Двигатели переменного тока синхронные и асинхронные: Синхронный и асинхронный двигатель отличия | Полезные статьи

Содержание

✔ Асинхронные и синхронные электродвигатели

Главным назначением данных агрегатов является преобразование электрической энергии в механическую, что позволяет задействовать массу различных механизмов и устройств.

Чтобы понять, чем отличается синхронный электродвигатель от асинхронного аналога, нужно иметь определенное представление о работе агрегатов. В основе лежит создание индукции магнитных полюсов посредством вращающегося ротора и неподвижного статора. Датчик положения ротора посылает все необходимые данные для регуляции в соответствии с фазами напряжения.

Главное различие асинхронных и синхронных электродвигателей заключается в устройстве ротора, который представляет собой постоянный или электрический магнит, а если быть точнее — в принципе создания полюсов:

  • при помощи индукции;
  • при помощи катушек или постоянных магнитов.

Преимущества и недостатки синхронных и асинхронных электродвигателей переменного тока:

  • Синхронные модели — высокая надёжность и КПД, стабильная частота вращения, не зависящая от нагрузки, простота обслуживания.
    Минусом можно считать некоторую сложность запуска двигателя, а также необходимость питания обмотки постоянным током. В моделях некоторых производителей часто выходят из строя коллекторы и щётки.
  • Асинхронные аналоги — низкое потребление энергии, простота конструкции, эксплуатация в бытовых приборах с использованием однофазного подключения. Главный минус заключается в больших тепловых потерях и сложности регулировки.

Конструктивные особенности

Стоит обратить внимание на конструктивные отличия синхронного электродвигателя и асинхронного двигателя.

В состав синхронной конструкции, которая используется и как двигатель, и как генератор, входят следующие детали:

  • подшипниковый узел;
  • сердечник;
  • магниты, индуктор и якорь с обмоткой;
  • втулка;
  • стальная тарелка.

Стоит добавить, что некоторые новые модели обладают короткозамкнутой пусковой обмоткой, которая позволяет запускать агрегат в асинхронном режиме.

Асинхронные аналоги бывают двух типов (с короткозамкнутым и фазным ротором) и состоят из следующих деталей:

  • сердечника и магнитопровода;
  • вентилятора с кожухом;
  • подшипника;
  • клеммной коробки и тройной обмотки;
  • контактных колец.

Данная разновидность обладает большей популярностью, поскольку позволяет регулировать частоту вращения вала с помощью реостатов.

История создания электродвигателя переменного тока

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током.

Введение

По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

Второе название асинхронных машин

В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин — индукционные вследствие того, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они применяются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую.

 

Достоинства и недостатки

Достоинства:

  • Лёгкость в изготовлении.
  • Отсутствие механического контакта со статической частью машины.

Недостатки:

  • Небольшой пусковой момент.
  • Значительный пусковой ток.

История

Приоритет в создании асинхронного двигателя принадлежит Николе Тесле

Вклад в развитие асинхронных двигателей внес Галилео Феррарис, который в 1885 г. в Италии построил модель асинхронного двигателя мощностью 3 Вт. В 1888 г. Феррарис опубликовал свои исследования в статье для Королевской Академии Наук в Турине (в том же году, Тесла получил патент США 381,968 от 01.05.1888 (U.S. Patent 0 381 968|заявка на изобретение № 252132 от 12.10.1887), в которой изложил теоретические основы асинхронного двигателя. Заслуга Феррариса в том, что сделав ошибочный вывод о небольшом к.п.д. асинхронного двигателя и о нецелесообразности применения систем переменного тока, он привлек внимание многих инженеров к проблеме совершенствования асинхронных машин. Статья Галилео Феррариса, опубликованная в журнале «Атти ди Турино», была перепечатана английским журналом и была прочитана в июле 1888 г. выпускником Дармштадтского Высшего технического училища, выходцем из России Михаилом Осиповичем Доливо-Добровольским.

Доливо-Добровольский установил, что для создания вращающегося магнитного поля - основы работы асинхронного двигателя - технически и экономически целесообразно применение симметричной трехфазной магнитной системы, со сдвигом фаз на 120 электрических градусов. Трехфазный асинхронный электродвигатель, изготовленный Доливо-Добровольским в 1889 г., продемонстрировал высокую эффективность и неоспоримые преимущества перед двухфазными двигателями Феррариса и Тесла. По словам изобретателя: "уже при первом включении выявилось ошеломляющее для представлений того времени действие… попытка остановить его торможением за конец вала от руки блестяще провалилась, и только при особой ловкости было возможно воспрепятствовать таким способом его запуску при включении. Если принять во внимание малые размеры моторчика, это представлялось чудом для всех приглашенных свидетелей". Несмотря на это отношение к переменному току у многих оставалось сдержанным. Корифей электротехники Т. Эдисон отказался даже осмотреть новое изобретение, заявив: «Нет, нет, переменный ток - это вздор, не имеющий будущего. Я не только не хочу осматривать двигатель переменного тока, но и знать о нем». Вскоре Доливо-Добровольскому удалось решить все основные проблемы, связанные с конструкцией двигателя, устройство которого до настоящего времени принципиально не менялось.

Первая демонстрация

Первой демонстрацией практического применения асинхронного двигателя и трехфазной системы стала Международная электротехническая выставка 1891 г. во Франкфурте-на-Майне. Выставку с гидроэлектростанцией на реке Неккар в городе Лауфен соединила 170-километровая линия электропередачи. А 25 августа на выставке зажглась тысяча электроламп, питаемых током от Лауфенской электростанции. Затем был пущен трехфазный асинхронный двигатель мощностью 75 кВт, приводивший в действие декоративный дестиметровый водопад. Разработки Доливо-Добровольского вскоре были внедрены в производство. Простой, экономичный и надежный двигатель переменного тока, получил широкое распространение и послужил стимулом для развития техники переменных токов и электроэнергетики в целом. В России фирма AEG в конце 90-х гг. XIX в. развернула сеть агентств в Москве, Санкт-Петербурге, Ростове и других городах, занимавшихся реализацией изделий своих германских предприятий. Генеральное представительство этой фирмы располагалось в Москве, в Лубянском проезде, рядом с Политехническим музеем.

Трехфазный асинхронный электродвигатель типа "DR8O" мощностью 6 л.с. (4 кВт) выпуска 90-х гг. XIX в. из собрания Политехнического музея является одним из первых серийных трехфазных двигателей фирмы AEG. Об этом свидетельствует наличие кольцевой обмотки на статоре. Впоследствии от таких обмоток отказались, перейдя на более совершенные - барабанные.

Заключение

Основные элементы двигателя - трехфазная обмотка статора, шихтованный ротор с короткозамкнутой обмоткой типа "беличья клетка" - предложены и разработаны Доливо-Добровольским. Работа асинхронного двигателя основана на электромагнитном взаимодействии между статором и ротором. Токи статорных обмоток создают вращающееся магнитное поле, которое, в свою очередь, индуцируют токи в короткозамкнутой обмотке ротора. В результате взаимодействия токов ротора с магнитным полем статора создается вращающий момент.

Связанное оборудование (products tags):

Двигатели переменного тока синхронные и асинхронные.

§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя

Синхронный двигатель – машина трехфазного тока, к ротору кото-рой подводится постоянный тока. Частота вращения ротора равна час-тоте вращения магнитного поля статора. Эта зависимость определяется частотой тока в сети и числом пар полюсов

Рис. Схема запуска синхронного двигателя.

1 – обмотка возбуждения; 2 – переключатель; 3 – пусковое сопротивление; 4 – короткозамкнутая обмотка ротора; 5 – обмотка статора; 6 – рубильник; 7 – якорь возбудителя; 9 обмотка возбудителя

Статор синхрон-ного двигателя не отличается от статора асинхронного. Ротор выполнен с явно вы-раженными полюсами у тихоходных двига-телей и неявно вы-раженными полюсами быстроходных.

Принцип действия синхронного двигателя основан на электромагнитном взаимодействии между полюсами вращающегося магнитного поля статора и полюсами ротора, образованными в результате подачи в обмотку ротора постоянного тока. Однако при включении двигателя ротор вибрирует, но не вращается, поскольку переменный ток меняет свое направление с частотой 50 Гц создавая непрерывные толчки в обе стороны.

Для обеспечения запуска синхронного двигателя его ротор кроме обмотки возбуждения снабжают дополнительной пусковой обмоткой (короткозамкнутой или фазной). Такая обмотка обеспечивает как обычно асинхронного при полном или пониженном напряжении. При достижении ротором двигателя частоты вращения близкой к синхронной, в обмотку возбуждения подается постоянный ток и двигатель начинает работать в синхронном режиме.

При достижении ротором в двигателя частоты вращения близкой к синхронной в обмотку возбуждения подается постоянный ток, после чего двигатель начинает работать в синхронном режиме.

При этом дополнительная пусковая обмотка не оказывает никакого действия, так как вращаясь синхронно с магнитным полем она не пересекается с магнитными линиями и в ней не индуцируется токи и не создается вращающий момент. Питание обмотки возбуждения осуществляется от специальных генераторов постоянного тока или от полупроводниковых выпрямителей.

После запуска синхронного двигателя, если нагрузка на валу равна нулю, вектор напряжения совпадает с вектором индуцированной ЭДС. Если к валу двигателя приложить момент, то появится угол сдвига θ между указанными векторами и двигатель начинает развивать вращающий момент, величина которого будет функцией угла θ

Где – напряжение статора; Е – ЭДС наводимая в обмотке статора магнитным полем ротора; ω – угловая скорость магнитного поля статора; x 1 – индуктивное сопротивление обмотки статора.

Это уравнение является угловой характеристикой синхронного двигателя. Момент двигателя возрастает при изменении угла θ от 0 до 90°, а затем уменьшается. Максимального значения момент достигает при θ=90°. При большем угле работа двигателя становится неустойчивой и увеличение нагрузки приводит к нарушению синхронности и остановке. Номинальному моменту соответствует угол θ=25÷30° (sinθ=0,43÷0,50) При этом перегрузочная способность

λ

С увеличением тока возбуждения, т. е. подводимого к обмотке ротора перегрузочная способность двигателя увеличивается, а с уменьшением – снижается. Но как видно из уравнения момент двигателя пропорционален первой степени напряжения, что делает его менее чувствительным к колебаниям напряжения в сеть по сравнению с асинхронным двигателем. Частота вращения ротора синхронного двигателя не зависит от нагрузки и при всех режимах остается постоянной. Поэтому механическая характеристика таких двигателей является абсолютно жесткой. Синхронные двигатели применяются для привода машин с неизменной частотой вращения.


Рис. Механическая характеристика синхронного двигателя

Основные преимущества синхронного двигателя:

Частота вращения не зависит от нагрузки;

Возможность работы с опережающим cosφ

Меньшая, чем у асинхронных двигателей, зависимость момента от напряжения сети

Недостатки синхронного двигателя:

Необходимость иметь два рода тока;

Сложность пуска;

Возможность нарушения синхронности при перегрузках;

Сложность регулирования частоты вращения.

В настоящее время синхронный двигатель применяется в установках не требующих регулирования частоты вращения и частого пуска. К ним относятся крупные вентиляторные, насосные и компрессорные установки.

Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.

Синхронный двигатель состоит из основных частей - якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор - на роторе, отделенном воздушной прослойкой.

Устройство синхронного двигателя

В состав якоря входят одна или несколько обмоток переменного тока. При работе двигателя токи, поступающие в якорь, приводят к вращению магнитного поля, пересекающегося с полем индуктора и преобразующего энергию. Поле якоря носит другое название - поле реакции якоря. В генераторе такое поле создается с помощью индуктора.

В состав индуктора входят , называемые полюсами. Во всех синхронных агрегатах индукторы бывают двух конструкций - явнополюсная и не явнополюсная, отличающиеся расположением полюсов.

Чтобы уменьшить магнитное сопротивление и улучшить прохождение магнитного потока, используются ферромагнитные сердечники, расположенные в роторе и статоре, для изготовления которых используется специальная электротехническая сталь. Она обладает интересными свойствами, например, повышенным содержанием кремния, с целью повышения ее электрического сопротивления и уменьшения вихревых токов.

Синхронный двигатель: принцип работы

Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой - на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.

При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается . Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.

Как правило, при разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.

Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели.


В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 "мёртвые точки"), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).


Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные - электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.


Бесколекторные - замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.


Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный - двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.


Асинхронный - двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин - индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором

Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором

Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.


Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.


Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.


Трехфазный асинхронный двигатель с фазным ротором

Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков, шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.


Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Синхронный двигатель. Принцип действия и устройство. Синхронный двигатель может работать в качестве генератора и двигателя. Синхронный двигатель выполнен так же, как и синхронный генератор. Его обмотка якоря I (рис. 291, а) подключена к источнику трехфазного переменного тока; в обмотку возбуждения 2 подается от постороннего источника постоянный ток. Благодаря взаимодействию вращающегося магнитного поля 4, созданного трехфазной обмоткой якоря, и поля, созданного обмоткой возбуждения, возникает электромагнитный момент М (рис. 291,б), приводящий ротор 3 во вращение. Однако в синхронном двигателе в отличие от асинхронного ротор будет разгоняться до частоты вращения n = n 1 , с которой вращается магнитное поле (до синхронной частоты вращения). Объяс-

няется это тем, что ток в обмотку ротора подается от постороннего источника, а не индуцируется в нем магнитным полем статора и, следовательно, не зависит от частоты вращения вала двигателя. Характерной особенностью синхронного двигателя является постоянная частота вращения его ротора независимо от нагрузки.

Электромагнитный момент . Электромагнитный момент в синхронном двигателе возникает в результате взаимодействия магнитного потока ротора (потока возбуждения Ф в) с вращающимся магнитным полем, создаваемым трехфазным током, протекающим по обмотке якоря (потоком якоря Ф в). При холостом ходе машины оси магнитных полей статора и ротора совпадают (рис. 292,а). Поэтому электромагнитные силы I, возникающие между «полюсами» статора и полюсами ротора, направлены радиально (рис. 292, б) и электромагнитный момент машины равен нулю. При работе машины в двигательном режиме (рис. 292, в и г) ее ротор под действием приложенного к валу внешнего нагрузочного момента М вн смещается на некоторый угол 0 против направления вращения. В этом случае в результате электромагнитного взаимодействия между ротором и статором создаются электромагнитные силы I, направленные по направлению вращения, т. е. образуется вращающий электромагнитный момент М, который стремится преодолеть действие внешнего момента М вн. Максимум момента М max
соответствует углу? = 90°, когда оси полюсов ротора расположены между осями «полюсов» статора.

Если нагрузочный момент М вн, приложенный к валу электродвигателя, станет больше М max , то двигатель под действием внешнего момента М вн останавливается; при этом по обмотке якоря неподвижного двигателя будет протекать очень большой ток. Этот режим называется выпаданием из синхронизма, он является аварийным и не должен допускаться.

При работе машины в генераторном режиме (рис. 292, д и е) ротор под действием приложенного к валу внешнего момента М вн смещается на угол? по направлению вращения. При этом создаются электромагнитные силы, направленные против вращения, т. е. образуется тормозной электромагнитный момент М. Таким образом, при изменении значения и направления внешнего момента на валу ротора М вн изменяется лишь угол? между осями полей статора и ротора, в то время как в асинхронной машине в этом случае изменяется частота вращения ротора.

Пуск в ход и регулирование частоты вращения. Синхронный двигатель не имеет начального пускового момента . Если подключить обмотку якоря к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т. е. средний момент за период будет равен нулю. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. Для этой цели применяют метод асинхронного пуска . Синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой 3 (рис. 293). В полюсные наконечники ротора 2 синхронного двигателя закладывают медные или латунные стержни, замкнутые накоротко двумя торцовыми кольцами. Пусковая обмотка выполнена подобно беличьей клетке асинхронной машины, но занимает лишь часть окружности ротора. В некоторых двигателях специальная короткозамкнутая обмотка

Рис. 293. Схема асинхронного пуска синхронного двигателя;

Рис. 294 Устройство пусковой обмотки синхронного двигателя: 1 - ротор; 2 - стержни; 3 - кольцо; 4 - обмотка возбуждения

Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.

Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.

Конструктивные особенности и принцип работы

Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по .


Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.

Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.

Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.

Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.

Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.

Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.

При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.

В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.

Достоинства и недостатки

Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.

Синхронные электродвигатели имеют и другие достоинства:

  • Электродвигатели синхронного типа работают с повышенным коэффициентом мощности, что создает уменьшение расхода энергии и снижает потери. КПД синхронного мотора выше при той же мощности асинхронного двигателя.
  • Синхронные электродвигатели имеют момент вращения, который прямо зависит от напряжения сети. Поэтому он при уменьшении напряжения сохраняет свою мощность больше асинхронного. Это является фактором надежности подобных конструкций моторов.

Недостатками являются следующие отрицательные моменты:

  • При проведении сравнительного анализа конструкций двух моторов, можно отметить, что синхронные электродвигатели выполнены по более сложной схеме, поэтому их стоимость будет выше.
  • Следующим недостатком для синхронных моторов стала необходимость в источнике тока в виде выпрямителя, либо другого блока питания постоянного тока.
  • Запуск двигателя происходит по сложной схеме.
  • Регулировка скорости вала двигателя возможна только одним способом, с помощью применения частотного преобразователя.

В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.

Выбор двигателя

К вопросу приобретения синхронного электродвигателя нужно подходить, основываясь на следующие факторы:

Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также моторы отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.
Особенности выполнения подключения электродвигателя с потребителем.

Синхронные компенсаторы

Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть .

Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.

Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.

Сфера применения

Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.

Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.

В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.

Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.

Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.

Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.

Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.

Асинхронный двигатель и двигатель постоянного тока, чем они отличаются

Асинхронный двигатель и двигатель постоянного тока, чем они отличаются

Двигатель — устройство, преобразующее какой-либо вид энергии в механическую работу

Асинхронные двигатели — это двигатели, в процессе работы которых под нагрузкой наблюдается явление скольжения, то есть «отставание» вращения ротора от вращения магнитного поля статора. Другими словами, вращение ротора происходит не синхронно с вращением намагниченности статора, а асинхронно по отношению к этому движению. Вот почему такого рода двигатели называются асинхронными (не синхронными) двигателями.

В большинстве случаев, произнося словосочетание «асинхронный двигатель», имеют ввиду именно бесколлекторный двигатель переменного тока. Величина скольжения асинхронного двигателя может быть разной в зависимости от нагрузки, а также от параметров питания и способа управления токами обмотки статора.

Если мы имеем дело с обычным двигателем переменного тока, наподобие АИР712А, то при синхронной частоте вращения магнитного поля в 3000 оборотов в минуту, в условиях номинальной механической нагрузки на валу в 750 ватт, мы будем иметь реальную частоту вращения 2840 оборотов в минуту, а значит величина скольжения составит 0,053.

Это нормальное явление для асинхронного двигателя. И на справочной табличке мы не увидим круглых цифр оборотов, вроде 3000 или 1500, вместо них там будет указано 2730 или 1325. Вместо 1000 может быть написано например 860, несмотря на то, что магнитное поле во время работы двигателя вращается с частотой 1000 оборотов в минуту, как и должно быть в электрической машине с 3 парами магнитных полюсов, предназначенной для питания переменным током частотой 50 Гц.

Что касается двигателей постоянного тока, то в большинстве случаев так называют коллекторные двигатели, на скорость вращения ротора у которых влияет не частота тока, а его средняя величина. Датчик скорости может помочь электронной системе управления установить правильную величину тока для получения заданной скорости вращения, однако связь тока и оборотов здесь будет отнюдь не линейной, так как при разной нагрузке токи разной величины дадут очень разные частоты вращения ротора.

На роторе двигателя постоянного тока может располагаться многосекционная обмотка возбуждения или постоянные магниты. Но сегодня ротор с магнитами характерен скорее для шаговых двигателей, которые тоже относятся к двигателям постоянного тока, однако коллекторно-щеточных узлов не имеют. Как вариант разновидности конструкции мотора постоянного тока — магниты на статоре, а обмотка — на роторе.

Так или иначе, асинхронный бесколлекторный двигатель имеет мощную рабочую обмотку на статоре, которая в процессе работы разогревается от прохождения по ней рабочего тока, и передает тепло на корпус двигателя. Поэтому и обмотку и корпус двигателя необходимо все время активно охлаждать.

В связи с этой особенностью, большинство асинхронных двигателей по умолчанию имеют на своих валах крыльчатки вентиляторов, а на корпусах - выступы, вдоль которых вентилятор, как через радиатор, гонит свежий воздух, охлаждая таким образом статор. Поэтому, если перед вами двигатель, на валу которого установлен вентилятор (обычно под крышкой, закрепленной на корпусе двигателя), вдоль корпуса имеются ребра (как на радиаторе), а на шильдике указана конкретная величина оборотов в минуту и величины переменного напряжения 220/380 — пред вами типичный асинхронный двигатель переменного тока.

В двигателях постоянного тока, с коллекторно-щеточными узлами и с многосекционными многовитковыми обмотками на якарях, выведенными на ламели коллектора, в качестве рабочих обмоток выступают - и обмотка статора, и обмотка ротора (якоря).

Здесь фактически получается, что рабочая обмотка как-бы разделена на две части: рабочий ток идет и через якорную обмотку, и через статорную обмотку, поэтому проблема нагрева только статора отсутствует, и вентилятор здесь не нужен.

Для охлаждения достаточно вентиляционных отверстий, через которые можно разглядеть ротор с якорной обмоткой на нем. Поэтому, если перед вами двигатель с коллекторно-щеточным узлом, где коллектор имеет множество ламелей (блестящих пластинок) с выводами от обмоток, и вентилятора словно бы и не предусмотрено — перед вами двигатель постоянного тока.

Статор двигателя постоянного тока может представлять собой набор постоянных магнитов. Большинство двигателей постоянного тока, рассчитанных на сетевое напряжение, будут легко работать и от переменного тока (пример такого универсального мотора - мотор болгарки).

Ранее ЭлектроВести писали, что с 7 по 17 марта 2019 года в выставочном центре Palexpo состоится Женевский автосалон. Всего ожидается свыше 100 мировых и европейских премьер!

По материалам: electrik.info.

Разница асинхронного и синхронного двигателя

Электродвигатели можно разделить на две основные категории – синхронные и асинхронные (индукционные) двигатели. Эти два вида довольно сильно отличаются друг от друга. Разница уже видна в самих названиях. Отличить агрегаты можно по выбитому на шильдике количеству оборотов (если там не указан тип мотора), у ассинхронного мотора неокруглённое число (например, 950 об/мин), у синхронного округлённое (1000 об/мин).

Есть и другие важные различия, в этой статье мы рассмотрим наиболее показательные из них: конструктивные, рабочие и ценовые.

Различия в работе и стоимости

Любой двигатель состоит из двух элементов: неподвижного и вращающегося. Статор имеет осевые прорези — пазы, на дно которых укладываются токонесущие медные или алюминиевые проводки. У электродвигателя на валу крепится ротор с обмоткой возбуждения.

Принципиальным отличием между синхронными и асинхронными двигателями являются роторы, точнее, их исполнение.

У синхронных моделей при малых мощностях они представляют собой постоянные магниты.

Переменное напряжение подаётся на обмотку статора, ротор подключается к постоянному источнику питания. Проходящий по обмотке возбуждения постоянный ток наводит магнитное поле статора. Крутящий момент создаётся из-за угла запаздывания между полями. Ротор имеет такую же скорость, как и магнитное поле статора.

 

Агрегаты используются на практике и как генераторы и как двигатели.

 

Асинхронные модели – это достаточно недорогие двигатели, которые применяются часто и всюду. Они проще в конструктивном плане, несмотря на то, что неподвижные части в принципе у всех моторов похожи.

По обмотке статора пропускается переменный электроток, который взаимодействует с роторной обмоткой. Два поля вращаются с одинаковой скоростью в одном направлении, но не могут быть равными, иначе бы не создавалась индуцированная ЭДС и, тем более крутящийся момент. Это становится причиной возникновения индуцированного тока в обмотке роторе, направление которого согласно правилу Ленца таково, что он склонен противостоять причине своего производства, т. е. скорости скольжения.

Скорость вращения ротора не совпадает со скоростью магнитного поля, она всегда меньше. Таким образом, ротор пытается догнать скорость вращающегося магнитного поля и уменьшить относительную скорость.

 

Основные достоинства и недостатки

  1. Асинхронные агрегаты не требуют какого-либо дополнительного источника питания. Синхронным необходим дополнительный источник постоянного тока для подачи напряжения на обмотки.
  2. Синхронники обладают относительно невысокой чувствительностью к перепадам сетевого напряжения и стабильностью вращения вне зависимости от нагрузки.
  3. Индукционные двигатели не требуют наличия контактных колец, за исключением двигателей с фазным ротором, которые их имеют для плавного пуска или регулирования скорости. В синхронных двигателях больше уязвимых мест, так как используются контактные кольца со щетками. Следовательно, детали быстрее изнашиваются и контакт между ними ослабевает.
  4. Синхронники нуждаются во вспомогательных пусковых механизмах, так как не обладают функцией самопуска. Для индукционных электродвигателей, имеющих собственные пусковые моменты, такой механизм не требуется.

Какой агрегат лучше

В заключение нужно отметить, что говорить, якобы один мотор лучше другого, нельзя. Однако, асинхронные модели надежнее в эксплуатации, отличаются простотой конструкции. Если агрегаты не перегружать, то их длительным сроком службы пользователь может остаться довольным.

Достоинством синхронной модели является то, что можно легко установить высокий коэффициент мощности. Поэтому модель является гораздо более эффективной, но по цене она будет соответственно дороже. Машины применяются в системах с требуемой мощностью 100 кВт и более.

принципы работы и различия в характеристиках

Электродвигатели — машины, превращающие энергию электричества в механическую. Преобразованная энергия приводит во вращательное движение ротор двигателя, передающий вращение через трансмиссию непосредственно на вал исполнительного механизма. Основными типами электродвигателей являются синхронный и асинхронный двигатели. Различия между ними определяют возможности использования в различных устройствах и технологических процессах.

Принципы работы

Все электродвигатели имеют неподвижный статор и вращающийся ротор. Разница между асинхронным и синхронным двигателями состоит в принципах создания полюсов. В асинхронном электродвигателе они создаются явлением индукции. Во всех других электродвигателях используются постоянные магниты или катушки с током, создающие магнитное поле.

Особенности синхронных двигателей

Ведущие агрегаты синхронной машины — якорь и индуктор. Якорем является статор, а индуктор располагается на роторе. Под действием переменного тока в якоре образуется вращающееся магнитное поле. Оно сцепляется с магнитным полем индуктора, образованным полюсами постоянных магнитов или катушек с постоянным током. В результате этого взаимодействия энергия электричества преобразуется в кинетическую энергию вращения.

Ротор синхронной машины имеет частоту вращения такую же, как у поля статора. Достоинства синхронных электродвигателей:

  • Конструктивно используется и как двигатель, и как генератор.
  • Частота вращения, не зависящая от нагрузки.
  • Большой коэффициент полезного действия.
  • Малая трудоёмкость в ремонте и обслуживании.
  • Высокая степень надёжности.

Синхронные машины широко используются как электродвигатели большой мощности для небольшой скорости вращения и постоянной нагрузки. Генераторы применяются там, где требуется автономный источник питания.

Имеются у синхронной машины и недостатки:

  • Требуется источник постоянного тока для питания индуктора.
  • Отсутствует начальный пусковой момент, для запуска требуется применение внешнего момента или асинхронного пуска.
  • Щётки и коллекторы быстро выходят из строя.

Современные синхронные агрегаты содержат в индукторе дополнительно к обмотке, питаемой постоянным током, ещё и пусковую короткозамкнутую обмотку, которая предназначена для пуска в асинхронном режиме.

Отличительные черты асинхронных двигателей

Вращающееся магнитное поле статора асинхронного двигателя наводит индукционные токи в роторе, которые образуют собственное магнитное поле. Взаимодействие полей приводит ротор во вращение. Частота вращения ротора при этом отстаёт от частоты вращения магнитного поля. Именно это свойство отражено в названии двигателя.

Асинхронные электродвигатели бывают двух типов: с короткозамкнутым и с фазным ротором.

Бытовые приборы, такие как вентилятор или пылесос, обычно снабжены двигателями с короткозамкнутым ротором, который представляет собой «беличье колесо». Все стержни замыкаются приваренными с обеих сторон дисками. Взаимодействие магнитного поля статора с наведёнными токами в роторе образовывает электромагнитную силу, которая действует на ротор в направлении вращения поля статора. Крутящий момент на валу электродвигателя создаётся всеми электромагнитными силами от каждого проводника.

В электродвигателе с фазным ротором применяется тот же статор, что и для мотора с короткозамкнутым ротором. А в ротор добавляются обмотки трёх фаз, соединённые в «звезду». К ним можно при пуске двигателя подключать реостаты, регулирующие пусковые токи. С помощью реостатов можно регулировать и частоту вращения двигателя.

Достоинствами асинхронных двигателей можно назвать:

  • Питание непосредственно от сетей переменного тока.
  • Простоту устройства и сравнительно невысокую стоимость.
  • Возможность использования в бытовых приборах с применением однофазного подключения.
  • Низкое потребление энергии и экономичность.

Серьёзные недостатки — сложная регулировка частоты вращения и большие теплопотери. Для предотвращения перегрева корпус агрегата делается ребристым, и на вал электродвигателя устанавливается крыльчатка для охлаждения.

Отличие в характеристиках электродвигателей

Конструктивные особенности и рабочие характеристики электродвигателей имеют решающее значение при выборе агрегатов. От этого зависит проектирование трансмиссий и всех силовых узлов механизмов. При выборе двигателя нужно опираться на общность и главные отличия в свойствах машин:

  • Главное отличие синхронного от асинхронного двигателя заключается в конструкции ротора. Он представляет собой постоянный или электрический магнит. У асинхронника магнитные поля в роторе наводятся с помощью электромагнитной индукции.
  • У синхронных двигателей частота вращения вала постоянна, у асинхронников она может изменяться при изменении нагрузки.
  • У синхронников отсутствует пусковой момент. Для входа в синхронизацию требуется применять асинхронный пуск.

Синхронный и асинхронный электродвигатели находят каждый своё применение. Синхронные двигатели рекомендуется использовать везде при высоких мощностях, где присутствует непрерывный производственный процесс и не нужно часто перезапускать агрегаты или регулировать частоту вращения. Они используются в конвейерах, прокатных станах, компрессорах, камнедробилках и т. д. Современный синхронный электродвигатель имеет такой же быстрый запуск, как и асинхронный, но он меньше и экономичнее, чем асинхронный, равный по мощности.

Асинхронные электродвигатели с фазным ротором применяются там, где нужен большой пусковой момент и частые остановки агрегатов. Например, в лифтах и башенных кранах. Асинхронные электродвигатели с короткозамкнутым ротором получили широкое применение из-за простоты устройства и удобства в эксплуатации.

Используя достоинства разных агрегатов и то, чем отличается синхронный двигатель от асинхронного, можно делать обоснованный выбор того или иного мотора при проектировании машин, станков и другого оборудования.

Двигатели переменного тока синхронные и асинхронные. Синхронный или асинхронный

На рис.7.7 приведены характеристики синхронных двигателей СДВ 17-39-12 и СДВ-17-59-12 (С – синхронный, Д – двигатель, В – для привода вентиляторов, 17 – габарит, 39 и 59 – длина сердечника статора, см, 12 – число полюсов) и ВДС 325/49-16. Характеристики синхронных двигателей (рис.7.7) имеют ряд преимуществ по сравнению с характеристиками , :
возможность работы с опережающим коэффициентом мощности;
более низкие потери;
синхронная вращения в независимости от нагрузки;
возможность плавного регулирования реактивной мощности и более высокое качество в узлах нагрузки;
способность сохранять устойчивую работу при колебаниях в питающей сети.
Последняя особенность связана с тем, что у синхронного двигателя максимальный момент пропорционален напряжению, а у АД – квадрату – рис.7.4.

Синхронные двигатели, наряду с наличием на роторе обмотки возбуждения, имеют и мощную демпферную систему, обеспечивающую пуск и разгон ротора до подсинхронной частоты вращения в асинхронном режиме, с замкнутой на гасительное сопротивление обмоткой возбуждения. По достижении подсинхронной частоты вращения осуществляется синхронизация двигателя путем включения АГП и доведение его частоты вращения до синхронной. Синхронизация усложняется при высоких коэффициентах загрузки двигателя, а в системе собственных нужд электростанций возможности разгрузки на период синхронизации отсутствуют – рис.7.7.
Недостатком синхронных электродвигателей является необходимость отключения АГП и перевод их в асинхронный режим даже при кратковременных глубоких понижениях питающего напряжения, связанных с неудаленными и ошибочным отключением рабочих вводов питания. При использовании синхронных двигателей на электростанциях они будут участвовать в самозапуске наряду с другими асинхронными двигателями в условиях более низких питающих напряжений по сравнению с пуском отдельного . При этом условия синхронизации усложняются.


Исходя из высокой чувствительности синхронных электродвигателей к глубоким понижениям напряжения, трудности синхронизации в условиях самозапуска, отсутствие необходимости компенсации реактивной мощности в системе СН ввиду небольшой удаленности синхронных генераторов, синхронные электродвигатели нашли ограниченное применение в системе СН электростанций. Синхронные электродвигатели используются для питания потребителей, не влияющих на немедленное прекращение технологического процесса: часть циркуляционных насосов, приводы компрессоров и вентиляторов, мельниц, дробилок. Перечисленные механизмы обычно имеют промежуточные бункеры топлива и запасы перекачиваемого рабочего тела в ресиверах.
В виде примера в табл.7.2 изображена мельница-вентилятор с приводным синхронным двигателем марки СДМЗ2-22-61-40УХЛ4, предназначенным для привода шаровых и стержневых мельниц. В обозначении типа:
С – синхронный, Д – двигатель, М – для привода мельниц, З – закрытого исполнения, 2 – вторая серия, 22 – габарит, 61 – длина сердечника статора, см, 40 – число полюсов, УХЛ4 – климатическое исполнение и категория размещения по ГОСТ. Пуск двигателя асинхронный прямой при номинальном напряжении сети с включением в цепь обмотки возбуждения разрядного сопротивления. В процессе пуска среднее на зажимах двигателя должно быть не менее 0,85Uном, минимальное в начале пуска – не менее 0,8Uном. Двигатель допускает два пуска подряд из холодного состояния или один пуск из горячего состояния при условии, что средний статический момент сопротивления механизма на валу за время пуска не превышает 0,8М ном при моменте инерции приводимого механизма не более указанного в табл.7.2. Возбуждение двигателя осуществляется от тиристорных возбудителей. Обращаем внимание на низкую частоту вращения электродвигателей серии СДМЗ2 в пределах 100 – 150 об/мин, на которые асинхронные двигатели не выпускаются.

Существуют различные виды электродвигателей, и очень часто возникает вопрос, в чем же отличия между синхронным и асинхронным двигателем. В асинхронном обмотки, расположенные в статоре, создают вращающееся магнитное поле, взаимодействующее с токами, образующимися в роторе, благодаря чему он приходит во вращающееся состояние. Поэтому, в настоящее время, наиболее популярным считается простой и надежный асинхронный электродвигатель, имеющий короткозамкнутый ротор.

Асинхронный двигатель

В его пазах расположены токопроводящие стержни из алюминия или меди, соединенные своими концами с кольцами из такого же материала, которые производят короткое замыкание этих стержней. Поэтому, ротор и называется короткозамкнутым. Вихревые токи, взаимодействующие с полем, вызывают вращение ротора со скоростью, меньшей, чем скорость вращения самого поля. Таким образом, весь двигатель получил название асинхронного. Это движение получило название относительного скольжения, поскольку скорости ротора и магнитного поля неравны и магнитное поле не пересекается с токопроводящими стержнями ротора. Поэтому, они не создают вращающийся момент.

Принципиальным отличием обоих видов двигателей является исполнение ротора. В синхронном он представляет собой постоянный магнит относительно небольшой мощности или такой же электромагнит. Вращающийся магнит, создающий статора, приводит в движение магнитный ротор. Скорость движения статора и ротора, в этом случае, одинаковая. Поэтому, данный двигатель получил название синхронного.

Особенности синхронного двигателя

Синхронный двигатель отличается возможностью значительного опережения током напряжения по фазе. Повышая коэффициент мощности по типу конденсаторных батарей.

Асинхронные электродвигатели отличаются простотой конструкции и надежностью в эксплуатации. Единственный недостаток этих агрегатов заключается в достаточной трудности регулировки частоты их вращения. асинхронные двигатели могут быть легко реверсированы, то есть вращение двигателя может измениться на противоположное направление. Для этого, достаточно изменить место расположения двух линейных проводов или фаз, которые замыкаются на обмотку статора. В отличие от синхронного, это простой и дешевый двигатель, применяющийся повсеместно.

Синхронный и асинхронный двигатель имеет еще и такое важное отличие, как постоянная частота вращения у первого при различных нагрузках. Поэтому их применяют в приводах машин, требующих постоянных скоростей, например, в компрессорах, насосах или вентиляторах, поскольку они очень легки в управлении.

Классификация электродвигателей

Трехфазные асинхронные двигатели составляют основу современного электропривода. От ДПТ их отличает простота конструкции, надежность, высокие технико-экономические показатели. В настоящее время частотные преобразователи позволили сделать регулировочные свойства АД более лучшими, чем у ДПТ с НВ.

По конструкции ротора АД разделяются на двигатели и короткозамкнутым ротором (КЗР) и двигатели с фазным ротором (ФР). Наиболее простая конструкция у АД с КЗР. Ротор такого двигателя не имеет выводов, так как его обмотка выполнена в виде короткозамкнутой клетки (беличья клетка). Его обмотка выполнена в виде ряда медных или алюминиевых стержней, расположенных по периметру сердечника ротора, замкнутые в двух сторон короткозамыкающими кольцами. Простота конструкции обеспечивает им высокую надежность, простоту обслуживания и невысокую стоимость. Схема включения АД СС КЗР представлена на рис. 4.1, а.

Фазный ротор имеет трехфазную обмотку, выполненную по типу обмотки статора (рис. 4.1, б). Одни концы катушек соединены в нулевую точку («звезда»), а другие – подключены к контактным кольцам. На кольца наложены щетки, осуществляющие скользящий контакт с обмоткой ротора. При такой конструкции возможно подсоединение к обмотке ротора пускового или регулировочного реостата, позволяющего менять электрическое сопротивление в цепи ротора. Такие двигатели более сложны в изготовлении и эксплуатации, поэтому применяются только там, где применение АД с КЗР не обеспечит требованиям в приводу механизма.

Ротор АД отстаёт от вращающегося магнитного поля статора, которое создается обмоткой статора, то есть вращение происходит асинхронно. В этих условиях вращающееся поле статора индуцирует ЭДС в обмотке роторе, под действием которого в роторе протекает ток, который взаимодействует с вращающимся магнитным полем (ВМП), создавая вращающий момент двигателя. В рабочих режимах разница частот вращения статора и ротора не велика и составляет несколько процентов. При рассмотрение рабочих процессов АД обычно используют понятие скольжения

Скорость асинхронного двигателя в рабочих режимах

где синхронная частота вращения магнитного поля ; – частота питающего напряжения ; – число пар полюсов.

Статор синхронного двигателя (СД) конструктивно не отличается от статора АД. Ротор СД имеет явнополюсную конструкцию, на полюсах которого расположена обмотка возбуждения. При включении обмотки к источнику постоянного тока в двигателе создается дополнительное магнитное поле. Таким образом, для работы синхронного двигателя кроме 3х-фазного переменного напряжения требуется также постоянное. Исключение составляют двигатели, возбуждаемые постоянными магнитами. Такие двигатели обладают абсолютно жесткой механической характеристикой: ротор двигателя вращается синхронно с вращающимся магнитным полем с частотой .

В отличие от АД, синхронные не создают пускового момента, так как ротор двигателя по причине инерционности не может мгновенно разогнаться до синхронной скорости. Для пуска СД необходимо предварительно привести его во вращение до скорости, близкой к синхронной ( . С этой целью применяют асинхронный пуск, для чего на роторе двигателя располагается пусковая обмотка, конструктивно похожая на беличью клетку.

Процесс асинхронного пуска СД протекает следующим образом (рис. 4.2).

При включении обмотки статора СД в сеть СД запускается как асинхронный. При этом обмотку возбуждения замыкают на сопротивление для ограничения величины ЭДС, которая наводится в ОВ при пуске двигателя. При достижении скорости вращения близкой к номинальной, обмотку возбуждения подключают к постоянному напряжению, и двигатель втягивается в синхронизм, то есть скорость вращения двигателя становится равной синхронной скорости.

Синхронные двигатели изготавливаются на большие мощности: от сотен до тысяч киловатт. Объясняется это тем, что при меньших мощностях их применение нецелесообразно по технико-экономическим показателям.

СД обычно имеют целевое назначение, то есть каждая серия разработана для конкретных механизмов (для шаровых мельниц - СДМЗ, для привода компрессоров – СДК, для привода насосов – ВДС и др.).

Синхронные двигатели имеют перегрузочную способность .

Еще одной особенностью СД является возможность работать с величиной , более того, при перевозбуждении синхронный двигатель начинает генерировать емкостную нагрузку. Для повышении в сети используют синхронные компенсаторы, представляющие собой перевозбужденные СД специальной конструкции, работающие без нагрузки на валу.

Прежде чем разобраться, в чём их отличие, необходимо выяснить, что такое электродвигатель? Электродвигатель – это электрическая машина, которая приводится в действие от электроэнергии и служит приводом для других механизмов.

Объяснение принципа работы синхронного электродвигателя для «чайников»

С детства мы помним, что два магнита, если их приблизить друг к другу, в одном случае притягиваются, а в другом отталкиваются. Происходит это, в зависимости от того, что какими сторонами магнитов мы их соединяем, разноимённые полюса притягиваются, а одноимённые отталкиваются. Это – постоянные магниты, у которых магнитное поле присутствует постоянно. Существуют и переменные магниты.

В школьном учебнике по физике есть рисунок, где изображён электромагнит в виде подковы и рамка с полукольцами на концах, которая расположена между его полюсами.

При расположении рамки в горизонтальном положении в пространстве между полюсами магнитов, из-за того, что магнит притягивает разноимённые полюса и отталкивает одноимённые, на рамку подаётся ток, одинакового знака. Вокруг рамки появляется электромагнитное поле (вот пример переменного магнита!), полюса магнитов притягивают рамку, и она поворачивается в вертикальное положение. При достижении вертикали, на рамку подаётся ток противоположного знака, электромагнитное поле рамки меняет полюсность, и полюса постоянного магнита начинают отталкивать рамку, вращая её до горизонтального положения, после чего цикл вращения повторяется.

В этом заключается принцип работы электродвигателя. Причём, примитивного синхронного электродвигателя!

Итак, примитивный синхронный электродвигатель работает, когда на рамку подаётся ток. У настоящего синхронного электродвигателя, роль рамки выполняет ротор с катушками проводов, называемых обмотками, на которые подаётся ток (они служат источниками электромагнитного поля). А роль подковообразного магнита выполняет статор, изготовленный либо из набора постоянных магнитов, либо тоже из катушек проводов (обмоток), которые, при подаче тока являются также источниками электромагнитного поля.

Ротор синхронного электродвигателя будет вращаться с такой же частотой, с какой меняется ток, подаваемый на клеммы обмотки, т.е. синхронно. Отсюда название этого электродвигателя.

Объяснение принципа работы асинхронного электродвигателя для «чайников»

Вспоминаем описание рисунка в предыдущем примере. Та же рамка, расположенная между полюсами подковообразного магнита, только её концы не имеют полуколец, они соединены между собой.

Теперь начинаем вращать вокруг рамки подковообразный магнит. Вращаем его медленно и наблюдаем за поведением рамки. До некоторых пор рамка остаётся неподвижной, а потом, при повороте магнита на определённый угол, рамка начинает вращение вслед за магнитом. Вращение рамки запаздывает по сравнению со скоростью вращения магнита, т.е. она вращается не синхронно с ним – асинхронно. Вот и получается, что это примитивный асинхронный электродвигатель.

Вообще-то роль магнитов в настоящем асинхронном двигателе служат обмотки, расположенные в пазах статора, на которые подаётся ток. А роль рамки, выполняет ротор, в пазы которого вставлены металлические пластины, соединённые между собой на коротко. Поэтому такой ротор называется короткозамкнутым.

В чём же отличия синхронного и асинхронного электродвигателей?

Если поставить рядом два современных электродвигателя одного и другого типа, то по внешним признакам их отличить трудно даже специалисту.

По существу, их главное отличие рассмотрено в приведённых примерах принципов работы этих электродвигателей. Они отличаются по конструкции роторов . Ротор синхронного электродвигателя состоит из обмоток, а ротор асинхронного представляет собой набор пластин.

Статоры одного и другого электродвигателей почти неотличимы и представляют собой набор обмоток, однако, статор синхронного электродвигателя может быть набран из постоянных магнитов.

Обороты синхронного двигателя соответствуют частоте подаваемого на него тока, а обороты асинхронного несколько отстают от частоты тока.

Отличаются они и по сферам применения . Например, синхронные электродвигатели ставят для привода оборудования, которое работает с постоянной скоростью вращения (насосы, компрессоры и т.д.) не снижая её с увеличением нагрузки. А вот асинхронные электродвигатели снижают частоту вращения при увеличении нагрузки.

Синхронные электродвигатели конструктивно сложней, а значит, и дороже асинхронных электродвигателей.

Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.

Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.

Конструктивные особенности и принцип работы

Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по .

Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.

Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.

Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.

Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.

Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.

Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.

При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.

В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.

Достоинства и недостатки

Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.

Синхронные электродвигатели имеют и другие достоинства:

  • Электродвигатели синхронного типа работают с повышенным коэффициентом мощности, что создает уменьшение расхода энергии и снижает потери. КПД синхронного мотора выше при той же мощности асинхронного двигателя.
  • Синхронные электродвигатели имеют момент вращения, который прямо зависит от напряжения сети. Поэтому он при уменьшении напряжения сохраняет свою мощность больше асинхронного. Это является фактором надежности подобных конструкций моторов.

Недостатками являются следующие отрицательные моменты:

  • При проведении сравнительного анализа конструкций двух моторов, можно отметить, что синхронные электродвигатели выполнены по более сложной схеме, поэтому их стоимость будет выше.
  • Следующим недостатком для синхронных моторов стала необходимость в источнике тока в виде выпрямителя, либо другого блока питания постоянного тока.
  • Запуск двигателя происходит по сложной схеме.
  • Регулировка скорости вала двигателя возможна только одним способом, с помощью применения частотного преобразователя.

В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.

Выбор двигателя

К вопросу приобретения синхронного электродвигателя нужно подходить, основываясь на следующие факторы:

  • Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также синхронные электродвигатели отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.
  • Особенности выполнения подключения электродвигателя с потребителем.
Синхронные компенсаторы

Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть .

Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.

Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.

Сфера применения

Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.

Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.

В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.

Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.

Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.

Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.

Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.

Синхронные и асинхронные двигатели

- где они используются?

10 апреля 2021 г.

Многие люди часто путают термин «синхронные двигатели и асинхронные двигатели » и их точное назначение. Следующая информация описывает общие методы работы синхронных и асинхронных двигателей, их преимущества, их общее расположение и цели, которых может достичь каждый двигатель.

Синхронный двигатель

Синхронные и асинхронные двигатели - как они работают

Синхронный двигатель

Это типичный синхронный двигатель переменного тока , способный генерировать синхронную скорость.В этих двигателях и статор, и ротор вращаются с одинаковой скоростью, что обеспечивает синхронизацию. Основной принцип работы заключается в том, что когда двигатель подключен к источнику питания, ток течет в обмотки статора, что создает вращающееся электромагнитное поле. Он снова попадает в обмотки ротора, а затем начинает вращаться.

Внешний источник питания постоянного тока необходим для фиксации направления и положения ротора относительно направления и положения статора.Из-за этой блокировки двигатели должны работать синхронно или вообще не работать.

Асинхронный двигатель

Принцип работы асинхронного двигателя почти такой же, как и у синхронного двигателя, за исключением того, что асинхронный двигатель не подключен к внешнему возбудителю. Короче говоря, асинхронные двигатели (также называемые асинхронными двигателями) также работают по принципу электромагнитной индукции. В этом случае ротор не получает электрическую энергию через проводимость, как двигатель постоянного тока.

Единственная проблема заключается в том, что к асинхронному двигателю не подключено внешнее устройство для отключения ротора, поэтому скорость ротора зависит от изменяющейся интенсивности магнитной индукции. Это изменяющееся электромагнитное поле заставляет ротор вращаться медленнее, чем магнитное поле статора. Поскольку скорость ротора и скорость магнитного поля статора изменяются, эти двигатели называются асинхронными двигателями. Разница в скорости называется скольжением.

Синхронные и асинхронные двигатели - преимущества и недостатки

Синхронный двигатель работает с заданной частотой и постоянной скоростью независимо от нагрузки.Однако скорость асинхронного двигателя будет уменьшаться с увеличением нагрузки.

Синхронные двигатели могут работать с большим коэффициентом мощности, включая запаздывание и опережение, в то время как асинхронные двигатели всегда работают с запаздыванием p.f. При уменьшении нагрузки запаздывание p.f может быть очень низким.

Синхронные двигатели не запускаются автоматически, поскольку асинхронные двигатели могут запускаться автоматически.

Подобно асинхронному двигателю, крутящий момент синхронного двигателя не зависит от изменений напряжения.

Для запуска синхронного двигателя требуется внешнее возбуждение постоянным током, но асинхронный двигатель может работать без внешнего возбуждения.

Синхронные двигатели обычно дороже и сложнее асинхронных двигателей, в то время как асинхронные двигатели дешевле и удобны для пользователя.

Синхронные двигатели особенно подходят для низкоскоростных приводов, поскольку их коэффициент мощности всегда можно отрегулировать до 1,0, а их эффективность высока. С другой стороны, асинхронные двигатели полезны для скоростей выше 600 об / мин.

В отличие от асинхронных двигателей, синхронные двигатели могут работать на сверхнизких скоростях за счет использования мощных электронных преобразователей, генерирующих очень низкие частоты.Их можно использовать для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.

Применение синхронного двигателя

Обычно они используются на электростанциях для получения необходимого коэффициента мощности. Они работают параллельно с шиной и обычно перегружаются извне для достижения необходимого коэффициента мощности.

Они также используются в обрабатывающей промышленности, где используется большое количество асинхронных двигателей и трансформаторов для решения проблемы отставания коэффициента мощности.

Используется на электростанциях для выработки электроэнергии необходимой частоты.

Используется для управления напряжением путем изменения возбуждения в линии передачи.

Применение асинхронного двигателя

Более 90% двигателей в мире являются асинхронными двигателями, и асинхронные двигатели широко используются в различных областях. Вот некоторые из них:

Центробежные вентиляторы, нагнетатели и насосы

компрессор

конвейер

Подъемники и тяжелые краны

токарный станок

Нефтяные, текстильные и бумажные фабрики

В заключение

Короче говоря, используйте Синхронные двигатели только тогда, когда машина требует работы на низкой или сверхнизкой скорости и существует необходимый коэффициент мощности.Асинхронные двигатели в основном используются в большинстве вращающихся или движущихся машин, таких как вентиляторы, лифты, шлифовальные машины и т. Д.

Синхронные и асинхронные двигатели: обнаруживая разницу

Упрощенно разделение двигателей с дробной мощностью на двигатели переменного, постоянного тока, бесщеточные и универсальные. Однако так же, как обувь можно разделить на рабочие ботинки, модельные туфли, кроссовки и т. Д., Каждая моторная категория имеет различные подгруппы. Двигатели переменного тока, например, можно разделить на синхронные и асинхронные (также известные как асинхронные).

Хотя оба работают от источника переменного тока (хотя синхронный также использует постоянный ток), их создание, работа и использование сильно различаются.

Перед тем, как разбить обсуждение на две категории переменного тока, важно помнить, что в типичном двигателе переменного тока (как более подробно объясняется в нашем блоге Основы электродвигателя переменного тока ) вращающееся магнитное поле создается статором, имеющим индуцирован входным током. Скорость этого поля определяется частотой источника питания и количеством полюсов машины и называется «синхронной скоростью» - или, скорее, скоростью, которая возникает одновременно.

Асинхронный двигатель

Когда люди говорят об асинхронных двигателях, они обычно имеют в виду асинхронные двигатели переменного тока. Самый распространенный тип, асинхронный двигатель переменного тока с короткозамкнутым ротором, обычно имеет неподвижную обмотку, называемую статором, а также ротор, сделанный из электротехнической стали, и токопроводящие стержни из алюминия или меди, закороченные на каждом конце.

Как указано выше, в статоре от источника переменного тока создается магнитное поле, которое, в свою очередь, индуцирует токи в токопроводящих шинах ротора.Этот эффект индукции домино приводит к притяжению вращающегося магнитного поля статора и индуцированного магнитного поля ротора. Простое уравнение может помочь проиллюстрировать это более наглядно.

Источник переменного тока + статор = вращающееся магнитное поле # 1 (синхронная скорость)

Вращающееся магнитное поле №1 + Ротор = Вращающееся магнитное поле №2 (отставание от синхронной скорости)

Ротор, естественно, будет вращаться медленнее, чем синхронная скорость магнитного поля в статоре, но притяжение между статором и компонентами ротора заставляет их постоянно догонять (создавая крутящий момент).Разница между этими двумя скоростями называется скольжением и обычно выражается в процентах от синхронной скорости.

Магнитное поле # 1 (быстрее) - Магнитное поле # 2 (медленнее) = Скольжение

Синхронный двигатель

Как вы могли догадаться, у синхронного двигателя есть ротор, который вращается с той же скоростью, что и синхронная скорость. Это возможно, потому что синхронные двигатели основаны на частоте и не зависят от постоянства начального входного тока.

Подумайте о синхронных пловцах на соревнованиях по прыжкам в воду. Их движения полностью совпадают с движениями другого члена команды по плаванию - их начало, середина и точки входа потенциально идентичны.

Синхронные двигатели работают примерно так же. Однако, как потребовалось бы много времени, чтобы достичь такого уровня единообразия в их технике погружения, синхронные двигатели не могут обеспечить одинаковое вращение между магнитными полями ротора и статора только при начальном входном токе.Мощность переменного тока индуцирует статор (как в типичном асинхронном двигателе), но затем он достигает точки запаздывания, мощность постоянного тока подается через возбудитель - устройство, которое подает ток намагничивания в двигатель для создания магнитного потока. Это позволяет увеличивать вращение и увязываться с синхронной скоростью, и, если не действуют экстремальные условия, эти скорости будут оставаться синхронизированными, что позволяет использовать функции высокой точности.

Это подводит нас к краткому описанию того, как различный состав двигателей переменного тока позволяет каждому поддерживать свою индивидуальную и разнообразную работу и использование.

Синхронный:

  • Более высокая начальная стоимость
  • Необходим возбудитель
  • Для высокоточных приложений (например, часы или поворотный стол)
  • Наиболее эффективен в крупных промышленных двигателях
  • Зависит от частоты (более стабильно)

Индукция:

  • Потенциально более высокие эксплуатационные расходы
  • Особые элементы управления обычно не требуются
  • Более распространенный; используется во многих повседневных применениях
  • Наиболее эффективен в небольших приложениях
  • Скорость разная по крутящему моменту

Как видите, асинхронные и синхронные двигатели, хотя оба они классифицируются как переменные, имеют довольно разные конструктивные и рабочие характеристики, при этом наличие скольжения является наиболее важным фактором.Из-за этого асинхронные двигатели обычно не могут поддерживать постоянную скорость в приложениях с переменным моментом нагрузки.

Синхронные двигатели

лучше всего служат своей цели в более крупных приложениях, тогда как Groschopp специализируется на двигателях с дробной мощностью, которые обычно не требуют атрибутов синхронного двигателя. Однако, если требуется постоянство синхронности, этот недостаток асинхронных двигателей переменного тока можно преодолеть с помощью частотно-регулируемого привода (ЧРП) или векторного привода.

Какие типы электродвигателей бывают? DC Brushed, Asynchronous and Synchronous

Свяжитесь с Valin сегодня для получения дополнительной информации по телефону (855) 737-4716 или заполните нашу онлайн-форму.

The Motion Control Show Мы уже говорили о том, что такое электродвигатель, теперь я собираюсь поговорить о нескольких различных типах электродвигателей. В частности, я собираюсь поговорить о щеточных двигателях постоянного тока, асинхронных и синхронных. Я Кори Фостер из Valin Corporation.Посмотрим, что мы можем узнать.

Есть много людей, которые знают о некоторых типах электродвигателей больше, чем я, поэтому я обратился к моему хорошему другу и коллеге Джону Брокоу, чтобы он поделился своим мнением по некоторым из этих типов.

КОРИ: Джон, что вы можете сказать мне о щеточном двигателе постоянного тока?

ДЖОН: Это самый старый школьный грязный мотор в творении. Эта штука была повсюду. Посмотрите на слайды, изобретенные Фарадеем в 1821 году. Итак, это 200-летняя технология.На самом деле он все еще используется во многих приложениях, потому что он относительно недорог. У него есть несколько известных проблем, о которых все знают. Чаще всего это износ щеток. У вас есть керамические угольные щетки, которые пропускают ток к вращающемуся ротору, и из-за износа этих щеток они, как и все остальное, со временем изнашиваются, и их нужно заменять. Это приведет к падению вашего мотора, на каком бы транспортном средстве он ни работал, и это просто неприятность.

COREY: Итак, если здесь щеточный электродвигатель постоянного тока коммутируется обрывом проводов и этих щеток, электродвигатель переменного тока фактически коммутируется синусоидальной частотой входящего переменного тока и идет на контакторы здесь.Теперь это показывает, что катушка находится внутри, но на самом деле обычно катушка - это статор снаружи с ротором внутри, который вращается. Но это хорошо для сравнения. Разница между переменным и постоянным током и как они коммутируются.

Прежде чем я буду говорить об асинхронных двигателях, давайте поговорим о синхронном и асинхронном. В асинхронном двигателе переменного тока нет магнитов, поэтому он фактически вращается медленнее, чем синхронная скорость входящей в него частоты.Я уже говорил о том, как двигатель переменного тока переключается с входящей частоты переменного тока, 60 Гц здесь, в США, но асинхронный двигатель, поскольку у него нет магнитов, на самом деле будет отставать от этого, и он всегда будет работать на настигнуть. Итак, вы можете видеть, что это частота, умноженная на 120, деленная на количество полюсов за вычетом некоторого сдвига. Таким образом, он всегда будет работать, чтобы наверстать упущенное, в то время как синхронный двигатель имеет несколько постоянных магнитов, поэтому он привязан к регулируемой частоте, которая поступает в него, и всегда будет вращаться с этой синхронной скоростью.

Для этого мне нужно вернуться к Джону Брокоу. Джон, асинхронные и асинхронные двигатели - это одно и то же?

JOHN: Все асинхронные двигатели переменного тока асинхронные. Но вы можете получить из них синхронные, псевдосинхронные приложения, сочетая их с обратной связью и выполняя над ними векторное управление. Вот где вы на самом деле контролируете угол между этими двумя и регулируете эту частоту скольжения, чтобы она была именно там, где вы хотите быть, чтобы обеспечить характеристики крутящего момента / скорости приложения.

А вот и внутренности асинхронного двигателя переменного тока. Вы можете видеть, что это классический асинхронный двигатель, в котором вы не видите никаких щеток или чего-либо, приближающегося к нему. У вас есть этот роторный узел посередине, который привязан к проходящему через него валу. Единственный изнашивающийся компонент типичного асинхронного двигателя переменного тока - это подшипники, которые вы видите на концах двигателя. Существует ряд аксессуаров, которые можно добавить к асинхронному двигателю в зависимости от области применения.Один из основных вопросов, о котором хочется подумать, - это охлаждение. У этого есть вентилятор. Это выглядит как полностью закрытый двигатель с вентиляторным охлаждением. Вы также можете иметь герметичные невентилируемые двигатели. У вас может быть открытый мотор, при котором воздух проходит через него. Вы можете надуть эти штуки воздухом. На двигатель можно надеть рубашки гидравлического охлаждения. Есть много разных способов охладить мотор. В конце концов, нужно помнить, что электродвигатель - это катушка из меди, и вы пропускаете через нее электричество.Когда такое случается, это электрический обогреватель. Таким образом, вы собираетесь генерировать тепло в системе и каким-то образом должны его отводить. Управление теплом - один из ключевых вопросов при выборе, определении размеров и эксплуатации двигателей.

Другими видимыми точками износа являются подшипники. Подшипники, как и любые другие подшипники, как подшипники в вашем автомобиле, в конечном итоге вам придется заменить их, потому что они действительно изнашиваются. Существуют и другие аксессуары, прокладки, уплотнения, разные вещи, в зависимости от среды, в которую вы фактически помещаете свой асинхронный двигатель, и от области применения.

КОРИ: Давайте поговорим об асинхронных двигателях и частотно-регулируемых приводах, которые их запускают. Что вы думаете о них?

ДЖОН: ЧРП великолепны. Это действительно зависит от приложения, потому что обычно речь идет о паре разных вещей. Один из них - что ты хочешь? Как вы хотите, чтобы мотор заводился? И есть несколько способов сделать это. Вы можете начать через черту. Это означает, что в основном у вас просто есть выключатель, и вы в основном идете YAK, и внезапно ток начинает выходить из электрической сети.Проблемы с этим. Это немного тяжело для мотора, потому что вы создаете скачок в моторе. Это также может повлиять на вашу местную электросеть, и компьютерам в этой системе действительно не нравится, когда вы это делаете. Это действительно грубый способ запустить мотор. Готово. Это сделано в разных местах, где это не имеет значения. Скажем, если вы используете насос для ирригации, вы обычно используете выделенную линию. Вокруг не так много компьютеров, которые будут к нему чувствительны.Вы просто бросаете вещь и запускаете насос.

Другой метод - плавный пуск. Это электронные компоненты, которые в основном медленно повышают напряжение в течение 5, 10, 15 секунд, чтобы это закрытие было немного более плавным. С двигателем намного проще, и ваша электрическая сеть будет генерировать намного меньше шума. Это старый и грязный способ запуска электродвигателя, который применялся за пару сотен лет.

С 60-х годов у нас были преобразователи частоты.С появлением полупроводников мы получили возможность выполнять различные широтно-импульсные модуляции для управления частотой асинхронного двигателя переменного тока. Помните, двигатели следуют входящей в них частоте. Итак, регулируя частоту, вы можете регулировать скорость двигателя. У этого есть много преимуществ. Применение насоса: вы фактически можете контролировать, сколько воды вы перекачиваете, в зависимости от кривой двигателя насоса. Повышает эффективность. Вы можете оптимизировать приложение.Затем вы также можете медленно увеличивать скорость, чтобы вы не просто замыкали линию, что делает ее более плавной и намного более чистой для электросети. Обратите внимание на некоторые частотно-регулируемые приводы, в которых вам может потребоваться установить какой-то фильтр, потому что они создают некоторые гармоники, которые могут подаваться обратно в вашу электрическую сеть, но в целом частотно-регулируемый привод является намного более чистым с точки зрения электричества способом установки и запуска двигателя.

COREY: Чтобы понять суть синхронного двигателя, он характеризуется постоянной скоростью вращения, которая не зависит от нагрузки, но связана с частотой питания или током в зависимости от типа привода.Отсюда и термин «синхронный», и в основном это делается с помощью постоянных магнитов, которые находятся там. Если вы посмотрите на конструкцию, то она выглядит несколько иначе, чем асинхронный двигатель переменного тока. Я хочу попросить Джона Брокоу указать нам на несколько вещей.

Джон: Обратите внимание, что в синхронном двигателе есть пара вещей, которые всегда будут там. У вас всегда будет отзыв о синхронном двигателе. Вы делаете это, потому что вам нужно знать, где находятся настоящие магниты, потому что они чередуются с севером, югом, севером и югом вокруг ротора.Как вы можете видеть на схеме в правом нижнем углу, вы можете видеть все маленькие магниты, установленные на поверхности, и они на самом деле, если вы на самом деле поместите туда магнит, вы действительно увидите их чередующиеся север, юг, Север, Юг, Север, Юг при обходе ротора. Это то, против чего затем реагируют катушки, и они могут вращать это поочередно. Без обратной связи с устройством вы не будете знать, где вы должны включить или выключить правую катушку, и в конечном итоге система будет бороться сама с собой.

КОРИ: Итак, Джон, действительно возникает вопрос, синхронные и серводвигатели - это одно и то же?

JOHN: Все серводвигатели переменного тока являются синхронными двигателями. Все синхронные двигатели не являются серводвигателями. Есть несколько необычных двигателей, которые являются синхронными, но не серводвигателями; переключаются реактивные двигатели, шаговые двигатели являются синхронными, потому что они следуют частоте, но они не серводвигатели.

COREY: Если расположить два типа двигателей рядом, вы можете увидеть, как конструкция похожа, но также и чем она отличается.Асинхронные двигатели могут быть огромными. Они могут быть совершенно огромными, размером с небольшую комнату. Синхронные двигатели и магниты становятся слишком дорогими, так что они действительно не будут больше, чем большая кошка, обычно самое большее. Но есть несколько сходств, несколько различий.

Так вот, Джон действительно хотел убедиться, что я объяснил важность расчета лошадиных сил. Мощность равна крутящему моменту, умноженному на скорость. Мощность может быть выражена в лошадиных силах или в ваттах. Вычисление, которое я люблю использовать, просто из памяти, состоит в том, что мощность в лошадиных силах равна крутящему моменту в унциях и дюймах, умноженному на скорость в оборотах в секунду, деленному на 16 800.Это важно, потому что асинхронные двигатели и двигатели переменного тока рассчитаны в лошадиных силах, но если у вас есть серводвигатель, у нас есть кривые скорость / крутящий момент, которые часто выглядят так, где у вас есть крутящий момент здесь и скорость здесь. Это практически одна и та же мощность от начала до конца, но это производство крутящего момента и скорости, поэтому мы не говорим о выборе серводвигателя или синхронного двигателя часто с точки зрения мощности. Мы говорим об этом с точки зрения скорости и крутящего момента. (Один двигатель может иметь высокий крутящий момент, а другой - высокую скорость, но такую ​​же мощность.Итак, если кто-то хотел перейти от двигателя переменного тока к серводвигателю, он не может просто сказать: эй, дайте мне двигатель мощностью 1 киловатт. Они это делают, и мы стараемся приспособиться к ним, но на самом деле лучшая информация - это какая скорость и крутящий момент вам нужны? Так что это действительно важно. Одна лошадиная сила равна 756 Вт.

Последнее сравнение. Важной частью этого рисунка являются различные типы приложений. Асинхронные двигатели действительно лучше подходят для приложений с постоянной скоростью, где синхронные двигатели необходимы для более точной скорости, а также для приложений с позиционированием.Итак, я надеюсь, что это поможет.

Я Кори Фостер из Valin Corporation. Свяжитесь с нами здесь. Спасибо, Джон Брокоу, за помощь. Я многому научился сегодня. Надеюсь, это поможет.

Если у вас есть вопросы или вам просто нужна помощь, мы будем рады обсудить с вами вашу заявку. Свяжитесь с нами по телефону (855) 737-4716 или заполните нашу онлайн-форму.

Какие электромоторы самые популярные?

Люди все больше интересуются электромобилями.Им не нравится планировать расходы на бензин, и они обеспокоены влиянием, например, автомобилей, работающих на топливе. Некоторые люди также принимают идею раннего внедрения новейших инноваций.

Электромобили им нравятся, потому что они позволяют быть на острие прогресса.

Широкий электромотор категории

Есть два основных типа электродвигателей, которые вы увидите, связанные с электромобилями. Давайте пройдемся по ним здесь.

Асинхронные двигатели

Асинхронные двигатели - или асинхронные двигатели - имеют компоненты с электрическим приводом, называемые статорами, которые создают вращающиеся магнитные поля.Статор - это спиральный провод внутри двигателя. Он оснащен магнитом на валу. При вращении магнит генерирует переменный ток.

Возникающее магнитное поле тянет сопровождающие роторы, заставляя их вращаться. Именно это действие создает энергию, которая вращает шестерни автомобиля и, в конечном итоге, его колеса. Инженеры часто выбирают эти электромоторы для автомобилей, на которых люди будут ездить на высоких скоростях в течение длительных периодов времени.

Синхронные двигатели

В синхронном двигателе ротор действует как электромагнит и создает магнитное поле.В то время как поля статора асинхронного двигателя вращаются быстрее, чем ротор, ротор и статор вращаются с одинаковой скоростью в синхронном двигателе. Общая скорость зависит от частоты тока двигателя.

Электромобили, предназначенные для людей, интересующихся городским вождением, часто имеют синхронные двигатели. Это потому, что они хорошо подходят для частых остановок, а также для трогания с малой скорости, что может случиться в периоды высокой загруженности дорог.

Насколько надежны электродвигатели?

Несмотря на то, что электромобили являются относительно новыми, люди используют электродвигатели в различных отраслях промышленности, где требуется непрерывная работа машин.

Некоторые промышленные электродвигатели содержат десятки или сотни деталей, которые работают вместе для обеспечения функциональности. Такие факторы, как температура, влажность и чрезмерная запыленность, могут сократить срок службы промышленного электродвигателя. Однако руководители компаний обычно подвергают компоненты периодическим испытаниям в качестве превентивной меры.

Что касается электромобилей, их основная движущаяся часть - это якорь, который представляет собой компонент, содержащий катушки. Большинство таких гарантий на автомобиль сосредоточено на времени вождения.Например, вы можете увидеть гарантии на 80 000–100 000 километров или миль, в зависимости от метрики, используемой на вашем рынке.

Особые типы электромоторов

Помимо категорий электродвигателей, упомянутых ранее, в электромобилях чаще всего используются три типа: бесщеточные асинхронные асинхронные двигатели, щеточные синхронные двигатели с внешним возбуждением и бесщеточные синхронные двигатели с постоянными магнитами.

Бесщеточные синхронные двигатели с постоянными магнитами

Бесщеточные синхронные двигатели с постоянными магнитами похожи на упомянутые ранее асинхронные двигатели тем, что у них есть статоры и роторы.Кроме того, в роторе используются редкоземельные металлы, такие как неодим и диспрозий. Это ферромагнитные материалы, обеспечивающие постоянное намагничивание.

Контроллер последовательно включает электромагнит статора, создавая магнитное поле, которое вращается вокруг ротора. Затем магнитные поля ротора пытаются не отставать от вращающегося поля с той же скоростью, с которой он движется - отсюда и «синхронная» часть названия. Эти действия заставляют ротор вращаться.

Этот тип электромотора является наиболее распространенным типом электромотора, который встречается в таких автомобилях, как Nissan Leaf, и транспортных средствах с некоторыми автономными функциями, таких как Tesla Model 3.Многие люди надеются, что беспилотные автомобили изменят наше общество, улучшив возможности передвижения и сократив количество владельцев автомобилей.

Бесщеточные асинхронные асинхронные двигатели

Этот тип двигателя имеет статоры и роторы, состоящие из электромагнитных катушек. Когда магнитные поля статора вращаются, они создают электрический ток и магнитное поле в обмотках ротора. Это происходит, когда поля статора вращаются немного быстрее, чем ротор.

Tesla Model S - один из примеров электромобиля с таким двигателем.Вы также увидите этот тип асинхронного двигателя в высокопроизводительных автомобилях, поскольку они могут производить больше энергии, чем двигатели с магнитами.

Однако преимущество синхронных двигателей магнитного типа, обсуждавшихся ранее, заключается в том, что они более эффективны, чем двигатели, использующие асинхронные двигатели. Это потому, что нет необходимости использовать электричество для создания магнитного поля. Магниты всегда активированы. Дизайнеры обычно выбирают двигатели магнитного типа для небольших и легких автомобилей.

Щеточные синхронные двигатели с внешним возбуждением

Эти двигатели также имеют статоры и роторы, но основное различие между этой категорией и асинхронными двигателями состоит в том, что роторы подключаются к источнику постоянного тока через вращающийся электрический контакт, называемый контактным кольцом.Такой подход генерирует магнитное поле, заставляя эти двигатели работать как типы с постоянными магнитами.

Renault Zoe - один из примеров автомобиля, в котором используется этот тип. Китай является основным источником редкоземельных металлов, и производители сталкиваются с возрастающими трудностями при поиске их для двигателей с постоянными магнитами. Постоянно стремятся создавать двигатели, которые работают так же, как эти варианты, но не требуют специальных металлов.

Эти типы с внешним возбуждением - одно из решений. По мере того, как они становятся более распространенными, вы должны чаще видеть их в автомобилях, в которых раньше были двигатели с постоянными магнитами.

Электродвигатели электромобилей - часть общей картины

Когда люди покупают электромобили, они думают не только о электромоторах в моделях, включенных в их короткие списки. Они также заботятся о сроке службы аккумулятора, времени зарядки, функциях безопасности и возможностях помощи водителю.

Однако этот обзор показывает, что электродвигатели являются важнейшими частями современных электромобилей. Каждый тип работает по-своему и обеспечивает производительность, наиболее подходящую для определенного использования. Таким образом, если вы думаете о покупке электромобиля в ближайшее время или можете работать над проектами, связанными с ними, понимание того, как работают двигатели, имеет важное значение для положительных результатов.

Высокоэффективные двигатели и экологичность - Электромоторостроение

Согласно некоторым исследованиям, электродвигатели составляют около 45% от общего потребления электроэнергии [1]. Если мы сосредоточим анализ на одной из наиболее энергоемких сфер, а именно на промышленной, то процент, приписываемый двигателям, возрастет примерно до двух третей.
Учитывая, что некоторые из машин, которые в настоящее время используются, устарели, очевидно, что замена новыми более эффективными двигателями приведет к важным преимуществам для окружающей среды и использования ресурсов, а также в стоимости производства и, следовательно, в конкурентоспособности.Они подсчитали, например, что в единственной Европе использование передовых приводных технологий вместо устаревших может привести к сокращению годового потребления на 135 ТВтч и выбросов CO 2 на 69 миллионов тонн [2]. Оценивая весь жизненный цикл двигателя в постоянной работе, мы можем убедиться, что затраты, связанные с потреблением энергии, составляют, безусловно, основной процент от общей стоимости (даже более 90%, [3]).
По этим причинам в Европейском Союзе , а также в США, Китае и других странах действуют нормативные планы, предусматривающие обязательное соблюдение требований постепенно увеличивающейся эффективности для новых установок.Согласно Стандарту минимальных энергетических характеристик (MEPS), например, двигатели, выпущенные на рынок ЕС с января 2017 года в диапазоне мощности от 0,75 до 375 кВт, должны иметь уровень эффективности IE3 или уровень эффективности IE2 при питании от инвертора (см. Рис.1), за очень немногими исключениями.

Рис. 1. Значения КПД, соответствующие классам IE, определенным нормативом IEC / EN 60034-30-1: 2014.

Благодаря наиболее распространенной технологии среди двигателей сегодня, асинхронному двигателю one (или асинхронному двигателю , IM), требуемые в будущем улучшения будут невозможны, по крайней мере, при разумных затратах и ​​для всех диапазонов мощности.Эти аспекты в сочетании с другими факторами, такими как растущее осознание важности снижения энергопотребления, приводят к внедрению двигателей, которые практически не распространялись до сих пор, таких как синхронные двигатели с постоянным магнитом , [4] [5]. Фактически, двигатели этого класса обладают внутренними характеристиками, которые позволяют заметно улучшить КПД и удельную мощность, в частности очень низкие потери в роторе.
Даже если уже в восьмидесятые «бесщеточные» серводвигатели (т.е.е. Surface Mount ‑ PMSM, SM ‑ PMSM) использовались в промышленной автоматизации, благодаря их превосходной управляемости и высокой динамике применение электрических синхронных машин с раскрученным ротором долгое время оставалось ограниченным конкретными приложениями. Напротив, за последние несколько лет, благодаря вышеупомянутым факторам, касающимся эффективности и снижению стоимости производства двигателей и инверторов, внедрение этого типа двигателей заметно расширилось.

Классификация двигателей переменного тока

Большинство двигателей переменного тока (AC) являются трехфазными, даже если есть некоторые исключения, например, в случае однофазных и шаговых двигателей (которые обычно двухфазные).Наиболее важное различие обычно заключается между синхронными и асинхронными машинами, различие основано на том факте, что механическая скорость вращения в установившемся режиме строго связана (синхронно) или нет с частотой вращения магнитного поля статора. Это различие конкретно отражается в том факте, что для создания крутящего момента в асинхронной машине наличие индуцированных токов в роторе необходимо, тогда как в синхронных машинах это не нужно (и, наоборот, нежелательно).
Синхронные машины отличаются тем, что магнитное поле ротора геометрически связано с механическим положением самого ротора. Поле ротора может создаваться током, который проходит через обмотку (синхронные двигатели с намотанным ротором), постоянными магнитами (синхронный постоянный магнит) или самим током статора, модулируемым магнитной анизотропией ротора (синхронное сопротивление).
Конструктивно и ротор, и статор машин с радиальным потоком (которых намного больше) изготавливаются путем наложения ферромагнитных пластин , соответственно заглушенных, решение, направленное на препятствование паразитным токам.Ротор обычно имеет цилиндрическую форму и может быть оборудован пространствами для размещения постоянных магнитов или проводящего материала.
На рис. 2 схематически представлены секции только что перечисленных двигателей различных типов (за исключением синхронного с фазным ротором).

Рис. 2. Различные конфигурации ротора (слева направо): асинхронный или асинхронный двигатель (IM), синхронный двигатель с внутренними постоянными магнитами (IPMSM), синхронные двигатели с внутренними постоянными магнитами и клеткой ротора (IPMSM с линейным запуском), синхронные с поверхностными постоянными магнитами. двигатель (SM-PMSM), синхронный реактивный двигатель (SynRM).

Самые темные области (щели) соответствуют обмоткам, постоянные магниты обозначены синим цветом, а серая зона секции представляет ферромагнитный материал (ламинирование). Как видите, разница между различными типами двигателей сосредоточена в роторе, тогда как статор (за исключением особых случаев) может быть реализован таким же образом. В асинхронном двигателе пазы ротора заполняются расплавом, который представляет собой так называемую «беличью клетку», обычно сделанную из алюминия или, в последнее время, из меди (с более высокими затратами, чтобы снизить потери).
В двигателях с постоянными магнитами , напротив, магниты могут быть вставлены в соответствующие резьбы внутри конструкции ротора (IPMSM и линейный IPMSM) или нанесены на поверхность в случае SM ‑ PMSM. В случае SynRM, вместо этого, резьбы внутри ротора просто пустые и называются «барьерами для потока», поскольку они выполняют функцию увеличения сопротивления (т.е. способности противодействовать прохождению магнитного потока) вдоль одних направлений, отдавая предпочтение другим ( т.е. дорожки больше характеризуются наличием железа).
В свою очередь синхронные двигатели можно подразделить по принципу создания крутящего момента. В двигателях с поверхностными постоянными магнитами создание крутящего момента происходит только благодаря взаимодействию между полем, создаваемым постоянными магнитами, и током статора.
Напротив, в реактивных двигателях , используется системная тенденция минимизировать сопротивление магнитных путей, если они подвергаются возбуждению. В двигателях с внутренним магнитом (IPMSM) обычно используются оба принципа.
При производстве постоянных магнитов используются особые материалы для достижения высоких значений индукции и предотвращения риска размагничивания (обычно связанного с высокими температурами или сильным магнитным полем). Наиболее часто используемые материалы - неодим-железо-бор, самарий-кобальт и алюминий-никель-кобальт. Особенно в случае SM ‑ PMSM, количество активного магнитного материала велико, а общая стоимость сырья очень высока. Это состояние усугубляется сильной изменчивостью цен на так называемые «редкоземельные элементы» [7], элементы, используемые в небольших количествах, но очень важные для качества магнита.Помимо проблем со стоимостью и доступностью, эти материалы вызывают также важные экологические, политические и этические проблемы, касающиеся их добычи, торговли и утилизации. По этим причинам огромные ресурсы вкладываются в исследования и разработки различных материалов и, особенно, в проекты двигателей, которые сводят к минимуму использование постоянных магнитов [8] или позволяют использовать так называемые ферриты, т.е. керамические магнитные материалы, в которых используются менее проблемные материалы.

Электропитание через инвертор и управление

Отрицательный аспект синхронных двигателей заключается в невозможности их питания , просто подключив их к сети (Direct On-Line, DOL), как это происходит с асинхронными двигателями.Следовательно, для работы синхронных или реактивных двигателей с постоянными магнитами необходимо наличие «привода», то есть целого, состоящего из реального инвертора (чисто электронного силового привода), электронного контроллера и алгоритмов, реализованных в нем. Алгоритм управления, реализованный на цифровом устройстве, обновляется с частотой порядка 10 000 раз в секунду. Несмотря на дополнительную стоимость, стоит рассмотреть возможность изменения условий работы, в частности скорости, дает важные преимущества в нескольких приложениях (особенно в насосах и вентиляторах, где это позволяет значительно экономить энергию).
Управляя инвертором в режиме ШИМ (широтно-импульсной модуляции), можно эффективно генерировать ряд напряжений, которые характеризуются амплитудой, частотой и произвольными фазами.
Поскольку в синхронных двигателях крутящий момент зависит от амплитуды тока и от его фазового соотношения с магнитной осью ротора, в алгоритмах управления обычно используется преобразование координат Парка, таким образом приводя трехфазную систему к системе отсчета, являющейся неотъемлемой частью ось ротора (рис.6).

Рис. 6. Слева: двигатель градирни с прямым приводом, без защитного кожуха; справа - профиль заглушки пластин статора (справа) (сайт ABB-Baldor).

Знание положения ротора тогда необходимо для управления синхронным двигателем. В некоторых приложениях, где не требуются особые характеристики управления, можно исключить механический датчик положения из-за его стоимости и снижения надежности. Фактически были разработаны «бессенсорные» методы управления, при которых положение ротора оценивается с использованием измерений тока и напряжения (внутри инвертора и в любом случае необходимо) и модели двигателя.
Бездатчиковые методы для синхронных двигателей, разработанные с девяностых годов, первоначально нашли применение только в некоторых конкретных случаях. В продуктах, которые в настоящее время называются «инверторами», то есть приводами общего назначения, первые алгоритмы этого типа были введены в конце 2000-х годов, и в последние годы они стали почти стандартным оборудованием. К сожалению, эти решения все еще мало известны операторам автоматизации, даже если их применимость была продемонстрирована, особенно в таких обычных приложениях, как насосы и вентиляторы.
Поскольку данных, предоставленных производителем двигателя, часто недостаточно для калибровки всех параметров алгоритма управления, были разработаны методы «самостоятельного ввода в эксплуатацию», другими словами, ввод в эксплуатацию с минимальным вмешательством оператора. Первым шагом является автоматическая идентификация параметров («самоидентификация») методами, выполняемыми самим приводом, для перехода к реальной калибровке, то есть к выбору значений для параметров управления. И промышленность, и академический мир активно исследуют эти аспекты, с очень интересными предложениями также в итальянской сфере [10] - [14].

Детали конструкции

Как уже было сказано, самая большая разница между различными типами двигателей переменного тока в основном заключается в конструкции ротора . На самом деле, существуют различные случаи синхронных двигателей, предназначенных для сохранения других частей почти неизменными по сравнению с соответствующей асинхронной машиной (в конечном итоге с изменением витков обмотки). Такой подход распространился в последние несколько лет с целью удовлетворения общих приложений, а именно в качестве замены асинхронного двигателя.Помимо очевидных преимуществ в стоимости производства, использование эквивалентных деталей с точки зрения габаритных размеров, опор и точек внешнего крепления позволило использовать эти двигатели без изменения остальной механики. В этом отношении инновационные примеры представлены изделиями итальянских компаний, такими как серия синхронных двигателей с внутренними постоянными магнитами и реактивных двигателей, показанных на рис. 5.

Рис. 4. Представление преобразования координат Парка в основе векторного управления.

В синхронных двигателях , особенно в двигателях с постоянными магнитами, можно реализовать большое количество полюсов со снижением скорости с тем же напряжением и увеличением крутящего момента с тем же током. Эту степень свободы в проекте можно сравнить по аналогии с использованием механического редуктора скорости и, следовательно, в некоторых приложениях она позволяет использовать соединение с прямым приводом, с некоторыми преимуществами с точки зрения эффективности, габаритных размеров, стоимости. , надежность и точность управления.Это решение в течение нескольких лет применялось в промышленных машинах (например, при производстве бумаги [14]), в гражданском подъемном секторе (лифты), в очистке воздуха (вентиляторы градирен, [15]) и в некоторая бытовая техника (в частности стиральные машины).
В проекте, рассмотренном в [15], пакет статора (пластинки) использовался в качестве конструктивного элемента без добавления внешнего кожуха. На рис. 6 также показана конструкция статора , ламинированная , где видно внешнее крыло для отвода тепла.Благодаря ограниченным по высоте габаритным размерам, этот двигатель устанавливается в основании градирни по оси с вентилятором, что позволяет избежать прямоугольной передачи и снижения скорости, которые вместо этого необходимы в традиционной конфигурации (с асинхронным двигателем). мотор).

Приложения

Первые приложения в гражданском секторе синхронных двигателей с постоянными магнитами включают в себя системы кондиционирования, поскольку в этом случае сохраняется важность энергопотребления.В холодильнике (как промышленном, так и бытовом) применение синхронных двигателей постепенно растет. Кроме того, частным случаем являются циркуляционные насосы для тепловых станций, которые из соображений эффективности в настоящее время почти полностью основаны на синхронных двигателях с постоянными магнитами в бессенсорном управлении.
Среди бытовых приборов , в стиральных машинах использование этих типов двигателей стало обычным явлением в последние несколько лет. Использование синхронных двигателей вместо асинхронных или универсальных (со щетками) позволило, с одной стороны, уменьшить габаритные размеры и количество используемого материала, с другой стороны, улучшить управляемость, что также связано с принятием таких решений, как механическое соединение с прямым приводом.В последнем случае из-за ограничений габаритных размеров и необходимого крутящего момента ротор обычно внешний, а весь двигатель плоский и большого диаметра (рис. 7).

Рис. 7. Синхронный двигатель с постоянным магнитом и прямым приводом с внешним ротором (сайт LG).

Деталь производства машин этого типа, также как и другие частные применения, - это обмотка на зубе (отдельная обмотка для каждого зуба статора).
В этом типе медных деталей холостого хода меньше, но становится сложнее проектировать машины с низкой пульсацией крутящего момента.Прямое соединение обеспечивает преимущества также с точки зрения работы в целом, облегчая идентификацию груза в резервуаре и его расположение в дополнение к регулированию скорости.
Из-за особого рабочего цикла стиральных машин, который включает в себя отжим-сушку, очень важна работа на высокой скорости (превышающей номинальную). Этот способ называется « дефлегмация », потому что, будучи напряжением, пропорциональным потоку и скорости, общий поток уменьшается с помощью подходящего управления, чтобы обеспечить работу на более высоких скоростях и фиксированном напряжении.В этом случае главными кандидатами являются синхронные двигатели с внутренними постоянными магнитами, поскольку их имеющийся крутящий момент не падает внезапно за пределы номинальной скорости.
Область, где синхронные двигатели получили широкое распространение, - это лифтов , особенно больших размеров. В этом случае также были реализованы специальные решения, такие как показанное на рис. 8, позволяющие прямое движение нагрузки (без редуктора).

Рис. 8. Подъемная система для безредукторных лифтов с синхронным двигателем с постоянными магнитами и осевым потоком (сайт Kone).

В данном случае это осевой двигатель, то есть зазор между статором и ротором (магнитный зазор) пересекается силовыми линиями, параллельными оси.
Другие конкретные области применения включают возобновляемых источников (например, ветряная энергия) и авионики , где они преследуют цель «Больше электрических самолетов» (замена гидравлических или пневматических приводов). Использование высокоэффективных двигателей с высокой плотностью вращения также распространяется на тяговые машины , включая дорожную среду (от велосипедов до тяжелых транспортных средств и рабочих машин), железнодорожный / трамвайный сектор и промышленный сектор (вилочные погрузчики и т. Д.).

Библиография
  1. Уайлд, К. У. Бруннер, «Возможности политики в области энергоэффективности для систем с приводом от электродвигателей», Международное энергетическое агентство, Рабочий документ, 2011 г.
  2. «Электродвигатели и частотно-регулируемые приводы - Стандарты и законодательные требования по энергоэффективности низковольтных трехфазных двигателей», ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie eV, Division Automation - Electric Drive Systems, Франкфурт, декабрь 2010 г., 2-е издание .
  3. «Повышение рентабельности производства с помощью энергоэффективных приводов и двигателей», брошюра ABB, 2016 г.
  4. Вагати, «Синхронное реактивное сопротивление: новая альтернатива для приводов переменного тока», 20-я Международная конференция по промышленной электронике, управлению и КИП, 1994. IECON ’94., Болонья, 1994, стр. 1-13, том 1.
  5. Липо, Т. А., «Машины с синхронным сопротивлением - жизнеспособная альтернатива приводам переменного тока», Консорциум электрических машин и силовой электроники штата Висконсин, отчет об исследованиях, 1991.
  6. «Низковольтные двигатели для технологических процессов в соответствии с EU MEPS», каталог ABB, октябрь 2014 г.
  7. «Редкие земли», S. Geological Survey, Mineral Commodity Summaries, январь 2016 г.
  8. Гульельми, Б. Боаццо, Э. Армандо, Г. Пеллегрино и А. Вагати, «Минимизация магнитов в конструкции двигателя IPM-PMASR для применения в широком диапазоне скоростей», Конгресс и выставка IEEE Energy Conversion 2011, Феникс, Аризона, 2011 г., стр. 4201-4207.
  9. «Технологии двигателей для повышения эффективности в приложениях - Обзор тенденций и приложений», Danfoss Power Electronics - Danfoss VLT drive PE-MSMBM, ноябрь 2014 г.
  10. Н. Бедетти, С. Каллигаро; Р. Петрелла, «Непрерывная самоидентификация характеристик потока для синхронных машин с сопротивлением с помощью новой аппроксимирующей функции насыщения и множественной линейной регрессии», в IEEE Transactions on Industry Applications, vol. 52, нет. 4. С. 3083-3092, июль-август. 2016.
  11. Н. Бедетти, С. Каллигаро; Р. Петрелла, «Самостоятельный ввод в эксплуатацию компенсации мертвого времени инвертора с помощью множественной линейной регрессии на основе физической модели», IEEE Energy Conversion Congress and Exposition (ECCE), 2014, т., №, стр. 242–249, 14–18 сентября 2014 г.,
  12. Н. Бедетти, С. Каллигаро; Р. Петрелла, «Аналитический расчет контура регулирования напряжения с ослаблением потока в приводах IPMSM», Конгресс и выставка IEEE Energy Conversion, 2015, том, №, стр. 6145-6152, 20-24 сентября 2015 г.
  13. Н. Бедетти, С. Каллигаро; Р. Петрелла, «Анализ проблем проектирования и ошибок оценки основанного на обратной ЭДС устройства наблюдения за положением и скоростью для синхронных двигателей с SPM», в IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.2, № 2, стр. 159–170, июнь 2014 г.
  14. S.A. Odhano, P. Giangrande, R. I. Bojoi и C. Gerada, «Самостоятельный ввод в эксплуатацию внутренних приводов синхронных двигателей с постоянными магнитами с подачей высокочастотного тока», в IEEE Transactions on Industry Applications, vol. 50, нет. 5, pp. 3295-3303, сентябрь-октябрь. 2014.
  15. Welin, C.-J. Фриман, «Новая система прямого привода открывает новую эру для бумагоделательных машин», Paper and Timber, Vol.83 / No. 5, 2001.
  16. МакЭлвин, К. Лайлс, Б. Мартин и В. Вассерман, «Надежность приводов градирни: повышение эффективности с помощью новой технологии двигателей», в журнале IEEE Industry Applications Magazine, vol.18, нет. 6, стр. 12-19, ноябрь-декабрь. 2012.
Серводвигатели

- синхронные и асинхронные

Мы также предлагаем модульную концепцию двигателя для динамических и точных сервоприводов. Выберите лучший серводвигатель для своего применения из трех синхронных и одной асинхронной серий: компактных, малоинерционных и мощных. Двигатели многих размеров и длины гарантируют широкий спектр применения и обеспечивают надежный крутящий момент в состоянии покоя.

Что такое серводвигатели?

Серводвигатель - это двигатель, который позволяет контролировать точное положение вала двигателя, а также скорость и / или ускорение. Для этой цели также используются соответствующие датчики и регулирующая техника. Раньше серводвигатели были вспомогательными приводами, предназначенными для использования в станках. Между прочим, серводвигатель получил свое название от латинского слова servus, что в переводе с английского означает «сервер». Серводвигатели состоят из асинхронного двигателя , синхронного двигателя или двигателя постоянного тока . Таким образом, разница между двигателями заключается не в самом принципе привода, а только в их возможностях регулирования.

Какие типы серводвигателей доступны?

Серводвигатели

можно разделить на синхронные серводвигатели и асинхронные серводвигатели . Однако двигатель всегда представляет собой привод, работающий с электронным управлением позиционированием, скоростью или крутящим моментом - или их комбинацией. К ним предъявляются очень высокие требования к динамике, диапазонам настройки и / или точности движения. Серводвигатели чаще всего используются в сочетании с решениями для автоматизации и управления , например, в упаковочных машинах.

Что мы предлагаем: Синхронные и асинхронные серводвигатели

Асинхронные серводвигатели

Асинхронные серводвигатели

подходят для использования в приложениях, в которых необходимо перемещать с высокой внешней инерцией в установках и машинах и безопасно управлять ими. Имея это в виду, SEW ‑ EURODRIVE DRL. серия двигателей обеспечивает подходящие приводные решения.

Синхронные серводвигатели

Синхронные серводвигатели - это приводы, в которых ротор синхронно приводится в движение вращающимся полем в статоре с использованием приложенных постоянных магнитов.Синхронный двигатель совершает движение, синхронное с частотой приложенного вращающегося поля .

Эта конструкция привода работает от преобразователя частоты, который обеспечивает соответствующий регулируемый трехфазный ток . Для этого в портфолио SEW ‑ EURODRIVE есть несколько различных конструкций. Оптимизированные серводвигатели серии CMP .. могут быть адаптированы к высокой динамике или высоким нагрузкам в зависимости от области применения . Классические области применения включают пищевую промышленность и производство предметов роскоши, а также строительство, автомобилестроение, упаковку и деревообработку.

Для синхронных серводвигателей серии CM .. упор делается на оптимальные характеристики управления, силу крутящего момента и динамику. Идеальные области применения этих двигателей можно найти в логистике, например, в качестве приводов для порталов X-Y-Z или систем хранения / поиска.

Разница между синхронным двигателем и асинхронным двигателем

Двигатели переменного тока

делятся на два типа: синхронные двигатели и асинхронные двигатели, которые также называются асинхронными двигателями.Самая большая разница между синхронными двигателями и асинхронными двигателями (асинхронными двигателями) заключается в том, соответствует ли скорость ротора скорости вращающегося магнитного поля в статоре. Если скорость вращения ротора и скорость возбуждения статора одинаковы, это называется синхронным двигателем; в противном случае это асинхронный двигатель. Кроме того, между ними есть большие различия, связанные с параметрами производительности и приложениями.

Различия в конструкции
Обмотки статора синхронных и асинхронных двигателей похожи, и основное различие заключается в конструкции ротора.В роторе синхронного двигателя имеются обмотки возбуждения постоянного тока, на которые необходимо подавать внешнюю мощность возбуждения, вводимую через контактное кольцо. Однако в обмотках ротора асинхронного двигателя имеется короткое замыкание, которое производит ток за счет электромагнитной индукции. Напротив, синхронные двигатели более сложны и дороги.

  • Статор
    Компоненты статора синхронного двигателя в основном такие же, как и у асинхронных двигателей, они играют роль приема, вывода электрической энергии и создания вращающегося магнитного поля.По форме результата особой разницы нет. Статоры синхронного и асинхронного двигателей состоят из магнитного сердечника статора, проводящих трехфазных обмоток переменного тока, основания для фиксирующего сердечника, крышки клеммной коробки и т. Д.
  • Ротор
    Синхронный двигатель: полюсный сердечник ротора покрыт стальными листами, в которые вставлены стальные пластины. На полюсный сердечник устанавливаются обмотки возбуждения, намотанные изолированными медными проводами. Для синхронного двигателя с постоянными магнитами постоянный магнит на роторе является ключевым фактором, отличающим его от других двигателей.
    Асинхронный двигатель: ротор состоит из стального сердечника и обмоток, он изготовлен из ламинированных стальных листов и установлен на вращающемся валу. Ротор бывает двух типов: с короткозамкнутым ротором и намотанный. Асинхронный двигатель с обмоткой также оснащен контактным кольцом и щеточным механизмом.

Разница в работе
1. Синхронный двигатель
Синхронный двигатель вращается за счет взаимодействия между вращающимся магнитным полем, создаваемым обмотками статора при включении, и магнитным полем, создаваемым ротором.В синхронном двигателе с постоянными магнитами он вращается за счет крутящего момента, создаваемого взаимодействием между вращающимся магнитным полем статора и вторичным магнитным полем ротора. Что касается обмотки ротора, то она не наводит ток при нормальном вращении двигателя, а также не участвует в работе. Он служит только для запуска мотора.
Во время установившейся работы синхронного двигателя существует постоянная зависимость между скоростью вращения ротора и частотой сети:
N = Ns = 120f / p
f - частота сети, p - число полюсов двигателя, Ns - синхронная скорость.
2. Асинхронный двигатель
Сердечник статора трехфазного асинхронного двигателя заделан трехфазными симметричными обмотками. После включения между статором и ротором возникает вращающееся магнитное поле, которое вращается с синхронной скоростью. Стержень ротора разрезается вращающимся магнитным полем, в котором возникает индуцированный ток. На стержень включенного ротора воздействует электромагнитная сила во вращающемся магнитном поле, таким образом, ротор преодолевает вращение момента нагрузки и ускоряет свое вращение.Когда электромагнитный момент равен моменту нагрузки, двигатель вращается с постоянной скоростью. Скорость вращения асинхронного двигателя
(скорость статора) ниже, чем скорость вращения магнитного поля, и эта разница называется «скольжением» и выражается в процентах от синхронной скорости:
S = (Ns-N) / Ns.
S - скольжение, Ns - скорость магнитного поля, N - скорость ротора.

Разница в применении
Синхронные двигатели в основном используются в больших генераторах, в то время как асинхронные двигатели почти используются в качестве двигателей для привода машин.
Для синхронного двигателя коэффициент мощности можно гибко регулировать возбуждением. Однако коэффициент мощности асинхронного двигателя не регулируется, поэтому на некоторых крупных заводах для более применяемых асинхронных двигателей можно добавить синхронный двигатель в качестве модификатора фазы, чтобы отрегулировать коэффициенты мощности завода и интерфейса сети. Однако из-за высокой стоимости синхронных двигателей и большого объема технического обслуживания в настоящее время обычно используются конденсаторы для компенсации коэффициента мощности. Синхронный двигатель
работает не так просто, как асинхронный двигатель, потому что синхронный двигатель имеет обмотку возбуждения и контактное кольцо, требующие высокоуровневого управления возбуждением.Кроме того, по сравнению с необслуживаемым асинхронным двигателем, работа по обслуживанию синхронного двигателя велика. Поэтому в качестве двигателя чаще всего выбирают асинхронный двигатель.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *