Электродвигатель асинхронный википедия: Электродвигатель — Атлас Копко Россия

Содержание

Электродвигатель - Атлас Копко Россия

Поиск по вики-сайту о сжатом воздухе

Чтобы преобразовать воздух в сжатый воздух, нужна энергия. Эта энергия поступает в виде электричества, генерируемого электродвигателем. Наиболее распространенным электродвигателем является трехфазный асинхронный двигатель с короткозамкнутым ротором. Этот тип двигателя используется во всех видах промышленности. Он является бесшумным и надежным, благодаря чему входит в состав большинства систем, включая компрессоры.

Какие основные компоненты у электродвигателя?

Электродвигатель состоит из двух основных компонентов: неподвижного статора и вращающегося ротора. Статор создает вращающееся магнитное поле, а ротор преобразует эту энергию в движение, т. е. механическую энергию. Статор подключен к трехфазной сети. Ток в обмотках статора создает вращающееся магнитное силовое поле, которое индуцирует токи в роторе, а также создает там магнитное поле. Взаимодействие между магнитными полями статора и ротора создает крутящий момент, который, в свою очередь, вращает вал ротора.

Частота вращения

Если вал асинхронного двигателя вращается с той же частотой, что и магнитное поле, то индуцированный ток в роторе будет равен нулю. Однако из-за различных потерь, например, в подшипниках, такое состояние невозможно, и частота всегда ниже на 1-5%, чем синхронная частота магнитного поля (называется «скольжением»). (Двигатели с постоянными магнитами вообще не создают скольжения).

Эффективность

Преобразование энергии в двигателе невозможно без потерь.

Эти потери являются результатом, помимо прочего, резистивных потерь, вентиляционных потерь, потерь намагниченности и потерь на трение.

Класс изоляции

Материал изоляции в обмотке двигателя разделен на классы изоляции в соответствии с IEC 60085, стандартом, опубликованным Международной электротехнической комиссией. Каждый класс обозначается буквой, соответствующей температуре, которая является верхним пределом для области применения изоляции. Если верхний предел превышен на 10 °C в течение продолжительного периода времени, то срок службы изоляции сокращается примерно наполовину.

Класс изоляции

B

Ф

H

Максимальная температура обмотки, °С

130

155

180

Температура окружающей среды, °C

40

40

40

Повышение температуры, °C

80

105

125

Запас по тепловыделению, °C

10

10

15

Классы защиты

Классы защиты, согласно IEC 60034-5, определяют, насколько двигатель защищен от контакта и воды. Они указаны в виде букв IP и двух цифр. Первая цифра обозначает защиту от контакта и проникновения твердого предмета. Вторая цифра указывает на защиту от воды.

Например, IP23 означает: (2) защиту от твердых объектов размером более 12 мм, (3) защиту от прямых струй воды под углом до 60° от вертикали. IP 54: (5) защита от пыли, (4) защита от воды, распыленной со всех сторон. IP 55: (5) защита от пыли, (5) защита от струй воды низкого давления со всех сторон.

Методы охлаждения

Методы охлаждения в соответствии с IEC 60034-6 определяют порядок охлаждения двигателя. Они обозначаются буквой IC, за которой следует серия цифр, представляющих тип охлаждения (невентилируемый, самовентилируемый, принудительное охлаждение) и режим охлаждения (внутреннее охлаждение, поверхностное охлаждение, охлаждение по замкнутой схеме, жидкостное охлаждение и т.  д.).

Способ установки

Способ установки в соответствии с IEC 60034-7 определяет порядок установки двигателя. Он обозначается буквами IM и четырьмя цифрами. Например, IM 1001 означает: два подшипника, вал со свободными концами и корпус статора с ножками. IM 3001: два подшипника, вал со свободным концом, корпус статора без ножек и большой фланец с простыми фиксирующими отверстиями.

Способ установки в соответствии с IEC 60034-7 определяет порядок установки двигателя. Он обозначается буквами IM и четырьмя цифрами. Например, IM 1001 означает: два подшипника, вал со свободными концами и корпус статора с ножками. IM 3001: два подшипника, вал со свободным концом, корпус статора без ножек и большой фланец с простыми фиксирующими отверстиями.

Что такое соединения по схеме звезды и треугольника?

Трехфазный электродвигатель может быть подключен двумя способами: звездой (Y) или треугольником (Δ). Фазы обмотки в трехфазном двигателе обозначены U, V и W (U1-U2; V1-V2; W1-W2). Стандарты в Соединенных Штатах используют обозначения T1, T2, T3, T4, T5, T6. В случае соединения звездой (Y) «концы» фаз обмотки двигателя соединяются вместе, образуя нулевую точку в виде звезды (Y).

Фазное напряжение (фазное напряжение = напряжение сети/√3, например 400 В = 690/√3) будет приложено к обмоткам. Ток Ih в направлении нулевой точки становится фазным током, и, соответственно, через обмотки будет протекать фазный ток If = Ih. В случае схемы треугольника (Δ) выполняется соединение начала и конца разных фаз, которые образуют треугольник (Δ). В результате, на обмотках появляется напряжение сети. Ток Ih в двигателе является током сети, и он будет разделен между обмотками, чтобы обеспечить протекание через них фазового тока, Ih/√3 = If.

Один и тот же двигатель может быть включен на 690 В по схеме звезды или на 400 В по схеме треугольника. В обоих случаях напряжение на обмотках будет составлять 400 В. Ток в двигателе будет ниже при соединении со звездой на 690 В, чем при соединении треугольником на 400 В. Соотношение между уровнями тока равно √3. Например, на табличке двигателя может быть указано 690/400 В. Это означает, что соединение звездой предназначено для более высокого напряжения, а соединение треугольником – для более низкого. Более низкое значение тока, которое также может быть указано на пластине, соответствует соединению по схеме звезды, а более высокое – соединению по схеме треугольника.

Что такое крутящий момент?

Крутящий момент электродвигателя отражает вращательную способность ротора. Каждый двигатель характеризуется определенным максимальным крутящим моментом. Приложение нагрузки выше этого крутящего момента означает, что двигатель не сможет вращаться. При нормальной нагрузке двигатель работает на уровне значительно ниже своего максимального крутящего момента, однако последовательность пуска предусматривает дополнительную нагрузку. Характеристики двигателя обычно представлены в виде кривой крутящего момента.

Другие статьи по этой теме

Электромонтаж компрессорных систем

В этой статье мы рассмотрим электрическую систему, которая обеспечивает работу компрессора. В нее входят электродвигатели, кабели, системы управления напряжением и защиты от короткого замыкания.

Электроэнергия

Электричество играет большую роль в процессе сжатия воздуха. Узнайте больше об электроэнергии и взаимосвязи между активной, реактивной и полной мощностью.

Асинхронный электродвигатель - это... Что такое Асинхронный электродвигатель?

Асинхронный электродвигатель

Wikimedia Foundation. 2010.

  • Асинхронная электрическая машина
  • Асист

Смотреть что такое "Асинхронный электродвигатель" в других словарях:

  • АСИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ — асинхронная электрическая машина, работающая в двигательном режиме. Наиболее распространен трехфазный асинхронный электродвигатель (изобретен в 1889 М. О. Доливо Добровольским). Асинхронные электродвигатели отличаются относительной простотой… …   Большой Энциклопедический словарь

  • асинхронный электродвигатель — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN asynchronous motorinduction motor …   Справочник технического переводчика

  • асинхронный электродвигатель — асинхронная электрическая машина, работающая в режиме двигателя. Наиболее распространён трёхфазный асинхронный электродвигатель (изобретён в 1889 М.  О. Доливо Добровольским). Асинхронные электродвигатели отличаются относительной простотой… …   Энциклопедический словарь

  • АСИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ — асинхронная машина, работающая в двигат. режиме. Угловую скорость А. э. регулируют переключением числа пар полюсов, изменением частоты питающего тока, сопротивления в цепи ротора, а также каскадным включением неск. машин. Направление вращения А.… …   Большой энциклопедический политехнический словарь

  • Асинхронный электродвигатель —         электрическая асинхронная машина для преобразования электрической энергии в механическую. Принцип работы А. э. основан на взаимодействии вращающегося магнитного поля (см. Вращающееся магнитное поле), возникающего при прохождении… …   Большая советская энциклопедия

  • асинхронный электродвигатель с короткозамкнутым ротором — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN squirrel cage motor …   Справочник технического переводчика

  • МНОГОСКОРОСТНОЙ АСИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ — асинхронный электродвигатель(обычно с короткозамкнутым ротором), имеющий одну или неск. обмоток статора, к рые можно переключать на разные числа полюсов, соответствующие разным синхронным угловым скоростям поля; тем самым ступенчато регулируется… …   Большой энциклопедический политехнический словарь

  • двухскоростной асинхронный электродвигатель — 3.5 двухскоростной асинхронный электродвигатель : Асинхронный электродвигатель с короткозамкнутым ротором, у которого имеется две первичных обмотки с различным числом пар полюсов или одна первичная обмотка, переключение которой позволяет изменять …   Словарь-справочник терминов нормативно-технической документации

  • асинхронный двигатель с короткозамкнутым ротором — Асинхронный двигатель, у которого первичная обмотка, расположенная обычно на статоре, присоединяется к источнику питания, а вторичная обмотка, расположенная обычно на роторе, выполнена в виде клетки и обтекается индуктированным током [СТ… …   Справочник технического переводчика

  • Электродвигатель переменного тока — Электродвигатели разной мощности (750 Вт, 25 Вт, к CD плееру, к игрушке, к дисководу) Электрический двигатель это, электрическая машина, в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла. … …   Википедия

Появление электродвигателей переменного тока - Control Engineering Russia

АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»

В предыдущих статьях [1, 2] описывались первые электрические двигатели с питанием от гальванических батарей. Однако во второй половине XIX века в связи с развитием электрического освещения и дальней передачи электроэнергии появились сети однофазного переменного тока [3]. Это и дало толчок к изобретению электродвигателей переменного тока.

Рис. 1. Двигатель Уитстона

Первый однофазный двигатель был предложен в 1841 г. английским физиком Чарльзом Уитстоном (Charles Wheatstone), известным также своими изобретениями в области электрогенераторов и измерительной техники. Такой двигатель подключается к источнику переменного тока и содержит (рис. 1) статор с шестью электромагнитами (1) и ротор (2) в виде медного диска с тремя подково­образными магнитами (3) полярностью N и S.

Все электромагниты включены последовательно так, что при любой полярности питающего напряжения в промежутках между ними формируются магнитные потоки или полюса чередующейся полярности n и s, показанные на рис. 1 в начальный момент времени t1 для положительного полупериода питающего напряжения. Предположим, что ротор вращается против часовой стрелки, и рассмотрим силы, действующие на верхний магнит ротора (аналогично работают и остальные магниты). Поскольку разноименные полюса магнитов притягиваются, а одноименные отталкиваются, вращающий момент ротора будет направлен против часовой стрелки, поддерживая его вращение. Если ротор двигателя успеет за полупериод напряжения повернуться на 60°, то в следующий полупериод все полюса статора поменяют полярность и ротор повернется еще на 60°. Таким образом, ротор будет поворачиваться синхронно с частотой перемагничивания электромагнитов (частотой сети), отчего подобные двигатели по предложению Чарльза Штейнмеца и получили название синхронных.

Рис. 2. Векторная диаграмма двигателя

Магнитное поле статора такого двигателя можно изобразить в виде вектора (рис. 2), где Ф1, Ф2,… Ф6 — магнитные потоки статора, взаимодействующие с ротором в последовательные моменты времени t1, t2, … t6, когда питающее напряжение меняет свой знак. Получается, что вектор магнитного потока статора шагает по окружности синхронно с ротором, поэтому такое магнитное поле можно назвать шагающим.

При реальных частотах сети 50–60 Гц такой двигатель, конечно, запуститься не сможет, но если его ротор раскрутить, например, вручную или другим двигателем до синхронной скорости, то он будет устойчиво работать с частотой вращения, пропорциональной частоте сети. При электрификации Лондона посредством однофазного напряжения в 1889 г. в качестве такого «раскруточного» двигателя применили так называемый универсальный двигатель (рис. 3) с обмотками якоря (1) и возбуждения (2). Его конструкция была разработана в 1884–85 гг. независимо друг от друга Вернером Сименсом и соавторами трансформатора, венгерскими инженерами Микша Дери и Отто Блати [4–6].

Рис. 3. Универсальный двигатель

Универсальные двигатели до сих пор широко применяются при мощности до нескольких киловатт, особенно в бытовой технике. Они привлекают производителей легкостью изменения скорости с помощью регулирования напряжения, как в обычном двигателе постоянного тока. Однако для мощных приводов такое регулирование было в то время затруднительным. Поэтому для электрической тяги на железных дорогах и в лифтах с питанием от сети переменного тока стали применять так называемый репульсионный двигатель, изобретенный в 1885 г. знаменитым американским электротехником Илайю Томсоном (Elihu Thomson) и усовершенствованный позднее Микша Дери [3, 5, 6].

Рис. 4. Репульсионный двигатель

Илайю Томсон (1853–1937), родом из Англии, соединял в себе таланты блестящего университетского профессора, крупного инженера, плодовитого изобретателя (696 патентов) и успешного предпринимателя [7]. Он разработал различные системы электрического освещения, высокочастотные генератор и трансформатор, самопишущий ваттметр, один из способов электросварки, а также, например, улучшил рентгеновские трубки. Томсон основал электротехнические компании в Англии, Франции и США. В 1892 г. его компания Thomson–Houston слилась с компанией Эдисона, образовав крупнейшую электротехническую компанию мира — General Electric.

По конструкции репульсионный двигатель, схема которого показана на рис. 4, похож на универсальный двигатель с якорем (1) и возбуждением в виде электромагнита (2). Отличие состоит в том, что щетки двигателя (3) закорочены и могут вручную поворачиваться [8]. При питании переменным напряжением в закороченной обмотке якоря наводится ЭДС и идет ток, направление которого, в соответствии с законом Ленца, таково, что создаваемый им поток противодействует магнитному потоку статора.

Тогда, если в некоторый полупериод питающего напряжения электромагнит (2) имеет полюс N внизу, то якорь (1) — такой же полюс наверху, как показано на рис. 4, что приведет к их взаимному отталкиванию и вращению ротора по часовой стрелке. Это и объясняет название двигателя, которое в дословном переводе означает «отталкивающийся». При этом величина наводимой ЭДС, а значит, и вращающего момента определяются положением щеток. Когда они горизонтальны, ЭДС и момент максимальны (режим пуска). Далее при повороте щеток против часовой стрелки момент будет падать, а скорость нарастать. Таким образом, пуск и скорость репульсионного двигателя легко регулируются разворотом щеток без изменения напряжения питания.

Тем не менее проблемы всех коллекторных двигателей, связанные с искрением, помехами и быстрым износом, были решены лишь после создания асинхронного двигателя. По своему устройству он гораздо проще любого двигателя постоянного тока, поэтому удивительно, что он был изобретен почти на полстолетия позже, несмотря на то, что, как отмечал Илайю Томсон: «Трудно составить такую комбинацию из магнитов переменного тока и кусков меди, которая не имела бы тенденции к вращению» [5].

Рис. 5. Галилео Феррарис (1847–1897)

Асинхронный двигатель базируется на концепции вращающегося магнитного поля, выдвинутой практически одновременно в середине 1880-х гг. двумя выдающимися учеными — Николой Теслой [3] и итальянским профессором физики Галилео Феррарисом (Galileo Ferraris) (рис. 5). Последний родился на севере Италии в семье фармацевта и после окончания Туринского университета стал профессором Музея индустрии, где изучал трансформаторы, многофазные цепи, линии передачи переменного тока, а также оптические приборы. Он прожил короткую жизнь, но успел заслужить в Европе звание «отца трехфазного тока» [5, 9, 10].

Если вернуться к концепции, то во вращающемся магнитном поле вектор магнитного потока статора постоянен по величине, но, в отличие от шагающего поля (рис. 2), непрерывно (равномерно) вращается с синхронной скоростью. Тогда очевидно, что ротор в виде магнита, помещенный внутри такого поля, будет вовлекаться им в синхронное вращение, что и происходит в рассмотренном выше двигателе Уитстона. Однако выяснилось, что аналогично будет вращаться и немагнитный ротор из любого проводящего металла. Еще в 1824 г. известный французский физик академик Доминик Араго (Dominique Arago) продемонстрировал опыт, названный им «магнетизмом вращения» [5] и показанный на рис. 6.

Рис. 6. Опыт Араго

Диск (1) из меди или стали на стеклянной пластине (2) вращался в том же направлении, что и вращающийся магнит (3). Объяснение этому загадочному явлению нашел Майкл Фарадей в 1831 г. после открытия закона электромагнитной индукции (закона Фарадея). Согласно ему, вращающееся магнитное поле магнита индуцирует в диске вихревые токи, создающие собственное магнитное поле, взаимодействующее с вращающимся.

Рис. 7. Опыт Бейли

Этот принцип и лежит в основе современных асинхронных двигателей (в английской литературе — индукционных), имеющих металлический ротор и отличающихся только тем, что в них вращающееся магнитное поле образуется неподвижной обмоткой статора. Первый шаг к созданию такого двигателя был сделан английским физиком Уолтером Бейли (Walter Bailey) в 1879 г., заменившим в опыте Араго вращающийся магнит на четыре электромагнита (2–5), токи в которых переключались последовательно вручную (рис. 7) [5, 10]. Но такое устройство создавало шагающее через 90o магнитное поле. А как получить непрерывно (равномерно) вращающееся магнитное поле?

На этот вопрос ответил вышеупомянутый Феррарис в 1888 г. в докладе Туринской академии наук, математически сформулировав два условия [5, 10]:

  1. Обмотка двигателя должна содержать две независимые части (называемые теперь фазами), магнитные потоки которых геометрически взаимно перпендикулярны.
  2. Фазы должны быть запитаны двумя гармоническими напряжениями, сдвинутыми на четверть периода (синус и косинус).

Позднее Михаил Осипович Доливо-Добровольский предложил называть такую систему токов Drehstrom, что в дословном переводе с немецкого означает «вращательный ток» [6].

Рис. 8. Двухфазный двигатель Феррариса

Свою теорию Феррарис блестяще подтвердил макетом двигателя мощностью 3 Вт (рис. 8), имеющего ротор (1) в виде полого медного стаканчика и статор (2) с фазами A и B. Фазы разделены на две секции с разным числом витков, намотанных проводом разного диаметра так, чтобы создавать индуктивный сдвиг фаз токов в 90° при питании от однофазной сети.

В 1890 г. французские инженеры Морис Хитин (Maurice Hutin) и Морис Леблан (Maurice Leblanc) предложили использовать для сдвига фаз токов конденсатор [6]. В таком виде двухфазный двигатель дожил до наших дней под названием конденсаторного двигателя. При этом габариты конденсатора соизмеримы с размерами самого двигателя, поэтому данное техническое решение пригодно только для маломощных двигателей.

Сам Феррарис также заявлял, что «…аппарат, основанный на исследованном нами принципе, не может иметь никакого промышленного значения как двигатель» [10]. Поэтому он его не запатентовал (как, впрочем, и остальные свои открытия) и отклонил, в отличие от Теслы, предложение Вестингауза о сотрудничестве. Тем не менее его работы дали впоследствии повод оспаривать патенты Теслы в некоторых из 25 судебных процессов компании Вестингауза [5, 9]. Пессимистический вывод о перспективах своего двигателя Феррарис сделал, оценив величину его КПД в точке максимума мощности на валу — ниже 50%. Однако в данной точке это справедливо и для двигателей постоянного тока. Поэтому в дальнейшем рабочие точки стали выбирать ближе к скорости холостого хода, где в идеале КПД любого электродвигателя стремится к 100%.

Рис. 9. Двигатель Теслы

Совершенно по другому пути пошел Тесла, предложив в 1887 г. многофазные системы, где сдвинутые напряжения питания фаз вырабатывались питающим генератором, как показано, например, на рис. 9, где: 1 — генератор, 2 — двухфазный двигатель, 3 — контактные кольца генератора, 4 — обмотка ротора (кольца двигателя не показаны) [5, 10].

При положении переключателя ON ротор запитывается постоянным напряжением, и это двухфазный синхронный двигатель с электромагнитным возбуждением. В положении OFF обмотка ротора закорачивается, и получается асинхронный двигатель, названный Теслой индукционным. Эксперт патентного ведомства поначалу не поверил в работоспособность такого странного двигателя, пока Тесла не продемонстрировал ему действующий макет (рис. 10).

Рис. 10. Макет двигателя Теслы

Двигатели Теслы и Феррариса легко запускались от питающей сети, однако с увеличением нагрузки их скорость падала, что подтверждается принципиальным отличием асинхронного двигателя от синхронного. Действительно, асинхронный двигатель развивает вращающий момент лишь при наличии тока, а следовательно, и ЭДС, индуцируемой в роторе. А, по закону Фарадея, это возможно лишь тогда, когда ротор пересекает силовые линии поля статора, т. е. когда скорости их вращения не одинаковы (не синхронны).

Как описано в статье [3], Тесла вместе с Вестингаузом начали активно внедрять асинхронные двигатели в жизнь, однако они были доведены до совершенства и приняли современный вид лишь благодаря трудам нашего соотечественника Михаила Осиповича Доливо-Добровольского, которые будут рассмотрены в следующих статьях.

Что касается многофазных синхронных двигателей, то они нашли широкое применение там, где требуется стабильная скорость вращения, например в компрессорах, приводах генераторов и т. д. Синхронные двигатели с постоянными магнитами входят в состав современных вентильных двигателей, создающих все большую конкуренцию пока еще наиболее распространенным электродвигателям постоянного тока.

  • Потребность в двигателях переменного тока возникла при внедрении однофазных осветительных сетей. Первым стал синхронный двигатель Уитстона с постоянными магнитами (1841 г.).

  • Однако такие двигатели не имели пускового момента, поэтому на практике применялись универсальные двигатели Сименса и репульсионные двигатели Томсона (1884-5 гг).

  • Достаточно мощные двигатели для промышленности были созданы только в середине 1880-х гг., после того как концепция вращающегося магнитного поля была математически сформулирована Феррарисом и реализована в многофазных синхронных и асинхронных двигателях Теслы, запущенных в производство на заводах Вестингауза.

Facebook

Twitter

Вконтакте

Google+

Линейный двигатель - gaz.wiki

Линейный двигатель представляет собой электродвигатель , который имеет свой статор и ротор «развернутом» , таким образом , вместо того , чтобы производить вращающий момент ( вращение ) он производит линейную силу по всей его длине. Однако линейные двигатели не обязательно прямые. Как правило, активная часть линейного двигателя имеет концы, тогда как более обычные двигатели расположены в виде непрерывного контура.

Схема свободного тела синхронного линейного двигателя с U-каналом. Вид перпендикулярен оси канала. Две катушки в центре механически соединены и возбуждаются в « квадратуре » (что означает разность фаз 90 ° (π / 2 радиан ) между потоком магнитов и потоком катушек). Нижняя и верхняя катушки в этом конкретном случае имеют разность фаз 90 °, что делает его двухфазным двигателем. (Не в масштабе) Синхронные линейные двигатели представляют собой выпрямленные версии двигателей с ротором с постоянными магнитами.

Типичный режим работы в качестве Лоренца - типа привода, в котором приложенная сила является линейно пропорционально к току , и в магнитное поле ( F → знак равно я L → × B → ) {\ displaystyle ({\ vec {F}} = I {\ vec {L}} \ times {\ vec {B}})} .

Линейные двигатели наиболее часто используются в высокоточной технике [1] . Это процветающая область прикладных исследований со специальными научными конференциями [2] и учебниками по инженерным наукам. [3]

Было предложено множество конструкций для линейных двигателей, которые можно разделить на две основные категории: линейные двигатели с низким и высоким ускорением. Линейные двигатели с низким ускорением подходят для поездов на магнитной подвеске и других наземных транспортных систем. Линейные двигатели с высоким ускорением обычно довольно короткие и предназначены для ускорения объекта до очень высокой скорости, например, см. Койлган .

Высокие ускорение линейных двигателей , как правило , используется в исследованиях гиперзвуковых столкновений, так как оружие , или в качестве массовых драйверов для движени космической летательного аппарата . [ необходима цитата ] Обычно они представляют собой линейный асинхронный двигатель переменного тока (LIM) с активной трехфазной обмоткой на одной стороне воздушного зазора и пассивной проводящей пластиной на другой стороне. Однако линейный рельсотрон с униполярным электродвигателем постоянного тока является еще одной конструкцией линейного двигателя с высоким ускорением. Двигатели с низким ускорением, высокой скоростью и высокой мощностью обычно представляют собой линейные синхронные двигатели (LSM) с активной обмоткой на одной стороне воздушного зазора и множеством магнитов с чередующимися полюсами на другой стороне. Эти магниты могут быть постоянными магнитами или электромагнитами . Двигатель Shanghai Transrapid - это LSM.

Бесщеточные линейные двигатели относятся к семейству синхронных двигателей. Обычно они используются в стандартных линейных ступенях или интегрируются в специальные высокопроизводительные системы позиционирования . Изобретен в конце 1980-х Анваром Читаятом из Anorad Corporation, ныне Rockwell Automation , и помог повысить производительность и качество промышленных производственных процессов. [4]

Щеточные (электрические) линейные двигатели использовались в приложениях промышленной автоматизации до изобретения бесщеточных линейных двигателей. По сравнению с трехфазными бесщеточными двигателями, которые обычно используются сегодня, щеточные двигатели работают с одной фазой. [5] Щеточные линейные двигатели имеют более низкую стоимость, поскольку им не нужны подвижные кабели и трехфазные сервоприводы. Однако они требуют более тщательного обслуживания, поскольку их щетки изнашиваются.

В этой конструкции скорость движения магнитного поля контролируется, обычно электронным способом, для отслеживания движения ротора. По соображениям стоимости в синхронных линейных двигателях редко используются коммутаторы , поэтому ротор часто содержит постоянные магниты или мягкое железо . Примеры включают coilguns и двигатели , используемые на некоторых магнитной подвеске систем, а также множество других линейных двигателей. В высокоточной промышленной автоматизации линейные двигатели обычно имеют магнитный статор и подвижную катушку. Датчик эффекта Холла прикреплен к ротору для отслеживания магнитного потока статора. Электрический ток обычно передается от неподвижного сервопривода к подвижной катушке по движущемуся кабелю внутри кабелепровода .

Типичный трехфазный линейный асинхронный двигатель. Алюминиевая пластина сверху часто образует вторичный «ротор».

В этой конструкции сила создается движущимся линейным магнитным полем, действующим на проводники в поле. Любой проводник, будь то петля, катушка или просто кусок металлической пластины, помещенный в это поле, будет иметь вихревые токи, индуцированные в нем, таким образом создавая противоположное магнитное поле, в соответствии с законом Ленца . [6] Два противоположных поля будут отталкиваться друг от друга, создавая движение, когда магнитное поле пронизывает металл.

Схема рейлгана

В этой конструкции большой ток пропускается через металлический башмак через скользящие контакты, которые питаются от двух шин. Возникающее при этом магнитное поле вызывает выброс металла вдоль рельсов.

Пьезоэлектрическое моторное действие

Пьезоэлектрический привод часто используется для привода небольших линейных двигателей.

История линейных электродвигателей можно проследить по крайней мере, насколько 1840s, к работе Чарльза Уитстона в Королевском колледже Лондона , [7] , но модель Уитсона была слишком неэффективно , чтобы быть практичным. Возможный линейный асинхронный двигатель описан в патенте США 782312 (1905 - изобретатель Альфред Цеден из Франкфурта-на-Майне) для привода поездов или лифтов. Немецкий инженер Герман Кемпер построил рабочую модель в 1935 году. [8] В конце 1940-х годов доктор Эрик Лейтвейт из Манчестерского университета , впоследствии профессор тяжелой электротехники в Имперском колледже в Лондоне, разработал первую полноразмерную рабочую модель. В одностороннем варианте магнитное отталкивание отталкивает проводник от статора, левитирует его и уносит в направлении движущегося магнитного поля. Более поздние версии он назвал магнитной рекой .

Из - за этих свойств, линейные двигатели часто используются в магнитной подвеске в движение, как и в японской Linimo магнитной левитации поезда линии вблизи Нагоя . Однако линейные двигатели были использованы независимо от магнитной левитации, как и в Bombardier Advanced Rapid Transit систем по всему миру , а также ряд современных японских метрополитенов, в том числе в Токио «s Линия Оэды .

Подобная технология также используется в некоторых американских горках с модификациями, но в настоящее время все еще непрактична для уличных трамваев , хотя теоретически это можно сделать, закопав их в канале с прорезями.

Помимо общественного транспорта, вертикальные линейные двигатели были предложены в качестве подъемных механизмов в глубоких шахтах , и использование линейных двигателей в приложениях управления движением растет . Они также часто используются на раздвижных дверях, например, в трамваях с низким полом, таких как Alstom Citadis и Socimi Eurotram . Также существуют двухосные линейные двигатели. Эти специализированные устройства использовались для обеспечения прямого движения по осям X - Y для точной лазерной резки ткани и листового металла, автоматизированного черчения и формирования кабеля. Большинство используемых линейных двигателей - это LIM (линейный асинхронный двигатель) или LSM (линейный синхронный двигатель). Линейные двигатели постоянного тока не используются из-за более высокой стоимости, а линейные SRM страдают от плохой тяги. Таким образом, для длительных пробегов на тяговых усилиях наиболее предпочтителен LIM, а для краткосрочных - LSM.

Крупный план плоской поверхности пассивного проводника двигателя Sawyer управления движением

Линейные двигатели с высоким ускорением были предложены для ряда применений. Они были рассмотрены для использования в качестве оружия , поскольку современные бронебойные боеприпасы, как правило, состоят из небольших снарядов с очень высокой кинетической энергией , для которых подходят именно такие двигатели. Многие американские горки, запущенные в парках развлечений, теперь используют линейные асинхронные двигатели для движения поезда на высокой скорости в качестве альтернативы использованию подъемной горки . ВМС США также используют линейные асинхронные двигатели в электромагнитной системе запуска самолетов , которые заменят традиционные паровые катапульты на будущих авианосцах. Они также были предложены для использования в двигательных установках космических кораблей . В этом контексте их обычно называют массовыми драйверами . Самый простой способ использовать драйверы массы для приведения в движение космического корабля - это построить двигатель большой массы, который может разгонять груз до космической скорости , хотя также исследовалась система помощи при запуске RLV, такая как StarTram, на низкую околоземную орбиту .

Линейные двигатели с высоким ускорением сложно спроектировать по ряду причин. Они требуют большого количества энергии за очень короткие промежутки времени. Один проект ракетной установки [9] требует 300 ГДж на каждый запуск в космосе менее секунды. Обычные электрические генераторы не рассчитаны на такую ​​нагрузку, но можно использовать методы кратковременного хранения электроэнергии. Конденсаторы громоздкие и дорогие, но могут быстро обеспечивать большое количество энергии. Униполярные генераторы могут использоваться для очень быстрого преобразования кинетической энергии маховика в электрическую энергию. Линейные двигатели с высоким ускорением также требуют очень сильных магнитных полей; фактически, магнитные поля часто слишком сильны, чтобы можно было использовать сверхпроводники . Однако при тщательном проектировании это не должно быть большой проблемой. [10]

Для линейных двигателей с высоким ускорением были изобретены две различные базовые конструкции: рельсотроны и койлганы .

Линейные двигатели обычно используются для приведения в действие высокопроизводительного оборудования промышленной автоматизации. Их преимущество, в отличие от любого другого широко используемого привода, такого как шариковый винт , зубчатый ремень или зубчатая рейка , состоит в том, что они обеспечивают любую комбинацию высокой точности, высокой скорости, большого усилия и большого хода.

Широко используются линейные двигатели. Одно из основных применений линейных двигателей - это движение челнока на ткацких станках .

Линейные двигатели использовались для раздвижных дверей и различных подобных приводов. Кроме того, они использовались для обработки багажа и даже для перевозки крупногабаритных сыпучих материалов.

Линейные двигатели иногда используются для создания вращательного движения, например, они использовались в обсерваториях для работы с большим радиусом кривизны.

Линейные двигатели также могут быть использованы в качестве альтернативы традиционным подъемникам с цепным приводом для американских горок. В каботажном судне Maverick в Сидар-Пойнт вместо цепного подъемника используется один такой линейный двигатель.

Линейный двигатель использовался для разгона автомобилей во время краш-тестов . [11]

Сочетание высокой точности, высокой скорости, большого усилия и большого хода делает бесщеточные линейные двигатели привлекательными для привода оборудования промышленной автоматизации. Они служат отрасли и приложения , такие как полупроводниковые степпер , электроника технологии поверхностного монтажа , автомобильная декартовы робот , аэрокосмическое химическое фрезерование , оптика электронного микроскопа , здравоохранение лаборатории автоматизация , продукты питания и напитки выбрать и место .

Приводы с синхронными линейными двигателями , используемые в станках, обеспечивают высокое усилие, высокую скорость, высокую точность и высокую динамическую жесткость, что приводит к высокой плавности движения и малому времени установки. Они могут достигать скорости 2 м / с и микронной точности при коротком времени цикла и гладкой поверхности. [12]

Обычные рельсы

Все следующие приложения находятся в быстром движении и имеют активную часть двигателя в автомобилях. [13] [14]

Bombardier Innovia Metro

Первоначально была разработана в конце 1970-х годов компанией UTDC в Канаде как система транзита промежуточной мощности (ICTS). В Миллхейвене, Онтарио , был построен испытательный полигон для обширных испытаний прототипов автомобилей, после чего были построены три линии:

ICTS была продана Bombardier Transportation в 1991 году и позже известна как Advanced Rapid Transit (ART), прежде чем в 2011 году была принята текущая торговая марка . С тех пор было выполнено еще несколько установок:

Все системы метро Innovia используют электрификацию третьей железной дороги.

Японское линейное метро

Одной из самых больших проблем, с которыми столкнулись японские инженеры-железнодорожники в 1970–1980-х годах, было постоянно растущие затраты на строительство метро. В ответ Японская ассоциация метро начала изучение возможности создания «мини-метро» для удовлетворения потребностей городского транспорта в 1979 году. В 1981 году Японская ассоциация инженеров железнодорожного транспорта изучала возможность использования линейных асинхронных двигателей для таких небольших метрополитенов и метро. к 1984 г. проводил исследования по практическому применению линейных двигателей для городских железных дорог совместно с Министерством земли, инфраструктуры, транспорта и туризма Японии . В 1988 году была проведена успешная демонстрация Limtrain в Сайтаме, что повлияло на окончательное внедрение линейного двигателя на линии Нагахори Цуруми-рёкути в Осаке и линии Toei 12 (современная линия Toei Oedo ) в Токио . [16]

На сегодняшний день следующие линии метро в Японии используют линейные двигатели и используют воздушные линии для сбора электроэнергии:

Кроме того, Kawasaki Heavy Industries также экспортировала линейное метро в метро Гуанчжоу в Китае; [17] все линии линейного метро в Гуанчжоу используют электрификацию третьей железной дороги:

Монорельс
  • Существует по крайней мере одна известная монорельсовая система, которая не левитирует магнитным полем, но, тем не менее, использует линейные двигатели. Это Московский монорельс . Первоначально предполагалось использовать традиционные моторы и колеса. Однако во время тестовых запусков было обнаружено, что предложенные двигатели и колеса не смогут обеспечить адекватное сцепление с дорогой в некоторых условиях, например, когда на рельсах появился лед. Следовательно, колеса все еще используются, но поезда используют линейные двигатели для ускорения и замедления. Возможно, это единственное использование такой комбинации из-за отсутствия таких требований для других систем поездов.
  • TELMAGV является прототипом монорельсовой системы, которая также не на магнитной подвеске , но использует линейные двигатели.
Магнитная левитация
Бирмингемский международный шаттл на магнитной подвеске
  • Скоростные поезда:
    • Transrapid : первое коммерческое использование в Шанхае (открытие в 2004 г.)
    • Строящийся в Японии SCMaglev (самый быстрый поезд в мире, открытие планируется к 2027 году)
  • Быстрый транзит:

Во всем мире существует множество американских горок, которые используют LIM для ускорения движущихся транспортных средств. "Международная магнитная доска" . Maglev.de . Проверено 1 марта 2010 .

История

Выпуск первой продукции завод начал в 1928 году. Это были электродвигатели трехфазного тока мощностью до 55 кВт и пусковая аппаратура к ним.

В мае 1932 года в соответствии с ликвидационным соглашением с АСЕА завод перешел в собственность СССР и приказом по Народному комиссариату тяжелой промышленности был передан в ведение Всесоюзного электротехнического объединения.

С 1932 года на заводе начался выпуск моторов большой мощности (500 кВт).

Коллектив завода уверенно наращивал объемы выпуска продукции, осваивал новые виды. Если в 1931 году он выпускал 22 типа электродвигателей незначительной мощности, то к концу 1934 года к ним добавилось еще 15 видов машин большой мощности. Причем изготавливались они в 84 модификациях.

Такой широкий ассортимент продукции позволял заводу удовлетворять запросы самых разных отраслей промышленности - авиационной, нефтеперерабатывающей, угольной, машиностроительной, золотодобывающей, химической и других. Выпускалась большое количество товаров народного потребления - электроплитки, электрические утюги, вентиляторы, моторы для патефонов.

В сравнительно короткий промежуток времени завод из электромоторного превратился в электромашиностроительный, выпускающий широкую гамму электродвигателей мощностью до 700 кВт, в том числе для компрессоров, шлифовальных станков, подъемных кранов и другой техники, а также динамо-машины, зарядные агрегаты,  бытовые электротехнические изделия.

Последние предвоенные годы явились для коллектива Ярославского электромашиностроительного завода 

годами дальнейшего развития, годами наращивания объемов производства, повышения технического уровня выпускаемой продукции.

Большую работу электромашиностроители провели в предвоенные годы по освоению выпуска, а затем расширению объемов производства электродвигателей мощностью свыше 100 кВт (типа МА).

С 22 июня 1941 года начались горячие военные будни. На заводе было налажено производство танковых стартеров, артиллерийских снарядов и других изделий для нужд фронта. Осенью 1941 года коллектив завода получил задание чрезвычайной важности: освоить изготовление сопла - одной из важнейших деталей снаряда для гвардейских минометов, названных впоследствии "Катюшами". 1 ноября 1941 года Ярославский электромашиностроительный завод получил приказ об эвакуации в город Томск.

Уже в середине ноября 1941 года Ярославский электромашиностроительный завод, как электромашиностроительное предприятие, можно сказать, прекратил свое существование. На заводе быстрыми темпами налаживался выпуск различного военно-инженерного инструмента, необходимого для возведения оборонительных рубежей на подступах к Москве, продолжалось производство артиллерийских снарядов. Их выпуск значительно увеличился по сравнению с первыми месяцами войны. Кроме того, если раньше завод выпускал лишь заготовки для снарядов, то теперь здесь стали производить и зарядку этих заготовок тротилом.

В опустевших корпусах завода организовали ремонт танков. Таким образом, перестав существовать как электромашиностроительное предприятие, Ярославский электромашиностроительный завод продолжал жить как завод, работающий на оборону страны.

После разгрома гитлеровцев под Москвой перед коллективом завода ставилась задача вновь наладить выпуск танковых стартеров СТ-700 и реле к ним, зарядных генераторов ЗНД, зарядных агрегатов АЗД, низковольтных агрегатов НД.

В результате самоотверженных усилий всего коллектива уже в конце января 1942 года завод начал выпуск электротехнической продукции. За успешное выполнение государственного задания коллектив завода получил благодарность Верховного Главнокомандующего.

Для восстановления народного хозяйства требовалось огромное количество электрических моторов общего назначения.

Ярославский электромашиностроительный завод уже в середине 1943 года получил задание восстановить выпуск всех типов электромоторов переменного тока, выпускавшихся на заводе до войны, в том числе электрических моторов мощностью свыше 100 кВт, которые требовались для откачивания воды из шахт Донбасса.

С 1 апреля 1944 года ГКО освободил завод от производства боеприпасов, что лишний раз подчеркивало особую важность и ответственность задания по увеличению выпуска электродвигателей мощностью свыше 100 кВт.

Вклад предприятия в укрепление оборонного потенциала страны в военный период был отмечен награждением завода в честь 40-летия Победы орденом Отечественной войны I степени.

В годы первой послевоенной пятилетки коллектив завода осуществил еще одну работу, имевшую важнейшее значение, - переход на выпуск электродвигателей всесоюзной единой серии мощностью до 100 кВт унифицированного ряда машин девяти габаритов в диапазоне мощностей от 0,6 до 100 кВт.

Коллектив ЯЭМЗ освоил выпуск электродвигателей шестого габарита. В марте 1951 года большая группа работников, участвовавших в разработке и внедрении единой серии электродвигателей, была удостоена Государственной премии.

Если за первые восемь предвоенных лет, прошедших после перехода завода в руки народа, выпуск продукции вырос в 4,2 раза, то к 1957 году, когда Ярославский электромашиностроительный завод отмечал свое 25-летие, то есть за 12 послевоенных лет, - в 15 раз. Всего же за четверть века народное хозяйство страны получило 1200000 электрических машин с маркой ЯЭМЗ. Такое же количество электроутюгов и полмиллиона настольных вентиляторов.

Ярославский электромашиностроительный завод в то же время по-прежнему был единственным в стране предприятием по выпуску низковольтных многоамперных генераторов и зарядных агрегатов.

В 1971-1975 годах шло освоение производства новой серии электродвигателей общепромышленного назначения с улучшенными весовыми, технологическими и эксплуатационными показателями и с широким диапазоном мощностей. Ярославский электромашиностроительный завод был назначен головным предприятием по двигателям с высотой оси вращения 160 миллиметров. И уже в 1971 году были изготовлены первые опытные образцы двигателей серии 4А. В 1978 году был выполенен ответственный заказ академии наук СССР - построен машинный преобразователь постоянного тока для Баксанской нейтринной обсерватории Института ядерных исследований.

Ярославский электромашиностроительный завод в условиях планового хозяйства был специализирован и технологически оснащен на выпуск трехфазных асинхронных электродвигателей всех модификаций, климатических и монтажных исполнений одной высоты оси вращения - 160 мм. Он один покрывал потребность предприятий всех отраслей народного хозяйства СССР в этих двигателях и поставлял продукцию на экспорт более чем в 30 стран.

В сложный период  после распада СССР коллектив завода не только выстоял, но и добился неплохих результатов!

Завод, ранее выпускавший асинхронные электродвигатели с высотой оси вращения 160 мм, за счет собственных и заемных средств в кратчайшие сроки освоил производство новой серии электродвигателей тринадцати габаритов, ранее выпускавшихся на 34 предприятиях СССР. Это позволило ликвидировать зависимость отечественной промышленности от импорта указанной номенклатуры двигателей.

Сегодня ОАО “ELDIN” является одним из ведущих и стабильно работающих предприятий машиностроительного комплекса  РФ.

Выпускаемые в настоящее время предприятием асинхронные электродвигатели серии с высотами осей вращения (в. о. в.) от 71 до 355 мм, по своим энергетическим и пусковым характеристикам, уровню шума, энергопотреблению, материалоемкости, надежности и сроку службы, а также по дизайну - не только соответствуют, но и превосходят многие зарубежные аналоги.

Продукция нашего завода обладает многочисленными международными сертификатами и соответствует общемировым стандартам, а также  была неоднократно удостоена высоких Российских и международных наград.

 В 1997 году в числе первых предприятий России на ОАО “ELDIN” была сертифицирована система менеджмента качества в немецком сертификационном органе DQS по международному стандарту  МС ИСО 9001.

Действующая в настоящий момент система менеджмента качества соответствует стандартам МС ИСО 9001.

Высокое качество продукции позволяет нам успешно выдерживать конкуренцию на рынках Германии, Франции, Финляндии, Италии, Испании и других стран дальнего зарубежья.

 Будем рады сотрудничеству с Вами!

Ротор с короткозамкнутым ротором - Squirrel-cage rotor

Вращающаяся часть обычного асинхронного двигателя с короткозамкнутым ротором

Ротор с короткозамкнутым ротором

Короткозамкнутый ротор является вращающейся частью общего короткозамкнутого асинхронного двигателя . Он состоит из цилиндра из стальных пластин с алюминиевыми или медными проводниками, встроенными в его поверхность. При работе невращающаяся обмотка статора подключена к источнику питания переменного тока ; переменный ток в статоре создает вращающееся магнитное поле . Обмотка ротора имеет ток, индуцированный полем статора, как в трансформаторе, за исключением того, что ток в роторе изменяется со скоростью вращения поля статора за вычетом скорости физического вращения. Взаимодействие магнитных полей токов в статоре и роторе создает крутящий момент на роторе.

Регулируя форму стержней в роторе, характеристики скорости-момента двигателя могут быть изменены, например, для минимизации пускового тока или для максимизации крутящего момента на низкой скорости.

Асинхронные двигатели с короткозамкнутым ротором очень распространены в промышленности и имеют мощность от менее 1 киловатта (1,3 л.с.) до десятков мегаватт (десятков тысяч лошадиных сил). Они просты, прочны и самозапускаются, и поддерживают достаточно постоянную скорость от легкой до полной нагрузки, задаваемую частотой источника питания и количеством полюсов обмотки статора. Обычно в промышленности используются двигатели стандартных размеров IEC или NEMA , которые взаимозаменяемы между производителями. Это упрощает применение и замену этих двигателей.

История

Галилео Феррарис описал индукционную машину с двухфазной обмоткой статора и сплошным медным цилиндрическим якорем в 1885 году. В 1888 году Никола Тесла получил патент на двухфазный асинхронный двигатель с короткозамкнутой медной обмоткой ротора и двухфазным электродвигателем. обмотка статора. Разработки этой конструкции приобрели коммерческое значение. В 1889 году Михаил Доливо-Добровольский разработал асинхронный двигатель с фазным ротором, а вскоре и обмотку ротора клеточного типа. К концу 19 века асинхронные двигатели широко применялись в растущих системах распределения электроэнергии переменного тока.

Состав

Схема беличьей клетки (показаны только три пластинки)

Ротор двигателя представляет собой цилиндр, установленный на валу. Внутри он содержит продольные токопроводящие шины (обычно из алюминия или меди), вставленные в канавки и соединенные на обоих концах закорачивающими кольцами, образующими форму клетки. Название происходит от сходства между этой обмоткой из колец и стержней и беличьей клеткой .

Твердый сердечник ротора состоит из пакетов пластин электротехнической стали. На рисунке 3 показан один из многих использованных пластин. Ротор имеет большее количество пазов, чем статор, и должен быть не целым числом, кратным количеству пазов статора, чтобы предотвратить магнитную блокировку зубцов ротора и статора в момент запуска.

Стержни ротора могут быть изготовлены из меди или алюминия. В очень распространенной конструкции для двигателей меньшего размера используется литой под давлением алюминий, залитый в ротор после укладки пластин. У более крупных двигателей есть алюминиевые или медные стержни, которые приварены или припаяны к концевым кольцам. Поскольку напряжение, развиваемое в обмотке короткозамкнутого ротора, очень низкое, а ток очень высокий, между стержнями и сталью ротора нет преднамеренного изоляционного слоя.

Теория

Пластины с 36 пазами для статора и 40 пазами для ротора

Обмотки возбуждения в статоре асинхронного двигателя создают вращающееся магнитное поле через ротор . Относительное движение между этим полем и ротором индуцирует электрический ток в проводящих стержнях. В свою очередь, эти продольные токи в проводниках взаимодействуют с магнитным полем двигателя, создавая силу, действующую по касательной, ортогональной к ротору, в результате чего возникает крутящий момент для вращения вала. Фактически ротор вращается с помощью магнитного поля, но с немного меньшей скоростью вращения. Разница в скорости называется проскальзыванием и увеличивается с нагрузкой.

Перекос

Проводники часто слегка перекошены по длине ротора, чтобы уменьшить шум и сгладить колебания крутящего момента, которые могут возникнуть на некоторых скоростях из-за взаимодействия с полюсными наконечниками статора, гарантируя, что в любое время одинаковая доля стержня ротора находится под каждым пазом статора. Если бы стержни ротора были параллельны полюсам статора, в двигателе наблюдалось бы падение, а затем восстановление крутящего момента, когда каждый стержень проходит через зазор в статоре.

Пластины, показанные на фотографии, имеют 36 стержней в статоре и 40 стержней в роторе. Наибольший общий делитель 36 и 40 составляет 4, в результате чего не более 4 бара статора и ротора может быть выровнен в любой момент времени, что также снижает крутящий момент колебания.

Количество стержней в роторе определяет, в какой степени индуцированные токи возвращаются в катушки статора и, следовательно, ток через них. В конструкциях с наименьшей обратной связью используется простое количество стержней ротора.

Ламинации

Железный сердечник служит для переноса магнитного поля через проводники ротора. Поскольку магнитное поле в роторе меняется со временем, сердечник имеет конструкцию, аналогичную сердечнику трансформатора, для уменьшения потерь энергии сердечника . Он состоит из тонких пластин, разделенных лаковой изоляцией для уменьшения вихревых токов, циркулирующих в сердечнике. Материал представляет собой низкоуглеродистое, но высококремнистое железо с удельным сопротивлением в несколько раз выше, чем у чистого железа, что дополнительно снижает потери на вихревые токи и низкую коэрцитивную силу для уменьшения потерь на гистерезис .

Штанги ротора

Одна и та же базовая конструкция используется как для однофазных, так и для трехфазных двигателей самых разных размеров. Роторы для трехфазных двигателей будут иметь различную глубину и форму стержней в соответствии с классификацией конструкции. Как правило, толстые стержни обладают хорошим крутящим моментом и эффективны при низком скольжении, поскольку они обладают меньшим сопротивлением ЭДС . По мере увеличения скольжения скин-эффект начинает уменьшать эффективную глубину и увеличивает сопротивление, что приводит к снижению эффективности, но по-прежнему поддерживает крутящий момент.

Форму и глубину стержней ротора можно использовать для изменения характеристик крутящего момента асинхронного двигателя. В состоянии покоя вращающееся магнитное поле проходит через стержни ротора с высокой скоростью, индуцируя ток линейной частоты в стержнях ротора. Из-за скин-эффекта индуцированный ток имеет тенденцию течь по внешнему краю обмотки. По мере ускорения двигателя частота скольжения уменьшается, и индуцированный ток течет на большей глубине обмотки. За счет сужения профиля стержней ротора для изменения их сопротивления на разной глубине или путем создания двойной короткозамкнутой обоймы с комбинацией ротора с высоким и низким импедансом параллельно, двигатель можно расположить так, чтобы он создавал больший или меньший крутящий момент в состоянии покоя и близком к нему. его синхронная скорость.

Практическая демонстрация

Чтобы продемонстрировать, как работает ротор с сепаратором, можно использовать статор однофазного двигателя и медную трубу (в качестве ротора). Если к статору подается соответствующая мощность переменного тока, внутри статора будет вращаться переменное магнитное поле. Если медная труба вставлена ​​внутрь статора, в трубе будет индуцированный ток, и этот ток создаст собственное магнитное поле в трубе. Взаимодействие между вращающимся магнитным полем статора и индуцированным магнитным полем медной трубы-ротора создает крутящий момент и, следовательно, вращение.

Использование в синхронных двигателях

Синхронный двигатель может иметь короткозамкнутые обмотки встроены в его роторе, используемом для увеличения крутящего момента запуска двигателя , и так уменьшить время для ускорения синхронной скорости. Обмотка с короткозамкнутым ротором синхронной машины обычно меньше, чем у асинхронной машины аналогичного номинала. Когда ротор вращается с той же скоростью, что и вращающееся магнитное поле статора, ток не индуцируется в обмотках с короткозамкнутым ротором, и обмотки не будут иметь дальнейшего влияния на работу синхронного двигателя в установившемся режиме.

С короткозамкнутым ротором обмотки в некоторых машинах обеспечивает демпфирующий эффект для нагрузки или системных нарушений, и в этой роли может быть назначен в качестве успокоительной обмотки. Большие машины могут иметь амортизирующие стержни только на отдельных лицевых сторонах полюсов, не соединенные между собой полюсами. Поскольку обмотка с короткозамкнутым ротором недостаточно велика, чтобы отводить тепло при непрерывной работе, большие синхронные машины часто имеют защитные реле, которые обнаруживают, когда машина выпадает из синхронизации с напряжением питания.

Генераторы индукционные

Трехфазные асинхронные двигатели с короткозамкнутым ротором также могут использоваться в качестве генераторов. Гарр М. Джонс (редактор), Проект насосной станции, пересмотренное 3-е издание Elsevier, 2008 ISBN   978-1-85617-513-5 , стр. 13-4

Перемотка электродвигателей на «Славянку» | Ремонт электродвигателей в Москве

Широкое применение асинхронных электродвигателей и зачастую, тяжелые условия их эксплуатации вынуждают искать способы модернизации данных агрегатов. Добиться необходимого КПД электродвигателя помогает его своевременная перемотка, а выполненная по инновационной технологии «Славянка» она позволит усовершенствовать электромеханический преобразователь.

Суть технологии «Славянка»

«Славянка» – это простой способ сделать асинхронный электродвигатель более энергоэффективным, высокомоментным и малошумным. Суть, запатентованной профессором Н. В. Яловега технологии, сводится к использованию дополнительных совмещенных обмоток статора.

Так, согласно технологии, для трехфазного асинхронного электродвигателя помимо основной обмотки необходимо использовать 3 дополнительных, соединенных между собой и расположенных особым образом – отсюда и название способа – совмещенная обмотка.

Виды совмещенной обмотки «Славянка»

Совмещенная обмотка «Славянка» может быть однослойной или двухслойной, а ее шаг укороченным или диаметральным. Сдвиг между самими обмотками — основной и дополнительной (совмещенной) – будет равен 30 электрическим градусам.

Так же принято различать две схемы соединения фаз совмещенной обмотки:

  • параллельная, при которой основная обмотка это «звезда», а совмещенная «треугольник»;
  • последовательная, предполагающая сохранение первоначальной схемы основной обмотки, с пересчетом совмещенной на «треугольник».

Что касается совмещенной обмотки «Славянка» со схемой последовательного соединения фаз, то она демонстрирует более высокие рабочие характеристики по сравнению с аналогичными параллельной.

Преимущества совмещенной обмотки «Славянка»

Перемотка электродвигателей на Славянку имеет свои преимущества, среди которых можно выделить следующие:

  • сокращение потребляемой электроэнергии;
  • снижение расходов на эксплуатацию;
  • более высокий КПД;
  • значительное увеличение крутящего и пускового момента;
  • возможность работы сразу в двух режимах – S1 и S3;
  • снижение нагрузок на электросеть за счет уменьшения пусковых токов;
  • более низкий уровень шума;
  • возможность выдерживать большие перегрузки;
  • значительное снижение температуры нагрева обмотки, что сводит к минимуму риск ее перегорания в процессе эксплуатации;
  • повышение надежности электродвигателя.

Таким образом, совмещенная обмотка Славянка – это эффективный способ модернизации асинхронных двигателей и экономии.

Перемотка двигателя на Славянку может осуществляться как в ходе планового ремонта, так и по желанию владельца. При этом состояние самого асинхронного преобразователя не имеет значения – он может быть, как в рабочем состоянии, так и «сгоревшим».

Сферы применения «Славянки»

Инновационная технология «Славянка» применима везде, где предусмотрена эксплуатация трехфазных асинхронных электродвигателей.

  • Станки.
  • Подъемное оборудование.
  • Редукторы.
  • Вентиляторы.
  • Насосное оборудование.
  • Компрессоры и т.д.

При этом присоединительные размеры уже модернизированных электродвигателей полностью соответствуют установленным стандартам (ГОСТ Р 51689), а по желанию владельца учитываются уменьшенные габариты агрегатов.

Преимущества замены обычных электродвигателей на преобразователи с совмещенной обмоткой «Славянка» особо ощутимы в тяжелых эксплуатационных условиях, в которых они не только демонстрируют высокие рабочие показатели, но и быстро окупают свою себестоимость.

Тяжелые условия эксплуатации электродвигателей с перемоткой «Славянка»

Своевременный ремонт электродвигателей и их последующая перемотка на «Славянку», позволяют использовать агрегаты в следующих условиях:

  • частый пуск;
  • затяжной пуск;
  • тяжелый пуск;
  • большие перепады напряжения.

Как правило, асинхронные трехфазные двигатели с совмещенной обмоткой помогают решить проблему запуска при отсутствии частотных регуляторов, а при наличии таковых их рабочие характеристики превосходят аналогичные показатели других двигателей. При этом количество потребляемой электроэнергии снижается до 50%, не только в условиях перепадов напряжения, но и при меняющейся или неноминальной нагрузке.

Стоимость электродвигателей с перемоткой «Славянка»

Плановый или срочный ремонт электродвигателя с последующей перемоткой на «Славянку» будет стоить больше, нежели обычное обслуживание агрегатов. Однако дополнительные затраты окупаются в течение ближайших нескольких месяцев, за счет значительной экономии потребляемой электроэнергии и сокращения расходов на их обслуживание.

Электродвигатель

- Википедия, бесплатная энциклопедия

Из Википедии, свободной энциклопедии

Электродвигатель преобразует электрическую энергию в механическое движение. Обратная задача - преобразование механического движения в электрическую энергию - выполняется генератором или динамо-машиной. Во многих случаях два устройства различаются только своим применением и незначительными деталями конструкции, а в некоторых приложениях используется одно устройство для выполнения обеих ролей.Например, тяговые двигатели, используемые на локомотивах, часто выполняют обе задачи, если локомотив оснащен динамическими тормозами.

Операция

Большинство электродвигателей работают за счет электромагнетизма, но также существуют двигатели, основанные на других электромеханических явлениях, таких как электростатические силы и пьезоэлектрический эффект. Фундаментальный принцип, на котором основаны электромагнитные двигатели, заключается в том, что на любой провод действует механическая сила, когда он проводит электричество, находясь в магнитном поле.Сила описывается законом силы Лоренца и перпендикулярна как проводу, так и магнитному полю. Большинство магнитных двигателей являются вращающимися, но существуют и линейные типы. В роторном двигателе вращающаяся часть (обычно внутри) называется ротором, а неподвижная часть - статором. Ротор вращается, потому что провода и магнитное поле расположены так, что вокруг оси ротора создается крутящий момент. Двигатель содержит электромагниты, намотанные на раму. Хотя эту раму часто называют арматурой, этот термин часто используют ошибочно.Правильно, якорь - это та часть двигателя, на которую подается входное напряжение. В зависимости от конструкции машины в качестве якоря может выступать либо ротор, либо статор.

Двигатели постоянного тока

Электродвигатели различных типоразмеров.

Один из первых электромагнитных роторных двигателей был изобретен Майклом Фарадеем в 1821 году и состоял из свободно висящего провода, погруженного в бассейн с ртутью. Постоянный магнит был помещен в середину ртутной ванны. Когда через провод пропускался ток, он вращался вокруг магнита, показывая, что ток порождал круговое магнитное поле вокруг провода.Этот мотор часто демонстрируется на школьных уроках физики, но иногда вместо токсичной ртути используется рассол (соленая вода). Это простейшая форма класса электродвигателей, называемых униполярными двигателями. Более поздняя доработка - Колесо Барлоу.

В другой ранней конструкции электродвигателя использовался поршень возвратно-поступательного действия внутри переключаемого соленоида; концептуально его можно рассматривать как электромагнитную версию двухтактного двигателя внутреннего сгорания.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил вращающуюся динамо-машину со вторым аналогичным устройством, управляя им как двигателем.

Классический двигатель постоянного тока имеет вращающийся якорь в виде электромагнита. Поворотный переключатель, называемый коммутатором, меняет направление электрического тока дважды за цикл, чтобы он протекал через якорь, так что полюса электромагнита толкаются и притягиваются к постоянным магнитам на внешней стороне двигателя. Когда полюса электромагнита якоря проходят через полюса постоянных магнитов, коммутатор меняет полярность электромагнита якоря. В этот момент переключения полярности инерция поддерживает классический двигатель в нужном направлении.(См. Схемы ниже.)

Простой электродвигатель постоянного тока. Когда катушка запитана, вокруг якоря создается магнитное поле. Левая сторона якоря отодвигается от левого магнита и тянется вправо, вызывая вращение. Якорь продолжает вращаться. Когда якорь выравнивается по горизонтали, коммутатор меняет направление тока через катушку на противоположное, изменяя направление магнитного поля. Затем процесс повторяется.

Электродвигатель постоянного тока с возбуждением от возбуждения

Постоянные магниты на внешней стороне (статоре) двигателя постоянного тока могут быть заменены электромагнитами.Изменяя ток возбуждения, можно изменять соотношение скорость / крутящий момент двигателя. Обычно обмотка возбуждения размещается последовательно (последовательно намотанная) с обмоткой якоря для получения низкоскоростного двигателя с высоким крутящим моментом, параллельно (параллельная обмотка) с якорем для получения высокоскоростного двигателя с низким крутящим моментом или для частичной обмотки. параллельно и частично последовательно (составная намотка) для баланса, обеспечивающего стабильную скорость в диапазоне нагрузок. Дальнейшее снижение тока возбуждения возможно для получения еще более высокой скорости, но, соответственно, более низкого крутящего момента, что называется режимом «слабого поля».

Регулировка скорости

Вообще говоря, скорость вращения двигателя постоянного тока пропорциональна приложенному к нему напряжению, а крутящий момент пропорционален току. Регулировка скорости может быть достигнута с помощью регулируемых выводов аккумуляторной батареи, переменного напряжения питания, резисторов или электронного управления. Направление двигателя постоянного тока с обмоткой возбуждения можно изменить, поменяв местами подключения возбуждения или якоря, но не то и другое вместе, это обычно делается с помощью специального набора контакторов (контакторов направления).

Эффективное напряжение можно изменять, вставляя последовательный резистор или с помощью переключающего устройства с электронным управлением, состоящего из тиристоров, транзисторов или, исторически, ртутных дуговых выпрямителей. В цепи, известной как прерыватель, среднее напряжение, приложенное к двигателю, изменяется путем очень быстрого переключения напряжения питания. Поскольку отношение «включено» к «выключено» изменяется для изменения среднего приложенного напряжения, скорость двигателя изменяется. Быстрое переключение потребляет меньше энергии, чем последовательные резисторы.Выходные фильтры сглаживают среднее напряжение, подаваемое на двигатель, и снижают шум двигателя.

Поскольку двигатель постоянного тока с последовательным заводом развивает максимальный крутящий момент на низкой скорости, он часто используется в тяговых устройствах, таких как электровозы и трамваи. Другое применение - стартеры для бензиновых и небольших дизельных двигателей. Серийные двигатели никогда не должны использоваться в приложениях, где привод может выйти из строя (например, ременные передачи). По мере ускорения двигателя ток якоря (и, следовательно, возбуждения) уменьшается.Уменьшение поля заставляет двигатель ускоряться (см. «Слабое поле» в последнем разделе). Как следствие, скорость двигателя стремится к бесконечности, но двигатель самоуничтожится, прежде чем начнет так быстро вращаться.

Одним из интересных методов управления скоростью двигателя постоянного тока был Ward-Leonard Control. Это метод управления двигателем постоянного тока (обычно с шунтирующей или составной обмоткой) и был разработан как метод обеспечения двигателя с регулируемой скоростью от источника переменного тока, хотя он имел свои преимущества в схемах постоянного тока.Источник переменного тока используется для привода двигателя переменного тока, обычно асинхронного двигателя, который приводит в действие генератор постоянного тока или динамо-машину. Выход постоянного тока из якоря напрямую подключен к якорю двигателя постоянного тока (обычно идентичной конструкции). Шунтирующие обмотки возбуждения обеих машин постоянного тока возбуждаются через переменный резистор от якоря генератора. Этот переменный резистор обеспечивает исключительно хорошее управление скоростью от состояния покоя до полной скорости и постоянный крутящий момент. Этот метод управления был фактически методом с момента его разработки до тех пор, пока его не вытеснили твердотельные тиристорные системы.Он находил применение практически в любой среде, где требовалось хорошее управление скоростью, от пассажирских лифтов до обмотки головок больших шахтных карьеров и даже промышленного технологического оборудования и электрических кранов. Его принципиальным недостатком было то, что для реализации схемы требовалось 3 машины (5 в очень больших установках, поскольку машины постоянного тока часто дублировались и управлялись тандемным переменным резистором). Во многих случаях установка двигатель-генератор часто оставалась постоянно работающей, чтобы избежать задержек, которые в противном случае были бы вызваны ее запуском по мере необходимости.На момент написания (май 2006 г.) существует множество устаревших установок Ward-Leonard.

Универсальные двигатели

Вариантом электродвигателя постоянного тока является универсальный электродвигатель . Название происходит от того факта, что он может использовать переменный или постоянный ток питания, хотя на практике они почти всегда используются с источниками переменного тока. Принцип заключается в том, что в двигателе постоянного тока с обмоткой поля ток как в поле, так и в якоре (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) в одно и то же время, и, следовательно, генерируемая механическая сила всегда в одном и том же направлении. .На практике двигатель должен быть специально разработан для работы с переменным током (необходимо учитывать импеданс, а также пульсирующую силу), и получаемый в результате двигатель обычно менее эффективен, чем эквивалентный чистый двигатель DC . При работе на нормальных частотах линии электропередачи максимальная мощность универсальных двигателей ограничена, а двигатели мощностью более одного киловатта встречаются редко. Но универсальные двигатели также составляют основу традиционного железнодорожного тягового двигателя. В этом приложении для поддержания высокого электрического КПД они работали от источников переменного тока с очень низкой частотой с частотой 25 Гц и 16 2/3 Гц.Поскольку это универсальные двигатели, локомотивы, использующие эту конструкцию, также обычно могли работать от третьего рельса с питанием от постоянного тока.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют типичные характеристики двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения. Отрицательный аспект - проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. В результате такие двигатели обычно используются в устройствах переменного тока, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами.Непрерывное управление скоростью универсального двигателя, работающего на переменном токе, очень легко достигается с помощью тиристорной схемы, в то время как ступенчатое регулирование скорости может осуществляться с помощью нескольких отводов на катушке возбуждения. Бытовые блендеры, рекламирующие множество скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который может быть вставлен последовательно с двигателем (в результате чего двигатель работает на полуволновом постоянном токе с половиной среднеквадратичного напряжения линии питания переменного тока).

В отличие от двигателей переменного тока, универсальные двигатели могут легко превышать один оборот за цикл сетевого тока.Это делает их полезными для таких приборов, как блендеры, пылесосы и фены, где требуется высокая скорость работы. Моторы многих пылесосов и триммеров для сорняков превышают 10 000 об / мин, Dremel и другие подобные миниатюрные шлифовальные машины часто превышают 30 000 об / мин. Теоретический универсальный двигатель, которому разрешено работать без механической нагрузки, будет превышать скорость, что может привести к его повреждению. В реальной жизни, однако, различное трение подшипников, «парусность» якоря и нагрузка любого встроенного охлаждающего вентилятора - все это предотвращает превышение скорости.

Из-за очень низкой стоимости полупроводниковых выпрямителей в некоторых приложениях, в которых раньше использовался универсальный двигатель, теперь используется чистый двигатель постоянного тока, обычно с полем постоянного магнита. Это особенно верно, если полупроводниковая схема также используется для регулирования скорости.

Преимущества универсального двигателя и распределения переменного тока сделали установку низкочастотной системы распределения тягового тока экономичной для некоторых железнодорожных установок. На достаточно низких частотах характеристики двигателя примерно такие же, как если бы двигатель работал от постоянного тока.Использовались частоты всего 16 2/3 Гц.

Двигатели переменного тока

Типичный двигатель переменного тока состоит из двух частей:

  1. Внешний неподвижный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  2. Внутренний ротор, прикрепленный к выходному валу, которому крутящий момент создается вращающимся полем.

Существует два основных типа двигателей переменного тока в зависимости от типа используемого ротора:

  • Синхронный двигатель, который вращается точно с частотой питающей сети или долей частоты питающей сети, и;
  • Асинхронный двигатель, который вращается немного медленнее и обычно (хотя и не всегда) имеет форму двигателя с короткозамкнутым ротором.

Принцип вращающегося магнитного поля, который обычно приписывают Николе Тесле в 1882 году или около того, использовался такими учеными, как Майкл Фарадей в 1820-х годах, а затем Джеймс Клерк Максвелл. Тесла, однако, использовал этот принцип для разработки уникального двухфазного асинхронного двигателя в 1883 году. Майкл фон Доливо-Добровльски изобрел первый современный трехфазный «ротор с клеткой» в 1890 году. Введение двигателя с 1888 года и далее положило начало известному как Вторая промышленная революция, сделавшая возможным эффективное производство и распределение электроэнергии на большие расстояния с использованием системы передачи переменного тока, также изобретение Теслы (1888 г.) [1].Первая успешная коммерческая трехфазная система генерации и передачи на большие расстояния была спроектирована Альмерианом Декером в Милл-Крик № 1 [2] в Редлендс, Калифорния. [3]

Трехфазные асинхронные двигатели переменного тока

Трехфазные асинхронные двигатели переменного тока мощностью 1 л.с. (746 Вт) и 25 Вт с небольшими двигателями от проигрывателя компакт-дисков, игрушек и привода считывающего устройства для компакт-дисков

Там, где имеется многофазный источник питания, обычно используется трехфазный (или многофазный) асинхронный двигатель переменного тока, особенно для двигателей большей мощности.Разность фаз между тремя фазами многофазного источника питания создает вращающееся электромагнитное поле в двигателе.

Благодаря электромагнитной индукции вращающееся магнитное поле индуцирует ток в проводниках в роторе, который, в свою очередь, создает уравновешивающее магнитное поле, которое заставляет ротор вращаться в направлении вращения поля. Ротор всегда должен вращаться медленнее, чем вращающееся магнитное поле, создаваемое многофазным источником питания; в противном случае в роторе не будет создаваться уравновешивающее поле.

Асинхронные двигатели

являются «рабочими лошадками» промышленности, и двигатели мощностью до 500 кВт производятся в строго стандартизированных типоразмерах, что делает их практически полностью взаимозаменяемыми между производителями (хотя стандартные размеры в Европе и Северной Америке различаются). Очень большие синхронные двигатели могут иметь выходную мощность в десятки тысяч кВт для трубопроводных компрессоров и приводов в аэродинамической трубе.

В асинхронных двигателях используются два типа роторов.

Роторы с короткозамкнутым ротором: В большинстве двигателей переменного тока используется ротор с короткозамкнутым ротором, который можно найти практически во всех бытовых и легких промышленных двигателях переменного тока.Беличья клетка получила свое название от своей формы - кольца на обоих концах ротора, с перемычками, соединяющими кольца по всей длине ротора. Обычно это литой алюминий или медь, залитые между железными пластинами ротора, и обычно видны только концевые кольца. Подавляющее большинство токов ротора будет проходить через стержни, а не через ламинаты с более высоким сопротивлением и обычно покрытые лаком. Очень низкие напряжения при очень высоких токах типичны для шин и концевых колец; В двигателях с высоким КПД часто используется литая медь для уменьшения сопротивления ротора.

В работе двигатель с короткозамкнутым ротором можно рассматривать как трансформатор с вращающейся вторичной обмоткой - когда ротор не вращается синхронно с магнитным полем, индуцируются большие токи ротора; большие токи ротора намагничивают ротор и взаимодействуют с магнитными полями статора, чтобы синхронизировать ротор с полем статора. Двигатель с короткозамкнутым ротором без нагрузки при синхронной скорости будет потреблять электроэнергию только для поддержания скорости ротора с учетом потерь на трение и сопротивление; по мере увеличения механической нагрузки будет увеличиваться и электрическая нагрузка - электрическая нагрузка по своей природе связана с механической нагрузкой.Это похоже на трансформатор, где электрическая нагрузка первичной обмотки связана с электрической нагрузкой вторичной обмотки.

Вот почему, например, двигатель воздуходувки с короткозамкнутым ротором может приводить к затемнению света в доме при запуске, но не затемняет свет, когда его вентиляторный ремень (и, следовательно, механическая нагрузка) снимается. Кроме того, остановившийся двигатель с короткозамкнутым ротором (перегруженный или с заклинившим валом) будет потреблять ток, ограниченный только сопротивлением цепи, при попытке запуска. Если что-то еще не ограничивает ток (или не отключает его полностью), вероятным результатом является перегрев и разрушение изоляции обмотки.

Практически каждая стиральная машина, посудомоечная машина, отдельный вентилятор, проигрыватель и т. Д. Использует какой-либо вариант двигателя с короткозамкнутым ротором.

Ротор с обмоткой: Альтернативная конструкция, называемая ротором с обмоткой, используется, когда требуется регулировка скорости. В этом случае ротор имеет такое же количество полюсов, что и статор, а обмотки выполнены из проволоки, соединенной с контактными кольцами на валу. Угольные щетки подключают контактные кольца к внешнему контроллеру, например, к переменному резистору, который позволяет изменять скорость скольжения двигателя.В некоторых мощных приводах с регулируемой скоростью вращения ротора энергия частоты скольжения улавливается, выпрямляется и возвращается в источник питания через инвертор.

По сравнению с роторами с короткозамкнутым ротором, двигатели с фазным ротором дороги и требуют обслуживания контактных колец и щеток, но они были стандартной формой для регулирования скорости до появления компактных силовых электронных устройств. Транзисторные инверторы с частотно-регулируемым приводом теперь могут использоваться для управления скоростью, а двигатели с фазным ротором становятся все реже.(Транзисторные инверторные приводы также позволяют использовать более эффективные трехфазные двигатели, когда доступен только однофазный сетевой ток, но это никогда не используется в бытовых приборах, потому что это может вызвать электрические помехи и из-за высоких требований к мощности. )

Используются несколько способов запуска многофазного двигателя. Там, где допустимы большой пусковой ток и высокий пусковой момент, двигатель можно запустить через линию, подав полное линейное напряжение на клеммы.Если необходимо ограничить пусковой пусковой ток (если мощность двигателя больше, чем у источника питания при коротком замыкании), используется пуск с пониженным напряжением с использованием последовательных катушек индуктивности, автотрансформатора, тиристоров или других устройств. Иногда используется метод пуска со звезды на треугольник, когда катушки двигателя сначала соединяются звездой для ускорения нагрузки, а затем переключаются на треугольник, когда нагрузка достигает скорости. Этот метод более распространен в Европе, чем в Северной Америке.Транзисторные приводы могут напрямую изменять приложенное напряжение в зависимости от пусковых характеристик двигателя и нагрузки.

Этот тип двигателя становится все более распространенным в тяговых приложениях, таких как локомотивы, где он известен как асинхронный тяговый двигатель.

Скорость двигателя переменного тока определяется в первую очередь частотой сети переменного тока и количеством полюсов в обмотке статора в соответствии с соотношением:

N с = 120 F / p

где

N с = Синхронная скорость, в оборотах в минуту
F = частота переменного тока
p = Количество полюсов на фазную обмотку

Фактическая частота вращения асинхронного двигателя будет меньше этой расчетной синхронной скорости на величину, известную как скольжение , которая увеличивается с создаваемым крутящим моментом.Без нагрузки скорость будет очень близка к синхронной. При нагрузке стандартные двигатели имеют скольжение 2-3%, специальные двигатели могут иметь скольжение до 7%, а класс двигателей, известный как моментные двигатели , рассчитан на работу при 100% скольжении (0 об / мин / полный останов).

Скольжение двигателя переменного тока рассчитывается по:

S = ( N s - N r ) / N s

где

N r = Скорость вращения в оборотах в минуту.
S = нормализованное скольжение, от 0 до 1.

В качестве примера типичный четырехполюсный двигатель, работающий на частоте 60 Гц, может иметь номинальную мощность на паспортной табличке 1725 об / мин при полной нагрузке, в то время как его расчетная скорость составляет 1800.

Скорость в этом типе двигателя традиционно изменялась за счет наличия дополнительных наборов катушек или полюсов в двигателе, которые можно включать и выключать для изменения скорости вращения магнитного поля. Однако развитие силовой электроники означает, что частота источника питания теперь также может быть изменена, чтобы обеспечить более плавное управление скоростью двигателя.

Трехфазные синхронные двигатели переменного тока

Если соединения с обмотками ротора трехфазного двигателя сняты на контактных кольцах и подают отдельный ток возбуждения для создания непрерывного магнитного поля (или если ротор состоит из постоянного магнита), результат называется синхронным. двигатель, потому что ротор будет вращаться синхронно с вращающимся магнитным полем, создаваемым многофазным источником питания.

Синхронный двигатель также может использоваться в качестве генератора переменного тока.

В настоящее время синхронные двигатели часто приводятся в действие транзисторными частотно-регулируемыми приводами. Это значительно облегчает запуск массивного ротора большого синхронного двигателя. Они также могут запускаться как асинхронные двигатели с использованием обмотки с короткозамкнутым ротором, которая имеет общий ротор: как только двигатель достигает синхронной скорости, в обмотке с короткозамкнутым ротором не индуцируется ток, поэтому он мало влияет на синхронную работу двигателя. помимо стабилизации скорости двигателя при изменении нагрузки.

Синхронные двигатели иногда используются в качестве тяговых двигателей; TGV может быть самым известным примером такого использования.

Однофазные асинхронные двигатели переменного тока

Трехфазные двигатели по своей природе создают вращающееся магнитное поле. Однако, когда доступна только однофазная мощность, вращающееся магнитное поле должно создаваться другими способами. Обычно используются несколько методов.

Обычным однофазным двигателем является двигатель с расщепленными полюсами, который используется в устройствах, требующих низкого крутящего момента, таких как электрические вентиляторы или другие небольшие бытовые приборы.В этом двигателе небольшие одновитковые медные «затеняющие катушки» создают движущееся магнитное поле. Часть каждого полюса окружена медной катушкой или лентой; индуцированный ток в перемычке противодействует изменению потока через катушку (закон Ленца), так что максимальная напряженность поля перемещается через поверхность полюса в каждом цикле, создавая необходимое вращающееся магнитное поле.

Другой распространенный однофазный двигатель переменного тока - это асинхронный двигатель с расщепленной фазой , обычно используемый в основных бытовых приборах, таких как стиральные машины и сушилки для одежды.По сравнению с двигателями с экранированными полюсами эти двигатели обычно могут обеспечивать гораздо больший пусковой крутящий момент за счет использования специальной пусковой обмотки в сочетании с центробежным переключателем.

В двигателе с расщепленной фазой пусковая обмотка спроектирована с более высоким сопротивлением, чем рабочая обмотка. Это создает цепь LR, которая немного сдвигает фазу тока в пусковой обмотке. Когда двигатель запускается, пусковая обмотка подключается к источнику питания через набор подпружиненных контактов, на которые нажимает еще не вращающийся центробежный переключатель.Пусковая обмотка намотана с меньшим количеством витков провода меньшего диаметра, чем основная обмотка, поэтому она имеет меньшую индуктивность (L) и более высокое сопротивление (R). Более низкое отношение L / R создает небольшой фазовый сдвиг, не более примерно 30 градусов, между потоком, обусловленным основной обмоткой, и потоком пусковой обмотки. Начальное направление вращения можно изменить на обратное, просто поменяв местами соединения пусковой обмотки относительно рабочей обмотки.

Фаза магнитного поля в этой пусковой обмотке смещена от фазы сетевого питания, что позволяет создать движущееся магнитное поле, которое запускает двигатель.Когда двигатель достигает скорости, близкой к расчетной, срабатывает центробежный выключатель, размыкая контакты и отсоединяя пусковую обмотку от источника питания. Тогда двигатель работает только на ходовой обмотке. Пусковую обмотку необходимо отключить, так как это приведет к увеличению потерь в двигателе.

В конденсаторном пусковом двигателе пусковой конденсатор вставлен последовательно с пусковой обмоткой, создавая LC-цепь, способную к гораздо большему фазовому сдвигу (и, следовательно, гораздо большему пусковому моменту).Конденсатор, естественно, увеличивает стоимость таких двигателей.

Другой вариант - двигатель с постоянным разделенным конденсатором (PSC) (также известный как конденсаторный двигатель запуска и запуска). Этот двигатель работает аналогично двигателю с конденсаторным пуском, описанному выше, но здесь нет переключателя центробежного пуска, а вторая обмотка постоянно подключена к источнику питания. Двигатели PSC часто используются в кондиционерах, вентиляторах и воздуходувках, а также в других случаях, когда требуется регулируемая скорость. Изменяя ответвления на ходовой обмотке, но сохраняя постоянную нагрузку, двигатель можно заставить работать с разными скоростями.Также при условии, что все 6 соединений обмоток доступны по отдельности, трехфазный двигатель может быть преобразован в двигатель для запуска и запуска конденсатора путем объединения двух обмоток и подключения третьей через конденсатор, который будет действовать как пусковая обмотка.

Отталкивающие двигатели - однофазные двигатели переменного тока с фазным ротором, аналогичные универсальным двигателям. В отталкивающем двигателе щетки якоря закорочены вместе, а не соединены последовательно с полем. Было изготовлено несколько типов отталкивающих двигателей, но наиболее часто использовался асинхронный двигатель с отталкивающим пуском (RS-IR).Двигатель RS-IR имеет центробежный переключатель, который закорачивает все сегменты коммутатора, так что двигатель работает как асинхронный двигатель после разгона до полной скорости. Двигатели RS-IR используются для обеспечения высокого пускового момента на ампер в условиях низких рабочих температур и плохого регулирования напряжения источника. По состоянию на 2006 год продано немного отталкивающих двигателей любого типа.

Однофазные синхронные двигатели переменного тока

Небольшие однофазные двигатели переменного тока также могут быть спроектированы с намагниченными роторами (или несколькими вариантами этой идеи).Роторы в этих двигателях не требуют индуцированного тока, поэтому они не скользят назад против частоты сети. Вместо этого они вращаются синхронно с частотой сети. Из-за высокой точности скорости такие двигатели обычно используются для питания механических часов, проигрывателей виниловых пластинок и ленточных накопителей; раньше они также широко использовались в приборах точного времени, таких как ленточные самописцы или механизмы привода телескопов. Синхронный двигатель с расщепленными полюсами - это одна из версий.

Поскольку инерция затрудняет мгновенное ускорение ротора с остановленной до синхронной скорости, этим двигателям обычно требуется какая-то специальная функция для запуска.В различных конструкциях используется небольшой асинхронный двигатель (который может использовать те же катушки возбуждения и ротор, что и синхронный двигатель) или очень легкий ротор с односторонним механизмом (чтобы гарантировать, что ротор запускается в «прямом» направлении).

Моментные двигатели

Моментный двигатель - это особый вид асинхронного двигателя, который может работать неограниченное время при остановке (с заблокированным от вращения ротором) без повреждений. В этом режиме двигатель будет прикладывать постоянный крутящий момент к нагрузке (отсюда и название).Обычное применение моментного двигателя - это двигатели подающей и приемной катушек в ленточном накопителе. В этом применении, приводимые в действие от низкого напряжения, характеристики этих двигателей позволяют приложить относительно постоянное легкое натяжение к ленте, независимо от того, протягивает ли ведущая лента мимо головок ленты. Управляемые более высоким напряжением (и, следовательно, обеспечивающие более высокий крутящий момент), моментные двигатели также могут работать в режиме быстрой перемотки вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты.

Шаговые двигатели

Основная статья: Шаговый двигатель

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока шаговые двигатели, в которых внутренний ротор, содержащий постоянные магниты или большой железный сердечник с выступающими полюсами, управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, в его применении двигатель не может вращаться непрерывно; вместо этого он «шагает» от одного положения к другому, когда обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности ротор может вращаться вперед или назад.

Простые драйверы шаговых двигателей полностью включают или полностью обесточивают обмотки возбуждения, приводя ротор к "зубчатому" перемещению в ограниченное количество положений; более сложные драйверы могут пропорционально управлять мощностью обмоток возбуждения, позволяя роторам располагаться «между» точками «шестеренки» и, таким образом, вращаться чрезвычайно плавно.Шаговые двигатели с компьютерным управлением - одна из самых универсальных форм систем позиционирования, особенно когда они являются частью цифровой системы с сервоуправлением.

Шаговые двигатели

можно легко поворачивать на определенный угол, и, следовательно, шаговые двигатели используются в компьютерных дисководах, где высокая точность, которую они предлагают, необходима для правильного функционирования, например, жесткого диска или привода компакт-дисков.

Бесщеточные двигатели постоянного тока

Основная статья: Бесщеточный электродвигатель постоянного тока

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору.Это создает трение. На более высоких скоростях щеткам становится все труднее поддерживать контакт. Щетки могут отскакивать от неровностей поверхности коллектора, создавая искры. Это ограничивает максимальную скорость машины. Плотность тока на единицу площади щеток ограничивает мощность двигателя. Неидеальный электрический контакт также вызывает электрические помехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию. Сборка коммутатора на большой машине - дорогостоящий элемент, требующий точной сборки многих деталей.

Эти проблемы устранены в бесщеточном двигателе. В этом двигателе механический «вращающийся переключатель» или узел коммутатора / щеточного устройства заменен внешним электронным переключателем, синхронизированным с положением двигателя. Бесщеточные двигатели обычно имеют КПД 85-90%, тогда как двигатели постоянного тока с щеткой обычно имеют КПД 75-80%.

На полпути между обычными двигателями постоянного тока и шаговыми двигателями находится область бесщеточных двигателей постоянного тока. Построенные аналогично шаговым двигателям, они часто используют внешний ротор с постоянным магнитом , три фазы управляющих катушек, одно или несколько устройств на эффекте Холла для определения положения ротора и соответствующую приводную электронику.Катушки активируются, одна фаза за другой, электроникой привода в соответствии с сигналами от датчиков эффекта Холла. По сути, они действуют как трехфазные синхронные двигатели, содержащие собственную электронику частотно-регулируемого привода. В специализированном классе контроллеров бесщеточных двигателей постоянного тока для определения положения и скорости используется обратная связь по ЭДС через основные фазовые соединения вместо датчиков Холла. Эти двигатели широко используются в электромобилях с радиоуправлением.

Бесщеточные двигатели постоянного тока

обычно используются там, где необходимо точное управление скоростью, в компьютерных дисковых накопителях или в кассетных видеомагнитофонах, когда шпиндели на компакт-дисках, компакт-дисках (и т. Д.)) приводы и механизмы в офисных продуктах, таких как вентиляторы, лазерные принтеры и копировальные аппараты. Они имеют ряд преимуществ перед обычными двигателями:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока. Такой холодный режим работы приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы бесщеточного двигателя постоянного тока может быть значительно больше по сравнению с двигателем постоянного тока, использующим щетки и коммутатор.Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; без коммутатора или щеток бесщеточный двигатель может использоваться в электрически чувствительных устройствах, таких как звуковое оборудование или компьютеры.
  • Те же устройства на эффекте Холла, которые обеспечивают коммутацию, также могут обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром (сервоуправлением). В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен».
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Щеточные двигатели нельзя использовать в космическом вакууме, потому что они привариваются к неподвижному положению.

Современные бесщеточные двигатели постоянного тока имеют мощность от долей ватта до многих киловатт. В электромобилях используются более мощные бесщеточные двигатели мощностью до 100 кВт. Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Двигатели постоянного тока без сердечника

Ничто в конструкции любого из описанных выше двигателей не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов.Этим фактом пользуется бесщеточный электродвигатель постоянного тока , специализированная форма щеточного электродвигателя постоянного тока. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника. Ротор может иметь форму заполненного обмоткой цилиндра внутри магнитов статора, корзины, окружающей магниты статора, или плоского блина (возможно, сформированного на печатной монтажной плате), проходящего между верхним и нижним магнитами статора. Обмотки обычно стабилизируются путем пропитки эпоксидной смолой.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее 1 мс. Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом.

Эти двигатели обычно использовались для привода приводов магнитных лентопротяжных устройств и до сих пор широко используются в высокопроизводительных системах с сервоуправлением.

Двигатели линейные

Линейный двигатель - это, по сути, электродвигатель, который «раскручен» так, что вместо создания крутящего момента (вращения) он создает линейную силу по всей своей длине, создавая бегущее электромагнитное поле.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Вы можете найти линейный двигатель в поезде на магнитной подвеске (Transrapid), где поезд «летит» над землей.

Нано мотор

Наномотор, сконструированный Калифорнийским университетом в Беркли.Диаметр двигателя составляет около 500 нм: в 300 раз меньше диаметра человеческого волоса.

Исследователи из Калифорнийского университета в Беркли разработали подшипники вращения на основе многослойных углеродных нанотрубок. Прикрепив золотую пластину (размером порядка 100 нм) к внешней оболочке подвешенной многослойной углеродной нанотрубки (например, вложенных углеродных цилиндров), они могут электростатически вращать внешнюю оболочку относительно внутреннего ядра. Эти подшипники очень прочные; Устройства колебались тысячи раз без признаков износа.Работа была сделана на месте в SEM. Эти наноэлектромеханические системы (НЭМС) являются следующим шагом в миниатюризации, которая в будущем может найти свое применение в коммерческих целях.

Примечание: тонкая вертикальная нить посередине - это нанотрубка, к которой прикреплен ротор. Когда внешняя трубка разрезана, ротор может свободно вращаться на подшипнике из нанотрубок.

На этом рендере можно увидеть процесс и технологию.

См. Также

Компоненты:

Ученые и инженеры:

Заявки:

Другое:

Внешние ссылки

Учебники

  • Шейнфилд Д.J., Industrial Electronics for Engineers, Chemists, and Technician, William Andrew Publishing, Norwich, NY, 2001. Самоучитель, в котором кратко рассматриваются электродвигатели, трансформаторы, регуляторы скорости, коды проводки и заземление, транзисторы, цифровые, и т. д. Легко читать и понимать, вплоть до элементарного уровня по каждому предмету, не подходящий справочник для технологов, уже работающих в любой из этих областей.
  • Fitzgerald / Kingsley / Kusko (Fitzgerald / Kingsley / Umans в более поздние годы), * Electric Machinery , классический текст для младших и старших студентов-электриков.Первоначально опубликовано в 1952 году, 6-е издание вышло в 2002 году. Авторы по-прежнему указаны как Фицджеральд / Кингсли / Уманс, хотя Фицджеральд и Кингсли уже скончались.
  • Bedford, B.D .; Hoft, R.G. и др. (1964). Принципы инверторных схем . Нью-Йорк: John Wiley & Sons, Inc .. 0 471 06134 4. (цепи инвертора используются для управления скоростью двигателя с переменной частотой)
  • Б. Р. Пелли, "Тиристорные преобразователи с фазовым управлением и циклоконвертеры: работа, управление и производительность" (Нью-Йорк: Джон Вили, 1971).

Список литературы

  • Дональд Г. Финк и Х. Уэйн Бити, Стандартное руководство для инженеров-электриков , одиннадцатое издание , МакГроу-Хилл, Нью-Йорк, 1978, ISBN 007020974X.
  • Эдвин Дж. Хьюстон и Артур Кеннелли, Последние типы динамо-электрических машин , авторское право American Technical Book Company 1897, опубликовано P.F. Кольер и сыновья Нью-Йорк, 1902 год
  • Купхальдт, Тони Р. (2000-2006). «Глава 13 ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА», Уроки электрических цепей - Том II .Проверено 11 апреля 2006.
  • А. О. Смит: переменного и постоянного тока электродвигателей. Проверено 11 апреля 2006.

Электродвигатели | Древо познания вики

Анимация, показывающая работу щеточного электродвигателя постоянного тока.

Электродвигатель - это электрическая машина, преобразующая электрическую энергию в механическую. Большинство электродвигателей работают за счет взаимодействия между магнитным полем электродвигателя и электрическим током в проволочной обмотке, создавая силу в виде вращения вала.Электродвигатели могут питаться от источников постоянного тока (DC), таких как батареи, автомобили или выпрямители, или от источников переменного тока (AC), таких как электросеть, инверторы или электрические генераторы. Электрический генератор механически идентичен электродвигателю, но работает в обратном направлении, преобразовывая механическую энергию в электрическую.

Электродвигатели можно классифицировать по таким критериям, как тип источника питания, внутренняя конструкция, применение и тип выходного движения.В дополнение к типам переменного и постоянного тока двигатели могут быть щеточными или бесщеточными, могут иметь различную фазу (см. Однофазные, двухфазные или трехфазные) и могут иметь воздушное или жидкостное охлаждение. Двигатели общего назначения со стандартными размерами и характеристиками обеспечивают удобную механическую мощность для промышленного использования. Самые большие электродвигатели используются для движения судов, сжатия трубопроводов и гидроаккумулирующих устройств с номинальной мощностью до 100 мегаватт. Электродвигатели используются в промышленных вентиляторах, нагнетателях и насосах, станках, бытовых приборах, электроинструментах и ​​дисководах.Маленькие моторы можно найти в электрических часах.

В некоторых приложениях, например, при рекуперативном торможении с помощью тяговых двигателей, электродвигатели могут использоваться в обратном направлении в качестве генераторов для восстановления энергии, которая в противном случае могла бы быть потеряна в виде тепла и трения.

Электродвигатели создают линейную или вращательную силу (крутящий момент) и отличаются от таких устройств, как магнитные соленоиды и громкоговорители, которые преобразуют электричество в движение, но не создают полезную механическую силу, которые соответственно называются исполнительными механизмами и преобразователями.

Вид в разрезе статора асинхронного двигателя.

Компоненты

Ротор электродвигателя (слева) и статор (справа)

Ротор

Основные статьи: Ротор (электрический)

В электродвигателе движущейся частью является ротор, который вращает вал для передачи механической энергии. В ротор обычно проложены проводники, по которым проходят токи, которые взаимодействуют с магнитным полем статора, создавая силы, вращающие вал.В качестве альтернативы некоторые роторы несут постоянные магниты, а статор удерживает проводники.

Подшипники

Ротор поддерживается подшипниками, которые позволяют ротору вращаться вокруг своей оси. Подшипники, в свою очередь, поддерживаются корпусом двигателя. Вал двигателя проходит через подшипники за пределы двигателя, где действует нагрузка. Поскольку силы нагрузки действуют за пределы самого крайнего подшипника, считается, что нагрузка составляет , консольная .

Статор

Основные статьи: Статор

Статор является неподвижной частью электромагнитной цепи двигателя и обычно состоит из обмоток или постоянных магнитов.Сердечник статора состоит из множества тонких металлических листов, называемых пластинами. Ламинирование используется для уменьшения потерь энергии, которые могут возникнуть при использовании твердого сердечника.

Воздушный зазор

Расстояние между ротором и статором называется воздушным зазором. Воздушный зазор имеет важное значение и, как правило, должен быть как можно меньше, поскольку большой зазор оказывает сильное отрицательное влияние на производительность. Это основной источник низкого коэффициента мощности, с которым работают двигатели. Ток намагничивания увеличивается с увеличением воздушного зазора.По этой причине воздушный зазор должен быть минимальным. Очень маленькие зазоры могут создавать механические проблемы в дополнение к шуму и потерям.

Явнополюсный ротор

Обмотки

Основные статьи: Обмотки

Обмотки - это провода, которые уложены в катушки, обычно намотанные вокруг многослойного магнитного сердечника из мягкого железа, чтобы образовывать магнитные полюса при возбуждении током.

Электрические машины бывают двух основных конфигураций полюсов магнитного поля: явнополюсные - и несоприкасающиеся полюса .В явнополюсной машине магнитное поле полюса создается обмоткой, намотанной вокруг полюса под лицевой стороной полюса. В машине с несоциальными полюсами , или распределенном поле, или круглороторной машине, обмотка распределена в пазах на лицевой стороне полюса. Двигатель с экранированными полюсами имеет обмотку вокруг части полюса, которая задерживает фазу магнитного поля для этого полюса.

У некоторых двигателей есть проводники, которые состоят из более толстого металла, например стержней или листов металла, обычно меди или алюминия.Обычно они питаются от электромагнитной индукции.

Коммутатор

Основные статьи: Коммутатор (электрический)

Маленький двигатель постоянного тока игрушки с его коммутатором

Коммутатор - это механизм, используемый для переключения входа большинства машин постоянного тока и некоторых машин переменного тока. Он состоит из сегментов контактных колец, изолированных друг от друга и от вала. Ток якоря двигателя подается через неподвижные щетки, контактирующие с вращающимся коммутатором, что вызывает требуемое изменение направления тока и подает мощность на машину оптимальным образом, когда ротор вращается от полюса к полюсу.В отсутствие такого реверсирования тока двигатель остановился бы. В свете усовершенствованных технологий в полях электронного контроллера, бессенсорного управления, асинхронного двигателя и двигателя с постоянными магнитами, асинхронные двигатели с внешней коммутацией и двигатели с постоянными магнитами вытесняют двигатели с электромеханической коммутацией.

Электромагнетизм

Сила и крутящий момент

Основное назначение подавляющего большинства электродвигателей в мире - электромагнитное возбуждение относительного движения в воздушном зазоре между статором и ротором для создания полезного крутящего момента или линейной силы.

Согласно закону силы Лоренца сила проводника обмотки может быть просто выражена как:

или более широко, для работы с проводниками любой геометрии:

Наиболее общие подходы к вычислению сил в двигателях используют тензоры.

Мощность

Где об / мин - частота вращения вала, а T - крутящий момент, механическая выходная мощность двигателя P em определяется выражением,

в британских единицах, где Т выражается в фут-фунтах,

(лошадиные силы) и,

в единицах СИ с угловой скоростью вала, выраженной в радианах в секунду, и T, выраженным в ньютон-метрах,

(Вт).

Для линейного двигателя с силой F, выраженной в ньютонах, и скоростью v, выраженной в метрах в секунду,

(Вт).

В асинхронном или асинхронном двигателе соотношение между скоростью двигателя и мощностью воздушного зазора без учета скин-эффекта определяется следующим образом:

, где
R r - сопротивление ротора
I r 2 - квадрат индуцированного тока в роторе
с - пробуксовка мотора; я.е., разница между синхронной скоростью и скоростью скольжения, которая обеспечивает относительное движение, необходимое для индукции тока в роторе.

Задняя ЭДС

Основные статьи: Электродвижущая сила

Поскольку обмотки якоря постоянного или универсального двигателя движутся через магнитное поле, в них индуцируется напряжение. Это напряжение имеет тенденцию противодействовать напряжению питания двигателя и поэтому называется «противоэлектродвижущей силой (ЭДС)».Напряжение пропорционально скорости вращения двигателя. Обратная ЭДС двигателя плюс падение напряжения на внутреннем сопротивлении обмотки и щетках должны равняться напряжению на щетках. Это обеспечивает основной механизм регулирования скорости в двигателе постоянного тока. Если механическая нагрузка увеличивается, двигатель замедляется; в результате возникает ЭДС нижней части спины, и больше тока потребляется от источника питания. Этот увеличенный ток обеспечивает дополнительный крутящий момент для уравновешивания новой нагрузки.

В машинах переменного тока иногда полезно учитывать источник обратной ЭДС внутри машины; например, это особенно важно при точном регулировании скорости асинхронных двигателей на частотно-регулируемых приводах.

Убытки

Потери двигателя в основном связаны с резистивными потерями в обмотках, потерями в сердечнике и механическими потерями в подшипниках, а также аэродинамическими потерями, особенно при наличии охлаждающих вентиляторов.

Потери также возникают при коммутации, искрообразовании в механических коммутаторах и электронных коммутаторах, а также при рассеивании тепла.

Эффективность

Для расчета КПД двигателя механическая выходная мощность делится на входную электрическую:

,

где - эффективность преобразования энергии, - входная электрическая мощность и - механическая выходная мощность:

где - входное напряжение, - входной ток, - выходной крутящий момент и - выходная угловая скорость.Можно аналитически вывести точку максимальной эффективности. Обычно он составляет менее 1/2 крутящего момента при остановке.

Различные регулирующие органы во многих странах приняли и внедрили законы, поощряющие производство и использование электродвигателей с более высоким КПД.

Коэффициент качества

Основные статьи: Фактор качества

Эрик Лэйтуэйт предложил метрику для определения «качества» электродвигателя:

Где:

- коэффициент качества (коэффициенты выше 1, вероятно, будут эффективными)
- площади поперечного сечения магнитной и электрической цепи
- длины магнитной и электрической цепей
- проницаемость керна
- это угловая частота, на которой приводится двигатель.

Исходя из этого, он показал, что наиболее эффективные двигатели, вероятно, имеют относительно большие магнитные полюса.Однако это уравнение напрямую относится только к двигателям без ПМ.

Основные категории

Электродвигатели работают на трех различных физических принципах: магнетизме, электростатике и пьезоэлектричестве. Безусловно, наиболее распространенным является магнетизм.

В магнитных двигателях магнитные поля образуются как в роторе, так и в статоре. Продукт между этими двумя полями создает силу и, следовательно, крутящий момент на валу двигателя. Одно или оба этих поля должны изменяться при вращении двигателя.Это делается путем включения и выключения шестов в нужное время или изменения силы шеста.

Основными типами являются двигатели постоянного и переменного тока, причем первые все чаще заменяются вторыми.

Электродвигатели переменного тока бывают асинхронными или синхронными.

После запуска синхронному двигателю требуется синхронизация с синхронной скоростью движущегося магнитного поля для всех нормальных условий крутящего момента.

В синхронных машинах магнитное поле должно создаваться средствами, отличными от индукции, такими как отдельно возбужденные обмотки или постоянные магниты.

Двигатель с дробной мощностью (FHP) либо имеет номинальную мощность ниже 1 лошадиных сил (0,746 кВт), либо изготавливается с размером стандартной рамы меньше, чем стандартный двигатель мощностью 1 л.с. Многие бытовые и промышленные двигатели относятся к классу маломощных.

Основные категории
по
Тип коммутации двигателя
Самокоммутатор с внешней коммутацией
Механические -
Коллекторные двигатели
Электронный - Коммутатор
(ЕС)
Двигатели [нижняя альфа 1]

Асинхронные
Машины

Синхронные
Машины 2
AC [нижний альфа 2] DC AC 5 , 6 AC 6
Двигатель постоянного тока с электрическим возбуждением
:
  • Отдельно
    возбуждено
  • серии
  • Шунт
  • Соединение

Двигатель постоянного тока с постоянными магнитами

С ротором PM:

С ферромагнитным ротором:

Трехфазные двигатели:

Двигатели переменного тока: 10

Трехфазные двигатели:

Двигатели переменного тока: 10

  • Раздельный конденсатор
  • Гистерезис
  • Шаговый
  • SyRM
  • SyRM-PM hybrid
Простая электроника Выпрямитель,
линейный транзистор (ы)
или прерыватель постоянного тока
Более сложная
электроника
Самая совершенная электроника
(VFD), если таковая имеется

Примечания:

  1. Вращение не зависит от частоты переменного напряжения.
  2. Вращение равно синхронной скорости (скорость двигателя-статора-поля).
  3. В SCIM вращение с фиксированной скоростью равно синхронной скорости, за вычетом скорости скольжения.
  4. В системах рекуперации энергии с противоскользящим покрытием WRIM обычно используется для запуска двигателя, но может использоваться для изменения скорости нагрузки.
  5. Работа с переменной скоростью.
  6. В то время как приводы с асинхронным и синхронным двигателем обычно имеют шестиступенчатый или синусоидальный выход, приводы с BLDC обычно имеют форму сигнала трапециевидного тока; Однако поведение как синусоидальных, так и трапециевидных машин с постоянным магнитом идентично с точки зрения их фундаментальных аспектов.
  7. При работе с регулируемой скоростью WRIM используется в системах рекуперации энергии скольжения и в индукционных машинах с двойной подачей.
  8. Клетчатая обмотка - это короткозамкнутый короткозамкнутый ротор с короткозамкнутым ротором, обмотка с обмоткой подключена снаружи через контактные кольца.
  9. В основном однофазные, некоторые - трехфазные.

Сокращения:

Электродвигатель с автоматическим переключением

Щеточный двигатель постоянного тока

Основные статьи: Двигатель постоянного тока

По определению, все двигатели постоянного тока с автоматической коммутацией работают от электроэнергии постоянного тока.Большинство двигателей постоянного тока представляют собой типы с маленькими постоянными магнитами (PM). Они содержат щеточную внутреннюю механическую коммутацию для реверсирования тока обмоток двигателя синхронно с вращением.

Двигатель постоянного тока с электрическим возбуждением
Основные статьи: Щеточный электродвигатель постоянного тока

Работа щеточного электродвигателя с двухполюсным ротором и статором с постоянными магнитами. («N» и «S» обозначают полярности на внутренних сторонах магнитов; внешние грани имеют противоположные полярности.)

Коммутируемый двигатель постоянного тока имеет набор вращающихся обмоток, намотанных на якорь, установленный на вращающемся валу.На валу также находится коммутатор, долговечный поворотный электрический переключатель, который периодически меняет направление тока в обмотках ротора по мере вращения вала. Таким образом, каждый щеточный двигатель постоянного тока имеет переменный ток, протекающий через его вращающиеся обмотки. Ток протекает через одну или несколько пар щеток, установленных на коммутаторе; щетки подключают внешний источник электроэнергии к вращающемуся якорю.

Вращающийся якорь состоит из одной или нескольких катушек проволоки, намотанных на ламинированный магнитно «мягкий» ферромагнитный сердечник.Ток от щеток протекает через коммутатор и одну обмотку якоря, что делает его временным магнитом (электромагнитом). Магнитное поле, создаваемое якорем, взаимодействует со стационарным магнитным полем, создаваемым либо PM, либо другой обмоткой (катушкой возбуждения), являющейся частью корпуса двигателя. Сила между двумя магнитными полями приводит к вращению вала двигателя. Коммутатор переключает питание на катушки при вращении ротора, предотвращая полное совпадение магнитных полюсов ротора с магнитными полюсами поля статора, так что ротор никогда не останавливается (как это делает стрелка компаса), а скорее продолжает вращаться. пока подано питание.

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. Искры создаются щетками, замыкая и размыкая цепи через обмотки ротора, когда щетки пересекают изоляционные зазоры между секциями коллектора. В зависимости от конструкции коммутатора, это может включать в себя замыкание щеток между соседними секциями - и, следовательно, концами катушки - на мгновение при пересечении зазоров. Кроме того, индуктивность катушек ротора заставляет напряжение на каждой из них повышаться при размыкании цепи, увеличивая искрение щеток.Это искрение ограничивает максимальную скорость машины, так как слишком быстрое искрение приведет к перегреву, разрушению или даже расплавлению коллектора. Плотность тока на единицу площади щеток в сочетании с их удельным сопротивлением ограничивает мощность двигателя. Замыкание и размыкание электрического контакта также вызывает электрический шум; искрение порождает радиопомехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию (на более крупных двигателях) или замене (на небольших двигателях).Сборка коммутатора на большом двигателе - дорогостоящий элемент, требующий точной сборки многих деталей. В небольших двигателях коллектор обычно постоянно встроен в ротор, поэтому его замена обычно требует замены всего ротора.

Хотя большинство коммутаторов имеют цилиндрическую форму, некоторые из них представляют собой плоские диски, состоящие из нескольких сегментов (обычно не менее трех), установленных на изоляторе.

Большие щетки желательны для большей площади контакта щеток, чтобы максимизировать мощность двигателя, но маленькие щетки желательны для малой массы, чтобы максимизировать скорость, с которой двигатель может работать без чрезмерного подпрыгивания щеток и искрения.(Маленькие щетки также желательны для более низкой стоимости.) Более жесткие щеточные пружины также могут использоваться, чтобы заставить щетки заданной массы работать с более высокой скоростью, но за счет больших потерь на трение (более низкая эффективность) и ускоренного износа щеток и коллектора. Следовательно, конструкция щетки двигателя постоянного тока предполагает компромисс между выходной мощностью, скоростью и эффективностью / износом.

Машины постоянного тока определяются следующим образом:

  • Цепь якоря - обмотка, по которой передается ток нагрузки, которая может быть как неподвижной, так и вращающейся частью двигателя или генератора.
  • Цепь возбуждения - Набор обмоток, создающих магнитное поле, так что электромагнитная индукция может иметь место в электрических машинах.
  • Коммутация: Механический метод, с помощью которого может быть достигнуто выпрямление или из которого может быть получен постоянный ток в машинах постоянного тока.

Есть пять типов щеточных двигателей постоянного тока:

  • Двигатель постоянного тока с параллельной обмоткой
  • Двигатель постоянного тока с последовательной обмоткой
  • Составной двигатель постоянного тока
  • (две конфигурации):
    • Суммарное соединение
    • Дифференциально сложенный
  • Двигатель постоянного тока с постоянными магнитами (не показан)
  • Отдельно возбужденный (не показан).
Двигатель постоянного тока с постоянным магнитом
Основные статьи: Электродвигатель с постоянными магнитами

Двигатель с постоянными магнитами не имеет обмотки возбуждения на корпусе статора, а полагается на постоянные магниты для создания магнитного поля, с которым поле ротора взаимодействует для создания крутящего момента. Компенсирующие обмотки, включенные последовательно с якорем, могут использоваться на больших двигателях для улучшения коммутации под нагрузкой. Поскольку это поле является фиксированным, его нельзя настроить для управления скоростью.Поля с постоянными магнитами (статоры) удобны в миниатюрных двигателях, чтобы исключить потребление энергии обмоткой возбуждения. Большинство более крупных двигателей постоянного тока относятся к типу "динамо", которые имеют обмотки статора. Исторически сложилось так, что PM нельзя было заставить сохранять высокий поток, если они были разобраны; обмотки возбуждения были более практичными для получения необходимого количества магнитного потока. Однако большие PM являются дорогостоящими, опасными и сложными в сборке; это благоприятствует намотанным полям для больших машин.

Чтобы минимизировать общий вес и размер, миниатюрные двигатели с постоянными магнитами могут использовать высокоэнергетические магниты, сделанные из неодима или других стратегических элементов; большинство из них - сплав неодим-железо-бор.Благодаря своей более высокой плотности потока электрические машины с высокоэнергетическими ФЭУ по крайней мере конкурентоспособны со всеми оптимально спроектированными синхронными и индукционными электрическими машинами с однополярным питанием. Миниатюрные двигатели напоминают структуру на иллюстрации, за исключением того, что у них есть по крайней мере три полюса ротора (для обеспечения запуска, независимо от положения ротора), а их внешний корпус представляет собой стальную трубку, которая магнитно связывает внешние части изогнутых магнитов поля.

Электродвигатель с электронным коллектором (EC)

Бесщеточный двигатель постоянного тока
Основные статьи: Бесщеточный электродвигатель постоянного тока

Некоторые проблемы щеточного электродвигателя постоянного тока устранены в конструкции BLDC.В этом двигателе механический «вращающийся переключатель» или коммутатор заменен внешним электронным переключателем, синхронизированным с положением ротора. Двигатели BLDC обычно имеют КПД 85–90% или более. Сообщается о КПД двигателя BLDC до 96,5%, тогда как электродвигатели постоянного тока с щеткой обычно имеют КПД 75–80%.

Характерная форма сигнала трапециевидной противодвижущей силы (CEMF) двигателя BLDC частично обусловлена ​​равномерным распределением обмоток статора, а частично - размещением постоянных магнитов ротора.Также известные как двигатели постоянного тока с электронной коммутацией или двигатели постоянного тока наизнанку, обмотки статора трапециевидных двигателей BLDC могут быть однофазными, двухфазными или трехфазными и использовать датчики на эффекте Холла, установленные на их обмотках для определения положения ротора и недорогие закрытые. -контурное управление электронным коммутатором.

Двигатели

BLDC обычно используются там, где необходимо точное управление скоростью, например, в дисководах компьютеров или в видеомагнитофонах, в шпинделях в приводах компакт-дисков, компакт-дисков (и т. Д.), А также в механизмах офисных товаров, таких как вентиляторы, лазерные устройства. принтеры и копировальные аппараты.У них есть несколько преимуществ перед обычными моторами:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока. Такой холодный режим работы приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы двигателя BLDC может быть значительно больше по сравнению с двигателем постоянного тока, использующим щетки и коммутатор. Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; Без коммутатора или щеток двигатель BLDC может использоваться в электрически чувствительных устройствах, таких как аудиооборудование или компьютеры.
  • Те же датчики на эффекте Холла, которые обеспечивают коммутацию, также могут обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром (сервоуправлением). В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен», а также для обеспечения обратной связи по скорости вращения.
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Двигатели
  • BLDC не имеют шансов на искрение, в отличие от щеточных двигателей, что делает их более подходящими для сред с летучими химическими веществами и топливом.Кроме того, искрение генерирует озон, который может накапливаться в плохо вентилируемых зданиях, что может нанести вред здоровью людей.
  • Двигатели
  • BLDC обычно используются в небольшом оборудовании, таком как компьютеры, и обычно используются в вентиляторах, чтобы избавиться от нежелательного тепла.
  • Это также очень тихие двигатели с акустической точки зрения, что является преимуществом при использовании в оборудовании, подверженном вибрации.

Мощность современных двигателей BLDC варьируется от долей ватта до многих киловатт. В электромобилях используются более крупные двигатели BLDC мощностью примерно до 100 кВт.Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Импульсный реактивный двигатель

6/4-полюсный реактивный электродвигатель

Основные статьи: Импульсный реактивный электродвигатель

SRM не имеет щеток или постоянных магнитов, а ротор не имеет электрических токов. Вместо этого крутящий момент возникает из-за небольшого несовпадения полюсов ротора с полюсами статора. Ротор выравнивается с магнитным полем статора, в то время как обмотки возбуждения статора последовательно возбуждаются для вращения поля статора.

Магнитный поток, создаваемый обмотками возбуждения, следует по пути наименьшего магнитного сопротивления, что означает, что магнитный поток будет проходить через полюса ротора, которые находятся ближе всего к находящимся под напряжением полюсам статора, тем самым намагничивая эти полюса ротора и создавая крутящий момент. Когда ротор вращается, различные обмотки будут запитаны, поддерживая вращение ротора.

SRM используются в некоторых приборах и транспортных средствах.

Универсальный двигатель переменного / постоянного тока

Основные статьи: Универсальный мотор

Современный недорогой универсальный мотор, от пылесоса.Обмотки возбуждения окрашены в темно-медный цвет с обеих сторон назад. Ламинированный сердечник ротора - серый металлик с темными пазами для намотки катушек. Коммутатор (частично скрыт) потемнел от использования; он направлен вперед. Большая коричневая деталь из формованного пластика на переднем плане поддерживает направляющие и щетки (с обеих сторон), а также передний подшипник двигателя.

Коммутируемый электродвигатель с последовательным или параллельным возбуждением с электрическим возбуждением называется универсальным электродвигателем, поскольку он может быть разработан для работы от источника переменного или постоянного тока.Универсальный двигатель может хорошо работать на переменном токе, потому что ток как в поле, так и в катушках якоря (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) синхронно, и, следовательно, результирующая механическая сила будет возникать в постоянном направлении вращения. .

Универсальные двигатели, работающие при нормальной частоте электросети, часто имеют мощность менее 1000 Вт. Универсальные двигатели также легли в основу традиционного железнодорожного тягового двигателя на электрических железных дорогах.В этом приложении использование переменного тока для питания двигателя, изначально предназначенного для работы на постоянном токе, привело бы к потерям эффективности из-за нагрева вихревым током их магнитных компонентов, особенно полюсных наконечников поля двигателя, которые для постоянного тока использовали бы твердые ( неламинированный) чугун и сейчас они используются редко.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют некоторые характеристики, более общие для двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения.Отрицательный аспект - проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. Такие двигатели используются в устройствах, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами и часто имеют высокие требования к пусковому крутящему моменту. Несколько ответвлений на катушке возбуждения обеспечивают (неточное) ступенчатое регулирование скорости. Бытовые блендеры, рекламирующие много скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (в результате чего двигатель работает от полуволнового выпрямленного переменного тока).Универсальные двигатели также подходят для электронного управления скоростью и, как таковые, являются идеальным выбором для таких устройств, как бытовые стиральные машины. Двигатель можно использовать для перемешивания барабана (как вперед, так и назад) путем переключения обмотки возбуждения относительно якоря.

В то время как SCIM не могут вращать вал быстрее, чем разрешено частотой сети, универсальные двигатели могут работать на гораздо более высоких скоростях. Это делает их полезными для таких приборов, как блендеры, пылесосы и фены, где желательны высокая скорость и легкий вес.Они также обычно используются в портативных электроинструментах, таких как дрели, шлифовальные машины, циркулярные и лобзиковые пилы, где характеристики двигателя хорошо работают. Моторы многих пылесосов и триммеров для сорняков превышают 10 000 об / мин, в то время как многие аналогичные миниатюрные измельчители превышают 30 000 об / мин.

Банкноты

  1. ↑ Термин «электродвигатель с электронным коллектором» (ECM) отождествляется с отраслью отопления, вентиляции и кондиционирования (HVAC), причем различие между BLDC и BLAC в этом контексте рассматривается как функция степени сложности привода ECM с Приводы BLDC обычно имеют простой однофазный скалярный регулируемый по напряжению трапециевидный выходной сигнал тока, включающий конструкцию двигателя с постоянными магнитами на поверхности, а приводы BLAC имеют тенденцию к более сложной трехфазной векторно-управляемой синусоидальной форме сигнала с регулируемым током, включающей внутреннюю конструкцию двигателя с постоянными магнитами.
  2. ↑ Универсальные и отталкивающие двигатели являются частью класса двигателей, известных как коллекторные двигатели переменного тока, который также включает в себя следующие в значительной степени устаревшие типы двигателей: однофазные - прямые и компенсированные последовательные двигатели, железнодорожные двигатели; трехфазный - различные типы отталкивающих двигателей, серийный двигатель с переключением щеток, многофазный шунт с переключением щеток или двигатель Шраге, двигатель Fynn-Weichsel.

Список литературы

Список литературы

Эта страница использует контент, который, хотя изначально был импортирован из Википедии , статья Электродвигатель , возможно, была очень сильно модифицирована, возможно, даже до такой степени, что она полностью не соответствовала исходной статье в Википедии.
Список авторов можно увидеть на страницах истории . Текст Википедии доступен по лицензии Creative Commons License .

Лаборатория автомобильной электроники Clemson: Асинхронные двигатели переменного тока

Асинхронные двигатели переменного тока

Базовое описание

Двигатели переменного тока - это электрические машины, преобразующие электрическую энергию (поставляемые в виде синусоидально изменяющегося во времени или «переменного» тока) до вращательной механической энергии посредством взаимодействие магнитных полей и проводников.В отличие от двигателей, которые работают напрямую от постоянного тока, Двигатели переменного тока обычно не требуют щеток или коммутаторов. Одним из типов двигателей переменного тока является асинхронный или асинхронный двигатель переменного тока.

Асинхронные или асинхронные двигатели состоят из статора с обмоткой, способной производить вращающийся магнитный поле, и ротор с закороченной обмоткой проводника, в котором ток индуцируется вращающееся магнитное поле. Поля, создаваемые током, наведенным в ротор создает восстанавливающий момент, отвечающий за вращение ротора.Вращающееся магнитное поле, создаваемое статором, легко настраивается с помощью многофазного источника переменного тока.

Термин «асинхронный» относится к тому факту, что вращение ротора всегда медленнее, чем скорость вращения магнитного поля. Разница в скорости поля и ротора называется «скольжением», а крутящий момент двигателя пропорциональна этому скольжению. Таким образом, частота вращения двигателей зависит как от частоты возбуждения, так и от нагрузки.

Синхронная скорость или теоретическая максимальная скорость асинхронный двигатель зависит от частоты питания (например, часто 60 Гц в США) и количество полюсов. Асинхронные двигатели часто называемые двигателями с короткозамкнутым ротором из-за конструкции обмотки ротора.

Асинхронный двигатель запускается с максимальным скольжением и имеет склонность рисовать изначально очень высокий ток, особенно при запуске с высокой нагрузкой. Это приводит к необходимости иметь отдельный пусковой механизм.В случае однофазных двигателей переменного тока сначала необходимо привести в движение ротор, чтобы запустить двигатель. Это достигается за счет использования механического пусковое усилие или с помощью отдельной пусковой обмотки.

Хотя большинство электрических и гибридно-электрических автомобилей используют синхронные двигатели переменного тока для главного привода, Tesla Roadster, Tesla Model S, электрический привод Mercedes B-Class и некоторые другие используют асинхронный двигатель переменного тока.

Производителей
Baldor, Bircraft, Century, Circor, Emerson, Empire Magnetics, Fasco, Groschopp, Kinetek, Leeson, Met Motors, Motion Control Group, North American Electric, Pittman, Powertec, Remy, Siemens, Sterling Electric, Teco, Toshiba, WEG, Чжунда
Для получения дополнительной информации
[1] Асинхронный двигатель, Википедия.
[2] Двигатели переменного тока, CoolMagnetMan.com.
[3] Induction Motor Action, учебник на веб-сайте HyperPhysics Университета штата Джорджия.
[4] Сборка электродвигателя, YouTube, 15 января 2009 г.
[5] Трехфазный асинхронный двигатель переменного тока, Freescale.com.
[6] AC Motors, YouTube, 19 мая 2010 г.
[7] Squirrel Cage Motors, YouTube, 18 июля 2010 г.

Электродвигатели - Restarters Wiki

На этой странице рассказывается об электродвигателях различных типов, о том, как их идентифицировать и понимать их типичные виды отказов, а также как их тестировать.

Сводка

Многие устройства и приборы содержат электродвигатели. Эта страница поможет вам понять, как они работают, что может пойти не так и, возможно, как их исправить.

Безопасность

Двигатели в бытовых приборах могут быть довольно мощными и вместе с соответствующими шестернями и механизмами могут вызывать травмы. Как и все сетевые электроприборы, перед началом работы обязательно отключите их от сети. Прибор должен пройти испытание PAT как до, так и после попытки разборки или ремонта.

Типы двигателей

Существует много типов электродвигателей, но почти все они делятся на три основных типа. Все они состоят из двух основных компонентов:

  • Ротор - бит, который вращается, и
  • Статор - бит, который не вращается.

Все они полагаются на электромагнетизм . Когда электрический ток течет через катушку с проволокой, он создает магнитное поле. Катушка обычно наматывается на железный сердечник, который затем намагничивается, что значительно увеличивает магнетизм.

Двигатели постоянного тока и универсальные (переменного / постоянного тока)

Мотор универсальный, в разобранном виде. Универсальный двигатель, показывающий ротор с коммутатором. Универсальный двигатель, показывающий статор со щетками на дальнем конце.

Статор представляет собой постоянный магнит или электромагнит.

В простейших игрушечных двигателях ротор представляет собой другую катушку или целый ряд катушек во всех реальных двигателях, намотанных на многослойный железный сердечник.

Пара угольных щеток подает ток на ротор через коммутатор , который постоянно переключает ток в роторе на те катушки, которые находятся под прямым углом к ​​катушке статора в любой данный момент.Это создает постоянное вращающее усилие.

В электродвигателях с электронной коммутацией или бесщеточных ротор часто представляет собой постоянный магнит. Электронные схемы определяют положение ротора и постоянно переключают ток в серии катушек статора, чтобы вращать ротор. Это устраняет необходимость в электрическом подключении к ротору и, таким образом, повышает надежность.

Двигатели постоянного тока и универсальные двигатели работают одинаково хорошо, как динамо-машины, и генерируют напряжение, противоположное приложенному напряжению.Это известно как «обратная ЭДС (электродвижущая сила)». При небольшой нагрузке эти двигатели разгоняются до тех пор, пока не будут генерировать почти столько же напряжения, сколько приложено. Следовательно, легко изменять скорость, просто изменяя приложенное напряжение.

Коллектор и щетки (кроме двигателей с электрической коммутацией) подвержены износу и могут образовывать искры. Поэтому такие двигатели не используются там, где требуется высочайшая надежность или существует риск возгорания или взрыва из-за горючих газов.

Динамо-эффект минимален при первом запуске двигателя и до того, как он достигнет полной скорости. Это позволяет двигателю потреблять сильный ток и генерировать очень большой пусковой момент (то есть вращающее усилие). Это особенно полезно в электромобилях и поездах, где требуется мощная сила для первоначального приведения их в движение.

Двигатель без сердечника - ротор и корпус с постоянным магнитом, видимым внутри корпуса.

В двигателе без сердечника обмотки ротора сформированы в полый цилиндр, связанный смолой - железного сердечника нет.Он вращается вокруг статического постоянного магнита, расположенного внутри него. Магнитное поле проходит от одного полюса магнита через обмотки ротора, а затем возвращается через стальной корпус двигателя, снова через противоположную сторону ротора и, следовательно, обратно к другому полюсу магнита.

Двигатель без сердечника - Коммутатор и щетки.

Ток подается на ротор через щетки и коммутатор, как и в любом другом двигателе постоянного тока или универсальном двигателе. Отсутствие железного сердечника повышает эффективность, снижает вес и снижает инерцию, обеспечивая очень быстрое ускорение и замедление.

Двигатели без сердечника часто используются в небольших квадрокоптерах и других игрушках, а также в медицинском оборудовании, робототехнике и везде, где требуется небольшой высокоэффективный и отзывчивый двигатель.

В большинстве ручных электроинструментов используются универсальные двигатели. Компьютерные вентиляторы, двигатели с жесткими дисками и более крупные модели квадрокоптеров и пультов дистанционного управления обычно используют двигатели с электронной коммутацией.

Есть отличная статья с видео, описывающим и демонстрирующим, как работает двигатель постоянного тока.

Асинхронные двигатели

Они проще по конструкции, но их не так легко понять.

Если вы перемещаете магнит по куску металла, движущееся магнитное поле генерирует циркулирующий электрический ток в металле. Этот ток, в свою очередь, создает магнитное поле, которое взаимодействует с приложенным полем таким образом, что создает сопротивление, препятствующее движению.

Небольшой асинхронный двигатель с экранированными полюсами в разобранном виде.

Статор состоит из двух или более катушек, созданных для создания вращающегося магнитного поля.Ротор содержит несколько толстых медных петель для максимального сопротивления, создаваемого вращающимся магнитным полем. Ротор ускоряется до тех пор, пока не начинает вращаться почти так же быстро, как вращающееся магнитное поле.

Асинхронные двигатели работают только от источника переменного тока (который меняет направление 100 раз в секунду), так как именно так статор может создавать вращающееся магнитное поле.

Поскольку частота источника переменного тока фиксирована, вы не можете легко изменить скорость асинхронного двигателя. Однако с 4 или 6 (или более) обмотками статора вместо 2 и путем переключения способа подачи питания переменного тока на них можно настроить вращающееся магнитное поле, вращающееся на половину, треть (или другое дробное значение). скорость.

В большинстве асинхронных двигателей статор создает больше восходящего и опускающегося магнитного поля, чем истинное вращающееся магнитное поле, но с небольшим скручиванием в одну сторону при движении вверх и в другую при движении вниз. Это означает, что пусковой момент низкий. Следовательно, они обычно используются там, где это не имеет значения, например в вентиляторе, который испытывает небольшое сопротивление воздуха, пока не достигнет полной скорости.

Асинхронный двигатель со стартерной обмоткой.

Есть несколько способов получения скрутки. В двигателе с экранированными полюсами толстая медная петля намотана вокруг части каждого полюса (как видно на первой фотографии).Это приводит к некоторой задержке намагничивания этой части полюса из-за нарастания тока в контуре, что дает необходимое скручивание. Медный контур расходует энергию, поэтому этот метод используется только в небольших двигателях, которые очень часто встречаются в настольных вентиляторах.

Двигатели большего размера имеют смещение второй обмотки статора относительно основной, на которую подается противофазный ток. Конденсатор (большой цилиндрический элемент, который нельзя не заметить) или иногда резистор обеспечивает фазовый сдвиг.На рисунке показан пример двигателя ротационной газонокосилки, на котором хорошо видна вторая обмотка, смещенная на 90 градусов.

(Интересной особенностью показанного двигателя является то, что он имел тормозной механизм, чтобы остановить вращение лезвия после отключения питания. На шпинделе виден металлический диск с пружиной под ним, которая прижимала его к трем видимым тормозным колодкам. вокруг подшипника.При подаче питания магнитное поле тянет этот диск вниз и от тормозных колодок.Корозия диска привела к тому, что тормозное действие стало чрезмерно сильным.Затем плоские поверхности на шпинделе стерли соответствующие плоские поверхности на пластиковом колесе, к которому было прикреплено лезвие. Из-за углового момента лезвия его стопорный болт ослаб.)

Вторая обмотка статора может тратить энергию после запуска двигателя и, следовательно, может быть отключена центробежным переключателем. В качестве альтернативы может быть термистор, который быстро нагревается при протекании тока, и при этом его сопротивление увеличивается, что снижает ток во второй обмотке статора.

Большие промышленные асинхронные двигатели мощностью несколько лошадиных сил часто получают питание от трехфазного источника питания. С 3 обмотками (или кратными 3), питаемыми от 3 фаз, они естественным образом создают вращающееся магнитное поле и, следовательно, самозапускаются.

Есть отличная статья с видео, описывающим и объясняющим, как работают асинхронные двигатели.

Синхронные двигатели

Они похожи на асинхронные двигатели тем, что статор создает вращающееся магнитное поле. Разница в том, что ротор представляет собой постоянный магнит и, следовательно, вынужден вращаться с той же скоростью, что и магнитное поле, вместо того, чтобы отставать по скорости, как в асинхронном двигателе.

Представьте себе две жестяные банки, одну внутри другой. Если вы заполните пространство между ними патокой и поверните внешнюю банку, она потянет за собой внутреннюю, даже если вы будете сопротивляться ее движению. Разница в скорости будет зависеть от применяемого вами сопротивления. Это похоже на асинхронный двигатель. Если вместо патоки вы прикрепите внутреннюю банку к внешней с помощью пружин, внутренняя банка будет вынуждена вращаться с той же скоростью, но будет растягивать пружины и отставать в своем положении, хотя и не по скорости, по мере увеличения сопротивления.Это похоже на синхронный двигатель.

Маленькие синхронные двигатели используются в электромеханических таймерах и часах, где их вращение привязано к частоте сети переменного тока. Крупные промышленные предприятия также иногда используют гораздо более крупные и мощные синхронные двигатели. Автомобильный генератор переменного тока и генераторы на электростанции - это синхронные двигатели, используемые в качестве генераторов.

Поскольку синхронный двигатель не работает должным образом, пока ротор не наберет нужную скорость, необходимо применить некоторые хитрые средства, чтобы запустить его.В небольших часовых и таймерных двигателях это обычно достигается за счет формы железа статора. По мере того, как магнитное поле от катушки статора меняет направление на противоположное с каждым циклом подачи переменного тока, изменение магнетизма постепенно распространяется через железо особой формы таким образом, что оно скручивается.

Бесщеточный двигатель - это фактически просто синхронный двигатель, приводимый в действие электронной схемой для управления обмотками статора и, таким образом, создания вращающегося магнитного поля.

Шаговые двигатели

Часто существует потребность в двигателе, который вместо непрерывного вращения может получить команду на вращение на заранее определенную величину и остановку.Примером может служить двигатель, который приводит в движение ролики подачи бумаги в принтере. Они должны продвигать бумагу на ширину печатающей головки и останавливаться после печати каждого ряда пикселей. Аналогичным образом, аналоговые кварцевые часы или часы обычно включают секундную стрелку на секунду каждую секунду. В обоих случаях используются шаговые двигатели.

Существуют разные конфигурации, но самая простая и легкая для понимания состоит из статора, состоящего из двух катушек, расположенных под прямым углом, и ротора с постоянным магнитом внутри них.Первоначально одна катушка находится под напряжением, и постоянный магнит выравнивается с ее магнитным полем. Если другая катушка также находится под напряжением, магнит повернется на 45 градусов в положение между двумя и завершит поворот на 90 градусов, когда первая катушка выключится. Повторное включение первой катушки в противоположном направлении приведет к тому, что ротор продолжит движение еще на 45 градусов и так далее. Таким образом, вал, прикрепленный к постоянному магниту, можно поворачивать на 45 градусов за раз по мере необходимости. Путем изменения последовательности его можно повернуть в обратном направлении, если это необходимо.

Диагностика и ремонт

Все типы двигателей могут заклинивать, если подшипники забиваются грязью или пылью, что легко может произойти в электроинструментах. Бритвы, электрические зубные щетки и кухонные приборы могут заклинивать из-за попадания воды и т. Д. Очистка может быть всем, что требуется, но в случае воды предотвратить повторение того же может быть непросто. Выясните, доступны ли запасные уплотнения. Застрявший подшипник часто можно освободить с помощью WD40, а дорожку качения, забитую пылью, можно очистить уайт-спиритом, но в любом случае важно смазать подходящим маслом или консистентной смазкой после очистки и высыхания, поскольку ни WD40, ни уайт-спирит не подходят. хорошие смазки.

Маленькие двигатели, рассчитанные на работу от батарей, часто не предназначены для разборки, хотя это можно сделать, согнув фиксирующие их выступы. Более крупные, например, предназначенные для работы от сети, часто можно разобрать, удалив два длинных болта, проходящих по всей их длине. В случае двигателей постоянного тока и универсальных двигателей при повторной сборке вам нужно будет снять щетки или удерживать их в стороне, чтобы задвинуть ротор на место с коллектором между ними.

В случае заклинивания двигатель потребляет сильный ток. Он спроектирован так, чтобы делать это мгновенно при запуске, но если его не повернуть, он может перегреться и повредить изоляцию, а в худшем случае - сжечь обмотки. Запах гари является явным признаком неисправности, а поврежденная изоляция может привести к нестабильной скорости. Если есть признаки ухудшения изоляции, двигатель следует утилизировать. (Специализированные фирмы перематывают большие промышленные двигатели, но вряд ли это будет рентабельным для отечественного двигателя и простой задачей, которую можно решить самостоятельно.)

При отсутствии видимых признаков износа стоит проверить обмотки мультиметром в диапазоне сопротивлений. Низкое показание является нормальным, поскольку приложенное напряжение ограничивается не сопротивлением обмоток, а динамо-эффектом, который всегда ему противодействует.

Распространенной неисправностью двигателей постоянного тока и универсальных двигателей является износ угольных щеток, которые соприкасаются с коммутатором, или грязный коммутатор. Чрезмерное искрение - верный признак того, что требуется срочное обслуживание.Щетки обычно прижимаются к коммутатору с помощью пружины, но они могут перестать поддерживать хороший контакт, если они изнашиваются сразу или если они не могут соскользнуть вниз в их корпусах по мере износа. Можно получить замену, но вам нужно будет тщательно выбрать правильный размер. Замены могут быть доступны для вашей конкретной марки и модели устройства, в противном случае тщательно измерьте старые щетки и их корпус, и вы сможете найти подходящие замены в Интернете. Если щетка изнашивается вплоть до пружины, искрение может необратимо повредить коммутатор.

В некоторых профессиональных и высококачественных электроинструментах для дома есть щетки, в которые вставлен подпружиненный пластиковый штифт. Когда уголь изнашивается до предела, штифт освобождается, отталкивая изношенную щетку от коллектора, чтобы предотвратить дальнейший износ и необратимые повреждения. Известно, что профессионалы выбрасывают дорогие электроинструменты, которые внезапно перестали работать по этой причине - это простое решение, если вы можете распознать проблему.

Асинхронные двигатели с экранированными полюсами обычно очень надежны, но конденсаторные, термисторные и центробежные механизмы запуска могут выйти из строя.Если есть конденсатор, он может показать явные признаки неисправности, в противном случае проверьте его, если сможете. По крайней мере, вы можете использовать мультиметр на диапазоне сопротивления, чтобы проверить, что он не закорочен.

Электродвигатель содержит много меди и железа - убедитесь, что вы утилизируете его ответственно!

Конструкция и работа трехфазного асинхронного двигателя на судне

Популярность трехфазных асинхронных двигателей на борту судов объясняется их простой, прочной конструкцией и высокой надежностью в морской среде.Асинхронный двигатель может использоваться в различных приложениях с различными требованиями к скорости и нагрузке.

Трехфазный источник питания переменного тока судового генератора может быть подключен к асинхронному двигателю переменного тока через стартер или любое другое устройство, например автотрансформатор, для улучшения характеристик крутящего момента и тока.

Дополнительная литература: Почему на кораблях номинальные значения трансформаторов и генераторов указаны в кВА?

Асинхронные двигатели

используются почти во всех системах машинного оборудования судна, таких как двигатель крана, гребной двигатель, двигатель нагнетателя, двигатель насоса забортной воды и даже небольшой синхронный двигатель.

Что такое асинхронный двигатель?

Асинхронный двигатель или асинхронный двигатель - это двигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора.

Существует два основных типа асинхронных двигателей:

.

1 . Однофазный асинхронный двигатель:

Однофазный асинхронный двигатель: Как следует из названия, этот тип двигателя поставляется с однофазным источником питания.Переменный ток проходит по основной обмотке двигателя. Тип используемого однофазного асинхронного двигателя зависит от схемы пуска, которую они используют в качестве вспомогательной, поскольку они не запускаются самостоятельно.

Однофазные асинхронные двигатели в основном используются в системах с низким энергопотреблением, некоторые из них упомянуты ниже:

2 . Трехфазный асинхронный двигатель:

Эти трехфазные двигатели снабжены трехфазным питанием переменного тока и широко используются на судах для более тяжелых нагрузок.Трехфазные асинхронные двигатели бывают двух типов: двигатели с короткозамкнутым ротором и с контактным кольцом.

Двигатели с короткозамкнутым ротором

широко используются на судах благодаря своей прочной конструкции и простой конструкции, например, некоторые из них. их заявок:

  • Подъемники
  • Краны
  • Вытяжные вентиляторы большой мощности
  • Двигатель Вспомогательные насосы
  • Двигатель вентилятора нагнетателя двигателя
  • Насосы для тяжелых нагрузок в машинном отделении - балластные, противопожарные, пресноводные, морские и т. Д.
  • Мотор лебедки
  • Мотор брашпиля

Дополнительная литература: Общий обзор центральной системы охлаждения на кораблях

Конструкция трехфазного асинхронного двигателя

Основной корпус асинхронного двигателя состоит из двух основных частей:

Статор

Статор состоит из ряда штамповок, в которых прорезаны различные пазы для размещения трехфазной цепи обмотки, подключенной к трехфазному источнику переменного тока.

Трехфазные обмотки расположены в пазах таким образом, что они создают вращающееся магнитное поле после подачи на них переменного тока.

Дополнительная литература: Как отремонтировать двигатели на кораблях?

Обычно обмотки держатся на разной делительной окружности с 30% перекрытием друг друга.

Обмотки намотаны на определенное количество полюсов в зависимости от требуемой скорости, поскольку скорость обратно пропорциональна количеству полюсов, определяемому формулой:

Н с = 120f / p

Где N с = синхронная скорость

f = частота

р = нет.полюсов

Ротор

Ротор состоит из многослойного цилиндрического сердечника с параллельными прорезями, на которых установлены токопроводящие шины.

Проводники представляют собой тяжелые медные или алюминиевые шины, которые подходят к каждому гнезду. Эти жилы припаяны к замыкающим концевым кольцам.

Ротор трехфазного асинхронного двигателя

Прорези не совсем параллельны оси вала, но они немного перекошены по следующим причинам:

  • Уменьшают магнитный фон или шум
  • Избегают остановки двигателя

Принцип работы трехфазного асинхронного двигателя

Когда на двигатель подается трехфазное питание, результирующий ток создает магнитный поток «Ø».

Из-за последовательности переключения трехфазного тока в R, Y и B, генерируемый магнитный поток вращается вокруг проводника ротора.

Согласно закону Фарадея, который гласит: «ЭДС, индуцированная в любой замкнутой цепи, обусловлена ​​скоростью изменения магнитного потока в цепи», ЭДС индуцируется в медном стержне, и благодаря этому ток течет в роторе. .

Направление ротора может быть задано законом Ленца, который гласит: «Направление индуцированного тока будет противоположным движению, вызывающему его.”

Здесь относительная скорость между вращающимся потоком и неподвижным проводником ротора является причиной генерации тока; следовательно, ротор будет вращаться в том же направлении, чтобы уменьшить причину, то есть относительную скорость, таким образом вращая ротор асинхронного двигателя.

Преимущества асинхронного двигателя

Конструкция двигателя и способ подачи электроэнергии дают асинхронному двигателю несколько преимуществ, таких как:

- Они прочные и простые по конструкции с очень небольшим количеством движущихся частей

- Они могут эффективно работать в суровых и суровых условиях, например, на морских судах

- Стоимость обслуживания трехфазного асинхронного двигателя меньше, и, в отличие от двигателя постоянного тока или синхронного двигателя, у них нет таких деталей, как щетки, контактные кольца или контактные кольца и т. Д.

- Асинхронный двигатель может работать во внутренней среде, поскольку у него нет щеток, которые могут вызвать искру и могут быть опасны для такой атмосферы

Ссылки по теме: 20 опасностей нефтеналивного танкера, о которых должен знать каждый моряк

- 3-фазный асинхронный двигатель не нуждается в каком-либо дополнительном пусковом механизме или устройстве, поскольку они могут генерировать самозапускающийся крутящий момент, когда к ним подается трехфазный переменный ток, в отличие от синхронных двигателей. Однако однофазный асинхронный двигатель нуждается в некотором вспомогательном устройстве для пускового момента

.

- Конечная мощность трехфазного двигателя составляет почти 1.В 5 раз больше номинальной мощности (мощности) однофазного двигателя того же типоразмера.

Недостатки трехфазного асинхронного двигателя:

- Во время пуска он потребляет высокий начальный пусковой ток при подключении к тяжелой нагрузке. Это вызывает провал напряжения во время запуска машины. Чтобы избежать этой проблемы, к трехфазному электродвигателю подключаются методы плавного пуска.

Дополнительная информация: Панель пускателя двигателя на кораблях: техническое обслуживание и процедуры

- Асинхронный двигатель работает с запаздывающим коэффициентом мощности, что приводит к увеличению потерь I2R и снижению эффективности, особенно при низкой нагрузке.Для корректировки и улучшения коэффициента мощности с этим типом двигателя переменного тока можно использовать батареи статических конденсаторов.

- Регулирование скорости трехфазного асинхронного двигателя затруднено по сравнению с двигателями постоянного тока. Частотно-регулируемый привод может быть интегрирован с асинхронным двигателем для регулирования скорости.

Проблемы в трехфазном асинхронном двигателе:

Как и любое другое оборудование, трехфазный асинхронный двигатель может сталкиваться с различными типами проблем, которые можно в целом классифицировать как:

A) Неисправности, связанные с окружающей средой: Суровые морские условия могут сказаться на оборудовании судна на ранней стадии, если оно не обслуживается должным образом.Температура окружающей среды и влажность воздуха в море влияют на рабочие характеристики асинхронного двигателя.

Двигатели устанавливаются на другое крупное оборудование (главный двигатель), имеющее собственную частоту вибрации, которая влияет на детали двигателя.

Неправильная установка или неплотное основание двигателя или нагрузки, к которой он подключен, также может привести к снижению КПД двигателя и, при более длительной работе, к выходу двигателя из строя.

B) Неисправности, связанные с электричеством: Проблема возникает в двигателе из-за сбоев в электроснабжении, таких как несбалансированная подача тока или линейного напряжения, замыкание на землю в системе, проблема однофазности, короткое замыкание и т. Д.Различные типы электрических неисправностей:

Неисправность обмотки: Обмотка статора может выйти из строя из-за проблемы с изоляцией, вызвавшей короткое замыкание.

Дополнительная литература: Важность сопротивления изоляции в морских электрических системах

Однофазный отказ: Когда одна или несколько фаз трехфазного источника питания потеряны, работающий трехфазный двигатель будет продолжать работать, но с повышенными параметрами температуры и потерь.Это состояние известно как однофазное.

Медленное движение: Это сочетание электрической и механической неисправности, при которой асинхронный двигатель работает на более низкой скорости (почти 1/7 своей синхронной скорости) даже при полной нагрузке. Это результат аномальной магнитодвижущей силы или высокого содержания гармоник в источнике питания двигателя.

C) Неисправности, связанные с механикой: Двигатель состоит из нескольких механических частей, и их совмещение друг с другом и с нагрузкой играет важную роль в эффективности двигателя.Вот некоторые из наиболее заметных механических неисправностей двигателя:

  1. Дисбаланс Ротор: Ротор - единственная подвижная часть в трехфазном асинхронном двигателе. Если есть дисбаланс между осью вращения вала и осью распределения веса ротора, это приведет к вибрации, дополнительному нагреву и потере эффективности в системе.

Дисбаланс может быть вызван дефектом ротора, внутренним перекосом, изгибом вала, неравномерной нагрузкой и проблемами в двигателе и силовой муфте.

Дополнительная литература: 10 вещей, которые следует учитывать при сборке судового оборудования после технического обслуживания

  1. Усталостный отказ: Если график технического обслуживания не соответствует требованиям или детали, используемые в двигателе, имеют низкое качество, ослабление материала может привести к усталостному разрушению, которое обычно вызывается многократно прикладываемыми нагрузками.
  2. Неисправность подшипника: Двигатель оснащен двумя подшипниками на каждом конце ротора для поддержки и свободного вращения вала.Подшипник может выйти из строя, если не проводить своевременное техническое обслуживание или из-за перегрузки, неправильной установки, загрязненного смазочного масла и работы при чрезмерной температуре.

Дополнительная литература: Как проверить смазочное масло на борту корабля?

  1. Коррозия: Мотор, установленный на судне, находится в очень агрессивной среде. Поскольку двигатель состоит из нескольких механических частей, таких как ротор, подшипник и т. Д., Влага, присутствующая в атмосфере, или вода, содержащаяся в смазке (консистентной смазке), разъедают подшипники, вал двигателя и роторы.Изоляция также может пострадать от коррозии и привести к короткому замыканию между обмотками
  2. Проблема со смазкой: Отсутствие смазки или загрязнение смазочного материала может привести к увеличению трения между деталями, а подшипники могут быстро изнашиваться.

Дополнительная литература: 8 способов оптимизации использования смазочного масла на судах

Защита для трехфазного асинхронного двигателя

Однофазная защита: Для решения этой проблемы используются защитные устройства для трехфазного асинхронного двигателя.Все двигатели мощностью более 500 кВт должны быть оснащены защитными устройствами или оборудованием для предотвращения любого повреждения из-за однофазного включения. Подробную информацию об этих устройствах можно найти здесь.

Перегрев: Обмотка двигателя может нагреваться из-за таких проблем, как перегрузка или однофазность. Предохранители, реле и т. Д. Используются для защиты двигателя от перегрева

Дополнительная литература: Техническое обслуживание электрического реле в судовой электросистеме

Мягкий запуск: Как описано выше, одним из недостатков трехфазного асинхронного двигателя является большой ток, который он потребляет во время периода пуска.Чтобы защитить его от этой проблемы, используются различные методы пуска путем интеграции двигателя с устройством плавного пуска, DOL, пускателем со звезды на треугольник, автотрансформатором и т. Д.

Дополнительная литература: 10 способов достижения энергоэффективности в судовой электрической системе

Использование устройства плавного пуска для асинхронного двигателя снижает механические и электрические нагрузки, защищая двигатель во время пуска.

Возможно, вы также прочитаете:

Заявление об ограничении ответственности: Вышеупомянутые взгляды принадлежат только автору.Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не заявляют об их точности и не берут на себя ответственность за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight.

Ищете практичные, но доступные морские ресурсы? Ознакомьтесь с цифровыми руководствами Marine Insight: Электронные книги для палубного отдела - Ресурсы по различным темам, связанным с палубным оборудованием и операциями. Электронные книги для машинного отделения - Ресурсы по различным темам, связанным с механизмами и операциями машинного отделения. Экономьте по-крупному с помощью комбо-пакетов - Наборы цифровых ресурсов, которые помогут вам сэкономить по-крупному и включают дополнительные бесплатные бонусы. Электронные книги по судовым электрическим системам - Цифровые ресурсы по проектированию, обслуживанию и поиску и устранению неисправностей морских электрических систем

Теги: судовая электрическая электрическая

Электродвигатель - Atlas Copco USA

Поиск вики по сжатому воздуху

Чтобы превратить воздух в сжатый воздух, вам нужна энергия.Эта энергия поступает в виде электричества, вырабатываемого электродвигателем. Наиболее распространенным электродвигателем является трехфазный асинхронный двигатель с короткозамкнутым ротором. Этот тип двигателя используется во всех отраслях промышленности. Он бесшумный и надежный, поэтому входит в состав большинства систем, включая компрессоры.

Какие основные части у электродвигателя?

Электродвигатель состоит из двух основных частей: неподвижного статора и вращающегося ротора.Статор создает вращающееся магнитное поле, а ротор преобразует эту энергию в движение, то есть механическую энергию. Статор подключен к трехфазной сети. Ток в обмотках статора вызывает вращающееся магнитное силовое поле, которое индуцирует токи в роторе, а также создает магнитное поле там. Взаимодействие между магнитными полями статора и ротора создает крутящий момент, который, в свою очередь, заставляет вращаться вал ротора.

Скорость вращения

Если бы вал асинхронного двигателя вращался с той же скоростью, что и магнитное поле, индуцированный ток в роторе был бы равен нулю.Однако из-за различных потерь, например, в подшипниках, это невозможно, и скорость всегда составляет ок. На 1-5% ниже синхронной скорости магнитного поля (так называемое «проскальзывание»). (Двигатели с постоянными магнитами вообще не вызывают скольжения.)

Эффективность

Преобразование энергии в двигателе не происходит без потерь.Эти потери являются результатом, среди прочего, резистивных потерь, потерь на вентиляцию, потерь на намагничивание и потерь на трение.

Класс изоляции

Изоляционный материал обмоток двигателя разделен на классы изоляции в соответствии с IEC 60085, стандартом, опубликованным Международной электротехнической комиссией.Буква, соответствующая температуре, которая является верхним пределом для области применения изоляции, обозначает каждый класс. Если верхний предел превышается на 10 ° C в течение длительного периода времени, срок службы изоляции сокращается примерно наполовину.

Класс изоляции

Б

Ф

H

Макс.обмотка темп. ° С

130

155

180

Температура окружающей среды ° C

40

40

40

Повышение температуры ° C

80

105

125

Температурный запас ° C

10

10

15

Классы защиты

Классы защиты согласно IEC 60034-5 определяют, как двигатель защищен от контакта и воды.Они обозначаются буквами IP и двумя цифрами. Первая цифра означает защиту от прикосновения и проникновения твердым предметом. Вторая цифра указывает на защиту от воды.

Например, IP23 означает: (2) защиту от твердых предметов размером более 12 мм, (3) защиту от прямых брызг воды под углом до 60 ° от вертикали. IP 54: (5) защита от пыли, (4) защита от брызг воды со всех сторон. IP 55: (5) защита от пыли, (5) защита от струй воды под низким давлением со всех сторон.

Способы охлаждения

Методы охлаждения согласно IEC 60034-6 определяют способ охлаждения двигателя. Он обозначается буквами IC, за которыми следует серия цифр, представляющих тип охлаждения (невентилируемое, самовентилируемое, принудительное охлаждение) и режим охлаждения (внутреннее охлаждение, поверхностное охлаждение, охлаждение замкнутого цикла, жидкостное охлаждение и т. Д.). .).

Способ установки

В методе установки указывается, в соответствии с IEC 60034-7, как должен быть установлен двигатель. Обозначается буквами IM и четырьмя цифрами. Например, IM 1001 представляет собой: два подшипника, вал со свободным концом шейки и корпус статора с опорами.IM 3001: два подшипника, вал со свободным концом шейки, корпус статора без ножек и большой фланец с гладкими отверстиями для крепления.

Метод установки определяет, в соответствии с IEC 60034-7, как двигатель должен быть установлен. Обозначается буквами IM и четырьмя цифрами. Например, IM 1001 представляет собой: два подшипника, вал со свободным концом шейки и корпус статора с опорами. IM 3001: два подшипника, вал со свободным концом шейки, корпус статора без ножек и большой фланец с гладкими отверстиями для крепления.

Что такое соединения звезды и треугольника?

Трехфазный электродвигатель можно подключить двумя способами: звездой (Y) или треугольником (Δ). Фазы обмотки в трехфазном двигателе обозначены буквами U, V и W (U1-U2; V1-V2; W1-W2). Стандарты США ссылаются на T1, T2, T3, T4, T5, T6. При соединении звездой (Y) «концы» фаз обмотки двигателя соединяются вместе, образуя нулевую точку, которая выглядит как звезда (Y).

Фазное напряжение (фазное напряжение = основное напряжение / √3; например, 400 В = 690 / √3) будет лежать на обмотках. Ток Ih в направлении нулевой точки становится фазным током, и, соответственно, фазный ток будет течь через обмотки If = Ih. При соединении треугольником (Δ) начало и концы соединяются между различными фазами, которые затем образуют дельту (Δ). В результате на обмотках появится основное напряжение.Ток Ih, подаваемый в двигатель, является основным током, и он будет разделен между обмотками, чтобы получить через них фазный ток, Ih / √3 = If.

Тот же двигатель можно подключить как звезду на 690 В или треугольник на 400 В. В обоих случаях напряжение на обмотках будет 400 В. Ток двигателя будет ниже при соединении звездой 690 В, чем при соединении треугольником 400 В. Отношение между текущими уровнями равно √3. На плате мотора может быть, например, 690/400 В.Это означает, что соединение звездой предназначено для более высокого напряжения, а соединение треугольником - для более низкого. Ток, который также может быть указан на табличке, показывает меньшее значение для двигателя, соединенного звездой, и большее значение для двигателя, соединенного треугольником.

Что такое крутящий момент?

Крутящий момент электродвигателя - это показатель вращательной способности ротора.Каждый двигатель имеет максимальный крутящий момент. Нагрузка выше этого крутящего момента означает, что двигатель не может вращаться. При нормальной нагрузке двигатель работает значительно ниже своего максимального крутящего момента, однако последовательность запуска будет включать дополнительную нагрузку. Характеристики двигателя обычно представлены в виде кривой крутящего момента.

Статьи по теме

Электрический монтаж в компрессорных системах

В этой статье мы рассмотрим электрическую систему, которая обеспечивает правильную работу компрессора.Сюда входят двигатели, кабели, контроль напряжения и защита от короткого замыкания.

Электроэнергия

Электричество играет большую роль в сжатии воздуха.Узнайте больше об электроэнергии и соотношении активной, реактивной и полной мощности.

Как работает электродвигатель?

Все признают, что если вы можете создать очень эффективные электродвигатели, вы можете сделать качественный скачок вперед. - Джеймс Дайсон

Введение

«Электродвигатель стал немного более известным и ценимым за последние несколько лет благодаря тому, что он все больше интегрируется в наши автомобили.Поскольку большинство людей понимают и осознают влияние, которое их загрязнение оказывает на климат, производители автомобилей испытывают больший спрос на создание автомобилей, которые могут помочь улучшить нашу окружающую среду или, по крайней мере, причинить меньше вреда ».

«Именно благодаря этой потребности в росте и развитии некоторые из величайших изобретателей мира усовершенствовали электродвигатель, чтобы теперь он работал лучше и эффективнее, чем когда-либо прежде».

Детали электродвигателя

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей - статора и ротора.Используйте интерактивное изображение ниже в этом разделе, чтобы узнать больше о статоре и роторе и узнать о роли, которую каждый играет в электродвигателе.



Статора Ротор

Статор

Статор состоит из трех частей - сердечника статора, токопроводящей жилы и рамы. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга и соединены друг с другом.У этих колец есть прорези на внутренней стороне колец, вокруг которых будет наматываться проводящий провод, образуя катушки статора.

Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов. Вы можете назвать эти типы проводов Фазой 1, Фазой 2 и Фазой 3. Каждый тип проводов наматывается вокруг пазов на противоположных сторонах внутренней части сердечника статора.

После того, как токопроводящий провод вставлен в сердечник статора, сердечник помещается в раму.

Ротор

Ротор также состоит из трех частей - сердечника ротора, токопроводящих стержней и двух концевых колец.Пластины из высококачественной легированной стали составляют цилиндрический сердечник ротора, в центре которого проходит стержень. На внешней стороне сердечника ротора есть прорези, которые либо проходят параллельно стержнеобразной планке в центре сердечника ротора, либо слегка закручены, образуя диагональные прорези. Если сердечник статора имеет диагональные пазы на внешней стороне сердечника, он называется ротором с короткозамкнутым ротором.

Трехфазный четырехполюсный асинхронный двигатель использует ротор с короткозамкнутым ротором. По диагональным линиям в сердечнике размещены токопроводящие стержни, образующие обмотку ротора.Затем с обеих сторон сердечника помещают концевые кольца, чтобы закоротить все токопроводящие стержни, которые были размещены на диагональных линиях сердечника ротора.

После сборки ротора и статора ротор вставляется в статор, и с обеих сторон размещаются два концевых выступа. Эти концевые раструбы изготовлены из того же материала, что и рама статора, и используются для защиты двигателя с обеих сторон.


Как работает электродвигатель?

(непрофессионально)

Если вы инженер-электрик, вы знаете, как работает электродвигатель.Если вы этого не сделаете, это может сильно сбить с толку, поэтому вот упрощенное объяснение (или версия «как работает электродвигатель для чайников») того, как четырехполюсный трехфазный асинхронный двигатель работает в автомобиле.

Начинается с аккумуляторной батареи в автомобиле, которая подключена к двигателю. Электроэнергия подается на статор через аккумулятор автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты.Следовательно, когда электрическая энергия от автомобильного аккумулятора подается в двигатель, катушки создают вращающиеся магнитные поля, которые тянут за собой проводящие стержни на внешней стороне ротора. Вращающийся ротор - это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.

Так вот, в типичном автомобиле, который не является электрическим, есть и двигатель, и генератор переменного тока. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса.Вращение колес - это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка - аккумулятор необходимо подзарядить, чтобы он функционировал должным образом.

В электромобиле нет генератора. Итак, как же тогда перезаряжается аккумулятор? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока. Это одна из причин того, почему электромобили так уникальны.Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе - ротор притягивается вращающимся магнитным полем, требуя большего крутящего момента. Но что происходит, когда вы отпускаете акселератор?

Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от магнитного поля).Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает аккумулятор, действуя как генератор переменного тока.

Чтобы еще больше упростить этот процесс, представьте, что крутите педали на велосипеде в гору. Чтобы добраться до вершины холма, вам нужно крутить педали сильнее и, возможно, даже придется встать и затратить больше энергии, чтобы повернуть шины и достичь вершины холма. Это похоже на нажатие на газ. Вращающееся магнитное поле, тянущее за собой ротор, создает сопротивление (или крутящий момент), необходимое для перемещения шин и автомобиля.Оказавшись на вершине холма, вы можете расслабиться и перезарядиться, в то время как колеса будут двигаться еще быстрее, чтобы спуститься с холма. В машине это происходит, когда вы отпускаете ногу с газа, а ротор движется быстрее и подает электроэнергию обратно в линию электропередачи для подзарядки аккумулятора.


Что такое переменный ток (AC)


по сравнению с постоянным (DC)?

Концептуальные различия этих двух типов токов кажутся довольно очевидными.Пока один ток постоянный, другой более прерывистый. Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.

Постоянный ток (DC)

Термин «постоянный ток» относится к электричеству, которое постоянно движется в единственном и последовательном направлении. Кроме того, напряжение постоянного тока сохраняет правильную полярность, то есть неизменную.

Подумайте, как батареи имеют четко определенные положительные и отрицательные стороны.Они используют постоянный ток для постоянной подачи одинакового напряжения. В дополнение к батареям, топливные элементы и солнечные элементы также производят постоянный ток, в то время как простые действия, такие как трение определенных материалов друг о друга, также могут создавать постоянный ток.

В соответствии с нашей концепцией батареи, рассматривая положительную и отрицательную стороны батареи, важно отметить, что постоянный ток всегда течет в одном направлении между положительной и отрицательной стороной. Это гарантирует, что обе стороны батареи всегда будут положительными и отрицательными.



Переменный ток (AC)

Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте давление воды в шланге) и током (представьте скорость потока воды через шланг), которые меняются во времени. При изменении напряжения и тока сигнала переменного тока они чаще всего следуют шаблону синусоидальной волны (на изображении выше синусоида показана на правом графике напряжения). Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью во времени.Форма синусоидальной волны сигналов переменного тока обусловлена ​​способом генерации электричества.

Еще один термин, который вы можете услышать при обсуждении электроэнергии переменного тока, - это частота. Частота сигнала - это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц. Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.

Так почему это важно?

Электроэнергия переменного тока - лучший способ передачи полезной энергии от источника генерации (т.э., плотина или ветряк) на большие расстояния. Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, подающего питание в район (те цилиндрические серые прямоугольники, которые вы видите на полюсах линии электропередачи), может иметь высокое напряжение до 66 кВА (66000 вольт переменного тока).

Мощность переменного тока

позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным током для источников питания.


Как работает трехфазный четырехполюсный асинхронный двигатель?

Большинство крупных промышленных двигателей представляют собой асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Но что именно означает «асинхронный» двигатель? С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора. С точки зрения непрофессионала это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.

Что означает многофазность?

Всякий раз, когда у вас есть статор, который содержит несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью. Обычно многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы.

Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого из них, чтобы намеренно выйти из строя.

Что означает три фазы?

Основываясь на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, выдвинутом в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля.Эта энергия приводит к тому, что катушки с проводящим проводом начинают вести себя как электромагниты.

Простой способ понять три фазы - рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии. По мере создания энергии ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.


Лучшие электромобили

По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги.Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

На данный момент мы все знаем, какой успех Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут. Однако есть десятки других компаний, которые добиваются значительного прогресса в этой области, например, Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy's Spark и Mercedes B-Class Electric.


Электромобили и окружающая среда

Реальность такова, что цены на газ должны быть намного дороже, чем они есть, потому что мы не учитываем истинный ущерб окружающей среде и скрытые затраты на добычу нефти и ее транспортировку в США - Илон Маск

Электродвигатели прямо и косвенно воздействуют на окружающую среду на микро- и макроуровне. Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно.С индивидуальной точки зрения, электромобили не требуют бензина для работы, что приводит к тому, что автомобили без выбросов заполняют наши шоссе и города. Хотя это представляет собой новую проблему с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густо населенных в городах и пригородах, выбрасывающих токсины в воздух.


Примечание: MPG (значения миль на галлон, указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива в городе / шоссе для бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля.Рейтинги выбросов глобального потепления в регионах основаны на данных электростанций за 2012 год в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение 58 миль на галлон в США представляет собой средневзвешенное значение продаж, основанное на том, где были проданы электромобили в 2014 году.

С большой точки зрения рост электромобилей дает несколько преимуществ. Во-первых, снижается шумовое загрязнение, поскольку шум, излучаемый электродвигателем, гораздо более приглушен, чем шум двигателя, работающего на газе.Кроме того, поскольку электрические двигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за того, что меньше автомобилей нуждаются в техосмотрах.


Заключение

Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса. Хотя электрический двигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной отрасли, ориентированный не только на стиль и производительность, но и на внешнее воздействие.Таким образом, хотя электрический двигатель, возможно, и не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс.

Если больше ничего не получится от достижений в области электродвигателей, то, по крайней мере, мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду. Это новое определение прогресса, определяемое электрическим двигателем.


Источники:

http: // www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Строительство трехфазного асинхронного двигателя https://www.youtube.com/watch?v=Mle-ZvYi8HA
Как работает асинхронный двигатель работает? https://www.youtube.com/watch?v=LtJoJBUSe28
http://www.mpoweruk.com/motorsbrushless.htm
http://www.kerryr.net/pioneers/tesla.htm
https: // www.basilnetworks.com/article/motors/brushlessmotors.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
https: // www.youtube.com/watch?v=HWrNzUCjbkk
Принцип работы трехфазного индукционного двигателя https://www.youtube.com/watch?v=DsVbaKZZOFQ
https://www.youtube.com/watch?v=NaV7V07tEMQ
https : //www.teslamotors.com/models
http://evobsession.com/electric-car-range-comparison/
http://www.edmunds.com/mitsubishi/i-miev/2016/review/
http : //www.ford.com/cars/focus/trim/electric/
https://en.wikipedia.org/wiki/BMW_i3
http://www.edmunds.com/ford/fusion-energi/2016/ обзор /
http: // www.chevrolet.com/spark-ev-electric-vehicle.html
http://www.topspeed.com/cars/volkswagen/2016-volkswagen-e-golf-limited-edition-ar168067.html
http: // www. topspeed.com/cars/bmw/2016-bmw-i3-m-ar160295.html
http://www.popularmechanics.com/cars/hybrid-electric/reviews/a9756/2015-mercedes-benz-b-class- electric-drive-test-ride-16198208/
http://www.topspeed.com/cars/nissan/2016-nissan-leaf-ar171170.html
http://www.caranddriver.com/fiat/500e
http : //www.topspeed.com/cars/kia/2015-kia-soul-electricdriven-ar170088.html
http://www.topspeed.com/cars/ford/2016-ford-focus-electric-ar171335.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s- 70d-ar168705.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s-p85d-ar165627.html
http://www.topspeed.com/cars/tesla/2015- tesla-model-s-ar165742.html # main
http://www.caranddriver.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *