Есть ли в блоке питания компьютера предохранитель: Блок питания ПК – схема, ремонт своими руками – Перегорел входной предохранитель в блоке питания. Диагностика.

Содержание

Блок питания ПК – схема, ремонт своими руками

Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами.

Фотография внешнего вида блока питания АТХ

Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Извлечение блока питания из системного блока

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Разборка блока питания системного блока

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.

<Блок питания компьютера со снятой крышкой

После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.

Структурная схема блока питания компьютера

Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Блок питания с отсутствующим фильтром

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Блок питания с фильтром

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых ненадежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Ремонт БП компьютера АТХ

Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).

Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.

Как найти неисправность БП нажимая кнопку «Пуск»

Если питание на компьютер подается, то на следующем шаге нужно глядя на кулер блока питания (виден за решеткой на задней стенке системного блока) нажать кнопку «Пуск» компьютера. Если лопасти кулера, хоть немного сдвинуться, значит, исправны фильтр, предохранитель, диодный мост и конденсаторы левой части структурной схемы, а также самостоятельный маломощный источник питания +5 B_SB.

В некоторых моделях БП кулер находится на плоской стороне и чтобы его увидеть, нужно снять левую боковую стенку системного блока.

Поворот на маленький угол и остановка крыльчатки кулера при нажатии на кнопку «Пуск» свидетельствует о том, что на мгновенье на выходе БП появляются выходные напряжения, после чего срабатывает защита, останавливающая работу БП. Защита настроена таким образом, что если величина тока по одному из выходных напряжений превысит заданный порог, то отключаются все напряжения.

Причиной перегрузки обычно является короткое замыкание в низковольтных цепях самого БП или в одном из блоков компьютера. Короткое замыкание обычно появляется при пробое в полупроводниковых приборах или изоляции в конденсаторах.

Для определения узла, в котором возникло короткое замыкание нужно отсоединить все разъемы БП от блоков компьютера, оставив только подключенные к материнской плате. После чего подключить компьютер к питающей сети и нажать кнопку «Пуск». Если кулер в БП завращался, значит, неисправен один из отключенных узлов. Для определения неисправного узла нужно их последовательно подключать к блоку питания.

Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.

Проверка БП компьютера
измерением величины сопротивления выходных цепей

При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.

Перед началом измерений БП должен быть отключен от питающей сети, и все его разъемы отсоединены от узлов системного блока. Мультиметр или тестер нужно включить в режим измерения сопротивления и выбрать предел 200 Ом. Общий провод прибора подключить к контакту разъема, к которому подходит черный провод. Концом второго щупа по очереди прикасаются к контактам, в соответствии с таблицей.

В таблице приведены обобщенные данные, полученные в результате измерения величины сопротивления выходных цепей 20 исправных БП компьютеров разных мощностей, производителей и годов выпуска.

Для возможности подключения БП для проверки без нагрузки внутри блока на некоторых выходах устанавливают нагрузочные резисторы, номинал которых зависит от мощности блока питания и решения производителя. Поэтому измеренное сопротивление может колебаться в большом диапазоне, но не должно быть ниже допустимого.

Если нагрузочный резистор в цепи не установлен, то показания омметра будут изме

Перегорел входной предохранитель в блоке питания. Диагностика.

Перегорел входной предохранитель в блоке питания. Диагностика.

Статья написана для постигающих азы в ремонте.

Сгорел входной предохранитель в блоке питания? Разберемся в причинах и как правильно проводить диагностику. Также затронем пару сопутствующих тем при анализе этой неисправности.

 

Думаю многие сталкивались с такой ситуацией когда включаем устройство  но нет никакой реакции, и после непродолжительной диагностики выявляем сгоревший  сетевой предохранитель. Причем неважно БП компьютера это или плата питания копира или факса.  Естественно многие его сразу меняют или что еще хуже ставят перемычку и тут же включают устройство. И вот тут то с большей долей вероятности он сгорит снова или выбьет автоматы в щитке. Давайте разберемся подробнее в чем же дело и почему нельзя менять предохранитель без диагностики.

Сначала взглянем на типовую схему входа в импульсных блоках питания.

 

Как видим предохранитель FU1 стоит первым в цепи, и основная его функция защитная. Но, это защита не внутренних компонентов схемы от превышения напряжения, а защита всей платы от короткого замыкания этих самых компонентов, и в конечном итоге предотвращение воспламенения внутри устройства.

Поэтому когда сгорает сетевой предохранитель во входной цепи, то это означает не то что было превышение питающего напряжение, а короткое замыкание в цепи после предохранителя. И как правило в 80% случаев если восстановить цепь вставив новый пред, и замерив сопротивление на входе блока между контактами L и N то обнаружим сопротивление равное нулю или чуть более.

Сгоревший предохранитель это следствие, поэтому как только обнаружили что он неисправен приступаем к диагностике.

Диагностику начинаем от входа, первым в списке стоит варистор VR1, выглядят они в целом виде так:

Вот они как раз и выполняют функцию защиты блока питания об бросков напряжения. Суть их в том что при превышение определенного порога напряжения они начинают пропускать через себя ток, защищая остальной участок цепи. При возможны несколько вариантов событий:

1.Импульс входного напряжения был незначительный и варистор сработав поглотил его рассеяв в тепло, потому в даташитах на них и указывается какую мощность они могут принят.

2. Импульс входного напряжения был более сильным, и варистор сработав замкнув цепь привел к образованию повышенного тока протекающего через предохранитель, который выгорел. При этом варистор пробит не был, и остался функционирующим. В таком случае замена сетевого предохранителя восстановит работоспособность.

3. Длительное превышение напряжения. При таком раскладе происходит тепловой пробой варистора приводящий к короткому замыканию цепи. Как правило это можно увидеть невооруженным взглядом в виде раскола, почернение и так далее.

Но дефект может быть и скрытым, поэтому если в цепи КЗ, то выпаиваем его в первую очередь и проверяем. Если дефект в нем, то тут у нас выбор, не впаивать его обратно совсем, на работоспособность схемы это не повлияет, но в следующий раз сгорит уже что-то другое, и замена на аналог. Советую всегда ставить новый.

К сожалению варисторы стоят не во всех блоках питания. Стоит также отметить что расположен в схеме он может как до дросселей, так и после, а обозначаться может как угодно.

Смотрим дальше:
Конденсаторы С1 и С4 служат для подавления низкочастотных дифференциальных помех, с емкостью порядка сотен нанофарад  и напряжением от 250 вольт. На схеме может обозначаться как Сх, и иметь прямоугольный вид. По своему типу пленочный, и практически никогда не выходит из строя. Но проверить все же стоит.

Дроссель Т1 - служит для подавления синфазных помех. Несмотря на то что обмотки могут находится на одном магнитопроводе, обмотки фаз разнесены друг от друга на расстоянии, и замыкания быть не должно. Но может произойти обрыв обмоток. В таком случае это однозначно говорит о коротком замыкании в цепи дальше.

Конденсаторы С2 и С3  также выполняют роль фильтра синфазных помех. Пробои случаются, но выглядит это несколько иначе, так как в общей точке они соединены с корпусов устройства, то при отсутствии заземления при прикасании к металлическим частям корпуса будет чувствоваться удар током.
Термистор Т - выполняет функцию ограничения стартового тока при включении устройства в сеть. Суть термистора в том что в обесточенном блоке питания  и при нормальной температуре он имеет высокое сопротивление, при подаче напряжения происходит нагрев термистора и уменьшение его сопротивления до нуля. Таким образом происходит плавный запуск блока питания.

И так, мы рассмотрели основные элементы так называемого входного фильтра, но стоит учитывать что это только примерная схема, различные производители могут видоизменять ее, так например отказ от конденсаторов, замена дросселей на перемычки, отсутствие варисторов и термисторов. В некоторых устройствах наоборот может наблюдаться усложнение, в виде добавочных варисторов между землей и фазой. При проверке элементов на пробой обязательно выпаиваем их, проверять в схеме на короткое замыкание бессмысленно.

Теперь перейдем к следующему компоненту:

Диодный мост D1-D4. По статистике причиной кз во входной цепи держит лидирующее место. При этом он может быть выполнен как в виде четырех отдельных диодов, так и в виде сборки.

Проверять в схеме не имеет смысла, поэтому выпаиваем и смотрим наличие пробоя, также проверяем падение напряжения в норме от 400 до 600, но точная информация в даташитах на них. Главное чтобы эти значения не отличались для каждого диода или перехода в сборке более чем на несколько единиц. Причин выхода из строя диодного моста может быть как пробой вследствие превышения напряжения или тока, и деградация np-перехода от времени.

В цепи после диодного выпрямителя расположен сетевой конденсатор С5, с напряжением обычно 400 вольт и емкостью от 40 до 200 мкф. Он так же может служить причиной короткого замыкания по причине пробоя между обкладками. Для проверки его также требуется выпаять из схемы, и следует проявить осторожность, так как исправный конденсатор может долго хранить заряд. Для проверки уже нужен специальный прибор LC-метр. Предварительно разрядив конденсатор проверяем его емкость и ток утечки.  Хотя можно и визуально определить неисправность в виде вздутия, или, если потрести его, в виде постукивания внутри, но такой способ не может показать скрытые дефекты.

И последним этапом проверки будет измерение транзистора Q1, на наличие пробоя. В приведенном выше рисунке опущена схема управления транзистором, поэтому в зависимости от компоновки не лишним будет проверить и его обвязку. И кстати, если он пробит то тут прежде чем его менять, следует уже более подробно разбираться со схемой управления транзистором и трансформатором следующим после него на предмет межвиткового замыкания.

И подходим к итогу:

Только проведя все эти проверки в цепи и заменив неисправные компоненты, можем ставить предохранитель такого же номинала и производить включение.

Надеюсь статья была полезна.

Перегорание плавкого предохранителя в блоке питания компьютера
10 декабря 2014

Перегорание плавкого предохранителя в блоке питания компьютера

Перегорание плавкого предохранителя в блоке питания компьютераПлавкий предохранитель является неотъемлемым компонентом любого электронного устройства, в том числе компьютерного блока питания. Его предназначение состоит в защите электронных компонентов и всего устройства в целом от скачков напряжения или тока. Также он защищает все элементы от перегорания вследствие воздействия на них короткого замыкания. Плавкий элемент предохранителя перегорает, размыкая электрическую цепь всего устройства. Как заподозрить перегорание плавкого предохранителя? Компьютер не будет никак реагировать на действия пользователя при включении ПК, а БП не будет раскручивать вентилятор. Поскольку напряжение подаваться на материнскую плату не будет, то никакие действия не будут способны оживить компьютер.

Для того, чтобы добраться до предохранителя, необходимо снять блок питания и разобрать его. Предохранитель должен находиться в непосредственной близости от подключенного к основной плате кабеля. Он может быть припаян к плате или вставлен в специальные держатели. В любом случае, не торопитесь сразу выпаивать его. Сначала проверьте предохранитель тестером на предмет возможного обрыва. Если предохранитель выдает минимальный уровень сопротивления, то он является исправным. Если предохранитель не прозванивается или его сопротивление очень велико, то он требует замены. Если предохранитель припаян к плате, то вам придется его выпаять.

Стабилизатор напряжения

Стабилизатор напряженияЕсли Вы обладатель стационарного компьютера,
то Вам просто необходим стабилизатор напряжения,
купить который можно тут. 

Для замены приобретите предохранитель с такими же параметрами. Обычно значение тока является равным 4 А. Заменив неисправный предохранитель, попробуйте включить компьютер. Если он нормально включится, значит, перегорание было спровоцировано обычным скачком напряжения. При однократном перегорании можно забыть об этой проблеме. Но если такие перегорания стали регулярными, задумайтесь о приобретении ИБП, который сглаживает все подобные скачки. Впрочем, если вашему БП уже больше двух лет, то и его не мешало бы поменять.

Если после замены новый, заведомо исправный предохранитель опять перегорает, то причиной может явиться возникновение короткого замыкания в цепях вашего блока. Самостоятельно устранить возникшую проблему очень сложно, особенно при отсутствии подобных навыков. Единственным выходом представляется покупка нового БП. В случае если предохранитель после замены не перегорает, но блок питания не гудит, то это указывает на неисправность одного или нескольких компонентов БП, либо неисправность сетевого шнура. После замены шнура можно говорить о неисправности всего блока. Радикальным решением является его замена.

Как работают автоматические ворота?

Операторы ворот – это механическое устройство, которое используется для открытия и закрытия ворот, чаще всего в конце подъездных путей. Эти операторы бывают разных типов, включая гидравлические, электромагнитные или солнечные. Их можно запрограммировать на использование вручную или с помощью беспроводного передатчика, оба предназначены для распашных или раздвижных проемов ворот. В магазине «Конструктор» на https://constructor-system.ru/ можно найти…

Как офисные перегородки могут принести пользу вашей компании

Сдвиг в сторону модульного офиса, состоящего из множества размеров и стилей подвижных перегородок, начался медленно, но стал доминирующим направлением коммерческого дизайна начала 21 века. Причин для этого много, но все они возвращаются к тому факту, что съемные перегородки дают массу преимуществ, которые не может дать гипсокартонная конструкция. И эти преимущества – больше, чем просто эстетические…

Безопасность и охрана дома и квартиры

Обеспечить надежную защиту своей квартиры или дома от противоправных посягательств и непрошенных гостей. Как это сделать лучше всего и какие меры следует принимать для того чтобы минимизировать риск проникновения в помещение грабителей? Этими вопросами задаются очень многие владельцы квартир и домов. На сегодняшний день существуют различные охранные системы, системы видеонаблюдения и т.д. Вместе, с тем,…

Функции и дизайн письменных столов

Несмотря на постоянно развивающуюся технологию на рабочем месте, письменные столы по-прежнему являются неотъемлемой частью повседневной жизни почти каждого офисного сотрудника. Это место, где живет Ваш компьютер, где Вы отсылаете документы, а когда дело доходит до этого, Ваш письменный стол – это Ваш дом вдали от дома. Независимо от того, проектируете ли Вы домашний офис или…

Бесплатные игровые автоматы: суть и преследуемые цели

Как проходит игра? Генерируя случайные символы, видеослот может предложить невероятное множество вариантов их совпадения. Казалось бы, гемблер никак не может повлиять на исход. А вот и нет! Каждый вариант игрового автомата предлагает свои правила, свою бонусную программу и специфические функции, что сильно отразилось на отдаче. У этого азартного продукта она самая высокая. Изучать особенности понравившегося…

Поиск неисправностей и самостоятельный ремонт компьютерного блока питания

Ремонт блока питания компьютераРаботоспособность персонального компьютера (ПК) не в последнюю очередь зависит от качества работы блока питания (БП). В случае его выхода из строя устройство не сможет включиться, а значит, придётся провести замену или ремонт блока питания компьютера. Будь то современный игровой или слабый офисный компьютер, работают все БП по сходному принципу, и методика поиска неисправностей для них одинакова.

Принцип работы и основные узлы

Перед тем как взяться за ремонт БП, необходимо понимать, каким образом он работает, знать его основные узлы. Ремонт блоков питания следует осуществлять предельно осторожно и помнить про электробезопасность во время работы. К основным узлам БП относят:

  • входной (сетевой) фильтр;
  • дополнительный формирователь стабилизированного сигнала 5 вольт;
  • главный формирователь +3,3 В, +5 В, +12 В, а также -5 В и -12В;
  • стабилизатор напряжения линии +3,3 вольта;
  • выпрямитель высокочастотный;
  • фильтры линий формирования напряжений;
  • узел контроля и защиты;
  • блок наличия сигнала PS_ON от компьютера;
  • формирователь напряжения PW_OK.

Фильтр, стоящий на входе, используется для подавления помех, генерирующихся БП вУстройство блока питания. устройство БП электрическую цепь. Одновременно с этим он выполняет защитную функцию при нештатных режимах работы БП: защита от превышения значения тока, защита от всплесков напряжения.

При включении БП в сеть на 220 вольт на материнскую плату через дополнительный формирователь поступает стабилизированный сигнал с величиной равной 5 вольт. Работа основного формирователя в этот момент блокируется сигналом PS_ON, сформированным материнской платой и равным 3 вольта.

Ремонт блока питания: ПК не включаетПосле нажатия кнопки включения на ПК, значение PS_ON становится равным нулю и происходит запуск основного преобразователя. Источник питания начинает вырабатывать основные сигналы, поступающие на компьютерную плату и схемы защиты. В случае значительного превышения уровня напряжения схема защиты прерывает работу основного формирователя.

Для запуска материнской платы на неё одновременно, с прибора питания, подаётся напряжение +3,3 вольта и +5 вольт для формирования уровня PW_OK, что обозначает питание в норме. Каждый цвет провода в устройстве питания соответствует своему уровню напряжения:

  • чёрный, общий провод;
  • белый, -5 вольт;
  • синий, -12 вольт;
  • жёлтый, +12 вольт;
  • красный, +5 вольт;
  • оранжевый, +3,3 вольта;
  • зелёный, сигнал PS_ON;
  • серый, сигнал PW_OK;
  • фиолетовый, дежурное питание.

Устройство питания в основе своей работы использует принцип Простой ремонт блока питанияширотно-импульсной модуляции (ШИМ). Сетевое напряжение, преобразованное диодным мостом, поступает на силовой блок. Его величина составляет 300 вольт. Работой транзисторов в силовом блоке управляет специализированная микросхема ШИМ контроллер. При поступлении сигнала на транзистор происходит его открывание, и на первичной обмотке импульсного трансформатора возникает ток. В результате электромагнитной индукции проявляется напряжение и на вторичной обмотке. Изменяя длительность импульса, регулируется время открытия ключевого транзистора, а значит и величина сигнала.

Контроллер, входящий в состав основного преобразователя, запускается Как применяется блок питанияот разрешающего сигнала материнской платы. Напряжение попадает на силовой трансформатор, а с его вторичных обмоток поступает на остальные узлы источника питания, формирующих ряд необходимых напряжений.

ШИМ контроллер обеспечивает стабилизацию выходного напряжения путём использования в схеме обратной связи. При увеличении уровня сигнала на вторичной обмотке, схема обратной связи уменьшает величину напряжения на управляющем выводе микросхемы. При этом микросхемой увеличивает длительность сигнала, посылаемого на транзисторный ключ.

В конце каждой линии БП ставится фильтр. Его назначение убирать паразитные пульсации, образованные переходными процессами транзисторов. Состоит он, как и любой сетевой фильтр, из электролитического конденсатора и индуктивности.

Диагностика устройства питания

Принципиальная схема блока питания компьютераПеред тем, как перейти непосредственно к диагностике компьютерного прибора питания, нужно убедиться, что неполадка именно в нём. Проще всего, это сделать, подключив заведомо исправный блок к системному блоку. Поиск неисправностей в блоке питания компьютера можно осуществлять по следующей методике:

  1. В случае повреждения БП необходимо попытаться найти пособие по его ремонту, принципиальную электрическую схему, данные о типичных неисправностях.
  2. Проанализировать условия, при каких условиях работал источник питания, исправна ли электрическая сеть.
  3. Используя свои органы чувств определить есть ли запах горевших деталей и элементов, не было ли искрения или вспышки, прислушаться слышны ли посторонние звуки.
  4. Предположить одну неисправность, выделить неисправный элемент. Обычно это самый трудоёмкий и кропотливый процесс. Этот процесс ещё более трудоёмкий, если отсутствует электрическая схема, которая просто необходима при поиске «плавающих» неисправностей. Используя измерительные приборы проследить путь прохождение сигнала неисправности до того элемента, на котором имеется рабочий сигнал. В результате сделать вывод, что сигнал пропадает на предыдущем элементе, который и является нерабочим и требует замены.
  5. После ремонта необходимо протестировать источник питания с максимально возможной его нагрузкой.

Практические рекомендации по ремонту

Блок питания - очень важный компонент любого компьютера, именно поэтому важно знать, как ремонтироватьЕсли принято решение самостоятельно починить источник питания, в первую очередь он извлекается из корпуса системного блока. После выкручиваются крепёжные винты и снимается защитный кожух. Продув и почистив от пыли, приступают к его изучению. Практический ремонт блока питания компьютера своими руками пошагово можно представить следующим образом:

  1. Внешний осмотр. При нём особое внимание уделяется почерневшим местам на плате и элементах, внешнему виду конденсаторов. Верхушка конденсаторов должна быть плоской, выпуклость говорит о его негодности, внизу у основания не должно быть подтёков. Если имеется кнопка включения, не лишним будет провести её проверку.
  2. Если осмотр не вызвал подозрений, то следующим шагом будет прозвонка входных и выходных цепей на присутствие короткого замыкания (КЗ). При присутствии короткого замыкания выявляется пробитый полупроводниковый элемент, стоящий в цепи с КЗ.
  3. Измеряется сетевое напряжение на конденсаторе выпрямительного блока и проверяется предохранитель. В случае наличия напряжения 300 B переходим к следующему этапу.
  4. Если напряжение отсутствует, при этом сгорает предохранитель, проверяется диодный мост, ключевые транзисторы на короткое замыкание. Резисторы и защитный терморезистор на обрыв.
  5. Проверяется присутствие дежурного напряжения, стабилизированных пяти вольт. Статистика свидетельствует, что когда устройство питания не включается, одна из наиболее распространённых причин, это неисправность схемы дежурного питания, при работоспособных силовых элементах.
  6. Если стабилизированные пять вольт присутствуют, проверяется наличие PS_ON. Когда значение менее четырёх вольт, ищется причина занижения уровня сигнала. Обычно PS_ON формируется от дежурного напряжения через подтягивающий резистор номиналом 1 кОм. Проверяется цепь супервизора, прежде всего на соответствие в цепи значений ёмкости конденсаторов и номиналы резисторов.

В случае, если причина не найдена, проверяется ШИМ контроллер. Для этого понадобится стабилизированный прибор питания на 12 вольт. На плате отключается нога микросхемы, отвечающая за задержку (DTC), а питание источника подаётся на ногу VCC. Осциллографом смотрится наличие генерации сигнала на выводах, подключённых к коллекторам транзисторов, и присутствие опорного напряжения. Если импульсы отсутствуют проверяется промежуточный каскад, собранный чаще всего на маломощных биполярных транзисторах.

Типовые неисправности и проверка элементов

Как работает узел управления блока питания При восстановлении блока питания ПК понадобится использовать различного рода приборы в первую очередь, это мультиметр и желательно осциллограф. С помощью тестера возможно провести измерения на короткое замыкание или обрыв как пассивных, так и активных радиоэлементов. Работоспособность микросхемы, если отсутствуют визуальные признаки выхода её из строя, проверяется с использованием осциллографа. Кроме, измерительной техники для ремонта блока питания ПК, потребуется: паяльник, отсос для припоя, промывочный спирт, вата, олово и канифоль.

Если не запускается блок питания компьютера, возможные неисправности можно представить в виде типичных случаев:

  1. Перегорает предохранитель в первичной цепи. Пробиты диоды в выпрямительном мосту. Звонятся на короткое замыкание элементы разделительного фильтра: B1-B4, C1, C2, R1, R2. Обрыв варисторов и терморезистора TR1, звонятся накоротко переходы силовых транзисторов и вспомогательных Q1-Q4.
  2. Постоянное напряжение пять вольт или три вольта занижены или завышены. Нарушения в работе стабилизирующей цепи, проверяются микросхемы U1, U2. Если проверить ШИМ контроллер не удаётся, то проводится замена микросхемы на идентичную или аналог.
  3. Уровень сигнала на выходе отличается от рабочего. Неисправность в цепи обратной связи. Виновата микросхема ШИМ и радиоэлементы в её обвязке, особое внимание уделяется конденсаторам C и маломощным резисторам R.
  4. Нет сигнала PW_OK. Проверяется присутствие напряжений основных напряжений и сигнала PS_ON. Проводится замена супервизора, отвечающего за контроль выходного сигнала.
  5. Отсутствует сигнал PS_ON. Сгорела микросхема супервизора, элементы обвязки её цепи. Проверить путём замены микросхемы.
  6. Не крутит вентилятор. Замерить напряжение, поступающее на него, оно составляет 12 вольт. Прозвонить терморезистор THR2. Замерить сопротивление выводов вентилятора на отсутствие короткого замыкания. Провести механическую чистку и смазать посадочное место под лопасти вентилятора.

Принципы измерения радиоэлементов

Корпус БП соединён с общим проводом печатной платы. Измерение силовой части источника питания проводится относительно общего провода. Предел на мультиметре выставляется более 300 вольт. Во вторичной части присутствует только постоянное напряжение, не превышающее 25 вольт.

Проверка резисторов осуществляется путём сравнений показаний тестера и маркировки, нанесённой на корпус сопротивления или указанной на схеме. Проверка диодов проводится тестером, если он показывает нулевое сопротивление в оба направления, то делается вывод о его неисправности. Если существует возможность в приборе проверить падение напряжения на диоде, то можно его не выпаивать, величина составляет 0,5−0,7 вольта.

Проверка конденсаторов происходит путём измерения их ёмкости и внутреннего сопротивления, для чего необходим специализированный прибор ESR-метр. При замене следует учитывать, что используются конденсаторы с низким внутренним сопротивлением (ESR). Транзисторы прозванивают на работоспособность p-n переходов или в случае полевых на способность открываться и закрываться.

Проверка отремонтированного источника питания

После того, как АТХ блок отремонтирован, важно правильно провести его первое включение. При этом, если были устранены не все неполадки, возможен выход из строя отремонтированных и новых узлов прибора.

Запуск устройства питания можно осуществить автономно, без использования компьютерного блока. Для этого перемыкается контакт PS_ON с общим проводом. Перед включением на место предохранителя впаивается лампочка 60 Вт, а предохранитель удаляется. Если при включении лампочка начинает ярко светить, то в блоке присутствует короткое замыкание. В случае когда лампа вспыхнет и погаснет, лампу можно выпаивать и устанавливать предохранитель.

Следующий этап проверки БП происходит под нагрузкой. Сначала проверяется наличие дежурного напряжения для этого выход нагружается нагрузкой порядка двух ампер. Если дежурка в порядке, блок питания включается замыканием PS_ON, после чего делаются замеры уровней выходных сигналов. Если есть осциллограф — смотрится пульсация.

РЕМОНТ БП ПК - КОНДЕНСАТОРЫ И ПРЕДОХРАНИТЕЛИ

Продолжаем цикл статей посвященных ремонту компьютерных блоков питания АТХ. Итак, в предыдущей статье, мы заполучили на ремонт нерабочий блок питания, и приступили к диагностике. В этой разберем, какие действия следует произвести, если видим вздувшиеся электролитические конденсаторы, или предохранитель блока питания в обрыве. Включать блок питания для проверки со сгоревшим предохранителем, следует только через лампу мощностью 200 ватт, подключенную проводами с крокодилами, к выводам предохранителя. Никаких жучков ! Даже то, что блок питания стартует, это совсем не обязательное условие для того, чтобы считать блок питания рабочим. Бывает и такое, что блок питания стартует, но работает не стабильно. В таком случае с очень высокой степенью вероятности, мы  можем попытаться визуально определить поломку, но есть одно но... Заключается поломка в увеличившимся ESR электролитических конденсаторов, или по русски ЭПС (эквивалентное последовательное сопротивление). Измеряют ESR специальным прибором, ESR метром.

Такие конденсаторы очень плохо работают в высокочастотных цепях, в таких, как в этих блоках питания. Визуально это проявляется в образовании припухлости в верхней части конденсатора, а иногда в некоторых случаях, он даже вскрывается при этом. Особо нетерпеливые могут сказать, а зачем что-то измерять, если это итак видно визуально? Дело в том что “дуются” конденсаторы относительно высокого номинала, где-то от 470-1000 мкФ.

Конденсаторы на 1-10, 22-47 мкФ и подобные, маленьких номиналов, они не вздуваются, и визально ничем не отличаются от рабочих, и определить дефектные, можно только с помощью прибора. Сразу скажу прибор покупать, или собирать для разового ремонта, абсолютно не обязательно, в таком случае достаточно просто заменить на новые (!) все электролитические конденсаторы в проблемном узле. Почему именно на новые? Потому что выпаянные с доноров б\у конденсаторы, могут быть также с уже завышенным ESR, или на грани. Если же кто-то собирается заниматься ремонтом импульсных блоков питания на постоянной основе, тому конечно-же будет необходим прибор ESR метр.

У меня их два, самодельный, ESR метр, приставка к мультиметру, позволяющий приблизительно тестировать конденсаторы без выпаивания, и покупной с Али экспресс, который показывает значения сразу в Омах, но только после того как вы выпаяете конденсатор из платы. Я его оформил в корпусе, для удобства работы с ним:

Такое сочетание двух приборов очень удобно, за 3 минуты перемерять самодельным ESR метром все электролитические конденсаторы на плате, и затем перепаять нужные конденсаторы, выпаянные предварительно с доноров, (других блоков питания), проверив их на китайском ESR метре.

Схемы обоих приборов приведены ниже. Транзистор-тестер Т4:

И самодельный прибор:

Мой прибор подключается к цифровому мультиметру, и выдает показания в милливольтах, при значении которых, выше пороговых, определенных путем измерения низкоомных резисторов, и сравнения по таблице предельных значений ESR, конденсатор подлежит замене.

На практике это выглядит намного проще, чем в теории.

Таблица значений ESR конденсаторов приведена ниже:

Второй прибор, который будет нужен при ремонтах импульсных блоков питания, это обычный цифровой мультиметр. Для каких целей он применяется? Для тех же, что и при всех других ремонтах: проверка (прозвонка) предохранителя, диодов, транзисторов, резисторов. А для этого мы должны уметь ориентироваться по схеме, и находить нужные детали на печатной плате. Соблюдайте меры электробезопасности при ремонтах техники! После вынимания шнура питания из розетки, помните, что на конденсаторах фильтра (больших бочонках), еще какое-то время остается заряд. На схеме они находятся здесь:

Как вы видите параллельно им подключены гасящие резисторы, но так как они имеют относительно большой номинал, требуется время, чтобы конденсаторы полностью разрядились. Поэтому подождите 5 минут, перед тем, как начинать откручивать плату, переворачивать ее, и проводить какие либо измерения на ней.

Выше приведена для ознакомления схема одной из моделей блоков питания, мощностью 350 ватт. Она кликабельна. По ней мы и разберем, как выглядят те детали, которые нам необходимо проверить при ремонте, в случае если у нас будет сгоревший предохранитель.

Диодный мост

Обозначение на схеме:

Внешний вид:

Он может быть как в виде одной детали с 4 выводами, собственно мостика, так и набран из отдельных 4 диодов, включенных по мостовой схеме. Проверяется в режиме звуковой прозвонки, касаясь его 4 ножек, попеременно во всех вариантах: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4. Если в каком либо из случаев звучит звуковой сигнал, мост однозначно под замену. После предварительной прозвонки, надо найти схему диодного моста и вызвонить p-n переходы, возможно в мостике не короткое замыкание, а обрыв.

Выходные транзисторы

Обозначение и расположение на схеме:

Внешний вид:

Они расположены на радиаторе, ближнем к большим конденсаторам (бочонкам). Проверяются транзисторы мультиметром в режиме звуковой прозвонки, аналогично диодам. Условно можно представить при проверке биполярный транзистора, как два диода, соединенных или катодами или анодами, и проверить их как диоды, в соответствии с цоколевкой, которую можно посмотреть, скачав Даташит, на данный транзистор. Если потребуется заменить транзистор установленный на радиатор, с этим могут возникнуть проблемы. Иногда вплотную к транзисторам бывает установлен трансформатор, и подлезть отверткой просто невозможно. В таком случае следует воспользоваться прямыми утконосами, понемногу поворачивая ими сбоку головку винта. При замене транзистора, обязательно проверьте и его обвязку, те детали, которые участвуют в его работе, на схеме выделены красным:

В особо тяжелых случаях может потребоваться выпаивание двух выходных транзисторов, и третьего, установленного на этот же радиатор. А затем нужно снять и сам радиатор. Каким образом можно быстро демонтировать транзисторы стоящие на радиаторе? Оловоотсос, оплетка, паяльный фен, здесь мало эффективны. Поможет набор демонтажных игл с Али экспресс.

Набор игл для выпаивания

Просто подбираем иглу нужного диаметра, чтобы одевалась на вывод и проходила в отверстие в плате, прогреваем контакт вывода, и одновременно вращая иглу, насаживаем ее на вывод. Пример использования игл для демонтажа показан на следующем фото:

Набор игл для выпаивания

Проделав это со всеми тремя выводами, мы можем открутить винт крепления, и снять транзистор с радиатора. При установке транзистора обратно на радиатор, не забываем про изолирующие прокладки, между радиатором и транзистором, и шайбу, одевающуюся на винт крепления транзистора к радиатору.

винт крепления транзистора к радиатору

Тем кто ранее не ремонтировал блоки питания АТХ, думаю будет полезна следующая картинка, которая поясняет назначение деталей, на плате блока питания.

винт крепления транзистора к радиатору

В следующей статье мы разберем, из-за чего возникает свист дежурки, чем чревато повышение напряжения на ней, и как это исправить.

   Специально для сайта Схемы и радиотехника - AKV.

   Ремонт электроники
Ремонт компьютерного блока питания | Практическая электроника

Для более доступного объяснения данного материала настоятельно рекомендую прочесть статью по основам ремонта компьютерных блоков питания.

Проверяем входное сопротивление

Итак, дали в ремонт блок питания Power Man на 350 Ватт

компьютерный блок питания

Что делаем первым делом? Внешний и внутренний осмотр. Смотрим на “потроха”. Если ли какие сгоревшие радиоэлементы? Может где-то обуглена плата или взорвался конденсатор, либо пахнет горелым кремнием? Все это учитываем при осмотре. Обязательно смотрим на предохранитель. Если он сгорел, то ставим вместо него временную перемычку примерно на столько же Ампер, а потом замеряем входное сопротивление через два сетевых провода. Это можно сделать на вилке блока питания при включенной кнопке “ВКЛ”. Оно НЕ должно быть слишком маленькое, иначе при включении блока питания еще раз произойдет короткое замыкание.

Замеряем напряжения

Если все ОК, включаем наш блок питания в сеть с помощью сетевого кабеля, который идет вместе с блоком питания, и не забываем про кнопочку включения, если она у вас была в выключенном состоянии.

кнопка включения

Далее меряем напряжение на фиолетовом проводе

распиновка компьютерного блока питания ATX

Мой пациент на фиолетовом проводе показал 0 Вольт. Беру мультиметр и прозваниваю  фиолетовый провод на землю. Земля – это провода черного цвета с надписью СОМ. COM – сокращенно от “common”, что значит “общий”. Есть также некоторые виды “земель”:

Как только я коснулся земли и фиолетового провода, мой мультиметр издал дотошный сигнал “ппииииииииииип” и  показал нули на дисплее. Короткое замыкание, однозначно.

Ну что же, будем искать схему на этот блок питания. Погуглив по просторам интернета, я нашел схему. Но нашел только на Power Man 300 Ватт. Они все равно будут похожи. Отличия в схеме были лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схемы, то это не будет большой проблемой.

А вот и схемка на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

схема Power man 300

Ищем виновника

Как мы видим в схеме, дежурное питание, далее по тексту – дежурка, обозначается как +5VSB:

Ремонт компьютерного блока питания

Прямо от нее идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон – это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Скорее всего стабилитрон сгорел и PN переход разрушен.

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным, или иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким, или иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта, как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем  проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

1)При последовательном соединении работает правило больше большего, иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

2)При параллельном же соединении работает обратное правило, меньше меньшего, иначе говоря итоговое сопротивление будет меньше чем сопротивление резистора меньшего из номиналов.

Можете взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра ? Правильно, тоже равное нулю…

И до тех пор пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том,  что при звуковой прозвонке, ВСЕ детали параллельно соединенные с деталью находящейся в коротком замыкании, будут у нас звониться накоротко с общим проводом!

Пробуем выпаять стабилитрон. Как только я к нему прикоснулся, он развалился надвое. Без комментариев…

Ремонт компьютерного блока питания

Дело не в стабилитроне

Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Я сходил в радиомагазин за новым стабилитроном и запаял его. Включаю блок питания, и… вижу как мой новый, только что купленный стабилитрон испускает волшебный дым)…

И тут я сразу вспомнил одно из главных правил ремонтника:

Если что-то сгорело, найди сначала причину этого, а только затем меняй деталь на новую или рискуешь получить еще одну сгоревшую деталь.

Ругаясь про себя матом, перекусываю сгоревший стабилитрон бокорезами  и снова включаю блок питания.

Так и есть, дежурка завышена: 8,5 Вольт. В голове крутится главный вопрос: “Жив ли еще ШИМ контроллер, или я его уже благополучно спалил?”. Скачиваю даташит на микросхему и вижу предельное напряжение питания для ШИМ контроллера, равное 16 Вольтам. Уфф, вроде должно пронести…

Ремонт компьютерного блока питания

Проверяем конденсаторы

Начинаю гуглить по моей проблеме на спец сайтах, посвященных ремонту БП ATX. И конечно же, проблема завышенного напряжения дежурки оказывается в банальном увеличении ESR электролитических конденсаторов в цепях дежурки. Ищем эти конденсаторы на схеме и проверяем их.

Вспоминаю о своем собранном приборе ESR метре

Ремонт компьютерного блока питания

Самое время проверить, на что он способен.

Проверяю первый конденсатор в цепи дежурки.

Ремонт компьютерного блока питания

Ремонт компьютерного блока питания

ESR в пределах нормы.

Находим виновника проблемы

Проверяю второй

Ремонт компьютерного блока питания

Ремонт компьютерного блока питания

Жду, когда на экране  мультиметра появится какое-либо значение, но ничего не поменялось.

Ремонт компьютерного блока питания

Понимаю, что виновник, или по крайней мере один из виновников проблемы найден. Перепаиваю конденсатор на точно такой же, по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь хочу остановиться подробнее:

Если вы решили поставить в блок питания ATX электролитический конденсатор не с донора, а новый, из магазина, обязательно покупайте LOW ESR конденсаторы, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания, как раз именно такие цепи.

Итак, я включаю блок питания и снова замеряю напряжение на дежурке. Наученный горьким опытом уже не тороплюсь ставить новый защитный стабилитрон и замеряю напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

Снова сажусь гуглить по проблеме завышенного напряжения на дежурке, и на сайте rom.by, посвященном как ремонту БП ATX  и материнских плат так и вообще всего компьютерного железа. Нахожу свою неисправность поиском в типичных неисправностях данного блока питания. Рекомендуют заменить конденсатор емкостью 10 мкФ.

Замеряю ESR на конденсаторе…. Жопа.

Ремонт компьютерного блока питания

Ремонт компьютерного блока питания

Результат, как и в первом случае: прибор зашкаливает. Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно –  они припухшие, или вскрывшиеся розочкой

Да, я согласен с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

Итак, перебрав свои платы был найден и второй нужный мне конденсатор на одной из плат доноров. На всякий случай было измерено его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаю блок питания клавишным выключателем и измеряю дежурное напряжение. То, что и требовалось, 5,02 вольта… Ура!

Измеряю все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5%.  Осталось впаять стабилитрон на 6,3 Вольта.  Долго думал, почему стабилитрон именно на  6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего, этот стабилитрон стоит здесь как защитный, для того, чтобы в случае повышения напряжения на дежурке, выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив нашу материнскую плату от сгорания при поступлении на нее завышенного напряжения через дежурку.

Вторая функция этого стабилитрона, видать, защита ШИМ контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, поэтому на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и присутствует у нас на дежурке.

Заключение

Итак, какие можно сделать выводы из этого ремонта:

1)Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей, такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

2)Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

3)Найдя какую либо сгоревшую деталь, не торопимся менять её на новую, а ищем причину которая привела к её сгоранию, иначе мы рискуем получить еще одну сгоревшую деталь.

РЕМОНТ БП ПК - ДЕЖУРНОЕ НАПРЯЖЕНИЕ

В прошлой статье мы рассмотрели, какие действия нужно предпринять, если у нас предохранитель блока питания ATX в коротком замыкании. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозванивать диодный мост, выходные транзисторы, силовой транзистор или мосфет, в зависимости от модели блока питания. Если же предохранитель цел, мы можем попробовать подсоединить шнур питания к блоку питания, и включить его выключателем питания, расположенным на задней стенке блока питания.

РЕМОНТ БП ПК - ДЕЖУРНОЕ НАПРЯЖЕНИЕ

И вот здесь нас может поджидать сюрприз, сразу как только мы щелкнули выключателем, мы можем услышать высокочастотный свист, иногда громкий, иногда тихий. Так вот, если вы услышали этот свист, даже не пытайтесь подключать блок питания для тестов к материнской плате, сборке, или устанавливать такой блок питания в системный блок!

РЕМОНТ БП ПК - ДЕЖУРНОЕ НАПРЯЖЕНИЕ

Дело в том, что в цепях дежурного напряжения (дежурки) стоят все те же знакомые нам по прошлой статье электролитические конденсаторы, которые теряют емкость, при нагреве, и от старости, у них увеличивается ESR, (по-русски сокращенно ЭПС)  эквивалентное последовательное сопротивление. При этом визуально, эти конденсаторы могут ничем не отличаться от рабочих, особенно это касается небольших номиналов.

РЕМОНТ БП ПК - ДЕЖУРНОЕ НАПРЯЖЕНИЕ   РЕМОНТ БП ПК - ДЕЖУРНОЕ НАПРЯЖЕНИЕ

Дело в том, что на маленьких номиналах, производители очень редко устраивают насечки в верхней части электролитического конденсатора, и они не вздуваются и не вскрываются. Такой конденсатор не измерив специальным прибором, невозможно определить на пригодность работы в схеме. Хотя иногда, после выпаивания, мы видим, что серая полоса на конденсаторе, которой маркируется минус на корпусе конденсатора, становится темной, почти черной от нагрева. Как показывает статистика ремонтов, рядом с таким конденсатором обязательно стоит силовой полупроводник, или выходной транзистор, или диод дежурки, или мосфет. Все эти детали при работе выделяют тепло, которое пагубно сказывается на сроке работы электролитических конденсаторов. Дальнейшее объяснять про работоспособность такого потемневшего конденсатора, думаю будет лишним.

Остановившийся кулер блока питания

Если у блока питания остановился кулер, из-за засыхания смазки и забивания пылью, такой блок питания скорее всего потребует замены практически ВСЕХ электролитических конденсаторов на новые, из-за повышенной температуры внутри блока питания. Ремонт будет довольно муторным, и не всегда целесообразным. Ниже приведена одна из распространенных схем, на которой основаны блоки питания Powerman 300-350 ватт, она кликабельна:

Схема БП АТХ Powerman

Давайте разберем, какие конденсаторы нужно менять, в этой схеме, в случае проблем с дежуркой:

какие конденсаторы нужно менять в схеме

Итак, почему же нам нельзя подключать блок питания со свистом к сборке для тестов? Дело в том, что в цепях дежурки стоит один электролитический конденсатор, (выделено синим) при увеличении ESR которого, у нас возрастает дежурное напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как мы нажмем кнопку включения системного блока. Иными словами, как только мы щелкнули клавишным выключателем на задней стенке блока питания, это напряжение, которое должно быть равно +5 вольт, поступает у нас на разъем блока питания, фиолетовый провод разъема 20 Pin, а оттуда на материнскую плату компьютера.

какие конденсаторы нужно менять в схеме

В моей практике были случаи, когда дежурное напряжение было равно (после удаления защитного стабилитрона, который был в КЗ) +8 вольт, и при этом ШИМ контроллер был жив. К счастью блок питания был качественный, марки Powerman, и там стоял на линии +5VSB, (так обозначается на схемах выход дежурки) защитный стабилитрон на 6.2 вольта.

какие конденсаторы нужно менять в схеме

Почему стабилитрон защитный, как он работает в нашем случае? Когда напряжение у нас меньше, чем 6.2 вольта, стабилитрон не влияет на работу схемы, если же напряжение становится выше, чем 6.2 вольта, наш стабилитрон при этом уходит в КЗ (короткое замыкание), и соединяет цепь дежурки с землей. Что нам это дает? Дело в том, что замкнув дежурку с землей, мы сохраняем тем самым нашу материнскую платы от подачи на нее тех самых 8 вольт, или другого номинала повышенного напряжения, по линии дежурки на материнку, и защищаем материнскую плату от выгорания.

какие конденсаторы нужно менять в схеме

Но это не является 100% вероятностью, что у нас в случае проблем с конденсаторами сгорит стабилитрон, есть вероятность, хотя и не очень высокая, что он уйдет в обрыв, и не защитит тем самым нашу материнскую плату. В дешевых блоках питания, этот стабилитрон обычно просто не ставят. Кстати, если вы видите на плате следы подгоревшего текстолита, знайте, скорее всего там какой-то полупроводник ушел в короткое замыкание, и через него шел очень большой ток, такая деталь очень часто и является причиной, (правда иногда бывает, что и следствием) поломки.

Кондеры в дежурке БП

После того, как напряжение на дежурке придет в норму, обязательно поменяйте оба конденсатора на выходе дежурки. Они могут придти в негодность из-за подачи на них завышенного напряжения, превышающего их номинальное. Обычно там стоят конденсаторы номинала 470-1000 мкф. Если же после замены конденсаторов, у нас на фиолетовом проводе, относительно земли появилось напряжение +5 вольт, можно замкнуть зеленый провод с черным, PS-ON и GND, запустив блок питания, без материнской платы.

Кондеры в дежурке БП

Если при этом начнет вращаться кулер, это значит с большой долей вероятности, что все напряжения в пределах нормы, потому что блок питания у нас стартанул. Следующим шагом, нужно убедиться в этом, померяв напряжение на сером проводе, Power Good (PG), относительно земли. Если там присутствует +5 вольт, вам повезло, и остается лишь замерить мультиметром напряжения, на разъеме блока питания 20 Pin, чтобы убедиться, что ни одно из них не просажено сильно.

Кондеры в дежурке БП

Как видно из таблицы, допуск для +3.3, +5, +12 вольт - 5%, для -5, -12 вольт - 10%. Если же дежурка в норме, но блок питания не стартует, Power Good (PG) +5 вольт у нас нет, и на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем только с дежуркой. Различные варианты поломок и диагностики в таких  случаях, мы рассмотрим в следующих статьях. Всем удачных ремонтов! С вами был AKV.

   Ремонт электроники
На рынке в настоящее время доступно множество типов, функций и конструкции предохранителей. Их полосы состоят из алюминия, меди, цинка, и они всегда соединены последовательно с цепью для защиты от перегрузки по току в проводящих кабелях. Вот основная принципиальная схема и символ предохранителя.

Fuse circuit diagram

Fuse symbol

Почему нам нужен предохранитель?

Fuse используются для предотвращения бытовой техники от короткого замыкания и повреждения от перегрузки или сильного тока и т. Д.Если мы не используем плавкие предохранители, в проводке возникают электрические неисправности, в результате чего перегорают провода и электроприборы, и может начаться пожар в домашних условиях. Жизнь телевизоров, компьютеров, радиоприемников и других бытовых приборов также может оказаться под угрозой. Когда предохранитель гаснет, возникает внезапная искра, которая может привести к превращению вашего дома в внезапную темноту, отключив источник питания, что избавит вас от дальнейших несчастных случаев. Вот почему нам нужны предохранители для защиты нашей бытовой техники от вреда.

Как работает предохранитель?

Предохранители работают по принципу теплового эффекта тока .Он состоит из тонкой полосы или жилы из металлической проволоки с негорючим материалом. Это связано между концами терминалов. Предохранитель всегда подключен последовательно с электрической цепью.

Когда избыточный ток или тепло генерируется из-за протекания сильного тока в цепи, предохранитель плавится из-за низкой температуры плавления элемента, и он размыкает цепь. Чрезмерный поток может привести к обрыву провода и остановке потока тока. Предохранитель может быть заменен или заменен на новый с подходящими характеристиками.Предохранитель может состоять из таких элементов, как цинк, медь, серебро и алюминий. Они также действуют как автоматический выключатель, который используется для размыкания цепи, когда в цепи возникает внезапный сбой. Это не только защитник, но также используется в качестве меры безопасности для предотвращения опасности для людей. Вот так работает предохранитель. Здесь на рисунке показан предохранитель срабатывания, предохранитель в бочке (контейнер), предохранитель связи.

Fuse working operation

Как выбрать предохранитель?

Fuse rating = (Вт / В) х 1.25

  1. Выберите плавкий предохранитель, например плавкие предохранители с временной задержкой для индуктивной нагрузки и быстродействующие плавкие предохранители для резистивной нагрузки.
  2. Списать мощность (ватт) прибора - обычно из руководства по эксплуатации,
  3. Запишите номинальное напряжение. Напряжение должно быть больше, чем напряжение цепи для надлежащей защиты устройства.
  4. Используйте следующий по величине номинал предохранителя после расчета. Например, если расчетный номинал предохранителя составляет 8,659 А, то для этого мы будем использовать предохранитель на 9 А.

Характеристики предохранителей

Существуют следующие важные характеристики предохранителей в электрической и электронной системе: -

  • Номинальный ток: Максимально непрерывно проводящий ток удерживает плавкий предохранитель без плавления, он называется номинальным током. Это текущая пропускная способность, которая измеряется в амперах. Это тепловые характеристики.

Ток (Cin) = 75% Текущий (рейтинг)

  • Номинальное напряжение: В этой характеристике напряжение, включенное последовательно с предохранителем, не увеличивает номинальное напряжение.

Определенная мощность> максимальное номинальное напряжение

Объединяющая способность <короткий ckt current

  • Падение напряжения : Когда течет чрезмерный ток, предохранитель плавится и размыкает цепь. Из-за этого изменения сопротивления и падение напряжения станет меньше.

  • Температура: при этом рабочая температура будет выше, поэтому номинальный ток будет меньше, поэтому плавкий предохранитель плавит.

Fuse characteristic

Этот график показывает температуру в зависимости от допустимой нагрузки плавкого предохранителя.В этом процессе, в точке, где три линии встречаются при 25 градусах по Цельсию, токонесущая способность плавкого предохранителя будет равна 100%, и через некоторое время текущая емкость уменьшится при плавком плавком предохранителе, а также уменьшится до 82% при 65 ° С. градусов C. Это приводит к тому, что повышение температуры приведет к уменьшению несущей способности предохранителя.

Классификация предохранителей

Теперь мы обсуждаем около различных типов предохранителей . Они разделены на две части: предохранители переменного тока и предохранители постоянного тока.Кроме того, они разделены на многие категории, приведенные в блок-схеме ниже: -

Classification of Fuse

Различные типы предохранителей

Сплавы

изобретены впервые компанией «Thomas Alva Edison», но в настоящее время на рынке доступно типов предохранителей . Как правило, существует два типа предохранителей: -

Предохранители
  • DC: Предохранители DC имеют больший размер. Источник постоянного тока имеет постоянное значение выше 0 В, поэтому сложно пренебречь и отключить цепь, и существует вероятность возникновения электрической дуги между расплавленными проводами.Чтобы преодолеть это, электроды размещаются на больших расстояниях, и из-за этого увеличивается размер предохранителей постоянного тока.
  • AC Предохранители: Предохранители переменного тока имеют меньшие размеры. Они колебались 50-60 раз в секунду от минимума до максимума. Таким образом, нет никакой возможности дуги между расплавленными проводами. Следовательно они могут быть упакованы в маленький размер.

Предохранители

AC подразделяются на две части, то есть предохранители низкого напряжения и предохранители высокого напряжения.

1. Предохранители низкого напряжения (LV)

  • Предохранители типа картриджа: Это тип предохранителей, в которых они имеют полностью закрытые контейнеры и имеют контакт i.металл, кроме

Cartridge Type Fuses

Предохранители типа

Картриджа бывают двух типов: -

  1. Предохранители для картриджей типа : - Состоит из картриджа, основания предохранителя, крышки и переходного кольца. Основа предохранителя имеет крышку предохранителя, которая снабжена элементом предохранителя с картриджем через переходное кольцо. Контур замыкается, когда кончик картриджа соприкасается с проводником.
  2. Link Тип или HRC (высокая разрывная способность) Предохранители: - В этом типе предохранителя протекание тока по элементу предохранителя задается при нормальных условиях.Основание предохранителя действует как входящий и исходящий терминал, который состоит из фарфора, и держатель предохранителя используется для удержания элемента предохранителя, который состоит из олова, меди, алюминия, свинца и т. Д. Это используется в домашней электропроводке, небольших отраслях промышленности. etc.
  3. Rewireable Kit-Kat Type Fuse

    • Предохранители типа Striker: - В этом типе предохранителей он используется для замыкания и размыкания цепи. У них достаточно силы и смещения.

    • Плавкие предохранители типа переключателя: - В этом типе предохранителей, в основном, металлический, заключенный в выключатель и предохранитель, который широко используется для низкого и среднего уровня напряжения.Эти предохранители имеют стеклянную трубку, заполненную четыреххлористым углеродом. Один конец трубки упакован, а другой зафиксирован проволокой из фосфористой бронзы. Когда срабатывает предохранитель, жидкость, используемая в предохранителе, гасит дугу. Это увеличивает емкость короткого замыкания.

    Liquid Type HRC Fuse

    • Тип выталкивания HRC Предохранители: - Это предохранитель, который создает эффект вытеснения газов, образующихся в результате внутреннего искрения. При этом камера плавкой вставки заполнена борной кислотой для удаления газов.

    • Восстанавливаемые плавкие предохранители: - Это тип предохранителей, широко известный как самовосстанавливающиеся плавкие предохранители, в котором используется термопластичный терморезистор проводящего типа, известный как полимерный положительный температурный коэффициент (PPTC). Если происходит сбой. Ток увеличивается, температура тоже увеличивается. Увеличение сопротивления связано с увеличением температуры. Приложения, где это используется, являются военными и аэрокосмическими, где замена невозможна.

    Resettable Fuses

    Applications

    Плавкие предохранители являются наиболее важной частью электрических и электронных систем и цепей.Вот некоторые приложения, в которых используются предохранители, например,

    • Они используются в домашних распределительных щитах, общих электрических приборах и устройствах.
    • Они используются в игровых приставках и во всех автомобилях, таких как легковые автомобили, грузовики и другие транспортные средства.
    • Они также используются в ноутбуках, мобильных телефонах, принтерах, сканерах, портативной электронике, жестких дисках.
    • В электрической распределительной системе вы найдете предохранители в конденсаторах, трансформаторах, силовых преобразователях, пускателях двигателей, силовых трансформаторах.Тем не менее, во многих современных корпусах башенных компьютеров блок питания находится в задней части корпуса. В корпусе настольного компьютера (все в одном) блок питания расположен сзади слева или сзади справа.

      Запчасти обнаружены на задней панели блока питания

      Ниже приведен список деталей, которые вы можете найти на задней панели блока питания.

      • A подключение шнура питания к компьютеру.
      • A Вентилятор открывается для нагрева из источника питания.
      • Красный переключатель
      • A для изменения напряжения питания.
      • Клавишный переключатель
      • A для включения и выключения питания.

      В передней части блока питания, который не виден, если компьютер не открыт, вы найдете несколько кабелей. Эти кабели подключаются к материнской плате компьютера и другим внутренним компонентам. Блок питания подключается к материнской плате с помощью разъема в стиле ATX и может иметь один или несколько из следующих кабелей для подключения питания к другим устройствам.

      Внутри блока питания найдено

      деталей

      Ниже приведен список деталей внутри блока питания.

      Выпрямитель
      • A, преобразующий переменный ток (переменный ток) в постоянный ток

        Фильтр
      • A, сглаживающий постоянный ток (постоянный ток), поступающий от выпрямителя. Трансформатор
      • А, который управляет входящим напряжением, повышая или понижая его.
      • Регулятор напряжения
      • A, который управляет выходом постоянного тока, обеспечивая правильное количество энергии, вольт или ватт, для подачи на оборудование компьютера.

      Порядок, в котором функционируют эти внутренние компоненты блока питания, следующий:

      1. Transformer
      2. Rectifier
      3. Filter
      4. Регулятор напряжения

      Какие элементы питаются от блока питания компьютера?

      Все, что находится в корпусе компьютера, питается от источника питания.Например, материнская плата, ОЗУ, ЦП, жесткий диск, дисководы и большинство видеокарт (если они установлены на компьютере) питаются от источника питания. Любые другие внешние устройства и периферийные устройства, такие как монитор компьютера и принтер, имеют источник питания или подают питание через кабель передачи данных, как некоторые USB-устройства.

      . Всегда ли вентилятор работает от источника питания?

      Пока компьютер работает на вентиляторе (ах) внутри блока питания, он всегда должен работать. Если вентилятор не работает (вращается), либо компьютер не работает, либо вентилятор внутри блока питания вышел из строя, и блок питания следует заменить.

Отправить ответ

avatar
  Подписаться  
Уведомление о