Эпра схема: Страница не найдена – Совет Инженера

Содержание

ЭПРА на дискретных элементах для ламп Т8

В статье предложен простой электронный пускорегулирующий аппарат для люминесцентных ламп Т8, собранный на дискретных элементах.

Люминесцентные лампы на протяжении многих десятилетий являются самым популярным источником света после ламп накаливания. Как известно, для их работы необходим пускорегулирующий аппарат (ПРА) - устройство, обеспечивающее стабильный розжиг и поддерживающее необходимый рабочий ток в лампе. Электронным пускорегулирующим аппаратам (ЭПРА), или электронным балластам, посвящено множество книг и публикаций, например [1, 2]. Универсальный ЭПРА, описанный в [1], обеспечивает "тёплый" старт для ламп и очень низкий коэффициент пульсаций светового потока (около 1 %). Но подобные устройства довольно сложны для повторения в радиолюбительских условиях, требуют редких компонентов и "чувствительны" к трассировке печатной платы, особенно к разводке общего провода. В предлагаемой статье рассмотрен более простой вариант электронного балласта, собранный из распространённых радиодеталей. Схема ЭПРА приведена на рис. 1. Он рассчитан на работу с четырьмя лампами Т8 мощностью 18 Вт либо с двумя лампами по 36 Вт (рис. 2).

Рис. 1. Схема ЭПРА

 

Рис. 2. Схема расположения ламп

 

Основные технические характеристики

Напряжение питания, В .....155...240

Максимальный потребляемый ток (4 лампы по 18 Вт), мА..........................330

Коэффициент мощности (4 лампы по 18 Вт), не менее.........................0,96

Коэффициент пульсаций светового потока, %, не более ........................18

КПД, не менее...................0,9

Частота преобразователя, кГц...........................65 

За основу взят полумостовой автогенератор "электронного трансформатора" для галогенных ламп, описанный в [3]. Отличия заключаются в выходном каскаде, в наличии пассивного корректора мощности (в "электронном трансформаторе" для галогенных ламп [3] он не нужен) и изменённой цепи запуска. В остальном принцип его работы аналогичен.

Выходной каскад - это два последовательных LC-контура, включённых параллельно: Т2 (обмотка I), С11 и Т3 (обмотка I), С12. Каждый контур рассчитан на нагрузку 36 Вт, т. е. две лампы по 18 Вт либо одна лампа мощностью 36 Вт. Резонансная частота контуров - около 60 кГц.

Пассивный корректор мощности собран на диодах VD5-VD8 и конденсаторах C5, C6. Он служит для корректировки формы потребляемого устройством тока. Это обеспечивает коэффициент потребляемой мощности близким к единице. При желании корректор можно исключить, но в этом случае коэффициент мощности не будет превышать 0,5...0,6.

Запуск автогенератора осуществляется без "привычного" в подобных устройствах динистора. Это позволило упростить устройство и избежать главного недостатка динисторного запуска, связанного, по мнению автора, с разбросом параметров самого динистора, который может приводить к нестабильному запуску автогенератора при пониженном напряжении сети. Запуск осуществляется подачей напряжения смещения "напрямую" на базу транзистора VT2 через резисторы R3, R4, а также на колебательный контур, образованный элементами С9, L2, обмоткой II трансформатора T1. Возникающие в нём колебания в сумме с приложенным напряжением смещения и приводят к открыванию транзистора VT2. Сопротивление резисторов R3, R4 подобрано так, что протекающий через них ток недостаточен для удержания в открытом состоянии VT2 в момент возникновения в обмотке II трансформатора T1 напряжения обратной полярности, т. е. в момент, когда откроется транзистор VT1.

Изменение цепи запуска и увеличение рабочей частоты преобразователя с 35 кГц (в "электронном трансформаторе" для галогенных ламп) до 65 кГц позволило добиться устойчивого пуска балласта при понижении напряжения в сети до 145...155 В, а также несколько уменьшить габариты выходных трансформаторов Т2 и Т3.

Балласт собран на печатной плате размерами 116x42 мм из фольгированного с одной стороны стеклотекстолита. Чертёж проводников показан на рис. 3, расположение элементов - на рис. 4. Все элементы для поверхностного монтажа (VD1-VD4, R2-R5) расположены со стороны печатных проводников, выводные - на противоположной стороне платы. Конденсаторы С2-С4, С7, С10, С13 - любые плёночные, подходящих габаритов на номинальное напряжение не менее 400 В (постоянного тока - VDC), С11, С12 - на 1600 В (VDC), С1 - керамический на напряжение 1500 В (VDC), но лучше применить помехопо-давляющий конденсатор Y-класса на номинальное напряжение не менее 275 В (переменноготока - VAC). Диоды FR107 (VD5-VD12) можно заменить любыми быстродействующими выпрямительными с обратным напряжением не менее 600 В и прямым током не менее 300 мА. Трансформатор T1 намотан на кольцевом магнитопроводе (магнитная проницаемость - 2300) с внешним диаметром 9, внутренним - 5 и высотой кольца - 3,5 мм. Обмотки I и II содержат по четыре витка, обмотка III имеет два витка одножильного провода диаметром 0,3 мм. Направление всех обмоток должно быть одинаковым. Обмотки I и II должны иметь индуктивность 16 ±15 % мкГн, обмотка III - 4 мкГн. Выходные трансформаторы Т2 и Т3 намотаны на магнитопроводах Е20/10/6 из материала N27 (Epcos) или аналогичных с немагнитным зазором около 1 мм. Первичные обмотки содержат по 130 витков жгута из шести проводов диаметром 0,1...0,15 мм. При отсутствии шестижильного жгута можно использовать одножильный провод диаметром 0,25...0,35 мм, однако при этом нагрев трансформаторов увеличится на 10...15

оС. Вторичные обмотки имеют по 13 витков одножильного провода диаметром 0,3 мм. Индуктивность первичных обмоток должна быть 1±15 % мГн. Дроссели L1, L2 - стандартные, например ЕС24.

Рис. 3. Чертёж проводников

 

Рис. 4. Расположение элементов

 

Фотографии печатной платы собранного устройства приведены на рис. 5, рис. 6. Фотографии работающего балласта с лампами - на рис. 7 и рис. 8. Правильно собранное устройство начинает работать сразу и налаживания не требует.

Рис. 5. Печатная плата устройства в сборе 

 

Рис. 6. Печатная плата устройства в сборе

 

Рис. 7.  Работающий балласт с лампами

 

Рис. 8. Работающий балласт с лампами

 

Литература

1. Лазарев В. Универсальный ЭПРА с "тёплым" стартом для люминесцентных ламп Т8. - Радио, 2015, № 9, с. 31-35.

2. Давиденко Ю. Н. Настольная книга домашнего электрика: люминесцентные лампы. - СПб.: Наука и Техника, 2005.

3. Лазарев В. "Электронные трансформаторы" для галогенных ламп 12 В. - Радио, 2015, №8, с. 32-36.

Автор: В. Лазарев, г. Вязьма Смоленской обл.

Схема электрическая принципиальная etl 236 электронного балласта. Эпра для лампы своими руками. Эпра для компактных лдс

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.


Люминесцентная лампа, С1 и С2 – конденсаторы

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.



Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.


Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Занятий, с достаточным световым потоком и в тоже время экономичного, подвигло, можно даже сказать, на некоторые искания и пробу вариантов. Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник «потолочно - настенного» варианта китайского производства. Последнее понравилось более всего, но крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два - три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить.

Схема принципиальная

Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.

Собственно добросовестно срисованная с печатной платы схема. Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы. На схеме номинал резисторов указан в соответствии с цветовой маркировкой. Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) - сработало.

Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён - лампочка зажглась с первого раза. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт. Если она горит а люминесцентная первоначально мигает и тухнет - увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.

В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.

Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 - 7n5, R4 сопротивление 6 Ом, R5 - 8 Ом, R7 - 13 Ом.

Светильник «вписался» не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

Интегральные схемы компании International Rectifier для управления яркостью люминесцентной лампы

В сформировавшейся англоязычной терминологии регулирование мощности люминесцентных ламп называется Fluorescent Lighting
Dimming. Термин «диммирование», или «димминг»,
в русскоязычных источниках часто используется для
обозначения плавного изменения яркости светильника при включении и выключении. Для четкости
терминологии будем понимать под диммированием
регулирование яркости вообще.

При разработке диммируемого электронного балласта для люминесцентной лампы вопрос о методе
управления является отправной точкой. Любой
из методов должен обеспечивать линейность управления мощностью, плавность изменения яркости
свечения и стабильность свечения лампы. Возможны два метода управления — аналоговый и цифровой, оба часто используются в ЭПРА. Как в аналоговом, так и в цифровом димминге способом управления мощности, подводимой к лампе, является
изменение частоты коммутации выходного полумостового транзисторного каскада. Выходной контур состоит из последовательно включенных индуктивности и конденсатора. Эквивалентная схема выходного
каскада ЭПРА показана на рис. 1.

Рис. 1. Схема замещения лампы
и эквивалентная схема выходного каскада ЭПРА

Когда разряда в лампе нет, сопротивление Rlamp
велико и резонансный контур L, C, Rlamp имеет
высокую добротность. Процесс поджига лампы заключается в плавном снижении частоты коммутации от значения fmax. При этом траектория перемещения рабочей точки происходит по резонансной
кривой с высокой добротностью — участок «подогрев» на характеристике (рис. 2). С уменьшением частоты увеличивается размах напряжения на конденсаторе С, и, при достижении определенной его величины, происходит поджиг лампы.


Рис. 2.
Диаграмма поджига и управления яркостью
люминесцентной лампы

Сопротивление Rlamp становится значительно меньше, соответственно уменьшается и добротность резонансного контура (пологие кривые на рис. 2). Теперь
регулировать мощность, подводимую к лампе, и ее яркость можно изменением частоты. Таков общий принцип построения диммируемых ЭПРА.

Для успешной разработки и правильного выбора
параметров резонансного контура необходимо знать
основные параметры лампы. В таблице 1 приведены
типовые значения для лампы типоразмера Т5 мощностью 35 Вт.

Таблица 1. Типовые значения
для лампы типоразмера Т5 мощностью 35 Вт

Параметр Значение Описание
tph, с ~1 Время подогрева нити лампы
Vign 900 Амплитуда напряжения поджига
P100% , Вт 35 Мощность, рассеиваемая
на лампе при 100% яркости
V100%> , В 310 Амплитуда напряжения
на лампе при 100% яркости
P5%> , Вт 0,7 Мощность, рассеиваемая на
лампе при 5% яркости
V5% , В 425 Амплитуда напряжения
на лампе при 5% яркости
RLamp100% , Ом 1,4 Эквивалентное сопротивление
лампы при 100% яркости
RLamp5% , Ом 129 Эквивалентное сопротивление
лампы при 5% яркости
R1,2,3,4 , Ом 10 Сопротивление холодных
нитей накала

Так называемый цифровой димминг (digital dimming)
предполагает управление выходным полумостовым каскадом с помощью микроконтроллера. Мерцание лампы при управлении от микроконтроллера
будет заметно, даже если он будет работать с высокой производительностью, при этом частота коммутации может изменяться только ступенчато. Эта
проблема заставляет отказываться от использования контроллеров в таких балластах. Возможно применение более производительного
контроллера, но в этом случае решение получается слишком дорогим, ведь необходимы
еще и источник питания, а также драйвер верхнего и нижнего ключа.

При аналоговом управлении возможно плавное изменение частоты. Понятно, что это возможно только при использовании специализированной интегральной схемы (ИС). Такая
ИС уже содержит драйвер верхнего и нижнего
ключа, схему питания, логику защиты и управления балластом. Аналоговые методы управления ЭПРА (аналоговый димминг) в свою очередь предполагают либо регулирование тока через лампу, либо регулирование угла сдвига фаз
между напряжением и током. В любом случае
управляющим воздействием является частота
коммутации, различие заключается в способе
организации обратной связи — по току или
по фазе. Оба способа обеспечивают плавное
диммирование с минимальным значением
мощности менее 5% от номинальной. Однако
устойчивость горения разряда на минимальной
мощности зависит от характеристик конкретной лампы, срока ее службы и температуры.

Обратная связь по току использует сигнал
рассогласования: разность между заданным
и измеренным значениями тока лампы, который подается на генератор, управляемый напряжением (ГУН). Последний изменяет частоту полумоста в нужном направлении до компенсации сигнала рассогласования. Такой
контур регулирования поддерживает заданную
яркость свечения. Добавление фильтра первого порядка в цепь обратной связи повышает
устойчивость системы к воздействию помех
и обеспечивает равномерное свечение лампы
при любом значении яркости. Обратная связь
по току лампы обеспечивает хорошие результаты при изменении внешних условий, поскольку частота подстраивается под заданное
значение яркости. Используя этот способ управления, можно обеспечить стабильную работу
не только ламп Т8 и Т12, но и ламп меньшего
диаметра — типа Т5, а также компактных.

Обратная связь по фазе основана на измерении сдвига фаз между напряжением на выходе полумоста и током резонансного контура. Здесь сигнал обратной связи по частоте
сравнивается с сигналом задающей частоты,
а их разница подается на вход генератора,
управляемого напряжением (ГУН). Рассогласование между требуемой фазой и фазой выходного каскада заставляет ГУН изменять
в нужном направлении частоту, определяемую передаточной функцией, так, чтобы это
рассогласование стремилось к нулю. При достижении желаемого результата фазовый детектор вырабатывает только короткие импульсы, которые заставляют интегратор на входе
ГУН удерживать фазу тока выходного каскада в точности равной заданной. При этом
не контролируются ни ток, ни напряжение
на лампе. Обратная связь по фазе обеспечивает линейную зависимость выходной мощности от величины управляющего сигнала.

Горение лампы сопровождается ионизацией
газового промежутка и его разогревом. Параметры ВАХ дуги в горячей и холодной лампе
будут отличаться, что приведет к изменению
всех настроек ЭПРА. В этом случае способ регулирования с обратной связью по току более
предпочтителен, так как ток лампы контролируется непосредственно, что позволяет поддерживать мощность лампы на заданном уровне
независимо от температуры.

Пользуясь фазовым способом управления,
разработчик должен обращать внимание на работу лампы в граничных режимах. На этапе
производства ЭПРА необходимо предусмотреть возможность регулирования минимальной и максимальной мощности, отдаваемой
в лампу. Однако подстройка данных параметров приводит к усложнению производствен-
ного процесса и удорожанию изделия.

При стабилизации тока разработчику необходимо установить только минимальный уровень димминга, что обеспечивает надежную
работу ЭПРА.

Несмотря на все преимущества ЭПРА
с аналоговым диммированием, их использование сдерживалось ранее из-за отсутствия
приемлемого по цене и сложности решения
на специализированных ИС. Ранее предлагаемые ИС для диммируемых балластов имели габаритный корпус, а схемы были сложны в настройке. Компания International
Rectifier провела ряд исследований в этой области и приступила к серийному производству ИС IRS2530D и IRS2158D.

Линейка ИС для диммируемых ЭПРА представлена тремя приборами — IR21592(3),
IRS2530D, IRS2158D, каждый из которых создавался для своего класса применений. Отличия трех микросхем сведены в таблицу 2 и рассмотрены далее более подробно.

Таблица 2. Микросхемы для диммируемых ЭПРА

Функции и особенности IR21592(3) IRS2530D IRS2158D
Программируемые параметры
Время подогрева катодов + + +
Частота при подогреве +
Регулирование тока поджига +
Рабочая частота + + +
«Мертвое время» +
Особенности
Фиксированное «мертвое время»,
мкс
1,8 (1,0) 2,0 Прогр.
Защита от неподжига + По перегрузке по току +
Защита от обрыва нитей лампы + По перегрузке по току +
Защита
от снижения напряжения питания
+ + +
Отключение + +
Счетчик ошибок +
Предельное состояние лампы
в конце срока службы
+
Обнаружение перегрузки по току
сравнением пикового и среднего
значения тока нижнего ключа
+
Защита от жесткой коммутации
полумоста
Обнаружение перегрузки по току,
переход в состояние FAULT
Адаптивная, увеличением
частоты (non:ZVS)
Обнаружение перегрузки
по току: счетчик событий
Способ регулирования мощности Стабилизация угла сдвига фаз Стабилизация тока Стабилизация тока
Встроенный бутстрепный диод + +
Область применения Прецизионные диммируемые ЭПРА
с линейным законом регулирования
Локальное освещение,
недорогие ЭПРА
Прецизионные диммируемые
ЭПРА

Рис. 3. Схема ЭПРА на IR21592(3)

IR21592 и IR21593 — первые микросхемы,
в которых реализована линейная зависимость
между величиной сигнала управления яркостью и мощностью, подводимой к лампе от выходного каскада ЭПРА (рис. 3). Отличие между IR21592 и IR21593 состоит только в значении выходной частоты, последняя микросхема
работает на частотах до 230 кГц и предназначена для малогабаритных ЭПРА. Микросхема реализует режимы, необходимые для достижения
длительного срока службы лампы — подогрев
(PREHEAT), поджиг (IGNITION), диммирование (DIM). Для предотвращения сбоев и жесткой коммутации в выходном полумостовом
каскаде при напряжении питания менее 12,5 В
предусмотрен режим блокирования (UVLO)
драйверов транзисторов выходного каскада.
При обнаружении перегрузки по току или перегреве лампы ИС переходит в режим FAULT
и может находиться в нем неограниченно долго до тех пор, пока не будет произведены смена или повторное подключение лампы или
же не будет снято напряжение питания.

Рис. 4. Схема ЭПРА на IRS2158D

Внешними компонентами задаются длительность фазы подогрева и величина тока подогрева катодов лампы, минимальная частота коммутации полумоста, минимальная
и максимальная мощности, подводимые к
лампе. Такой богатый набор параметров позволяет корректно управлять любой люминесцентной лампой, доступной на рынке.

Необходимо отметить важный момент при
разработке ЭПРА на IR21592(3). Микросхема
переходит в режим регулирования яркости
(DIM) только при достижении тока через лампу на 20% выше порога, который задается
внешним резистором, подключенным к выводу IPH. Это условие является для внутренней логики критерием успешного поджига.
Если это условие не выполнено, ИС может находиться в состоянии IGN до тех пор, пока
не сработает защита от перегрева, срабатывающая при определенной величине тока через
лампу. Таким образом, выбор токоизмерительного резистора Rcs является важным условием правильной работы ЭПРА. С одной стороны, завышенное значение Rcs будет вызывать необоснованное срабатывание защиты
и переход ЭПРА в состояние FAULT. С другой
стороны, уменьшение значения Rcs может приводить к состоянию, когда логика IR21592
не зафиксирует поджиг (который на самом деле произойдет), и в то же время размах напряжения на Rcs будет недостаточным для срабатывания защиты по перегреву. В этом случае
ИС продолжает оставаться в режиме IGN
до тех пор, пока лампа не выйдет из строя.

Микросхема IRS2158D во многом похожа
на IR21592. Оба прибора разработаны для регулирования яркости лампы в широких пре-
делах: от 3–5% до 100% по мощности (но
не яркости!). IR2158 в отличие от предшественницы, IR21592, имеет ряд существенных
отличий. Прежде всего, IRS2158D регулирует
мощность, отдаваемую в лампу стабилизацией ее тока, а не углом сдвига фаз между током
и напряжением, как в IR21592.

Рис. 5. Логика формирования состояний
IRS2158D

Преимущества такого способа регулирования уже описаны нами. Кроме того, введено
ограничение по длительности режима IGN
и добавлен режим Pre-RUN, предшествующий
рабочему режиму RUN (рис. 5). IRS2158D имеет логику обработки ошибок и определения
предельного состояния люминесцентной лампы (EOL — End Of Life). В IRS2158D введен
также счетчик аварийных событий — перегрузок по току. Если сигнал на выводе CS превышает пороговое значение в течение 60 циклов
частоты коммутации, логика ИС переходит
в состояние FAULT. Еще одна очень полезная
особенность этой микросхемы — наличие
внутреннего операционного усилителя, предоставленного разработчику. Используя его,
можно реализовать диммирование с ОС по току или построить нерегулируемый ЭПРА с более сложным алгоритмом обработки аварийных ситуаций и обнаружением предельных
состояний лампы.

IRS2530D — микросхема для ЭПРА с меньшим диапазоном регулирования яркости. Она
предназначена в первую очередь для бюджетных применений с диапазоном изменения
мощности на лампе от 10 до 100%. На данный
момент это самое недорогое решение для
ЭПРА с диммированием. Микросхема имеет
8-выводный корпус и требует минимального
количества внешних компонентов (рис. 6).

Рис. 6. Схема ЭПРА на IRS2530D

Инновационные решения, запатентованные
International Rectifier, позволили использовать
для регулирования яркости всего 1 вывод. Этот
способ заслуживает более детального рассмотрения. Чтобы поместить микросхему в 8-выводный корпус, для диммирования остается только 1 вывод. Остальные 7 уже заняты: питание
(2 вывода), управление внешними транзисторами (4 вывода), внутренний ГУН (1 вывод).
Конечно, удобнее всего иметь 3 вывода для регулирования яркостью, например, используя
внутренний ОУ, как в IRS2158D. Но стоимость
микросхемы зависит от числа выводов корпуса.

Рис. 7. Димминг с использованием 1 вывода — новое решение IR

Упрощенная схема контура регулирования
представлена на рис. 7. Ток через лампу — переменный, и его форма имеет вид (2). Сигнал
тока Ilamp снимается с резистора (1), развязывается с помощью конденсатора С2 и приобретает постоянную составляющую, суммируясь с сигналом заданной яркости Vdim (4). Суммарный сигнал Vdim + Ilamp подается на вход
компаратора (5). Причем, благодаря сдвигу сигнала тока вверх на величину Vdim, минимальное значение сигнала Vdim + Ilamp примерно равно нулю. Поэтому сравнение происходит с потенциалом «земли», а это значит, что можно
сэкономить на выводе опорного напряжения.
При любом значении заданной яркости ток
лампы изменяется ГУН таким образом, что
форма тока через лампу привязана своим минимальным значением к потенциалу «земли»
(диаграммы 100% и 10% яркости на рис. 7).

Интересен также способ определения случаев жесткой коммутации полумоста и появления сквозного тока. Как видно на схеме,
шунт в полумостовом каскаде отсутствует. Его
роль выполняет нижний ключ, его сопротивление открытого канала RDS on. Чтобы убрать
зависимость от параметров конкретного ключа и температуры, используется измерение соотношения среднего и пикового значения тока. Когда пиковое значение более чем в 5,5 раза больше среднего, схема фиксирует
перегрузку по току и переходит в состояние
FAULT. Такая технология измерения тока позволяет определять случаи насыщения резонансного дросселя, обрыва нитей накала или
извлечения лампы.

В IRS2530D реализована защита от жесткой коммутации полумоста в случаях, когда
резонансный контур близок к переходу
на емкостную сторону резонансной кривой
или контур уже имеет емкостной характер.
Это может произойти при неверном подборе дросселя или конденсатора в резонансном
контуре. Тогда в момент открытия нижнего
ключа напряжение может быть слишком
большим, что приведет к возникновению
«пиков» тока. Поэтому в каждом цикле коммутации нижнего ключа измеряется напряжение на выводе VS, и если оно более 4,5 В,
IRS2530D производит коррекцию частоты.
Частота коммутации увеличивается, контур
становится индуктивным и выбросы тока
устраняются. Эта процедура называется non-Zero Voltage Switch protection.

Для ускорения освоения работы с описанными интегральными схемами, компания
International Rectifier предлагает демонстрационные наборы.

Демонстрационный набор IRPLDIM4E представляет собой миниатюрный электронный
балласт для ламп мощностью 26 Вт и позволяет работать от сети 220 В. Схема демонстрационного набора обеспечивает все необходимые функции для подогрева, поджига и диммирования лампы. Набор включает в себя
пассивный LC-фильтр радиопомех и выпрямитель переменного напряжения. Внешний
вид демонстрационного набора IRPLDIM4E
представлен на рис. 8.

Рис. 8. Демонстрационный набор IRPLDIM4E

IRPLDIM4E собран на ИС IRS2530D и обеспечивает диммирование люминесцентной лампы, автоматический подбор частоты для обеспечения режима подогрева и поджига лампы,
защиту от включения при отсутствии лампы
или ее повреждении, а также снижении напряжения питающей сети Демонстрационный набор IRPLDIM5E включает в себя диммируемый ЭПРА люминесцентной лампы на IRS2530D со схемой управления
на микроконтроллере. Микроконтроллер обеспечивает четыре уровня яркости, выбор одного
из уровней происходит перебором при включении демонстрационного набора. При необходимости, можно запомнить необходимый уровень
яркости. Внешний вид демонстрационного набора IRPLDIM5E представлен на рис. 9.

Рис. 9. Демонстрационный набор IRPLDIM5E

Демонстрационный набор IRPLDIM3 предназначен для управления люминесцентной
лампой мощностью 25 Вт, включает в себя корректор коэффициента мощности, диммируемый ЭПРА с изолированным входом управления. Для управления лампой на плате используется ИС IRS2158D. Платы демонстрационных
наборов полезны также тем, что демонстрируют правильную топологию печатной платы.
Внешний вид платы демонстрационного набора IRPLDIM3 представлен на рис. 10.

Рис. 10. Демонстрационный набор IRPLDIM3

Для ускорения расчетов балластов компания International Rectifier предоставляет программу Ballast Designer. Она обеспечивает
не только расчет всех элементов схемы балласта, но и производит моделирование основных процессов, протекающих в его работе.
Скачать программу можно бесплатно на сайте производителя.

Электрическая схема люминесцентного светильника. Подключение и ремонт баластника для люминесцентных ламп

Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

Модели диодного типа

Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

Двухконтактные модели

Данного типа схема электронного балласта для отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.


Схема балласта "Эпра" 18 Вт

Данная схема электронного балласта для люминесцентной лампы включает в себя а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт "Эпра" 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов "Эпра" 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.


Схема балласта "Эпра" 4х18 Вт

Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.


Балласт Navigator

Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.


Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование понижающих трансформаторов

Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

Применение векторных транзисторов

Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.


Схема с интегральным котроллером

Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Занятий, с достаточным световым потоком и в тоже время экономичного, подвигло, можно даже сказать, на некоторые искания и пробу вариантов. Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник «потолочно - настенного» варианта китайского производства. Последнее понравилось более всего, но крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два - три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить.

Схема принципиальная

Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.


Собственно добросовестно срисованная с печатной платы схема. Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы. На схеме номинал резисторов указан в соответствии с цветовой маркировкой. Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) - сработало.


Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён - лампочка зажглась с первого раза. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт. Если она горит а люминесцентная первоначально мигает и тухнет - увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.


В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.


Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 - 7n5, R4 сопротивление 6 Ом, R5 - 8 Ом, R7 - 13 Ом.


Светильник «вписался» не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.


Люминесцентная лампа, С1 и С2 – конденсаторы


Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.



Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.


Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.


Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:


Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:


Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

ЭПРА для люминесцентных ламп

Люминесцентные лампы уже давно используются в различных служебных, административных, офисных помещениях. Такие светильники продаются в большом разнообразии и отличаются по количеству установленных ламп, виду и мощности. Их использование выгодно с экономической точки зрения несмотря на наличие небольшого недостатка. Такие лампы не подключаются напрямую к сети питания. Для их работы необходим специальный переходник, который будет сглаживать пульсацию тока и стабилизировать напряжение. Для этих целей используется специальный элемент, который носит название пускорегулирующий аппарат. Он состоит из дросселя, задача которого заключается в сглаживании пульсации, стартера, конденсатора. Стоит отметить, что данный блок уже выводится из продажи, так как на его смену пришла более новая модель – ЭПРА.

ЭПРА для люминесцентных ламп: основные особенности

ЭПРА для люминесцентных ламп Т4, g5 и других моделей, преобразовывает параметры входящего напряжения для их включения и поддержания работы. Представляет собой электронное плато, в конструкцию которого входят несколько электронных элементов. Благодаря компактным размерам и небольшому весу, ЭПРА для современных люминесцентных ламп легко в них размещается с успехом заменяя конденсатор, дроссель, стартер.

К преимуществам использования люминесцентных ламп с ЭПРА можно отнести:

  • Быстрое зажигание и безопасный режим работы.
  • Снижается уровень акустических шумов.
  • Повышается их эксплуатационный срок действия.
  • Отсутствует стробоскопический эффект.
  • Снижается уровень потребляемой мощности, что в значительной степени экономит электроресурсы.
  • ЭПРА практически не нагревается по сравнению с устаревшей моделью.
  • Обеспечивают мягкое и стабильное свечения без мерцания, благодаря чему их можно устанавливать в учебных заведениях, библиотеках и там, где необходима хорошая освещенность.
  • Полное управление яркостью излучения ламп.
  • Устойчивость к перепадам напряжения в сети.

Причины неисправности и ремонт

Несмотря на то, что ЭПРА позволяет исключить различные неудобства, связанные с работой люминесцентных ламп, поломки такой аппаратуры все же случаются. Прежде чем отправлять устройство в мусорный бак, следует осмотреть и проверить элементы схемы на наличие неисправностей. Отремонтировать ЭПРА в некоторых случаях можно собственными силами. Если плата будет под напряжением, то нужно быть очень осторожными.

Видео. Замена ЭПРА

Схема ЭПРА

Прежде чем изучить схему устройства, необходимо понять, что собой представляют люминесцентные лампы. Они состоят из электродов, инертного газа с парами ртути в колбе, люминесцентного покрытия. При этом газы подобраны так, что процесс ионизации не требует больших электрических затрат. Для стабильного свечения необходим тлеющий разряд. Создается он с помощью подачи напряжения определенной величины на электроды.

Схема подключения ЭПРА

Внутри лампы всегда находится отрицательное сопротивление, именно по этой причине она не может быть подключена к сети 220В. Балласт электронного типа после подключения к сети способствует выпрямлению тока и подогреву электродов. Настройка напряжения происходит в автоматическом режиме, что в свою очередь позволяет исключит мерцание.

Если вспомнить люминесцентные лампы старого образца, например, ЛВО 4×18, то их основным минусом было то, что при работе они издавали звук, что в конечном счете вызывало дискомфорт у людей. С помощью ЭПРА данный недостаток устраняется. С его подключением сможет справиться каждый человек, который обладает знаниями о принципах работы электронных схем.

Схема подключения люминесцентных ламп

ЭПРА подключается с одной стороны к осветительному элементу, а с другой к источнику питания. Включение выполняется с учетом полярности проводов. Если будут подключаться две лампы, то применяется метод параллельного соединения. Лампа начинает функционировать благодаря осуществлению таких этапов, как: прогревание электродов, появление излучения благодаря высоковольтному импульсу и стабильное горение лампы за счет постоянной подачи напряжения небольшой величины.

Видео. Подключение ЭПРА на 4 лампы

Определение поломки

Если имеются какие-либо недостатки в работе ламп, например, мерцание, то необходимо сделать ремонт. Но изначально нужно определить, что конкретно сломалось – осветительный элемент или же балласт. Работоспособность ЭПРА проверяется путем удаления линейной лампочки, электроды замыкаются, после чего подсоединяется стандартная лампочка накаливания. Если она загорелась, то неисправен пускорегулирующий аппарат. В другом случае проверку нужно выполнить внутренней части балласта. Для ремонта балласта потребуется паяльник и соответствующие умения. Также нужно проверить на исправность диоды и конденсатор.

Эпра для светодиодных светильников схема

ЭПРА для люминесцентных ламп: что это такое, как работает, схемы подключения ламп с ЭПРА

Вас интересует, зачем нужен электронный модуль ЭПРА для люминесцентных ламп и как его следует подключить? Правильный монтаж энергосберегающих светильников позволит многократно продлить их срок эксплуатации, ведь верно? Но вы не знаете, как подключить ЭПРА и нужно ли это делать?

Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников.

Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться.

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых люминесцентных лампочек, как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят стартеры (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство;
  • фильтр электромагнитного излучения;
  • корректор коэффициента мощности;
  • фильтр сглаживания напряжения;
  • инверторная схема;
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном балласте. Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь дроссель и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы регулятора мощности осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Выводы и полезное видео по теме

Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным.

Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными:

Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества.

Вы разбираетесь в вопросах принципа работы и схем подключения ЭПРА и хотите дополнить изложенный выше материал личными наблюдениями? Или хотите поделиться полезными рекомендациями по нюансам ремонта, замены или выбора пускорегулирующего аппарата? Пишите, пожалуйста, свои комментарии к этой записи в блоке ниже.

ЭПРА – что это такое, и как работает

Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

Конструкция и принцип работы ЭПРА

По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности – 0,95.
  • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
  • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
  • Обеспечение плавного свечения, без мерцания.
Внутреннее устройство ЭПРА

Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

Схема устройства

Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

Но тут необходимо выполнить два основных условия:

  1. Разогреть две нитки накала.
  2. Создать большое напряжение до 600 вольт.

Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

Теперь сама схема ЭПРА.

Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

Как работает

Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

Электронный пускорегулирующий аппарат

В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

  • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
  • Две – управляющие. В каждой по четыре витка.

Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

Далее происходит следующее:

  • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
  • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

Тестирование

Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

  • При 220 вольт она составила 38 кГц.
  • При 100 вольтах 56 кГц.

Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

Причины неисправностей

Итак, по каким причинам люминесцентная лампа может не гореть?

  • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
  • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
  • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
  • Неправильно проведена схема подключения аппарата к лампам.

Это интересно

В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

Подключение

И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

ЭПРА (электронный балласт) – что это такое?

Для работы люминесцентных, энергосберегающих, светодиодных ламп и панелей необходимо наличие в цепи элементов, обеспечивающих на их входных контактах определенную заданную величину тока и напряжения. Это достигается применением пускорегулирующей аппаратуры.

В случае работы люминесцентной лампы эта аппаратура обеспечивает предварительный прогрев электродов, после чего ртуть, содержащаяся в трубке, постепенно начинает переходить в парообразное состояние. Для возникновения стабильного тлеющего разряда внутри лампы необходимо, чтобы на ее электроды поступил кратковременный импульс напряжения большой величины.

Устройство ЭПРА обеспечивает возникновение этого импульса, включение лампы после полного испарения ртути и в процессе работы понижает ток и напряжение на лампе.

В самой простой модификации такой режим обеспечивает электромагнитный дроссель совместно со стартером. Но в случае применения электромагнитного дросселя работу лампы сопровождает гудение, мерцание и мигание при включении.

Электронные пускорегулирующие аппараты в итоге решают те же задачи, что и электромагнитные. Они обязаны обеспечивать зажигание и стабильную работу светильников.

Электронный балласт – это прибор для понижения тока на элементах электрической цепи. Балласты применяются, если сопротивление нагрузки не в состоянии результативно снизить потребляемый ток. Это возникает в случаях, когда устройство имеет отрицательное переменное сопротивление по отношению к элементу питания.

Если такая нагрузка будет подключена к источнику постоянного напряжения, то через нее будет протекать ток, увеличивающийся до тех пор, пока она или источник тока не выйдут из строя.

Для предотвращения этого используется балласт, обеспечивающий активное или реактивное сопротивление, понижающее величину тока до расчетного значения.

Одним из устройств с отрицательным сопротивлением является газоразрядная лампа.

В настоящее время для пуска и обеспечения работы ламп наиболее часто стали использоваться электронные балласты ЭПРА, которые имеют целый ряд преимуществ по сравнению со схемой включения при помощи электромагнитного дросселя.

Читать еще:  Схема подключения 3 фазы в частный дом

Возможно подключение нескольких ламп через один электронный пускорегулирующий аппарат. Ниже показаны схемы включения двух и четырех ламп через один балласт.

Четыре лампы с общим ЭПРА

Для люстры можно использовать ЭПРА, если в ней установлены компактные люминесцентные лампы.

Для этого нужно выбрать прибор, рассчитанный на суммарную мощность всех ламп, установленных в люстре, с двукратным запасом по величине.

Если в люстре установлены светодиодные лампы без встроенного драйвера, то в схеме желательно предусмотреть электронный блок питания.

В случае применения электронных балластов устраняются такие негативные явления, как мигание ламп во время включения, мерцание и гудение, сопровождающие работу светильников с электромагнитными ПРА. Устраняется стробоскопический эффект, который имеет место при работе ламп на переменном токе частотой пятьдесят герц.

При использовании электронного балласта возникновение этого эффекта невозможно, поскольку на лампу подается ток высокой частоты в несколько десятков килогерц.

По цене ЭПРА довольно дорогие, но их стоимость быстро окупается в результате создания ими экономичного режима работы ламп в люстре.

Можно устанавливать в люстры лампы с встроенными драйверами.

При помощи электронных ПРА можно создать режим включения ламп с постепенным нарастанием мощности, отрегулировать поочередную работу различных групп ламп в люстре и применить другие интересные решения.

Электронные блоки питания и контроллеры применяются и в цепях со светодиодными лентами.

С применением ЭПРА мощность, расходуемая светильником, становится меньше на тридцать процентов по сравнению с потребляемой при использовании ЭмПРА.

Продолжительность пригодности лампы возрастает на пятьдесят процентов в связи с обеспечением ее работы в щадящем режиме.

Сокращаются расходы на ремонт и замену комплектующих в светильниках, оборудованных ЭПРА.

Эти приборы незаменимы в цепях, обеспечивающих работу аварийного освещения.

ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ ЭПРА

Включение газоразрядных ламп, в чисто которых входят всем известные люминесцентные лампы, имеет ряд особенностей. Для возникновения разряда между электродами в среде газа требуется импульс высокого напряжения между предварительно прогретыми электродами.

Во время работы ток разряда должен ограничиваться специальным балластом, функции которого выполняет дроссель – катушка с большой индуктивностью.

Пускорегулирующая аппаратура, разработанная для включения люминесцентных ламп имела множество существенных недостатков:

  • низкая надежность стартера из-за наличия контактной группы;
  • громоздкий тяжелый и шумный дроссель;
  • мерцание ламы с частотой питающей сети;
  • длительный процесс зажигания ламп;
  • затрудненный пуск при низкой температуре;
  • низкий КПД;
  • высокий уровень электромагнитных помех.

На смену устаревшим пусковым агрегатам были разработаны электронные устройства, которые не содержат механических контактов и тяжелого и габаритного дросселя.

Малые габариты современных электронных пускорегулирующих устройств (ЭПРА) дали толчок дальнейшему развитию и широкому распространению малогабаритных люминесцентных ламп, которые в народе прозвали «экономками».

Кроме того, ЭПРА имеет следующие достоинства:

  • отсутствуют механические контакты;
  • питание производится высокочастотным напряжением, что полностью исключает мерцание;
  • малые габариты и вес;
  • высокий КПД за счет введения цепей коррекции мощности;
  • минимум сетевых помех и практически полное отсутствие электромагнитных.

Работа лампы с электронным запуском включает несколько последовательных стадий:

  1. Разогрев нитей накаливания.
  2. Инициирование разряда в среде газа между электродами.
  3. Поддержание горения.

Все этапы включения полностью контролируются электронной схемой ЭПРА, которая состоит из следующих элементов:

Не пропускает помехи от ЭПРА в сеть и наоборот.

Устанавливается, в основном в дорогих и мощных пускателях.

Исполняется в виде электролитического конденсатора большой емкости.

Также в состав устройства входят инверторная схема преобразования напряжения и малогабаритный дроссель.

В инверторе используются мощные высоковольтные транзисторные ключи, которые включены в мостовую схему с автогенерацией или управляются специальной микросхемой. В диагональ моста включен многообмоточный резонансный трансформатор, одна из обмоток которого включена последовательно с нитями накала и резонансным конденсатором.

Межэлектродный разряд уменьшает сопротивление рабочей среды лампы, в результате чего резонансный конденсатор оказывается закороченным и резонанс пропадает. Оставшегося значения напряжения достаточно для нормального горения. Ток разряда ограничивается дросселем, включенным последовательно с электродами.

ЭПРА ДЛЯ ПИТАНИЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

Первоначально конструкции ЭПРА разрабатывались для замены старых дроссельно-стартерных устройств для установки в классические светильники с люминесцентными лампами. Для облегчения перехода на новую аппаратуру, ее габаритные размеры, как говорилось выше, делали схожими со старыми устройствами.

Такой подход позволял без изменения технологических линий по производству светильников устанавливать электронные пускатели.

Использование миниатюрных SMD компонентов и совершенствование схемотехники позволили создавать ЭПРА с минимальными габаритами. Такие устройства помещаются в стандартный цоколь типоразмера Е27 или даже Е14, что привело к широкому распространению энергосберегающих люминесцентных ламп обладающих большим разнообразием:

  • форм;
  • мощностей;
  • цветов и оттенков свечения.

Основными характеристиками электронного пускателя для люминесцентных ламп является допустимая мощность светильника и количество одновременно подключаемых источников. Некоторые типы имеют режим плавного пуска. При этом после нажатия клавиши включения освещения светильник загорается через время от одной до нескольких секунд.

В подобных устройствах за счет схемотехнических решений разряд резонансного конденсатора происходит только после полного прогрева нитей накаливания. Лампы, включаемые через такой пускатель меньше изнашиваются, поэтому срок их службы возрастает.

Некоторые модели дешевых пускорегулирующих аппаратов имеют низкое качество изготовления. Особенно это касается параметров электролитического конденсатора фильтра. Малая емкость приводит к заметным пульсациям света, а низкое граничное напряжение увеличивает вероятность выхода конденсатора из строя.

Очень опасны модели, в которых мощные ключевые транзисторы крепятся радиатором к металлическому корпусу устройства через пластиковую изоляцию. Через некоторое время работы пластик под действием нагрева транзистора деформируется и радиатор замыкается на корпус.

ЭПРА ДЛЯ СВЕТОДИОДНЫХ СВЕТИЛЬНИКОВ И ПАНЕЛЕЙ

Сразу следует заметить, что пускорегулирующая аппаратура для светодиодных ламп и других LED источников света не существует! Как бы не утверждали продавцы магазина или консультанты в интернет-сервисах, это свидетельствует лишь о их некомпетентности.

Светодиодные источники света в пусковых устройствах типа ЭПРА не нуждаются. Необходим источник постоянного напряжения, а в идеальном варианте – стабилизатор тока.

Такие устройства называются драйверами. Они формируют напряжение на выходных клеммах в соответствии с подключаемым источником света и ограничивают или стабилизируют значение выходного тока в определенных пределах.

Дело в том, что светодиоды нормально функционируют только в узком диапазоне протекающего через них тока. Меньшее значение снижает яркость, а высокое вызывает резкое снижение срока службы вплоть до мгновенного перегорания излучающего диода.

Светодиод, как полупроводниковый элемент, обладает ярко выраженной зависимостью величины сопротивления от температуры, поэтому ее изменение всего на несколько градусов способно вызвать критический рост тока.

Чем отличается стабилизатор напряжения от стабилизатора тока?

Если выразить простыми словами, то стабилизатор напряжения имеет на выходе стабильное напряжение при том, что ток потребления подключенных устройств может меняться в широких пределах.

Иная ситуация в случае стабилизатора тока. Здесь обеспечивается стабильное значение тока при различных сопротивлениях нагрузки. При этом значение напряжения стабилизатора может изменяться в достаточно широком диапазоне.

Данная характеристика накладывает ограничение на совместимость устройств различных типов. К источнику тока нельзя подключать светодиодные светильники иной мощности, чем той, что указана в спецификации. Нельзя подключать параллельно несколько ламп. В крайнем случае возможно последовательное подключение, но это если позволяет диапазон выходных напряжений.

Драйвер (именно так именуется в настоящее время стабилизатор тока) рассчитан на выходной ток 100 мА и 12 — 24 В выходного напряжения. Можно подключать:

  • светодиодную лампу 100 мА 12 В или 100 мА 24 В;
  • две лампы 100 мА 12 В, соединенные последовательно;
  • две лампы 50 мА 12 – 24 В, соединенные параллельно.

Схема драйвера может быть выполнена быть выполнена как на основе трансформатора, так и при помощи инвертора, что в настоящее время составляет подавляющее большинство устройств. Драйверы с изменяемым значением выходного тока используются для регулировки яркости LED светильников.

Большинство компактных ламп выпускаются со встроенными драйверами, освобождая покупателя от мук выбора. Использование отдельных драйверов необходимо только в случае использования светодиодных лент или изготовления светильников из отдельных светодиодов или матриц.

Приобретая светодиодные панели с фиксированными размерами, желательно сразу же рассчитывать на драйвер с рекомендуемыми параметрами.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Люминесцентные лампы не могут работать напрямую от сети 220В. Для их розжига нужно создать импульс высокого напряжения, а перед этим прогреть их спирали. Для этого используют пускорегулирующие аппараты. Они бывают двух типов — электромагнитные и электронные. В этой статье мы рассмотрим ЭПРА для люминесцентных ламп, что кто такое и как они работают.

Из чего состоит люминесцентная лампа и для чего нужен балласт?

Люминесцентная лампа этот газоразрядный источник света. Он состоит из колбы трубчатой формы наполненной парами ртути. По краям колбы расположены спирали. Соответственно на каждом краю колбы расположена пара контактов — это выводы спирали.

Работа такой лампы основана на люминесценции газов при протекании через него электрического тока. Но ток просто так между двумя металлическими спиралями (электродами) просто так не потечет. Для этого должен произойти разряд между ними, такой разряд называется тлеющим. Для этого спирали сначала разогревают, пропуская через них ток, а после этого между ними подают импульс высокого напряжения, 600 и более вольт. Разогретые спирали начинают эмитировать электроны и под действием высокого напряжения образуется разряд.

Если не вдаваться в подробности – то описание процесса достаточно для постановки задачи для источника питания таких ламп, он должен:

1. Разогреть спирали;

2. Сформировать зажигающий импульс;

3. Поддерживать напряжение и ток на достаточном уровне для работы лампы.

Интересно: Компактные люминесцентные лампы, которые чаще называют «энергосберегающими», имеют аналогичную структуру и требования для их работы. Единственное отличие состоит в том, что их габариты значительно уменьшены благодаря особой форме, по сути это такая же трубчатая колба, на форма не линейная, а закрученная в спиралевидную.

Устройство для питания люминесцентных ламп называется пускорегулирующим аппаратом (сокращенно ПРА), а в народе просто — балластом.

Различают два вида балласта:

1. Электромагнитный (ЭмПРА) — состоит из дросселя и стартера. Его преимущества — простота, а недостатков масса: низкий КПД, пульсации светового потока, помехи в электросети при его работе, низкий коэффициент мощности, гудение, стробоскопический эффект. Ниже вы видите его схему и внешний вид.

2. Электронные (ЭПРА) — современный источник питания для люминесцентных ламп, он представляет собой плату, на которой расположен высокочастотный преобразователь. Лишен всех перечисленных выше недостатков, благодаря чему лампы выдают больший световой поток и срок службы.

Схема ЭПРА

Типовой электронный балласт состоит из таких узлов:

2. Высокочастотный генератор выполненный на ШИМ-контроллере (в дорогих моделях) или на авто генераторный схеме с полумостовым (чаще всего) преобразователем.

3. Пусковой пороговый элемент (обычно динистор DB3 с пороговым напряжением 30В).

4. Разжигающей силовой LC-цепи.

Типовая схема изображена ниже, рассмотрим каждый из её узлов:

Переменное напряжение поступает на диодный мост, где выпрямляется и сглаживается фильтрующим конденсатором. В нормальном случае до моста устанавливают предохранитель и фильтр электромагнитных помех. Но в большинстве китайских ЭПРА нет фильтров, а ёмкость сглаживающего конденсатора ниже необходимой, от чего бывают проблемы с поджигом и работой светильника.

Совет: если вы ремонтируете ЭПРА, то прочтите статью «Как проверить диодный мост» на нашем сайте.

После этого напряжение поступает на автогенератор. Из названия понятно, что автогенератор — это схема, которая самостоятельно генерирует колебания. В этом случае она выполнена на одном или двух транзисторах, в зависимости от мощности. Транзисторы подключены к трансформатору с тремя обмотками. Обычно используются транзисторы типа MJE 13003 или MJE 13001 и подобные, в зависимости от мощности лампы.

Хоть и этот элемент называется трансформатором, но выглядит он не привычно — это ферритовое кольцо, на котором намотано три обмотки, по несколько витков каждая. Две из них управляющие, в каждой по два витка, а одна — рабочая с 9 витками. Управляющие обмотки создают импульсы включения и выключения транзисторов, соединены одним из концов с их базами.

Так как они намотаны в противофазе (начала обмоток помечены точками, обратите внимание на схеме), то импульсы управления противоположны друг другу. Поэтому транзисторы открываются по очереди, ведь если их открыть одновременно, то они просто замкнут выход диодного моста и что-нибудь из этого сгорит. Рабочая обмотка одни концом подключена к точке между транзисторами, а вторым к рабочим дросселю и конденсатору, через нее происходит питание лампы.

При протекании тока в одной из обмоток в двух других наводится ЭДС соответствующей полярности, которое и приводит к переключениям транзисторов. Автогенератор настроен на частоту выше звукового диапазона, то есть выше 20 кГц. Именно этот элемент является преобразователем постоянного тока в ток переменой частоты.

Для запуска генератора установлен динистор, он включает схему после того как напряжение на нем достигнет определённого значения. Обычно устанавливают динистор DB3, который открывается в диапазоне напряжений около 30В. Время, через которое он откроется, задается RC-цепью.

Более продвинутые варианты ЭПРА, строятся не на автогенераторной схеме, а на базе ШИМ-контроллеров. Они имеют более устойчивые характеристики. Однако, за более чем пять лет занятий электроникой мне не разу не попался такой ЭПРА, все с которыми работал, были автогенераторными.

Выше неоднократно упоминалось об LC цепи. Это дроссель, установленный последовательно со спиралью, и конденсатор, установленный параллельно лампе. По этой цепи сначала протекает ток, прогревающий спирали, а затем образуется импульс высокого напряжения на конденсаторе её зажигающий. Дроссель выполняется на Ш-образном ферритовом сердечнике.

Эти элементы подбираются так, чтобы при рабочей частоте они входили в резонанс. Так как дроссель и конденсатор установлены последовательно на этой частоте наблюдается резонанс напряжений.

При резонансе напряжений на индуктивности и ёмкости начинает сильно расти напряжение в идеализированных теоретических примерах до бесконечно большого значения, при этом ток потребляется крайне малый.

В результате мы имеем подобранные по частотам генератор и резонансный контур. По причине роста напряжения на конденсаторе происходит зажигание лампы.

Ниже изображен другой вариант схемы, как вы можете убедиться – все в принципе аналогично.

Благодаря высокой рабочей частоте удаётся достигнуть малых габаритов трансформатора и дросселя.

Для закрепления пройденной информации рассмотрим реальную плату ЭПРА, на картинке выделены основные узлы описанные выше:

А это плата от энергосберегающей лампы:

Заключение

Электронный балласт значительно улучшает процесс розжига ламп и работает без пульсаций и шума. Его схема не очень сложна и на её базе можно построить маломощный блок питания. Поэтому электронные балласты от сгоревших энергосберегаек – это отличный источник бесплатных радиодеталей.

Люминесцентные лампы с электромагнитным пускорегулирующим аппаратом запрещено использовать в производственных и бытовых помещениях. Дело в том, что у них сильные пульсации, и возможно появление стробоскопического эффекта, то есть если они будут установлены в токарной мастерской, то при определенной частоте вращения шпинделя токарного станка и другого оборудования – вам может казаться, что он неподвижен, что может вызвать травмы. С электронным балластом такого не произойдет.

Что такое ЭПРА и его назначение в люминесцентном светильнике

Люминесцентные светильники обладают некоторыми недостатками, которые становятся заметными после включения света. Сильное гудение и частое мерцание света, наблюдающееся при работе подобных встроенных светильников, может вывести из душевного равновесия любого человека. Единственным решением этой проблемы является установка специального пускорегулирующего устройства под названием ЭПРА.

Производство люминесцентных светильников задумывалось для развития систем освещения, использовавших обычные лампы накаливания, которые обладали крайне малым сроком эксплуатации. Максимальный срок службы лампы накаливания составляет около двух тысяч часов, что не может сравниться с долговечностью люминесцентных ламп, который насчитывает более 16 тысяч часов. Кроме этого, люминесцентные лампы обладают хорошим световым потоком, который превышает свет от обычных ламп более чем в шесть раз.

Электронный балласт ЭПРА

Электронным балластом называется специальное изделие, которое автоматически запускает люминесцентные лампы и продолжительное время поддерживает их в работе. Изготовление ЭМПРА началось три десятилетия тому назад. Они должны были заменить большие пускорегулирующие изделия. Специалисты связывают это с тем, что у старых пускорегулирующих аппаратов было очень много недостатков, которые сильно осложняли их использование.

Перечень основных недостатков такой:

  • располагающийся в панели пускорегулирующего аппарата дроссель был больших габаритов и очень сильно шумел при работе;
  • довольно частое мерцание света;
  • очень маленький коэффициент полезного действия;
  • при поломке стартера может наблюдаться запоздалое срабатывание люминесцентной лампы.

Как устроен ЭПРА 18 Вт для светодиодных ламп

Новый ЭМПРА для светодиодной лампы, приобретенный в любом магазине, представляет собой такие составляющие:

  1. Качественный фильтр частоты, который сглаживает помехи низкого уровня и направлен на выводы изделия. Подобный фильтр помогает уменьшить воздействие светодиодной лампы на остальное бытовое оборудование, к примеру, на число помех при работе радиоприемников или телевизоров.
  2. Мощный выпрямитель, который преобразовывает в схеме переменное напряжение в постоянное.
  3. Небольшой инвертор.
  4. Разные специальные узлы, которые необходимы для корректировки мощности в схеме светодиодной лампы.
  5. Малогабаритный фильтр постоянного напряжения.
  6. Качественный дроссель, ограничивающий максимальный ток в схеме.

А также инвертор зачастую оснащен приспособлением, которое несет ответственность за плавность регулирования яркости света светодиодной лампы.

ЭПРА для люминесцентных ламп

Люминесцентный светильник, который снабжен ЭПРА, начинает работать, проходя несколько основных этапов.

Включение люминесцентного светильника

Специальный выпрямитель, который отвечает за преобразование постоянного напряжения в переменное, передает его на буфер мощного конденсатора. Далее, это напряжение проходит дальше и оказывается на полумостовом инверторе. В это время заряжаются все конденсаторы и микросхемы маленького напряжения.

Когда значение напряжения достигает показателя 7 вольт, то начинается намеренное сбрасывание микросхемы, а потом заряжается управляющий конденсатор, который регулируют несколько транзисторов. При достижении напряжением значения в 12 вольт, элементы люминесцентной лампы быстро нагреваются.

Предварительный нагрев люминесцентного светильника

При перемещении тока в изделии, сразу начинается уменьшение максимальной частоты колебаний, а значение напряжения возрастает. Прогревается люминесцентный светильник всего несколько секунд, если начинать отсчет с момента подачи напряжения на изделие. В этом случае электронный балласт играет роль систематизатора, потому что он не дает лампе запустится, не пройдя этап подготовительного прогрева. Это поможет избежать многих проблем в работе светильника.

Зажигание люминесцентного светильника

Значения показателей полумоста, к примеру, его амплитуды, уменьшаются до своего минимума. Для того чтобы люминесцентный светильник загорелся, необходимо напряжение около 620 вольт. В противном случае он просто не будет работать. Специальный дроссель способен значительно превысить это значение, увеличивая напряжение в электрической сети, что в дальнейшем приводит к зажиганию светильника. Обычно весь этот процесс занимает около нескольких секунд.

Горение люминесцентного светильника

Из-за работы электронного балласта, сила тока не превышает оптимальное значение для качественной работы лампы. ЭПРА полностью контролирует управление амплитудой переключения полумоста, обеспечивая тем самым стабильную работу светильника.

ЭПРА схема подключения

Сначала необходимо аккуратно разобрать люминесцентный светильник. Далее, стоит извлечь из него устаревшие компоненты изделия. Это, прежде всего, дроссель, разные конденсаторы, стартер и другие элементы. В светильнике необходимо оставить лишь люминесцентные лампы, жгуты проводов и ЭПРА.

Сделать ЭПРА подключение способен абсолютно любой человек, обладающий минимальными познаниями о работе электрических схем. Конечно, что людям, не располагающим опытом в этой области, даже и не следует пытаться, а необходимо обратиться к опытному электрику.

Для подключения электронного балласта будут необходимы такие инструменты и материалы:

  • набор отверток;
  • бокорезы;
  • прибор, определяющий фазы тока;
  • небольшое количество изоленты;
  • довольно острый нож, необходимый для обработки концов проводов;
  • крепежные материалы.

Перед тем как собрать схему, необходимо определиться с местоположением изделия ЭПРА внутри люминесцентного светильника. При этом стоит учесть длины абсолютно всех проводов и наличие удобного доступа к нужной управляющей системе. Именно поэтому стоит заранее проделать отверстие в корпусе светильника, куда есть возможность установить ЭПРА при помощи крепежных материалов. Далее, нужно подключить электронный балласт к разъемам светильника. Существует еще один не менее важный момент, который заключается в том, что мощность ЭПРА обязана быть в несколько раз больше, чем у люминесцентного светильника.

Как только окончен процесс правильной сборки люминесцентного светильника с устройством ЭПРА, необходимо установить его на нужное место. Сначала стоит проверить мультиметром все провода, которые торчат из стены, на присутствие в них рабочего напряжения. Когда оно отсутствует, то нужно соединить все контакты с оборудованием. После всех этих действий, стоит сделать тестовый запуск светильника, оборудованного ЭПРА. В случае когда все действия прошли успешно, то люминесцентные лампы обязаны загореться одновременно, без дополнительного процесса разогрева, а излучаемый свет не должен часто мерцать.

Достоинства и недостатки ЭПРА 18 Вт

Опытные электрики выделяют несколько главных достоинств использования электронных балластов в работе люминесцентных светильников. К ним, прежде всего, можно отнести:

  1. Сбережение максимальной мощности света, при уменьшении количества потребляемой блоком питания электрической энергии.
  2. Отсутствие сильного мерцания света, которое считается особенностью люминесцентных светильников.
  3. Уменьшение шума в процессе работы светильника.
  4. Большой срок эксплуатации лампы, что стало возможным из-за применения устройства ЭПРА.
  5. Удобное управление яркостью света люминесцентного светильника.
  6. Устойчивость к колебаниям и перепадам рабочего напряжения в электрической сети питания.
  7. Большая экономия в плане следующих замен основных деталей светильника. Из-за того, что при помощи блока питания будет использоваться наиболее плавный режим пуска изделия, то это может увеличить срок эксплуатации стартеров и люминесцентных ламп.

Главным недостатком применения ЭПРА является, как и у других новейших технологий и изделий, очень высокая стоимость по сравнению с остальными подобными блоками питания.

Схема подключения люминесцентных ламп

Как известно, люминесцентные лампы уже давно получили широкое распространение в самых различных областях применения.

Прогресс зашел настолько далеко, что даже в быту стало возможным использование этого осветительного элемента, хотя люминесцентные лампы, начавшие свою историю в нашей стране в 30-е гг ХХ века, ранее использовались исключительно в целях освещения зданий какого-либо специализированного назначения, в которых требовалось круглосуточное снабжение светом.

Естественно, что и на рынке осветительных элементов люминесцентные лампы представлены в великом множестве, разнообразие моделей способно удовлетворить практически любые эксплуатационные назначения.

Вместе с этим появились и самые разнообразные схемы подключения этого устройства, каждый из которых отличается своей спецификой и подходит для определенного типа ламп.

 

Стоит сразу отметить тот факт, что работы по подключению люминесцентных ламп требуют куда большего внимания и знаний, чем аналогичные манипуляции с теми же привычными нам лампами накаливания.

 

Этот процесс отличается куда большим числом нюансов и тонкостей, соответственно, и уровень сложности возрастает в разы.

И, что немало важно, от правильности подключения зависит то, насколько эффективной и долговечной будет ее работа. И конечно, необходимо предварительно ознакомиться с устройством этого светильника.

Особенности и тонкости при подключении люминесцентных ламп

Как известно, люминесцентные лампы относятся к числу газозарядных устройств. А любая лампа такого типа отличается, пожалуй, самым важным для внимания качеством: напрямую подключить такое изделие в сеть никак нельзя.

На вопрос, почему нельзя этого сделать, ответ имеется в двух вариантах:

  • в состоянии, так сказать, «покоя» лампы имеют довольно высокий показатель сопротивления, для запуска ее механизма в работу нужен импульс, который будет отличаться высоким показателем напряжения;
  • люминесцентная лампа, получив импульс и образовав в себе разряд, получает довольно высокий показатель дифференциального сопротивления, соответственно, при таких условиях нельзя обойтись без сопротивления, иначе лампа просто сгорит.

Для решения этой проблемы был введен в систему элемент – балласт.

 

Балласт – это специализированный пускорегулирующий механизм, обеспечивающий происхождения правильного алгоритма процессов в люминесцентной лампе и обеспечивающий необходимые условия для ее работы.

 

На сегодняшний момент существуют две разновидности балластов. ЭмПРА и ЭПРА. Подключение с использованием каждого из вышеназванных элементов отличается своими тонкостями в работе.

К содержанию

Подключение люминесцентной лампы с использованием ЭмПРА: при помощи электронного дросселя

Аббревиатура ЭмПРА не слишком понятна пользователю, не отличающемуся широким диапазоном знаний в области электроники и электротехники. Тем не менее, расшифровывается она довольно просто.

ЭмПРА – это электромагнитный пускорегулирующий аппарат.

Он представляет собой катушку индуктивности, также известную как дроссель, обладающий индуктивным сопротивление. Сопротивление это должно быть в определенном размере.

Дроссель подключается с люминесцентной лампой последовательно, однако лампы тоже должны обладать определенной мощностью.

Далее требуется подключить стартер, делать это нужно тоже строго определенным способом: последовательно нитям накаливания.

Кстати, говоря о стартере, необходимо разъяснить, что именно представляет собой это устройство. Стартером называется неоновая лампа, оснащенная биметаллическими электродами, в сочетании с конденсатором.

 

Важно учесть тот факт, что подключены эти два устройства параллельно.

 

После того, как все вышеуказанные элементы подключены, происходит определенный процесс: дроссель подвергается самоиндукции. В результате этого он формирует импульс, который отвечает за запуск, причем, величина его, как правило, не превышает 1 кВ.

Помимо этой функции дроссель еще и ограничивает ток, опираясь при этом на индуктивное сопротивление.

Если говорить о качественных характеристиках ЭмПРА, то здесь, пожалуй, можно выделить значительно число негативных сторон в то время, как положительных моментов наберется довольно мало.

ЭмПРА отличается довольно низким ценовым показателем, да и сама конструкция его довольно проста.

В перевес этому представлен ряд негативных сторон приобретения и использования этого балласта:

  • запуск осуществляется довольно долго;
  • дроссель, обязательно входящий в структуру ЭмПРА, потребляет сравнительно много электроэнергии;
  • коэффициент мощности очень низок, и для увеличения его требуется применение компенсирующих конденсаторов;
  • пластины воспроизводят гудение, отличающиеся низкой частотой, и что самое неприятное, оно в последствие возрастает;
  • конструкция обеспечивает мерцание люминесцентной лампы, а это очень негативно влияет на восприятие света глазом и практически гарантирует возможные проблемы со зрением у потребителей;
  • габариты устройства слишком велики и неудобны;
  • отрицательные температурные показатели оказывают настолько сильное влияние на ЭмПРА, что при них он просто не осуществляет запуск, а значит, люминесцентные лампы на такой системе просто напросто не включатся.

Схема подключение люминесцентной лампы с использование ЭПРА

Помимо электромагнитного пускорегулирующего аппарата, который, как можно сделать вывод из вышесказанного, осуществляет свою работу не слишком качественно, существует и другой способ запустить все необходимые процессы в люминесцентной лампе.

Это ЭПРА, то есть, электронный пускорегулирующий аппарат.По сравнению с ЭмПРА такой балласт намного безопаснее и оптимальнее для использования его потребителем.

К ряду достоинств такого устройства можно отнести, например, то, что люминесцентная лампа исключает мигание, которое отрицательно влияет на состояние сетчатки глаз пользователей.

Обеспечивается это следующей особенностью ЭПРА: лампы от него питаются не сетевым током, а обладающим высокой частотой.

Разница в показателях весьма значительна, соответственно, неприятное мигание удается нивелировать.

 

 

К числу достоинств ЭПРА можно отнести и следующие:

  • снижается потребление электроэнергии, что позволяет сэкономить на ее оплате;
  • электронные балласты представляют в своем ряду и устройства, позволяющие регулировать яркость освещения;
  • затраты на производство и ликвидацию отходов от такого устройства значительно ниже;
  • отлично подходят для централизованного освещения, оснащенных автоматической регулировкой, экономя электроэнергию;
  • при монтаже и установке ЭПРА не требуется специальный стартер, подключенный отдельно, система сама способна создать необходимые условия для совершения работы.

В настоящее время электронный балласт может быть представлен в двух моделях.

Основное их различие заключается в том, что каждая из их осуществляет запуск отличным от другого способом. Одним из них является холодный запуск, а другим – горячий.

Холодный запуск обуславливает свою работу следующей особенностью: лампа зажигается сразу, как только ее включают.

Правда, в этом случае есть и некоторый нюанс: этот способ хорошо подойдет только тем лампам, которые редко проходя процесс включения/выключения. При соблюдении такого условия сохраняется рабочее состояние электродов лампы, а значит, она не выйдет из строя раньше времени.

Горячий запуск
не зря получил такое название. Он сначала прогревает электроды, а потом уже дает пуск включению лампы. Интервал между этими действиями не слишком значителен – не более 1 секунды.

Состояние лампы при этом сохраняется идеальное даже при частом включении/выключении, а значит, она честно прослужит весь отведенный ей срок.

К содержанию

Подключение люминесцентной лампы: описание работы и схема

Работа с ЭмПРА подразумевает свой процесс подключения люминесцентной лампы, соответственно, ЭПРА тоже отличается своими особенностями установки.

Дроссель можно назвать пережитком советского периода, сейчас он используется довольно редко, поскольку со временем перестает отвечать всем возложенным на него требованиям.

Однако, так как они все же имеют место быть в нашей жизни, рассмотрим в данной статье и их. Выше мы упоминали некоторые этапы работы этого устройства, теперь рассмотрим их подробно.

ЭмПРА осуществляет свою работу по стартерной схеме.

 

После того как мы подключаем электрическое питание, в стартере происходит процесс замыкания. Распространяется он на биметаллические электроды и отличается коротким исполнением. Ток поступает внутрь цепи, образованной электродом и стартером.

 

Там его ничто не ограничивает, кроме дросселя, создающего внутреннее сопротивление, и он возрастает в несколько раз, преобразуясь в рабочую форму.

Благодаря этому процессу электроды в люминесцентной лампе разогреваются очень быстро, а биметаллические контакты наоборот, остывают, при этом, происходит процесс размыкания всей цепи.

Дроссель, тем временем, запускает импульс, который и обеспечивает свет, излучаемый лампой. Пока лампа дает свет, стартер не участвует в работе, а значит, контакты его останутся разомкнутыми до тех пор, пока лампа не будет выключена.

Учтите некоторую особенность: если вы подключаете последовательно две лампы, не планируемые к работе в одноламповой схеме, то стартеры следует брать более высокой мощности, например, на 220 Вольт. Без соблюдения этого условия ваша установка не будет работать.

ЭПРА имеет в своем составе трансформатор и  выходной каскад, работающий на транзисторном снабжении.

Схем подключения его довольно много, но приятно отметить тот факт, что они наносятся производителем непосредственно на саму поверхность корпуса.

Схемы довольно понятны и работа с ними не принесет особых сложностей. Все нюансы указываются, как правило, там же. Кроме того, в интернете можно найти видеоуроки по подключению практически всех схем ЭПРА, а значит, успех предприятия обеспечен.

Важно только не упускать из внимания некоторый нюанс: схему подключения необходимо соблюсти на каждую лампу с обеих сторон.

Механизм действия может происходить по-разному, опять же, это зависит от специфики схемы.

К примеру, балласт осуществляет подогрев катодов лампы, прикладывая далее напряжение, которого достаточно, чтобы зажечь лампу. Напряжение выше, чем в сети. Могут встретиться и комбинированные варианты запуска.

Опытные пользователи люминесцентных ламп советуют обратить свое внимание в пользу именно ЭПРА. Ознакомившись с перечнем положительных сторон, не трудно догадаться, почему выбор большинства обращен именно в его пользу.

Вывод

В данной статье мы постарались собрать всю необходимую информацию о принципах подключения люминесцентных ламп.

 

Внимательно отнеситесь к рекомендациям производителей ламп, которые вы решите купить. Ведь именно это обеспечит наиболее эффективную работу всей установки.

 

И, все же, если вы сомневаетесь в своих силах и знаниях принципов физики и электроники, лучше доверьте подключение люминесцентной лампы профессионалам. Так вы сможете гарантировать, что установка не сгорит и прослужит вам долго, а цена на данную услугу окупается в несколько раз.

А ведь именно ради долговременной службы и выбираются люминесцентные лампы.

К содержанию

Расскажите друзьям!

Понравилась статья? Подписывайтесь на обновления сайта по RSS, или следите за обновлениями В Контакте, Одноклассниках, Facebook, Twitter или Google Plus.

Подписывайтесь на обновления по E-Mail:

Если вы нашли неточность или у вас есть вопрос, напишите в форме комментария ниже:

Филип Томпсон | Эллис, художник, Ratterree & Adams LLP

Г-н Томпсон является партнером фирмы, практикующей в основном в области сложных деловых судебных разбирательств, защиты от травм, апелляционной практики и адмиралтейского права в судах штата и федеральных судах.

Г-н Томпсон успешно представлял или помогал успешно представлять клиентов в широком спектре гражданских тяжб на всех уровнях судов Джорджии и в Одиннадцатом округе, включая, помимо прочего, нарушения письменных или устных договоров, правонарушения, связанные с материальной ответственностью, экологические правонарушения, дела о дискриминации при приеме на работу, травмы на море, аресты судов и дела защиты от несчастных случаев.

Г-н Томпсон является опытным практикующим специалистом в области апелляционной инстанции, регулярно информирует о делах в апелляционных судах штата и федеральных апелляционных судах штата Джорджия. Г-н Томпсон также помогает другим юристам в их представительствах по различным предметам, обеспечивая поддержку в написании кратких текстов, исследовательских проектах и ​​другом сотрудничестве.

Г-н Томпсон гордится профессионализмом, с которым он занимается юридической практикой, и применяет в своей практике ценный опыт, приобретенный им на различных уровнях судебной системы штата и федерального уровня.Перед тем, как присоединиться к EPRA, г-н Томпсон работал клерком достопочтенного Б. Аванта Эденфилда, старшего окружного судьи окружного суда Соединенных Штатов в Южном округе Джорджии, который также заседал по назначению в Одиннадцатом округе, когда г-н Томпсон был клерком. Во время учебы в юридической школе г-н Томпсон проходил стажировку у судьи Дэвида Э. Нахмиаса из Верховного суда Джорджии и судьи Верховного суда Лоутона Стивенса из западного судебного округа.

Уроженец Саванны, г-н Томпсон получил степень бакалавра (с отличием) по истории (с отличием) и философии в Университете Джорджии в 2008 году и является выпускником 2011 года (с отличием) школы Университета Джорджии. Ло, где он был избран в Орден Чепца и работал старшим редактором статей в Georgia Law Review.

Образование

  • Университет Джорджии (бакалавр с отличием, диплом с отличием по программе с отличием, история и философия, 2008 г.)
  • Юридический факультет Университета Джорджии (доктор юридических наук, с отличием, 2011 г.)
    • Орден Чепчика (10% лучших выпускников)
    • Старший редактор статей, Исполнительный совет Georgia Law Review
    • Апелляционная клиника
    • Лауреат премии CALI за работу в области доказательств

Членство

  • Государственная коллегия адвокатов штата Джорджия
  • Коллегия адвокатов Саванны (Комитет по назначениям, 2019-2020)
  • Ассоциация морского права США
  • Юридический институт Юго-Восточного Адмиралтейства (Директор порта Саванна, 2017-2019)
  • Коллегия адвокатов Саванны, Отдел молодых юристов (бывший президент)
  • Ассоциация адвокатов Джорджии (заместитель председателя комитета Amicus Curiae)
  • Лидерство, выпускник Саванны (2018)
  • Propeller Club of the United States, Порт Саванна

Судебные заседания

  • Суд штата Джорджия и Верховный суд
  • Апелляционный суд штата Джорджия
  • Верховный Суд Грузии
  • Южный округ Грузии
  • Северный округ Грузии
  • Апелляционный суд 11-го округа

Публикации

Примечание, Санкционирование жесткого торга: критика государственного предложения о правилах расчетов, 44 Ga.Л. Ред. 1133 (2010)

Выбор освобождения от ответственности: положения об освобождении от ответственности и положения о выборе закона государством в морских контрактах , 6 MALABU 5 (зима 2015/2016)

Сара Б. (Салли) Акинс | Эллис, художник, Ratterree & Adams LLP

Сара (Салли) Браун Акинс - партнер компании Ellis, Painter, Ratterree & Adams в Саванне. Салли практикует в Саванне с 1993 года, после двух лет практики в Атланте, штат Джорджия.После окончания юридического факультета она работала клерком в судебной системе и занималась исключительно гражданской судебной практикой. Она занималась делами, связанными с материальной ответственностью, авариями с участием автомобилей и грузовиков, судебными разбирательствами в связи с профессиональной небрежностью (медицинскими, юридическими и фармацевтическими) с участием округов и муниципалитетов, включая дела о гражданских правах и делах о зонировании, судебные споры о страховом покрытии и ответственность за продукцию.

Салли в настоящее время проводит большую часть своего времени в качестве зарегистрированного посредника и арбитра и связана с Miles Mediation and Arbitration.

Образование

  • Университет Флориды (бакалавр, 1987)
  • Университет Мерсера (J.D., 1990)

Награды и почести

  • Коллегия адвокатов (назначена Верховным судом Грузии, с 2014 г. по настоящее время)
  • Лучшие 100 адвокатов - Супер-юрист Джорджии (2020)
  • Лучшие 50 женщин-адвокатов - Супер-юрист Джорджии (2012-2020)
  • Супер юрист Грузии (2010-2020)
  • Секция общей практики и судебного разбирательства Государственной коллегии адвокатов, получившая награду за выдающееся мастерство адвокату, 2018 г.
  • Лауреат, Ежедневный отчет «Выдающийся лидер», 2019
  • Легальная элита Грузии, журнал Georgia Trend (2009)
  • Лучшие юристы Америки (2012-2020)
  • Совет управляющих государственной коллегии адвокатов Джорджии (Восточный судебный округ, пост 1, 2010 г. - настоящее время)
  • Назначен главным судьей в местный комитет по правилам США.S. Окружной суд Южного округа Джорджии, Консультативный комитет окружного суда США Южного округа Джорджии и Комитет по планированию 11-й Окружной судебной конференции 2013 года
  • Назначен главным судьей 11-го окружного апелляционного суда в Консультативный комитет 11-го окружного апелляционного суда (2017-настоящее время)
  • Судебный советник Америки - Почетное общество судебных юристов
  • Награжден лучшим информационным бюллетенем государственной коллегии адвокатов Джорджии в течение трех лет работы в должности главного редактора GDLA's Georgia Defense Lawyer (2013, 2014, 2015).

Членство

  • Американский совет судебных адвокатов (ABOTA) , S.E. Грузинское отделение (член устава; президент, 2017 г., вице-президент, 2015 г .; секретарь, 2014 г.; казначей, 2011-2013 гг.)
  • Ассоциация адвокатов защиты Джорджии (GDLA) (член Совета директоров, с 2006 г. по настоящее время; президент, 2017-2018 гг .; избранный президент, 2016-2017 гг .; казначей, 2015-2016 гг .; вице-президент, 2012-2015 гг .; редактор , Юридический журнал Ассоциации адвокатов Джорджии, 2011 г .; заместитель председателя и преподаватель судебной академии, 2012 г .; главный редактор, адвокат защиты Джорджии, 2013-2015 гг.)
  • Государственная коллегия адвокатов Государственная коллегия адвокатов штата Джорджия
    Секретарь (с 2019 г. по настоящее время)
    Исполнительный комитет (с 2018 г. по настоящее время)
    Совет управляющих Государственной коллегии адвокатов Джорджии (Восточный судебный округ, должность 1, 2010 г. - по настоящее время) Государственный дисциплинарный совет (н / к Дисциплинарный совет) (1999-2002) и (2010-2019, председатель 2001-2002, заместитель председателя 2018-2019)
  • Ассоциация женщин-юристов Джорджии (президент отделения в Саванне, 1994–1996 годы)
  • Федеральная коллегия адвокатов Южного округа Джорджии , член-учредитель, (секретарь, 2018; вице-президент, 2019)
  • Историческое общество одиннадцатого округа, Inc., Грузия Доверительный управляющий
  • Коллегия адвокатов Саванны (Исполнительный комитет 1999-2000; председатель комитета по связям с общественностью 2001-2002; председатель комитета государственной службы 2005-2006)
  • Американская ассоциация юристов (представитель штата Джорджия, комитет женщин-адвокатов, судебная секция)
  • Национальный совет адвокатской дисциплины , казначей, 2005
  • НИИ обороны
  • Лидерство Выпускник Саванны , 2006 г.
  • Фонд юристов Джорджии , научный сотрудник
  • Клуб адвокатов Old War Horse
  • Инструктор по тестированию для старших классов (1994-1996)

Связанный опыт

  • Секретарь судебного права достопочтенного Артура У.Фадгер и достопочтенная Ф. Мэрион Кёрнрнингс, Судебный округ Таллапусы (1990–1991)
  • Ассоциированный поверенный, Freeman & Hawkins (не известно, Hawkins, Parnell, Tackston & Young), Атланта, Джорджия (1991–1993)

Судебные заседания

  • Государственные и высшие суды всей Джорджии
  • Верховный Суд Грузии
  • Апелляционный суд Грузии
  • Окружной суд США Южного округа Джорджии
  • СШАОкружной суд Северного округа Грузии
  • Окружной суд США по Среднему округу Джорджии
  • Апелляционный суд США по одиннадцатому округу
  • Верховный суд США

Электрические ламинаты | EPRA

Печатная плата

Фенольные смолы можно использовать для пропитки ряда различных подложек, используемых при производстве электрических ламинатов. Электрические ламинаты используются в различных приложениях, от электронных деталей в печатных платах до электроизоляционных материалов, используемых в трансформаторах, генераторах и электрическом оборудовании.Ламинат с электроизоляционными свойствами также используется в текстильной промышленности, особенно в трубах, благодаря их высокой диэлектрической прочности.

Электрические ламинаты производятся в соответствии с международными и национальными стандартами. Помимо EN 60893 особое значение имеют стандарты США NEMA LI-1 и DIN 7735 Германии.

Могут использоваться как немодифицированные, так и модифицированные фенольные смолы, однако для всех используемых смол характерно очень небольшое количество электролитов, что приводит к получению ламинатов с очень высокой диэлектрической прочностью.Подложки пропитаны большим количеством смолы, которая делает ламинаты гидрофобными.

Производство

Типичные электрические ламинаты производятся в три отдельных этапа; пропитка, прессование и отделка в производственных процессах, аналогичных другим типам ламинатов на бумажной основе.

В процессе пропитки субстрат (например, бумага, хлопчатобумажная ткань, стекло) переносится в ванну для пропитки, содержащую фенольную смолу, и желаемое количество смолы абсорбируется.После высыхания пропитанный субстрат (препрег) разрезают на листы или наматывают на рулоны.

Для специальных ламинатов пропитка происходит в несколько этапов обработки с промежуточным этапом сушки. Первая стадия пропитки позволяет смоле с низким молекулярным весом проникать в сердцевину субстрата. После этого следует вторая стадия пропитки, на которой поверхность покрывается модифицированной или немодифицированной высокомолекулярной смолой.

Затем препрег ламинируют в многодневных прессах в зависимости от конечного применения. E.грамм. для ламинатов, плакированных медью, прилагается очень тонкая медная фольга. Для производства ламинированных труб препрег наматывается на предварительно нагретый стальной сердечник против нагретых валков противодавления. Полученные ламинированные рулоны подвергаются дополнительному отверждению при 150–180 ° C в течение нескольких часов.

Отвержденные ламинаты обрабатываются в соответствии с их конечным использованием. Плакированные медью ламинаты, которые будут использоваться в качестве печатных плат, печатают, травят и перфорируют. Трубы и пластины, используемые для изоляции, обрабатываются стандартными механическими процессами, такими как пиление, фрезерование и токарная обработка.

Требование к высокой температурной стабильности, негорючести и низкому водопоглощению делает фенольные смолы идеальным выбором для производства электротехнических ламинатов.

PRO для электрического и электронного оборудования - RPRA

Что должен делать PRO в соответствии с Регламентом EEE?

С 1 января 2021 года производители информационных технологий, телекоммуникаций, аудиовизуального оборудования (ITT / AV) несут индивидуальную и финансовую ответственность за сбор и повторное использование, восстановление или переработку своей продукции, когда потребители выбрасывают ее.Обязанности по световому оборудованию в соответствии с регламентом EEE вступят в силу 1 января 2023 года. Дополнительная информация об освещении будет доступна в будущем.

PRO, которые будут работать от имени производителей, должны посетить нашу веб-страницу производителей EEE , чтобы понять свои нормативные обязательства.

Регистрация

PRO должен зарегистрироваться в Управлении в течение 30 дней с момента его удержания у производителя ITT / AV. Если вы заинтересованы в регистрации в качестве PRO для ITT / AV, свяжитесь с нашей командой соответствия и реестра по телефону registry @ rpra.ca или (647) 496-0530 или бесплатно по телефону (833) 600-0530.

Отчетность

Не позднее 30 апреля 2021 г. производитель или PRO, действующий от их имени, должны предоставить следующую информацию о своей сети сбора для ITT / AV:

  • Расположение каждого сайта сбора в их системе.
  • Описание их услуг по сбору платежей.
  • Каждый автовоз, переработчик или восстановитель, участвующий в их системе сбора.

Начиная с 2022 года (до 30 апреля или ранее) производители (или PRO от их имени) должны отчитываться о своей работе за предыдущий отчетный период (с 1 января по 31 декабря 2021 года), включая вес переработанных ITT / AV, повторно использованный и отремонтированный.В первый период работы аудит не требуется.

Начиная с 2024 года, производители (или PRO от их имени) будут обязаны предоставлять аудит, подтверждающий их отчеты о производительности для ITT / AV. Первый аудит эффективности запланирован на 30 апреля 2024 года (исходя из показателей за 2022 и 2023 годы).

Аудит результатов деятельности за предыдущие три отчетных периода проводится каждые три года, что означает, что вторая аудиторская проверка будет проводиться 30 апреля 2027 года (для результатов деятельности за 2024, 2025 и 2026 годы)

Аудит должен проводиться в соответствии с Процедурой реестра - Проверка и аудит

журналов EPRA | Хорошая индексация

  • Печатную копию свидетельства и опубликованную статью не передаем платным авторам онлайн-издания

  • После того, как статья была опубликована, журналы EPRA не признают никаких запросов, связанных с изменениями содержания статьи или сведений об авторах.

  • EPRA оставляет за собой право вносить изменения стилистического, грамматического характера, удалять, переписывать предложения и абзацы статьи по своему усмотрению.

  • Согласно нашим стандартам максимум 3 автора только будут учитываться для одной статьи.

  • Решение о том, кого включить в качестве соавтора, необходимо обсудить и получить разрешение до подачи статьи.

  • Журналы EPRA считают, что имена авторов в статье получены с разрешения соответствующих авторов поданным автором.

  • Если автор-корреспондент хочет удалить одно имя соавтора из представленной статьи. Он / она должен сообщить об этом редактору или главному редактору до 15 дней с даты публикации.

  • Журналы

    EPRA не будут рассматривать статьи или компоненты статьи, которая была опубликована или рассматривается для публикации в другом месте.

  • Авторы несут исключительную ответственность за высказанные ими утверждения и мнения.

  • Плата за публикацию оплачивается только после получения письма с подтверждением приема статьи от редактора или главного редактора по номеру

  • Мы никогда не принимаем предоплату,

  • Любой автор статьи должен подписать форму о праве на копирование (доступную на веб-сайте) во время оплаты по электронной почте или на веб-сайте.Формы могут быть загружены через веб-сайт или по электронной почте, либо ускорены / зарегистрированы по почте в редакцию.

  • Мы никогда не потерпим плагиата. Если перед публикацией будет обнаружено, что какая-либо статья является плагиатом, мы немедленно отклоняем статью и заносим ее в черный список. Даже после публикации, если какая-либо статья будет признана плагиатом или сообщена кем-либо с надлежащими доказательствами. Мы УДАЛИТЬ статью без уведомления автора.

  • В случае возникновения каких-либо запросов или нарушений, подпадающих под юрисдикцию Тиручирапалли.

  • [DKB url = "http://epratrust.com/subscription/" text = "Сведения о журналах и сборах" title = "" type = "" color = "red" opennewwindow = "" nofollow = "" textcolor = "# ffffff "custom =" yes "] [DKB url =" http://epratrust.com/welcome-to-epra-trust-online-payment-2/ "text =" Плата за публикацию "title =" "type =" "color =" blue "opennewwindow =" "nofollow =" "textcolor =" # ffffff "custom =" yes "]

    FTSE EPRA NDEXUK I.UE (ZPRP.F) цена акций, новости, котировки и история - Yahoo Финансы

    GlobeNewswire

    ХАНЧЖОУ, Китай, окт.14, 2020 (ГЛОБАЛЬНАЯ ИНФОРМАЦИЯ) - Ebang International Holdings Inc. (Nasdaq: EBON, «Компания», «мы» или «наш»), ведущий производитель машин для майнинга биткойнов на мировом рынке с точки зрения вычислительной мощности, проданной в 2019 *, сегодня объявила о подписании тендерного письма о выражении заинтересованности («Тендерное письмо») на приобретение 100% акций лицензированной новозеландской финансовой компании, которая предлагает оптовых и универсальных финансовых брокеров, а также услуги по управлению активами для создать местную платформу финансовых услуг для цифровых активов.Г-н Донг Ху, председатель и главный исполнительный директор компании, прокомментировал: «Мы по-прежнему неуклонно выполняем наши стратегии по запуску комплексного финансового бизнеса с использованием блокчейнов, чтобы использовать возможности роста в цепочке создания стоимости в отрасли блокчейнов. Используя наш многолетний опыт в технологии блокчейн и наши недавние экспансии в Сингапур, Канаду и Новую Зеландию, мы сделали гигантский шаг к нашей цели, создав полностью лицензированную торговую платформу на базе Интернета, которая предоставляет профессиональные, удобные и инновационные торговые услуги. .«Завершение сделки, предусмотренной в тендерном письме, зависит, среди прочего, от переговоров по окончательному соглашению между соответствующими сторонами, выполнения условий закрытия, предусмотренных в нем, и необходимых корпоративных или иных одобрений от соответствующих сторон. . Нет никакой гарантии, что будет заключено окончательное соглашение или что предложенная сделка будет завершена вовремя или вообще. Акционерам рекомендуется не чрезмерно полагаться на этот пресс-релиз.О компании Ebang International Holdings Inc. Ebang International Holdings Inc. - ведущий производитель машин для майнинга биткойнов на мировом рынке с точки зрения вычислительной мощности, проданной в 2019 году *, с мощными возможностями проектирования микросхем для конкретных приложений (ASIC), подкрепленными почти десятилетием. отраслевого опыта и знаний в области телекоммуникаций. Имея международное присутствие и лицензированные организации в различных юрисдикциях, Компания готова запустить полностью лицензированную торговую платформу на базе Интернета, которая предоставляет профессиональные, удобные и инновационные торговые услуги для всех.Для получения дополнительной информации посетите https://ir.ebang.com.cn/. * Согласно отраслевому отчету, подготовленному Frost & Sullivan в 2019 г., Заявление о безопасности в гавани Этот пресс-релиз содержит заявления прогнозного характера в соответствии с разделом 21E Ценных бумаг. Закон о биржах 1934 года с поправками и определением, содержащимся в Законе США о реформе судебных разбирательств по частным ценным бумагам 1995 года. Эти прогнозные заявления включают, помимо прочего, планы развития и бизнес-перспективы Компании, которые могут быть определены с помощью такой терминологии, как «может , »« Будет »,« ожидает »,« ожидает »,« цели »,« потенциал »,« будущее »,« намеревается »,« планирует »,« полагает »,« оценивает »,« продолжит »,« вероятно » и другие подобные выражения.Такие заявления не являются историческими фактами и основаны на текущих убеждениях, планах и ожиданиях Компании, а также на текущих рыночных и операционных условиях. Заявления о перспективах включают в себя известные или неизвестные риски, неопределенности и другие факторы, все из которых трудно предсказать, и многие из которых находятся вне контроля Компании, что может привести к тому, что фактические результаты, показатели и достижения Компании будут существенно отличаться от содержащихся в них. в любом прогнозном заявлении.Дополнительная информация об этих и других рисках, неопределенностях или факторах включена в документы Компании в Комиссию по ценным бумагам и биржам США. Эти прогнозные заявления сделаны только на указанную дату, и Компания не берет на себя никаких обязательств по обновлению или пересмотру информации, содержащейся в каких-либо прогнозных заявлениях в результате появления новой информации, будущих событий или иным образом, за исключением случаев, предусмотренных применимым законодательством. Контакты для инвесторов и средств массовой информации: Ebang International Holdings Inc.E-mail: [email protected] Investor Relations LLC Г-жа Тина Сяо Тел .: (917) 609-0333 Электронная почта: [email protected]

    (PDF) Главный редактор РЕДАКЦИОННЫЕ СОВЕТНИКИ EPRA International Journal of (IJRD )

    EPRA Международный журнал исследований и разработок (IJRD) | ISSN: 2455-7838 (онлайн) | Импакт-фактор SJIF: 3,476

    www.eprajournals.com Том: 1 | Выпуск: 9 | Ноябрь 2016 г.

    :

    Терроризм: одно из основных препятствий

    перед Индией - это терроризм.Например, Кашмир,

    одно из самых красивых мест для посещения

    пострадало от ожогов терроризма.

    таких мест туристы стараются избегать из соображений безопасности.

    Неадекватная инфраструктура: отсутствие надлежащих

    дорог, транспортных средств

    также отрицательно сказывается на нашем туризме. В одном Пекине

    гостиничных номеров столько же звезд, сколько во всей Индии. Существует острая необходимость

    для развития нашей инфраструктуры для развития

    нашего туризма.

    Уровень преступности: безопасность является важным фактором

    при выборе пункта назначения, и это

    , где Индия отстает от Китая. возьмем пример

    , скажем, в Дели так много исторических зданий,

    парков, знаменитая кухня, но высокий уровень преступности

    специально против женщин, поэтому туристы, особенно женщины

    турист, путешествующий в одиночку, может пропустить Дели с

    их список.

    Обман: туриста часто обманывают, что также отрицательно сказывается на нашем туристическом секторе.

    Плохо управляемые объекты: легко можно увидеть

    кучи мусора, надписи на стенах памятников

    и прочие антисанитарные вещи, все это оставляет плохое впечатление в тумане туриста

    . По сравнению с

    китай, Индия по этому показателю отстает.

    ЗАКЛЮЧЕНИЕ

    Хотя Индия и Китай являются

    азиатскими странами с богатым культурным наследием, Китай

    показывает лучшие результаты в сфере туризма, чем Индия.У Индии есть огромный потенциал

    , чтобы стать туристическим направлением номер один

    с разнообразием ландшафтов,

    различных культур, различных кухонь и т. Д. Нам нужно использовать

    преимуществ этого разнообразия. Для процветания нашего туристического сектора

    важно, чтобы наша инфраструктура

    нуждалась в улучшении, правительству необходимо разработать эффективную туристическую стратегию

    , и необходимо решить проблемы, связанные с безопасностью

    .

    БИБЛИОГРАФИЯ

    1. http://indiatoday.intoday.in/education/story/ama

    zing-fact-about-indias-tourism / 1 / 637477.html

    2. https: //www.statista .com / themes / 2076 / travel-

    and-tourism-industry-in-india /

    3. http://business.mapsofindia.com/sectors/tourism.h

    tml

    4. www.businessstandard .com% 2Farticle% 2Feconom3

    y-policy% 2Fsluggish-growth-in-foreign-tour-

    прибытие

    5.Парламентская библиотека секретариата Лок сабха и

    справочная, исследовательская, документация и информационная служба

    (larrdis), Сектор туризма в Индии

    6. Анализ факторов, ответственных за замедление

    в прибытии туристов в Индию, Министерство туризма

    (Правительство Индии), 2010 г.

    7. http://www.firstpost.com/india/why-india-is

    not-so-incredible-for-tourist-1012121.html

    8. http : //www.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *