Электростанции какие есть: Типы электростанций. Виды электростанций. Принципиальная схема тепловой электростанции

Содержание

3+ разные типы электростанций, которые вырабатывают для нас электроэнергию

Знайте, откуда происходит электричество.

Электричество - жизненная основа современного мира. Всё, от часов до автомобилей, теперь работает на электричестве. Чтобы выразить нашу зависимость от электричества в цифрах, мы видим, что в 2008 году потребление электроэнергии в США составляло 2989 ТВт-ч (тера-ватт-часов). Перейдя к 2019 году, мы видим, что оно увеличилось до 3971 ТВтч. ТВтч равно 1 000 000 000 кВт-ч.

Просто поразительно видеть, насколько мы теперь зависим от электричества в нашей повседневной жизни. Но откуда вся эта энергия? Ответ - электростанции. Они производят электричество для всего мира. В мире существуют различные типы электростанций, которые работают вместе, чтобы удовлетворить растущую потребность в электроэнергии. Давайте подробно узнаем, как работают эти электростанции.

1. Гидроэлектростанции

Гидроэлектростанции являются одними из самых эффективных и экологически чистых электростанций.   На гидроэлектростанции электричество вырабатывается от воды. Если поподробнее, потенциальная энергия воды преобразуется в электрическую энергию. Когда вода падает с высоты на турбины, она вращает якорь, соединенный с генератором. Когда турбина вращается, генератор начинает вырабатывать электричество. Затем это электричество направляется на все подстанции для распределения электроэнергии. Крупнейшая в мире электростанция - это гидроэлектростанция, которая называется Три ущелья. Плотина создает поразительные 22 500 МВт энергии. Она достигает это, используя 34 генератора энергии. Плотина настолько велика, что после ее строительства она в одиночку замедлила вращение Земли.

Одним из преимуществ гидроэлектростанции является то, что в процессе производства энергии не образуются отходы.

2. Атомные электростанции

Атомные электростанции также возглавляют список электростанций, которые могут производить огромное количество энергии. Атомная электростанция работает путем преобразования ядерной энергии в электричество. Тепло от ядерного реактора используется для превращения воды в пар. Пар под давлением затем используется для вращения турбин, соединенных с генератором. В отличие от электростанций, работающих на угле или природном газе, атомная электростанция не должна сжигать что-либо для производства тепла. Весь процесс приведен в действие ядерным делением. Низкообогащенные урановые гранулы загружаются в атомную электростанцию. Затем атом урана расщепляется, создавая ядерное деление. Этот процесс высвобождает огромное количество энергии. Преимущество атомной электростанции заключается в том, что им не нужно сжигать что-либо для производства энергии. Следовательно, выброс углерода от атомной электростанции очень низок. Недостатками атомной электростанции являются ядерные отходы, которые она создает, и высокая стоимость ее строительства. Ядерная энергия составляет более 10% мировых потребностей в энергии. Крупнейшая атомная электростанция в мире - Касивадзаки-Карива, расположенная в Японии. Она способна вырабатывать 7 965 МВт энергии с использованием семи кипящих реакторов.

3. Угольные электростанции

Первые две электростанции, которые мы обсуждали, имеют низкий углеродный отпечаток. Угольные электростанции - полная противоположность. У них большой углеродный след, но на угольные электростанции приходится почти 40% мировых потребностей в энергии. Угольные электростанции сжигают уголь для превращения воды в пар. Этот пар затем используется для вращения турбин, которые вырабатывают электричество с помощью генератора. Угольная электростанция мощностью 1000 МВт сжигает 9000 тонн угля в сутки. Этот процесс выделяет очень большое количество загрязняющих веществ в воздух. Если посмотреть на потребление угля для производства электроэнергии, ни одна страна не стоит и близко рядом с Китаем. Восемь из одиннадцати мощностей (более 5 ГВт) находятся в Китае. Кроме того, Китай является крупнейшим источником выбросов CO2 в мире! Электростанция Datang Tuoketuo - крупнейшая в мире теплоэлектростанция мощностью 6,7 ГВт. Этот угольный завод использует более 21 миллиона тонн угля в год для удовлетворения энергетических потребностей Китая.

Угольные электростанции подпадают под категорию тепловых электростанций. Дизельные и работающие на природном газе электростанции - это два других типа тепловых электростанций, которые обычно используются для выработки электроэнергии.

Электростанции зеленой энергетики

Благодаря достижениям в области производства энергии мы теперь имеем больше, чем просто тепловые, атомные и гидроэлектростанции. Их называют нетрадиционными электростанциями. Эти электростанции способны производить чистую энергию (или зеленую энергию). Давайте узнаем, что это! 

Солнечные электростанции: солнечные электростанции используют энергию солнца для производства электроэнергии. Солнечные панели захватывают солнечный свет с помощью фотоэлектрических элементов и преобразуют его в электричество. Сегодня все большее число стран обращают внимание на солнечную энергию, чтобы компенсировать свою зависимость от ископаемого топлива. Tengger Desert Solar Park в настоящее время является крупнейшей в мире солнечной электростанцией по мощности. Она способна производить 1547 МВт энергии. 

 

Ветряные электростанции: ветряные электростанции преобразуют энергию ветра в электрическую энергию с помощью ветряных турбин. Они также очень эффективны при производстве чистой энергии. Скопление ветряных мельниц охватывает территорию, называемую ветряной электростанцией. Ветряная электростанция Ганьсу в Китае, строительство которой завершится в 2020 году, считается самой большой ветряной электростанцией в мире.

 

 

 

Геотермальная электростанция: Геотермальные электростанции похожи на паротурбинные электростанции, которые мы обсуждали ранее. Однако вместо сжигания ископаемого топлива геотермальные электростанции используют тепло от ядра земли для создания пара. Крупнейшая геотермальная электростанция - Комплекс Гейзеров, расположенный в США. Она способна производить 1520 МВт энергии. Самое большое ограничение геотермальной энергии состоит в том, что есть только несколько мест на земле, где она может быть установлена. Также стоимость бурения и строительства станции может быть довольно дорогой.

Приливная электростанция: Приливные электростанции используют приливные заборы или приливные заграждения, чтобы использовать силу приливов. Коэффициенты строительства приливных электростанций довольно низкие, поскольку существуют некоторые критические ограничения для реализации приливных электростанций.

 

 

 

 

 

 

Вывод

На протяжении многих лет мы наблюдаем постоянное снижение спроса на энергию во всем мире. И, двигаясь вперед, нет никаких признаков того, что эта тенденция замедлится в ближайшее время! Ежегодный рост уровня загрязнения является свидетельством нашей тревожной скорости потребления ископаемого топлива. Однако мы можем отойти от источников энергии с высоким содержанием углерода, таких как ископаемое топливо, и использовать возобновляемые источники энергии. Различные компании и страны приложили огромные усилия для того, чтобы это видение стало реальностью. В ближайшие годы мы надеемся увидеть больше электростанций, работающих на экологически чистой энергии, чем заводов по производству CO2.

СЕТЕВЫЕ СОЛНЕЧНЫЕ ЭЛЕКТРОСТАНЦИИ

Сетевые солнечные электростанции вырабатывают электроэнергию от солнца и сразу отдают ее в сеть, не накапливая, т.к. работают без аккумуляторов

Благодаря этому,их стоимость значительно ниже гибридных и автономных электростанций с АКБ, что позволяет строить системы с коротким сроком окупаемости(3-5 лет) на базе солнечных панелей и сетевых инверторов, особенно для организаций с дневным пиком потребления: производства, торговые центры, офисы, гостиницы и т.п..

Принцип работы сетевой солнечной электростанции:

  • если вырабатываемого солнечными панелями электричества хватает для питания потребителей, то бесплатное электричество поступает вам напрямую в "розетку"
  • если вырабатываемого солнечными панелями электричества не хватает для питания потребителей, то бесплатное электричество поступает вам напрямую в "розетку", а недостающая мощность добирается из "городской сети"
  • если есть избыток мощности от солнечных панелей можно либо ограничить выработку, либо расходовать на дополнительных потребителей, либо
    отдать избыток обратно в сеть (ЗЕЛЕНЫЙ ТАРИФ), зарабатывая на этом
    (Сейчас уже есть много примеров подобных систем. В 2019г. ожидается окончательно принятие всей нормативной базы, и тогда энергетические компании не смогут Вам отказать — по закону они будут обязаны покупать излишки!)

 Ваши возможности после установки сетевой солнечной электростанции:

  • получение чистой энергии для собственных нужд
  • экономия на оплате счетов "городской сети"

  • получения дополнительной энергомощности

  • возможность продажи излишков электроэнергии

  • возможность управления и мониторинга электрогенерацией удаленно

 

Сетевая солнечная электростанция - это самый популярный в мире тип солнечных электростанций. 

 Используем только качественные солнечные панели GENERAL ENERGO с 5 токосъемными шинами на каждой ячейке, так как они выдают заявленную гарантированную мощность от 0% до +5% и отказоустойчивых сетевых инверторов GROWATT с высокой эффективностью и очень коротким сроком окупаемости!

В нашей компании Вы можете ВЫГОДНО купить, ИЗ ПЕРВЫХ РУК, ПОЛНЫЙ КОМПЛЕКТ оборудования для сетевой солнечной электростанции "ПОД КЛЮЧ".

 Все компоненты системы тщательно подобраны и полностью совместимы, нам лишь остается скорректировать длину кабеля под необходимый объект!

 Профессионалы нашей компании выполнят проектирование, монтаж и пуско-наладку системы в кратчайшие сроки в любом регионе России!

Если у Вас есть вопросы, Вы всегда можете позвонить нам по телефону:

 +7 918 167 92 36 или воспользуйтесь онлайн-расчетом.

 

При копировании любой части нашего первоисточника активная ссылка на сайт energysun-yug.ru обязательна!

Преимущества и недостатки технологий солнечной электростанции и ветровой электростанции

Использование энергии солнца и ветра способствует увеличению доли неисчерпаемых источников энергии для покрытия энергетических потребностей мира.

Уже более 100 стран сформулировали политические цели для расширения использования возобновляемых источников энергии и ввели соответствующие энергетические программы, которые обязывают операторов сети покупать электроэнергию, производимую возобновляемыми источниками энергии.

Использование энергии солнца и ветра целесообразно для выработки электрической энергии и возможно на всей территории Украины.

Однако, для исследования энергетического потенциала солнечного излучения и силы ветра, в целях наиболее эффективного использования технологий СЭС/ВЭС и, как результат, увеличение производства электроэнергии с последующей ее продажей по "зеленому" тарифу необходимо привлекать специалистов энергетической отрасли.

В соответствии с Законом Украины "Об электроэнергетике", в отличие от промышленных СЭС мощностью более 30 кВт, для владельцев частных СЭС и / или ВЭС предусмотрены следующие дополнительные стимулы:

  • производство электроэнергии из энергии ветра и солнечного излучения частного домохозяйства осуществляется без соответствующей лицензии;
  • размер "зеленого" тарифа привязан к курсу евро (при увеличении курса евро тариф также увеличивается).

ОСНОВНЫЕ ПРЕИМУЩЕСТВА ТЕХНОЛОГИИ СЭС:

  • бесшумность работы;
  • срок работы солнечных элементов практически неограничен и может составлять десятки лет;
  • преобразование солнечной энергии происходит в основном за счет использования фотоэлектрических элементов;
  • дополнительный или автономный источник электроэнергии частного дома;
  • возможность получения "зеленого" тарифа.

НЕДОСТАТКИ ТЕХНОЛОГИИ СЭС:
  • зависимость от климатических характеристик местности;
  • потребность в большой площади размещения.

ПРЕИМУЩЕСТВА ТЕХНОЛОГИИ ВЭС:

  • энергия ветра неисчерпаема;производство электроэнергии с помощью ВЭС не сопровождается опасными выбросами в атмосферу;
  • возможность размещения в труднодоступных местах;
  • требуют малой площади и вписываются в любой ландшафт;получение бесплатной электроэнергии в долгосрочной перспективе, отсутствие затрат на топливо и его доставку;
  • автономность - независимость от состояния и работы внешних электрических сетей.

НЕДОСТАТКИ ВЭС:
  • шум;
  • высокая стоимость;
  • большой срок окупаемости;
  • непостоянство и нерегулируемость ветрового потока.

Атомные электростанции | Ассоциация «НП Совет рынка»

Полезные разделы

Атомные электростанции

Атомные электростанции

Атомные электростанции -  Атомные электростанции, в настоящее время, являются одними из основных поставщиков электроэнергии для промышленности и бытового потребления.  Примечательно то, что первая в мире атомная электростанция была построена в СССР, в городе Обнинске. Первоначальная её мощность составляла 5 МВт, однако именно Обнинская АЭС положила начало для бурного развития атомной энергетики во всем мире. Запустив первый на планете управляемый атомный реактор, практически была доказана сама возможность получения электроэнергии на основе расцепления урановых ядер. В то время, атомная энергетика являлась своего рода возможностью использования альтернативного топлива, однако очень быстро именно атомные электростанции стали доминировать среди прочих систем получения электроэнергии. Принцип работы атомной электростанции очень прост - это обычное преобразование тепловой энергии в электрическую. Иными словами АЭС работают по тому же принципу, что и обычные тепловые электростанции, с одним лишь отличием  - для нагрева воды используется энергия, получаемая при распаде ядер урана.  Источником тепловой энергии в АЭС служит ядерный реактор, в котором протекает управляемая ядерная реакция. Сама реакция протекает по цепному механизму: деление одного ядра самопроизвольно вызывает деление других ядер. Цепная реакция сама себя поддерживает, и может длиться до полного распада всех ядер вещества. А управление сводится лишь к регулированию её скорости и, соответственно, мощности, а также к произвольной её остановке в случае необходимости. Топливом для атомных электростанций служат вещества, способные, при определенном начальном стимулировании, совершать цепную реакцию расщепления ядер элементов, в основном трансурановой группы. В настоящее время основными являются плутоний и уран.Как же работает цепная реакция? При делении ядра урана высвобождаются нейтроны, которые воздействуют на другие ядра, вызывая их деление. Однако практически осуществить подобную реакцию не так просто, как кажется на первый взгляд. Дело в том, что такие нейтроны могут вызывать деление изотопов урана с массовым числом 235, тогда как в природной руде их содержится лишь 0,7%. Остальные 99,3% приходятся на долю изотопа 238, для деления которого, энергии нейтронов, не хватает. Именно поэтому для функционирования реактора важна критическая масса  - это минимальная масса урана, при которой возможно возникновение и протекание цепной реакции. Например, для урана-235 она составляет несколько десятков килограмм, что на самом деле, учитывая низкое его процентное соотношение, не так уж и мало.Перейдем к устройству и принципу выработки электричества АЭС.Та часть ядерного реактора, в котором находится топливо, и идут процессы деления ядер урана называется активной зоной. В результате протекания ядерной реакции выделяется огромное количество тепла - это и есть начальная тепловая энергия, преобразующаяся впоследствии в электрическую.Активная зона реактора имеет очень высокую степень защиты, обеспечивающей сравнительно безопасные условия для работы персонала АЭС. В активной зоне находятся специальные управляющие стержни, позволяющие регулировать скорость протекания реакции. Чаще всего - это бор или кадмий, которые достаточно сильно поглощают нейтроны. Иными словами, чем больше поглощено нейтронов, тем меньше ядер урана делиться, и, соответственно, снижается скорость реакции. Чем глубже погружаются стержни, тем меньше выделяется тепла, и наоборот.  Именно образование тепловой энергии и есть суть цепной реакции. Тепло из реактора выводится при помощи определенных теплоносителей, которыми, в зависимости от типа атомной электростанции, могут выступать вода, металлический натрий или некоторые газы. Они отбирают в активной зоне тепло, и переносят его в специальные теплообменники, попутно охлаждая реактор. Эта система называется первым контуром. Далее вступает в действие так называемый второй контур АЭС. В теплообменнике нагревается вода, образующийся в результате этого пар передается на лопасти турбины, которая через специальную систему приводит в действие генераторы, непосредственно вырабатывающие электричество.  Иными словами, атомные электростанции  - это очень большие "чайники", работающие на ядерном топливе и служащие, в первую очередь, для нагрева воды до кипения.  В настоящее время активно ведутся работы по проектированию и созданию термоядерных электростанций, основным преимуществом которых является возможность работать неопределенно долгое время.  Термоядерные электростанции, в отличие от атомных, протекают на основе термоядерного синтеза, в результате которого из изотопов водорода образуется гелий и выделяется огромное количество энергии. Кроме того, такие электростанции более безопасны и экологически чистые, так как реакция термоядерного синтеза не приводит к образованию радиоактивных продуктов, а топливом для неё может служить обычная вода, из которой получают тяжелый изотоп водорода - дейтерий.  К сожалению, на данный момент иной альтернативы атомным электростанциям, даже учитывая их потенциальную опасность, нет, так как в мире не предвидится скорого снижения спроса на электроэнергию, потребности в которой, напротив, растут год от года.   

Expert.ru - Крупнейшие электростанции в РК

Expert.ru - Крупнейшие электростанции в РК

Крупнейшие электростанции в РК

Электростанция Мощность турбогенераторов
(МВт)
Количество турбогенераторов Установленная мощность электростанции
(МВт)

Тепловые электростанции

ТОО "AES Экибастуз" (Экибазтузская ГРЭС-1) 500 8 4000
ОАО "ЕЭК" (Ермаковская ГРЭС) 300/310 06. янв 2110
"Жамбылская ГРЭС им. Батурова" (Жамбылская ГРЭС) 200/210 03.мар 1230
ОАО "Станция Экибастузская" (Экибастузская ГРЭС-2) 500 2 1000
ТЭЦ-2 МАЭК 50/60/80/100 10 630
ТЭС-3 МАЭК 200/210/215 3 625
ГРЭС корпорации Казахмыс (Карагандинская ГРЭС-2) 50/86/100 7 608
АПК Алматинская ТЭЦ-2 (Алматинская ТЭЦ-2) 50/80/110 6 510

Гидро электростанции

AES Шульбинская ГЭС 117 6 702
Бухтарминский ГЭК 75 9 675
АПК Капчагайская ГЭС 91 4 364
AES Усть-Каменогорская ГЭС 82,8 4 331,2
 
Источник: электроэнергетический совет СНГ
Еженедельный выпуск, №24

Закон накопления энергии — Владельцы домашних "зеленых" электростанций стали полноценными участниками энергорынка

Владельцы домашних "зеленых" электростанций стали полноценными участниками энергорынка

Владельцы небольших солнечных и ветряных генераторов смогут продавать излишки электричества гарантирующим поставщикам. Такие поправки в Федеральный закон "Об электроэнергетике" приняла на днях Госдума РФ. Документа давно ждали и производители возобновляемых источников энергии (ВИЭ), и потребители. Насколько востребована возобновляемая энергетика в регионах СЗФО, как изменится рынок благодаря реформе, выясняла корреспондент "Российской газеты".

Не более 15 киловатт

Чаще всего объекты микрогенерации в РФ представлены солнечными батареями, расположенными на крышах зданий, реже - ветряками, требующими отдельной площадки для установки. Даже в регионах с одним из самых низких уровней инсоляции в стране, таких как Калининградская область, грамотно подобранный солнечный модуль способен производить в год больше киловатт в час, чем потребляет частный дом.

Однако процесс этот неравномерен: в летние и весенние месяцы энергии чрезмерно много, а зимой солнца не хватает. С реализацией излишков у владельцев домашних подстанций возникали проблемы. Ведь официально передавать в энергосистему электричество и получать за него деньги раньше могли только юридические лица, имеющие специальную лицензию.

Житель Калининграда Сергей Рыжиков, установивший солнечную электростанцию на крыше своего частного дома несколько лет назад, вначале копил энергию с помощью аккумуляторов. Но их емкости не хватало, чтобы принять излишки в течение одного солнечного дня. О том, чтобы запастись солнцем на зиму, говорить не приходилось.

Сергей решил передавать неиспользованную энергию в городскую сеть и при необходимости забирать обратно. В калининградской энергосетевой компании инициативу поддержали, но предупредили, что реализовать ее на практике будет непросто. Ведь ранее в России таких прецедентов не было. На выработку технических условий ушло пять месяцев. Плана сэкономить или заработать калининградец не ставил, его прельщала сама идея жить на солнечной энергии.

Недавние поправки в ФЗ "Об электроэнергетике" позволят владельцам частных альтернативных электростанций решать проблемы энергетических излишков, не тратя месяцы на переговоры с сетевиками. Более того, ВИЭ не только сведут к нулю платежи за электричество, но и начнут приносить домохозяйствам деньги. Документ наделяет любого жителя частного дома, у которого установлен объект микрогенерации, правом продавать гарантирующему поставщику неиспользованную энергию по средневзвешенной цене оптового рынка.

Электростанция может быть как исключительно "зеленой", так и комбинированной, то есть сочетающей традиционные источники энергии и ВИЭ. Главное требование - мощность не должна превышать15 киловатт. Порядок присоединения таких объектов к общей сети будет упрощенным, отмечают в Госдуме РФ.

- Закон поспособствует развитию экологически чистых, приближенных к потребителю технологий энергообеспечения, в первую очередь - в труднодоступных, удаленных и изолированных районах, - комментирует ситуацию председатель комитета по энергетике Госдумы РФ Павел Завальный. - Он позволит предотвратить перебои с электричеством, сгладить пики потребления и сократить затраты потребителей.

Окупится за несколько лет

По оценкам российской Ассоциации предприятий солнечной энергетики, число крышных солнечных электростанций в РФ достигает нескольких десятков тысяч, а их суммарная мощность - нескольких десятков мегаватт.

Только в текущем году отечественные компании реализовали на розничном рынке солнечные модули общей мощностью пять мегаватт. По сравнению с позапрошлым годом рынок подрос примерно на пять процентов - даже при отсутствии у потребителей возможности продавать излишки энергии.

Закон поспособствует развитию экологически чистых технологий энергообеспечения в отдаленных районах

- Рост идет в основном за счет сегмента b2b, - делится информацией директор Ассоциации предприятий солнечной энергетики Антон Усачев. - Это небольшие деревообрабатывающие предприятия, представители индустрии гостеприимства, охотничьи хозяйства. А также некрупные производители различных гаджетов, работающих на солнечной энергии. Отрадно, что новые правила игры распространяются наравне с гражданами и на таких предпринимателей.

Крупнейшая в России интегрированная компания в области солнечной энергетики проанализировала, в каких российских регионах крышные модули пользовались в текущем году наибольшим спросом. В группу лидеров попали только два субъекта СЗФО - Санкт-Петербург и Ленинградская область. В общей сложности на них пришлось чуть более пяти процентов розничных продаж компании.

Петербургская агломерация действительно обгоняет остальную территорию Северо-Запада по уровню инсоляции: показатель составляет здесь от трех с половиной до четырех киловатт в час на квадратный метр поверхности в сутки. Кроме того, спрос на ВИЭ подогревают такие факторы, как стоимость технического присоединения к энергетическим сетям и покупательная способность населения.

Однако благодаря новому закону перспективными рынками сбыта могут стать и другие субъекты СЗФО. В Калининградской области, где уровень инсоляции не превышает трех киловатт в час на квадратный метр поверхности в сутки, крышные установки для частных домов раньше окупались за 10-15 лет. Возможность продавать летние и весенние излишки энергии значительно сократит этот срок.

- Нововведения заработают, когда будут приняты упрощенный порядок присоединения объектов микрогенерации к электросетям и порядок продажи излишков энергии, - продолжает Антон Усачев. - Игроки рынка ВИЭ очень надеются, что законодательный процесс не затянется. Кроме того, важно, чтобы эти подзаконные акты предусматривали сальдирование "зеленой" энергии внутри месяца, а не по итогам суток или часа.

Деньги из ветра

Импульс к развитию российский рынок ВИЭ получил благодаря механизму договоров на поставку мощности (ДПМ), заработавшему в 2013 году. Государство в рамках программы ДПМ гарантировало доходность проектов по строительству солнечных, ветряных и гидроэлектростанций.

Инвесторы могут вернуть свои затраты в течение 15 лет за счет повышенных платежей энергорынка. Суммарная мощность масштабных сетевых объектов генерации, уже введенных в эксплуатацию, превысила тысячу мегаватт.

Крупные солнечные электростанции в регионах СЗФО не появились и в ближайшие годы не появятся. Зато инвесторы запустили несколько проектов, связанных с энергией воды, в Карелии. А в Мурманской области в сентябре этого года начались работы по строительству Кольской ветроэлектростанции мощностью более 200 мегаватт. Инвестор - "дочка" международной энергетической группы с головным офисом в Италии, инвестирует в проект 273 миллиона евро.

- Этот ветропарк является первым крупным объектом возобновляемой энергетики, расположенным за полярным кругом, - подчеркивает глава европейскогл подразделения международной энергетической компании Симоне Мори. - Он поможет диверсифицировать энергетический профиль Мурманской области, используя обилие ее ветровых ресурсов.

Последний конкурсный отбор завершился летом текущего года. А осенью 2019-го федеральный центр принял знаковое решение о продолжении программы стимулирования ВИЭ до 2035 года. Сейчас обсуждаются новые критерии отбора проектов, новые механизмы развития рынка. Как считают некоторые эксперты, необходимо усилить меры государственной поддержки, не делая ставки исключительно на повышенные платежи энергорынка.

Сетевые солнечные электростанции

Автономные солнечные электростанции в России применяются довольно широко, в основном теми, кому не посчастливилось быть подключенными к общественным электросетям. В общем виде устройство автономной СЭС довольно простое: солнечные батареи через контроллер заряда подключаются а аккумулятору. Далее можно использовать либо постоянное напряжение, либо получить переменное при помощи инвертора. 

Рис.1 

                                     

Если солнечной энергии недостаточно, аккумуляторы нужно подзарядить генератором. Несмотря на очевидные плюсы, «бесплатная солнечная энергия» достается довольно дорого. Корень зла кроется в аккумуляторах, которые зачастую являются самой дорогой частью системы. Мало того, срок их жизни не столь велик, как этого хотелось бы, то есть через несколько лет потребуется замена и дополнительные расходы. 

Казалось бы, тем, кто подключен к сети вся эта «дорогая солнечная энергия» вообще не нужна. Не совсем так. Среди Россиян растет число желающих экономить за счет солнечных батарей. Сразу стоит заметить, экономия будет иметь место лишь в том случае, если это сетевые солнечные электростанции, то есть без аккумуляторов. Устройство сетевой СЭС еще проще, чем у автономной: солнечные панели подключаются к сетевому инвертору, а сетевой инвертор, собственно, к сети. 

Рис.2

                             

Если светит солнце, энергия передается напрямую потребителям с минимальными потерями, таким образом, потребление энергии из сети снижается, равно как и затраты. Срок эксплуатации оборудования в данном случае значительно превосходит срок окупаемости, а первоначальные вложения не столь велики.

Есть у данной схемы существенные недостатки:

  • Сетевые инвертора не работают без опорного напряжения. Иными словами, если отключили сеть, напряжения не будет, даже если светит солнце. В некотором смысле это плата за отсутствие АКБ.
  • Выработка должна быть согласована с потреблением. Максимум энергии будет вырабатываться в летний период в дневное время и, с точки зрения экономии, было бы очень неплохо эту энергию потреблять, иначе энергия уйдет в сеть и ее потребит Ваш сосед, и в этом заключается проблема.  
  • Дело в том, что в России нет «зеленого тарифа» и  «продавать» энергию в сеть простым гражданам не разрешается. Дозволяется этим заниматься лишь юр. лицам, но по невыгодной цене.  

Удачный пример сетевой системы – общественное или жилое здание с кондиционерами. Пик потребления, равно как и пик выработки случается летом в дневное время.

Также среди пользователей популярны гибридные СЭС, совмещающие в себе функции сетевой и автономной системы. Схема гибридной СЭС отличается от схемы автономной лишь тем, что в ней фигурирует не обычный батарейный инвертор, а гибридный преобразователь, имеющий сетевой вход и способный «подмешивать» солнечную энергию к сетевой. 

Рис.3

                 

С потребительской точки зрения данная схема крайне выгодна. Обеспечивается и резерв за счет АКБ и экономия за счет выработки солнечных батарей. Тем не менее, есть существенный недостаток – низкий КПД. Чтобы дойти до потребителя, напряжение сначала преобразовывается в низкое постоянное, а потом в переменное, при каждом преобразовании часть энергии теряется. Данный недостаток существенен лишь в системах большой мощности.

Чтобы избавиться от нежелательных потерь, следует применять схемы с совместной работой преобразователя напряжения (обычного либо гибридного) и сетевого инвертора.

Рис.4

                   

В данном случае инвертор является источником опорного напряжения для сетевого инвертора. «солнечная энергия» без лишних преобразований передается потребителям, либо ее излишки идут на заряд АКБ. Стоит отметить, что это не единственная возможная схема подключения оборудования. Производители инверторов предлагают различные схемы в зависимости от возможностей того или иного оборудования.

Читать другие статьи..

Какие типы электростанций используются для выработки энергии?

По мере того, как ряд стран продолжает отходить от ископаемых видов топлива с высоким уровнем загрязнения в сторону низкоуглеродных альтернатив, динамика того, как и где работают электростанции, постоянно меняется.

Производство угля в Индии - третьей по величине стране-источнике выбросов - снизилось на 8% в 2020 году по сравнению с 2018 годом (Источник: Wikimedia Commons / TJBlackwell)

Ядерная энергия, уголь и ветер - это всего лишь три типа энергии, которые используются для выработки электроэнергии в электростанции по всему миру.

Но по мере того, как ряд стран продолжает отходить от высоко загрязняющих ископаемых видов топлива к низкоуглеродным альтернативам, динамика того, как и где работают электростанции, постоянно меняется.

По данным BloombergNEF, мировой спрос на электроэнергию вырастет с 25 000 тераватт-часов (ТВт-ч) в 2017 году до примерно 38,700 ТВт-ч к 2050 году, что приведет к новым инвестициям в генерирующие мощности в ближайшие годы.

Здесь NS Energy описывает различные типы электростанций, необходимые каждому источнику энергии для выработки энергии.

Типы электростанций для выработки энергии

Атомные электростанции

Используя реакцию ядерного деления и уран в качестве топлива, атомные электростанции вырабатывают большое количество электроэнергии.

Поскольку атомные электростанции считаются источником энергии с низким содержанием углерода, эта технология широко рассматривается как более безвредный для окружающей среды вариант.

По сравнению с возобновляемыми источниками энергии, такими как солнце и ветер, производство электроэнергии на атомных электростанциях также считается более надежным.

Хотя для ввода АЭС в эксплуатацию требуются значительные инвестиции, затраты на их эксплуатацию относительно невысоки.

Ядерные источники энергии также имеют более высокую плотность, чем ископаемое топливо, и выделяют большое количество энергии.

Из-за этого атомные электростанции требуют небольшого количества топлива, но вырабатывают огромное количество энергии, что делает их особенно эффективными после ввода в эксплуатацию.

Атомная генерирующая станция Брюса, крупнейшая атомная электростанция в мире по количеству реакторов.Предоставлено: Чак Шмурло / Википедия

.

Гидроэлектростанции

Гидроэлектроэнергия производится за счет использования гравитационной силы текущей воды.

По сравнению с электростанциями, работающими на ископаемом топливе, гидроэлектростанции выбрасывают меньше парниковых газов. Но строительство гидроэлектростанций и плотин требует огромных вложений.

Согласно отчету Международной гидроэнергетической ассоциации о состоянии гидроэнергетики за 2017 год, в 2016 году было введено в эксплуатацию 31,5 гигаватт (ГВт) гидроэнергетических мощностей, в результате чего совокупная установленная мощность в мире составила 1246 ГВт.

На долю одного только Китая приходилось почти треть мировых гидроэнергетических мощностей, и в 2016 году было добавлено около 11,74 ГВт новых мощностей.

Угольные электростанции

По данным Всемирной угольной ассоциации, в 2018 году на угольные электростанции приходилось около 37% мировой электроэнергии, при этом Китай обладает крупнейшим в мире парком техники.

Угольные электростанции используют энергетический уголь в качестве источника для выработки электроэнергии и, следовательно, выбрасывают в атмосферу значительное количество вредных газов.

Стремясь сократить выбросы парниковых газов, многие развитые страны уже объявили о планах поэтапного отказа от угольных электростанций.

Канада планирует поэтапно отказаться от угольных электростанций к 2030 году, в то время как Великобритания установила крайний срок 2025 года, а Германия намерена удалить эту технологию из своей электросети к 2038 году. Ожидается, что ряд других европейских стран вскоре последуют этому примеру.

Дизельные электростанции

Этот тип электростанции, использующий в качестве топлива дизельное топливо, используется для мелкосерийного производства электроэнергии.

Они устанавливаются в местах, где нет доступа к альтернативным источникам энергии, и в основном используются в качестве резервного источника бесперебойного питания в случае перебоев в работе.

Дизельные электростанции требуют небольшой площади для установки и обладают более высоким тепловым КПД по сравнению с угольными электростанциями.

Из-за высоких затрат на техническое обслуживание и цен на дизельное топливо электростанции не стали популярными с той же скоростью, что и другие типы электростанций, такие как паровые и гидроэлектростанции.

Геотермальные электростанции

Три основных типа геотермальных электростанций включают электростанции с сухим паром, мгновенные паровые электростанции и электростанции с двойным циклом, все из которых используют паровые турбины для производства электроэнергии.

Установленная мощность геотермальной энергии постепенно увеличивалась во всем мире за последнее десятилетие, с почти 10 ГВт в 2010 году до почти 14 ГВт в 2019 году.

Геотермальные электростанции считаются экологически чистыми и выделяют более низкие уровни вредных газов по сравнению с угольными электростанциями.

Геотермальная электростанция Домо-де-Сан-Педро в Мексике (Источник: Grupo Dragon / Mitsubishi Hitachi Power Systems)

Газовые электростанции

Газовая электростанция сжигает природный газ - быстрорастущий источник энергии во всем мире - для выработки электроэнергии.

Хотя природный газ является ископаемым топливом, выбросы при его сжигании намного ниже, чем при сжигании угля или нефти, согласно исследованию Союза обеспокоенных ученых.

Данные Международного энергетического агентства (МЭА) показывают, что производство электроэнергии на газе увеличилось на 3% в 2019 году, в результате чего производство электроэнергии в глобальном разрезе составило 23%.

Другой тип электростанции, использующей газ, - это электростанция с комбинированным циклом. Используя как газовые, так и паровые турбины, они производят больше электроэнергии из одного источника топлива по сравнению с традиционной электростанцией.

Они улавливают тепло от газовой турбины для увеличения выработки электроэнергии, а также выделяют небольшое количество вредных газов в атмосферу.

Солнечные электростанции

Солнечные электростанции преобразуют солнечную энергию в тепловую или электрическую, используя один из самых чистых и распространенных возобновляемых источников энергии.

Как правило, они не требуют особого обслуживания и служат от 20 до 25 лет.

По данным Международного агентства по возобновляемым источникам энергии (IRENA), мировая мощность солнечной энергетики будет увеличиваться на 9% каждый год в период с 2018 по 2050 год, за это время она вырастет с 480 ГВт до более чем 8000 ГВт.

Но первоначальные затраты на финансирование солнечных электростанций высоки, а для установки требуется много места.

Еще одна похожая технология - гелиотермическая.Это система гигантских зеркал, размещенных соответствующим образом, чтобы концентрировать солнечные лучи на очень небольшой площади для создания значительного количества тепла, которое затем производит пар для питания турбины, вырабатывающей электричество.

Ветряные электростанции

В последние годы в мире наблюдается быстрый рост количества ветряных электростанций, чему способствуют технологические достижения.

Глобальная установленная мощность ветроэнергетики на суше и на море увеличилась почти в 75 раз за последние два десятилетия, по сравнению с 7. По данным IRENA, от 5 ГВт в 1997 г. до 564 ГВт к 2018 г.

После того, как ветряные турбины построены, эксплуатационные расходы, связанные с обслуживанием ветряных электростанций, низки, и они обычно считаются относительно рентабельными.

Ветряные электростанции также могут быть построены на сельскохозяйственных землях, не прерывая сельскохозяйственных работ.

Но обслуживание ветряных турбин может варьироваться, так как некоторые из них необходимо часто проверять, а проекты ветроэнергетики обычно требуют огромных капитальных затрат.

Приливные электростанции

Приливная энергия генерируется путем преобразования энергии приливов в энергию, и ее производство считается более предсказуемым по сравнению с энергией ветра и солнечной энергии.

Но приливная энергия до сих пор не получила широкого распространения, хотя первая в мире крупномасштабная установка такого типа была введена в эксплуатацию в 1966 году.

Ожидается, что повышенное внимание к производству энергии из возобновляемых источников ускорит разработку новых методов использования энергии приливов и отливов.

Хотя развитие приливной энергии находится на начальной стадии, у нее есть потенциал для значительного роста в ближайшие годы.

электростанций в США - Electric Choice

Электростанции - это крупные объекты, на которых есть оборудование, необходимое для производства или выработки электроэнергии. Из-за его огромных размеров для безопасного и эффективного выполнения повседневных операций обычно требуется около 1300 сотрудников.

Эти типы растений могут иметь несколько разных названий, в том числе

  • Электростанция
  • Электростанция
  • Электростанция
  • Электростанция

Эти типы установок содержат от одного до многих генераторов, которые в основном представляют собой машины, которые вращаются для преобразования механической энергии в потребляемую энергию.Многие электростанции в Соединенных Штатах используют ископаемые виды топлива, такие как природный газ и уголь, для выработки энергии, в то время как другие используют ядерную энергию. В настоящее время растет потребность в электростанциях, использующих больше возобновляемых источников, таких как ветер и солнце. На электростанции может быть генератор, использующий более одного вида топлива.

История электростанций

Электростанции - изобретение не последнее время. Самый ранний пример пришел из Англии примерно в середине 1800-х годов. Человек по имени лорд Армстронг спроектировал и построил свою собственную электростанцию.Вода из нескольких озер на его территории использовалась для выработки электроэнергии для освещения, горячего водоснабжения, лифта и других сельскохозяйственных построек и оборудования.

Одна из первых государственных электростанций была построена в Годалминге, Англия. Он использовал гидроэлектроэнергию для выработки энергии для уличных фонарей, а также для освещения жилых домов. К сожалению, этот проект не понравился горожанам, и в конце концов они вернулись к газу в качестве основного источника энергии.

Только в 1882 году Соединенные Штаты построили свою первую электростанцию. Станция Pearl Street была построена для обеспечения электричеством освещения в районе нижнего острова Манхэттен. Эта конкретная станция использовала технологию парового двигателя для поворота своих генераторов. Он не был очень энергоэффективным и не обеспечивал энергией обширные территории в Америке, но он работал до 1890 года, когда он был уничтожен во время пожара.

За последние несколько лет 1900-х годов центральные станции выросли в размерах и начали использовать различные усовершенствованные технологии. Более высокое давление пара использовалось более эффективно, а также полагалось на соединение между несколькими станциями для снижения затрат и повышения надежности.

Сегодня в Америке насчитывается около 19 243 генераторов, которые могут производить по крайней мере 1 мегаватт электроэнергии, и около 7 304 действующих электростанций.

Как работают электростанции?

По своей сути электростанция - это просто машина, которая забирает энергию из определенного топлива. Этот процесс требует нескольких этапов или этапов, где, к сожалению, часть энергии тратится впустую, а часть потребляется. Эти шаги включают:

Топливо ? Это то, из чего электростанция добывает энергию.Электростанции могут работать на таких видах топлива, как нефть, природный газ, уголь или даже метан.

Печь ? Топливо сжигается при высоких температурах, чтобы высвободить энергию. Энергия обычно выделяется в виде тепла.

Котел ? На этом этапе тепло от печи перемещается по трубам, заполненным холодной водой. Тепловая энергия кипятит эту холодную воду для создания пара.

Турбина ? Пар движется вокруг колеса, состоящего из множества металлических лопастей, плотно прилегающих друг к другу.Это движение вращает лопасти и генерирует кинетическую энергию, которая определяется как энергия, создаваемая движущимся предметом. Для того, чтобы это работало, тепло должно входить в эти металлические лезвия при чрезвычайно высоком давлении и температуре и выходить при низком давлении и температуре.

Есть несколько различных типов турбин. В их числе

  • Паровая турбина? Это наиболее часто используемая машина. Для работы он использует пар, образующийся при сжигании различных видов топлива.
  • Газовая турбина? Эта турбина использует давление, создаваемое движущимся газом. Эти типы турбин запускаются очень быстро и поэтому в основном используются для подачи электроэнергии в периоды пикового спроса.
  • Поршневые двигатели? Эти типы турбин обычно предназначены для электроснабжения сельских или отдаленных районов. Офисы, больницы и другие критически важные промышленные здания также используют эти турбины для выработки резервного питания в чрезвычайных ситуациях.

Градирня ? Градирни обычно имеют форму гигантских кувшинов.Горячая вода из турбин охлаждается, а затем распыляется в градирню. На этом этапе вода используется повторно.

Генератор ? К турбине подключен генератор. Это означает, что при вращении турбин вращаются и генераторы. Для производства электроэнергии генераторы используют кинетическую энергию, вырабатываемую турбиной.

Кабели? Как только энергия будет произведена, она пройдет по этим электрическим кабелям и попадет в ближайший трансформатор. Отсюда электричество проходит еще несколько этапов, чтобы попасть туда, куда ему нужно (дома, офисные здания и т. Д.).).

В целом, современные электростанции используют комбинацию тепла и электроэнергии и даже улавливают больше тепла для более эффективного производства электроэнергии.

Электростанции различных типов

Большинство электростанций считаются тепловыми электростанциями. Это потому, что все они используют тепловую энергию (тепло) от источника топлива (например, уголь) и превращают ее в кинетическую энергию. При этом электростанции по-прежнему обычно классифицируются или определяются по источникам тепла и включают

Электростанции на ископаемом топливе
Уголь - одно из наиболее часто используемых ископаемых видов топлива, используемых для выработки электроэнергии на электростанциях, работающих на ископаемом топливе. Эти установки могут использовать паровую турбину или турбину внутреннего сгорания. Уголь сжигается в котле при высоких температурах. Произведенный пар приводит в движение турбину, которая затем приводит в движение генератор для выработки энергии.

Атомные электростанции
Эти типы электростанций используют тепло ядерного реактора. Это означает, что вместо ископаемого топлива атомные электростанции используют радиоактивные элементы, такие как уран и торий. Ядерный реактор и трубы теплообменника также заменяют печь и котел.

Вместо сжигания топлива уран или торий подвергаются процессу, вызывающему реакцию деления. Эта реакция производит необходимое тепло, необходимое для генерации пара, который затем приводит в движение турбину и генератор для выработки электричества. Соединенные Штаты производят около 20% электроэнергии на этих типах электростанций.

Электростанции на возобновляемых источниках энергии
Электростанции также могут использовать возобновляемые источники энергии для выработки электроэнергии. Эти формы «топлива» включить,

  • Гидроэнергетика
  • ГАЗ
  • Солнечная
  • Ветер
  • Осмос

Геотермальные электростанции
Геотермальные электростанции используют пар, вырабатываемый естественным образом нагретыми породами под землей.Пар используется так же, как и на других электростанциях? повернуть турбину и генератор. Эта технология используется в 24 странах, 28% из которых реализованы в США. Этот тип выработки энергии является возобновляемым, потому что он не использует больше тепла, чем Земля способна произвести.

Электростанции, работающие на биомассе
На этой электростанции для производства пара используются отходы из различных источников, такие как сахарный тростник или свалочный метан.

Солнечные тепловые установки
Эти типы установок используют солнечное тепло для кипячения воды и выработки пара.Пар также приводит в движение турбину, которая затем приводит в движение генератор для производства электроэнергии.

Электростанции также служат множеству разных целей. Например, задача пиковой электростанции - удовлетворять суточную пиковую энергетическую нагрузку. Эта нагрузка может составлять не более двух часов каждый день, но они обеспечивают бесперебойную работу системы или сети в любое время. Для этих типов станций критически важно быстро запускаться и вырабатывать электроэнергию, поэтому они в основном используют газовые турбины.

Основные электростанции в США

Хотя в мире много электростанций, в Соединенных Штатах одни из самых крупных.Они производят большую часть электроэнергии, которую страна потребляет каждый год. В первую десятку электростанций (по состоянию на 2015 год) вошли

тыс.

Пало-Верде (Аризона)
Атомная станция Браунс-Ферри (Алабама)
Атомная электростанция Окони (Южная Каролина)
Атомная станция Южно-Техасского проекта (Техас)
ГЭС Гранд-Кули (Вашингтон, округ Колумбия)
Атомная станция Брейдвуд (Иллинойс)
Энергетический центр Западного округа (Флорида)
Атомная генерирующая станция Байрон (Иллинойс)
Атомная генерирующая станция Лимерик (Пенсильвания)
Угольная электростанция Шерер (Джорджия)

U.

S Производство электроэнергии по источникам: природный газ по сравнению с углем

Доля в производстве электроэнергии в США

В марте президент Трамп подписал распоряжения об отмене энергетической политики предыдущей администрации, шаг, который он назвал «прекращением войны с углем» и который происходит на фоне сокращения использования топлива. В прошлом году природный газ превзошел уголь как самый распространенный источник электроэнергии в Соединенных Штатах, согласно анализу Post, содержащему предварительные данные Управления энергетической информации.В начале века на уголь приходилась большая часть выработки электроэнергии, а в 2008 году она все еще оставалась источником почти половины, но неуклонно снижалась, составив 30 процентов в прошлом году. В прошлом году на природный газ приходилось 34 процента выработки электроэнергии в стране, не считая угля и атомной энергии.

[Трамп решительно стремится стереть с лица земли рекорд Обамы в области изменения климата ]

Местные электроэнергетические компании используют близлежащие ресурсы - реки на северо-западе, ветер на Среднем Западе, уголь в Аппалачах, природный газ на севере - для производства большей части электроэнергии страны. Это показывает источник производства электроэнергии в каждом штате согласно предварительным данным за 2016 год.

Нажмите, чтобы переставить

Щелкните, чтобы переставить

Электростанции, работающие на природном газе

В Соединенных Штатах насчитывается 1 793 электростанции, работающие на природном газе. В прошлом году они произвели 34 процента электроэнергии страны.

Успехи и расширение гидроразрыва пласта за последнее десятилетие открыли огромные запасы природного газа из сланцевых месторождений по всей стране.Топливо является основным источником производства электроэнергии в 19 штатах и ​​обеспечивает не менее 50 процентов электроэнергии в девяти штатах.

Уголь

В США 400 угольных электростанций. В прошлом году они произвели 30 процентов электроэнергии в стране.

Уголь был основным источником выработки электроэнергии в 19 штатах и ​​вторым по распространенности источником еще в девяти штатах. Уголь наиболее популярен на востоке, к югу от Нью-Йорка.Уголь по-прежнему составляет не менее 50 процентов производства в 13 штатах.

Ядерная

В США 61 атомная электростанция. В прошлом году они произвели 20 процентов электроэнергии страны.

Новые атомные электростанции вводятся в эксплуатацию после десятилетий паузы после первоначального рывка 1970-х и 1980-х годов, вызванного первым нефтяным шоком. Мэриленд присоединилась к Южной Каролине, Иллинойсу, Пенсильвании, Коннектикуту и ​​Нью-Гэмпширу, получив в прошлом году большую часть своей энергии от ядерной энергетики.Двадцать государств вообще не производят ядерную электроэнергию.

Hydro

В США 1444 гидроэлектростанции. В прошлом году они произвели 7 процентов электроэнергии страны.

Это источник праздника или голода. Вашингтон, Орегон, Вермонт и Айдахо лидируют по производству электроэнергии на гидроэлектростанциях, получая от них от 56 до 68 процентов своей электроэнергии. Но Монтана и Южная Дакота были единственными штатами, где на их долю приходилось более 5 процентов электроэнергии.Государственные предприятия вырабатывают большую часть энергии.

Ветер

В Соединенных Штатах насчитывается 999 ветряных электростанций. В прошлом году они произвели 6 процентов электроэнергии в стране.

Ветер - это самый быстрорастущий источник энергии, нашедший пристанище на Великих равнинах, где ветер надежно дует через широкие открытые пространства. Айова получает более трети своей энергии от ветра, за ней следуют Канзас, Оклахома и Южная Дакота, каждая из которых получает более четверти электроэнергии от ветряных мельниц.Ветер нигде не является ведущим источником электроэнергии, но занимает второе место в семи штатах.

Солнечная

В Соединенных Штатах насчитывается 1 721 электростанция, работающая на солнечной энергии. В прошлом году они произвели 1 процент электроэнергии страны.

Солнечная энергия в основном используется на юго-западе, где солнце светит больше всего. Рост солнечной энергии привел к появлению растений во всех штатах, кроме восьми. Калифорния получает почти 10 процентов электроэнергии от солнечной энергии, а Невада - более 6 процентов.За ними следуют Вермонт и Аризона с 4 процентами каждый.

Масло

В Соединенных Штатах насчитывается 1 076 электростанций, работающих на нефти. В прошлом году они произвели чуть более половины 1 процента электроэнергии страны.

Нефть больше не является популярным источником электроэнергии. После подъема ОПЕК и нефтяных потрясений и роста цен 1970-х годов коммунальные предприятия перешли на другие виды топлива, в основном уголь. Гавайи получают две трети электроэнергии за счет нефти, единственного штата, где она является ведущим источником энергии.

Об этой истории

Управление энергетической информации «Действующие электростанции в США по источникам энергии» на https://www. eia.gov/maps/map_data/PowerPlants_US_EIA.zip

Подробный вывод EIA через EIA-860, Annual Electric Generator Report, EIA-860M, Ежемесячное обновление годового отчета по производству электроэнергии, и EIA-923, Отчет о работе электростанции на http: // www.eia.gov/electricity/monthly/

Другие источники энергии включают нефтяной кокс, другие газы, биомассу и геотермальную энергию.

Первоначально опубликовано 31 июля 2015 г.

Другие истории

Соединенные Штаты нефти и газа

Президент Трамп сказал, что он планирует удвоить объемы нефтегазовой отрасли, отменить нормативные требования и провести бурение на федеральных землях. Вот состояние нефтедобывающей отрасли, которое унаследует новая администрация.

Угольные электростанции мира в 2020 году

ИНФОГРАФИКА | 26 марта 2020. 6:01

На карте: угольные электростанции мира

С 2000 года мировая мощность угольных электростанций увеличилась вдвое до примерно 2045 гигаватт (ГВт) после бурного роста в Китае и Индии.Еще 200 ГВт строятся и планируется 300 ГВт.

Совсем недавно 268GW закрылась из-за волны выходов на пенсию в ЕС и США. Анализ Carbon Brief предполагает, что в сочетании с быстрым сокращением количества строящихся новых станций это означает, что количество угольных блоков, работающих по всему миру, впервые в 2018 году сократилось.

Еще один 213 ГВт уже выведен из эксплуатации, и 19 из 80 угольных стран мира планируют полный отказ от топлива, включая Великобританию и Германию.

Между тем объем выработки электроэнергии из угля с 2014 года снизился, поэтому увеличивающийся автопарк работает меньше часов. Это подрывает чистую прибыль угля, как и конкуренция со стороны других видов топлива. Теперь было бы дешевле построить новые ветряные и солнечные электростанции, чем поддерживать половину существующих угольных электростанций.

То, как разворачивается следующая глава об угле, является ключом к решению проблемы изменения климата. Согласно недавнему анализу Carbon Brief, глобальное неослабленное использование угля должно сократиться примерно на 80% в этом десятилетии, если потепление будет ограничено уровнем ниже 1,5 ° C по сравнению с доиндустриальными температурами.

Чтобы пролить свет на эту историю, Carbon Brief нанесла на карту прошлое, настоящее и будущее всех угольных электростанций в мире. На интерактивной временной шкале, приведенной выше, показаны заводы, работающие каждый год в период с 2000 по 2019 год, а также расположение запланированных новых мощностей.

Эта карта была полностью обновлена ​​с момента ее первоначальной публикации в 2018 году с использованием последних данных Global Energy Monitor (ранее CoalSwarm) Global Coal Plant Tracker. Он включает около 10 000 выведенных из эксплуатации, действующих и планируемых угольных блоков общей мощностью около 3 000 гигаватт (ГВт) в 99 странах.Версии этой статьи за 2018 и 2019 годы заархивированы.

Как читать временную шкалу

На временной шкале выше показаны кружки для каждой угольной электростанции в мире, пропорциональные генерирующей мощности в мегаваттах (МВт). Каждая установка может состоять из нескольких агрегатов - отдельных котлов и паровых турбин. Примечания в конце этой статьи объясняют, как были обработаны данные.

На приведенном ниже рисунке поясняется, как использовать функции карты. Выберите год, регион и базовую карту, включая спутниковый снимок, с помощью информационного поля слева.

Масштабируйте, вращайте и наклоняйте карту с помощью инструментов навигации в правом верхнем углу и колеса прокрутки мыши. Используйте поле поиска, чтобы найти местоположения по городу, региону, почтовому индексу или почтовому индексу. Кнопка «Домой» вернет карту в исходное состояние.

Угольные заводы на карте имеют цветовую маркировку в зависимости от того, работают ли они (желтый), новые или расширенные в этом году (красный) и закрываются или сокращаются в следующем году (белый).

Перетащите ползунок временной шкалы с 2000 по 2019 год, чтобы увидеть, где и когда угольные электростанции добавляются и выводятся из эксплуатации.В 2019 году заводы окрашены в белый цвет, если ожидается, что они закроют некоторые или все свои подразделения.

В самом правом конце ползунка («Будущее») показаны заводы, у которых нет известных планов вывода из эксплуатации (желтый), строящиеся в настоящее время (розовый) и заводы, находящиеся на различных стадиях планирования (фиолетовый).

Обратите внимание, что в период с 2010 по 2019 год только 35% запланированной мощности было построено или начато строительство (993 ГВт), тогда как 1815 ГВт были отменены или отложены, согласно данным Global Energy Monitor. Например, тендер на строительство одного нового завода может привлечь несколько заявок, каждая из которых будет засчитана в «запланированную» сумму.

На карте показаны мощности по углю, тогда как производство электроэнергии и выбросы CO2 зависят от ряда других факторов. Важнее всего то, как часто работают угольные электростанции - их коэффициент загрузки. Средние глобальные нагрузки начали падать в 2007 году, а выбросы углекислого газа стабилизировались с 2014 года. Подробнее об этом ниже.

Наконец, обратите внимание, что дизайн карты адаптивный и имеет меньше функций на небольших мобильных устройствах. Карта использует WebGL и не будет работать в некоторых старых браузерах. Карта также может не загрузиться, если вы используете плагин для блокировки рекламы в браузере; попробуйте внести в белый список веб-сайт Carbon Brief.

Увеличение угольных мощностей

Мировые мощности по добыче угля росли каждый год в период с 2000 по 2019 год, почти удвоившись с 1066 ГВт до 2045 ГВт. Еще в 1950 году мощности по добыче угля только увеличивались, хотя эти более старые данные менее надежны. Однако темпы роста резко замедляются, при этом чистый прирост на 20 ГВт в 2018 году стал наименьшим за несколько десятилетий.

Обещание дешевой электроэнергии для стимулирования экономического роста стимулировало это расширение. Но новый уголь сейчас дороже возобновляемых источников энергии на всех основных рынках по всему миру, согласно недавно опубликованному анализу от Thinktank Carbon Tracker.

Уголь вырабатывает почти 40% мировой электроэнергии, что близко к самой высокой доле за последние десятилетия. А сейчас угольную энергию используют 80 стран, по сравнению с 66 в 2000 году. Еще 13 планируют присоединиться к клубу, особенно Египет и Объединенные Арабские Эмираты, хотя в прошлом году их было 16.

выбросов CO2 от существующих заводов достаточно, чтобы нарушить углеродный баланс на 1,5 или 2 ° C. Генеральный секретарь ООН Антониу Гутерриш призывает к прекращению строительства новых угольных электростанций.

По данным Международного энергетического агентства (МЭА), весь объем угля в неизмененном виде должен быть закрыт к 2040 году, чтобы оставаться «значительно ниже» 2C.Это будет означать закрытие 100 ГВт угольных мощностей каждый год в течение 20 лет или примерно одну угольную установку каждый день до 2040 года.

Для более амбициозного предела в 1,5 ° C глобальное использование угля для всех целей должно сократиться примерно на 80% в этом десятилетии, согласно анализу Carbon Brief, проведенному Межправительственной группой экспертов по изменению климата (МГЭИК). Это было бы равносильно закрытию всех угольных электростанций в мире.

Тем не менее, заголовки газет и прогнозы в области энергетики предполагают, что рост угля не остановится.

Столь мрачный прогноз на климат омрачен признаками быстрых изменений. Количество строящихся (розовый) или предлагаемых (фиолетовый) заводов сократилось на две трети с 2015 года, как показано на диаграмме ниже. Выводы на пенсию (серый цвет) также ускоряются, достигнув в совокупности 268 ГВт в период с 2010 по 2019 год.

Глобальные мощности по выработке угля, работающие с 2010 по 2019 год (желтый), а также кумулятивные выбытия (красный) и мощности, которые строятся (фиолетовый) или планируются (серый). Источники: Global Coal Plant Tracker 2014-2020; Глобальная оценка риска угля Института мировых ресурсов, 2012 г.Планы на 2010, 2011 и 2013 годы интерполированы из других лет. Диаграмма от Carbon Brief с использованием Highcharts.

Однако, как и в случае с глобальными выбросами CO2, мировые угольные мощности должны достичь пика, прежде чем они начнут падать.

Замедление роста угля

МЭА заявляет, что глобальные инвестиции в уголь уже достигли своего пика и сейчас «резко замедляются». В нем говорится, что Китаю, который строит большую часть нынешнего трубопровода, не нужны новые заводы.

Такое падение инвестиций означает, что рост угольных мощностей замедляется, как показано на диаграмме ниже слева.В 2011 году мировые угольные мощности увеличились на 82 ГВт. В 2018 году этот показатель был на 80% ниже и составил 16 ГВт, хотя в 2019 году он снова вырос до 34 ГВт.

Слева: добавление и вывод из эксплуатации угольных мощностей (гигаватт) в период с 2000 по 2019 год (цветные столбцы) и глобальное чистое изменение (черная линия). Справа: количество добавленных и списанных единиц угля по странам (цветные столбцы) и глобальное чистое изменение (черная линия). Источник: Global Coal Plant Tracker и Carbon Brief. Диаграмма от Carbon Brief с использованием Highcharts.

Согласно последнему ежегодному отчету Global Energy Monitor, количество новых строящихся станций ежегодно сокращается еще быстрее - на 66% в 2019 году по сравнению с 2015 годом. Между тем, выбытие угля находится на исторически беспрецедентном уровне: закрытие 34 ГВт в 2019 году почти на треть меньше, чем в 2015 (37 ГВт) и 2018 (35 ГВт).

В своем отчете о состоянии дел за 2018 год GEM предположил, что мировая мощность угля может достигнуть пика уже в 2022 году. Однако новый и потенциально гораздо более высокий предел мощности угля в Китае обсуждается в рамках его 14-го пятилетнего плана на 2021 год. 25, может поставить под сомнение эту точку зрения, подробнее см. Ниже.

Интересно, что количество угольных единиц в мире могло уже достигнуть своего пика, как показывает диаграмма вверху справа. В 2017 году количество единиц уменьшилось на четыре по сравнению с чистым увеличением на 260 единиц в 2006 году. В 2018 году количество единиц уменьшилось на 40, а в 2019 году произошло еще одно сокращение - на 29 единиц.

На диаграмме показано, как несколько стран, особенно Китай, закрывают сотни более мелких, старых и менее эффективных установок, заменяя их более крупными и эффективными моделями.

Пиковые выбросы угля CO2

Данные МЭА и недавний анализ Carbon Brief показывают, что выбросы CO2 от угольной энергетики стабилизировались, хотя угольные мощности продолжают расти. Выбросы угля CO2 в течение 2014-2019 гг. Оставались неизменными (красная линия), несмотря на рост выработки угля на 1,4% (желтый), как показано на диаграмме ниже.

Поскольку мощность угля продолжает увеличиваться (розовый), существующие угольные электростанции работают меньше часов (фиолетовый). В среднем угольные электростанции в мире работали примерно вдвое меньше в 2019 году с коэффициентом загрузки 53.5%. Аналогичная тенденция наблюдается в США (49%), ЕС (37%), Китае (49%) и Индии (57%).

Левая ось: мировое производство электроэнергии на угле (желтый, тераватт-час), выбросы CO2 (красный, миллионы тонн CO2) и мощность (розовый, гигаватт) в период с 2000 по 2019 год. Правая ось: средние коэффициенты загрузки для глобального угольного парка. (фиолетовый, %). Источник: Перспективы мировой энергетики МЭА и краткий анализ выбросов углерода. В отличие от остальной части этой статьи, данные МЭА включают небольшие угольные электростанции мощностью менее 30 МВт. Диаграмма от Carbon Brief с использованием Highcharts.

Помимо часов работы, на соотношение между мощностью угля и выбросами CO2 влияет ряд других факторов. К ним относятся тип угля и технология сжигания, которую использует каждый завод.

Установки, сжигающие низкокачественный бурый уголь, могут выделять до 1200 тонн CO2 на гигаватт-час (ГВтч) вырабатываемой электроэнергии, при этом ниже 1000 тоннCO2 / ГВтч для более твердых и менее загрязняющих сортов угля от полубитуминозного до битуминозного. (Редко используемый антрацит тверд, но имеет высокие выбросы CO2, так как он содержит меньше водорода, чем другие сорта.)

Технология сжигания также важна, от менее эффективных «подкритических» блоков до сверх- и сверхсверхкритических систем, которые повышают эффективность за счет работы котла при более высоких давлениях.

Самые старые и наименее эффективные подкритические блоки могут превращать менее 35% энергии угля в электричество. На новых подкритических установках этот показатель увеличивается до 40%, а на сверхсверхкритических установках - до 45%.

Некоторые предприятия угольной промышленности называют сверхсверхкритические блоки «высокоэффективными с низким уровнем выбросов» (HELE).

Однако, по данным Всемирной угольной ассоциации, даже угольные электростанции HELE выбрасывают около 800 тCO2 / ГВтч. Это примерно вдвое больше, чем выбросы электроэнергии, работающей на газе, и примерно на 50-100 больше, чем выбросы ядерной, ветровой или солнечной энергии. МЭА видит небольшую роль угольной энергии в сценариях 2C, поскольку остаточные выбросы слишком высоки, даже при использовании улавливания и хранения углерода (CCS).

Обратите внимание, что приведенная выше диаграмма содержит последнюю доступную информацию от IEA, дополненную недавно опубликованным анализом Carbon Brief.Это привело к рекордному снижению выработки угля на 3% в 2019 году, вызванному резким сокращением в Европе и США, а также падением в Индии. См. Ниже более подробную информацию о статусе угля в ключевых странах.

Разрушение угольной экономики

Низкие коэффициенты нагрузки вызывают коррозию экономики угольных электростанций. Как правило, установки рассчитаны на работу не менее 80% времени, потому что у них относительно высокие постоянные затраты. Это также основа для оценки затрат на строительство нового угля, в то время как сокращение рабочего времени увеличивает затраты на единицу электроэнергии.

Эта динамика особенно токсична для операторов угольных электростанций, которые конкурируют с быстро падающими ценами на возобновляемые источники энергии, дешевым газом в США и ростом цен на углерод в ЕС. Ограничения на поставку угля приводят к росту цен на уголь, что еще больше подрывает любое остающееся преимущество в стоимости перед альтернативами.

Новые правила загрязнения воздуха также увеличивают расходы на угольные электростанции во многих юрисдикциях, от ЕС до Индии и Индонезии. Операторы должны вкладывать средства в оборудование для борьбы с загрязнением, чтобы соответствовать более высоким стандартам выбросов, или полностью закрыть свои самые грязные предприятия.

Такое сочетание факторов означает, что значительная часть существующего парка угля в ЕС и даже Китае или Индии сталкивается с серьезными экономическими проблемами, что недавно было отмечено финансовым аналитическим центром Carbon Tracker.

В отчете, опубликованном в марте 2020 года, было обнаружено, что сегодня более 60% угольных электростанций в мире вырабатывают более дорогую электроэнергию, чем можно было бы обеспечить путем строительства новых ветряных или солнечных электростанций. В нем говорится, что к 2030 году эта цифра вырастет до 100% заводов на основных мировых рынках.

Это вторая из двух «переломных точек» для угля, предсказанных основателем Bloomberg New Energy Finance Майклом Либрайхом в 2017 году.

Первый опрокидыватель прошел в большинстве регионов, где новые возобновляемые источники энергии уже сейчас дешевле нового угля. Второй переломный момент заключался в том, что новые возобновляемые источники энергии были дешевле, чем существующий уголь, как показано в анализе Carbon Tracker для большинства мировых электростанций.

Обратите внимание, что угольные электростанции могут оставаться открытыми перед лицом неблагоприятных экономических условий по другим причинам, например, из-за платежей на рынке мощности.

Ключевые страны и регионы

Около 80 стран используют уголь для производства электроэнергии по сравнению с 66 в 2000 году. С тех пор 15 стран добавили угольные мощности впервые, а одна страна - Бельгия - отказалась от них.

Еще 19 стран, на которые приходится 5% текущих мощностей, обязались отказаться от угля в рамках «Powering Past Coal Alliance», возглавляемого Великобританией и Канадой. Теперь это официально включает Германию, где находится пятый по величине угольный флот в мире и около 2% от общемирового парка.Между тем, 13 стран надеются присоединиться к клубу угольной энергетики в будущем, включая Египет, как показано в таблице ниже.

В этой картине доминируют несколько ключевых стран. На 10 стран мира с наибольшим объемом угольных мощностей, показанных в таблице внизу слева, приходится 86% от общего числа действующих на сегодняшний день. Топ-10 по планируемой или строящейся мощности - это немного другой список, но он также составляет 86% от общего объема трубопровода.

Страна Эксплуатация (МВт) Доля Страна Трубопровод (МВт) Доля
Китай 1,004,948 49.1% Китай 205886 41,2%
США 246187 12,0% Индия 66025 13,2%
Индия 228964 11,2% Турция 33180 6,6%
Россия 46862 2,3% Индонезия 31200 6,3%
Япония 46682 2.3% Вьетнам 30942 6,2%
Германия 44470 2,2% Бангладеш 22984 4,6%
ЮАР 41435 2,0% Япония 11,881 2,4%
Южная Корея 37600 1,8% Южная Африка 11,050 2,2%
Индонезия 32,373 1. 6% Филиппины 10,536 2,1%
Польша 30870 1,5% Южная Корея 7260 1,5%

Китай имеет самый крупный угольный флот, а также самую большую в мире концентрацию угольных электростанций, мощностью около 100 ГВт в радиусе 250 км вдоль дельты реки Янцзы вокруг Шанхая. Это больше, чем у всех, кроме трех стран (Китая, Индии и США), как показано в таблице выше.

Китай

С 2000 года самые драматические изменения произошли в Китае, как показывает слайдер ниже. Его угольный парк вырос в пять раз с 2000 по 2019 год и достиг 1005 ГВт, что составляет почти половину общемирового объема.

Китай является крупнейшим в мире источником выбросов CO2 и потребляет половину угля, потребляемого ежегодно, поэтому его будущий путь непропорционально важен для глобальных усилий по борьбе с изменением климата.

Промышленная деятельность и использование угля были стимулированы расходами на стимулирование экономики до назначения президента Си «пожизненным лидером» в 2018 году. В 2019 году общий рост спроса на электроэнергию замедлился, и рост в основном удовлетворялся за счет низкоуглеродных источников, что означает сокращение использования угля.

В первые несколько месяцев 2020 года из-за пандемии коронавируса и последующих блокировок по всему Китаю производство угля резко упало до многолетних минимумов. В более долгосрочной перспективе главный вопрос будет заключаться в характере ожидаемых государственных стимулов в ответ на кризис.

Между тем ведутся жаркие споры о том, разрешить ли строительство сотен новых угольных электростанций в рамках 14-го пятилетнего плана Китая на 2021-2025 годы.Сильные интересы в энергетическом секторе продвигают более высокие цели по углю, что противоречило бы целям Китая в области климата.

С другой стороны, сектор находится под давлением возобновляемых источников энергии, замораживания цен на электроэнергию и предстоящих реформ рынка электроэнергии, а также национальной схемы торговли квотами на выбросы углерода. Типичные электростанции в Китае сейчас работают менее чем на половину своей номинальной мощности, что еще больше снижает прибыль.

В прошлом году в секторе произошли первые банкротства, и можно ожидать, что государственный орган по надзору за активами Китая, предложивший радикальную реорганизацию отрасли, будет препятствовать дальнейшему росту.

В целом, по данным Global Energy Monitor, с конца 2015 года количество строящихся или планируемых заводов в Китае сократилось более чем на 70%. Его данные показывают, что только в 2019 году было отменено около 134 ГВт запланированной мощности, хотя некоторые ранее приостановленные схемы также были восстановлены.

Индия

Второй по величине прирост мощностей с 2000 года пришелся на Индию (см. Новый подробный обзор страны), где угольный парк увеличился более чем втрое до 229 ГВт.Это расширение можно увидеть на слайдере ниже.

Угольные мощности в Индии будут продолжать расти и в 2027 году достигнут 238 ГВт, согласно Национальному плану правительства в области электроэнергетики. Другие аналитики и индикаторы предполагают, что это увеличение может вызывать сомнения.

Темпы роста угольных мощностей в Индии с 2016 года снизились более чем вдвое, как показано на диаграмме выше, и есть признаки того, что они продолжат замедляться. В 2019 году производство угольной электроэнергии в Индии упало впервые как минимум за три десятилетия.

МЭА резко снизило свои прогнозы относительно спроса в Индии из-за более медленного, чем ожидалось, роста спроса на электроэнергию и падения цен на возобновляемые источники энергии.

«С экономической точки зрения имеет смысл заменить существующий уголь новыми возобновляемыми источниками энергии», - говорится в отчете Института энергетики и ресурсов в Нью-Дели за 2019 год.

В феврале 2019 года обозреватель Reuters по сырьевым товарам Клайд Рассел написал: «Основная причина, по которой уголь может бороться за удовлетворение будущих потребностей Индии в энергии, заключается в том, что он просто становится слишком дорогим по сравнению с возобновляемыми альтернативами, такими как энергия ветра и солнца. Точно так же консультант Wood Mackenzie предполагает, что солнечная энергия в стране на 14% дешевле угля.

Действительно, около 10 ГВт существующего угля уже были «нежизнеспособны», а еще 30 ГВт «перегружены», по словам министра энергетики Индии, опрошенного Bloomberg Quint в мае 2018 года. процесс решается.)

Тем временем премьер-министр Нарендра Моди объявил еще более амбициозные цели по расширению использования возобновляемых источников энергии.Если они будут выполнены, они еще больше ограничат возможности для новых угольных мощностей.

По данным Global Energy Monitor, только в 2019 году в Индии было отменено около 47 ГВт запланированной мощности по углю. В настоящее время в стране разрабатывается всего 66 ГВт новых угольных мощностей, что на 30% меньше за последние два года - и на 80% по сравнению с 311 ГВт в 2015 году.

Текущий газопровод включает 37 ГВт в стадии строительства, половина из которых приостановлена, чаще всего из-за финансовых проблем, по данным Global Energy Monitor.

США

Волна вывода на пенсию привела к сокращению угольных мощностей в США на 105 ГВт с 2010 года, и, по данным Global Energy Monitor, уже планируется закрыть еще 71 ГВт. Это сократит парк транспортных средств США вдвое, с 327 ГВт в 2000 году до 175 ГВт в будущем, как показывает ползунок ниже.

Один из шаблонов - это постоянное желание администрации Трампа поддержать убыточные угольные электростанции. В 2018 году он спланировал то, что Bloomberg назвал «беспрецедентной интервенцией на энергетические рынки США» по ​​соображениям национальной безопасности.Он также отказался от усилий во имя «устойчивости энергосистемы».

С другой стороны, рыночные условия по-прежнему благоприятствуют газовым электростанциям и возобновляемым источникам энергии. Планов по вводу новых угольных мощностей в США нет. Выводы на пенсию в 2019 году достигли 16 ГВт, уступая только 2015 году, а закрытие в среднем составляло 14 ГВт в год за время правления Трампа до настоящего времени.

В 2019 году производство угля в США упало на рекордные 18% до самого низкого уровня с 1975 года, отметив конец десятилетия, в течение которого выработка электроэнергии из топлива сократилась вдвое.

Согласно анализу Energy Innovation, аналитическому центру Energy Innovation, около 74% угольных электростанций в США имеют более высокие эксплуатационные расходы, чем стоимость строительства новых возобновляемых источников энергии поблизости.

См. Более раннюю карту всех электростанций в США на карте Carbon Brief.

ЕС

В ЕС и Великобритании также наблюдается волна отказа от угля. С учетом планов по поэтапному отказу от угля, парк парка в регионе должен упасть ниже 50 ГВт, что составит четверть от его мощности в 2000 году, как показано на слайдере ниже.

Наряду с Канадой европейские страны возглавляют глобальные усилия по поэтапному отказу от угля. Великобритания, Франция, Италия, Нидерланды, Португалия, Австрия, Ирландия, Дания, Швеция, Финляндия, Венгрия, Словакия и Греция заявили о прекращении производства до 2030 года. Это включает несколько недавно построенных АЭС.

Теперь пятый по величине национальный угольный парк в мире - 44 ГВт Германии - тоже будет выведен из эксплуатации, но не позднее 2038 года. После этого 31 ГВт Польши является десятым по величине показателем в мире.

Польша заявила, что не будет строить новые угольные месторождения сверх того, что уже строится. Одна из этих схем, «Остроленка С», теперь может быть переведена с угля на газ.

С 2010 года в ЕС и Великобритании было закрыто около 66 ГВт угля, в том числе 8 ГВт только в 2019 году. Исследование, проведенное в 2017 году, показало, что все угольные электростанции ЕС должны быть закрыты к 2030 году, чтобы достичь цели

.

Прочие ключевые страны

Другие азиатские страны, включая Южную Корею, Японию, Вьетнам, Индонезию, Бангладеш, Пакистан и Филиппины, коллективно удвоили свой угольный флот с 2000 года, достигнув 202 ГВт в 2019 году.

Вместе эти страны строят 47 ГВт новых станций и планируют еще 87 ГВт, хотя последняя цифра примерно на 38 ГВт ниже, чем была два года назад. Многие проекты в более бедных странах финансируются или строятся Китаем, Японией и Южной Кореей.

Участники кампании рассматривают быстро развивающуюся Азию как ключевой риск для угольной экспансии. Лаури Мюллювирта, ведущий аналитик Центра исследований в области энергетики и чистого воздуха, рассказывает Carbon Brief:

«Китай и Индия по-прежнему имеют большое значение, но, мегаватт за мегаватт, я бы поставил гораздо больший вес на другие части Азии.”

Во многих из этих стран признаки угля неоднозначны. Например, в последнем национальном энергетическом плане Японии отводится значительная роль углю в 2030 году, тогда как Парижское соглашение означает, что к тому времени уголь в основном должен быть прекращен, по данным научной НПО Climate Analytics.

Недавно обновленное Парижское обязательство Японии по климату не упоминает о топливе, и около 9 ГВт мощностей все еще находятся в стадии строительства. Однако, как сообщается, в марте 2019 года министерство окружающей среды страны заявило, что в принципе не будет вводить санкции в отношении новых крупных угольных электростанций. Министр окружающей среды Синдзиро Коидзуми заявил в феврале 2020 года, что правила экспорта угольных электростанций будут пересмотрены.

Против крупных планов строительства новых угольных мощностей выступают сообщества, НПО и некоторые газеты. Более трети новых заводов, запланированных на начало 2016 года, были отменены или отложены.

Вьетнам занимает пятое место в мире по объему добычи нового угля - 31 ГВт, из которых 9 ГВт уже строятся. «Тем не менее, правительство все больше инвестирует в изменение этой траектории», - пишет Алекс Перера, заместитель директора по энергетике аналитического центра World Resources Institute.Он продолжает:

«Вьетнам предоставляет интересное и важное сочетание условий, которые могут сделать возможным значимый переход к чистой энергии: обязательства правительства в отношении возобновляемых источников энергии и частный сектор, стремящийся достичь все более строгих целей в области экологически чистой энергии».

В марте 2019 года агентство Bloomberg сообщило, что амбициозные планы по расширению газовой энергетики во Вьетнаме могут заменить некоторые угольные электростанции. Сейчас в стране больше солнечных мощностей для коммунальных предприятий, чем в Австралии.

В Индонезии правительство продолжает планировать масштабную экспансию угля.Однако ранее в 2020 году агентство Reuters сообщило, что страна планирует заменить около 11 ГВт старых угольных и газовых электростанций на возобновляемые источники энергии. Государственное коммунальное предприятие критиковали за «чрезмерную переоценку вероятного роста спроса на [электроэнергию]», чтобы оправдать новый уголь. (Более подробную информацию см. В подробном обзоре Индонезии по стране в Carbon Brief.)

Турция также имеет значительные планы по расширению своего угольного флота (см. Краткий обзор политики Турции в области климата и энергетики). Примечательно, однако, что в настоящее время строится менее 2 ГВт из общего трубопровода мощностью 33 ГВт нового угля, и этот трубопровод сократился на 10 ГВт за два года.

Еще одна страна с большими планами - Египет, у которого нет угольных электростанций и внутренних угольных месторождений. Обратите внимание, что ни одна из 13 ГВт запланированной мощности не вышла за пределы самых ранних этапов разработки, ни одна из них не прошла процесс выдачи разрешений, ни одна из них еще не разрешена, и ни одна не строится.

Южная Африка располагает крупными угольными месторождениями и седьмым по величине парком угольных электростанций в мире. Он строит 5 ГВт нового угля и планирует еще 6 ГВт. Однако политические настроения несколько изменились после избрания Сирила Рамафосы и давно откладываемых сделок с возобновляемыми источниками энергии на сумму 4 доллара.7 млрд подписано в 2018 году.

Необычно то, что тяжелая промышленность Южной Африки отдает предпочтение возобновляемым источникам энергии, а не продолжающемуся росту угля. Согласно отдельным исследованиям, новый уголь будет намного дороже, чем альтернативы. В марте 2019 года государственная энергетическая компания Eskom заявила, что намеревается оставить две огромные угольные электростанции незавершенными.

Методология

Временная шкала

Carbon Brief основана на Global Coal Plant Tracker, составленном Global Energy Monitor. Текущая карта использует данные за январь 2020 года.Эта база данных включает все угольные блоки мощностью 30 МВт или более, включая действующие и выведенные из эксплуатации станции, а также предложенные с 2010 г. (Как отмечалось выше, предполагается, что примерно 27 ГВт угольных станций меньшего размера).

Это включает в общей сложности 2045 ГВт действующих сегодня мощностей, 200 ГВт в стадии строительства, 300 ГВт в стадии планирования, 315 ГВт списанных и 1522 ГВт, которые были предложены, но затем отменены с 2010 года.

Carbon Brief сделал ряд предположений для составления карты, описанных ниже.

По состоянию на март 2019 года 27 стран присоединились к Powering Past Coal Alliance по поэтапному отказу от угольной энергетики, 13 из которых все еще имеют действующие электростанции. Предполагается, что каждая из этих стран завершит поэтапный отказ к объявленному году. Предполагается, что Германия соблюдает крайний срок поэтапного отказа к 2038 году.

Угольные агрегаты - отдельные котлы, перечисленные в базе данных - сгруппированы вместе с использованием перечисленного названия «Завод». Однако на некоторых участках есть два или более растений с слегка разными названиями, например «Завод-1», «Завод-2».Эти растения снова группируются на втором автоматическом этапе в зависимости от их широты. В этих случаях для карты сохраняется только имя (Завод-1).

Некоторые сгруппированные установки имеют блоки, использующие различные технологии сжигания, такие как подкритические и сверхкритические котлы. На этапе группировки данных некоторые из этих различий будут потеряны. Для сгруппированных заводов карта показывает диапазон лет, когда агрегаты начали работать.

Заводы в трубопроводе представляют собой смесь участков в стадии строительства, уже разрешенных, предварительно разрешенных и находящихся на ранней стадии планирования («объявленных»).Некоторые сайты размещают проекты на разных этапах этого процесса, которые будут наполовину скрыты на карте, поскольку их расположение одинаково. Случайное смещение порядка ± 50 м применяется к местоположению всех блоков в трубопроводе, чтобы искусственно разделить их на карте.

На карте не указаны 13 единиц в базе данных, в которых отсутствует информация о мощности, а также 98 действующих или выведенных из эксплуатации единиц общей мощностью 4,6 ГВт, для которых отсутствуют данные о местоположении. 12 ГВт мощности помечены как «законсервированные», что означает, что они временно не используются.Они включены в «рабочую» емкость, поскольку нет информации о сроках или продолжительности консервации.

Имеется 144 выведенных из эксплуатации блока (8,6 ГВт) и 151 действующий блок (9,5 ГВт) без указанного «Года запуска». На карте предполагается, что эти агрегаты работают с 2000 года. Шесть единиц (0,3 ГВт) указаны с "годом начала" 1960-х, 1970-х годов или аналогичным. Они отнесены к 1965, 1975 и так далее.

Около 97 выведенных из эксплуатации блоков (5,6 ГВт) не имеют «года выхода на пенсию», большинство из которых находятся в Китае.Этим предприятиям назначается случайный год выхода на пенсию между 2000 и 2018 годами с использованием лет, взвешенных в соответствии с распределением известных выходов на пенсию в Китае и остальном мире, соответственно.

Линии публикации из этой истории

Эти 10 электростанций производят больше всего электроэнергии в Америке

Все любят списки. Мы с радостью узнаем, что является самым большим, самым быстрым, самым популярным и лучшим.

В 2015 году автор Forbes Джеймс Конка составил список крупнейших электростанций США. Вместо того, чтобы перечислить заводы, из которых могут производить больше всего электроэнергии, он собрал список заводов, из которых действительно вырабатывают электроэнергии.

Я не видел, чтобы он обновлял список, поэтому продолжил самостоятельно, используя данные Управления энергетической информации за 2015 год. Это показывает, насколько важны ядерное и ископаемое топливо для выработки мощности базовой нагрузки, которая поддерживает свет и поддерживает развитие нашей экономики.

Некоторые наблюдения:

Во-первых, восемь из десяти крупнейших электростанций являются атомными. В этом списке преобладают атомные станции, поскольку они работают почти круглосуточно и без выходных в течение длительного времени. Как отметила Конка, атомные электростанции имеют высокие средние коэффициенты мощности (90%) и приближаются к своей полной генерирующей мощности, чем другие типы электростанций. Сравните ядерную энергию с более непостоянными, менее надежными возобновляемыми источниками электроэнергии, такими как гидроэнергетика (40%), ветер (30%), солнечная энергия (24%) и солнечная фотоэлектрическая энергия (20%).Из-за важности ядерной энергетики федеральное правительство должно выполнить свои юридические обязательства, построив постоянное хранилище ядерных отходов на горе Юкка в Неваде.


Во-вторых, самая большая электростанция в США и седьмая по величине в мире - Гранд-Кули-Дамн - не вырабатывала больше всего электроэнергии в 2015 году. Это может быть связано с такими факторами, как количество осадков в Тихом океане. Северо-запад в прошлом году. Это показывает, что быть самым большим не означает, что вы производите больше всего.Гораздо важнее работать с постоянно высокой производительностью в течение длительных периодов времени.

В-третьих, в список попали две электростанции, работающие на ископаемом топливе. Несмотря на это, не стоит недооценивать важность угля и природного газа для энергосистемы. По данным Управления энергетической информации, в 2015 году уголь производил около трети всей нашей электроэнергии. (Ядерная энергия генерирует около одной пятой.) Для федерального правительства неразумно атаковать этот критически важный источник энергии с помощью таких нормативных актов, как План экологически чистой энергии Агентства по охране окружающей среды.

Что касается природного газа, то его доля в производстве электроэнергии в 2015 году также составляла около одной трети. Преимущество газовых заводов - обилие дешевого топлива - спасибо, гидроразрыв. Но с другой стороны, этим электростанциям нужны трубопроводы для получения этого топлива. Регулирующие органы и активисты, выступающие против ископаемого топлива, блокируют необходимые трубопроводы и энергетическую инфраструктуру, чтобы превратить дешевое топливо в электричество.

В-четвертых, может ли энергия ветра или солнца когда-либо входить в этот список? Все возможно, но ветер и солнце должны сильно увеличиваться.Центр ветроэнергетики Альта в Калифорнии, крупнейшая береговая ветряная электростанция в США, вырабатывает 2600 ГВт-ч электроэнергии. Производительность объекта площадью 3200 акров должна быть умножена на семь, чтобы попасть в список. Гора для солнечной круче. Ожидается, что крупнейшая в мире солнечная тепловая электростанция, калифорнийская компания Ivanpah Solar Electric Generating System, занимающая площадь более 3500 акров, будет вырабатывать 940 ГВт-ч электроэнергии в год. Чтобы попасть в список, необходимо увеличить выработку электроэнергии на 1900%.

Возобновляемая энергия занимает место в разнообразном энергетическом балансе Америки - см. Плотину Гранд-Кули - но, как показывает этот список, ветер и солнечная энергия не способны заменить большие атомные электростанции и электростанции, работающие на ископаемом топливе, которые составляют основу нашей Энергосистема.



Нужна ли Америке энергетическая стратегия "все выше"? Узнай здесь.

Этот Объяснитель Камеры научит вас быстрее.


Ниже приведен список из десяти ведущих электростанций США.

1. Атомная станция Пало-Верде

Штат: Аризона
Источник топлива: атомная энергия
Электроэнергия, произведенная в 2015 году: 32,525,595 мВтч


2. Атомная станция Браунс-Ферри

Штат: Алабама
Источник топлива: атомная энергия
Электроэнергия, произведенная в 2015 году : 27 669 694 мВтч


3. Атомная генерирующая станция Окони

Штат: Южная Каролина
Источник топлива: атомная энергия
Электроэнергия, произведенная в 2015 году: 21 939 740 мВтч


4.Энергетический центр Западного округа

Штат: Флорида
Источник топлива: природный газ
Электроэнергия, произведенная в 2015 году: 20 428 360 мВтч


5. АЭС Брейдвуд

Штат: Иллинойс
Источник топлива: атомная энергия
Электроэнергия, произведенная в 2015 году: 19 740 011 мВтч


6. Байронская атомная генерирующая станция

Штат: Иллинойс
Источник топлива: атомная энергия
Электроэнергия, произведенная в 2015 году: 19 478 139 мВтч


7. Атомная станция проекта Южного Техаса

Штат: Техас
Источник топлива: атомная энергия
Электроэнергия, произведенная в 2015: 19 400 553 мВт / ч


8.Атомная генерирующая станция Лимерик

Штат: Пенсильвания
Источник топлива: атомная энергия
Электроэнергия, произведенная в 2015 году: 18 904 377 мВтч


9. Гидроэлектростанция Гранд-Кули

Штат: Вашингтон
Источник топлива: гидроэлектроэнергия
Электроэнергия, произведенная в 2015 году: 18 838 602 мВтч

10. Электрогенерирующая установка Джеймса Х. Миллера младшего

Штат: Алабама
Источник топлива: уголь
Выработка электроэнергии в 2015 году: 17 815 891 мВт / ч

Откуда у нас электричество?

Электроэнергия необходима для современной жизни, но почти миллиард человек живет без доступа к ней.Такие проблемы, как изменение климата, загрязнение и разрушение окружающей среды, требуют, чтобы мы изменили способ производства электроэнергии.

За последнее столетие основными источниками энергии, используемыми для производства электроэнергии, были ископаемое топливо, гидроэлектроэнергия, а с 1950-х годов - ядерная энергия. Несмотря на значительный рост возобновляемых источников энергии за последние несколько десятилетий, ископаемые виды топлива остаются доминирующими во всем мире. Их использование для производства электроэнергии продолжает расти как в абсолютном, так и в относительном выражении: в 2017 году на ископаемом топливе было произведено 64.5% мировой электроэнергии по сравнению с 61,9% в 1990 году.

Доступ к надежному электроснабжению жизненно важен для благополучия человека. В настоящее время каждый седьмой человек в мире не имеет доступа к электричеству. Таким образом, спрос на электроэнергию будет продолжать расти. В то же время выбросы парниковых газов должны резко сократиться, если мы хотим смягчить последствия изменения климата, и мы должны перейти на более чистые источники энергии, чтобы уменьшить загрязнение воздуха. Это, вероятно, потребует значительного увеличения всех низкоуглеродных источников энергии, важной частью которых является ядерная энергия.

Для достижения устойчивого мира необходимо декарбонизация всех секторов экономики, включая транспорт, тепло и промышленность. Электричество предоставляет средства для использования низкоуглеродных источников энергии, и поэтому широко распространенная электрификация рассматривается как ключевой инструмент декарбонизации секторов, традиционно работающих на ископаемом топливе. По мере того, как конечное использование электроэнергии растет, а выгоды от электричества распространяются на всех людей, спрос будет значительно расти.

Уголь, газ и нефть

Электростанции, работающие на ископаемом топливе, сжигают уголь или нефть для производства тепла, которое, в свою очередь, используется для выработки пара для привода турбин, вырабатывающих электричество.На газовых установках горячие газы приводят в действие турбину для выработки электроэнергии, в то время как газотурбинная установка с комбинированным циклом (ПГУ) также использует парогенератор для увеличения количества производимой электроэнергии. В 2017 году ископаемое топливо произвело 64,5% электроэнергии во всем мире.

Эти электростанции надежно вырабатывают электроэнергию в течение длительных периодов времени и, как правило, дешевы в строительстве. Однако при сжигании топлива на основе углерода образуется большое количество углекислого газа, что приводит к изменению климата. Эти растения также производят другие загрязнители, такие как оксиды серы и азота, которые вызывают кислотные дожди.

Электростанция Коттам в Великобритании, которая использует уголь и газ для производства электроэнергии (Изображение: EDF Energy)

Сжигание ископаемого топлива для получения энергии вызывает значительное число смертей из-за загрязнения воздуха. Например, по оценкам, только в одном Китае 670 000 человек умирают преждевременно - каждый год из-за использования угля.

Установкам, работающим на ископаемом топливе, требуется очень большое количество угля, нефти или газа. Во многих случаях это топливо необходимо транспортировать на большие расстояния, что может привести к потенциальным проблемам с поставками.Цена на топливо исторически была нестабильной и может резко возрасти в периоды нехватки или геополитической нестабильности, что может привести к нестабильным затратам на генерацию и повышению потребительских цен.

Гидроэнергетика

Большинство крупных гидроэлектростанций вырабатывают электроэнергию, накапливая воду в обширных резервуарах за плотинами. Вода из резервуаров проходит через турбины для выработки электроэнергии. Плотины гидроэлектростанций могут генерировать большое количество электроэнергии с низким содержанием углерода, но количество площадок, подходящих для новых крупномасштабных плотин, ограничено.Гидроэлектроэнергия также может производиться русловыми электростанциями, но большинство рек, которые подходят для этого, уже освоены.

Плотина «Три ущелья» в Китае - самая большая в мире плотина гидроэлектростанций и самая большая в мире электростанция (Изображение: Le Grand Portage, CC BY-SA 2.0)

В 2017 году на гидроэнергетику приходилось 16% мирового производства электроэнергии.

Затопление водохранилищ за плотинами и замедление течения речной системы ниже плотины также может иметь серьезные последствия для окружающей среды и местного населения.Например, во время строительства крупнейшей в мире плотины гидроэлектростанции - плотины «Три ущелья» в Китае - около 1,3 миллиона человек были перемещены.
По количеству погибших в результате аварий гидроэнергетика - самый смертоносный источник энергии. Несчастным случаем с наибольшим числом погибших стало обрушение в 1975 году плотины Баньцяо в китайской провинции Хэнань, в результате которого, по официальным оценкам, погибло 171 000 человек, прямо и косвенно.

Атомная энергетика

Ядерные энергетические реакторы используют тепло, выделяемое при расщеплении атомов, для генерации пара для привода турбины.В процессе деления не образуются парниковые газы, и в течение всего жизненного цикла ядерной энергии образуются лишь очень небольшие количества. Атомная энергия является экологически чистой формой производства электроэнергии и не способствует загрязнению воздуха. В 2018 году ядерная энергия произвела 10,5% мировой электроэнергии.

Атомная электростанция Палюэль на севере Франции, одна из крупнейших в мире атомных электростанций (Изображение: Areva)

Атомные электростанции, как и электростанции, работающие на ископаемом топливе, очень надежны и могут работать в течение многих месяцев без перебоев, обеспечивая большое количество чистой электроэнергии, независимо от времени суток, погоды или сезона.

Ядерное топливо можно использовать в реакторе в течение нескольких лет благодаря огромному количеству энергии, содержащейся в уране. Мощность одного килограмма урана примерно равна 1 тонне угля.

В результате образуется соответственно небольшое количество отходов. В среднем реактор, снабжающий человека электроэнергией в течение года, создает около 500 граммов отходов - их можно было бы поместить в банку из-под газировки. Всего 5 граммов из этого количества используется ядерное топливо - эквивалент листа бумаги.Существует несколько стратегий управления использованным топливом, таких как прямая утилизация или переработка в реакторах для выработки более низкоуглеродной электроэнергии.

Ветровая и солнечная

Возобновляемые источники энергии, такие как энергия ветра, солнца и малых гидроэлектростанций, производят электроэнергию с низким уровнем выбросов парниковых газов на протяжении всего их жизненного цикла. В 2017 году ветряная и солнечная энергия произвели 4,4% и 1,3% соответственно мировой электроэнергии. Они не производят электричество предсказуемо или постоянно из-за своей естественной зависимости от погоды.Производство электроэнергии от ветряных турбин зависит от скорости ветра, и если ветер слишком слабый или слишком сильный, электричество не производится вообще. Мощность солнечных панелей зависит от силы солнечного света, которая зависит от ряда различных факторов, таких как время суток и количество облачного покрова (а также количество пыли на панелях).

Другая проблема заключается в том, что может не хватить места или желания общественности разместить огромное количество турбин или панелей, необходимых для выработки достаточного количества электроэнергии.Это связано с тем, что энергия ветра или солнца является рассеянной, а это означает, что для выработки значительного количества электроэнергии требуется очень значительное количество земли.

Поскольку электроэнергию нелегко хранить, возобновляемые источники энергии должны поддерживаться другими формами производства электроэнергии. Самые большие батареи не могут работать в течение нескольких дней, не говоря уже о неделях, которые потребовались бы для резервного копирования возобновляемых источников энергии, чтобы обеспечить круглосуточное электроснабжение. Чтобы обеспечить стабильную подачу электроэнергии, газовые заводы все чаще предоставляют услуги резервного копирования электроэнергии из возобновляемых источников.Установки, работающие на природном газе, выделяют большое количество углекислого газа во время работы, и значительные количества метана часто выделяются во время добычи и транспортировки газа, и то и другое способствует изменению климата.

Биомасса

Электростанции, работающие на биомассе, работают аналогично газовым и угольным электростанциям. Вместо сжигания газа или угля установка работает на различных формах биомассы (например, специально выращенных деревьях, древесной щепе, бытовых отходах или «биогазе»). В 2017 году биомасса произвела 2.3% мировой электроэнергии.

Электростанция Drax в Великобритании частично заменила уголь импортной биомассой в качестве топлива для производства электроэнергии (Изображение: Andrew Whale, CC BY-SA 2.0)

Для производства биомассы может потребоваться много энергии, как с точки зрения производства самой биомассы, так и с точки зрения транспорта. Из-за этого требуемая энергия может быть больше, чем энергетическая ценность конечного топлива, а выбросы парниковых газов могут быть такими же или даже большими, чем выбросы от эквивалентного ископаемого топлива.Кроме того, для абсорбции выделяемого углекислого газа может потребоваться более 100 лет, что приводит к кратковременному увеличению выбросов.

Другие воздействия на окружающую среду, связанные с землепользованием и экологической устойчивостью, могут быть значительными. Кроме того, как и в случае с углем, использование биомассы может способствовать загрязнению воздуха и, таким образом, иметь негативные последствия для здоровья населения, проживающего на заводах по производству биомассы.

Что будет движущей силой нашего электрического будущего?

Электричество приобретает все большее значение.Если мы хотим решить проблему изменения климата и уменьшить загрязнение воздуха, нам нужно будет расширить использование всех низкоуглеродных источников энергии, важной частью которых является ядерная энергия.

Чтобы удовлетворить растущий спрос на устойчивую энергию, Всемирная ядерная ассоциация представила программу Harmony, которая ставит цель для ядерной энергетики производить не менее 25% электроэнергии до 2050 года. Это будет означать, что к тому времени производство ядерной энергии в мире должно будет утроиться. . Чтобы резко снизить уровень ископаемого топлива, ядерная и возобновляемая энергия должны работать вместе, чтобы обеспечить надежное, доступное и чистое энергоснабжение будущего.

В официальном документе "Тихий гигант" Всемирной ядерной ассоциации содержится дополнительная информация о необходимости использования ядерной энергии в системе чистой энергии.


Вас также может заинтересовать

атомных электростанций | RadTown

Комиссия по ядерному регулированию США (NRC)

NRC регулирует и контролирует использование ядерных материалов в гражданских целях в Соединенных Штатах путем лицензирования объектов, которые обладают, используют или утилизируют ядерные материалы; установление стандартов; и проверка лицензированных объектов.Сюда входят атомные электростанции. NRC отвечает за соблюдение установленных EPA стандартов на объектах, которые они контролируют.

Большинство штатов подписали официальные соглашения с NRC, предусматривающие регулирующую ответственность штатов в отношении небольших количеств специального ядерного материала. Эти состояния известны как состояния соглашения. Лицензия на радиоактивные материалы может быть выдана либо NRC, либо государством-участником соглашения.

Государственная программа Соглашения NRC
На этой веб-странице представлена ​​информация о Государственной программе Соглашения NRC и приведены ссылки на дополнительную информацию.

Как NRC защищает вас
На этой веб-странице представлена ​​информация о том, как Комиссия по ядерному регулированию США регулирует и проверяет участки, где используются радиоактивные материалы.

Nuclear Reactors
Эта веб-страница содержит ссылки на информацию о роли NRC в ядерной энергетике.

Уголок для студентов: Атомная энергия
Эта веб-страница предоставляет студентам информацию о ядерной энергии, радиационных аварийных ситуациях, радиоактивных отходах и многом другом.

Агентство по охране окружающей среды США (EPA)

EPA использует свои полномочия Закона о чистом воздухе для установления ограничений на количество радиоактивных материалов, выбрасываемых в воздух атомными электростанциями. EPA устанавливает экологические стандарты для утилизации отработавшего ядерного топлива и высокоактивных отходов.

Стандарты радиационной защиты окружающей среды для ядерных энергетических операций (40 CFR Часть 190)
На этой веб-странице представлена ​​информация о стандартах EPA по радиационной защите окружающей среды для ядерных энергетических операций, включая краткое изложение правила, историю правил и ссылку на Федеральный кодекс. Положения (CFR) для этого правила.

Радиация: факты, риски и реальность
В этом буклете вы можете прочитать о радиации и ее рисках для здоровья. Вы можете узнать о естественной радиации и радиоактивных материалах, используемых в медицине и ядерной энергетике.

Обзор Закона о чистом воздухе и загрязнения воздуха
На этой веб-странице представлена ​​информация о Законе о чистом воздухе и о том, как осуществляется мониторинг воздуха для защиты населения.

Министерство внутренней безопасности США (DHS), Федеральное агентство по чрезвычайным ситуациям (FEMA)

FEMA оценивает планы реагирования на чрезвычайные ситуации на уровне штата и на местном уровне для территорий вокруг атомных электростанций.

Аварийные ситуации на АЭС
На этой веб-странице представлена ​​информация об атомных электростанциях и потенциальных ядерных аварийных ситуациях.

Информационный бюллетень по атомной электростанции

(PDF) (2 стр., 106 K, о PDF)
Этот информационный бюллетень предоставляет информацию для людей, живущих рядом с атомной электростанцией, в том числе о том, как действовать в аварийной ситуации.

Министерство энергетики США (DOE), Управление энергетической информации США (EIA)

Министерство энергетики отвечает за надзор за удалением радиоактивных отходов и бытовым производством энергии.EIA, подразделение Министерства энергетики США, собирает, анализирует и публикует информацию о различных источниках энергии. Они играют роль в просвещении общественности об энергии.

Источники ядерной энергии
На этой веб-странице представлена ​​справочная информация о ядерной энергии как об источнике энергии, используемом в Соединенных Штатах. Предоставляются ссылки, чтобы узнать больше о реакторных технологиях и ядерных установках.

Nuclear & Uranium
На этой веб-странице есть ссылки на информацию и данные о том, сколько электроэнергии вырабатывают атомные электростанции в США.

Energy Kids
На этой веб-странице представлена ​​информация о том, как уран используется для производства электроэнергии на атомных электростанциях.

Объяснение ядерной энергетики
На этой веб-странице представлена ​​информация о ядерной энергетике в Соединенных Штатах, в том числе о ее источниках и количестве вырабатываемой энергии.

Штаты

Каждая атомная электростанция должна иметь план аварийного реагирования на инциденты, происходящие на площадке. Государственные и местные органы власти имеют планы аварийного реагирования на инциденты, которые могут привести к выбросу радиологического материала за пределы территории станции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *