Эпра для люминесцентных ламп схемы: Страница не найдена – Vamfaza.ru

Содержание

Страница не найдена - ЛампаГид

Прочее

Визуальный осмотр не всегда позволяет качественно оценить состояние электрической лампы накаливания, даже при целой

Квартира и офис

Большинство людей, особенно ведущих активный образ жизни в больших городах, очень редко всматривается в

Монтаж

При освещении жилых (и не только) помещений классическим осветительным прибором уже несколько столетий является

Улица

Натриевая лампа (НЛ) – это источник света, в котором рабочим веществом, генерирующим свет, являются

Квартира и офис

Для любого человека, еще только задумавшегося о ремонте в своей квартире или доме, рано

Люминесцентные лампы

Энергосберегающие или, как их еще называют, компактные люминесцентные лампы в последнее время получили очень

Страница не найдена - ЛампаГид

Флора и фауна

Подсветка рассады – важный фактор для выращивания растений. Безусловно, естественный свет доступен каждому и

Компоненты

Прошли времена вводных радиодеталей, при помощи которых радиолюбитель ремонтировал ламповые телевизоры и старые радиоприемники.

Светодиоды

При приобретении либо сборке новых светодиодных фонариков непременно следует обратить внимание на используемый светодиод.

Квартира и офис

Повесить люстру своими руками не так уж и сложно. Не имеющего опыта проведения подобных

Светодиоды

Многим интересно, каким образом точно провести расчет блока питания для светодиодной ленты. Вначале выясним,

Квартира и офис

Установка натяжного потолка в комнате дает возможность добиться идеально гладкой поверхности покрытия, а если

Страница не найдена - ЛампаГид

Светодиоды

Светодиоды, которые появились на рынке радиоэлектроники сравнительно недавно, уже прочно заняли лидерские позиции по

Прочее

Правильно установленная система освещения крайне важна для автомобиля, всегда актуален вопрос бесперебойной работы дальнего

Светодиоды

Галогенные светильники уже очень давно и прочно осели на рынке электротехники. И даже сейчас,

Светодиоды

Несмотря на разговоры о том, что светодиоды – это наивысшее достижение в области осветительной

Монтаж

Зайдя практически в любое офисное помещение, школу, детский сад или контору любого предприятия, можно

Флора и фауна

С развитием светодиодной техники для нее постоянно находится все больше областей применения, она постепенно вытесняет

схема, как подключить, ремонт, принцип работы, электронный и индуктивный


Несмотря на бурное развитие полупроводниковых технологий, люминесцентные лампы продолжают широко использоваться. В этой статье мы выясним, что такое балласт для ламп. Узнаем, почему это обязательная деталь любого люминесцентного светильника. В дополнение разберемся в несложном ремонте этого пускорегулирующего узла.

Что такое балласт и для чего он нужен

Чтобы разобраться, для чего нужен балласт, необходимо понимать принцип работы люминесцентной лампы (ЛЛ). Рассмотрим ее устройство. Конструктивно любая люминесцентная лампа – стеклянная колба в виде трубки, в концы которой запаяны тугоплавкие спирали накаливания, являющиеся электродами. Колба заполнена инертным газом с небольшим добавлением металлической ртути. Изнутри она покрыта люминофором – веществом, способном излучать видимый свет при облучении его ультрафиолетом.

Конструкция и принцип работы ЛЛ

При подаче напряжения на электроды в колбе возникает тлеющий разряд. Поток электронов активирует атомы ртути, и те начинают излучать в ультрафиолетовом диапазоне. Ультрафиолет воздействует на люминофор, заставляя его ярко светиться в видимом спектре.

Сам ультрафиолет поглощается люминофором и стеклом колбы. Он не покидает пределов лампы. Это исключает вредное воздействие ультрафиолетового излучения на человека.

Теоретически все просто. На самом деле в холодной выключенной лампе при подаче рабочего напряжения на электроды разряда не произойдет, поскольку ртуть находится в конденсированном состоянии, а сопротивление инертного газа между электродами слишком велико. При запуске ртуть начинает испаряться, сопротивление газового промежутка между электродами резко падает, и тлеющий разряд в колбе переходит в неуправляемый дуговой. Для нормальной работы лампы необходимо выполнение двух условий:

  1. Запуск.
  2. Поддержание рабочего тока через колбу.

Этим и занимаются балласты, или пускорегулирующие аппараты (ПРА). Без них ни одна люминесцентная лампа работать не может.

к содержанию ↑

Разновидности

Первоначально в качестве ПРА для люминесцентной лампы использовались электромагнитные дроссели (балласты) со стартерами. Этот комплект назывался электромагнитным пускорегулирующим аппаратом – ЭмПРА. Позже появились электронные аналоги ЭмПРА на транзисторах и микросхемах, выполняющие ту же функцию. Они получили название ЭПРА (электронный пускорегулирующий аппарат), или просто «электронный балласт». Рассмотрим конструкцию и принцип работы этих пускорегулирующих устройств.

Нередко под ЭмПРА подразумевают только электромагнитный дроссель, что не совсем верно. ЭмПРА – это дроссель и стартер – два отдельных узла.

Электромагнитный

ЭмПРА это обычный дроссель – катушка, намотанная на магнитопроводе, и газоразрядная малогабаритная лампочка со встроенными биметаллическими контактами (рабочими электродами).

Дроссель + стартер = ЭмПРА

Рассмотрим процессы, происходящие в светильнике с ЭмПРА. При включении в колбе стартера зажигается разряд, который нагревает электроды из биметалла. В результате электроды замыкаются и подключают к питающей сети через дроссель спирали электродов ЛЛ. При этом тлеющий разряд в колбе лампочки-стартера гаснет.

Спирали люминесцентной лампы разогреваются, их способность испускать электроны многократно увеличивается. После остывания контактов стартера они размыкаются. В результате на электродах ЛЛ появляется импульс высокого (до 1 кВ) напряжения, создаваемого самоиндукцией дросселя.

Типовая схема люминесцентного светильника с ЭмПРА

На схеме буквами обозначены:

  • А – люминесцентная лампа.
  • В – сеть переменного тока.
  • С – стартер.
  • D – биметаллические электроды.
  • Е – искрогасящий конденсатор.
  • F – нити накала катодов.
  • G – электромагнитный дроссель (балласт).

Высокое напряжение пробивает газовый промежуток. В колбе ЛЛ начинается разряд. При этом ртуть переходит в парообразное состояние, сопротивление газового промежутка резко падает. Чтобы разряд не перешел в неуправляемый дуговой, ток через лампу ограничивается дросселем с большим индуктивным сопротивлением. Поэтому его называют балластом.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Поскольку рабочее напряжение на электродах работающей лампы ниже напряжения зажигания стартера, в последующем функционировании светильника он не участвует.

Электронный

Внешне электронный балласт для люминесцентных ламп похож на электромагнитный. У него серьезные конструктивные отличия и другой принцип работы.

ЭПРА в сборе (вверху) и его «начинка»

Как видно на фото, в электронном балласте много радиоэлементов. Рассмотрим типовую структурную схему ЭПРА и узнаем, как он работает.

Типовая структурная схема ЭПРА

Переменное сетевое напряжение проходит через фильтр электромагнитных помех, выпрямляется, сглаживается и подается на инвертор. Задача инвертора – обеспечить напряжение для работы ЛЛ. Сформированное инвертором напряжение через схему ограничения тока (балласт) подается на лампу. Схема запуска служит только для пуска ЛЛ. После выполнения своей функции в дальнейшей работе она не участвует.

Узлы инвертора, балласта и пуска на структурной схеме разделены условно. Часто функции балласта выполняет инвертор, дополнительно являющийся стабилизатором тока. В некоторых схемах он играет роль стартера, самостоятельно принимая решение о подогреве спиралей лампы и о подаче на них запускающего высоковольтного импульса.

Более простые схемы запуска представляют собой обычный конденсатор, образующий со спиралями и выходными дросселями колебательный контур. Последний настроен на частоту работы инвертора. Возникающий при погашенной лампе резонанс повышает напряжение на электродах лампы до единиц и даже десятков киловольт и зажигает разряд в колбе без предварительного подогрева спиралей (холодный пуск).

В этой схеме пуск лампы производится на холодных спиралях конденсатором, образующим резонансный контур

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Холодный пуск сокращает срок службы ЛЛ, поскольку в таком режиме при образовании разряда из холодных катодов вырываются куски активной массы, разрушая покрытие, обеспечивающее стабильный разряд. В результате увеличивается рабочее напряжение ЛЛ и напряжение запуска. Они не в состоянии обеспечить ЭПРА.

Что даёт такая схема? Прежде всего, мерцание. Обычный электромагнитный дроссель питает лампу переменным током частотой 50 Гц. Люминофор имеет малую инерционность и в промежутках между полуволнами заметно теряет яркость свечения. В результате люминесцентная лампа заметно мерцает. Это плохо для зрения.

Особенно заметно мерцание на изношенных лампах, люминофор которых теряет свойства инерционности.

Инвертор, питающий ЛЛ, работает на частотах десятка и даже сотни кГц. При этом инерционности люминофора достаточно, чтобы «переждать» паузы между питающими импульсами без заметной потери яркости. То есть благодаря ЭПРА у люминесцентной лампы малый коэффициент пульсаций.

Далее электронная схема обеспечивает стабильным питанием лампу, даже если сетевое напряжение отличается от номинального. К примеру, ЭПРА POSVET (фото см. выше) позволяет работать ЛЛ при напряжении в сети от 195 до 242 В. У лампы, подключённой через ЭмПРА, при таких напряжениях либо сократится срок эксплуатации, либо она не запустится.

к содержанию ↑

Варианты схем подключения

Схему подключения люминесцентной лампы через электромагнитное пускорегулирующее устройство мы рассмотрели. Она стандартная и без вариаций. Обычно дополняется конденсатором, подключаемым параллельно светильнику. Он служит для снижения реактивной мощности, которую потребляет любая реактивная нагрузка, в том числе дроссель.

Схема люминесцентного светильника с ЭмПРА и компенсационным конденсатором

К одному дросселю можно подключить две люминесцентные лампы. При этом необходимо выполнить следующие условия:

  1. ЛЛ имеют одинаковую мощность.
  2. Мощность балласта равна сумме мощностей ЛЛ.
  3. ЛЛ рассчитаны на рабочее напряжение 110 В (при питании от сети 220 В).
  4. Стартеры рассчитаны на рабочее напряжение 110 В.

Схема подключения двух ламп к одному дросселю выглядит так (мощности дросселя 36 W  и ламп 2х18 W условные):

Схема светильника с двумя люминесцентными лампами на одном ЭмПРА

Важно! Для эффективной компенсации реактивной мощности необходимо подобрать конденсатор соответствующей емкости. Она зависит от мощности светильника. К примеру, для лампы 18 Вт необходим конденсатор емкостью 4.5 мкФ. В светильник с лампой 60 Вт устанавливается емкость 7 мкФ. Конденсаторы должны быть неполярными и рассчитаны на рабочее напряжение не ниже 400 В. Обычно используют бумажные конденсаторы МБГО и МГП.

Поскольку электронный балласт, как правило, имеет в составе пусковое устройство, подключить к нему ЛЛ проще. Для сборки светильника понадобятся лишь провода. Самый простой пример – одна лампа, один ЭПРА.

Стандартная схема подключения ЛЛ через электронный балласт

Существуют балласты, работающие с несколькими лампами. Для примера ниже приведены схемы подключения ЭПРА на 2 ЛЛ.

Варианты подключения ЭПРА для двух ламп

Схема подключения балласта, рассчитанного на работу с четырьмя ЛЛ, выглядит так:

Схема подключения балласта на 4 люминесцентные лампочки

Универсальные приборы в зависимости от схемы включения могут работать с произвольным количеством ЛЛ разной мощности.

Универсальный балласт и схемы его включения

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Все приведенные схемы являются общими. Каждый ЭПРА может включаться особым образом. Поэтому прежде чем взяться за монтаж, необходимо выяснить схему включения. Она есть в сопроводительной документации и, как правило, наносится на корпус прибора. Там же указана мощность ламп и диапазон питающих напряжений.

Схема подключения ЭПРА находится на его корпусек содержанию ↑

Ремонт электронного балласта для люминесцентных ламп

Прежде чем ремонтировать балласт, убедитесь, что проблема не в самой лампе. Проверить исправность ЛЛ несложно. Для этого вынимаем ее из светильника и прозваниваем спирали катодов любым тестером в режиме измерения малых сопротивлений. Если у нас в руках так называемая КЛЛ, то для прозвонки спиралей ее придется разобрать. При проверке обеих спиралей прибор должен показать сопротивление от нескольких единиц до нескольких десятков Ом (зависит от мощности лампы).

Проверка целостности спиралей катодов ЛЛ мультиметром

Если хотя бы одна из спиралей не «звонится», лампа неисправна. На фото выше слева спираль исправна, справа – в обрыве. ЛЛ не работает и отремонтировать её невозможно.

Неисправность ЛЛ может заключаться в осыпании активного слоя, нанесенного на спирали, хотя они и будут звониться. При этом резко повышается напряжение пуска лампы и рабочее. Их ЭПРА обеспечить не может. Но такая неисправность не появляется мгновенно. Светильник начинает тяжело включаться, самопроизвольно перезапускаться и в результате тухнет вовсе.

Распространённые принципиальные схемы

Прежде чем перейти к ремонту, рассмотрим несколько распространённых схем электронных балластов для люминесцентных ламп. Начнём с самой простой. Она используется в светильниках небольшой мощности, включая компактные люминесцентные лампы (КЛЛ).

Схема простого балласта люминесцентной лампы

Сетевое напряжение выпрямляется диодным мостом D3-D6 и сглаживается высоковольтным конденсатором С4. Пройдя через фильтр L2, С7, питает блокинг-генератор, собранный на транзисторах Q1, Q2 и трансформаторе Т1. Рабочая частота генератора обычно составляет 10-20 кГц. Импульсное напряжение, снятое с обмотки Т1, через дроссель L1 поступает на выводы катодов люминесцентной трубки LMP1. Вторые выводы катодов соединены через конденсатор С5.

После подачи на схему питания генератор запускается. Напряжение с частотой преобразования подается на катоды лампы. Пока разряда в колбе нет, напряжение проходит через спирали и С5. Емкость С5 подобрана такой, что она вместе со спиралями LMP1, дросселем L1 и обмоткой Т1 образует колебательный контур, настроенный на частоту работы генератора. В результате резонанса напряжение на катодах возрастает до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.

За счёт низкого сопротивления разряда в колбе конденсатор C5 шунтируется, резонанс срывается, и на электроды поступает рабочее напряжение, необходимое для ЛЛ. Ток через колбу LMP1 ограничивается дросселем L1.

Поскольку рабочая частота дросселя высока, он имеет скромные размеры по сравнению с электромагнитным балластом, функционирующим на частоте 50 Гц.

Эта схема обеспечивает холодный пуск лампы. То есть она зажигается без предварительного подогрева катодов и практически мгновенно. Это не оптимальный режим, поскольку резко сокращает срок службы ЛЛ. А теперь посмотрим на следующую схему.

Схема простого балласта с подогревом спиралей

В целом схема та же с аналогичным принципом работы. Сетевое напряжение выпрямляется, сглаживается и питает генератор, питающий, в свою очередь, ЛЛ. Но обратите внимание на терморезистор, подключённый параллельно пусковому конденсатору С3. Терморезистор имеет положительный ТКС (такой прибор еще называют позистором). Пока холодный, он обладает низким сопротивлением. При подаче питания на светильник позистор шунтирует С3 и резонанса не происходит – нити накала подогреваются рабочим напряжением, недостаточным для образования разряда в колбе LMP1.

Через некоторое время позистор разогревается протекающим через него током. Его сопротивление возрастает. Конденсатор С3 перестает шунтироваться, возникает резонанс. Напряжение на электродах увеличивается до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.

В дальнейшем при работе лампы часть тока протекает и через позистор, поддерживая его в разогретом состоянии, чтобы он не мешал работе ЛЛ. Это снижает КПД конструкции (на разогрев позистора тратится энергия), но расходы эти незначительны – сопротивление нагретого терморезистора велико, а ток через него мал. Кроме того, они оправданы многократно увеличенным сроком службы люминесцентной лампы за счёт ее «правильного» запуска.

В завершение рассмотрим более сложную и «умную» схему ЭПРА, собранную на специализированной микросхеме. Примерно о таком балласте шла речь в разделе «Варианты схем подключения». Там он позиционировался как универсальный и мог работать с произвольным количеством ЛЛ разной мощности (от 1 до 4).

Схема универсального ЭПРА

Для понимания принципа его работы нам понадобятся схемы вариантов подключения ламп к этому балласту.

Варианты схем подключения универсального ЭПРА

Работа такого балласта с ЛЛ делится на три этапа:

  1. Предварительный разогрев катодов.
  2. Пуск.
  3. Рабочий режим.

После включения питания генератор, собранный на микросхеме D1, запускается на частоте около 65 кГц. Сигнал генератора через силовой ключ, собранный по полумостовой схеме на транзисторах VT2, VT3, подаётся на трансформатор Т2 и далее на спирали катодов ЛЛ, предварительно их разогревая.

Через опредёленное время (регулируется резистором R13) частота генератора начинает понижаться. Как только она снизится до резонансной частоты, на которую настроен контур L2С16, напряжение на катодах лампы возрастёт до 800 В. В колбе произойдёт разряд  ЛЛ запустилась. При этом на выводе 13 D1 появится напряжение, запускающее третий этап – рабочий.

Если напряжение на выводе 13 микросхемы не появилось, а на выводе 1 упало ниже 0.8 В, процесс розжига повторяется. При нескольких неудачных попытках розжига ЭПРА прекращает свою работу и отключает неисправную лампу. То же самое произойдёт при попытке запустить ЭПРА без лампы.

При удачном пуске частота генератора понижается до рабочей (устанавливается резистором R12). Ток через лампу стабилизируется и поддерживается на заданном уровне даже при значительных колебаниях величины питающего напряжения (для этой схемы – от 110 до 250 В). На элементах T1 и VT1 собран корректор активной мощности, снижающий реактивную составляющую.

Типовые неисправности и их устранение

Теперь проведём ремонт балласта люминесцентной лампы своими руками. Сложную неисправность мы не устраним – для этого потребуются определённые знания и приборы, но с проблемами попроще справимся. Посмотрим, что чаще всего ломается из того, что мы можем найти и исправить:

  • некачественный монтаж;
  • предохранитель;
  • высоковольтный конденсатор;
  • выпрямительный мост;
  • силовой транзистор;
  • дроссель/трансформатор.

Итак, разбираем пускорегулирующее устройство и делаем визуальный осмотр. Все элементы, дорожки и пайки должны быть в хорошем состоянии – без следов деформации, потемнения, разрушения и обугливания. На фото ниже отлично видны (слева направо и сверху вниз):

Неисправности балласта, определяющиеся визуальным осмотром
  • некачественная пайка;
  • вздутие сглаживающего конденсатора;
  • сгоревший дроссель;
  • пробитый транзистор (часть корпуса вырвана).

Если находим такие элементы, меняем их. Обнаруживаем непропай – лудим и пропаиваем.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

После замены не включаем балласт, а проверяем остальные элементы по методике, описанной ниже, поскольку выход из строя одного элемента может быть как причиной, так и следствием неисправности других. К примеру, вздутие конденсатора вызывается пробоем выпрямительного диода. Предохранитель может сгореть из-за вышедшего из строя силового транзистора или конденсатора.

Теперь посмотрим, как выглядят вышеперечисленные элементы на плате драйвера. В зависимости от модели прибора они могут располагаться в другом месте, но различия обычно незначительны. Найти нужный элемент нетрудно.

Примерное расположение основных элементов на плате ЭПРА

На фото цифрами обозначены:

  • 1 – предохранитель;
  • 2 – диодный мост;
  • 3 – сглаживающий конденсатор;
  • 4 – силовые транзисторы;
  • 5 – импульсный трансформатор;
  • 6 – дроссель.

Теперь берем в руки тестер и проверяем предохранитель (если он есть), не выпаивая его из схемы. Прибор в режиме измерения низкого сопротивления или проверки диодов должен показать ноль. В противном случае предохранитель неисправен.

Выпрямительный мост. Он может быть собран как на отдельных диодах, так и представлять собой сборку из четырех диодов в одном корпусе. На фото ниже такая сборка отмечена стрелкой.

В этот ЭПРА установлена выпрямительная диодная сборка

В любом случае прозваниваем каждый диод в обоих направлениях тестером, включённым в режим проверки полупроводников. В одном направлении прибор должен показать падение напряжения порядка нескольких сот милливольт, в другом – бесконечность. Диоды перед проверкой выпаивать не нужно.

Конденсатор. Этот элемент выглядит как небольшой бочонок рядом с выпрямительным мостом. Даже если с виду он исправен (не вздулся и не взорвался), стоит его проверить. Для этого выпаиваем конденсатор из схемы и прозваниваем в режиме проверки диодов, предварительно кратковременно замкнув его выводы, чтобы разрядить.

В первый момент прибор покажет малые значения падения напряжения. По мере зарядки конденсатора они будут увеличиваться. Если показания прибора низкие и не изменяются, конденсатор пробит. Если мультиметр показывает бесконечность, то конденсатор в обрыве. В обоих случаях элемент меняем.

Транзисторы. Их для проверки тоже придется выпаять. Переводим мультиметр в режим проверки диодов и прозванивам транзистор между выводами база-коллектор и база-эмиттер в обоих направлениях. В одну сторону прибор покажет падение напряжения порядка нескольких сотен милливольт, в другую – бесконечность. Выводы коллектор-эмиттер на должны звониться вообще – в обе стороны бесконечность.

Это все, чем мы можем помочь электронному балласту. Для выявления и устранения более сложных неисправностей потребуется помощь специалиста.

Мы выяснили, для чего нужен балласт люминесцентной лампе. Узнали, какими эти балласты бывают, как работают, научились устранять распространенные неисправности этого электронного узла.

Предыдущая

ЛюминесцентныеПравила хранения люминесцентных ламп на предприятиях

Следующая

ЛюминесцентныеДля чего нужен стартер в люминесцентных лампах

Схемы подключения люминесцентных ламп | ehto.ru

Вступление

Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.

Схемы подключения люминесцентных ламп при помощи ЭМПРА

ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.

Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов

Схема подключения люминесцентной лампы ЭМПРА

Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.

Схема индуктивная реализация

  • Напряжение питания 220 Вольт;
  • Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
  • Стартер подключается параллельно к выводам 2 и 3 лампы;
  • Вывод  4 лампы подключается ко второму проводу питания;
  • В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.

Схема индуктивно-ёмкостная реализация

Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.

Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)

Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).

В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.

Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.

Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.

Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.

Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.

Схемы подключения люминесцентных ламп при помощи ЭПРА

ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу люминесцентных ламп (светильников).

Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.

Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.

Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO

Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.

Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.

Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)

©Ehto.ru

Еще статьи

Схема подключения и принципы работы люминесцентных ламп.

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу. Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы.

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон. Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА.

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

 

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии.
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.
  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды. Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА.

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.


Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.
Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.
Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

ЭПРА на дискретных элементах для ламп Т8

В статье предложен простой электронный пускорегулирующий аппарат для люминесцентных ламп Т8, собранный на дискретных элементах.

Люминесцентные лампы на протяжении многих десятилетий являются самым популярным источником света после ламп накаливания. Как известно, для их работы необходим пускорегулирующий аппарат (ПРА) - устройство, обеспечивающее стабильный розжиг и поддерживающее необходимый рабочий ток в лампе. Электронным пускорегулирующим аппаратам (ЭПРА), или электронным балластам, посвящено множество книг и публикаций, например [1, 2]. Универсальный ЭПРА, описанный в [1], обеспечивает "тёплый" старт для ламп и очень низкий коэффициент пульсаций светового потока (около 1 %). Но подобные устройства довольно сложны для повторения в радиолюбительских условиях, требуют редких компонентов и "чувствительны" к трассировке печатной платы, особенно к разводке общего провода. В предлагаемой статье рассмотрен более простой вариант электронного балласта, собранный из распространённых радиодеталей. Схема ЭПРА приведена на рис. 1. Он рассчитан на работу с четырьмя лампами Т8 мощностью 18 Вт либо с двумя лампами по 36 Вт (рис. 2).

Рис. 1. Схема ЭПРА

 

Рис. 2. Схема расположения ламп

 

Основные технические характеристики

Напряжение питания, В .....155...240

Максимальный потребляемый ток (4 лампы по 18 Вт), мА..........................330

Коэффициент мощности (4 лампы по 18 Вт), не менее.........................0,96

Коэффициент пульсаций светового потока, %, не более ........................18

КПД, не менее...................0,9

Частота преобразователя, кГц...........................65 

За основу взят полумостовой автогенератор "электронного трансформатора" для галогенных ламп, описанный в [3]. Отличия заключаются в выходном каскаде, в наличии пассивного корректора мощности (в "электронном трансформаторе" для галогенных ламп [3] он не нужен) и изменённой цепи запуска. В остальном принцип его работы аналогичен.

Выходной каскад - это два последовательных LC-контура, включённых параллельно: Т2 (обмотка I), С11 и Т3 (обмотка I), С12. Каждый контур рассчитан на нагрузку 36 Вт, т. е. две лампы по 18 Вт либо одна лампа мощностью 36 Вт. Резонансная частота контуров - около 60 кГц.

Пассивный корректор мощности собран на диодах VD5-VD8 и конденсаторах C5, C6. Он служит для корректировки формы потребляемого устройством тока. Это обеспечивает коэффициент потребляемой мощности близким к единице. При желании корректор можно исключить, но в этом случае коэффициент мощности не будет превышать 0,5...0,6.

Запуск автогенератора осуществляется без "привычного" в подобных устройствах динистора. Это позволило упростить устройство и избежать главного недостатка динисторного запуска, связанного, по мнению автора, с разбросом параметров самого динистора, который может приводить к нестабильному запуску автогенератора при пониженном напряжении сети. Запуск осуществляется подачей напряжения смещения "напрямую" на базу транзистора VT2 через резисторы R3, R4, а также на колебательный контур, образованный элементами С9, L2, обмоткой II трансформатора T1. Возникающие в нём колебания в сумме с приложенным напряжением смещения и приводят к открыванию транзистора VT2. Сопротивление резисторов R3, R4 подобрано так, что протекающий через них ток недостаточен для удержания в открытом состоянии VT2 в момент возникновения в обмотке II трансформатора T1 напряжения обратной полярности, т. е. в момент, когда откроется транзистор VT1.

Изменение цепи запуска и увеличение рабочей частоты преобразователя с 35 кГц (в "электронном трансформаторе" для галогенных ламп) до 65 кГц позволило добиться устойчивого пуска балласта при понижении напряжения в сети до 145...155 В, а также несколько уменьшить габариты выходных трансформаторов Т2 и Т3.

Балласт собран на печатной плате размерами 116x42 мм из фольгированного с одной стороны стеклотекстолита. Чертёж проводников показан на рис. 3, расположение элементов - на рис. 4. Все элементы для поверхностного монтажа (VD1-VD4, R2-R5) расположены со стороны печатных проводников, выводные - на противоположной стороне платы. Конденсаторы С2-С4, С7, С10, С13 - любые плёночные, подходящих габаритов на номинальное напряжение не менее 400 В (постоянного тока - VDC), С11, С12 - на 1600 В (VDC), С1 - керамический на напряжение 1500 В (VDC), но лучше применить помехопо-давляющий конденсатор Y-класса на номинальное напряжение не менее 275 В (переменноготока - VAC). Диоды FR107 (VD5-VD12) можно заменить любыми быстродействующими выпрямительными с обратным напряжением не менее 600 В и прямым током не менее 300 мА. Трансформатор T1 намотан на кольцевом магнитопроводе (магнитная проницаемость - 2300) с внешним диаметром 9, внутренним - 5 и высотой кольца - 3,5 мм. Обмотки I и II содержат по четыре витка, обмотка III имеет два витка одножильного провода диаметром 0,3 мм. Направление всех обмоток должно быть одинаковым. Обмотки I и II должны иметь индуктивность 16 ±15 % мкГн, обмотка III - 4 мкГн. Выходные трансформаторы Т2 и Т3 намотаны на магнитопроводах Е20/10/6 из материала N27 (Epcos) или аналогичных с немагнитным зазором около 1 мм. Первичные обмотки содержат по 130 витков жгута из шести проводов диаметром 0,1...0,15 мм. При отсутствии шестижильного жгута можно использовать одножильный провод диаметром 0,25...0,35 мм, однако при этом нагрев трансформаторов увеличится на 10...15 оС. Вторичные обмотки имеют по 13 витков одножильного провода диаметром 0,3 мм. Индуктивность первичных обмоток должна быть 1±15 % мГн. Дроссели L1, L2 - стандартные, например ЕС24.

Рис. 3. Чертёж проводников

 

Рис. 4. Расположение элементов

 

Фотографии печатной платы собранного устройства приведены на рис. 5, рис. 6. Фотографии работающего балласта с лампами - на рис. 7 и рис. 8. Правильно собранное устройство начинает работать сразу и налаживания не требует.

Рис. 5. Печатная плата устройства в сборе 

 

Рис. 6. Печатная плата устройства в сборе

 

Рис. 7.  Работающий балласт с лампами

 

Рис. 8. Работающий балласт с лампами

 

Литература

1. Лазарев В. Универсальный ЭПРА с "тёплым" стартом для люминесцентных ламп Т8. - Радио, 2015, № 9, с. 31-35.

2. Давиденко Ю. Н. Настольная книга домашнего электрика: люминесцентные лампы. - СПб.: Наука и Техника, 2005.

3. Лазарев В. "Электронные трансформаторы" для галогенных ламп 12 В. - Радио, 2015, №8, с. 32-36.

Автор: В. Лазарев, г. Вязьма Смоленской обл.

Схема Принципиальная электрическая схема ЭПРА ETL 236. Эпра для лампы своими руками. EPRA для компактных lds

Люминесцентная лампа (LL) представляет собой стеклянную трубку, заполненную инертным газом (AR, NE, KR) с добавлением небольшого количества ртути. На концах трубки расположены металлические электроды для подачи напряжения, электрическое поле которых приводит к разрыву газа, возникновению тлеющего разряда и возникновению электрического тока в цепи. Газоразрядный тлеющий разряд бледно-голубого оттенка, в видимом диапазоне света очень слабый.

Но в результате электрического разряда большая часть энергии переходит в невидимый ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия), вызывают свечение в видимой области спектра. Изменяя химический состав люминофора, можно получить разные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы другого цвета. Изобретение и массовый выпуск люминесцентных ламп - это шаг вперед по сравнению с неэффективными лампами накаливания.

Зачем нужен балласт?

Ток в газовом разряде нарастает лавинообразно, что приводит к резкому падению сопротивления. Что касается электродов люминесцентных ламп, то дополнительная нагрузка, ограничивающая ток, так называемый баллаборатор, последовательно включает перегрев. Иногда для его обозначения используется термин "дроссель".

Используются два типа досок с мячом: электромагнитные и электронные. Электромагнитный балласт имеет классическую, трансформаторную конфигурацию: медный провод, металлические пластины.В электронных балластерах (Electronic Ballast) используются электронные компоненты: диодистраторы, динтораторы, транзисторы, микросхемы.

Для первоначального зажигания (пуска) разряда в лампе в электромагнитных устройствах Дополнительно используется пусковое устройство - стартер. В электронном варианте балластного блока эта функция реализована в рамках Единой электрической схемы. Устройство получается легким, компактным и совмещено с одним термином - электронно-регулирующим автоматом (ЭПР).Массовое использование ЭПР для люминесцентных ламп обусловлено следующими преимуществами:

  • эти устройства компактны, имеют небольшой вес;
  • Лампы
  • включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, так как ЭПР работает на высокой частоте (десятки кГц), в отличие от электромагнитного, работающего от сетевого напряжения с частотой 50 Гц;
  • уменьшенные тепловые потери;
  • Электронный балласт
  • для люминесцентных ламп имеет значение коэффициента мощности равное 0.95;
  • наличие нескольких проверенных типов защиты, повышающих безопасность использования и продлевающих срок службы.

Схемы ЭПРА для люминесцентных ламп

EPR - это электронная плата, стилизованная под электронные компоненты. Принципиальная схема включения (рис. 1) и один из вариантов схемы балласта (рис. 2) показаны на рисунках.


Люминесцентная лампа, С1 и С2 - Конденсаторы

Электронные пускорегулирующие аппараты могут иметь различную схему реализации решения в зависимости от применяемых компонентов.Выпрямление напряжения производится диодами VD4-VD7 и далее фильтруется конденсатором C1. После подачи напряжения включается конденсатор С4. На уровне 30 пробивается динистор CD1 и открывается транзистор Т2, затем включается автогенератор на транзисторе Т1, Т2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близка по размерам (45-50 кГц). Для устойчивой работы схемы необходим резонансный режим.Когда напряжение на конденсаторе С3 достигает пускового значения, загорается лампа. В этом случае частота регулирования генератора и напряжения снижается, а дроссель ограничивает ток.



Ремонт ЭПР.


При отсутствии возможности быстрой замены эры можно попробовать отремонтировать баллаборатор своими силами. Для этого выберите следующую последовательность действий для устранения неполадок:

  • Для начала проверяется целостность предохранителя.Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее идет визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • при обнаружении характеристического обозначения детали или платы ремонт производится заменой исправного элемента. Как проверить своими руками неисправный диод или транзистор, имея в наличии обыкновенный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость запасных частей будет выше или сопоставима со стоимостью нового EPR.В этом случае лучше не тратить время на ремонт, а подобрать замену близкую по параметрам.

EPRA для компактных LD

Сравнительно недавно стали широко применяться люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания - Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПР теоретически возможен, но на практике легче купить новую лампу.

На фото пример такой лампы марки OSRAM, мощностью 21 Вт.Следует отметить, что сейчас позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковые технологии, которые постоянно совершенствуются, позволяют быстрыми темпами достигать цены на LDS, стоимость которой остается практически неизменной.


Люминесцентные лампы Т8.

Лампы

Т8 имеют стеклянную колбу диаметром 26 мм. Широко используемые лампы Т10 и Т12 имеют диаметр 31,7 и 38 мм соответственно. Для ламп обычно используются участки мощностью 18 Вт. Лампы Т8 не теряют работоспособности при скачках напряжения питания, но при снижении напряжения более 10% зажигание лампы не гарантируется.Температура окружающей среды также влияет на надежность T8 LDS. При минусовых температурах световой поток уменьшается, и возможны неисправности. Лампы Т8 имеют срок службы от 9000 до 12000 часов.

Как сделать светильник своими руками?

Сделайте самый простой светильник из двух ламп так:

  • выбрать подходящую по цветовой температуре (белый оттенок) лампы 36 Вт;
  • делаем корпус из материала, который не оставит без внимания. Можно использовать корпус от старой лампы.Подбираем ЭПР на эту мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами 13 мм), монтажный провод и саморез;
  • Патроны
  • необходимо закрепить на корпусе;
  • место установки ЭПР выбрано из соображений минимизации нагрева от рабочих ламп;
  • К корпусам ЛДС подключено
  • патронов;
  • для защиты ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закреплен на потолке и подключается к сети 220 В.

ПРА для газоразрядных ламп (люминесцентных источников света) применяется для обеспечения нормальных условий работы. Другое название - пусковое устройство (ПРА). Есть два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шумом, эффектом мерцания люминесцентной лампы.

Второй тип балласта устраняет многие минусы в работе источников света этой группы, поэтому более популярен. Но поломки в таких устройствах тоже случаются.Перед выбросом рекомендуется проверить элементы цепи балласта на наличие неисправностей. Самостоятельно выполнить ремонт ЭПР вполне реально.

Разновидности и принцип работы

Основная особенность ЭПР - преобразование переменного тока в постоянный. Другой электронный балласт для газоразрядных ламп еще называют высокочастотным инвертором. Одно из преимуществ таких устройств - компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света.И ЭПР при работе не создает шума.

ПРА электронного типа После подключения к источнику питания он обеспечивает выпрямительный ток и нагревает электроды. Для того, чтобы люминесцентная лампа загорелась, подается напряжение определенного значения. Настройка тока происходит в автоматическом режиме, что реализуется через специальный регулятор.

Такая возможность исключает вероятность мерцания. Последний этап - возникает высоковольтный импульс. Люминесцентная лампа настроена на 1.7 с. Если при запуске источника света происходит сбой, тлеющий корпус моментально выходит из строя (сгорает). Тогда вы можете попробовать сделать ремонт своими руками, для чего хотите вскрыть корпус. Схема ЭПРА выглядит так:

Основные элементы люминесцентной лампы ЭПР: фильтры; непосредственно сам выпрямитель; конвертер; дроссель. Схема также обеспечивает защиту от скачков напряжения источника питания, что исключает необходимость ремонта по этой причине. И, кроме того, в балласте для газоразрядных ламп реализована функция коррекции мощности.

По назначению различают следующие виды РОП:

  • для линейных ламп;
  • ПРА
  • встроен в конструкцию компактных люминесцентных источников света.

ЭПР для люминесцентных ламп делятся на отличные по функциональным возможностям: аналоговые; цифровой; Стандарт.

Схема подключения

, запуск

Пусковое устройство одной стороной подключается к источнику питания, другой - к осветительному элементу. Необходимо предусмотреть возможность установки и крепления ЭПР.Подключение выполняется в соответствии с полярностью проводов. Если вы планируете установить две лампы через правую, используется вариант параллельного подключения.

Схема будет выглядеть так:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускового устройства. Его электронная конструкция обеспечивает мягкий, но в то же время практически мгновенный запуск источника света, что еще больше продлевает срок его службы.

Пенжиг и поддержание функционирования лампы осуществляется в три этапа: нагрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянного напряжения питания небольшой величины.

Определение поломки и ремонтные работы

Если в работе газоразрядных ламп наблюдаются проблемы (мерцание, отсутствие свечения), можно самостоятельно произвести ремонт. Но для начала необходимо понять, в чем проблема: в балласте или элементе освещения. Для проверки работоспособности ЭПР с ламп снимают линейный свет, закрывают электроды и подключают обычную лампу накаливания. Если она загорелась, проблема не в пускорегулирующем устройстве.

В противном случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных ламп, нужно по очереди «прозвонить» все элементы. Начиная с предохранителя. Если вышел из строя один из узлов схемы, необходимо заменить его на аналог. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков паяльника.

Если с предохранителем все в порядке, то следует проверить конденсатор и диоды, которые установлены в непосредственной близости от него.Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов это значение различается). Если все элементы правые в рабочем состоянии, без видимых повреждений и трансклон ничего не дал, остается проверить обмотку дроссельной заслонки.

В некоторых случаях проще купить новую лампу. Это целесообразно делать в том случае, когда стоимость отдельных элементов превышает ожидаемый предел или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп производится по аналогичному принципу: сначала размер корпуса; Проверяется нить накала, выясняется причина поломки на плате. Нередки ситуации, когда балласт полностью исправен, а нить накаливания перегружена. Лампа на коленях в этом случае сложно изготовить. Если в доме есть еще один неработающий источник света аналогичной модели, но с не демпфирующим газовым корпусом, можно совместить два изделия в одном.

Таким образом, ЭПР представляет собой группу усовершенствованных устройств, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он не включается вообще, проверка балласта и последующий его ремонт продлят срок службы лампочки.

классов, с достаточным световым потоком и в то же время экономичными, раскручены, можно даже сказать, на некоторые квестовые и пробные варианты. Сначала я использовал обыкновенный фонарик прищепки, поменял на настольную люминесцентную лампу, потом люминесцентную лампу мощностью 18 ватт китайского производства «Потолочная - Настенная».Последний понравился больше всего, но крепление непосредственно самой лампы в арматуре было несколько занижено, буквально два-три сантиметра, но «для полного счастья» их и не хватало. В результате получилось сделать то же самое, но по-своему. Так как к работе эпрантеновской эпохи претензий не вызывало логичного повторения схемы.

Принципиальная схема

Это большая часть этого ЭПР, дроссель и конденсатор у китайцев сюда не входили.

На самом деле добросовестно нарисован монтажной платой.Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и с помощью замеров, с предварительной обвязкой компонентов с платы. Схема номиналов резисторов указана в соответствии с цветовой маркировкой. Только в отношении дроссельной заслонки позволил себе не раскручивать имеющееся количество, определил количество витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) - заработало.

Первая сборка на плате.Штатные комплектующие подобрали скрупулезно, несмотря на габариты и количество, и были вознаграждены - лампочка зажглась впервые. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки Его магнитная проницаемость неизвестна, диаметр проводов катушки на нем намотан 0,3 мм (без изоляции). Первый запуск обязательно через лампу накаливания на 25 Вт. Если горит и люминесцент изначально мигает и гаснет - увеличивайте (постепенно) С4, когда все заработало, и ничего подозрительного не нашлось, снял лампу накаливания, то уменьшил его номинал до начального значения.

В какой-то мере ориентируясь на печатную плату, покрасил пломбу под имеющийся подходящий корпус и электронные компоненты.

Приготовил платок и собрал схему. Уже предвкушал тот момент, когда я буду доволен собой и буду рад Бытию. Но, схема, собранная на pCB, отказалась работать. Пришлось вникнуть и заняться подбором резисторов и конденсаторов. На момент установки ЭПР на месте эксплуатации С4 имел емкость 3Н5, С5 - 7Н5, сопротивление R4 6 Ом, R5 - 8 Ом, R7 - 13 Ом.

Светильник «вписывается» не только в дизайн, поднятый до упора светильник позволил с комфортом использовать полочку внутри ниши секретера. Уют в «комнате» принес Бабай.

Схема включения люминесцентных ламп без стартеров. Epra

Люминесцентная лампа LL мощностью 4-58 Вт

Стартер OSRAM ST111 или PHILIPS S10 с рабочим напряжением 220 В

В мощность электромагнитного балласта 4-58 Вт

К компенсирующему конденсатору

U N напряжение 220 В
При использовании данной схемы люминесцентной лампы мощность ЭМПРА должна соответствовать мощности лампы.ЭМПРА в цепях стартера подключается последовательно к лампе и служит для ограничения роста тока в лампе (и тем самым предотвращает ее перегорания).

По аналогичной схеме стартера можно последовательно включить две люминесцентные лампы - эта схема переключения называется «тандемной» схемой переключения ламп. дневной свет.

Люминесцентная лампа LL мощностью 4 Вт, 6 Вт, 8 Вт, 15 Вт, 18 Вт

Стартер OSRAM ST151 или PHILIPS S2 с рабочим напряжением 127 В

В Gear 8 Вт, 18 Вт, 36 Вт

К компенсирующему конденсатору

U N напряжение 220 В

При использовании этой коммутационной схемы мощность электромагнитного механизма управления должна быть в два раза больше мощности одной лампы.В общем, эта диаграмма всегда приводится на штуцере. Там же пишется мощность использованной люминесцентной лампы, а иногда и указывается тип стартера. Тип дроссельной заслонки должен соответствовать типу включенной лампы, иначе лампа может перегрузиться и перегореть намного раньше своего срока. Хотя, в зависимости от комплектов, встречаются довольно живучие неактуальные экземпляры лампы-дросселя PRA.

Параллельно лампе и ПРА на входе сети обычно включают фазокомпенсированный конденсатор, емкость которого зависит от типа люминесцентной лампы; Конденсатор с фазовой компенсацией позволяет «вернуть» амплитуду и фазу тока к желаемым значениям.

В цепях зажигания люминесцентной лампы используется специальный стартер - стартер (Ст), который представляет собой биметаллический контакт. В нормальном состоянии он разомкнут и начинает закрываться только в том случае, если на цепь подано напряжение и лампа не горит. Как только лампа загорается, напряжение на стартере снижается, и он возвращается в исходное («холодное») состояние. В схемах используются два основных типа пускателей. Люминесцентные лампы, рассчитанные на напряжение 127 и 220 В. Внимательно ознакомьтесь с приведенными выше схемами: в первой используется стартер на 220В, а во второй - на 127В.

При последовательном соединении люминесцентных ламп, когда одна из ламп перегорает, обе гаснут. Есть самый простой способ побороть эту проблему - использовать специальный балласт, в котором для зажигания ламп используется только один стартер, но на 220 В. Стартер в этой схеме работает так же быстро, как и в одноламповых схемах, и количество «вспышек» лампы также уменьшается. .


Электро Схема подключения люминесцентных ламп диаметром 16, 26 и 38 мм: речь пойдет о схемах стартера.

Люминесцентные лампы уже достаточно прочно вошли в жизнь большинства людей. Сейчас они становятся все более популярными, потому что электричество и использование постоянно дорожают. обычные лампы накаливания - слишком дорогое удовольствие. Также известно, что компактные энергосберегающие лампы могут купить далеко не все; к тому же большинству современных люстр требуется большое количество таких светильников, что ставит под сомнение их экономичность. Именно поэтому во многих современных квартирах устанавливают люминесцентные лампы дневного света, в которых помогает схема люминесцентной лампы, где можно увидеть принципы ее работы.

Аппарат люминесцентных ламп

Для представления о принципах действия люминесцентной лампы необходимо изучить ее устройство. Он представляет собой тонкую цилиндрическую стеклянную колбу разной формы и диаметра. Люминесцентные лампы бывают нескольких типов:

  • П-образный;
  • прямой;
  • кольцевой;
  • compact (со специальными цоколями E14, а также E27).

Все они имеют разный внешний вид, но их объединяет наличие электродов, люминесцентного покрытия и впрыскиваемого инертного газа с парами ртути внутри.Электроды представляют собой маленькие спирали, которые светятся в течение короткого периода времени, воспламеняя газ, благодаря чему люминофор, нанесенный на стенки лампы, начинает светиться. Известно, что спирали для розжига небольшого размера, поэтому стандартное напряжение, которое есть в домашней электросети, для них не подходит. Поэтому для этих целей используются специализированные устройства, называемые дросселями, с их помощью сила тока ограничивается желаемой величиной, за счет их индуктивного сопротивления.Кроме того, чтобы катушка быстро прогревалась, но не сгорала, в схеме люминесцентной лампы также показан стартер, который отключает нагрев электродов после воспламенения газа в трубках лампы.

Как работают люминесцентные лампы

Во время работы на выводы подается напряжение 220В, проходящее через дроссель непосредственно на первую спираль этой лампы. Затем он поступает на пускатель, срабатывает, а также пропускает ток на катушку, которая подключена к клемме сети.Это демонстрирует схему подключения люминесцентных ламп.

Довольно часто на входных клеммах может быть установлен конденсатор, играющий роль специализированного сетевого фильтра. Именно благодаря его работе гасится частица реактивной мощности, генерируемая в процессе работы дросселем. В результате лампа потребляет меньше энергии.

Проверить люминесцентные лампы


Если ваша лампа перестала загораться, вероятная причина неисправности - обрыв вольфрамовой нити, которая нагревает газ и вызывает свечение люминофора.Во время работы вольфрам со временем испаряется, начиная оседать на стенках лампы. В процессе работы стеклянная колба по краям имеет темный налет, который предупреждает о возможном выходе из строя этого устройства.

Проверить целостность вольфрамовой нити накала очень просто, нужно взять обычный тестер, измеряющий сопротивление проводника, после чего нужно прикоснуться щупами к выводам этой лампы. Если прибор показывает, например, сопротивление 9,9 Ом, то это будет означать, что резьба цела.Если при проверке пары электродов тестер показывает полный ноль, эта сторона имеет обрыв, поэтому включения люминесцентных ламп не происходит.

Спираль может порваться из-за того, что за время ее использования нить становится тоньше, поэтому натяжение, проходящее через нее, постепенно увеличивается. Из-за того, что напряжение постоянно увеличивается, выходит из строя стартер, что видно по характерному «миганию» этих ламп. После замены перегоревших ламп и стартеров схема заработает без наладок.

Если при включении ламп слышны посторонние звуки или ощущается запах гари, то необходимо немедленно отключить светильник, проверив работу его элементов. Возможно, есть провисания самих клеммных соединений и соединение проводов нагревается. Кроме того, в случае некачественного изготовления дросселя может произойти замыкание обмоток обмоток, что приведет к выходу лампы из строя.

Как подключить люминесцентную лампу?

Подключение люминесцентной лампы - процесс очень простой, схема ее рассчитана на зажигание только одной лампы.Чтобы подключить пару люминесцентных ламп, нужно немного изменить схему, при этом действуя по тому же принципу последовательного подключения элементов.

В таком случае вы должны использовать пару стартеров, по одному на лампу. При подключении пары ламп к одному дросселю необходимо учитывать его номинальную мощность, указанную на корпусе. Например, если его мощность 40 Вт, то к нему можно подключить пару одинаковых ламп, максимальная нагрузка которых равна 20 Вт.

Дополнительно есть подключение люминесцентной лампы, в которой не используются пускатели.Благодаря использованию специализированных электронных балластных устройств лампа мгновенно складывается, при этом не «моргая» схемы управления стартером.

Подключение люминесцентной лампы к ЭПРА


Подключить лампу к ЭПРА очень просто, так как есть подробная информация об их корпусе, а также схематично показано соединение контактов лампы с соответствующими выводами. Однако чтобы было более понятно, как подключить к этому устройству люминесцентную лампу, можно просто внимательно изучить схему.

Основным преимуществом такого подключения является отсутствие дополнительных элементов, которые необходимы для цепей стартера, управляющих лампами. Кроме того, при упрощении схемы значительно повышается надежность всей лампы, поскольку исключаются дополнительные соединения со стартерами, которые являются довольно ненадежными устройствами.

По сути, все провода, необходимые для сборки схемы, идут в комплекте с самим электронным балластом, поэтому нет необходимости изобретать велосипед, изобретать что-то и нести дополнительные расходы на приобретение недостающих элементов.В этом видеоролике вы можете ознакомиться с принципами работы и подключения люминесцентных ламп:

Запись навигации

Отличительным принципом схемы подключения люминесцентных ламп является необходимость включения пусковых устройств, от них зависит продолжительность работы.

Чтобы разобраться в схемах, необходимо разобраться в принципе работы этих ламп.

Светильник люминесцентного типа представляет собой герметичный сосуд, наполненный газом особой консистенции.Расчет смеси производился с целью меньшего расхода энергии ионизации газов по сравнению с обычными лампами, за счет чего можно значительно сэкономить на освещении дома или квартиры.

Для постоянного освещения необходим тлеющий разряд. Этот процесс обеспечивается приложением желаемого напряжения. Проблема только в следующей ситуации - такой разряд возникает от напряжения питания, которое выше рабочего напряжения. Но эту проблему решили производители.


По обеим сторонам лампы установлены электроды, которые принимают напряжение и поддерживают разряд. Каждый электрод имеет два контакта, к которым подключается источник тока. Благодаря этому возникает зона нагрева, которая окружает электроды.

Лампа загорается после нагревания каждого электрода. Происходит это из-за воздействия на них импульсов высокого напряжения и последующего срабатывания напряжения.

При воздействии разряда газы в резервуаре лампы активируют излучение ультрафиолетового света, который не воспринимается человеческим глазом.Чтобы зрение могло различить это свечение, колба изнутри покрыта люминофором, который сдвигает частотный интервал свечения в видимый интервал.

При изменении структуры этого вещества происходит изменение диапазона цветовых температур.

Важно! Нельзя просто включить лампу в сети. Дуга появится после обеспечения нагрева электродов и импульсного напряжения.

Обеспечить такие условия помогают специальные балласты.

Нюансы схемы подключения

Цепь этого типа должна включать наличие дроссельной заслонки и стартера.

Стартер выглядит как небольшой источник неонового света. Для его питания необходима электросеть с переменным значением тока, а также она оснащена рядом биметаллических контактов.


Соединение дросселя, контактов стартера и резьбы электродов происходит последовательно.

Возможен другой вариант при замене стартера на кнопку от входящего звонка.

Напряжение будет осуществляться удержанием кнопки в нажатом состоянии. Когда лампа горит, ее нужно отпустить.

  • подключенный дроссель экономит электромагнитную энергию;
  • электричество через контакты стартера;
  • движение тока осуществляется с помощью вольфрамовых нитей нагрева электродов;
  • подогрев электродов и стартера;
  • тогда размыкаются контакты стартера;
  • энергия, накопленная дроссельной заслонкой, высвобождается;
  • лампа включается.


Для повышения эффективности и уменьшения помех в модели схемы введены два конденсатора.

Достоинства схемы:

Простота;

Доступная цена;

Надежно;

Недостатки схемы:

Большая масса устройства;

Шумная работа;

Лампа мерцает, что плохо влияет на зрение;

Потребляет большое количество электроэнергии;

Устройство включается примерно на три секунды;

Плохая работа при минусовых температурах.

Последовательность подключения

Подключение по указанной выше схеме происходит со стартерами. Рассматриваемый ниже вариант имеет модель стартера S10 мощностью 4-65Вт., Лампу 40Вт и такую ​​же мощность на дросселе.

Этап 1. Подключение стартера к штыревым контактам лампы, имеющим форму нити накала.

Этап 2. Остальные пины подключаются к дросселю.

Ступень 3. Конденсатор подключен к силовым контактам параллельно.Конденсатор компенсирует уровень реактивной мощности и снижает уровень помех.

Особенности схемы подключения

Лампа с электронным балластом обеспечивает длительный срок эксплуатации и экономию затрат на электроэнергию. При работе с напряжением до 133 кГц свет распространяется без мерцания.

Микросхемы обеспечивают питание светильников, нагрев электродов, тем самым повышая их производительность и увеличивая срок службы.Возможно использование диммеров совместно с лампами данной схемы подключения - это устройства, плавно регулирующие яркость свечения.


Электронный балласт преобразует напряжение. Действие постоянного тока преобразуется в ток высокочастотного и переменного типа, который проходит к нагревателям электродов.

Увеличивается частота, за счет этого происходит уменьшение интенсивности нагрева электродов. Использование электронного балласта в схеме подключения позволяет подстраиваться под свойства лампы.

Преимущества схемы данного типа:

  • большая экономия;
  • Лампочка
  • включается плавно;
  • без мерцания;
  • осторожно прогрейте электроды лампы;
  • допустимая работа при низких температурах;
  • компактный и легкий;
  • долгосрочный срок действия.

Люминесцентные лампы напрямую от сети на 220 вольт не работают. Им нужен специальный переходник, который будет стабилизировать напряжение и сглаживать пульсации тока.Это устройство называется механизмом управления (ПРА), состоящим из дросселя, с помощью которого сглаживаются пульсации, стартера, используемого в качестве стартера, и конденсатора для стабилизации напряжения. Правда, PRA в таком виде - старый блок, который постепенно выводится из обращения. Дело в том, что на смену ему пришла новая модель - ЭПРА, то есть такой же ПРА, только электронного типа. Итак, давайте разберемся с ЭКГ - что это такое, ее схема и основные составляющие.

Устройство и принцип действия ЭПРА

Фактически электронный балласт - это электронное плато небольшого размера, которое включает в себя несколько специальных электронных элементов.Компактная конструкция позволяет установить в лампе плато вместо дросселя, стартера и конденсатора, которые вместе занимают больше места, чем электронные балласты. В связи с этим все просто. О ней чуть ниже.

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности - 0,95.
  • Новый агрегат практически не греется по сравнению с устаревшим, а это прямая экономия.электрический ток до 22%.
  • Новый пусковой агрегат снабжен несколькими видами светозащиты, что повышает его пожарную безопасность, безопасность эксплуатации, а также в несколько раз продлевает срок службы.
  • Обеспечивает ровное свечение без мерцания.

Внимание! Современные правила охраны труда предписывают использование люминесцентных ламп на рабочих местах, оборудованных этим совершенно новым оборудованием.

Схема устройства

Начнем с того, что люминесцентные лампы - это газоразрядные источники света, которые работают по следующей технологии.В стеклянной колбе находятся пары ртути, на которые подается электрический разряд. Образует ультрафиолетовое свечение. На саму колбу изнутри наносится слой люминофора, который преобразует ультрафиолетовые лучи в свет, видимый глазам. Отрицательное сопротивление всегда находится внутри лампы, из-за чего они не могут работать на 220 вольт.

Но здесь необходимо выполнить два основных условия:

  1. Разогрейте две нити жара.
  2. Создайте большое напряжение до 600 вольт.

Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть у коротких ламп мощностью 18 Вт меньше, у длинных мощностью выше 36 Вт больше.

Теперь сама схема.


Начнем с того, что люминесцентные лампы, например LVO 4 × 18, при старом блоке всегда мерцали и издавали неприятный шум. Чтобы этого не произошло, необходимо подавать на него ток с частотой колебаний более 20 кГц.Для этого придется увеличить коэффициент мощности источника света. Поэтому реактивный ток нужно возвращать на специальный привод. промежуточного типа, а не в сеть. Кстати, привод никак не подключен к сети, но именно лампа питает лампу, если напряжение сети проходит через ноль.

Как это работает

Итак, сетевое напряжение 220 вольт (оно же переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание осуществляется электролитическим конденсатором С1.

После этого постоянное напряжение необходимо преобразовать в высокочастотное до 38 кГц. За это отвечает преобразователь полумостового двухтактного типа. В состав последнего входят два активных элемента, которые представляют собой два высоковольтных транзистора (биполярных). Их обычно называют ключами. Возможность перевода постоянного напряжения в высокую частоту дает возможность уменьшить габариты ЭПРА.

В цепи устройства (балласта) также присутствует трансформатор.Он одновременно является элементом управления преобразователем и его нагрузкой. Этот трансформатор имеет три обмотки:

  • Один из них рабочий, в котором всего два витка. Через него идет нагрузка на схему.
  • Два - управляющих. У каждого по четыре хода.

Особую роль во всей этой электрической схеме играет динистор симметричного типа. На схеме он обозначен как DB3. Итак, этот элемент отвечает за работу преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и посылает импульс на транзистор.После этого конвертер запускается как единое целое.

  • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
  • Напряжение переменного тока с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первую и вторую нить накала.

Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений.Но частота преобразователя должна быть постоянной.


Обратите внимание, что наибольшее падение напряжения произойдет на конденсаторе C5. Именно этот элемент освещает люминесцентную лампу. То есть получается, что максимальный ток нагревает две нити, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

На самом деле люминесцентная лампа должна уменьшать свое сопротивление. Так оно и есть, но уменьшение происходит незначительно, поэтому в цепи все еще присутствует резонансное напряжение.По этой причине лампа продолжает светиться. Хотя дроссель L1 создает ограничение тока на величину разности сопротивлений.

Преобразователь продолжает работать после запуска. Автоматический режим. При этом его частота не меняется, то есть идентична частоте запуска. Кстати, сам запуск длится меньше секунды.

Тестирование

Перед запуском ЭПРА в производство были проведены различные испытания, которые свидетельствуют о том, что встроенная люминесцентная лампа может работать в достаточно широком диапазоне приложенных к ней напряжений.Диапазон был 100-220 вольт. Оказалось, что частота преобразователя меняется в следующей последовательности:

  • При 220 вольт было 38 кГц.
  • При 100 В 56 кГц.

Но надо заметить, что при падении напряжения до 100 вольт яркость источника света явно снижается. И еще один момент. Люминесцентная лампа всегда питается переменным током. Это создает условия для его равномерного износа. Вернее, износ его нити.То есть увеличивается срок эксплуатации самой лампы. При испытании лампы постоянным током срок ее службы сократился вдвое.


Причины неисправностей

Так по каким причинам может не загораться люминесцентная лампа?

  • Трещины в точках пайки на плате. Все дело в том, что при включении лампа плата начинает нагреваться. После включения блок ЭКГ остывает. Перепады температуры негативно сказываются на точках пайки, поэтому существует вероятность обрыва цепи.Устранить проблему можно с помощью пайки обрыва или даже обычной чистки.
  • При обрыве нити накала сам блок ЭКГ остается в хорошем состоянии. Так что эту проблему можно решить просто - замените перегоревшую лампу на новую.
  • Скачки напряжения - основная причина выхода из строя ЭПРА. Чаще всего выходит из строя транзистор. Производители ПРА не усложняли схему, поэтому в ней нет варисторов, которые отвечали бы за скачки. Кстати, установленный в цепи предохранитель тоже не спасает от скачков напряжения.Работает только при выходе из строя одного из элементов схемы. Поэтому совет - скачки напряжения обычно бывают в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном идет сильный дождь или ветер.
  • Неправильно проведена схема подключения прибора к лампам.


Интересно

В настоящее время ЭПРА устанавливают не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами.При этом нельзя использовать одно устройство, предназначенное для одного типа ламп, для другого светильника. Во-первых, не подходят по параметрам. Во-вторых, у них разные схемы.

При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет установлен.

Оптимальный вариант модели - устройства с защитой от нестандартных режимов работы источника света и от их отключения.

Обязательно обратите внимание на положение в паспорте или инструкции, где указано, что при погодных условиях электронный ПРА может работать.Это влияет как на качество работы, так и на срок службы.


И последнее - это электрическая схема. В принципе ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где и цифры, и схема подключения указаны точно на клеммах. Обычно для входной цепи - три клеммы: ноль, фаза и земля. Для вывода на лампу - две клеммы, то есть попарно, на каждую лампу.

Похожие сообщения:

Утилизация печатной платы DVD-плеера с экологичными технологиями

Утилизация электроники Drop-OffRecycling Мэриленд

Пожалуйста, используйте эти места бесплатного возврата от производителя, перечисленные ниже, чтобы обеспечить переработку использованных вами телевизоров и мониторов. Обратите внимание, что эти местоположения могут быть изменены. Пожалуйста, подтвердите конкретное место перед высадкой. Офисы компании по переработке электроники (MRM) в Мэриленде

Переработка ПК Ведущий производитель электроники Puget Sound

Дополнительную информацию см. В нашей вкладке по переработке в розничной торговле.Если вы крупная компания, профессиональная компания или предприятие, производящее электронные отходы, мы можем забрать их на вашем объекте. Мы можем управлять потребностями всех видов бизнеса, будь то юридическое производство в области медицины / стоматологии или другой тип профессиональной компании, включая проблемы HIPAA.

Электроника (E-Cycle) Департамент штата Вашингтон

· E-Cycle Washington - это бесплатная программа, которая позволяет жителям Вашингтона утилизировать сломанную устаревшую или изношенную электронику.Электронные изделия содержат ценные материалы, которые можно переработать, и токсичные химические вещества, которые следует хранить вне свалки.

Обзор текущего прогресса технологий переработки для

· Например, механико-физическая технология в качестве средства предварительной обработки является обязательной процедурой для разделения металла и неметалла во избежание образования токсичных газов, таких как ПХДД / Fs и остатки неметаллов в WEEE (2) Предприятию или правительству следует отстаивать использование «зеленого» реагента в процессах переработки

PhilipsUnited Kingdom

· Утилизация упрощена Утилизируйте использованные стоматологические продукты по почте с помощью TerraCycle ®, и мы скажем вам спасибо купоном на 10 чистящих головок.Предложение действительно только с 4 января по 30 апреля 2021 года. Применяются ТП. Исследуй сейчас. COVID-19. COVID-19. Последние обновления и поддержка по COVID-19.

Переработка компьютерной электроники в Колорадо

Мы больше не принимаем телевизоры. «Безопасная утилизация компьютера и разрушение жесткого диска» Телефон. БЕСПЛАТНО сдайте следующие компьютеры, клавиатуры, сотовые телефоны, сетевое оборудование, ноутбуки, радиоприемники, DVD-плееры, записывающие устройства, камеры, большую часть другой электроники. Мы ВЗНАЧАЕМ небольшую плату за следующие плоские мониторы, копировальные аппараты, принтеры, разрушение жесткого диска.

Утилизация электроникиMarion County Oregon

2 дня назад · Электроника принимается бесплатно на предприятиях Marion County, однако в рамках программы E-Cycles в Орегоне станции Salem-Keizer North Marion Recycling Transfer принимают только до семи ноутбуков, мониторов, ЦП или телевизоров на одного клиента в сутки бесплатно.

Утилизация бытовых электронных отходов Департамент NYS из

· Утилизация бытовых электронных отходов Два способа утилизации электронных отходов Вариант 1 Воспользуйтесь бесплатной и удобной программой возврата от производителя.Перейдите в список DEC производителей электронного оборудования, зарегистрированных в штате Нью-Йорк, чтобы найти производителей, их бренды электронного оборудования, веб-сайты их программ приема электронных отходов и бесплатные номера телефонов.

Утилизация бытовых электронных отходов Департамент NYS из

· Утилизация бытовых электронных отходов Два способа утилизации электронных отходов Вариант 1 Воспользуйтесь бесплатной и удобной программой возврата от производителя. Перейдите в список DEC производителей электронного оборудования, зарегистрированных в штате Нью-Йорк, чтобы найти производителей, их бренды электронного оборудования, веб-сайты их программ приема электронных отходов и бесплатные номера телефонов.

RadioShack

Радио Наушники Телевизионные антенны Кабели Адаптеры Инструменты для самостоятельной работы Запчасти Комплекты для изготовления электроники. 450 пунктов RadioShack по всей Америке и еще больше в пути

Переработка компьютерной электроники в Колорадо

Мы больше не принимаем телевизоры. «Безопасная утилизация компьютера и разрушение жесткого диска» Телефон. БЕСПЛАТНО сдайте следующие компьютеры, клавиатуры, сотовые телефоны, сетевое оборудование, ноутбуки, радио, DVD-плееры, записывающие устройства, камеры, большую часть другой электроники.. Мы ВЗНАЧАЕМ небольшую плату за разрушение жесткого диска следующих мониторов с плоским экраном, копировальных аппаратов, принтеров.

Электроника (E-Cycle) Департамент штата Вашингтон

· E-Cycle Washington - это бесплатная программа, которая позволяет жителям Вашингтона утилизировать сломанную устаревшую или изношенную электронику. Электронные изделия содержат ценные материалы, которые можно переработать, и токсичные химические вещества, которые следует хранить вне свалки.

Вторичная переработка электроники и твердые отходы

Blair Technology Group - это ITAD и служба утилизации, которая предлагает услуги по утилизации как для бизнеса, так и для частных клиентов.Они принимают бытовую электронику и аккумуляторы. Они предлагают бесплатную доставку для предприятий, а также дезинфекцию / уничтожение жесткого диска в любой

10 мест для продажи или обмена неиспользованной или сломанной электроники

· 10 мест для продажи или обмена неиспользованной (или сломанной) электроники. Автор Питер Андерсон 195 Комментарии - Контент этого веб-сайта часто содержит партнерские ссылки, и я могу получить компенсацию, если вы совершите покупку по этим ссылкам (бесплатно для вас). Узнать больше о

Утилизация электроники и твердых отходов

Blair Technology Group - это ITAD и служба утилизации, которая предлагает услуги по утилизации как корпоративным, так и частным клиентам.Они принимают бытовую электронику и аккумуляторы. Они предлагают бесплатный вывоз для предприятий, а также дезинфекцию / уничтожение жесткого диска на любой

Best Buy Часто задаваемые вопросы о переработке электроники и бытовой техники

Клиенты могут избавиться от своих старых или ненужных устройств и электроники несколькими способами. В магазине есть киоски прямо у входной двери, где можно оставить аккумуляторные батареи, провода, шнуры, кабели и полиэтиленовые пакеты. Утилизация в магазине на стойке обслуживания клиентов - магазины Best Buy принимают большую часть электроники, за некоторыми исключениями.

Fry s Electronics

· После почти 36 лет работы в качестве универсального магазина и онлайн-ресурса для профессионалов высоких технологий в девяти штатах и ​​31 магазине Fry s Electronics Inc. («Fry s» или «Компания») приняла трудное решение закрыть свою деятельность и навсегда закрыть свой бизнес в результате изменений в розничной торговле и проблем, связанных с пандемией Covid-19.

Переработка электроники Официальный веб-сайт округа Ватком, WAO

Samsung Recycling Direct.Samsung Recycling Direct принимает всю бытовую электронику под брендом Samsung, продаваемую в США, от телевизоров DVD и VHS-плееров, аудиооборудования и домашних кинотеатров до мобильных телефонов, камер, видеокамер, компьютерных мониторов, принтеров

Схема утилизации печатной платы вашего телевизора

Маршрут утилизации Есть много центров утилизации, которые принимают электронное оборудование, включая печатные платы и полностью собранные телевизоры. После того, как телевизор попадает на предприятие по переработке, измельчители и грануляторы используются для измельчения печатной платы

Где избавиться от ваших вещейOprah

Утилизация передовых технологий ATRecycle 601 E.Prairie St. Pontiac IL 61764 Принимает электронику вообще все, что угодно с печатной платой All Lamp Recycling LLC. LightbulbRecycling 310 Illinois St. Lemont IL 60439 Принимает люминесцентные лампы, батарейки, балласты компьютеров Сеть обмена вспомогательными технологиями

NEA Где перерабатывать электронные отходы

Программа RENEW (утилизация электронных отходов в стране) от StarHub. Программа RENEW проводится StarHub при поддержке DHL TES и NEA. Где перерабатывать См. На веб-сайте StarHub список местоположений бункеров RENEW. Что нужно утилизировать Большинство электронных продуктов, независимо от марки, размером менее 470 мм на 120 мм (длина x ширина), чтобы они могли проходить через отсек для хранения

E-Waste Recycling Вторичная переработка электроники Great Lakes

Great Lakes Electronics Corporation имеет многолетний опыт в области экологически чистой утилизации электронных продуктов, включая компьютеры. Платы телефонного оборудования и систем связи.Мы разбираем эти предметы на составные части, а те, которые все еще имеют ценность, можно продать для повторного использования.

Утилизация электроники Drop-OffRecycling Мэриленд

Пожалуйста, воспользуйтесь указанными ниже местами бесплатного возврата от производителя, чтобы обеспечить переработку использованных телевизоров и мониторов. Обратите внимание, что эти местоположения могут быть изменены. Пожалуйста, подтвердите конкретное место перед высадкой. Компания по переработке электроники (MRM), расположенная в Мэриленде

Неформальная переработка электронных отходов Обзор сектора с

· Неформальная переработка - это новая и расширяющаяся недорогая практика переработки отходов электрического и электронного оборудования (WEEE или электронные отходы).Это происходит во многих развивающихся странах, включая Китай, где существующие пробелы в управлении окружающей средой, высокий спрос на подержанные электронные устройства и нормы продажи электронных отходов отдельным сборщикам способствуют росту

Переработка электроники в Онтарио Recycle My Electronics

Программы EPRA / Recycle My Electronics гордятся своим партнерством с сообществом переработчиков электроники Форума WEEE. Читать далее. Это EPRA Подробнее. Что важно внутри Подробнее.Быстрая викторина Что вы знаете Подробнее. Буклет «Утилизируйте мою электронику» Подробнее. Начните с весенней уборки! Подробнее.

машина для рециркуляции печатных плат Переработка печатных плат

4 314 машин для рециркуляции печатных плат предлагаются для продажи поставщиками на Alibaba, из которых на утилизацию отходов приходится 35 пластиковых дробильных машин, 6, а на другие продукты переработки приходится 5. Вам доступны самые разные машины для переработки печатных плат, например, 1 год, 2 года и 1 год.5 лет.

Обзор текущего прогресса технологий переработки для

· Например, механико-физическая технология в качестве средства предварительной обработки является обязательной процедурой для разделения металла и неметалла во избежание образования токсичных газов, таких как ПХДД / Fs и остатки неметаллов в WEEE (2) Предприятие или правительство должны выступать за использование «зеленого» реагента в процессах переработки

Вещи, которые мы перерабатываем · Техническая свалка · Переработка электроники в

· Мы упорно работаем над производством электроники переработка настолько проста и удобна, насколько это возможно.Список электронных устройств, которые мы принимаем и перерабатываем, бесконечен, поэтому, пожалуйста, свяжитесь с нами сегодня с вопросами, если ваш товар не указан ниже. Когда вы перерабатываете с помощью Tech Dump, мы гарантируем, что все данные будут уничтожены, а ваши товары будут переработаны. Поверьте нам на слово, мы -

Утилизация электроники Drop-OffRecycling Мэриленд

Пожалуйста, используйте эти места бесплатного возврата от производителя, перечисленные ниже, чтобы обеспечить переработку ваших бывших в употреблении телевизоров и мониторов.Обратите внимание, что эти местоположения могут быть изменены. Пожалуйста, подтвердите конкретное место перед высадкой. Компания по переработке электроники (MRM), расположенная в Мэриленде

Процесс переработки отходов печатной платы

Для решения проблемы отходов и вторичного загрязнения отработанной печатной платы для изучения металла используется оборудование для переработки печатной платы Green Jet. переработка и использование неметаллических ресурсов печатных плат.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *