Двигатели переменного тока – классификация и области применения двигателей

Содержание

классификация и области применения двигателей

В данной статье расскажем про двигатели переменного тока, их главное отличие от двигателей постоянного тока. Рассмотрим классификацию таких двигателей и подробно разберем области применения различных двигателей переменного тока.

Вступление

Мы все знаем, что без электричества мы не можем выполнять свою работу. Если мы посмотрим на мир, в котором мы живем, то основное развитие технологий и цивилизации произошло только после введения электричества и электрических устройств. Можем ли мы представить себе жизнь без кондиционеров / потолочных вентиляторов, светильников, компьютеров и устройств связи и многого другого.

Поэтому совершенно очевидно, что электричество и электрооборудование играют жизненно важную роль в каждом дюйме нашей жизни. Одним из таких устройств, которое создало гигантский скачок для человечества как в бытовом, так и в промышленном секторах, является «Мотор». Использование двигателей переменного тока намного более распространено, чем двигателей постоянного тока, по нескольким практическим причинам, которые мы узнаем позже.

Двигатели переменного тока играют очень важную роль в повседневной жизни, начиная от перекачивания воды в верхний резервуар и заканчивая маневренным рычагом современного робота. Основным фактором, который приводит к принятию и широкому использованию в различных областях, является его гибкость и его огромное разнообразие, которое может соответствовать практически любому спросу. Чтобы узнать, какие существуют различные типы двигателей ACM, которые идеально соответствуют их потребностям, крайне важно знать о различных классификациях двигателей ACM.

Типы двигателей переменного тока

Классификация основана на принципе действия.

  • Классификация на основе принципа действия :

(а) Синхронные двигатели.

  1. С обмоткой возбуждения;
  2. С постоянными магнитами;
  3. Реактивный;
  4. Гистерезисный;
  5. Шаговый.

(б) Асинхронные двигатели.

  1. Индукционные двигатели;
  2. Коммутирующие двигатели.
  • Классификация на основе типа тока:
  1. Однофазный;
  2. Двухфазный;
  3. Трехфазный.
  • Классификация на основе скорости работы:
  1. Постоянная скорость;
  2. Переменная скорость;
  3. регулируемая скорость.
  • Классификация на основе структурных особенностей:
  1. Открытый;
  2. Закрытый;
  3. Полузакрытый;
  4. Вентилируемый.

Описание электро двигателей переменного тока

1. Синхронные двигатели и их использование : эти двигатели имеют ротор (который подключен к нагрузке), вращающийся с той же скоростью, что и скорость вращения тока статора. Другими словами, мы можем сказать, что эти двигатели не имеют скольжения по току статора. Иногда они используются не для управления нагрузкой, а вместо этого действуют как «синхронный конденсатор», чтобы улучшить коэффициент мощности локальной сети, к которой она подключена. Эти типы двигателей используются даже в высокоточных устройствах позиционирования, таких как современные роботы. Они также могут действовать как шаговые двигатели.

2. Асинхронные двигатели и их применение.

 Эти типы двигателей, как правило, используются в повседневной жизни, от перекачивания воды через верхний резервуар до питательных насосов котлов электростанции. Эти двигатели очень гибки в использовании и соответствуют нагрузке практически на все.

Асинхронные двигатели очень важны для многих отраслей промышленности благодаря их несущей способности и гибкости. Эти двигатели, в отличие от синхронных двигателей, проскальзывают по сравнению с полем тока статора. Они обычно используются для различных типов насосов , компрессоров и действуют как главные двигатели для многих машин.

3. Однофазные и трехфазные двигатели и их использование. Двигатели переменного тока могут найти применение в двух формах в зависимости от источника питания. Однофазные двигатели, как правило, находят свое применение в требованиях с низким энергопотреблением / бытовых приборах, таких как потолочные вентиляторы, измельчители смесителей, переносные электроинструменты и т.д. Трехфазные двигатели, как правило, используются для высоких требований к мощности, таких как силовые приводы для компрессоров , гидравлических насосов, систем кондиционирования воздуха, ирригационные насосы и многое другое.

4. Двигатели с постоянной, переменной и регулируемой скоростью. Как уже говорилось, двигатели переменного тока очень гибки во многих отношениях, включая управление скоростью. Существуют двигатели, которые должны работать с постоянной скоростью для воздушных компрессоров. Определенные насосы охлаждения воды, приводимые в действие электродвигателями, могут работать на двух или трех скоростях, просто переключая количество используемых полюсов. Если число полюсов изменяется, скорость также изменяется. Они лучше всего подходят для насосов охлаждения морской воды в морских машинных отделениях и на многих электростанциях. Скорость двигателей также может непрерывно изменяться некоторыми электронными устройствами, таким образом, это может подходить для определенных применений, таких как судовой грузовой насос, скорость разгрузки которого должна быть снижена в соответствии с требованием терминалов.

5. Двигатели с изменяемой структурой . Эти типы двигателей имеют различную компоновку внешней клетки, в зависимости от использования или каких-либо специальных промышленных требований. Для двигателей, используемых в газовых и масляных клеммах, корпус должен быть «искробезопасным», поэтому он может иметь закрытый корпус или вентилируемое трубопроводное устройство, чтобы искры, возникающие внутри двигателя, не вызывали возгорания снаружи. Также многие двигатели полностью закрыты, так как они могут быть уязвимыми для погодных условий, как те, которые используются на гидроэлектростанциях.

meanders.ru

Электродвигатель переменного тока | Техника и человек

Электрические двигатели давно и прочно заняли лидирующие позиции среди силовых агрегатов различного типа оборудования. Их можно найти в автомобиле и в пылесосе, в сложнейших станках и в обычных детских игрушках. Они есть практически везде, хотя и отличаются между собой типом, строением и рабочими характеристиками.

Электродвигатели – это силовые агрегаты, способные превращать электрическую энергию в механическую. Различают два их основных вида: двигатели переменного и постоянного тока. Разница между ними, как понятно из названия, заключается в типе питающего тока. В данной статье речь пойдет о первом виде – электродвигателе переменного тока

Устройство и принцип работы

Основная движущая сила любого электрического двигателя – электромагнитная индукция. Электромагнитная индукция, если описать ее в двух словах – это появление силы тока в проводнике, помещенном в переменное магнитное поле. Источником переменного магнитного поля является неподвижный корпус двигателя с размещенными на нем обмотками – статор, подключенный к источнику переменного тока. В нем расположен подвижный элемент – ротор, в котором и возникает ток. По закону Ампера на заряженный проводник, помещенный в магнитное поле, начинает действовать электродвижущая сила – ЭДС, которая вращает вал ротора. Таким образом, электрическая энергия, которая подается на статор, превращается в механическую энергию ротора. К вращающемуся валу можно подключать различные механизмы, выполняющие полезную работу.

Электродвигатели переменного тока делятся на синхронные и асинхронные. Разница между ними в том, что в первых ротор и магнитное поле статора вращаются с одной скоростью, а во вторых ротор вращается медленнее, чем магнитное поле. Отличаются они и по устройству, и по принципу работы.

Асинхронный двигатель

Устройство асинхронного двигателя

На статоре асинхронного двигателя закреплены обмотки, создающие переменное вращающееся магнитное поле, концы которой выводятся на клеммную коробку. Поскольку при работе двигатель нагревается, на его валу устанавливается вентилятор системы охлаждения.

Ротор асинхронного двигателя выполнен с валом как одно целое. Он представляет собой металлические стержни, замкнутые между собой с двух сторон, из-за чего такой ротор еще именуется короткозамкнутым. Своим видом он напоминает клетку, поэтому его часто называют «беличьим колесом» Более медленное вращение ротора в сравнении с вращением магнитного поля – результат потери мощности при трении подшипников. Кстати, если бы не было этой разницы в скорости, ЭДС бы не возникала, а без нее не было бы и тока в роторе и самого вращения.

Магнитное поле вращается за счет постоянной смены полюсов. При этом соответственно меняется направление тока в обмотках. Скорость вращения вала асинхронного двигателя зависит от числа полюсов магнитного поля.

Синхронный двигатель

Устройство синхронного двигателя

Устройство синхронного электродвигателя немного отличается. Как понятно из названия, в этом двигателе ротор вращается с одной скоростью с магнитным полем. Он состоит из корпуса с закрепленными на нем обмотками и ротора или якоря, снабженного такими же обмотками. Концы обмоток выводятся и закрепляются на коллекторе. На коллектор или токосъемное кольцо подается напряжение посредством графитовых щеток. При этом концы обмоток размещены таким образом, что одновременно напряжение может подаваться только на одну пару.

В отличие от асинхронных на ротор синхронных двигателей напряжение подается щетками, заряжая его обмотки, а не индуцируется переменным магнитным полем. Направление тока в обмотках ротора меняется параллельно с изменением направления магнитного поля, поэтому выходной вал всегда вращается в одну сторону. Синхронные электродвигатели позволяют регулировать скорость вращения вала путем изменения значения напряжения. На практике для этого обычно используются реостаты.

Краткая история создания

Впервые возможность превратить электричество в механическую энергию открыл британский ученый М.Фарадей еще в 1821 году. Его опыт с проводом, помещенным в ванну с ртутью, оснащенной магнитом, показал, что при подключении провода к источнику электроэнергии он начинает вращаться. Этот нехитрый опыт наверняка многие помнят по школе, правда, ртуть там заменяется безопасным рассолом. Следующим шагом в изучении этого феномена было создание униполярного двигателя – колеса Барлоу. Никакого полезного применения он так и не нашел, зато наглядно демонстрировал поведение заряженного проводника в магнитном поле.

На заре истории электродвигателей ученые пытались создать модель с сердечником, двигающимся в магнитном поле не по кругу, а возвратно-поступательно. Такой вариант был предложен, как альтернатива поршневым двигателям. Электродвигатель в привычном для нас виде впервые был создан в 1834 году русским ученым Б.С. Якоби. Именно он предложил идею использования вращающегося в магнитном поле якоря, и даже создал первый рабочий образец.

Первый асинхронный двигатель, в основе работы которого заложено вращающееся магнитное поле, появился в 1870 году. Авторами эффекта вращающегося магнитного поля независимо друг от друга стали два ученых: Г.Феррарис и Н. Тесла. Последнему принадлежит также идея создания бесколлекторного электродвигателя. По его чертежам были построены несколько электростанций с применением двухфазных двигателей переменного тока. Следующей более удачной разработкой оказался трехфазный двигатель, предложенный М.О. Доливо-Добровольским. Его первая действующая модель была запущена в 1888 году, после чего последовал ряд более совершенных двигателей. Этот русский ученый не только описал принцип действия трехфазного электродвигателя, но и изучал различные типы соединений фаз (треугольник и звезда), возможность использование разных напряжений тока. Именно он изобрел пусковые реостаты, трехфазные трансформаторы, разработал схемы подключения двигателей и генераторов.

Особенности электродвигателя переменного тока, его достоинства и недостатки

На сегодня электродвигатели являются одними из самых распространенных видов силовых установок, и тому есть немало причин. У них высокий КПД порядка 90%, а иногда и выше, довольно низкая себестоимость и простая конструкция, они не выделяют вредных веществ в процессе эксплуатации, дают возможность плавно менять скорость во время работы без использования дополнительных механизмов типа коробки передач, надежны и долговечны.

Среди недостатков всех типов электромоторов — отсутствие высокоемкостного аккумулятора электроэнергии для автономной работы.

Основное отличие электродвигателя переменного тока от его ближайшего родственника – электродвигателя постоянного тока – заключается в том, что первый питается переменным током. Если сравнивать их функциональные возможности, первый менее мощный, у него сложно регулировать скорость в широком диапазоне, он имеет меньший КПД.

Если же сравнивать асинхронный и синхронный электродвигатель переменного тока, то первый имеет более простую конструкцию и лишен «слабого звена» — графитовых щеток. Именно они обычно первыми выходят из строя при поломке синхронных двигателей. Вместе с тем, у него сложно получить и регулировать постоянную скорость, которая зависит от нагрузки. Синхронные двигатели позволяют регулировать скорость вращения с помощью реостатов.

Сфера применения

Электродвигатели переменного тока широко используются практически во всех сферах. Ими оснащаются электростанции, их используют в автомобиле- и машиностроении, есть они и в домашней бытовой технике. Простота их конструкции, надежность, долговечность и высокий показатель КПД делает их практически универсальными.

Асинхронные двигатели нашли применение в приводных системах различных станков, машин, центрифуг, вентиляторов, компрессоров, а также бытовых приборов. Трехфазные асинхронные двигатели являются наиболее распространенными и востребованными. Синхронные двигатели используются не только в качестве силовых агрегатов, но и генераторов, а также для привода крупных установок, где важно контролировать скорость.

Схема подключения электродвигателя к сети

Электродвигатели переменного тока бывают трех и однофазные.
Асинхронные однофазные двигатели имеют на корпусе 2 вывода и подключить их к сети не составляет трудности. Т.к. вся бытовая электрическая сеть в основном однофазная 220В и имеет 2 провода — фаза и ноль. С синхронными все намного интереснее, их тоже можно подключить с помощью 2 проводов, достаточно обмотки ротора и статора соединить. Но соединять их нужно так, чтобы обмотки однополюсного намагничивания ротора и статора располагались напротив друг друга.
Сложности представляют двигатели для 3ех фазной сети. Ну во-первых у таких двигателей в основном в клеммной коробке 6 выводов и это означает что обмотки двигателя нужно подключать самому, а во-вторых их обмотки можно подключать разными способами — по типу «звезда» и «треугольник». Ниже приведен рисунок соединения клем в клеммной коробке, в зависимости от типа соединения обмоток.

Подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в  раз.  Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних. В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).

 

Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рисунке. Обмотка ротора этого двигате­ля соединена с пусковым реостатом ЯР, создающим в цепи рото­ра добавочное сопротивление Rдобав.

zewerok.ru

Электродвигатель переменного тока - это... Что такое Электродвигатель переменного тока?


Электродвигатель переменного тока

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу)

Электрический двигатель — это, электрическая машина, в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Классификация электродвигателей

  • Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током, имеет две разновидности:
  • Шаговые двигатели — Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.

Из-за связи с низкой частотой сети (50 Герц) асинхронные и синхронные двигатели имеют больший вес и размеры, чем коллекторный двигатель постоянного тока и универсальный коллекторный двигатель той же мощности. При применении выпрямителя и инвертора с частотой значительно большей 50 Гц вес и размеры асинхронных и синхронных двигателей приближаются к весу и размерам коллекторного двигателя постоянного тока и универсального коллекторного двигателя той же мощности.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История.

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это - самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлова. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.

Ссылки

Wikimedia Foundation. 2010.

  • Электродвигатель, завод
  • Электрогитарист

Смотреть что такое "Электродвигатель переменного тока" в других словарях:

  • электродвигатель переменного тока — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ас motor …   Справочник технического переводчика

  • Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока  электрическая машина, ма …   Википедия

  • Переменного тока электродвигатель —         машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… …   Большая советская энциклопедия

  • Переменного тока машина —         электрическая машина, применяемая для получения переменного тока (генератор) или для преобразования электрической энергии в механическую (двигатель) либо в электрическую энергию другого напряжения или частоты (преобразователь) П. т. м.… …   Большая советская энциклопедия

  • ПЕРЕМЕННОГО ТОКА ЭЛЕКТРОДВИГАТЕЛЬ — машина перем. тока, предназнач. для работы в режиме двигателя. П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели применяют в электроприводах в осн. тогда, когда требуется постоянство угловой скорости. Из асинхронных… …   Большой энциклопедический политехнический словарь

  • электропривод переменного тока — электропривод постоянного [переменного] тока Электропривод, содержащий электродвигатель постоянного [переменного] тока. [ГОСТ Р 50369 92] Тематики электропривод EN ac drivealternating current drive DE Wechselstromantrieb …   Справочник технического переводчика

  • электропривод постоянного (переменного) тока — 3.1.3 электропривод постоянного (переменного) тока: Привод, содержащий электродвигатель постоянного (переменного) тока и редуктор; Источник: СТ ЦКБА 087 2010: Арматура трубопроводная. Электроприводы. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • ЭЛЕКТРОДВИГАТЕЛЬ — (электрический двигатель) машина, преобразующая подводимую внешнюю электрическую энергию в механическую, обычно энергию вращения. Э. имеют в общих чертах то же устройство, что и генераторы (см. ), но основаны на обратном принципе действия.… …   Большая политехническая энциклопедия

  • ЭЛЕКТРОДВИГАТЕЛЬ, ЭЛЕКТРОМОТОР — (Electric motor) электрическая машина, служащая для преобразования подводимой к ней извне электрической энергии в механическую. Различают Э. постоянного тока и переменного тока. Э. постоянного тока бывают с последовательным возбуждением,… …   Морской словарь

  • ЭЛЕКТРОДВИГАТЕЛЬ — электромотор, машина, преобразующая получаемую ею электр. энергию в механическую. Большинство Э. не отличается по конструкции от электр. генераторов (см. Генератор электрический), к рые при использовании их в качестве Э. не приводятся во вращение …   Технический железнодорожный словарь


dic.academic.ru

Двигатели переменного тока. Принцип работы, характеристики и управление

Продолжаем наш ликбез по движкам. На этот раз речь пойдет о переменном токе, трехфазных движках разной конструкции. Их характеристикам, устройству и принципу работы. Ну и заодно подготавливаем почву под BLDC, так как там получается зверский гибрид всего и вся.
 

▌Вращающееся поле
Вращающееся поле это краеугольный камень всех машин переменного тока. Без него ничего не было бы и все было бы уныло и пресно. Делается оно посредством хитрой обмотки и хитрого напряжения. Сейчас подробно покажу как.
 

Начнем с упрощенной одновитковой обмотки. Вот такой:

Подаем на него напряжение, получаем ток, создающий магнитный поток. Направление потока зависит от направления тока. Определяется по правилу буравчика. Вспоминаем курс физики из школы 🙂 Если сунуть туда синусоидальное напряжение, то поток через обмотку будет шнырять туда-сюда по синусоидальному же закону.
 

Берем три обмотки и ставим их так, чтобы магнитное поле, ими генерируемое, было направленно под 120 градусов относительно катушек.
 

Получаем упрощенный вариант статора. Соединяем обмотки треугольником:

Оставим от него только направления векторов, чтобы посмотреть на это в разрезе. И загоняем в эту обмотку трехфазное напряжение. Три синуса, сдвинутые под 120 градусов.
 

Если взять в какой-либо момент времени напряжения и разложить магнитные потоки по векторам, которые задают наши катушки, с учетом знака, а потом все суммировать, то получим результирующий вектор магнитной индукции трех катушек. Проделав ту же операцию на несколько углов вперед будет явно видно, что результирующий вектор вращается аки часовая стрелка.
 

Т.е. статор, с точки зрения магнитного поля, ведет себя как вращающийся магнит. Делающий один оборот за период. Вот вам каноничная картинка, что есть в каждом учебнике по электромашинам. Полный оборот поля. Я лишь сделал ее более няшный вариант, раскрасив витки в цвета обмоток, чтобы по феншую было все.
 

Скорость вращения поля зависит от частоты сети. n1 = 60*f (об/мин) эта скорость зовется синхронной скоростью. Но не все так просто. Количество полюсов машины может быть и иным. Выше был пример статора двухполюсной машины. Два полюса потому, что там у результирующего магнитного потока есть север и юг и все. Но полюсов может быть больше.
 

Для этого обмотку каждой фазы делают из двух соединенных катушек, как то так:

И размещают их со сдвигом в 60 градусов. Вот, примерно, следующим образом. Тут у меня по одному недавитку, но их может быть и сто. Соединение секций между собой выделено более тонким проводом и чуть другим цветом.
 

 

В результате получается вот такая вот магнитная схема:
 

Видно, что эти четыре гипножабы образуют четыре полюса, два северных, два южных. А дальше как в старом советском мультике… пока ты на коне на четырех ногах раааз, двааа, триии, четырее… он на своих двоих раз-два, раз-два, раз-два. В четырехполюсном движке поле вращается вдвое медленней, т.к. за один период оно пробежит только пол оборота. Чем больше полюсов, тем медленней вращается поле.
 

С учетом количества полюсов синхронная скорость вычисляется так: n1=60*f/p ,где p — число катушек в одной фазе. Правда тут стоит учитывать такой случай, что катушки можно намотать так, что две будут вести себя как одна. В этом случае, естественно, считаем ее за одну, хоть их физически и две.
 

На этом принципе, кстати, в некоторых случаях делают управление скоростью двигателя. Т.е. хитро переключая катушки делают, например, либо два полюса, либо четыре. Ступенчато переключая скорость.
 

▌Реверс поля
Тут даже и говорить нечего — меняем местами две фазы и поле поехало в другую сторону. Элементарно 🙂
 

▌Асинхронный двигатель
Вы наверняка все знаете его. Помнишь как в детстве, разбираешь движок, надеешься на нямку и ништяки, а оттуда выпадает тупая алюминиевая блямба и обламывает весь кайф. Вот такой вот, малята, АД. В смысле асинхронный двигатель.
 

Асинхронный двигатель это король электропривода. Он технологичен, а значит дешев. Надежен, там трутся только подшипники. Прост и легко запускается. Не требует никакого дорогостоящего барахла, вроде редкоземельных магнитов. Есть у него и недостатки — сложности регулирования скорости и своебразная механическая характеристика, но все это решается умной электроникой.
 

Как же он работает то? Сейчас разберем.
 

Итак, у нас есть статор и его вращающееся поле:

в него мы помещаем короткозамкнутую обмотку ака «беличье колесо»

Она состоит из штырей закороченных на лобовые кольца. А обычно еще проще делают. Набирают шихтованный ротор (т.е. из изолированных пластин, чтобы гасить вихервые токи) окаливают его, создавая тем самым изоляцию, а потом заливают в пазы цельнолитую алюминиевую обмотку. Дешево, просто, технологично.
 

Так вот, поле бежит мимо этих штырей наводя в них ЭДС. А так как обмотка замкнута, то эта ЭДС порождает ток. Но если у нас есть ток и есть магнитное поле статора, то должна неминуема появиться сила Ампера. И она появляется. Обмотка начинает увлекаться за полем. Но догнать его не может никогда, ведь если она его догонит, то движение поля относительно обмоток станет равным нулю и сила пропадет. Вот так и плетется она в конце на подсинхронной частоте. Потому и зовется двигатель асинхронным. А относительная разность скорости поля и ротора зовется скольжением.
 

s=(n1-n)/n1
 

Измеряется в единицах или процентах. Обычно, на номинальном моменте, скольжение составляет 2-7% С ростом нагрузки скольжение растет. А скорость вращения движка завязана на скорость поля. Что сильно обламывает любителей регулировать скорость. Потому то асинхронные двигатели до сих пор не вытеснили те же коллекторные отовсюду откуда можно. Мало того, что им нужна переменка, так еще и не погазуешь нифига.
 

▌Механическая характеристика АД. Пуск и регулирование скорости
Она весьма извилистая, с рядом приколов. Вот такая:

Обратите внимание на разницу между пусковым и максимальным моментом. Т.е. движок должен стартануть в относительно тепличных условиях и лишь потом можно его грузить. Да и то до некоторого предела, до точки Ж, где случается жопа. Машина теряет устойчивость, момент резко снижается, а обороты падают до нуля. Движок лишь беспомощно дергается и очень сильно греется. Ведь в этот момент он превращается в обычный трансформатор у которого ротор это вторичная обмотка и она закорочена наглухо.
 

Вариантов борьбы с этим явлением несколько. Обычно конструктивные, делают либо две беличьи клетки одна над другой, либо просто глубокие пазы, т.е. клетка получается не из прутьев, а из пластин. Это снижает разницу между моментом критическим и пусковым. Еще, в особо тяжелых случаях, вроде кранового привода, делают фазный ротор. Т.е. обмотка не беличья клетка, а нормальная обмотка трехфазная. Из провода, ее концы с одной стороны соединены звездой, а с другой вытащены наружу через контактные кольца. Вот как на этой картинке под четвертым номером:
 

 

С них заводят на пусковые сопротивления:

И при пуске вводят все сопротивления в ротор, при этом ток падает, механическая характеристика проседает, а пусковой момент увеличивается. Потом, по мере разгона, сопротивления выводят посекционно, а движок переходит с одной характеристики на другую, пока не выйдет на естественную. Делается это автоматом, по реле времени или через реле контроля скорости.
 

Впрочем, это вам так, для общего развития. Не думаю, что с таким пуском столкнетесь вживую. Разве что вы не работаете цеховым электриком и колупаете краны выпуска еще прошлого века. Сейчас все это активно отмирает и заменяется на частотное регулирование.
 

Снижение напряжения фазного дает лишь некоторое смягчение характеристики, с падением момента. Но обороты остаются в целом прежними.

 

Т.е. по простому скоростью не порулишь как хочется. Что делать? На помощь тут идет электроника и частотное регулирование. Т.е. мы сетевое напряжение сначала выпрямляем, а потом на инверторе вкручиваем любую частоту какая нам нужна. И профиты сплошные. выглядит это так:

 
Но тут мы наблюдаем другую проблему — разгоняя частоту мы теряем в критическом моменте и снижается пусковой момент. Почему? А дело все в том, что поток завязан на частоту.
 
Если пренебречь падением напряжения на обмотках статора, то ЭДС примерно будет равна напряжению на фазах движка.
 

Uф≈K Φ f1

 

К — конструктивный коэффициент.
 
Т.е. у нас поток Ф зависит от частоты. Повышаем частоту и чтобы уравнение выполнялось должен снизиться поток, со всеми последствиями в виде провала по моменту.
 

Но что если заложить номинальную частоту в максимум возможного для данного двигателя, а регулировать вниз? Тут тоже проблемы возникнут. Поток будет расти, но бесконечно расти он не сможет, железо магнитопровода перенасытится и упадет КПД. Это просто энергетически невыгодно, зачем нам грелка, когда нужна крутилка?
 
Так что при изменении частоты не помешает и подкорректировать напряжение так, чтобы держать поток в пределах номинального, так потерь меньше.
 

▌Синхронный двигатель
Еще одна забавная машинка, работающая на вращающемся поле. Вспомним картинку вращающегося поля и сунем в ее чрево постоянный магнит.

Опа, магнит вращается синхронно полю. Механическую характеристику этого безобразия я даже не буду рисовать. Она скучна как пульс у трупа. Скорость жестко завязана на скорость поля и не зависит от момента, совсем. Абсолютно жесткая механическая характеристика.
 

Разумеется это не навсегда, если момент будет сильней поля, то он может оторвать его от поля, движок выпадет из синхронизма и настанет жопа — сам он в синхронный режим уже не вернется. Тут ситуация еще хуже чем с асинхронным двигателем. Синхронный двигатель даже нормально запуститься не сможет. Т.е. если его воткнуть в сеть то фиг он куда поедет, будет стоять и беспомощно дрыгаться. Вот такая, херня, малята.
 

Дети, давайте поможем дедушке двигателю стартануть! Что надо сделать? Правильно, Петя, надо подружить его с асинхронным двигателем — сунуть ему в нутро до кучи еще и беличью клетку. Это будет пусковая обмотка. Она рванет движок со старта, доведет его до подсинхронной частоты, а там он втянется в синхронизм как удав в пылесос. Правда момент такого пуска слабоват, но хоть что то. Но такие проблемы это геморрой еще прошлого века.
 

Сейчас есть новые, усовершенствованные методы старта синхронного двигателя. Потому, что у нас прогресс, модернизация в стране и нанотехнологии. В первую очередь я имею ввиду частотный пуск. Т.е. когда при старте поле статора не рвет с нуля на номинальные обороты, а нежно хватает движок за торчащие из ротора яй… эээ силовые линии магнитного поля и начинает плавно разгонять пока не выведет в номинал. Еще в начале может быть ориентирующий рывок, когда напряжение подается статично, на одну из фаз, чтобы придать ротору какой-то определенный ориентир, а дальше уже разгон.
 

Наиболее наглядно это можно увидеть на приводе шпинделя жесткого диска. Если у вас есть убитый жесткач, то разберите его и подайте питание на плату. Увидите, как движок плавно стартанет, но если его затормозить, то он встанет и будет лишь вяло вяло крутиться — выпал из синхронизма. Если сможете разогнать его до 7200 оборотов, то он втянется, и будет дальше вращаться как ни в чем не бывало.
 

Устранение этого недостатка может быть только одно — контроль положения ротора, т.е. система управления зорко глядит на то куда повернут ротор и не дает полю его упустить. Если движок нагружается, поле притормаживает, следуя за ротором так, чтобы получить наибольший момент. Способов следить много. Это и сельсины и датчики холла и энкодеры и оптика всякая. Есть еще и извращенские способы по замеру индукции на обмотке, что часто практикуется в модельных инверторах. И со всей этой тряхомудией это уже получается самый настоящий BLDC о которых я тоже когда-нибудь расскажу. Через пару лет, ага. Бугагага!
 

Регулирование синхронного двигателя сходно с асинхронным. Те же приколы связи частоты, потока и напряжения. Т.к. статор там точно такой же. Разве что скольжения нет, но есть критический момент, а он завязан на поток.
 

easyelectronics.ru

Принцип работы электродвигателя переменного тока, устройство электромотора.

Электрические двигатели – это силовые машины, применяющиеся для превращения электрической энергии в механическую. Общая классификация разделяет их по типу питающего тока на двигатели постоянного и переменного тока. В статье ниже рассматриваются электрические двигатели со спецификацией под переменный ток, их виды, отличительные характеристики и преимущества.

Для общей информации, рекомендуем прочитать нашу отдельную статью о принципах работы электродвигателей.

Содержание:

Электродвигатель переменного тока промышленного типа

Принцип преобразования энергии

Среди электрических двигателей, применяемых во всех отраслях промышленности и бытовых электроприборах, наибольшее распространение имеют двигатели переменного тока. Они встречаются практически в каждой сфере жизнедеятельности – от детских игрушек и стиральных машин до автомобилей и мощных производственных станков.

Принцип работы всех электрических двигателей основывается на законе электромагнитной индукции Фарадея и законе Ампера. Первый из них описывает ситуацию, когда на замкнутом проводнике, находящемся в изменяющемся магнитном поле, генерируется электродвижущая сила. В двигателях это поле создается через обмотки статора, по которым протекает переменный ток. Внутри статора (представляющего собой корпус устройства) находится подвижный элемент двигателя – ротор. На нем и возникает ток.

Вращение ротора объясняется законом Ампера, который утверждает, что на электрические заряды, протекающие по проводнику, находящемуся внутри магнитного поля, действует сила, движущая их в плоскости, перпендикулярной силовым линиям этого поля. Проще говоря, проводник, которым в конструкции двигателя является ротор, начинает вращаться вокруг своей оси, а закрепляется он на валу, к которому подключаются рабочие механизмы оборудования.

Виды двигателей и их устройство

Электрические двигатели переменного тока имеют различное устройство, благодаря которому можно создавать машины с одинаковой частотой вращения ротора относительно магнитного поля статора, и такие машины, где ротор «отстает» от вращающегося поля. По данному принципу эти двигатели разделяют на соответствующие типы: синхронные и асинхронные.

Асинхронные

Основу конструкции асинхронного электродвигателя составляет пара важнейших функциональных частей:

  1. Статор – блок цилиндрической формы, сделанный из листов стали с пазанми для укладки токопроводящих обмоток, оси которых располагаются под углом 120˚ относительно друг друга. Полюса обмоток уходят на клеммную коробку, где подключаются разными способами, в зависимости от необходимых параметров работы электродвигателя.
  2. Ротор. В конструкции асинхронных электродвигателей используются роторы двух видов:
    • Короткозамкнутый. Называется так, потому что изготавливается из нескольких алюминиевых или медных стержней, накоротко замкнутых с помощью торцевых колец. Эта конструкция, представляющая собой токоповодящую обмотку ротора, называется в электромеханике «беличьей клеткой».
    • Фазный. На роторах данного типа устанавливается трехфазная обмотка, похожая на обмотку статора. Чаще всего концы её проводников идут в клеммную площадку, где соединяются «звездой», а свободные концы подключаются к контактным кольцам. Фазный ротор позволяет с помощью щеток добавить в цепь обмотки добавочный резистор, позволяющий изменять сопротивление для уменьшения пусковых токов.


Помимо описанных ключевых элементов асинхронного электродвигателя, в его конструкцию также входит вентилятор для охлаждения обмоток, клеммная коробка и вал, передающий генерируемое вращение на рабочие механизмы оборудования, работа которого обеспечивается данным двигателем.

Работа асинхронных электрических двигателей основывается на законе электромагнитной индукции, утверждающем, что электродвижущая сила может возникнуть лишь в условиях разности скоростей вращения ротора и магнитного поля статора. Таким образом, если бы эти скорости были равны, ЭДС не могла бы появиться, но воздействие на вал таких «тормозящих» факторов, как нагрузка и трение подшипников, всегда создает достаточные для работы условия.

Синхронные

Конструкция синхронных электродвигателей переменного тока несколько отлична от устройства асинхронных аналогов. В этих машинах ротор крутится вокруг своей оси со скоростью, равной скорости вращения магнитного поля статора. Ротор или якорь этих устройств тоже оснащается обмотками, которые одними концами подключены друг к другу, а другими – к вращающемуся коллектору. Контактные площадки на коллекторе смонтированы так, что в определенный момент времени возможна подача питания через графитовые щетки лишь на два противоположных контакта.

Принцип работы синхронных электродвигателей:

  1. При взаимодействии магнитного потока в обмотке статора с током ротора возникает вращающий момент.
  2. Направление движения магнитного потока изменяется одновременно с направлением переменного тока, благодаря чему сохраняется вращение выходного вала в одну сторону.
  3. Настройка нужной частоты вращения осуществляется регулировкой входящего напряжения. Чаще всего, в быстроходном оборудовании, например, перфораторах и пылесосах, эту функцию выполняет реостат.

Чаще всего причинами выхода синхронных электродвигателей из строя является:

  • износ графитовых щеток или ослабление прижимной пружины;
  • износ подшипников вала;
  • загрязнение коллектора (чистится наждачной бумагой или спиртом).

Трехфазный генератор переменного тока

История изобретения

Изобретение простейшего способа преобразования энергии из электрической в механическую принадлежит Майклу Фарадею. В 1821 году этот великий английский ученый провел эксперимент с проводником, опущенным в сосуд с ртутью, на дне которого лежал постоянный магнит. После подачи электричества на проводник он приходил в движение, вращаясь соответственно силовым линиями магнитного поля. В наши дни этот опыт часто проводят на уроках физики, заменяя ртуть рассолом.

Дальнейшее изучение вопроса привело к созданию Питером Барлоу в 1824 году униполярного двигателя, названного колесом Барлоу. В его конструкцию входят два зубчатых колеса из меди, расположенных на одной оси между постоянными магнитами. После подачи тока на колеса, в результате его взаимодействия с магнитными полями, колеса начинают вращаться. Во время опытов ученый установил, что направление вращения можно изменить, поменяв полярность (перестановкой магнитов или контактов). Практического применения «колесо Барлоу», но сыграло важную роль в изучении взаимодействия магнитных полей и заряженных проводников.

Первый рабочий образец устройства, ставшего прародителем современных двигателей, был создан русским физиком Борисом Семеновичем Якоби в 1834 году. Принцип использования вращающегося ротора в магнитном поле, продемонстрированный в этом изобретении, практически в неизменном виде применяется современных двигателях постоянного тока.

А вот создание первого двигателя с асинхронным принципом работы принадлежит сразу двум ученым – Николе Тесла и Галилео Феррарис, по удачному стечению обстоятельств продемонстрировавшим свои изобретения в один год (1888). Через несколько лет двухфазный бесколлекторный двигатель переменного тока, созданный Николой Тесла уже использовался на нескольких электростанциях. В 1889 году русский электротехник Михаил Осипович Доливо-Добровольский усовершенствовал изобретение Теслы для работы в трехфазной сети, благодаря чему смог создать первый асинхронный двигатель переменного тока мощностью более 100 Вт. Ему же принадлежит изобретение используемых сегодня способов подключения фаз в трехфазных электродвигателях: «звезда» и «треугольник», пусковых реостатов и трехфазных трансформаторов.

Система переменного тока, предложенная Вестингаузом

Подключение к однофазным и трехфазным источникам питания

По типу питающей сети электродвигатели переменного тока классифицируют на одно- и трехфазные.

Подключение асинхронных однофазных двигателей осуществляет очень легко – для этого достаточно подвести к двум выходам на корпусе фазный и нулевой провод однофазной 220В сети. Синхронные двигатели тоже можно запитывать от сети данного типа, однако подключение немного сложнее – необходимо соединить обмотки ротора и статора так, чтобы их контакты однополюсного намагничивания были расположены напротив друг друга.

Подключение к трехфазной сети представляется несколько более сложным. В первую очередь, следует обратить внимание, что клеммная коробка содержит 6 выводов – по паре на каждую из трех обмоток. Во-вторых, это дает возможность использовать один из двух способов подключения («звезда» и «треугольник»). Неправильное подключение может привести в поломке двигатель от расплавления обмоток статора.

Главное функциональное отличие «звезды» и «треугольника» заключается в различном потреблении мощности, что сделано для возможности включения машины в трехфазные сети с различным линейным напряжением — 380В или 660В. В первом случае следует соединять обмотки по схеме «треугольник», а во втором – «звездой». Такое правило включения позволяет в обоих случаях иметь напряжение 380В на обмотках каждой фазы.

На панели подключения выводы обмоток располагаются таким образом, чтобы перемычки, используемых для включения, не перекрещивались между собой. Если коробка выводов двигателя содержит только три зажима, значит, он рассчитан для работы от одного напряжения, которое указано в технической документации, а обмотки соединены между собой внутри устройства.

Преимущества и недостатки электрических двигателей переменного тока

В наши дни среди всех электродвигателей устройства для переменного тока занимают лидирующую позицию по объему использования в силовых установках. Они обладают низкой себестоимостью, простой в обслуживании конструкцией и КПД не менее 90%. Кроме того, их устройство позволяет плавно изменять скорость вращения, не прибегая к помощи дополнительного оборудования вроде коробок передач.

Главным недостатком двигателей переменного тока с асинхронным принципом работы является тот факт, что регулировать их частоту вращения вала можно только изменяя входную частоту тока. Это не позволяет добиться постоянной скорости вращения, а также снижает мощность. Для асинхронных электродвигателей характерны высокие пусковые токи, но низкий пусковой момент. Для исправления этих недостатков применяется частотный привод, однако его цена противоречит одному из главных достоинств этих двигателей – низкой себестоимости.

Слабым местом синхронного двигателя является его сложная конструкция. Графитовые щетки довольно быстро выходят из строя под нагрузкой, а также теряют плотный контакт с коллектором из-за ослабления прижимной пружины. Кроме того, эти двигатели, как и асинхронные аналоги, не защищены от износа подшипников вала. К недостаткам также относится более сложный пуск, необходимость наличия источника постоянного тока и исключительно частотная регулировка частоты вращения.

Применение

На сегодняшний день электродвигатели со спецификацией на переменный ток распространены во всех сферах промышленности и жизнедеятельности. На электростанциях они устанавливаются в качестве генераторов, используются в производственном оборудовании, автомобилестроении и даже бытовой технике. Сегодня в каждом доме можно встретить как минимум одно устройство с электрическим двигателем переменного тока, например, стиральную машину. Причины столь большой популярности заключаются в универсальности, долговечности и легкости обслуживания.

Среди асинхронных электрических машин наибольшее распространение получили устройства с трехфазной спецификацией. Они являются наилучшим вариантом для использования во многих силовых агрегатах, генераторах и высокомощных установках, работа которых связана с необходимостью контроля скорости вращения вала.

Это может быть интересно:

tokidet.ru

Электрический двигатель - это... Что такое Электрический двигатель?

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения

Электрический двигатель — электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Принцип действия

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор может быть:

  • короткозамкнутым;
  • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. Сейчас эти двигатели редкость, так как на рынке появились преобразователи частоты, ранее же они очень часто использовались в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая болгарка, если выкинуть электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Принцип действия трехфазного асинхронного электродвигателя

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует эдс), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов. Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора. Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.


Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.

Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

  • Рис.1. Трехфазный двухполюсный асинхронный двигатель

На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.

Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока f: nc=f/p

При частоте 50 Гц получаем для р = 1, 2, 3 (двух-, четырех- и шести полюсных машин) синхронные частоты вращения поля nc = 3000, 1500 и 1000 об/мин.

Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с беличьей клеткой) или ротора с контактными кольцами (фазный ротор).

В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и заколачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.

У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу. При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки). После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.

Источник

Устройство асинхронного двигателя http://techno.x51.ru/index.php?mod=text&uitxt=905

Классификация электродвигателей

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).

Двигатели постоянного тока

Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками

Двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:

  1. коллекторные двигатели;
  2. бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.[1]

По типу возбуждения коллекторные двигатели можно разделить на:

  1. двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
  2. двигатели с самовозбуждением .

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
  2. Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбуждения)
  3. Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)

Бесколлекторные двигатели (вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.[2]

Двигатели переменного тока

Трехфазные асинхронные двигатели

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).[2]

Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

Универсальный коллекторный электродвигатель

Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном. Для переменного тока номинальные напряжения 127,220., для постоянного 110.220. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы). При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности. Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, то есть так, как движется поршень в цилиндре паровой машины. Русский ученый Б. С. Якоби пошел иным путем. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». Б. С. Якоби писал, что его двигатель несложен и «дает непосредственно круговое движение, которого гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное».

Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через коммутатор, с помощью которого направление тока в каждом электромагните изменялось раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременного притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.

13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

Примечания

Литература

  • Белов М. П., Новиков В. А., Рассудов Л. Н. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов. — 3-е изд., испр. — М.: Издательский центр «Академия», 2007. — 575 с. — (Высшие профессиональное образование). — 1000 экз. — ISBN 978-5-7695-4497-2

Ссылки

biograf.academic.ru

Двигатель постоянного тока: описание принципа работы, типы

В данной статье мы подробно рассмотрим двигатели постоянного тока. Детально разберем типы и принцип работы данных двигателей. Расскажем как происходит переключение и контролирование двигателя, контролирования скорости и регулировка скорости импульса, а так же опишем как изменить направление вращения двигателя постоянного тока разными методами.

Описание и принцип работы

Электрические двигатели постоянного тока — это непрерывные приводы, которые преобразуют электрическую энергию в механическую. Двигатель постоянного тока достигает этого, создавая непрерывное угловое вращение, которое можно использовать для вращения насосов, вентиляторов, компрессоров, колес и т.д. Купить двигатель постоянного тока вы можете на Алиэкспресс:

Наряду с обычными роторными двигателями постоянного тока имеются также линейные двигатели, способные производить непрерывное движение вкладыша. Существуют в основном три типа обычных электрических двигателей: двигатели переменного тока, двигатели постоянного тока и шаговые двигатели.

Двигатели переменного тока, как правило, используются в однофазных или многофазных промышленных мощных установках, в которых постоянный крутящий момент и скорость требуются для управления большими нагрузками, такими как вентиляторы или насосы.

В этом уроке по электродвигателям мы рассмотрим только простые двигатели постоянного тока и шаговые двигатели, которые используются во многих различных типах электронных схем, систем позиционного управления, микропроцессоров, PIC и роботизированных схем.

Типы двигателей постоянного тока

Двигатель постоянного тока, является наиболее часто используемым приводом для создания непрерывного движения, скорость вращения которого легко регулируется, что делает их идеальными для использования в устройствах, таких как регулирование скорости, управление сервоприводом и / или требуется позиционирование. Двигатель постоянного тока состоит из двух частей: «Статор», который является неподвижной частью, и «Ротор», который является вращающейся частью. В результате доступно три типа двигателей постоянного тока.

  • Коллекторный двигатель — этот тип двигателя создает магнитное поле в намотанном роторе (вращающаяся деталь), пропуская электрический ток через узел коммутатора и угольной щетки, отсюда и термин «щеточный». Магнитное поле статоров (неподвижная часть) создается с помощью обмотки статора или постоянных магнитов. Обычно моторы с щеткой постоянного тока дешевые, маленькие и легко управляемые.
  • Бесколлекторный двигатель — этот тип двигателя создает магнитное поле в роторе, используя постоянные магниты, прикрепленные к нему, и коммутация достигается с помощью электроники. Они, как правило, меньше, но дороже, чем обычные двигатели постоянного тока щеточного типа, потому что они используют переключатели «эффекта Холла» в статоре для получения требуемой последовательности вращения поля статора, но они имеют лучшие характеристики крутящего момента / скорости, более эффективны и имеют более длительный срок эксплуатации. чем эквивалентные коллекторные типы.
  • Серводвигатель — этот тип двигателя в основном представляет собой коллекторный двигатель постоянного тока с некоторой формой управления позиционной обратной связью, подключенной к валу ротора. Они подключены к контроллеру типа ШИМ и управляются им, и в основном используются в системах позиционного управления и радиоуправляемых моделях.

Обычные двигатели постоянного тока имеют почти линейные характеристики, скорость вращения которых определяется приложенным напряжением постоянного тока, а их выходной крутящий момент определяется током, протекающим через обмотки двигателя. Скорость вращения любого двигателя постоянного тока может варьироваться от нескольких оборотов в минуту (об / мин) до многих тысяч оборотов в минуту, что делает их пригодными для применения в электронике, автомобилестроении или робототехнике. При подключении их к коробкам передач или зубчатым передачам их выходная скорость может быть уменьшена, в то же время увеличивая крутящий момент двигателя на высокой скорости.

Коллекторный двигатель постоянного тока

Стандартный коллекторный двигатель постоянного тока состоит в основном из двух частей: неподвижного корпуса двигателя, называемого статором, и внутренней части, которая вращается, создавая движение, называемое ротором или «арматурой» для машин постоянного тока.

Обмотка статора двигателя представляет собой электромагнитную цепь, которая состоит из электрических катушек, соединенных вместе в круговую конфигурацию для создания необходимого северного полюса, затем южного полюса, затем северного полюса и т.д., типа стационарной системы магнитного поля для вращения, в отличие от машин переменного тока, чье поле статора постоянно вращается с приложенной частотой. Ток, который течет в этих полевых катушках, известен как ток поля двигателя.

Эти электромагнитные катушки, которые формируют поле статора, могут быть электрически соединены последовательно, параллельно или вместе с ротором двигателя. Последовательно намотанный двигатель постоянного тока имеет обмотки статора, соединенные последовательно с ротором. Аналогично, двигатель постоянного тока с шунтирующим витком имеет свои обмотки возбуждения статора, соединенные параллельно с ротором, как показано ниже.

Ротор постоянного тока состоит из токонесущих проводников, соединенных вместе на одном конце с электрически изолированными медными сегментами, называемыми коммутатором. Коммутатор позволяет осуществлять электрическое подключение через угольные щетки (отсюда и название «щеточный» двигатель) к внешнему источнику питания при вращении ротора.

Установленное ротором магнитное поле пытается выровнять себя с полем статора, заставляя ротор вращаться вокруг своей оси, но не может выровняться из-за задержек коммутации. Скорость вращения двигателя зависит от силы магнитного поля роторов, и чем больше напряжение подается на двигатель, тем быстрее вращается ротор. Изменяя это приложенное постоянное напряжение, можно также изменять частоту вращения двигателя.

Двигатель постоянного тока с щеточным постоянным магнитом (PMDC), как правило, намного меньше и дешевле, чем его эквивалентные родственники двигателя постоянного тока с обмоткой статора, поскольку они не имеют обмотки возбуждения. В двигателях с постоянными магнитами постоянного тока (PMDC) эти полевые катушки заменяются сильными магнитами типа редкоземельных элементов (например, самарий-коболт или неодим-железо-бор), которые имеют очень сильные магнитные энергетические поля.

Использование постоянных магнитов дает двигателю постоянного тока намного лучшую линейную характеристику скорости / крутящего момента, чем эквивалентные намотанные двигатели из-за постоянного и иногда очень сильного магнитного поля, что делает их более подходящими для использования в моделях, робототехнике и сервоприводах.

Хотя щеточные электродвигатели постоянного тока очень эффективны и дешевы, проблемы, связанные с щеточным электродвигателем постоянного тока, заключаются в том, что искрение возникает в условиях большой нагрузки между двумя поверхностями коммутатора и угольных щеток, что приводит к самогенерированию тепла, короткому сроку службы и электрическому шуму из-за искрения, что может повредить любое полупроводниковое коммутационное устройство, такое как МОП-транзистор или транзистор. Чтобы преодолеть эти недостатки, были разработаны бесщеточные или бесколлекторные двигатели постоянного тока.

Бесколлекторный двигатель постоянного тока

Бесщеточный (бесколлекторный) двигатель постоянного тока (BDCM) очень похож на двигатель постоянного тока с постоянными магнитами, но не имеет щеток для замены или износа из-за искрения коммутатора. Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей. Конструкция бесщеточного двигателя устраняет необходимость в щетках благодаря более сложной схеме привода, в которой магнитное поле ротора является постоянным магнитом, который всегда синхронизирован с полем статора, что позволяет более точно контролировать скорость и крутящий момент.

Тогда конструкция бесщеточного двигателя постоянного тока очень похожа на двигатель переменного тока, что делает его истинным синхронным двигателем, но одним недостатком является то, что он дороже, чем аналогичная конструкция «щеточного» двигателя.

Управление бесщеточными двигателями постоянного тока очень отличается от обычного щеточного двигателя постоянного тока тем, что этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимые для получения сигналов обратной связи, необходимых для управления переключением полупроводников. Самым распространенным датчиком положения / полюса является «Датчик Холла», но некоторые двигатели также используют оптические датчики.

При использовании датчиков с эффектом Холла полярность электромагнитов переключается с помощью схемы управления двигателем. Тогда двигатель можно легко синхронизировать с цифровым тактовым сигналом, обеспечивая точное управление скоростью. Бесщеточные двигатели постоянного тока могут быть сконструированы так, чтобы иметь внешний ротор с постоянными магнитами и внутренний статор электромагнита или внутренний ротор с постоянными магнитами и внешний статор электромагнита.

Преимущества бесщеточного двигателя постоянного тока по сравнению с его «щеточным» кузеном заключаются в более высокой эффективности, высокой надежности, низком электрическом шуме, хорошем контроле скорости и, что более важно, отсутствии износа щеток или коммутатора, что обеспечивает значительно более высокую скорость. Однако их недостатком является то, что они более дороги и сложнее в управлении.

Серводвигатель постоянного тока

Серводвигатели постоянного тока используются в системах с замкнутым контуром, в которых положение выходного вала двигателя возвращается обратно в цепь управления двигателем. Типичные позиционные устройства «обратной связи» включают в себя резольверы, энкодеры и потенциометры, используемые в моделях радиоуправления, таких как самолеты, лодки и т.д.

Серводвигатель, как правило, включает в себя встроенную коробку передач для снижения скорости и способен напрямую выдавать высокие крутящие моменты. Выходной вал серводвигателя не вращается свободно, как валы двигателей постоянного тока из-за присоединения редуктора и устройств обратной связи.

Блок-схема серводвигателя постоянного тока

Серводвигатель состоит из двигателя постоянного тока, редуктора, устройства позиционной обратной связи и некоторой формы коррекции ошибок. Скорость или положение контролируется по отношению к позиционному сигналу входного сигнала или опорного приложенному к устройству.

Усилитель обнаружения ошибок просматривает этот входной сигнал и сравнивает его с сигналом обратной связи с выходного вала двигателя и определяет, находится ли выходной вал двигателя в состоянии ошибки, и, если это так, контроллер вносит соответствующие исправления, либо ускоряя двигатель, либо замедляя его вниз. Эта реакция на устройство позиционной обратной связи означает, что серводвигатель работает в «замкнутой системе».

Наряду с крупными промышленными применениями серводвигатели также используются в небольших моделях с дистанционным управлением и робототехнике, причем большинство серводвигателей способны вращаться примерно на 180 градусов в обоих направлениях, что делает их идеальными для точного углового позиционирования. Тем не менее, эти сервоприводы типа RC не могут непрерывно вращаться на высокой скорости, как обычные двигатели постоянного тока, если специально не модифицированы.

Серводвигатель состоит из нескольких устройств в одном корпусе, двигателя, коробки передач, устройства обратной связи и коррекции ошибок для контроля положения, направления или скорости. Они широко используются в робототехнике и небольших моделях, так как ими легко управлять, используя всего три провода: питание , заземление и управление сигналами.

Переключение и контроль двигателя постоянного тока

Небольшие двигатели постоянного тока могут быть включены «Вкл» или выключены «Выкл» с помощью переключателей, реле, транзисторов или МОП-транзисторов, причем простейшей формой управления двигателем является «линейное» управление. Схема этого типа использует биполярный транзистор в качестве переключателя (транзистор Дарлингтона также может использоваться, если требуется более высокий номинальный ток) для управления двигателем от одного источника питания.

Изменяя величину тока базы, протекающего в транзистор, можно управлять скоростью двигателя, например, если транзистор включен наполовину, тогда только половина напряжения питания поступает на двигатель. Если транзистор включен полностью (насыщен), то все напряжение питания поступает на двигатель и вращается быстрее. Затем для этого линейного типа управления мощность постоянно подается на двигатель, как показано ниже.

Контроль скорости двигателя

Простая схема переключения, приведенная выше, показывает схему для однонаправленной (только в одном направлении) цепи управления скоростью двигателя. Поскольку скорость вращения двигателя постоянного тока пропорциональна напряжению на его клеммах, мы можем регулировать это напряжение на клеммах с помощью транзистора.

Два транзистора соединены в виде пары Дарлингтона для управления током основного ротора двигателя. 5 кОм потенциометр используется для регулирования количества базового привода на первый пилот — транзистора TR 1 , который, в свою очередь, контролирует главный коммутационный транзистор TR 2 , позволяя изменять напряжение постоянного тока двигателя от нуля до Vcc, в этом примере от 9 до 12 вольт.

Опциональные диоды маховика подключены к переключающему транзистору TR 2 и клеммам двигателя для защиты от любой обратной ЭДС, создаваемой двигателем при его вращении. Регулируемый потенциометр может быть заменен непрерывным логическим «1» или логическим «0» сигналом, подаваемым непосредственно на вход цепи, чтобы переключить двигатель «полностью включено» (насыщение) или «полностью выключено» (отключение) соответственно из порта микроконтроллера или ПОС.

Наряду с этим базовым контролем скорости, та же схема также может использоваться для управления скоростью вращения двигателей. Путем многократного переключения тока двигателя «ВКЛ» и «ВЫКЛ» на достаточно высокой частоте, скорость двигателя можно варьировать от состояния покоя (0 об / мин) до полной скорости (100%), изменяя отношение бестокового пространства к его запасу. Это достигается путем изменения соотношения времени включения (t ON ) и времени выключения (t OFF ), и это может быть достигнуто с помощью процесса, известного как широтно-импульсная модуляция (ШИМ).

Регулировка скорости импульса

Ранее мы говорили, что скорость вращения двигателя постоянного тока прямо пропорциональна среднему значению напряжения на его клеммах, и чем выше это значение, вплоть до максимально допустимого напряжения двигателя, тем быстрее будет вращаться двигатель. Другими словами, больше напряжения, больше скорости. Изменяя соотношение между временем «ВКЛ» (t ВКЛ ) и временем «ВЫКЛ» (t ВЫКЛ ), которое называется «Коэффициент заполнения», или «Рабочий цикл», среднее значение напряжения двигателя и, следовательно, его скорость вращения может варьироваться. Для простых униполярных приводов коэффициент заполнения β задается как:

и среднее выходное напряжение постоянного тока, подаваемое на двигатель, определяется как: Vmean = β x Vsupply. Затем, изменяя ширину импульса а, можно управлять напряжением двигателя и, следовательно, мощностью, подаваемой на двигатель, и этот тип управления называется широтно-импульсной модуляцией или ШИМ.

Другим способом управления частотой вращения двигателя является изменение частоты (и, следовательно, периода времени управляющего напряжения), в то время как времена коэффициента включения «ВКЛ» и «ВЫКЛ» поддерживаются постоянными. Этот тип управления называется частотно-импульсной модуляцией или PFM .

При частотно-импульсной модуляции напряжение двигателя регулируется путем подачи импульсов переменной частоты, например, на низкой частоте или с очень небольшим количеством импульсов, среднее напряжение, подаваемое на двигатель, является низким, и, следовательно, скорость двигателя является низкой. При более высокой частоте или множестве импульсов среднее напряжение на клеммах двигателя увеличивается, и скорость двигателя также увеличивается.

Затем транзисторы можно использовать для управления количеством энергии, подаваемой на двигатель постоянного тока с режимом работы: «линейная» (изменение напряжения двигателя), «широтно-импульсная модуляция» (изменение ширины импульса) или «частотно — импульсная модуляция»(изменение частоты импульса).

Изменение направления движения двигателя постоянного тока

Хотя управление скоростью двигателя постоянного тока с помощью одного транзистора имеет много преимуществ, оно также имеет один главный недостаток: направление вращения всегда одинаковое, это «однонаправленная» схема. Во многих случаях нам необходимо управлять двигателем в обоих направлениях вперед и назад.

Для управления направлением двигателя постоянного тока необходимо поменять полярность питания постоянного тока, подаваемого на соединения двигателя, чтобы его вал вращался в противоположном направлении. Один очень простой и дешевый способ управления направлением вращения двигателя постоянного тока состоит в использовании различных переключателей, расположенных следующим образом:

В первом контуре используется одинарный двухполюсный, двухходовый переключатель (DPDT) для контроля полярности соединений двигателей. При переключении контактов подача на клеммы двигателя изменяется, и двигатель меняет направление. Второй контур немного сложнее и использует четыре однополюсных, одноходовых (SPST) переключателя, расположенных в «H» -конфигурации.

Механические переключатели расположены в виде пары переключений и должны работать в определенной комбинации для работы или остановки двигателя постоянного тока. Например, комбинация переключателей A + D управляет вращением вперед, в то время как переключатели B + C управляют вращением назад, как показано на рисунке. Комбинации переключателей A + B или C + D замыкают клеммы двигателя, вызывая его быстрое торможение. Тем не менее, использование переключателей таким образом имеет свои опасности, так как рабочие переключатели A + C или B + D вместе отключат источник питания.

В то время как две вышеупомянутые схемы будут очень хорошо работать для большинства небольших двигателей постоянного тока, мы действительно хотим использовать различные комбинации механических переключателей только для изменения направления вращения двигателя, НЕТ! Мы могли бы изменить ручные переключатели для набора электромеханических реле и иметь одну кнопку прямого или обратного хода или даже использовать твердотельный четырехпозиционный двусторонний переключатель CMOS 4066B.

Но еще один очень хороший способ достижения двунаправленного управления двигателем (а также его скоростью) состоит в том, чтобы подключить двигатель к схеме транзисторного типа H-моста, как показано ниже.

H-мостовая схема двигателя

Схема H-моста, приведенная выше, названа так потому, что базовая конфигурация четырех переключателей, либо электромеханических реле, либо транзисторов, напоминает букву «H» с двигателем, расположенным на центральной шине. Транзистор или МОП-транзистор является, вероятно, одним из наиболее часто используемых типов двунаправленных цепей управления двигателем постоянного тока. Он использует «комплементарные пары транзисторов» как NPN, так и PNP в каждой ветви, причем транзисторы попарно объединяются для управления двигателем.

Управляющий вход A управляет двигателем в одном направлении, т.е. вращением вперед, в то время как вход B управляет двигателем в другом направлении, т.е. обратным вращением. Затем переключение транзисторов «ВКЛ» или «ВЫКЛ» в их «диагональных парах» приводит к направленному управлению двигателем.

Например, когда транзистор TR1 включен, а транзистор TR2 выключен, точка A подключена к напряжению питания (+ Vcc), а если транзистор TR3 выключен, а транзистор TR4 включен, точка B подключена к 0 вольт (GND). Затем двигатель будет вращаться в одном направлении, соответствующем положению клеммы А двигателя и положительной клемме В двигателя.

Если состояния переключения меняются местами так, что TR1 — «ВЫКЛ», TR2 — «ВКЛ», TR3 — «ВКЛ» и TR4 — «ВЫКЛ», ток двигателя будет течь в противоположном направлении, вызывая вращение двигателя в противоположном направлении.

Затем, применяя противоположные логические уровни «1» или «0» к входам A и B, направление вращения двигателя можно регулировать следующим образом.

Таблица истинности H-моста

Вход АВход BФункция двигателя
TR1 и TR4TR2 и TR3
00Двигатель остановлен (OFF)
10Мотор вращается вперед
01Мотор вращается задним ходом
11НЕ ПОЛОЖЕНО

Важно, чтобы никакая другая комбинация входов не допускалась, так как это может привести к короткому замыканию источника питания, то есть оба транзистора, TR1 и TR2, были включены в одно и то же время (предохранитель = взрыв!).

Как и в случае однонаправленного управления двигателем постоянного тока, как показано выше, скорость вращения двигателя также можно регулировать с помощью широтно-импульсной модуляции или ШИМ. Затем, комбинируя переключение Н-моста с ШИМ-управлением, можно точно контролировать направление и скорость двигателя.

Имеющиеся в продаже готовые ИС- декодеры, такие как четырехполупроводниковая ИС H-моста SN754410 или L298N с двумя H-мостами, доступны со всей необходимой встроенной логикой управления и безопасности, специально разработанные для двунаправленных цепей управления двигателем H-моста.

meanders.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о