Электронная схема: Разработана самая маленькая электронная схема в мире » 24Gadget.Ru :: Гаджеты и технологии

Содержание

Вот схема! - Электронные схемы


Одноканальная СВ-радиостанция

 

Схема активного сабвуфера Aiwa TS-W32

 

Приемник звукового сопровождения

 

Схема охранного устройства с автодозвоном

Алгоритм работы устройства: при срабатывании датчика охранной сигнализации схема снимает трубку и через две секунды набирает номер, который заранее запрограммирован установкой перемычек в схеме автоматического набора. Затем определяется занят номер или нет, если номер занят, то выждав пять секунд, устройство повторно набирает этот номер, и так продолжается до тех пор, пока абонент не снимает трубку. Если номер не занят охранное устройство ожидает в течении 15-ти секунд, и если абонент не берет трубку, сторож действует как и в случае занятого номера. Как только абонент поднимает трубку в течении двух-трех секунд сторож издает тональный сигнал и переходит в дежурный режим.

Читать далее...


Подключение видеомагнитофона к телевизору

При подключении телевизора не имеющего узла сопряжения к видеомагнитофону радиолюбители используют различные схемы, от повторения узлов для телевизоров УСЦТ до построения каскадов самостоятельной разработки или из числа опубликованных в радиолюбительской литературе. Очень простые схемы ив одном или двух транзисторах годны если в ваши планы не входит просмотр записей на затертых кассетах или сделанные с телевизора при не очень качественном приеме местного или спутникового телевидения.

Читать далее...


Схема узла настройки радиоприемника

Большинство современных автомобильных приёмников и автомагнитол снабжаются синтезаторами частоты, которые позволяют выполнять автоматическую настройку в любом направлении, и индицировать частоту принимаемой радиостанции. Синтезаторы частоты, как правило очень сложные устройства, требующие использования специализированных микросхем или очень большого количества микросхем общего применения, не говоря уже о сложности настройки.

Читать далее...


Схема Частотомера 10000Гц - 100 кГц

Этот частотомер позволяет измерять частоту электрических колебаний в трех пределах: до 9999 гц, до 99,99 кгц и до 999,9кгц. Прибор имеет четыре разряда и регулируемое время индикации. Чувствительность входного устройства частотомера - 160 мв, максимальная амплитуда входного напряжения - 10 В, входное сопротивление около 1 МОм. Прибор состоит из следующих функциональных узлов: входное устройство, формирователь импульсов образцовой частоты, четырехразрядный измерительный счетчик с индикаторами, и устройство управления.

Читать далее...


Чем удобнее всего паять?

Электрическая схема трансформатора

В России эра преобразования напряжения из одной величины в другую берёт начало из работ по изучению ферромагнитных материалов великим российским физиком Александром Григорьевичем Столетовым, который впервые открыл в 1880-х годах гистерезисную петлю, а так же перераспределение доменов в ферромагнитном материале при воздействии на него электромагнитного поля.

Ранее, тогда ещё не изученный этот эффект позволил выявить Майклу Фарадею в 1831 году возможность передачи энергии по всей плоскости ферромагнитного материала – так называемое явление электромагнитной индукции. Через 17 лет Генрих Даниэль Румкорф впервые положил прообраз графического изображения намагниченной катушки.

Первый трансформатор передачи переменного тока представлял собой ферромагнитный стержень с несколькими обмотками. Данное изобретение было зафиксировано выдачей патента Яблочникову Павлу Николаевичу в 1876 году, но трансформатор в его современном представлении был представлен уже через год в 1877 году Мотовиловым Дмитрием Николаевичем. Тогда же появилось первая электрическая схема трансформатора, отображающая две обмотки на ферромагнитном материале.

В скором времени в Лондоне в 1884 году на станции Гровнерской галереи (считается, что здесь появилась первая электростанция) были применены последовательно соединённые трансформаторы Голяра и Гиббса на основе замкнутого сердечника. За два года до этого в галерее были установлены первые паровые генераторы Томаса Эдисона. В том же году братья Эдуард и Джон Гобкинсоны произвели в свет первые трансформаторы с замкнутыми сердечниками. Промышленное производство трансформаторов с замкнутым сердечником началось в 1885 году в Венгрии электромашиностроительным заводом «Ганц и Ко». Это были конструкции на кольцевом, броневом и стрежневом сердечниках. Венгерский конструктор Макс Дери в этом же году получает патент на конструкцию трансформаторов с параллельным соединением. Первые модели тут же выявили один существенный недостаток – быстрый перегрев магнитопровода из-за большой величины нагрузки потребителей, что приводило в негодность обмотки трансформатора. В 1889 году шведский изобретатель Д. Свинберн для уменьшения перегрева обмоток погрузил рабочий трансформатор в керамический сосуд, наполненный маслом, назвав его при этом «масляным трансформатором». В этом же году шведский инженер Джонс Венстрем изобретает трёхфазную систему для генераторов, трансформаторов и электродвигателей. В это время появляется трёхфазная электрическая схема трансформатора, которую изобретает русский ученый М. О. Доливо-Добровольский, а уже в 1891 году Чарльз Браун и Волтер Бовери в швейцарском городе Баден организовали компанию по передаче высоковольтной энергии. Спрос на электричество рос экспоненциальной прогрессией и в 1893 году компания Брауна – Бовери предоставила Европе первую промышленную электростанцию на основе применения трёхфазных трансформаторов. Электричество вырабатывалось паровыми генераторами Эдисона. В Российской империи уже упомянутая фирма «Ганц и Ко» в оперном театре Одессы для его освещения запустила одну из первых установок переменного тока. Это произошло в 1887 году.

С тех пор развитие в этой области шагнуло далеко вперёд и на сегодняшний день существует 7 классификаторов трансформаторов. Разделяют трансформаторы по предназначению:
— Силовые трансформаторы – достаточно общее понятие, объединяющее применение трансформаторов в статических преобразователях для преобразования переменного тока в постоянный (выпрямители), либо, наоборот — из постоянного в переменный (инверторы). Их основное предназначение заключается в преобразовании одной величины напряжения и тока в напряжение и ток другой величины без изменения мощности (с учётом, конечно, потерь из-за индукции рассеяния).

— Силовые трансформаторы специального назначения – чаще всего их можно встретить в старых сварочных аппаратах, устройствах пониженной или повышенной частоты (в электрооборудовании железных дорог) и т.д.
— Испытательные трансформаторы применяются для получения высоких или сверхвысоких напряжений и токов. В промышленности их применяют для проверки пробоя изоляции (керамических изоляторов, к примеру), в высоковольтных испытательных лабораториях. Долговременная работа таких трансформаторов исключена.
— К измерительным трансформаторам относят трансформаторы напряжения и тока. Применяют их преимущественно в силовой электронике или в электроустановках с высоким напряжением, где необходимо измерение высоковольтных цепей стандартным измерительным оборудованием.
— Ещё до совсем недавнего времени в блоках питания радиоустройств бытовой электроники применялись радиотрансформаторы. Так же этот тип используют для согласования сопротивлений в межблочных соединениях электрических цепей. Сегодня в блоках питания им на смену пришла импульсная технология, а радиотрансформаторы применяются лишь в устройствах, критичных к чИстоте питающего напряжения (мощных дорогих звуковых усилителях, например).

По виду охлаждения трансформаторы подразделяются на сухие и масляные. Количество фаз в силовой обмотке делит трансформаторы на однофазные и трёхфазные. Так же существует классификация по форме магнитопровода: стержневые (строчные трансформаторы в телеаппаратуре), броневые, тороидальные и овальные.

Электрическая схема трансформатора в самом простом исполнении должна содержать как минимум две обмотки. Такие трансформаторы называют двуобмоточными. Если обмоток больше двух, то они попадают в класс многообмоточных. Конструктивное исполнение обмоток трансформаторов разделяет их на цилиндрические, дисковые и концентрические.

По соотношению обмоток трансформаторы делятся на повышающие – если напряжение вторичной обмотки больше силовой, и понижающий (соответственно наоборот).

Принцип работы устройства хорошо виден из принципиальной электрической схемы трансформатора.

Первичная обмотка W1, при подключении к ней источника переменного напряжения U1, за счёт протекания тока I1 наводит в сердечнике из магнитопроводящего материала переменный магнитный поток Ф, который, в свою очередь, индуктирует в первичной и вторичной (W2) обмотках ЭДС Е1 и Е2. За счёт коэффициента трансформации (отношения ЭДС или количества витков первичной обмотки к вторичной) и эффекта магнитной индукции в обмотке W2 при подключении нагрузки Zн начинает протекать ток I2 . На нагрузке появляется напряжение U2 .

Коэффициент трансформации определяет отношение ЭДС либо количество витков первичной обмотки к вторичной. Если значение K>1, то трансформатор считается понижающим, если K<1 – то повышающим. Один и тот же трансформатор в зависимости от обмотки подключаемого источника напряжения может быть как понижающим, так и повышающим.

Способность передать энергию через магнитопровод без потерь, которые будут неизбежны, определяет КПД трансформатора. Современные трансформаторы в заводском исполнении позволяют достичь КПД до 99%. Основными причинами снижения КПД в трансформаторах являются магнитные потери в сердечнике за счёт вихревых токов и гистерезиса (потери энергии из-за перемагничивания сердечника), удельного сопротивления обмоток трансформатора, качества исполнения намотки, величины подключённой нагрузки по отношению к габаритной мощности сердечника.

Многие компьютерные программы, позволяющие производить симуляцию работы электронных схем, для обработки результатов физических процессов преобразования энергии трансформатором используют электронную схему замещения трансформатора. В такой схеме магнитная связь, обычно, заменяется электрической цепью. Существует 2 типа схем эмуляции трансформатора: Т-образная и упрощённая. 

В данной электрической схеме замещения трансформатора магнитные связи заменяют электрическими. R1 и X1 совместно с R2 и X2 представляют собой электрическую эмуляцию первичной и вторичной обмоток трансформатора, а R0 и X0 – намагничивание и холостой ход. Если брать в расчёт идеальный трансформатор без потерь, то электрическая схема трансформатора будет выглядеть следующим образом. 

1 января 1970 года был утверждён единый международный ГОСТ условного графического отображения трансформаторов. Согласно ГОСТу 2.723—68, электрическая схема трансформатора может отображаться в 3-х вариантах: упрощённом однолинейном, упрощённом многолинейном и развёрнутом. Упрощённое отображение УГО (условного графического отображения) представляет магнитную связь трансформатора в виде окружности .

К примеру, трёхфазный автотрансформатор с ферромагнитным магнитопроводом и девятью выводами на схеме отобразится следующим образом . Данный тип отображения электрической схемы трансформаторов чаще встречается в старых схемах 70-х годов. Современные принципиальные схемы используют УГО низкочастотных трансформаторов по 2-му типу в виде обозначения двух дросселей и ферромагнитного материала —  (трансформатор с магнитодиэлектрическим сердечником). Электрическая схема трансформатора импульсного типа всё чаще встречается в таком обозначении .

В последнее время современная бытовая электроника практически полностью перешла на использование в блоках питания импульсной схемотехники. Преимущество её очевидно — меньшие массогабаритные размеры, большее КПД и лучшие мощностные показатели блоков питания. Во многих решениях сегодня используются трансформаторы на сердечниках с высокой магнитной проницаемостью от 400HH и выше. Такие трансформаторы называют высокочастотными или, в простонародье – импульсными. Разберите любой импульсный компьютерный блок питания, и вы увидите его схемотехнику и трансформаторы в том числе. К примеру, на принципиальной электрической схеме ниже представлена реализация мощного зарядного устройства (или блока питания) на основе популярного ШИМ контроллера UC3842, силового полевого транзистора UFN432 и высокочастотного силового трансформатора с изолированным магнитным материалом Т1. 

Сердечники импульсных трансформаторов выпускают с немагнитным зазором и без него. Немагнитный зазор применяется для того, чтобы под воздействием больших индукционных токов ферромагнитный сердечник не входил в насыщение, что чревато снижением КПД, быстрым перегревом трансформатора и выходом его из строя. Как правило, такие трансформаторы применяют в импульсных блоках питания, работающих по принципу Flyback (однотактного преобразования энергии). По сути, на его первичную обмотку через силовой ключ поступают импульсы заданной ШИМом частоты. В сердечнике в рабочий период импульса накапливается ЭДС, а в момент паузы накопленная энергия, согласно коэффициенту трансформации передаётся в нагрузку вторичной обмоткой. То есть на практике мы получаем двуобмоточный дроссель. Выше приведённая схема (и большинство схем сетевых понижающих импульсных блоков питания) работает именно по такому принципу. Сетевые импульсные сварочные аппараты (большей частью) так же используют данный тип сердечника.

Сердечники без немагнитоного зазора (торроидальные, броневые и т.д.) используются чаще в топологии импульсных преобразователей по схеме Push-pool. Эта технология чаще используется в импульсных повышающих / понижающих преобразователях, когда необходимо из одного постоянного напряжения сделать напряжение другой величины. К примеру, по приведённой ниже схеме, реализуется простой блок питания автомобильного аудио усилителя. 

В данной электрической схеме работа трансформатора Т1 подобна работе обычного трансформатора, то есть на обмотки I и II поочерёдно через ключи VT3 и VT4 поступают прямоугольные импульсы (в идеале). Через коэффициент трансформации напряжение снимается с обмоток III и IV. Возможно, читатель задаст вопрос о том, что если импульсы будут идти непрерывно, то, по сути, это же постоянное напряжение, которое приведёт к сквозным токам в первичной обмотке нашего трансформатора и транзисторам, что приведёт к практически моментальному выходу их из строя. Специально для этого в любой микросхеме ШИМ присутствует такой параметр, как «мёртвое время», задающее паузу подачи импульсов на один ключ и другой. Этим временем мы можем изменять напряжённость электромагнитного поля и его индуктивность, тем самым регулируя уровень напряжения на выходе преобразователя. Изучение работы импульсного трансформатора занимает довольно обширный материал, не входящий в специфику этой статьи.

Электрическая схема с применением импульсного трансформатора требует грамотного расчёта и подбора элементной базы, ведь такое схемотехническое решение является в первую очередь высокочастотным, что подразумевает использование специфических радиодеталей (транзисторы с низким сопротивлением перехода, низкоимпедансные конденсаторы, расчёт мощностей критических сопротивлений и т.д.). Особо важным моментом является расчёт импульсного трансформатора. Не вдаваясь в подробности, скажем, что наиболее простыми и удобными компьютерными программами для расчёта импульсных трансформаторов являются программы человека с ником Starichok (Владимир Денисенко) из Пскова.

Flyback – программа, позволяющая произвести расчёт импульсного трансформатора для обратноходового преобразователя или блока питания.

ExcellentIT – программа для расчёта импульсного трансформатора для двухтактного преобразователя.

Tranz50Hz – расчёт силового трансформатора для электрической 50Hz сети на различных сердечниках.

Все его программы имеют удобный интерфейс, обширную базу параметров заводских сердечников, файл помощи. Кроме того, автор без проблем отвечает на заданные вопросы. Эти и многие другие программы присутствуют в ветках автора на радиоэлектронных форумах.

Электронная схема «Ласточки» – Owlforest Embroidery

Идею для новой схемы «Ласточки» нам дала @lenasidoroff, участница конкурса идей. Спасибо ей за вдохновение!

Её текст, представленный на конкурс: ..«Ласточки. 10 лет мечтаю и никак не найдётся хороший дизайн. Может, в виде семплера? — вдруг сейчас подумалось мне. У моей бабушки гнездо ласточек было в свинарнике прямо над висящим фонарем. Для них дедушка вырезал окошко в двери (для ласточек, конечно) и они низко летали по двору. Каждый год прилетали и мы ни разу не сомневались, что они прилетят. Так и было, пока были живы родные, потом не прилетали... Но это совсем не про грустно, это про счастье и радость — помнишь то время, вспоминаешь тебя любящих близких за тысячи км от дома и так радостно на душе , как утренний рассвет. Я уже совсем большая девочка сейчас, живу в Одессе и каждую весну жду их. Прилетели — всё, живём, круг замкнулся.»

Число крестиков 5912
Размер в крестиках 115 × 148
Размер листа cхемы A4
Техника вышивки Крестик, Бэкстич
Рекомендуемая основа 32 ct. Belfast 3609/309 (светлый мокко) Light Mocha
Размер на рекомендуемой основе 18.3 × 23.5 м
Цветов ниток 9
Тип файла PDF
Цвет схемы Цветная, Черно-белая
Язык инструкций Русский

Электронная схема обращения с ТКО | Твердые бытовые отходы

Ведомство предлагает создать в электронном виде федеральную схему обращения с ТКО, а также наделить новыми полномочиями по ее эксплуатации и учету отходов российского экологического оператора. Эксперты признают необходимость решить проблему контроля за отходами. В профильном комитете Госдумы по охране окружающей среды выступают за прозрачность такой информации, однако просят министерство обосновать эффективность новой системы.

Минприроды разработало законопроект «О внесении изменений в ФЗ «Об отходах производства и потребления». Документом предлагается создать в виде электронной модели федеральную схему обращения с ТКО и наделить правительство полномочиями по установлению порядка ее информационного наполнения.

- Реклама -

Согласно тексту законопроекта, эта интернет-схема станет частью уже существующей государственной информационной системы учета твердых коммунальных отходов, которая была запущена в 2019 году. В ней содержится информация об источниках их образования, местах и нормативах их накопления, тарифах, заключенных договорах по обращению с отходами, а также об объектах обработки, утилизации, обезвреживания и размещения ТКО.

По данным Российского экологического оператора (РЭО), в России более 4 тыс. объектов по сортировке, обработке, обезвреживанию, накоплению и захоронению ТКО. Из них около 1,5 тыс. — это свалки и места хранения отходов, в том числе несанкционированные, работа которых должна быть прекращена.

При этом в Минприроды признают, что принятие законопроекта и реализация его положений потребуют дополнительных расходов федерального бюджета. Сумму, о которой может идти речь, ведомство не называет.

Глава комитета по экологии и охране окружающей среды Госдумы Владимир Бурматов считает, что Минприроды должно обосновать появление и эффективность новой интернет-системы.

— Я за прозрачность. В ходе мусорной реформы Госдума сделала многое, чтобы эта прозрачность наступила. Например, самые опасные отходы были выделены в отдельную категорию первого и второго класса, которыми теперь занимается «Росатом». А вот к информационным системам я отношусь с осторожностью, потому что ни одной работающей пока не видел, — пояснил парламентарий.

В большинстве фракций Госдумы инициативу Минприроды готовы поддержать.

— Теоретически это поможет повысить прозрачность контроля за мусором, но я не представляю, как это можно сделать. Учесть все субъекты, которые выбрасывают отходы, практически невозможно, но, конечно, если уже есть такое решение, то это было бы очень неплохо, — заявил первый зампред фракции «Справедливая Россия» Михаил Емельянов.

Зампред комитета по экологии и охране окружающей среды, член фракции ЛДПР Кирилл Черкасов отметил, что с подобной инициативой еще три года назад выступали либерал-демократы.

— Мы говорили об этом, когда только стартовала мусорная реформа на встрече с Алексеем Гордеевым (на тот момент вице-премьер), но тогда наша инициатива не была поддержана. Мы же как раз настаивали на том, что информация о всех отходах должна быть прозрачна и доступна для всех граждан, чтобы можно было посмотреть, как перемещается мусор между регионами, — рассказал «Известиям» парламентарий.

Инициативу поддерживает также глава комитета по региональной политике, проблемам Севера и Дальнего Востока, член фракции КПРФ Николай Харитонов.

— Повышать контроль за отходами необходимо. Поэтому министерство делает в этом направлении всё правильно. Сегодня аэрофотосъемкой можно все поля посмотреть, кто бы что ни скрывал, и навести порядок в каждом регионе, — считает депутат.

Во фракции «Единая Россия» обещали изучить документ, когда он будет внесен в Госдуму.

Эксперт по мусорной реформе Александр Власов отметил, что в регионах уже пытаются вести электронный учет отходов в рамках нацпроекта «Экология», однако получается это плохо, так как на местах решают самостоятельно, какая информация о мусоре должна быть внесена, а какая нет. По его мнению, если благодаря законопроекту появится структура, которая будет контролировать регионы, то ситуация могла бы измениться.

comments powered by HyperComments

Электронная схема

Электронная схема представляет собой всевозможные сочетания различных электронных компонентов: конденсаторов, резисторов, диодов, транзисторов, микросхем и других, собранных на одной печатной плате. Все эти комбинации отдельных элементов представляют собое единое электронное устройство, выполняющее определенные функции, как то: усилиние сигналов, генерация сигналов, передача и обработка информации, кодирование, декодирование и т. д. Строятся электронные схемы как на базе дискретных элементов (резистор, транзистор, конденсатор), так и на базе интегральных схем ( в простонародии - микросхема), которые объединяют в себе некоторое количество дискретных элементов размещенных на одном полупроводниковом кристалле. Для соединения элементов используют обычные проводки, если это макетная плата, или же медные дорожки, приклеенные к листу текстолита, если это печатная плата. Для формирования медных дорожек применяются различные способы, основным из которых является "травление" - способ при котором предварительно подготовленная печатная плата погружается в раствор хлорного железа, на определенное время, для вытравливания не покрытых защитной пленкой участков медного полотна.

Схемотехника - так называется раздел электроники, изучающий проектирование и создание электронных схем.

Классифицируются электронные схемы на цифровые, аналоговые и гибридные (смешанные).

В цифровых схемах сигнал может принимать только несколько различных дискретных состояний, которые обычно кодируют логические или числовые значения. В подавляющем большинстве случаев это бинарная (двоичная) логика, когда одному определённому, повышенному, уровню напряжения соответствует логическая единица, а другому, пониженному, — ноль. Это логические элементы: И, ИЛИ, НЕ, триггеры, счетчики, мультиплексоры и т. д. Состоят они в остновном из резисторов и транзисторов. Некоторые сверхсложные цифровые схемы содержат миллиарды транзисторов и резисторов на одном кристалле интегральной схемы. Такими являются процессоры компьютеров.

В аналоговых электронных схемах ток и напряжение могут изменяться непрерывно во времени, отражая какую-либо информацию. Обычно аналоговые схемы представляются в виде принципиальных электрических схем. За каждым элементом закреплено стандартное обозначение: например, проводники обозначаются линиями, резисторы — прямоугольниками и т. д.

Гибридные схемы объединяют элементы, относящиеся как к цифровой, так и к аналоговой схемотехнике. К ним относятся мультивибраторы, компараторы, АЦП, ЦАП, ФАПЧ и прочие.

На нашем сайте Вы можете найти практически любые электронные схемы, электросхемы.

Электрическая схема ВАЗ-2121

Электрическая схема ВАЗ-2121
 Электрическая схема ВАЗ-2121
 Прислал RAN

1 - боковые указатели поворота;
2 - передние фонари;
3 - фары;
4 - электродвигатели очистителей фар;
5 - звуковые сигналы;
6 - реле включения очистителей и омывателя фар;
7 - реле включения ближнего света фар;
8 - реле включения дальнего света фар;
9 - электродвигатель омывателя ветрового стекла;
10 - датчик недостаточного уровня тормозной жидкости;
11 - штепсельная розетка переносной лампы;
12 - датчик контрольной лампы давления масла;
13 - датчик указателя давления масла;
14 - датчик указателя температуры охлаждающей жидкости;
15 - распределитель зажигания;
16 - свечи зажигания;
17 - электродвигатель стеклоочистителя;
18 - катушка зажигания;
19 - генератор;
20 - запорный клапан карбюратора;
21 - стартер;
22 - электродвигатель омывателя фар;
23 - регулятор напряжения;
24 - реле контрольной лампы заряда аккумуляторной батареи;
25 - аккумуляторная батарея;
26 - реле стеклоочистителя;
27 - дополнительный блок предохранителей;
28 - основной блок предохранителей;
29 - выключатель контрольной лампы стояночного тормоза;
30 - выключатель контрольной лампы блокировки дифференциала;
31 - выключатель света заднего хода;
32 - выключатель контрольной лампы воздушной заслонки карбюратора;
33 - выключатель стоп-сигнала;
34 - электродвигатель отопителя;
35 - реле-прерыватель указателей поворота и аварийной сигнализации;
36 - дополнительный резистор электродвигателя отопителя;
37 - выключатель освещения приборов;
38 - переключатель света фар;
39 - переключатель указателей поворота;
40 - выключатель звуковых сигналов;
41 - переключатель стеклоочистителя;
42 - выключатель омывателя ветрового стекла;
43 - выключатель зажигания;
44 - выключатель наружного освещения;
45 - переключатель отопителя;
46 - выключатель очистителей и омывателя фар;
47 - прикуриватель;
41 - выключатель аварийной сигнализации;
49 - выключатели плафонов, расположенные в стойках дверей;
50 - указатель давления масла с контрольной лампой недостаточного давления;
51 - указатель уровня топлива с контрольной лампой резерва топлива;
52 - тахометр;
53 - контрольная лампа стояночного тормоза;
54 - контрольная лампа заряда аккумуляторной батареи;
55 - контрольная лампа воздушной заслонки карбюратора;
56 - спидометр;
57 - контрольная лампа наружного освещения;
58 - контрольная лампа указателей поворота;
59 - контрольная лампа дальнего света фар;
60 - реле-прерыватель контрольной лампы стояночного тормоза;
61 - контрольная лампа уровня тормозной жидкости;
62 - контрольная лампа блокировки дифференциала;
63 - указатель температуры охлаждающей жидкости;
64 - плафоны;
65 - датчик указателя уровня и резерва топлива;
66 - задние фонари;
67 - фонари освещения номерного знака.

28.12.07.

Электронные схемы - Справочник химика 21

    Составить электронные схемы строения атомов калия и цезия. Какой из этих элементов является более сильным восстановителем Почему  [c.263]

    В области фазовых переходов (плавление, кристаллизация) также наблюдается резкое изменение теплоемкости полимеров. Эти процессы обычно изучаются методами адиабатной калориметрии (точность которой в результате применения электронных схем является достаточно высокой) в широком интервале температур. На температурных зависимостях теплоемкостей полимеров [10.6] проявляются характерные пики (рис. 10.17), которые с увеличением скорости нагревания сдвигаются в сторону повышенных температур (при этом высота их увеличивается). Такой характер изменения теплофизических свойств при переходе поливинилацетата (ПВА) из твердого состояния в жидкое обусловлен релаксационной природой процесса размягчения и связан с тепловой предысторией образцов. Так как температура стеклования ПВА равна 35° С, выдержка его при комнатной температуре равносильна хорошему отжигу. [c.267]


    На электронных схемах пару точек, изображающих электроны, при помощи которых осуществляется химическая связь, принято располагать либо посередине между символами атомов, либо ближе к одному из них, в зависимости от того, идет ли речь о ковалентной неполярной или полярной связи или о ионной связи. [c.12]

    В дальнейшем на электронных схемах мы для упрощения будем указывать только неполностью занятые энергетические уровни, В соответствии с э 1им, строение электронной оболочки атома еле дующего элемента второго периода — бериллия (2 = 4)—выра жается схемой [c.89]

    В настоящее время продукты каталитического и термического крекингов чистых углеводородов изучены достаточно хорошо, что позволяет дать детальную характеристику этих процессов. По-ясно наблюдаемой разнице в составе продуктов можно установить наличие двух типов разрыва углерод-углеродной связи. Как будет показано ниже, для каталитического крекинга типичным является ионное (с участием иона карбония) гетеро-литическое расщепление связи С—С, что выражается следующей электронной схемой  [c.114]

    Высокую разрешающую способность (наименьшая А21/2) можно получить, повышая так называемую четкость сигнала. При регистрации сигналов, имеющих форму кривой Лоренца или Гаусса, полуширину можно уменьшить, е .ли вместо основной функции записывать ее вторую производную, осуществляя двукратное дифференцирование при помощи электронной схемы (рис. Д. 192). Для функции Лоренца отношение полуширины Д21/2 основной функции и ее второй производной составляет 1/(1/3), а для функции Гаусса — 1/(1/2). При получении второй производной Л2]/2 уменьшается, таким образом, на 1/3 или на 1/2 соответственно. Теоретически допустимо усиливать четкость сигнала, получая производные более высокого порядка с одновременным увеличением интенсивности сигналов. [c.450]

    Большинство современных теорий нелинейных систем автоматического регулирования основано на весьма старой теории анализа нелинейных механизмов и нелинейных электронных схем или непосредственно вытекает из нее . Хотя работы в этом направлении ведутся в течение 40 лет, наши знания о нелинейных системах значительно уступают сведениям о линейных системах. Причина этого состоит в отсутствии общих методов решения, таких, как, например, методы частного анализа линейных систем. [c.106]


    Электронные схемы управления [c.151]

    Силоксановые герметики и компаунды применяются для герметизации штепсельных разъемов, электрических машин, электронных схем и приборов с целью их защиты от пыли, вибрации, атмосферных и иных воздействий. Заливка ими электродвигателей и трансформаторов обеспечивает длительную эксплуатацию последних в жестких условиях, в том числе под водой. Заливка электронных схем прозрачными компаунда.ми обеспечивает, кроме того, контроль за их состоянием и возможность ремонта. [c.497]

    Описанное явление называют поляризацией ионов. Способность иона к поляризации характеризуется величиной, называемой поляризуемостью иона последняя бывает тем больше, чем менее прочно связаны электроны с атомом. Поэтому более высокой она оказывается у отрицательных ионов (С1 , Вг, О и др.), а более слабой — у положительных ионов (Na+, К" , a + и других), что легко видеть, сопоставляя электронные схемы, показанные на рис. 11. [c.62]

    Для нормальной работы трехкомпонентного нейтрализатора необходима обратная связь между качеством отработавших газов и системой питания двигателя. Такая связь должна поддерживать уровень расхода воздуха примерно 14,6 кг на 1 кг сожженного бензина. При богатой смеси (анеполнота сгорания, а при бедной смеси (а>1,0), как сказано выше, возможно образование аммиака с появлением резкого запаха отработавших газов. Эту связь обеспечивает электронная схема регулирования с помощью так называемого кислородного датчика, измеряющего мгновенное содержание свободного кислорода в отработавших газах. Датчик монтируется на корпусе нейтрализатора и имеет слой оксида циркония или титана, покрытого платиной (датчик Ъ>). Такая электрохимическая ячейка реагирует на атомы кислорода и создает разность потенциалов до одного вольта. Эта разность потенциалов и служит управляющим сигналом, заставляющим электронный модуль изменять подачу топлива в двигатель до тех пор, пока в отработавших газах не останется свободного, то есть не вступившего в химическую реакцию, кислорода. Таким образом, автоматически поддерживается стехиометрический состав рабочей смеси во всех диапазонах нагрузок и частот вращения коленчатого вала двигателя. Такие трехкомпонентные нейтрализаторы при соответствующем финансировании могут производиться в России в количестве, необходимом для оснащения всех выпускаемых в стране автомобилей. [c.337]

    Составить. электронные схемы и закончить составление следующих уравнений  [c.149]

    Закончить составление следующих уравнений и составить электронные схемы  [c.150]

    Напишем электронную схему реакции аммиака с хлористым водородом  [c.251]

    При пересчете показателя надежности прототипа на условия применения проектируемого объекта находят коэффициент условий применения, равный отношению показателей надежности рассматриваемого объекта и прототипа. Такой пересчет можно осуществить, используя различные методы, разработанные для расчета надежности проектируемых электронных схем [10]. [c.41]

    Установки с воздушными подвесами по сравнению с установками для определения неуравновешенности в динамическом режиме очень просты и надежны в эксплуатации, значительно меньше потребляют электроэнергии и сжатого воздуха, занимают в 2 раза меньшую производственную площадь. При одинаковой точности определения неуравновешенности не требуется измерительных электронных схем, привода для разгона ротора. [c.90]

    Станки на электронной схеме работают при постоянном (для данного типа станка) числе оборотов, независимо от массы ротора специальное устройство позволяет после выхода на номинальное число оборотов определить массу и угол установки уравнивающего груза. [c.106]

    Типовой технологический процесс динамической балансировки на станках с электронной схемой состоит из следующих операций  [c.108]

    Ввиду важности количественной характеристики качества псевдоожижения — параметра б, как для исследований структуры кипящего слоя, так и для ее регулирования в производственных условиях, необходимо было автоматизировать процесс ее измерения. Простейшим и наиболее удобным в лабораторных условиях явилась непосредственная подача вырабатываемого емкостным зондом переменного напряжения U (), пропорционального плотности р (/), в интегрирующие блоки аналоговой ЭВМ. Использованная нами схема такой системы, содержащей фильтр верхних частот, набранный на операционных усилителях ЭВМ, приведена в [1 ]. Разработанные в дальнейшем различными группами исследователей [108] электронные схемы с применением аналоговых или цифровых ЭВМ или в виде специально сконструированных приборов, позволяют в настоящее время измерять значения р и б практически непрерывно и использовать этот метод для контроля и автоматического регулирования качества псевдоожижения. [c.88]

    История развития электронной вычислительной техники охватывает относительно короткий период времени. Первая вычислительная машина, в которой для выполнения арифметических и логических операций использовались электронные схемы, появилась в 1945 г. Однако за этот период электронная вычислительная техника совершила большой скачок. В настояш,ее время в ее развитии принято выделять следующие три этапа (три поколения ЦВМ). [c.50]

    На электронных схемах пара электронов, находящаяся на общей молекулярной орбите, т. е. образующая химическую связь, изо- [c.11]

    В некоторых случаях на электронных схемах изображают не все электроны, находящиеся на внешних оболочках, а лишь [c.11]

    До 1950 г. основное внимание в работах по масс-спектро-метрии уделялось конструированию приборов, особенно ионных источников [4]. Для регистрации малых ионных токов были созданы соответствующие электронные лампы и усилители постоянного тока [5]. Применение электронных схем питания электромагнита и ускоряющего напряжения и конструирование удобных регистрирующих приборов привели к созданию масс-спектрометра с автоматизацией всех основных узлов [6]. Были также решены проблемы напуска газов и летучих соединений. К 1950 г. была в основном решена проблема создания хорошего и быстрого метода расчета результатом. [c.7]

    Такими частицами являются свободные атомы ряда элементов, например, Н, N. О, атомы галогенов, атомы щелочных металлов. Эти атомы имеют один неспаренный 5-электрон (атом Н и атомы щелочных металлов) или р-электрон (атомы галогенов), или несколько неспаренных р-электронов — два (атом О) или три (атом Н) (см. электронные схемы на стр. 10). [c.15]

    Были внесены изменения в оптическую и электронные схемы прибора, и таким образом обеспечена его более высокая чувствительность, а также упрощена оптическая система за счет использования полупроводниковой оптической пары в ИК-диапазоне с интерференционным фильтром, изготовленным на основе современных отечественных технологий. Благодаря высокой чувствительности удалось значительно уменьшить объем кюветы ( 1 мл), что позволило улучшить метрологические характеристики прибора, уменьшить расход реагентов и упростить процесс подготовки пробы к измерению. Повышение чувствительности потребовало принятия мер к снижению помех как электрических, так и тепло- [c.139]

    В З тих случаях при составлении электронных схем окислительно-восстановительных реакций целесообразно учесть суммарное число электронов, которое теряет молекула восстановителя. Исходя из того, что молекула FeSj теряет в совокупности [c.142]

    Для нейтрального атома углерода с шестью электронами схема распределения электронных состояний выглядит так, как показано на рис. 1-1, а. [c.17]

    Подчинение этих процессов разным законам приводит к тому, что ток ДЭС затухает раньше фарадеевского (рис. 5.15,а). Это обстоятельство позволяет разделить ток двойного слоя и фарадеевский ток, проводя измерение в момент времени т, и исключить первый. Конечно, при этом приходится иметь дело с весьма малыми силами тока, но современные электронные схемы позволяют без особых искажений усилить малые токи до любых значений, необходимых для управления регистрирующим прибором, скажем, самописцем. [c.285]

    Почему в молекуле образуется только ковалентная связь, а в молекуле С1а возникают дативные связи. Как зто различие влияет на сравнительную величину энергии связи и прочность этих молекул Дать электронную схему возникновения дативной связи при образовании молекулы. [c.130]

    Написать электронные схемы молекул N 0 на основе метода ВС и N0 1 а основе метода МО, Какова ковалентность каждого атома азота в молекуле N 0 Пара- или диамагнитна молекула N0 Чем это объясняется  [c.147]

    Дать электронную схему молекулы азотной кислоты, учитывая возмож ный ковалентный и донорно-акцепторный характер связи между атомами. Чему равна ковалентность азота в молекуле азотной кислоты  [c.147]

    Как изменяются а) восстановительные свойства ионов в ряду Ge - -, Sn +, Pb - , б) окислительные свойства в ряду Ge , Sn- - , Pb+ Указать наиболее слабый восстановитель и наиболее сильный окислитель и написать электронные схемы этих элементов в соответствующей степени окисления. [c.163]

    Для того чтобы число электронов, которое теряет восстановитель S , стало равно числу электронов переходящих к окислителю С , следует второе равенстио умножить на 4. После сложения обоих равенств получаем электронную схему реакции [c.143]

    Изменение состояния окисления претерпевают железо Fe и хром О Из электронной схемы реакции, расчет которой целесообразно вести на два атома хрома (по числу атомов в молекуле К2СГ2О,)  [c.143]

    Для приведенных ниже реакций составить электронные схемы и закончить сэстав.тение уравнений  [c.147]

    Графовводы предназначаются для ввода текста или графиков с фотопленки, фотобумаги или других документов в ЭВМ. В графовводе с фотопленки обычно используются те же блоки, что и в графопостроителе. В графовводе, для которого исходный документ представляет собой изображение на бумаге, вместо проходящего пучка света используется отраженный свет. В любом случае через оптико-электронную схему информация о точках документа преобразуется в электрические сигналы, поступающие в ЭВМ. [c.138]

    Применение радиоактивного излучения для определения влагосодержання масел- основано на эффекте отражения нейтронов, наблюдаемом при облучении пробы обводненного масла. Приборы этого типа снабжены измерительной головкой для определения интенсивности излучения и электронной схемой для обработки результатов и выдачи информации. [c.39]

    Периферийные устройства и их блоки управления связываются с каналом посредством стандартной системы сопряжения. Физически сопряжение представляет собой набор шин, про-ходяших через все периферийные устройства, и электронных схем, формирующих сигналы, проходящие через эти шины. Шины, предназначенные для передачи по ним информации, называют информационной магистралью, а шины, предназначенные для передачи управляющих сигналов — служебными. [c.55]

    Рассмотрим работу операционного блока, перемножающего входные напряжения U[ и i/2- Такая операция может осуществляться различными способами. Например, если в потенциометре положение скользящего контакта устанавливается специальным приводом в соответствии с величиной напряжения U, а напряжение Ui приложено к потенциометру, то на его выходе будет напряжение UiU2. Такое устройство срабатывает довольно медленно. 2 того недостатка лишена электронная схема, основанная на соотношении [c.336]

    Лабораторией Ю.С. Лопатто в этот период было создано несколько марок отечественного стеклоуглерода, материала абсолютно непроницаемого для жидкостей и газов, что обусловлено его неупорядоченной кристаллической структурой и закрытой пористостью. Благодаря ограниченной подвижности примесей в этом материале он оказался необходимым при изготовлении электронных схем, а также как великолепный заменитель платины в лабораторной посуде, используемой при высоких температурах и в агрессивных средах типа тех, при которых получают люминофоры. [c.118]

    Соответственно различают потенциометрический, амперомет-рический и кондуктометрический способы индикации конца титрования. В потенциометрическом способе, заимствованном из потенциометрического метода титрования, чаще всего используют либо стеклянный электрод — для кислотно-основного титрования, либо платиновый — для окислительно-восстановительного титрования. Поскольку потенциал стеклянного электрода связан с pH раствора простой зависимостью = 0,059 pH, то очевидно, что вблизи от точки эквивалентности, когда происходит резкое изменение pH раствора, должно происходить и резкое изменение потенциала электрода, которое может быть фиксировано визуально, либо автоматически (например, самописцем) с помощью соответствующей электронной схемы. Аналогичная зависимость существует для окислительно-восстаиови-тельной системы  [c.261]

    Примечание, Электронная схема титратора в режиме автоматического титрования срабатывает в том случае, если перед титрованием на блоке БОЭТ горят все три сигнальные лампочки. В противном случае необходимо перебросить переключатель БОЭТ титрование в положение кислотой (должна загореться лампочка белого цвета), а переключатель выдержка — в положение 5 (через 5 с должна загореться лампочка красного цвета). После этого указанные переключатели вернуть в исходное положение по пунктам 7а и 76  [c.142]


108+ Принципиальная схема усилителя мощности с разводкой печатной платы

Вы хотели бы создать схему усилителя мощности для проекта?

Есть много принципиальных схем по категориям: Усилители и звуки. Также используйте поле поиска в правом верхнем углу.

Но иногда это может занять много времени. Конечно, вы ограничили время.

Не отчаивайтесь. Я создаю коллекцию схемы усилителя мощности с разводкой печатной платы.

В различных группах 108 схем, которые легко найти.

Примечание: Перед покупкой деталей и сборкой схем. Пожалуйста, проверьте и узнайте больше. Некоторые схемы не подходят для новичков.

Кроме того, я никогда не строю какие-то проекты. Итак, не могу подтвердить.

Но если любите изучать электронику. Несомненно, это будет ваш хороший опыт.

В любом случае, знаете ли вы, что у вас есть много схем для аудио или усилителя

Как сделать вам легкий доступ?

Представьте себе, в схемах усилителя.Есть:

  • Многие уровни мощности от 1 до 1000 Вт.
  • По типам OCL, OTL, BCL.
  • Принципиальная схема усилителя звука любого класса.

Не только усилители. Ему нужны предусилители, регулятор тембра, микшер, микрофонный предусилитель, VU-метр, защита и многое другое. Кстати,

Кто-то сказал не беспокоиться о будущем. Делай сейчас! мы будем знать это хорошо или плохо, не так ли?

Посмотрите ниже!

Малый усилитель мощностью менее 20 Вт

Они подходят для небольшого применения.Например, для увеличения мощности звука мелодии, для эксперимента по обучению электронике.

  • Схема усилителя звука LM386 с печатной платой Это был мой первый мини-усилитель звука. Многие тоже им пользуются. Потому что ее легко построить, и эта микросхема всегда популярна. И подходит для батареи 9 В.
  • Стерео 2 Вт + 2 Вт с использованием 3 LM386 Вот схема усилителя стерео звука LM386, 2 Вт. Использование 3-х микросхем в модели моста. Это дешево и легко построить для новичка.
  • 15 Вт многоцелевой TDA2030 Эта микросхема пользуется популярностью во все времена.Потому что маленький и дешевый. Это моно модель. Для нормальной комнаты хватит.
  • 1,2 Вт, Super Small, TDA7052 Миниатюрный стереоусилитель звука для мобильных устройств или iPad. Даже принципиальная схема усилителя звука на 5в. Это поможет вам использовать батарею AA 1,5 В x2 (3 В) для работы усилителя мощности.
  • TDA2822 Стереоусилитель Стереоусилитель мощности. Людям нравится TDA2822. Я тоже. Почему? Найдите ответ сами.
  • Интегральный усилитель мощностью 20 Вт, TDA2005 с регулятором тембра.Простая схема с использованием источника питания 12 В.
  • TDA820, Мини-стереоусилитель, 2 Вт + 2 Вт Это альтернативный крошечный чип усилителя. Только одна микросхема дает максимальную мощность 2 Вт на 8 Ом. больше, чем LM386. Вы будете слушать музыку громче.

Мини-усилитель от 20 Вт до 50 Вт

Диапазон от 20 до 50 Вт —Если вы молоды. Вам понравится этот список. Представьте, когда вы слушаете музыку в своей комнате. Какое счастье!

Best for Home от 50 Вт до 100 Вт

Представьте, что вы смотрите фильм с семьей.Звуковая мощность в этих схемах очень реалистична.

Схемы усилителя мощности 100 Вт

Когда у вас мини-вечеринка. Вы используете это. Ваш друг будет восхищен вашими электронными навыками. Мы это любим.

Схема усилителя High Audio

Еще 101 Вт вверх - Они могут подойти для новичков. Они акустические системы PA и дорогие. И на изготовление уходит много времени.

  1. Супергибрид мощностью 150 Вт с использованием STK-4048
  2. Супермост 120 Вт с TDA2030 (при 2 Ом динамика)
  3. Усилитель MOSFET от 300 до 1200 Вт только для профессионалов.
  4. 200 Вт, Super Bridge для бас-гитары
  5. Усилитель MOSFET мощностью 200 Вт, класс G

Цепи автомобильного аудиоусилителя 12 В

Все используются в автомобиле или в доме с источником питания 12 В постоянного тока. Для некоторых схем требуется большой ток. Большинство используют микросхему IC. Такой легкий и маленький.

  1. 50 Вт BCL Car Audio с использованием TDA1562
  2. 40 Вт Mini Audio
  3. LM383 Power OTL 5,5 Вт
  4. Малые микросхемы для динамика

Примечание: В целом можно использовать эти маленькие усилители тоже.

Предусилители и элементы управления микрофоном без тона

  1. 4 предусилителя на транзисторах
  2. 3 универсальных предусилителя с использованием микросхемы IC
  3. Транзисторный стереофонический басовый усилитель
  4. Микрофонный предусилитель
  5. с низким уровнем звука
  6. Динамический микрофонный предусилитель на транзисторах
  7. Стереофильтр шумов
  8. Гитарный предусилитель - овердрайв *** Новый

Регуляторы тембра и графические эквалайзеры

  1. Классические схемы управления низким уровнем шума
  2. Предусилитель Hi-Fi с регулятором тембра ** новинка ** L ow distortion.Используйте транзисторы с низким уровнем шума Частотная характеристика 20 Гц - 20 кГц
  3. НЧ ВЧ Активная регулировка тембра
  4. Пассивная регулировка тембра, без микросхем и транзисторы
  5. Super Pre Tone Control Project
  6. Топ-3 схемы тембра предусилителя NE5532
  7. Топ-3 графических эквалайзера - Низкий уровень шума, дешево и просто
  8. Регулятор стереотона TDA1524
  9. Регулятор тембра с низким уровнем шума Если вы хотите избежать шума в аудиосистеме, попробуйте это .Он использует NE55532, LF353 и другие.
  10. Super Bass Booster Это небольшая принципиальная схема с печатной платой. Используются популярные операционные усилители 741, LF351 или другие. И используйте один блок питания.
  11. Регулировка громкости звука

Аудиомикшеры, фильтры и преобразователи

  1. Имитатор мини-сабвуфера
  2. Микромиксер
  3. Супер стерео цифровой эхо
  4. Линейный оптоизолятор
  5. 000 900 Объемный звук от 2 до 4 каналов
  6. Проект дешевых и небольших слуховых аппаратов

Аудиоконтроллеры и схемы защиты

  1. Простые динамики с задержкой
  2. Защита динамиков
  3. Защита высокочастотных динамиков

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Введение в основные электронные схемы

Эта статья представляет собой введение в очень простые электронные схемы. Я сделал эту вводную статью максимально простой для читателей, которые плохо знакомы с электроникой.

Рейтинг технической сложности: 6 из 10

В моей предыдущей статье Введение в базовую электронику вы узнали все о различных электронных компонентах. Но для реального использования электронные компоненты должны быть соединены вместе, чтобы образовать электронные схемы.

В этой статье есть несколько уравнений, но пусть они вас не пугают. Все используемые уравнения относительно просты для понимания, и они помогут вам получить более фундаментальное представление об обсуждаемой схеме.

Если вы не отличите конденсатор от диода, обязательно прочтите статью по базовой электронике, ссылка на которую указана выше.

Цепь резистора

Мы собираемся начать с рассмотрения простейшей из возможных схем, а именно схемы, которая включает только источник напряжения и резистор (рис. 1).


Рисунок 1 - Схема простого резистора

Показанный символ источника напряжения представляет собой батарею, но можно заменить любой источник питания постоянного тока. Ток, обозначенный буквой «I» со стрелкой, будет течь от положительной клеммы источника напряжения V1 через провод вниз через R1 и затем в землю.

Самым фундаментальным уравнением во всей электронике является закон Ома. Закон Ома - это простое уравнение, которое показывает, как связаны напряжение, ток и сопротивление.Используя небольшую алгебру, закон Ома можно записать в трех формах:

I = V / R
В = I * R
R = V / I

где I = ток в амперах, V = напряжение в вольтах и ​​R = сопротивление в омах. Например, если V1 = 3 В и R = 1 кОм, протекающий ток будет 3 В / 1 кОм = 3 мА. Как увеличение напряжения, так и уменьшение сопротивления увеличивают протекающий ток.

Резисторный делитель

Следующая схема, которую мы рассмотрим, называется резисторным делителем.Самый простой тип резистивного делителя состоит всего из двух резисторов. Как следует из названия, резисторный делитель обеспечивает простой метод точного деления напряжения.


Рисунок 2- Схема резисторного делителя

Уравнение для расчета выходного напряжения резисторного делителя:

Vout = [R2 / (R1 + R2)] * Vin

Как показывает это уравнение, выходное напряжение пропорционально отношению R1 и R2.

Давайте рассмотрим несколько простых случаев. Часто, когда вы хотите понять математическое уравнение, полезно посмотреть на некоторые из крайних пределов. Это может помочь вам лучше понять уравнение, а также проверить правильность уравнения.

Я собираюсь рассмотреть три различных варианта, которые упростят визуализацию:

Случай № 1: R1 = 0, R2> 0

Если сопротивление R1 становится равным нулю, значит, это короткое замыкание. Это означало бы, что V1 закорочен непосредственно на выход.На самом деле не имеет значения, что такое R2, если только он не короткий.

В этом случае уравнение резисторного делителя упрощается до

Vout = [R2 / (0 + R2)] * Vin
Vout = Vin

Нет деления напряжения, и выходное напряжение просто равно входному.

Случай 2: R1> 0, R2 = 0

Если R2 = 0 (короткое замыкание) и сопротивление R1 превышает 0 Ом, то в этом случае выход просто закорочен на массу. В этом случае уравнение упрощается следующим образом:

Vout = [0 / (R1 + 0)] * Vin
Vout = 0 * Vin = 0

Случай № 3: R1 = R2

Если уравнять R1 и R2, уравнение упростится до:

Vout = [R2 / (R2 + R2)] * Vin
Vout = [1/2] * Vin

Таким образом, в случае равенства R1 и R2 выходное напряжение резистивного делителя будет ровно половиной входного напряжения.

Цепь конденсатора

Следующая схема, которую мы рассмотрим, - это источник напряжения и конденсатор.


Рисунок 3 - Простая конденсаторная схема

Мгновенный ток через конденсатор зависит от скорости изменения напряжения на этом конденсаторе. Уравнение для тока через конденсатор выглядит следующим образом:

я = С * дв / дт

В этом уравнении «i» равно току через конденсатор (строчная буква обычно используется для обозначения мгновенного параметра, который изменяется со временем, а не значения постоянного тока).«C» - это емкость в фарадах, а dv / dt указывает скорость, с которой напряжение на конденсаторе изменяется со временем.

Предположим, что при первом включении источника напряжения оно возрастает с 0 до 3 вольт за 1 секунду. Это будет скорость нарастания (dv / dt) 3 В / с. Чтобы вычислить мгновенный ток конденсатора, вы просто умножаете эту скорость нарастания на емкость.

Когда конденсатор полностью заряжен, он выглядит как разрыв цепи для постоянного тока, поэтому ток не течет.Когда на конденсаторе имеется стабильное постоянное напряжение, коэффициент dv / dt в приведенном выше уравнении становится равным нулю, поскольку напряжение не меняется со временем.

Но вкратце, перед зарядкой конденсатора это выглядит как короткое замыкание (или низкий импеданс). Если вы установите член dt в уравнении 5 равным нулю (для нулевого времени), ток приблизится к бесконечности, что просто означает короткое замыкание.

При первом включении схемы, показанной на Рисунке 3, конденсатор выглядит как короткое замыкание, потому что конденсатор еще не заряжен.На самом деле это не будет настоящее короткое замыкание, потому что источник напряжения, цепь и конденсатор имеют небольшое паразитное сопротивление.

Как только источник напряжения достигнет своего конечного напряжения и конденсатор полностью заряжен, ток перестанет течь (кроме небольшого количества тока утечки). Это связано с тем, что скорость нарастания напряжения (dv / dt) теперь равна нулю.

Ток протекает только тогда, когда источник напряжения нарастает, и это уравнение позволяет рассчитать ток через этот конденсатор во время этого процесса нарастания.

Конденсатор последовательно по сравнению с параллельным

Мы рассмотрим еще две простые конденсаторные схемы, чтобы помочь вам лучше понять, как конденсаторы могут работать.


Рисунок 4 - Конденсатор с двигателем, включенным параллельно

В этой схеме у нас есть источник напряжения, подключенный параллельно конденсатору и двигателю постоянного тока. Двигатель не особо важен для того, что мы здесь обсуждаем, и это может быть что угодно, от микроконтроллера до регулятора напряжения.В этом случае на двигатель подается полное напряжение V1. Как только конденсатор заряжается, весь ток проходит через двигатель.

Теперь, если мы изменим эту схему и вместо того, чтобы подключать двигатель параллельно C1 и V1, давайте соединим их все последовательно.


Рисунок 5 - Конденсатор с двигателем последовательно

В этом случае двигатель может работать очень короткое время, пока источник напряжения нарастает, но как только V1 достигает своего конечного напряжения и C1 заряжается, ток через двигатель не течет.Таким образом, в этой схеме двигатель, скорее всего, не будет работать должным образом.

Диодные схемы

Теперь мы рассмотрим схему, состоящую из последовательно соединенных источника напряжения, резистора и диода. По сути, диод позволяет току течь через него только в одном направлении (если вам нужно напомнить о диодах и транзисторах, см. Введение в базовую электронику).

Диод с прямым смещением

Символ диода выглядит как стрелка, указывающая в направлении, в котором может течь ток.Если диод ориентирован в цепи, чтобы позволить току течь через него, тогда этот диод смещен в прямом направлении.


Рисунок 6 - Схема диода с прямым смещением

Если вы хотите рассчитать ток, протекающий через диод, показанный на рисунке 6, вы должны использовать закон Ома. Однако вам нужно сделать что-то немного другое из-за диода.

При прямом смещении диод имеет примерно фиксированное падение напряжения на нем, которое обычно составляет около 0.7В. Но существует много разных типов диодов с немного разными перепадами напряжения. Например, тип диода, называемый диодом Шоттки, имеет падение напряжения, близкое к 0,5 В.

Чтобы рассчитать ток, протекающий в этой цепи, необходимо определить напряжение на R1. Назначение этого резистора - установить и ограничить ток в этой цепи. Самая первая схема, которую мы рассмотрели, имела только источник напряжения и резистор. Источник полного напряжения был приложен к резистору, потому что другой конец резистора связан с землей.

Здесь дело обстоит не так, потому что этот другой вывод резистора связан с диодом, а не с землей. Это означает, что падение напряжения на диоде снижает величину напряжения на резисторе. Напряжение на резисторе V1 - 0,7В.

Уравнение для расчета тока для этой цепи:

I = (V1 - 0,7) / R

Например, если источник напряжения 3 В, а сопротивление резистора 1 кОм, то ток будет (3 - 0,7) / 1 кОм = 2.3 / 1к = 2,3 мА

Обратно-смещенный диод

Следующая схема выглядит идентично, за исключением того, что диод направлен в противоположную сторону. Из-за полярности источника напряжения ток снова хочет течь в направлении стрелки, но теперь диод смещен в обратном направлении.


Рисунок 7 - Схема обратного смещения диода

Эту схему действительно легко проанализировать, поскольку при обратном смещении диода не будет протекать ток.

Ничто не бывает идеальным, и всегда есть небольшой ток утечки, который проходит через диод с обратным смещением. Кроме того, если V1 превысит максимальное номинальное напряжение обратного смещения диода, диод может выйти из строя, что приведет к протеканию тока.

Светоизлучающий диод (LED)

Рассмотрим еще одну диодную схему. Эта схема похожа на схему диода с прямым смещением, которую мы рассмотрели выше. Однако вместо обычного диода в этой схеме используется особый тип диода, называемый светоизлучающим диодом (LED).

Как следует из названия, светодиод излучает свет, когда через него проходит ток, будучи смещенным в прямом направлении. Светодиод также по-прежнему действует как обычный диод и пропускает ток только в одном направлении.


Рисунок 8 - Простая светодиодная схема

Если вы вставите этот диод в обратном направлении, и он будет смещен в обратном направлении, то ток не будет течь и свет не будет. Количество света, излучаемого светодиодом, зависит от протекающего через него тока, а не от напряжения на нем.

Чтобы рассчитать ток для этой схемы, вы должны сделать то же самое, что и для схемы с прямым смещением, рассмотренной ранее, используя уравнение I = (V1-VD) / R, где VD - напряжение на диоде.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Имейте в виду, что прямое падение напряжения светодиода может сильно варьироваться в зависимости от цвета светодиода и, вероятно, будет больше 0.7В.

Фильтрующие контуры

Теперь мы рассмотрим схемы фильтров, предназначенные для пропускания и / или отклонения определенных частот. Фильтры - одна из самых важных и фундаментальных схем, которые имеют почти бесконечное количество применений.

У вас может быть, например, фильтр нижних частот, который пропускает низкочастотные сигналы, но отклоняет более высокие частоты. Фильтр высоких частот делает прямо противоположное. Он пропускает высокие частоты и блокирует низкие частоты.

Полосовой фильтр пропускает только частоты в определенном диапазоне.Наконец, режекторный фильтр будет отклонять частоты в определенном диапазоне и пропускать все частоты за пределами этого диапазона.

Частота измеряется в циклах в секунду или в герцах. Например, человеческий слух достигает примерно 10-20 кГц (10-20 тысяч раз в секунду). С другой стороны, радиосигнал Bluetooth или WiFi колеблется с частотой 2,4 ГГц (2,4 миллиарда раз в секунду).

RC-фильтр нижних частот

Простейший фильтр нижних частот состоит только из резистора и конденсатора и соответственно называется RC-фильтром.


Рисунок 9 - RC-фильтр нижних частот

В этой схеме сигнал поступает в R1, а отфильтрованный выходной сигнал снимается с узла между R1 и C1.

Конденсатор пропускает высокие частоты и блокирует низкие частоты. Таким образом, в RC-фильтре нижних частот низкие частоты будут воспринимать C1 как очень высокий импеданс (разомкнутую цепь), а высокие частоты будут воспринимать конденсатор как низкое сопротивление относительно земли.

В RC-фильтре нижних частот все высокие частоты проходят через C1 на землю.Это по существу удаляет высокочастотные компоненты, а низкие частоты передаются на выход.

Частота среза - это частота, с которой фильтр начинает фильтрацию. Для фильтра нижних частот частоты ниже частоты среза пропускаются, а частоты выше частоты среза отклоняются.

Ни один фильтр не идеален, и будут некоторые частоты около частоты среза, которые передаются на выход с сильным ослаблением (понижением).

Уравнение для расчета частоты среза для RC-фильтра:

F = 1 / (2 * PI * R * C)

Частота среза задается по существу R умноженной на C.Коэффициент R * C обычно называют постоянной времени фильтра.

RC-фильтр высоких частот

Для RC-фильтра верхних частот мы просто меняем местами резистор и конденсатор. Конденсатор по-прежнему имеет высокий импеданс на низких частотах и ​​низкий импеданс на высоких частотах.

Но при замене двух компонентов низкие частоты теперь блокируются конденсатором (они не проходят через C1 на выход), тогда как высокие частоты могут проходить на выход.


Рисунок 10 - RC-фильтр верхних частот

Частота среза соответствует тому же уравнению, что и RC-фильтр нижних частот, за исключением того, что теперь пропускаются частоты выше этой частоты среза. Отсюда и название фильтра высоких частот.

LC фильтр нижних частот

Следующим шагом на пути к RC-фильтрам являются LC-фильтры, в которых резистор заменен индуктором. Катушка индуктивности работает прямо противоположно конденсатору. Катушка индуктивности пропускает низкие частоты и блокирует высокие частоты.

Для RC-фильтра резистор просто устанавливает частоту среза. Если резистора нет, частота среза становится бесконечной - это означает, что пропускается каждая частота и никакой фильтрации не происходит. Для простого RC-фильтра только импеданс конденсатора изменяется с частотой и выполняет фильтрацию.


Рисунок 11 - LC-фильтр нижних частот

С другой стороны, в LC-фильтре оба компонента участвуют в фильтрации.В LC-фильтре нижних частот, помимо того, что конденсатор посылает высокие частоты на землю, высокие частоты также блокируются индуктором от достижения выхода.

Итак, для низких частот L1 выглядит как короткое замыкание, а C1 как разомкнутая цепь, поэтому эти частоты передаются на выход без ослабления.

Для высоких частот L1 выглядит как разомкнутый, а C1 - как замкнутый на землю, поэтому высокие частоты не будут передаваться на выход.

Уравнение для частоты среза LC-фильтра аналогично RC-фильтру, за исключением того, что вместо простого R * C множитель становится квадратным корнем из L * C.

F = 1 / [2 * PI * SQRT (L * C)]

ЖК-фильтр верхних частот

Так же, как мы сделали для RC-фильтра верхних частот, для LC-фильтра верхних частот мы просто меняем местами индуктивность и конденсатор. Теперь конденсатор блокирует низкие частоты и пропускает высокие частоты, в то время как катушка индуктивности отправляет низкие частоты на землю. Следовательно, на выход будут передаваться только частоты выше частоты среза.


Рисунок 12 - LC-фильтр верхних частот

Заключение

Теперь вы на правильном пути к пониманию основ работы электронных схем.Я намеренно сделал эту вводную статью довольно простой, чтобы не ошеломить вас.

Но эта статья дает вам основу, необходимую для начала изучения более сложных электронных схем. Схемы, которые мы рассмотрели в этой вводной статье, не обладают достаточной независимой функциональностью, но они будут использоваться в качестве строительных блоков в бесчисленных схемах.

В следующей статье мы рассмотрим более сложные схемы, включая некоторые базовые схемы на транзисторах.

Наконец, не забудьте загрузить бесплатный PDF-файл : The Ultimate Guide to Develop Your New Electronic Hardware Product .Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который может вам понравиться:

Электроника для начинающих: простое введение

Криса Вудфорда. Последнее обновление: 4 марта 2020 г.

Они хранят ваши деньги. Они следят ваше сердцебиение. Они несут звук вашего голоса в чужие дома. Они привозят самолеты на землю и безопасно направлять машины к месту назначения - они даже стреляют подушки безопасности, если у нас возникнут проблемы.Удивительно подумать, сколько вещи, которые на самом деле делают «они». «Они» - это электроны: крошечные частицы внутри атомов, которые движутся по определенным путям, известным как цепи, несущие электрическую энергию. Одна из величайших вещей людей научились делать в 20-м веке, было использовать электроны для управления машины и информацию о процессе. Революция электроники, как это как известно, разгонял компьютер революции, и обе эти вещи изменили многие области нашей жизни. Но как именно наноскопически маленькие частицы, слишком маленькие? видеть, достигать таких грандиозных и драматичных вещей? Возьмем присмотритесь и узнайте!

Фото: Компактная электронная плата веб-камеры.Эта плата содержит несколько десятков отдельных электронных компонентов, в основном небольших резисторов и конденсаторов, плюс большой черный микрочип (внизу слева), который выполняет большую часть работы.

В чем разница между электричеством и электроникой?

Если вы читали нашу статью об электричестве, вы узнаете, что это своего рода энергия - очень универсальный вид энергии, который мы можем производить и использовать всевозможными способами во многих других. Электричество - это создание электромагнитной энергии обтекать цепь так, чтобы она приводила в движение что-то вроде электродвигателя или нагревательного элемента, электропитание таких устройств, как электромобили, чайники, тостеры и лампы.Как правило, электрические приборы нуждаются в большом количестве энергии, чтобы производить они работают, поэтому они используют довольно большие (и часто довольно опасные) электрические токи. Нагревательный элемент мощностью 2500 ватт внутри электрочайника работает от силы тока около 10 ампер. Напротив, электронные компоненты используют токи скорее всего, будет измеряться в долях миллиампер (что составляет тысячные доли ампера). Другими словами, типичный электрический прибор, вероятно, будет использовать токи в десятки, сотни или тысячи раз больше, чем типичный электронный.

Электроника - это гораздо более тонкий вид электричества, в котором крошечные электрические токи (и, по идее, отдельные электроны) тщательно направлен на гораздо более сложные схемы для обработки сигналов (например, те, которые носят радио и телепрограммы) или хранить и обрабатывать Информация. Подумайте о чем-то вроде микроволновки духовка и легко увидеть разницу между обычным электричество и электроника. В микроволновой печи электричество обеспечивает мощность, генерирующая высокоэнергетические волны для приготовления пищи; электроника контролирует электрическую цепь, которая выполняет приготовление пищи.

Изображение: микроволновые печи питаются от электрических кабелей (серых), которые подключаются к стене. По кабелям подается электричество, питающее сильноточные электрические цепи и слаботочные электронные цепи. Сильноточные электрические цепи питают магнетрон (синий), устройство, которое создает волны, которые готовят вашу еду, и поверните поворотный стол. Слаботочные электронные схемы (красные) управляют этими мощными цепями, и такие вещи, как цифровой дисплей.

Аналоговая и цифровая электроника

Есть два очень разных способа хранения информации, известные как аналоговый и цифровой.Это звучит как довольно абстрактная идея, но это действительно очень просто. Предположим, вы сделали старомодный снимок кто-то с пленочной камерой. Камера фиксирует поток света в через заслонку спереди в виде светового узора и темные участки на химически обработанном пластике. Сцена, в которой ты фотографирование превращается в своего рода мгновенную химическую живопись - «аналогия» того, на что вы смотрите. Вот почему мы говорим, что это аналог способ хранения информации. Но если сфотографировать именно та же сцена с цифровой камерой, камера хранит совсем другую запись.Вместо того, чтобы сохранять узнаваемый узор из светлого и темного, он преобразует светлое и темное области в числа и вместо этого сохраняет их. Хранение числового, закодированного версия чего-то известна как цифровая.

Фото: Цифровые технологии: такие большие цифровые часы, как эти, легко и быстро читают бегуны. Фото Джи Л. Скотта любезно предоставлено ВМС США.

Электронное оборудование обычно работает с информацией в любом аналоговом формате. или в цифровом формате. В старомодном транзисторном радиоприемнике широковещательные сигналы поступают в схему радиоприемника через торчащую антенну вне корпуса.Это аналоговые сигналы: это радиоволны, путешествовать по воздуху от дальнего радиопередатчика, который вибрировать вверх и вниз по шаблону, который точно соответствует словам и музыку они несут. Так громкая рок-музыка означает больше сигналов, чем тихая классическая музыка. Радиоприемник сохраняет сигналы в аналоговой форме, так как принимает их, усиливает и превращает обратно в звуки, которые вы можете слышать. Но в современном цифровом радио все происходит по-другому. Во-первых, сигналы передаются в цифровом формате. формат - в виде кодированных чисел.Когда они приходят к вашему радио, числа преобразуются обратно в звуковые сигналы. Это совсем другой способ обработки информации и имеет как преимущества, так и недостатки. Как правило, большинство современных форм электронного оборудования (включая компьютеры, сотовые телефоны, цифровые фотоаппараты, цифровые радиоприемники, слуховые аппараты и телевизоры) использовать цифровая электроника.

Электронные компоненты

Если вы когда-нибудь смотрели на город из окна небоскреба, вы восхищались всеми крошечными зданиями под вами и улицы, соединяющие их воедино множеством замысловатых способов.Каждый здание имеет функцию и улицы, по которым люди могут путешествовать из одной части города в другую или посещать разные здания в поверните, заставьте все здания работать вместе. Коллекция здания, их расположение и множество связей между это то, что делает динамичный город намного больше, чем сумма его отдельные части.

Цепи внутри электронного оборудования немного похожи на города тоже: они забиты компонентами (похожий на здания), которые выполняют разные работы, и компоненты связаны между собой вместе кабелями или печатными металлическими соединениями (похожий на улицы).В отличие от города, где практически каждое здание уникально. и даже два предположительно идентичных дома или офисных блока могут быть тонко разные, электронные схемы состоят из небольшого количества стандартные компоненты. Но, как и LEGO®, вы можете поставить эти компоненты вместе в бесконечном количестве разных мест, поэтому они выполнять бесконечное количество разных работ.

Вот некоторые из наиболее важных компонентов, с которыми вы столкнетесь:

Резисторы

Это самые простые компоненты в любой схеме.Их задача - ограничить поток электронов и уменьшить ток или напряжение, протекающие путем преобразования электрической энергии в тепло. Резисторы бывают разных форм и размеров. Переменные резисторы (также известные как потенциометры) имеют дисковый регулятор, поэтому они измените количество сопротивления, когда вы их поворачиваете. Регуляторы громкости в в звуковом оборудовании используются такие переменные резисторы.

Подробнее читайте в нашей основной статье о резисторах.

Фото: Типовой резистор на печатной плате от магнитолы.

Диоды

Электронные эквиваленты улиц с односторонним движением, диоды, пропускающие электрический ток. через них только в одном направлении. Их также называют выпрямителями. Диоды могут использоваться для изменения переменного тока (обратного тока). и далее по кругу, постоянно меняя направление) на прямое токи (те, которые всегда текут в одном направлении).

Подробнее читайте в нашей основной статье о диодах.

Фото: Диоды похожи на резисторы, но работают по-другому. и делать совершенно другую работу.В отличие от резистора, который можно вставить в цепь в любом случае диод должен быть подключен в правильном направлении (соответствует стрелке на этой плате).

Конденсаторы

Эти относительно простые компоненты состоят из двух частей проводящего материала (например, металла), разделенных перемычкой. непроводящий (изолирующий) материал, называемый диэлектриком. Они есть часто используются в качестве таймеров, но они могут преобразовывать электрические токи и другими способами. На радио одна из самых важных должностей, настройка на станцию, которую вы хотите слушать, осуществляется конденсатором.

Подробнее читайте в нашей основной статье о конденсаторах.

Фото: Маленький конденсатор в транзисторной радиосхеме.

Транзисторы

Транзисторы - самые важные компоненты компьютеров. включать и выключать крошечные электрические токи или усиливать их (преобразовывать небольшие электрические токи в гораздо большие). Транзисторы, которые работают поскольку переключатели действуют как память в компьютерах, в то время как транзисторы работают поскольку усилители увеличивают громкость звуков в слуховых аппаратах.Когда транзисторы соединены вместе, они образуют устройства, называемые логическими вентилями, которые могут выполнять очень простые формы принятия решений. (Тиристоры немного похожи на транзисторы, но работать по-другому.)

Подробнее читайте в нашей основной статье о транзисторах.

Фотография: Типичный полевой транзистор (FET) на электронной плате.

Оптоэлектронные (оптико-электронные) компоненты

Существуют различные компоненты, которые могут превращать свет в электричество или наоборот.Фотоэлементы (также известные как фотоэлементы) генерируют крошечные электрические токи, когда на них падает свет, и они используются как лучи "волшебных глаз" в различных типах измерительного оборудования, включая некоторые виды дымовых извещателей. Светодиоды (LED) работают наоборот, преобразовывая небольшие электрические токи в свет. Светодиоды обычно используются на приборных панелях стереосистемы. оборудование. Жидкокристаллические дисплеи (ЖК-дисплеи), например, используемые в ЖК-телевизоры с плоским экраном и ноутбук компьютеры, являются более сложными примерами оптоэлектроники.

Фото: Светодиод, установленный в электронной схеме. Это один из Светодиоды, излучающие красный свет внутри оптической компьютерной мыши.

У электронных компонентов есть нечто очень важное. Какую бы работу они ни выполняли, они работают, управляя потоком электронов. через их структуру очень точным образом. Большинство этих компонентов сделаны из цельных частей частично проводящих, частично изолирующих материалы, называемые полупроводниками (описаны подробнее в нашем статья о транзисторах).Потому что электроника предполагает понимание точные механизмы того, как твердые тела пропускают электроны через себя, это иногда называют физикой твердого тела. Вот почему вы часто будете видеть части электронного оборудования, описанные как «твердотельные».

Электронные схемы и платы

Ключ к электронному устройству - это не только его компоненты. содержит, но то, как они расположены в цепях. Простейший Возможная схема представляет собой непрерывный цикл, соединяющий два компонента, например на одно колье крепятся две бусины.Аналоговые электронные приборы как правило, имеют гораздо более простые схемы, чем цифровые. Базовый транзистор радио может состоять из нескольких десятков различных компонентов и печатной платы вероятно, не больше, чем обложка книги в мягкой обложке. Но в чем-то как компьютер, в котором используются цифровые технологии, схемы намного больше плотные и сложные и включают сотни, тысячи или даже миллионы отдельный пути. Вообще говоря, чем сложнее схема, тем больше сложные операции, которые он может выполнять.

Фото: Электронная плата внутри компьютерного принтера. Какие электронные компоненты ты видишь здесь? Я могу различить конденсаторы, диоды и интегральные схемы (большие черные детали, которые описаны ниже).

Если вы экспериментировали с простой электроникой, вы знаете, что Самый простой способ построить схему - просто соединить компоненты вместе с короткими отрезками медного кабеля. Но чем больше компонентов вам нужно подключать, тем сложнее становится.Вот почему дизайнеры электроники обычно выбирают более систематический способ размещения компонентов на том, что называется монтажная плата. Базовая схема доска просто прямоугольник из пластика с медными соединительными дорожками с одной стороны и участками просверленных отверстий. Вы можете легко соединить компоненты вместе просунув их в отверстия и используя медь, чтобы связать их вместе, удаляя при необходимости кусочки меди и добавляя дополнительные провода сделать дополнительные подключения. Этот тип печатной платы часто называется «макетной платой».

Электронное оборудование, которое вы покупаете в магазинах, развивает эту идею в дальнейшем с использованием печатных плат, которые производятся автоматически на заводах. Точная компоновка схемы нанесена химическим способом на пластиковый плате, при этом все медные дорожки создаются автоматически во время производственный процесс. Затем компоненты просто проталкиваются предварительно просверлил отверстия и закрепил на месте своего рода электрически проводящий клей, известный как припой. Схема, изготовленная таким образом известна как печатная плата (PCB).

Фото: Пайка компонентов в электронный схема. Дым, который вы видите, исходит от плавления припоя и превращения его в пар. Синий пластиковый прямоугольник, на который я припаиваю здесь, представляет собой типичную печатную плату, и вы видите, как из нее торчат различные компоненты, в том числе связка резисторов спереди и большая интегральная схема наверху.

Хотя печатные платы - большой шаг вперед по сравнению с печатными платами с ручной разводкой, их все еще довольно сложно использовать, когда вам нужно подключить сотни, тысячи или даже миллионы компонентов вместе.Причина рано компьютеры были такими большими, энергоемкими, медленными, дорогими и ненадежными. потому что их компоненты были соединены вручную в этом по старинке. Однако в конце 1950-х инженеры Джек Килби и Роберт Нойс самостоятельно разработал способ создания электронных Компоненты в миниатюрной форме на поверхности кусочков кремния. С помощью эти интегральные схемы, это быстро стало можно выжать сотни, тысячи, миллионы, а затем и сотни миллионов миниатюрные компоненты на кремниевых микросхемах размером с ноготь пальца.Так компьютеры стали меньше, дешевле и намного более надежный с 1960-х годов.

Фото: Миниатюризация. Больше вычислительной мощности в микросхеме обработки, которая лежит на моем пальце здесь, чем вы могли бы найти в комнате размером с комнату компьютер 1940-х годов!

Для чего используется электроника?

Электроника сейчас настолько распространена, что о ней почти легче думать. вещи, которые не используют, чем вещи, которые используют.

Развлечения были одной из первых областей, которые извлекли выгоду из радио (и позже телевидение) оба критически в зависимости от прибытия электронные компоненты.Хотя телефон был изобретен до того, как электроника была должным образом разработана, современные телефонные системы, сети сотовой связи, и компьютерные сети в сердце Интернета извлекает выгоду из сложная цифровая электроника.

Попробуйте придумать что-нибудь, что не связано с электроникой и вы можете бороться. Ваш автомобильный двигатель вероятно, есть электронные схемы в нем - а как насчет спутника GPS навигационное устройство, которое подскажет, куда идти? Даже подушка безопасности в твоей рулевое колесо приводится в действие электронной схемой, которая определяет, когда вам нужна дополнительная защита.

Электронное оборудование спасает нашу жизнь и другими способами. Больницы упакованы всевозможными электронными гаджетами, от пульса от мониторов и ультразвуковых сканеров до сложных сканеров головного мозга и рентгеновских машины. Слуховые аппараты были одними из первых устройств, в которых разработка крошечных транзисторов в середине 20-го века, и интегральные схемы все меньшего размера позволили слуховым аппаратам стать меньше и мощнее в последующие десятилетия.

Кто бы мог подумать, что у вас есть электроны. мог бы когда-либо вообразить - изменит жизни людей во многих важных пути?

Краткая история электроники

  • 1874: ирландский ученый Джордж Джонстон Стоуни (1826–1911) предполагает, что электричество должно быть «построено» из крошечных электрических обвинения.Он придумал название «электрон» примерно 20 лет спустя.
  • 1875: американский ученый Джордж Р. Кэри строит фотоэлемент, который вырабатывает электричество, когда светит Это.
  • 1879: англичанин сэр Уильям Крукс (1832–1919) разрабатывает свою электронно-лучевую трубку (похожую на старинную, "ламповое" телевидение) для изучения электроны (которые тогда были известны как «катодные лучи»).
  • 1883: плодовитый американский изобретатель Томас Эдисон (1847–1931) открыл термоэлектронную эмиссию (также известную как Эдисон эффект), где электроны испускаются нагретой нитью накала.
  • 1887: немецкий физик Генрих Герц (1857–1894) узнал больше о фотоэлектрическом эффекте, связь между светом и электричеством, которую Кэри наткнулся на предыдущее десятилетие.
  • 1897: британский физик Дж. Дж. Томсон (1856–1940) показывает, что катодные лучи представляют собой отрицательно заряженные частицы. Вскоре их переименовали в электроны.
  • 1904: Джон Эмброуз Флеминг (1849–1945), английский ученый, создает клапан Флеминга (позже переименовал диод). Он становится незаменимым компонентом радиоприемников.
  • 1906: американский изобретатель Ли Де Форест (1873–1961), идет на один лучше и разрабатывает улучшенный клапан, известный как триод (или аудион), значительно улучшающий конструкцию радиоприемников. Де Фореста часто называют отцом современного радио.
  • 1947: американцы Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Шокли (1910–1989) разработать транзистор в Bell Laboratories. Это революция в электронике и цифровых технологиях. компьютеры во второй половине 20 века.
  • 1958: Работая независимо, американские инженеры Джек Килби (1923–2005) из Texas Instruments и Роберт Нойс (1927–1990) из Fairchild Компания Semiconductor (а позже и Intel) разрабатывает интегральные схемы.
  • 1971: Марсиан Эдвард (Тед) Хофф (1937–) и Федерико Фаггин (1941–) удается втиснуть все ключевые компоненты компьютера в один чип, на котором производится первый в мире универсальный микропроцессор Intel 4004.
  • 1987: американские ученые Теодор Фултон и Джеральд Долан из Bell Laboratories разрабатывают первый одноэлектронный транзистор.
  • 2008: Исследователь Hewlett-Packard Стэнли Уильямс создает первый рабочий мемристор, новый своего рода компонент магнитной цепи, который работает как резистор с памятью, впервые представленный американским физиком Леоном Чуа почти четырьмя десятилетиями ранее (в 1971 году).

Что такое электронная схема?

Электронные схемы для начинающих.

Электронная схема структура для направления и управления электрическими токами выполняет некоторую полезную функцию.

Само название « схема » подразумевает, что конструкция замкнута, что-то вроде петли.

Что такое электрический ток?

Название « ток, » относится к некоторому типу потока, и в данном случае это поток электрического заряда, который обычно просто называют зарядом, потому что электрический заряд действительно единственный из существующих.

Что такое электрическая цепь?

Простая электрическая схема

Электрическая цепь - это токопроводящий путь для прохождения тока или электричества. Его еще называют электрической схемой. Проводящий провод используется для установления связи между источником напряжения и нагрузкой. Переключатель ВКЛ / ВЫКЛ и предохранитель также используются между источником и нагрузкой.

Чтение: Типы электрических цепей

Когда цепь называется электронной схемой?

Цепь, состоящая из электронных компонентов, таких как конденсатор, резистор, диод, транзистор, катушка индуктивности, катушка, трансформатор и т. Д., Называется электронной схемой.Эти компоненты могут быть сквозными или SMD.

Эти компоненты или устройства соединены друг с другом токопроводящими дорожками (обычно из меди ) или проводящими проводами, по которым может течь электрический ток. Проще говоря, эти электронные компоненты припаяны к печатной плате для выполнения заранее определенной работы.

Схема, которая будет называться «Электронная схема », а не «Электрическая схема », должна иметь по крайней мере один активный компонент.

Что такое активные электронные компоненты?

Активные компоненты

Активные электронные компоненты - это те, которые могут управлять потоком электричества. Большинство печатных плат ( P с окраской C ircuit B или ) имеют по крайней мере один активный компонент.

Пример : Транзисторы, интегральные схемы или ИС, логические вентили, вакуумные трубки, выпрямители с кремниевым управлением ( SCR, ).

Что такое пассивные электронные компоненты?

Пассивные компоненты

Пассивные компоненты - это компоненты, у которых нет усиления или направленности.Их также называют электрическими элементами или электрическими компонентами.

Пример : резисторы, конденсаторы, диоды, индукторы.

Чтение: Основные электронные компоненты - типы, функции, символы

Типы электронных схем

Цепь может быть следующих типов:

1. Аналоговая электронная схема

Простая аналоговая схема

Аналоговые электронные схемы - это схемы, в которых сигналы могут непрерывно изменяться во времени, чтобы соответствовать представляемой информации.

Пример : Электронное оборудование, такое как усилители напряжения, усилители мощности, схемы настройки, радио и телевизоры, в основном аналоговые.

2. Цифровая схема

Простая цифровая схема

Цифровая схема - это схема, в которой сигнал имеет один из двух дискретных уровней: ВКЛ / ВЫКЛ, 0/1 или Истина / Ложь. Транзисторы используются для создания логических вентилей, выполняющих булеву логику.

Пример : Мультиплексоры, демультиплексоры, кодеры, декодеры, счетчик, триггер

3.Схема со смешанными сигналами

Цепь смешанных сигналов

Схема со смешанными сигналами

, также называемая гибридной схемой, содержит элементы и свойства как аналоговой схемы, так и цифровой схемы.

Примеры : Компараторы, таймеры, ФАПЧ, АЦП (аналого-цифровые преобразователи , ) и ЦАП (цифро-аналоговые преобразователи , ).

Похожие сообщения:

День 4: 10 навыков, которые нужно изучить, прежде чем создавать свою следующую электронную схему | Шрути Мандаокар | TheTechieGuys

Хотите начать строить свою собственную трассу?

Может быть, небольшая сигнализация? Или схема отслеживания местоположения?

Для эффективного функционирования каждой построенной вами цепи потребуются базовые знания и навыки.

Давайте обсудим их по отдельности:

1. Изучение электронных концепций

Чтобы начать работу со схемами, необходимо ознакомиться с такими базовыми понятиями, как:

  1. Электроэнергия течет вокруг замкнутый контур контур.
  2. Понимание закона Ома :

- Связь между напряжением, током и сопротивлением в цепи .

2. Знание основных компонентов

Необходимо знать Основные электронные компоненты , например:

3. Изучение приложений основных компонентов

Необходимо знать, как:

    Транзисторы
  • работают как переключатель
  • Транзистор работают как усилитель
  • Индуктор работает как фильтр
  • Диод
  • работает как регулятор напряжения

4.Выбор компонентов путем ознакомления с таблицами данных

В таблицах данных рассказывается о физических и технических характеристиках компонента .

Важно научиться читать таблицы и выбирать правильные катушки индуктивности , конденсаторы, микросхемы и другие компоненты для проектирования схем.

5. Проектирование схем с использованием программного обеспечения

Программное обеспечение также полезно в электронике.

Помогает в проектировании печатных плат, проверке и выполнении регулярных проверок в цепи.

Мы можем проектировать и моделировать наши схемы, используя такое программное обеспечение, как Eagle, KiCad и Proteus.

Нам нужно сделать печатную плату самостоятельно.

Мы проектируем схемы, выбирая соответствующие компоненты, назначаем посадочные места, составляем список цепей, составляем макет печатной платы - конструируем треки, выполняем заливку медью, делаем файл Gerber, распечатываем его на медной доске с использованием соответствующих химикатов, просверливаем его и размещаем на нем наши компоненты .

Это была одна из последних печатных плат, которые я построил для работы в колледже.

Однако, вы также можете заказать дешевые прототипы печатных плат в Интернете.

6. Сборка схем по принципиальной схеме

Если мы хотим построить схемы, нам нужно проанализировать соединения на принципиальной схеме.

Чтобы читать таблицы, необходимо иметь знаний об основных символах , таких как:

Мы должны знать серии и параллельные соединения.

Базовые знания по использованию Макетной платы важны при сборке схемы.

  • Левая и правая стороны функционально разделены.
  • В то время как Средние отверстия соединены как ряды. Это Короткие.
  • Разветвители питания подключаются сверху вниз.

7. Узнайте, как паять

Если мы хотим создавать схемы, которые служат дольше и хорошо выглядят, мы можем припаять их.

8.Узнайте, как использовать компоненты тестирования

Инструменты, такие как Мультиметр , можно использовать в качестве компонентов тестирования.

Может использоваться для проверки целостности цепи.

9. Схема сопряжения с микроконтроллерами

С помощью микроконтроллеров можно выполнять расширенные функции с помощью нескольких строк кода.

Можно начать с Arduino и небольшой платы, такой как компьютер, а именно Raspberry Pi.

Они способны вывести проекты на новый уровень.

10. Научитесь использовать программное обеспечение для отладки

Существует множество инструментов для отладки встроенных систем. Они варьируются от программных мониторов и симуляторов до заказных микросхем для внутрисхемной эмуляции. Ниже приведены некоторые методы:

  • Метод записи и обучения
  • Симуляторы схем
  • Симуляторы

Обладая следующими навыками, вы будете немного более осведомлены и эффективны при проектировании своей следующей схемы.

Приятного чтения :)!

Оставайтесь с нами, чтобы увидеть больше таких руководств.

Продолжайте учиться, строить и мастерить!

Следуйте за моим блогом -

@thetechieguys (Instagram): https://lnkd.in/facXbi8

Профиль Github: https://lnkd.in/fgMdN4G

- Shru

(энтузиаст электроники)

Введение в базовую электронику, электронные компоненты и проекты

Изучить основы электроники и создавать собственные проекты намного проще, чем вы думаете.В этом руководстве мы дадим вам краткий обзор общих электронных компонентов и объясним их функции. Затем вы узнаете о принципиальных схемах и о том, как они используются для проектирования и построения схем. И, наконец, вы примените эту информацию, создав свою первую базовую схему.

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ КНИГА (PDF) - Информационный пакет Makerspace

Перед тем, как начать, убедитесь, что ваш электронный рабочий стол правильно настроен. Рабочее место не должно быть необычным, и вы даже можете собрать свой собственный электронный верстак.

Электронные компоненты могут быть небольшими, и рекомендуется держать все в порядке. Самый популярный вариант - использовать прозрачные пластиковые ящики для хранения деталей. Кроме того, вы можете использовать пластиковые ящики для хранения, которые свешиваются на стойку или помещаются на полку.

Теперь, когда у вас есть хорошее рабочее место, пора снабдить его необходимыми инструментами и оборудованием. Это неполный список, но он выделяет наиболее распространенные элементы, используемые в электронике.

Макет

Макетные платы - важный инструмент для создания прототипов и временных схем. Эти платы содержат отверстия для вставки проводов и компонентов. Поскольку они временны, они позволяют создавать схемы без пайки. Отверстия в макете соединены рядами по горизонтали и вертикали, как показано ниже.

Цифровой мультиметр

Мультиметр - это устройство, которое используется для измерения электрического тока (амперы), напряжения (вольты) и сопротивления (Ом).Он отлично подходит для поиска и устранения неисправностей в цепях и может измерять как переменное, так и постоянное напряжение. Прочтите этот пост, чтобы узнать больше о том, как использовать мультиметр.

Держатели батарей

Батарейный отсек - пластиковый корпус, вмещающий батарейки от 9В до АА. Некоторые держатели закрыты и могут иметь встроенный выключатель.

Тестовые провода (зажимы типа «крокодил»)

Измерительные провода отлично подходят для соединения компонентов вместе для проверки цепи без пайки.

Кусачки

Кусачки необходимы для снятия изоляции с многожильных и одножильных медных проводов.

Набор прецизионных отверток

Прецизионные отвертки также называются ювелирными отвертками и обычно поставляются в комплекте. Преимущество этих отверток перед обычными - точные наконечники каждой отвертки. Это очень удобно при работе с электроникой, содержащей крошечные винты.

Третья рука помощи

При работе с электроникой кажется, что рук никогда не хватает, чтобы все удержать.Вот здесь-то и пригодится рука помощи (третья рука). Отлично подходит для удержания печатных плат или проводов при пайке или лужении.

Тепловая пушка

Термоусадочный пистолет используется для усадки пластиковых трубок, известных как термоусадка, для защиты оголенных проводов. Термоусадочная лента, которую называют изолентой электроники, пригодится в самых разных сферах применения.

Перемычка

Эти провода используются с макетными платами и макетными платами и обычно представляют собой одножильный провод 22-28 AWG.Провода перемычки могут иметь концы «папа» или «мама» в зависимости от того, как их нужно использовать.

Паяльник

Когда пришло время создать постоянную цепь, вам нужно спаять части вместе. Для этого вам понадобится паяльник. Конечно, паяльник бесполезен, если к нему нет припоя. Вы можете выбрать свинцовый или бессвинцовый припой нескольких диаметров.

Теперь пора поговорить о различных компонентах, которые воплощают в жизнь ваши электронные проекты.Ниже приводится краткое описание наиболее распространенных компонентов и функций, которые они выполняют.

Переключатель

Переключатели

могут быть разных форм, например, кнопочные, кулисные, мгновенные и другие. Их основная функция - прерывание электрического тока путем включения или выключения цепи.

Резистор

Резисторы используются для сопротивления прохождению тока или для управления напряжением в цепи. Величина сопротивления резистора измеряется в Ом.У большинства резисторов есть цветные полосы снаружи, и этот код сообщит вам значение сопротивления. Вы можете использовать мультиметр или калькулятор цветового кода резистора Digikey, чтобы определить номинал резистора.

Переменный резистор (потенциометр)

Переменный резистор также известен как потенциометр. Эти компоненты можно найти в таких устройствах, как диммер или регулятор громкости для радио. Когда вы поворачиваете вал потенциометра, сопротивление в цепи изменяется.

Светозависимый резистор (LDR)

Светозависимый резистор также является переменным резистором, но управляется светом, а не поворотом ручки. Сопротивление в цепи изменяется в зависимости от интенсивности света. Они часто встречаются во внешнем освещении, которое автоматически включается в сумерках и выключается на рассвете.

Конденсатор

Конденсаторы накапливают электричество, а затем разряжают его обратно в цепь при падении напряжения.Конденсатор подобен перезаряжаемой батарее, его можно заряжать, а затем разряжать. Значение измеряется в диапазоне Ф (фарад), нанофарада (нФ) или пикофарада (пФ).

Диод

Диод пропускает электричество в одном направлении и блокирует обратное. Основная роль диода - направлять электричество по нежелательному пути внутри цепи.

Светоизлучающий диод (LED)

Светодиод похож на стандартный диод тем, что электрический ток течет только в одном направлении.Основное отличие заключается в том, что светодиод излучает свет, когда через него проходит электричество. Внутри светодиода находятся анод и катод. Ток всегда течет от анода (+) к катоду (-) и никогда в обратном направлении. Более длинная ветвь светодиода - это положительная (анодная) сторона.

Транзистор

Транзистор - это крошечные переключатели, которые включают или выключают ток при срабатывании электрического сигнала. Помимо того, что он является переключателем, он также может использоваться для усиления электронных сигналов.Транзистор похож на реле, за исключением того, что у него нет движущихся частей.

Реле

Реле - это переключатель с электрическим приводом, который открывается или закрывается при подаче питания. Внутри реле находится электромагнит, который управляет механическим переключателем.

Интегральная схема (ИС)

Интегральная схема - это схема, размер которой уменьшен, чтобы поместиться внутри крошечного чипа. Эта схема содержит электронные компоненты, такие как резисторы и конденсаторы, но в гораздо меньшем масштабе.Интегральные схемы бывают разных вариаций, таких как таймеры 555, регуляторы напряжения, микроконтроллеры и многое другое. Каждый вывод на ИС уникален с точки зрения своей функции.

Перед тем, как разрабатывать электронный проект, вам необходимо знать, что такое схема и как ее правильно создать.

Электронная схема - это круговой путь проводников, по которому может течь электрический ток. Замкнутый контур похож на круг, потому что он начинается и заканчивается в одной и той же точке, образуя полный цикл.Кроме того, замкнутая цепь позволяет электричеству беспрерывно течь от (+) питания к (-) заземлению.

Напротив, если есть какой-либо перерыв в подаче электроэнергии, это называется обрывом цепи. Как показано ниже, переключатель в цепи может вызывать ее размыкание или замыкание в зависимости от своего положения.

Все схемы должны иметь три основных элемента. Эти элементы представляют собой источник напряжения, токопроводящую дорожку и нагрузку.

Источник напряжения, например аккумулятор, необходим для протекания тока через цепь.Кроме того, должен быть токопроводящий путь, по которому будет проходить электричество. Наконец, для правильной схемы нужна нагрузка, потребляющая энергию. Нагрузкой в ​​приведенной выше схеме является лампочка.

При работе со схемами вы часто встретите нечто, называемое схематической диаграммой. На этих схемах используются символы, показывающие, какие электронные компоненты используются и где они размещаются в цепи. Эти символы представляют собой графические изображения реальных электронных компонентов.

Ниже приведен пример схемы, изображающей схему светодиода, управляемую переключателем. Он содержит символы для светодиода, резистора, батареи и переключателя. Следуя схематической диаграмме, вы можете узнать, какие компоненты использовать и где их разместить. Эти схемы чрезвычайно полезны для новичков при первом изучении схем.

Принципиальная схема светодиодной цепи

Существует много типов электронных символов, и они незначительно различаются в зависимости от страны.Ниже приведены несколько наиболее часто используемых электронных символов в США.

Резисторы

обычно используются в проектах электроники, и важно знать, какой размер использовать. Чтобы узнать номинал резистора, вам нужно знать напряжение и силу тока для вашего светодиода и батареи.

Для нормальной работы стандартного светодиода обычно требуется напряжение около 2 В и ток 20 мА или 0,02 А. Далее вам нужно узнать, какое напряжение у вашего аккумулятора. В этом примере мы будем использовать батарею на 9 В.Чтобы определить размер резистора, нам нужно использовать формулу, известную как закон Ома, как показано ниже.

Закон Ома - сопротивление (R) = напряжение (В) / ток (I)

  • Сопротивление измеряется в Ом (Ом)
  • Напряжение измеряется в вольтах (В)
  • Ток измеряется в амперах (A)

Используя закон Ома, вам нужно вычесть напряжение светодиода из напряжения батареи. Это даст вам напряжение 7, которое нужно разделить на.02 ампера от светодиода. Эта формула показывает, что вам понадобится резистор 350 Ом.

Отметим, что стандартные резисторы не имеют сопротивления 350 Ом, но доступны в 330 Ом, что вполне подойдет.

Теперь пришло время объединить все, что вы узнали, и создать базовую схему. Этот проект - отличный стартовый проект для начинающих. Мы будем использовать тестовые провода, чтобы создать временную схему без пайки.

Необходимые детали:

Принципиальная схема

Этапы проекта

  1. Прикрепите зажим аккумулятора к верхней части аккумулятора 9 В.
  2. Красный провод от зажима аккумулятора подсоединяется к одному зажиму типа «крокодил» на красном щупе.
  3. Другой конец красного щупа подсоединяется к длинной ножке (+) светодиода.
  4. Подсоедините один зажим «крокодил» черного тестового провода к короткой ножке (-) светодиода.
  5. Другой конец черного измерительного провода прикреплен к одной ножке резистора 330 Ом.
  6. Закрепите одну сторону другого черного измерительного провода на другой ножке резистора 330 Ом.
  7. Противоположный конец черного щупа подключается к черному проводу аккумуляторной батареи.

ВАЖНО - Никогда не подключайте светодиод напрямую к батарее 9 В без резистора в цепи. Это сделать с повреждением / разрушением светодиода. Однако вы можете подключить светодиод к батарее 3 В или меньше без резистора.

Еще один способ создать и протестировать схему - это построить ее на макетной плате. Эти платы необходимы для тестирования и создания прототипов схем, поскольку пайка не требуется. Компоненты и провода вставляются в отверстия, образуя временную цепь.Поскольку это не навсегда, вы можете экспериментировать и вносить изменения, пока не будет достигнут желаемый результат.

Под отверстиями каждого ряда находятся металлические зажимы, которые соединяют отверстия друг с другом. Средние ряды идут вертикально, как показано, в то время как внешние столбцы соединяются горизонтально. Эти внешние колонны называются силовыми шинами и используются для приема и подачи питания на плату.

На макетные платы необходимо подавать питание, и это можно сделать несколькими способами.Один из самых простых способов - вставить провода от держателя батареи в шины питания. Это будет подавать напряжение только на ту шину, к которой он подключен.

Для питания обеих шин потребуется перемычка, соединяющая (+) и (-) с рейкой на противоположной стороне.

Теперь мы научимся создавать схему на макетной плате. Эта схема точно такая же, как и раньше, но мы не будем использовать измерительные провода.

Необходимые детали:

Принципиальная схема

Этапы проекта

  1. Прикрепите зажим аккумулятора к верхней части аккумулятора 9 В.
  2. Поместите красный провод от зажима аккумулятора в F9 макета.
  3. Вставьте черный провод зажима аккумулятора в разъем J21 на макетной плате.
  4. Согните ножки резистора 330 Ом и поместите одну ножку в F21.
  5. Вставьте другую ногу резистора в F15.
  6. Вставьте короткую ножку светодиода в J15, а длинную - в J9.

Красные стрелки на изображении ниже помогают показать, как в этой цепи течет электричество.Все компоненты соединены друг с другом по кругу, как при использовании тестовых проводов.

ВАЖНО - Никогда не подключайте светодиод напрямую к батарее 9 В без резистора в цепи. Это сделать с повреждением / разрушением светодиода.

Если вы хотите сделать свою схему постоянной, вам нужно спаять ее вместе. Подробное руководство по пайке электроники см. В нашем посте «Как паять» с полным пошаговым руководством.

В Интернете есть множество отличных мест, где можно найти электронные компоненты, детали и инструменты.Ниже приведен список наших любимых мест для покупок электроники.

Почему в электронных схемах используется постоянный ток вместо переменного?

Почему в электронных устройствах используется источник постоянного тока вместо переменного тока?

Следует уточнить, что не все электронные устройства, компоненты и схемы используют только источник постоянного тока, но также и переменный ток. Если говорить о логических схемах и ИС (интегральных схемах), да, они используют только постоянный ток. Короче говоря, это зависит от потребностей и целей электронной схемы, используем ли мы переменный или постоянный ток.Посмотрим как.

Ниже приведены сценарии, в которых мы используем как переменный, так и постоянный ток в электронных схемах, и почему в большинстве электронных схем используется только источник постоянного тока.

Переменный ток в электронных схемах
  • В случае LC (резонансная цепь резервуара или схема настройки), сигнал постоянного тока преобразуется в сигнал переменного тока с использованием конденсатора и индуктора (где мы знаем, что конденсатор блокирует постоянный ток, но пропускает переменный ток) который может дополнительно подаваться на схему ограничения или усилитель для усиления или изменения формы сигнала в соответствии с потребностями схемы.
  • В фильтрах конденсаторы и катушки индуктивности используются для удаления пульсаций от источника переменного или пульсирующего постоянного тока, чтобы преобразовать его в чистый источник постоянного тока.
  • Выпрямители (которые содержатся на диодах) используются для преобразования входного источника переменного тока в пульсирующий источник постоянного тока, и этот процесс известен как выпрямление.
  • При усилении смещенный транзистор может использоваться в качестве усилителя с входными сигналами переменного тока.

Из приведенного выше обсуждения ясно видно, что в электронной схеме также используется переменный ток, а не только постоянный ток.

Почему в большинстве электронных схем используется только постоянный ток?

Ниже приведены причины, по которым мы используем источник постоянного тока в электронных схемах вместо переменного тока.

Мы знаем, что основной принцип работы логических вентилей основан на «двоичных» состояниях, которые равны «1» (ВКЛ) и «0» (ВЫКЛ).

В ИС, микропроцессорах и цифровых компьютерах им требуется чистый постоянный ток без пульсаций в качестве входного сигнала для генерации цифрового двоичного сигнала (высокого или низкого) для работы ВКЛ / ВЫКЛ, что возможно только с источником постоянного тока.

Это было бы сложно в случае переменного тока, поскольку он меняет свое направление и значение несколько раз в секунду из-за частоты. (50 Гц в Великобритании и 60 Гц в США). Это означает, что входной сигнал переменного тока, который может изменяться 50 или 60 раз в секунду, будет генерировать множество сигналов «ВКЛ» и «ВЫКЛ», что вредно для работы схемы. Кроме того, в случае зашумленных сигналов переменного тока процессор не сможет решить, какой из сигналов является выключенным или включенным.

  • Однонаправленные компоненты:

Вы не можете представить электронную инженерию без транзистора.Транзистору требуется смещение постоянного тока, то есть для нормальной работы положительный сигнал подается на базу транзистора. В случае подачи переменного тока на транзистор или диод, он может не работать должным образом как постоянный для нормальной работы, но обеспечить непрерывную операцию переключения из-за множества положительных и отрицательных сигналов переменного тока (из-за частоты) и даже взорваться, если входное напряжение высокие.

Для конкретных целей, таких как усиление и выпрямление, смещенный транзистор и диод могут использоваться в качестве усилителя и полуволнового выпрямителя соответственно, но это не всегда так в схемотехнике.Короче говоря, переменный ток не поддерживает однонаправленный ток, когда нам необходимо постоянное и установившееся напряжение для большинства электронных компонентов.

Почти все современные электронные устройства (мобильные, ноутбуки, цифровые часы и т. Д.) Используют батареи для хранения и резервного копирования, когда мы знаем, что батареи не могут хранить переменный ток, а только постоянный ток.

Это точные причины, по которым большинство современных электронных схем, устройств и компонентов используют постоянный ток вместо переменного тока.

Полезно знать: мощность одинакова для сигналов переменного и постоянного тока i.е. При подключении к тому же нагревательному элементу 5 В переменного тока будет генерировать такое же количество тепла, что и 5 В постоянного тока (среднеквадратичное значение).

Другие причины :

Постоянный ток намного легче контролировать, точнее и легче распространять, чем сигнал постоянного тока.

Если мы будем использовать переменный ток в большинстве электронных схем вместо постоянного тока,

  • Это создаст дополнительную работу для простой обработки фазового сдвига между сигналами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *