара с удаленного склада на склад интернет-магазина.

Представленные данные о запчастях на этой странице несут исключительно информационный характер.

5d294bd4146736f6eeb086cfa72d6310

Добавление в корзину

Доступно для заказа:

Кратность для заказа:

Добавить

Отменить

Товар успешно добавлен в корзину

!

В вашей корзине на сумму

Закрыть

Оформить заказ

UNIPOINT REC904 Выпрямитель, генератор - цена и аналоги:

Информация для покупателей

Просим вас быть бдительными при переводе денежных средств третьим лицам.

Фильтр

  • срок доставки
  • Доступное количество
  • Сбросить

Представленные на сайте цены товара UNIPOINT REC904 Выпрямитель, генератор указаны с учетом доставки до пункта самовывоза в городе Новокузнецк.

Для уточнения стоимости доставки по России Вы можете обратиться к менеджеру нашего интернет-магазина по указанным контактам. Для самостоятельного рассчета доставки воспользуйтесь нашим онлайн-калькулятором рассчета доставки. 

 

 

 

Чтобы купить UNIPOINT REC904:

1. Определитесь со сроками, выберите необходимое количество и добавьте UNIPOINT REC904 в корзину.

2. Оформите заказ, следуя подсказкам в корзине.

3. Оплатите заказ, выбрав удобный способ оплаты. Напоминаем, что мы работаем только по 100% предоплате.

4. Если товар в наличии - Вы можете буквально сразу же получить его в нашем пункте самовывоза.

Каждая запчасть имеет свою применимость к определённым маркам автомобиля. Обязательно перед оформлением заказа убедитесь, что UNIPOINT REC904 Выпрямитель, генератор подходит к Вашему автомобилю.

Информация по заменителям (дубликатам, заменам, аналогам) имеет исключительно справочный характер и не гарантирует совместимость с вашим автомобилем! Если Вы не уверены в том, что выбранная Вами деталь подходит к Вашему транспортному средству - обратитесь за помощью к менеджеру по подбору запчастей.

Размещённая на сайте информация (описание, технические характеристики, а так же фотографии) приведена для ознакомления и не является публичной офертой. Не может служить основанием для предъявления претензий в случае изменения характеристик, комплектности и внешнего вида товара производителем без уведомления.

Справочник диодных мостов выпрямительных. Характеристики и параметры.

Справочник диодных мостов импортных.

Диодные мосты для генераторов авто.
Отечественные производители диодных мостов

В справочник по диодным мостам включены однофазные и трехфазные импортные диодные мосты для поверхностного монтажа, в DIP корпусе, с выводами для пайку в плату и для внешнего монтажа с штыревыми выводами. Диодные мосты на токи более 5 ампер, как правило, предназначены для монтажа на теплоотвод. Стоимость диодного моста можно узнать, используя форму в левом углу страницы. При загрузке datasheet с характеристиками на выбранный компонент в форму автоматически заносится его наименование. И при клике по кнопке "Узнать цену" посылается запрос в несколько популярных интернет-магазинов.







НаименованиеPDF Imax, AUmax, ВПримеч.Краткое описание диодных мостов
  

Однофазные диодные мосты.
MB1S - MB10S0.550 - 1000диодный мост для поверхностного монтажа MB1S, MB2S, MB3S, MB4S .... MB10S
DB101S - DB107S150 - 1000диодные мосты для поверхностного монтажа DB101S - DB107S. Подробные параметры приведены в datasheet.
DB101 - DB107150 - 1000диодные мосты в DIP корпусе DB101 - DB107.
DB151S - DB157S1.550 - 1000диодные мосты для поверхностного монтажа DB151S - DB157S
DB151 - DB1571.550 - 1000
W005M - W10M1.550 - 1000
RС201 - RС207250 - 1000
RS201 - RS207,
KBP005-KBP10
250 - 1000
KBP200 - KBP210250 - 1000
KBPС1005 - KBPC110350 - 1000мосты диодные KBPC1005, KBPC101, KBPC102, KBPC103, KBPC104...KBPC110 на ток до 3А и напряжение до 1000В
BR305 - BR310350 - 1000
KBL005 - KBL10450 - 1000
RS401 - RS407450 - 1000
RS501 - RS507550 - 1000
KBU6A - KBU6M650 - 1000
RS601 - RS607650 - 1000
KBPC600 - KBPC610650 - 1000характеристики мостов диодных KBPC600, KBPC601, KBPC602, KBPC603, KBPC604...KBPC610 на ток до 6А и напряжение до 1000В
BR605 - BR610650 - 1000
KBPC1001 - KBPC10101050 - 1000справочные данные мостов диодных KBPC1001, KBPC1002, KBPC1003, KBPC1004, KBPC1005...KBPC1010 на ток до 10А и напряжение до 1000В
BR1005 - BR10101050 - 1000
KBPC1500W - KBPC1510W
KBPC1500 - KBPC1510

15
15
50 - 1000
50 - 1000

справочные данные диодных мостов KBPC1500, KBPC1501, KBPC1502, KBPC1503, KBPC1504...KBPC1510 на ток до 15А и напряжение до 1000В
MB1505W - MB1510W
MB1505 - MB1510

15
15
50 - 1000
50 - 1000

GSIB2520 - GSIB258025200 - 800
KBPC2501 - KBPC25102550 - 1000характеристики мостов диодных KBPC2501, KBPC2502, KBPC2503, KBPC2504, KBPC2505...KBPC2510 на ток до 25А и напряжение до 1000В
MB251 - MB25102550 - 1000характеристики однофазных диодных мостов MB, аналогов KBPC
26MB20 - 26MB12025200 - 1200
KBPC3500 - KBPC35103550 - 1000справочные данные диодных мостов KBPC3500, KBPC3501, KBPC3502, KBPC3503, KBPC3504...KBPC3510 на ток до 35А и напряжение до 1000В
MB351 - MB35103550 - 1000однофазный диодный мост MB (аналог мостов KBPC) на токи до 35А
36MB20 - 36MB12035200 - 1200
KBPC5000 - KBPC50125050 - 1200справочные данные диодных мостов KBPC5000, KBPC5001, KBPC5002, KBPC5003, KBPC5004...KBPC5012 на ток до 50А и напряжение до 1200В
MB501 - MB50105050 - 1000

Трехфазные диодные мосты
RM10TA201200, 1600трехфазный диодный мост RM10TA на ток до 20А с штыревыми выводами
DBI25-04 - DBI25-162550 - 1600трехфазный диодный мост для пайки в плату DBI25
26MT10 - 26MT16025100 - 1600трехфазный диодный мост 26MT с штыревыми выводами
36MT10 - 36MT16035100 - 1600трехфазный диодный мост 36MT на ток до 35А с ножевыми клеммами
60MT80 - 60MT16060800 - 1600трехфазный диодный мост 60MT на ток до 60А под винт
110MT80 - 110MT160110800 - 1600трехфазный диодный мост 110MT на ток до 110А под винт

Диодные мосты генераторов авто. (показать)

БВО11 и БВО21 - производства "ВТН" (Винница, Украина)

БВО2...БВО8, МП, БПВ - производства ОАО"Орбита" (Саранск)

БВО105, БПВ - производства ООО "Астро" (Пенза)

В техническом описании на диодные мосты генераторов ВАЗ, ГАЗ, МАЗ, КАМАЗ приведены следующие данные: модели автомобилей, на которые ставился данный выпрямительный блок, номинальное и максимальное напряжения, максимальный выходной ток, падение напряжения на диодах, электрическая схема, габаритный чертеж и фотография.
Применяемость
мостов БВО11, БВО21
(совместимые генераторы,
аналоги из серий БВО3...БВО-8, БПВ
БВО3-БВО8,
МП, БПВ
на какие авто ставятся)
БВО11-150-02
БВО4-105-01

 
12020-24ВАЗхарактеристики, схема БВО11-150-02 (диодного моста для генератора ВАЗ 2110, ВАЗ 2111, ВАЗ 2112)
БВО11-150-0415020-24Daewooхарактеристики, электрическая схема, габаритный чертеж БВО11-150-04 (выпрямительный блок для генератора автомобилей Daewoo Nexia, ZAZ Lanos, Chevrolet Lanos, Chevrolet Aveo)
БВО11-150-07
БВО3-105-01

 
12020-24ВАЗхарактеристики и схема диодного моста БВО11-150-07 (применяется на ВАЗ 2108, ВАЗ 2109, ВАЗ 2111, ВАЗ 2112, ВАЗ 2121)
БВО11-150-08
БВО3-105-08

 
12020-24ВАЗБВО11-150-08 - диодный мост для ВАЗ 2110, ВАЗ 2108, ВАЗ 2109 ВАЗ 2111, ВАЗ 2112, ВАЗ 2113, ВАЗ 2114, ВАЗ 2115, ВАЗ 2121, Daewoo Sens, Славута, Таврия.
БВО11-150-13
БВО3-105-06
БВО3-105-09

 
 
15020-24ВАЗхарактеристики и схема диодного моста БВО11-150-13 (применяется на генераторах автомобилей ВАЗ 2110, ВАЗ 2111, ВАЗ 2112, Daewoo Sens, УАЗ)
БВО11-150-15
БВО3-105-03

 
12020-24ГАЗБВО11-150-15 - диодный мост для автомобилей ГАЗ
БВО11-150-16
БВО3-105-02

 
15020-24ГАЗ, УАЗ характеристики БВО11-150-16 (диодный мост генераторов ГАЗ, УАЗ)
БВО11-150-18М
БВО8-105-01

 
12020-24"Приора"
"Калина"
технические характеристики БВО11-150-18, диодного моста генератора  ВАЗ 1117, ВАЗ 1118, ВАЗ 1119 ("Калина"), ВАЗ 2170, ВАЗ 2171, ВАЗ 2172 ("Приора")
БВО11-150-20М
БПВ 076.1.105-02

 
12036-41МАЗ схема и характеристики БВО11-150-20 (диодного моста генератора МАЗ)
БВО11-150-2215036-41МАЗ характеристики блока выпрямительного БВО11-150-22 (диодного моста генератора МАЗ)
БВО11-150-23
БВО7-110-02

 
12036-41КАМАЗэлектрическая схема БВО11-150-23, диодного моста для генератора КАМАЗ
БВО21-150-09
БВО8-105-01

 
12020-24"Калина" БВО21-150-09, выпрямительный блок (диодный мост) генераторов авто ВАЗ 1117, ВАЗ 1118, ВАЗ 1119 (Калина)
БВО21-150-14
БПВ56-65-02Г

 
85?ВАЗ электрическая схема и характеристики БВО21-150-14, диодного моста генератора автомобилей ВАЗ 2110, ВАЗ 2108, ВАЗ 2109, “Ока”, ВАЗ 21213
БВО21-150-14А
БПВ56-65-02А

85?ВАЗ до 91г выпрямительный блок для авто ВАЗ 2101, ВАЗ 2102, ВАЗ 2103, ВАЗ 2104, ВАЗ 2105, ВАЗ 2107, "Таврия" до 91г.в.
БВО21-150-14Б
БПВ56-65-02Б

85?ВАЗэлектрическая схема диодного моста для генератора авто ВАЗ-2108, ВАЗ-2109, “Ока”, ВАЗ-2121. Электрические характеристики БПВ56-65-02Б (выпрямительный блок для генератора  ВАЗ 2108, ВАЗ 2109, ВАЗ 2110)
БВ21-150-14
БПВ56-65-02Г

85?ВАЗхарактеристики диодного моста для 2110, а так же для авто ВАЗ-2108, ВАЗ-2109, “Ока”, ВАЗ-21213. Характеристики и подробное описание выпрямительного блока БПВ-56-65 для ВАЗ 2108, ВАЗ 2109, ВАЗ 2110.
БВ21-150-14А
БПВ56-65-02А

85?ВАЗ до 91гдля авто ВАЗ-2101, ВАЗ-2102, ВАЗ-2103, ВАЗ-2104, ВАЗ-2105, ВАЗ-2107, “Таврия” до 91 г.в. Диодный мост генератора ВАЗ БВП56-65-02А для моделей ВАЗ 2101, ВАЗ 2102, ВАЗ 2103, ВАЗ 2104, ВАЗ 2105, ВАЗ 2107
БВ21-150-14Б
БПВ56-65-02Б

85?ВАЗвыпрямительный блок для генераторов авто ВАЗ-2108, ВАЗ-2109, “Ока”, ВАЗ-2121
БВ21-150-14В
БПВ56-65-02Г

85?ВАЗ характеристики и схема БВ21-150-14, диодного моста генраторов ВАЗ-2108, ВАЗ-2109, ВАЗ-2110,“Ока”, ВАЗ-21213
 На главную
 

Диодный мост - Academic Kids

от академических детей

Диодный мост - это электронная схема, которая обеспечивает одинаковую полярность выходного напряжения и тока для обеих возможных полярностей входной мощности. В наиболее распространенном применении для преобразования входной мощности переменного тока (AC) в выходную мощность постоянного тока (DC) он известен как мостовой выпрямитель. На схеме (с использованием популярной схемы с четырьмя диодами, образующими стороны ромба) описывается конструкция с одним диодным мостом, двухполупериодным выпрямителем или схемой Гретца.Эта конструкция используется для выпрямления однофазного переменного тока, когда отсутствует центральный ответвитель.

Изображение отсутствует
Диод-фото.JPG

Диоды; слева - диодный мост

Отсутствует изображение
Diodebridge1.png
Изображение: Diodebridge1.png

Существенной особенностью этой схемы является то, что для обеих полярностей напряжения между входы моста, полярность выходов такая же.

Например, когда вход, подключенный в левом углу ромба, является положительным по отношению к входу, подключенному в правом, ток течет вправо по верхнему цветному пути и в целом слева по нижнему.

Когда правый вход положительный по отношению к левому, текущий поток в целом идет по диагонали вверх вправо и по диагонали вверх влево.

Отсутствует изображение
AC, _half-wave_and_full_wave_rectified_signals.PNG

AC, полуволновые и двухполупериодные выпрямленные сигналы

В каждом из этих случаев верхний правый вывод остается положительным по отношению к нижнему правому. Поскольку это верно независимо от того, является ли вход переменным или постоянным током, эта схема не только вырабатывает постоянный ток при питании от переменного тока: она также может обеспечивать то, что иногда называют функцией «защиты полярности».То есть, он обеспечивает нормальное функционирование, когда батареи установлены задом наперед или когда проводка входного источника питания постоянного тока «перекрещена» (и защищает цепь, которую он питает, от повреждений, которые могут возникнуть без вмешательства этой цепи).

До появления полупроводниковой электроники такой мостовой выпрямитель всегда строился из дискретных компонентов. (т.е. подключив два провода к каждому из четырех отдельных диодов). Во второй половине 20-го века один четырехконтактный компонент, в котором четыре диода эффективно подключены внутри постоянно герметичного устройства, стал стандартным коммерческим компонентом, доступным с различными номинальными значениями напряжения и тока.

Для многих приложений, особенно с однофазным переменным током, где двухполупериодный мост служит для преобразования переменного тока в постоянный, дополнительный конденсатора может быть важным, потому что только мост подает напряжение и ток фиксированной полярности, но различной величины.

Отсутствует изображение
Diodebridge4.png
Изображение: Diodebridge4.png

Функция этого конденсатора заключается в уменьшении колебаний (обычно в течение периодов в десятки миллисекунд или меньше) на выходе.(Стандартное электронное обозначение этого эффекта заключается в том, что конденсатор обеспечивает путь с низким сопротивлением к компоненту переменного тока на выходе, ослабляя напряжение переменного тока и ток через резистивную нагрузку.) В менее технических терминах, поскольку заряд хранится в конденсаторе, и напряжение между его выводами имеет фиксированное соотношение, любое падение выходного напряжения и тока моста имеет тенденцию компенсироваться потерей заряда конденсатором, этот заряд вытекает как дополнительный ток через нагрузку.Таким образом, изменение общего тока и напряжения уменьшается по сравнению с тем, что произошло бы без конденсатора; Повышение напряжения соответственно создает ток в конденсаторе , аналогичным образом смягчая изменение в чистом выходе.

Для трехфазного переменного тока двухполупериодный мостовой выпрямитель состоит из шести диодов.

Трехфазный мостовой выпрямитель для ветряной турбины Lakota (True North Power). Трехфазный мостовой выпрямитель для ветряной турбины.da: Diodebrokobling

de: Gleichrichterbrcke fr: диоды Pont de nl: Bruggelijkrichter pl: Mostek Graetza

Схема простого мостового выпрямителя

Процесс преобразования переменного тока в постоянный - это выпрямление .Любой автономный блок питания имеет схему выпрямления, которая преобразует либо настенный источник переменного тока в постоянный высоковольтный, либо пониженный настенный источник переменного тока в постоянный ток низкого напряжения. Дальнейшим процессом будет фильтрация, преобразование постоянного тока в постоянный и т. Д. Итак, в этой статье мы собираемся обсудить схему Simple Bridge Rectifier Circuit , которая является наиболее популярным методом двухполупериодного выпрямления.

Необходимые компоненты
  • Трансформатор 230VAC / 6VAS - 1шт.
  • 1Н4007А - 1шт.
  • Резистор 1 кОм - 1 шт.
  • Мультиметр
  • Соединительные провода

Что такое выпрямитель?

Проще говоря, выпрямитель - это схема, которая преобразует сигнал переменного тока (переменный ток) в сигнал постоянного тока (постоянный ток). Можно также сказать, что выпрямитель преобразует двунаправленный ток в однонаправленный.

Диоды используются для построения схемы выпрямителя из-за их свойства однонаправленной проводимости.Полупроводниковый диод проводит только при прямом смещении (он ведет себя как замыкающий переключатель) и не проводит при обратном смещении (ведет себя как открытый переключатель). Эта характеристика диода очень важна и используется в выпрямителях.

Типы выпрямителей

Обычно выпрямители делятся на две категории

  • Полуволновой выпрямитель
  • Двухполупериодный выпрямитель

Полупериодный выпрямитель преобразует только половину волны переменного тока в сигнал постоянного тока, тогда как двухполупериодный выпрямитель преобразует полный сигнал переменного тока в постоянный.

Полноволновое выпрямление может быть выполнено двумя способами:

  • Двухполупериодный выпрямитель с центральным ответвлением на двух диодах
  • Мостовой выпрямитель на четырех диодах

Bridger Rectifier - наиболее часто используемый выпрямитель в электронике, и здесь мы будем изучать только его. Если вы хотите узнать о полуволновом выпрямителе и двухполупериодном выпрямителе с центральным ответвлением, перейдите по ссылкам.

Схема мостового выпрямителя и ее работа

Двухполупериодный мостовой выпрямитель состоит из четырех диодов таким образом, что их плечи образуют мост, отсюда и название мостовой выпрямитель.В мостовом выпрямителе напряжение может подаваться на диодный мост через трансформатор или напрямую через сигнал переменного тока без трансформатора.

Здесь мы используем трансформатор с центральным ответвлением 6-0-6 для подачи переменного напряжения на схему мостового выпрямителя

Во время положительного полупериода диоды D3-D2 смещаются в прямом направлении и действуют как замкнутый переключатель. Диоды D1-D4 имеют обратное смещение и не проводят, поэтому действуют как разомкнутый переключатель.Таким образом мы получаем на выходе положительный полупериод.

Во время отрицательного полупериода диоды D1-D4 смещаются в прямом направлении и действуют как замкнутый переключатель. Диоды D3-D2 имеют обратное смещение и не проводят, поэтому действуют как разомкнутый переключатель. Таким образом мы получаем на выходе положительный полупериод.

Форма волны ниже показывает форму волны входа и выхода для схемы мостового выпрямителя. Мы видим, что отрицательная часть переменного напряжения преобразуется в положительный цикл после прохождения схемы мостового выпрямителя.

Фильтрация

Выходной сигнал после выпрямления не является правильным постоянным током, поэтому мы можем сгладить форму волны, используя конденсатор для целей фильтрации. Конденсатор заряжается до тех пор, пока форма волны не достигнет своего пика, и разряжается в цепи нагрузки, когда форма волны становится низкой. Таким образом, когда выходной сигнал становится низким, конденсатор поддерживает надлежащее напряжение в цепи нагрузки, тем самым создавая постоянный ток. Это снижает коэффициент пульсации и обеспечивает надлежащий постоянный ток. Регулируемое напряжение может быть дополнительно добавлено для регулируемого источника постоянного тока.

Мы можем дополнительно смоделировать схему в программном обеспечении и увидеть результат:

Узнайте больше о полуволновых и полноволновых выпрямителях здесь.

ВЫПРЯМИТЕЛЬ МОСТОВОГО МОСТА НА 12 ИМПУЛЬСНЫХ ДИОДОВ ВНУТРИ СТЕКЛОСТЕКЛЯННОГО СТЕКЛА, P / N 5872C4-2

ВЫПРЯМИТЕЛЬ МОСТОВОГО МОСТА НА 12 ИМПУЛЬСНЫХ ДИОДОВ ВНУТРИ СТЕКЛОСТЕКЛЯННОГО СТЕКЛА, P / N 5872C4-2

Технические характеристики:

  • 12-ти импульсный диодный мостовой выпрямитель, P / N 5872C4-2
  • Каждый диод рассчитан на 60 А, пиковое напряжение 1800 В
  • Размеры: 50 ″ Д x 40 ″ Ш x 20 ″ В примерно
  • Для охлаждения используются четыре 10-дюймовых вентилятора.

Фотография 12-импульсного мостового диодного выпрямителя внутри камеры статического давления из стекловолокна.Четыре 10-дюймовых вентилятора нагнетают охлаждение снизу камеры статического давления. 12 диодных сборок (каждый диод состоит из девяти последовательно соединенных диодов, встроенных в пленум). Выход рассчитан на 3000 В постоянного тока, 80 Ампер.

Принципиальная схема 12-импульсного диодного мостового выпрямителя показана ниже. Каждый диод представляет собой девять диодов серии i.

Каждый диод в 12-импульсном диодном мостовом выпрямителе состоит из девяти последовательно соединенных диодов, как показано ниже:

Фотография полного 12-импульсного диодного мостового выпрямителя со стенками из стекловолокна внутри источника питания показана ниже:

Чтобы обсудить конкретные требования к выпрямительному стеку, свяжитесь с нами по телефону 714 624-4740 или отправьте нам электронное письмо по адресу quote @ cehco.com .

(Соответствующие соответствия этой категории показаны ниже)

12-импульсный выпрямитель

Преимущества 12-импульсного выпрямителя

12-импульсный преобразователь PPT

24-импульсный выпрямитель

12-импульсный выпрямитель Simulink

18-импульсный выпрямитель

Трехфазные 12-импульсные генераторы

Конструкция с 12-ти импульсным выпрямительным трансформатором

12-импульсный диодный мостовой выпрямитель

12-импульсный диодный мостовой выпрямитель

12-импульсный мостовой выпрямитель переменного тока в постоянный

Трехфазный выпрямитель

12-импульсный активный выпрямитель

36-импульсный диодный выпрямитель

Конфигурация системы с 12 импульсами

12-импульсный последовательный диодный выпрямитель

18-ти импульсный диодный мостовой выпрямитель, рассчитанный на 1100 ампер

12-импульсный выход выпрямителя и схема фильтра

Индивидуальный 12-импульсный диодный мостовой выпрямитель

Устаревший 12-импульсный диодный мостовой выпрямитель

Специальный 12-ти импульсный диодный мостовой выпрямитель

Нечетный шарик 12-импульсный диодный мостовой выпрямитель

Снято с производства 12-импульсный диодный мостовой выпрямитель

Трудно найти 12-ти импульсный диодный мостовой выпрямитель

Снят с производства 12-ти импульсный диодный мостовой выпрямитель

Снято с производства 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Ремонт 12-импульсного высоковольтного диодного мостового выпрямителя в сборе

Трехфазный выпрямитель 12-ти импульсный высоковольтный диодный мостовой выпрямитель в сборе

Сделано в США, 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Недорогой 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Высокочастотный 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Средневольтный 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Замена 12-импульсного высоковольтного диодного мостового выпрямителя в сборе

Блок выпрямителя диодного моста ИМПа ульс ядра 12 сердечника 4 Мил К высоковольтный

12-импульсный высоковольтный диодный мостовой выпрямитель с рейтингом K

30 ампер 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Применение в печи 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Нагревательный элемент 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

50 ампер 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

70 ампер 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Ремонт 12-импульсного высоковольтного диодного мостового выпрямителя в сборе

Ремонт 12-импульсного высоковольтного диодного мостового выпрямителя в сборе

Трехфазный переменный выпрямитель 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Промышленный сухой 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Промышленное 12-импульсное высоковольтное устройство выпрямительного моста диодного моста

Трехфазный 12-импульсный высоковольтный диодный мостовой выпрямитель MVA в сборе

Variac управляемый 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе

Variac Controlled12-импульсный высоковольтный диодный мостовой выпрямитель в сборе, залитый

Блок выпрямительного моста с 12-импульсным высоковольтным диодным мостом, управляемый вариаком, 60 Гц

Блок выпрямительного моста с 12-импульсным высоковольтным диодным мостом и 12-импульсным переменным током, 50/60 Гц

Variac регулируемый 12-импульсный высоковольтный диодный мостовой выпрямитель в сборе, 5 кГц
Свяжитесь с нами в чате,
при поддержке LiveChat

Выпрямители с диодным мостом | Компоненты квеста

0.5А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

0,5 А, 400 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, 1-ФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 400 В В (RRM), DIP

0.5А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 100 А, 400 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 100 А, 800 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 100 А, 1200 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 100 А, 1600 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

4.3А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТОВОЙ ВЫПРЯМИТЕЛЬ, 1-ФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 200 В (RRM), BR-3W

4.3A, 400V, КРЕМНИЙ, МОСТОВЫЙ ВЫПРЯМИТЕЛЬНЫЙ ДИОД

4.3А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

4.5А, 100В, КРЕМНИЙ, МОСТОВЫЙ ВЫПРЯМИТЕЛЬНЫЙ ДИОД

4.5А, 400В, КРЕМНИЙ, МОСТОВОЙ ВЫПРЯМИТЕЛЬНЫЙ ДИОД

4.5А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1,5 А, 100 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 100 В В (RRM), SIP

1А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, 1-ФАЗНЫЙ ПОЛНОЗАВОДНОЙ, 200 В В (RRM), BR-1W

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 200 В В (RRM), SIP

1.5А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1.5А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 1200В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 20 А, 800 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 20 А, 1600 В, КРЕМНИЙ, МОСТОВЫЙ ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНОВолновой, 100 В В (RRM), BR-3Q

25А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНОВолновой, 200 В В (RRM), BR-3Q

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНОВОДНЫЙ, 400 В В (RRM), BR-3Q

25А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНОВолновой, 600 В В (RRM), BR-3Q

25А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНОВОДНЫЙ, 100 В В (RRM), BR-3W

МОСТОВОЙ ВЫПРЯМИТЕЛЬ, 1-ФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 200 В (RRM), BR-3W

2А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

2А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 30 А, 800 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 30 А, 1200 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 30А, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 30 А, 1600 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТОВОЙ ВЫПРЯМИТЕЛЬ, 1-ФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 200 В (RRM), BR-3W

3А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТОВОЙ ВЫПРЯМИТЕЛЬ, 1-ФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 200 В (RRM), BR-3W

3А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 50 А, 400 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 50 А, 800 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 50 А, 1200 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 50 А, 1600 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3.8А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТОВОЙ ВЫПРЯМИТЕЛЬ, 1-ФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 200 В (RRM), BR-3W

3,8 А, 400 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3.8А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 75 А, 400 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 75 А, 800 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 75 А, 1200 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

3 ФАЗА, 75 А, 1600 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 100 В В (RRM), ТАК

0.5А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

0,5 А, 100 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 400 В В (RRM), ТАК

0.5А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

0,5 А, 400 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

МОСТ-ВЫПРЯМИТЕЛЬ, ОДНОФАЗНЫЙ ПОЛНЫЙ ВОЛНОВЫЙ, 400 В В (RRM), ТАК

0.5А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

0,5 А, 400 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

0,5 А, 600 В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

0.5А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 100В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 400В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 600В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 1200В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 1200В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

1А, 1200В, КРЕМНИЙ, МОСТ-ВЫПРЯМИТЕЛЬНЫЙ ДИОД

К сожалению, ни одна деталь не соответствует вашим критериям поиска, попробуйте использовать меньшее количество критериев.

Устранение неисправностей выпрямителя диодного моста

В этой статье будут рассмотрены различные неисправности выпрямителя с диодным мостом, чтобы дать некоторое представление об устранении неисправностей источника питания переменного / постоянного тока.

Источники питания переменного / постоянного тока широко используются в различных типах электронного оборудования. Когда кто-то терпит неудачу, как мы можем определить причину?

В этой статье мы рассмотрим пример блока питания и расскажем о некоторых возможных причинах его выхода из строя.

Пример источника переменного / постоянного тока

Для эффективного поиска и устранения неисправностей вам необходимо разбираться в своей схеме. Мы будем работать с примером источника переменного / постоянного тока, который преобразует 230 В переменного тока в 5 В постоянного тока. Его блок-схема показана на рисунке 1 ниже.

Рис. 1. Изображение предоставлено NUS.

Во-первых, давайте сначала кратко рассмотрим каждый из этих блоков.

Трансформатор

Трансформатор преобразует электрическую сеть высокого напряжения в более низкое напряжение переменного тока.Например, если мы хотим генерировать 12 В постоянного тока, трансформатор может быть спроектирован так, чтобы генерировать переменное напряжение с амплитудой 22 В, как показано на рисунке 2.

Рисунок 2
Выпрямитель

Выпрямитель преобразует переменное напряжение в постоянное, как показано на рисунке 3. Это делается путем инвертирования отрицательной части переменного напряжения для генерации положительного напряжения. Результатом является постоянное напряжение, потому что теперь ток может течь только в одном направлении через гипотетическую нагрузку (не показано на рисунке).Однако по-прежнему существуют большие колебания напряжения и тока, и его нельзя использовать в качестве источника постоянного тока для питания электронных схем. На рисунке 3 показано очень важное свойство выхода выпрямителя: поскольку отрицательная часть перевернута на положительные значения, выход выпрямителя представляет собой периодический сигнал с периодом, который составляет половину периода входа. Следовательно, если на входе сигнал 50 Гц, выходная частота будет 100 Гц. Это наблюдение может быть полезно при поиске и устранении неисправностей источника питания переменного / постоянного тока.

Рисунок 3
Фильтр

Чтобы избавиться от больших колебаний, мы применяем фильтр нижних частот к выходу выпрямителя. Фильтр будет давать формы сигналов, похожие на красные кривые на Рисунке 4.

Рис. 4
Регулятор

Поскольку все еще есть некоторые пульсации, мы можем применить выходной сигнал фильтра к регулятору, который использует концепции обратной связи для дальнейшего подавления колебаний и генерирования желаемого постоянного напряжения.

Давайте рассмотрим неисправности, связанные с диодным мостом выпрямителя и фильтром нижних частот, как показано на рисунке 5.

Рисунок 5

Теперь, когда мы знакомы с нашим примером, мы можем начать обсуждение некоторых общих проблем, которые могут потребоваться для устранения неполадок.

Проблема: отказал открытый диод

В каждом полупериоде входа $$ V_ {AC1} $$ горят два из четырех диодов. Например, когда $$ V_ {AC1} $$ положительный, D1 и D2 будут проводить ток, в то время как D3 и D4 блокируют (обратный) ток.В следующем полупериоде D3 и D4 будут проводить. Если какой-либо из этих четырех диодов имеет разрыв цепи, соответствующий полупериод будет пропущен, и схема будет действовать как полуволновой выпрямитель. На рисунке 6 показано влияние неисправного открытого диода на выходное напряжение.

Рисунок 6

Как видите, величина ряби увеличилась примерно в два раза. Кроме того, кривая, относящаяся к вышедшему из строя диоду, имеет период, в два раза превышающий период синей кривой, поскольку вышедшая из строя схема действует как полуволновой выпрямитель.Следовательно, при отказе открытого диода частота $$ V_ {DC1} $$ будет такой же, как VAC1. В исправной цепи пульсации возникают с частотой, вдвое превышающей входную частоту. С помощью осциллографа легко проверить работу выпрямителя на диодном мосту. Если частота электросети 50 Гц, частота колебаний должна быть 100 Гц. Это пример случаев, когда осциллограф намного полезнее мультиметра.

Проблема: закороченный диод

В предыдущем разделе мы предположили, что диод имеет разрыв цепи.Однако неисправный диод тоже может закоротить. В этом случае диод будет иметь небольшое сопротивление в обоих направлениях. Распространенными причинами выхода из строя диода являются чрезмерный прямой ток и большое обратное напряжение. Обычно большое обратное напряжение приводит к короткому замыканию диода, а перегрузка по току приводит к его отказу.

Давайте посмотрим, как закороченный диод повлияет на двухполупериодный выпрямитель. Предположим, что D1 на рисунке 5 закорочен, и теперь схема имеет вид, показанный на рисунке 7.

Рисунок 7

Предположим, что $$ V_ {AC1} $$ положительный.В этом случае D2 будет включен, а D3 и D4 будут иметь обратное смещение. Ток будет течь через нагрузку и диод D2 обратно во вторичную обмотку трансформатора, как показано на рисунке 5. Следовательно, если предположить, что диоды идеальны и имеют нулевое прямое падение напряжения, положительный полупериод не будет влияет закороченный диод. Но как насчет отрицательного полупериода? Когда значение $$ V_ {AC1} $$ становится отрицательным, включается D3. Ток будет течь обратно к трансформатору через закороченный диод, а не через нагрузку.Следовательно, $$ V_ {DC1} $$ будет равен нулю, и большое напряжение будет непосредственно приложено к D3. Чрезмерный прямой ток может привести к отказу D3 при открытии. Трансформатор и закороченный диод (D1) - это два других компонента, которые могут перегореть.

Проблема: Старение конденсатора фильтра

В источниках питания переменного / постоянного тока обычно используются электролитические конденсаторы для подавления пульсаций. Эти конденсаторы обладают высокой емкостью для данного рабочего напряжения (у них почти самая высокая доступная емкость, умноженная на напряжение или CV).Кроме того, такое высокое резюме достигается за доступную цену.

Несмотря на эти преимущества, у электролитических конденсаторов есть свои ограничения. Одним из основных недостатков является то, что они имеют гораздо более короткий срок службы, чем другие конденсаторы. Это связано с тем, что электролит внутри конденсатора со временем испаряется, и емкость уменьшается. К концу срока службы конденсатора емкость уменьшится примерно на 20%.

Также стоит отметить, что эквивалентное последовательное сопротивление конденсатора (ESR) увеличивается по мере использования.Чем больше СОЭ, тем больше тепла выделяется, и тепло является основным фактором, который может ускорить испарение электролита. Это приведет к ситуации теплового разгона.

Дело в том, что электролитические конденсаторы, вероятно, являются первыми компонентами, которые выйдут из строя в правильно спроектированной электронной системе. Разработчик игнорирует эту проблему надежности, чтобы просто снизить затраты. По мере старения емкость будет уменьшаться, и на $$ V_ {DC1} $$ будут появляться более сильные колебания. Мы использовали $$ C_L = 220 мкФ $$ и $$ R_L = 1 k \ Omega $$ для создания графики этой статьи.Давайте уменьшим $$ C_L $$ на 20%, чтобы визуализировать эффект старения конденсатора (мы игнорируем увеличение ESR, чтобы упростить задачу). При $$ C_L = 176 мкФ $$ получаем красную кривую на рисунке 8.

Рисунок 8

Как и ожидалось, меньший конденсатор приводит к большим колебаниям. Следовательно, когда пульсации больше, чем ожидалось, мы должны проверить частоту пульсаций: если частота вдвое превышает входную частоту, диоды работают правильно и, вероятно, что-то не так с конденсатором.

Проблема: Закороченный конденсатор фильтра

Электролитические конденсаторы обычно выходят из строя. Фактически, слой оксида алюминия, который образует диэлектрик конденсатора, обладает свойством самовосстановления и обычно может немедленно исправить крошечное короткое замыкание. Тем не менее, все еще есть вероятность появления дырявого конденсатора, когда относительно небольшой резистор появляется параллельно конденсатору. Если это сопротивление утечки настолько мало, конденсатор будет казаться закороченным. Приложение обратного напряжения к конденсатору может привести к утечке компонента.Что-то, что может случиться при первом производстве платы. В этом случае схему можно смоделировать, как показано на рисунке 9.

Рисунок 9

Резистор утечки ускорит разрядку конденсатора, поэтому у нас будет более крупная пульсация, похожая на красные кривые на рисунке 8. Если резистор утечки настолько мал, выход будет закорочен на землю. Следовательно, закороченный конденсатор может привести к отказу диодов или трансформатора.

Заключение

В этой статье мы рассмотрели различные неисправности выпрямителя с диодным мостом, чтобы дать некоторое представление об устранении неисправностей источника питания переменного / постоянного тока. Мы увидели, что частоту пульсаций на выходе можно проверить, чтобы проверить, правильно ли работает диодный мост. Кроме того, величина пульсаций может дать нам некоторое представление о проблемах конденсатора фильтра.

Какие еще темы по устранению неполадок вы бы хотели обсудить? Дайте нам знать в комментариях ниже.

% PDF-1.4 % 244 0 объект > эндобдж xref 244 83 0000000016 00000 н. 0000002987 00000 н. 0000003120 00000 н. 0000003156 00000 п. 0000003876 00000 н. 0000003911 00000 н. 0000004046 00000 н. 0000004185 00000 н. 0000004402 00000 н. 0000004747 00000 н. 0000005458 00000 п. 0000005572 00000 н. 0000005909 00000 н. 0000006021 00000 н. 0000006399 00000 н. 0000006807 00000 н. 0000007484 00000 н. 0000007807 00000 н. 0000007909 00000 н. 0000008234 00000 н. 0000008384 00000 п. 0000008564 00000 н. 0000008601 00000 п. 0000008948 00000 н. 0000010233 00000 п. 0000010364 00000 п. 0000010391 00000 п. 0000010706 00000 п. 0000011050 00000 п. 0000011660 00000 п. 0000011992 00000 п. 0000012518 00000 п. 0000013135 00000 п. 0000013417 00000 п. 0000014469 00000 п. 0000015662 00000 п. 0000016121 00000 п. 0000017301 00000 п. 0000017432 00000 п. 0000017752 00000 п. 0000017865 00000 п. 0000018849 00000 п. 0000018980 00000 п. 0000019355 00000 п. 0000019444 00000 п. 0000020138 00000 п. 0000021224 00000 п. 0000022433 00000 п. 0000024238 00000 п. 0000024610 00000 п. 0000024865 00000 п. 0000025866 00000 п. 0000027616 00000 н. 0000028736 00000 п. 0000028829 00000 п. 0000029092 00000 н. 0000030691 00000 п. 0000033341 00000 п. 0000039345 00000 п. 0000044811 00000 п. 0000044881 00000 п. 0000045094 00000 п. 0000045439 00000 п. 0000045714 00000 п. 0000046013 00000 п. 0000046411 00000 п. 0000049345 00000 п. 0000049676 00000 п. 0000062017 00000 н. 0000068127 00000 п. 0000068154 00000 п. 0000068455 00000 п. 0000068482 00000 н. 0000068783 00000 п. 0000069152 00000 п. 0000106487 00000 н. 0000106526 00000 н. 0000143261 00000 н. 0000143300 00000 н. 0000180460 00000 н. 0000180499 00000 н. 0000180566 00000 н. 0000001956 00000 н. трейлер ] >> startxref 0 %% EOF 326 0 объект > поток xb```e`d` [@ (1M1E @ Á! TzJ: 7z6x kå ۛ 4 uet] `,! R2SU" ㎊PprOrp.À! \ 25, Ջ u􍶲 {δO {Y_Nc) sT; Dd * } \ 4l Յ $ n6x} yeF &? ٠l ÷ 7 \} '4s "ÒS4g

Как работает выпрямитель?

Обновлено 28 декабря 2020 г.

Автор: S. Hussain Ather

Вы можете задаться вопросом, как линии электропередач посылают электрические токи на большие расстояния для разных целей. И существуют разные «типы» электричества. Электричество, которое питает электрические железнодорожные системы, может не подходить для бытовых приборов, таких как телефоны и телевизоры. Выпрямители помогают, преобразовывая между этими различными типами электричества.

Мостовой выпрямитель и выпрямительный диод

Выпрямители позволяют преобразовывать переменный ток (AC) в постоянный (DC). Переменный ток - это ток, который переключается между течением вперед и назад через равные промежутки времени, в то время как постоянный ток течет в одном направлении. Обычно они используют мостовой выпрямитель или выпрямительный диод.

Во всех выпрямителях используются переходы P-N , полупроводниковые устройства, которые пропускают электрический ток только в одном направлении от образования полупроводников p-типа с полупроводниками n-типа.Сторона "p" имеет избыток дырок (места, где нет электронов), поэтому она заряжена положительно. Сторона "n" отрицательно заряжена электронами в их внешних оболочках.

Многие схемы с этой технологией построены с мостовым выпрямителем . Мостовые выпрямители преобразуют переменный ток в постоянный, используя систему диодов, изготовленных из полупроводникового материала, либо полуволновым методом, который выпрямляет одно направление переменного сигнала, либо полноволновым методом, который выпрямляет оба направления входного переменного тока.

Полупроводники - это материалы, которые пропускают ток, потому что они сделаны из металлов, таких как галлий, или металлоидов, таких как кремний, которые загрязнены такими материалами, как фосфор, в качестве средства контроля тока. Вы можете использовать мостовой выпрямитель для различных применений в широком диапазоне токов.

Мостовые выпрямители также имеют то преимущество, что они выдают больше напряжения и мощности, чем другие выпрямители. Несмотря на эти преимущества, мостовые выпрямители страдают от необходимости использовать четыре диода с дополнительными диодами по сравнению с другими выпрямителями, что вызывает падение напряжения, которое снижает выходное напряжение.

Кремниевые и германиевые диоды

Ученые и инженеры обычно используют кремний при создании диодов чаще, чем германий. Кремниевые p-n-переходы работают более эффективно при более высоких температурах, чем германиевые. Кремниевые полупроводники облегчают прохождение электрического тока и могут быть созданы с меньшими затратами.

Эти диоды используют p-n переход для преобразования переменного тока в постоянный как своего рода электрический «переключатель», который позволяет току течь либо в прямом, либо в обратном направлении в зависимости от направления p-n перехода.Диоды с прямым смещением позволяют току продолжать течь, в то время как диоды с обратным смещением блокируют его. Это то, что заставляет кремниевые диоды иметь прямое напряжение около 0,7 вольт, так что они пропускают ток, только если он превышает вольт. Для германиевых диодов прямое напряжение составляет 0,3 В.

Анодный вывод батареи, электрода или другого источника напряжения, где в цепи происходит окисление, снабжает отверстия катодом диода при формировании p-n перехода. Напротив, катод источника напряжения, где происходит восстановление, обеспечивает электроны, которые отправляются на анод диода.

Схема полуволнового выпрямителя

Вы можете изучить, как полуволновые выпрямители соединены в схемах, чтобы понять, как они работают. Полупериодные выпрямители переключаются между прямым и обратным смещением в зависимости от положительного или отрицательного полупериода входной волны переменного тока. Он отправляет этот сигнал на нагрузочный резистор, так что ток, протекающий через резистор, пропорционален напряжению. Это происходит из-за закона Ома, который представляет напряжение В как произведение тока I и сопротивления R в

В = IR

Напряжение на нагрузочном резисторе можно измерить как напряжение питания В с , что равно выходному напряжению постоянного тока В на выходе .Сопротивление, связанное с этим напряжением, также зависит от диода самой схемы. Затем схема выпрямителя переключается на обратное смещение, в котором она принимает отрицательный полупериод входного сигнала переменного тока. В этом случае ток не течет через диод или схему, и выходное напряжение падает до 0. Таким образом, выходной ток является однонаправленным.

Схема двухполупериодного выпрямителя

••• Syed Hussain Ather

Двухполупериодные выпрямители, напротив, используют полный цикл (с положительными и отрицательными полупериодами) входного сигнала переменного тока.Четыре диода в схеме двухполупериодного выпрямителя расположены так, что, когда входной сигнал переменного тока является положительным, ток течет через диод от D 1 к сопротивлению нагрузки и обратно к источнику переменного тока через Д 2 . Когда сигнал переменного тока отрицательный, ток принимает вместо этого путь D 3 -load- D 4 . Сопротивление нагрузки также выводит напряжение постоянного тока от двухполупериодного выпрямителя.

Среднее значение напряжения двухполупериодного выпрямителя в два раза больше, чем у полуволнового выпрямителя, а среднеквадратичное значение напряжения , метод измерения переменного напряжения, двухполупериодного выпрямителя в √2 раза больше, чем у двухполупериодного выпрямителя. однополупериодный выпрямитель.

Компоненты и приложения выпрямителя

Большинство электронных приборов в вашем доме используют переменный ток, но некоторые устройства, такие как ноутбуки, перед использованием преобразуют этот ток в постоянный. В большинстве ноутбуков используется источник питания с переключаемым режимом (SMPS), который позволяет выходному напряжению постоянного тока больше мощности для размера, стоимости и веса адаптера.

SMPS работают с использованием выпрямителя, генератора и фильтра, которые управляют широтно-импульсной модуляцией (метод уменьшения мощности электрического сигнала), напряжением и током.Генератор - это источник сигнала переменного тока, по которому вы можете определить амплитуду тока и направление, в котором он течет. Затем адаптер переменного тока ноутбука использует это для подключения к источнику переменного тока и преобразует высокое напряжение переменного тока в низкое напряжение постоянного тока, форму, которую он может использовать для питания самого себя во время зарядки.

В некоторых выпрямительных системах также используется сглаживающая цепь или конденсатор, который позволяет им выдавать постоянное напряжение, а не то, которое изменяется во времени. Электролитический конденсатор сглаживающих конденсаторов может достигать емкости от 10 до тысяч микрофарад (мкФ).Для большего входного напряжения требуется большая емкость.

В других выпрямителях используются трансформаторы, которые изменяют напряжение с использованием четырехслойных полупроводников, известных как тиристоры , наряду с диодами. Выпрямитель с кремниевым управлением , другое название тиристора, использует катод и анод, разделенные затвором и его четырьмя слоями, для создания двух p-n-переходов, расположенных один поверх другого.

Использование выпрямительных систем

Типы выпрямительных систем различаются в зависимости от приложений, в которых необходимо изменять напряжение или ток.Помимо уже рассмотренных приложений, выпрямители находят применение в паяльном оборудовании, электросварке, радиосигналах AM, генераторах импульсов, умножителях напряжения и схемах питания.

Паяльники, которые используются для соединения частей электрических цепей вместе, используют полуволновые выпрямители для одного направления входного переменного тока. Методы электросварки, в которых используются мостовые выпрямительные схемы, являются идеальными кандидатами для обеспечения стабильного поляризованного постоянного напряжения.

AM-радио, модулирующее амплитуду, может использовать полуволновые выпрямители для обнаружения изменений входящего электрического сигнала.В схемах генерации импульсов, которые генерируют прямоугольные импульсы для цифровых схем, используются полуволновые выпрямители для изменения входного сигнала.

Выпрямители в цепях питания преобразуют переменный ток в постоянный от различных источников питания. Это полезно, поскольку постоянный ток обычно передается на большие расстояния, прежде чем он будет преобразован в переменный ток для бытовой электроэнергии и электронных устройств. В этих технологиях широко используется мостовой выпрямитель, который может справляться с изменением напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *