Двигатель асинхронный синхронный: Отличие синхронного от асинхронного двигателя

Содержание

Синхронный и асинхронный двигатель отличия | Полезные статьи

Для приведения в движение различных станков или механизмов на предприятиях тяжелой и легкой промышленности в большинстве случаев используются электродвигатели переменного тока. Электрические машины постоянного тока распространены в меньшей мере и чаще всего применяются в качестве тяговых агрегатов на городском электротранспорте, поездах, складских погрузчиках и тележках.

Чтобы достичь максимальной энергоэффективности производственных процессов, нужно правильно подходить к выбору двигателя для привода.

Синхронный и асинхронный двигатель – отличия для чайников

Конструкция асинхронных и синхронных электрических машин практически одинакова. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Обмотки статора сдвинуты друг относительно друга на угол, равный 120°, поэтому проходящий по ним электрический ток создает вращающееся магнитное поле, которое вовлекает в движение ротор. Вот именно здесь и проявляется основное отличие этих электрических машин – конструкция ротора, от которой зависит скорость его вращения.

Асинхронный двигатель

Ротор такого двигателя может быть короткозамкнутым или фазным.

Вне зависимости от типа ротора в этих двигателях частота вращения ротора всегда будет меньше скорости вращения магнитного поля статора. Эта разница обусловлена законами физики:

  • силовые линии магнитного поля статора, пересекая замкнутый контур ротора, индуцируют в нем электродвижущую силу, а значит и собственное магнитное поле;
  • в результате взаимодействия этих полей, имеющих одинаковую полярность, возникает крутящий момент, вызывающий вращение ротора;
  • в тот момент, когда скорости вращения магнитных полей становятся одинаковыми, возникновение ЭДС в роторе прекращается, в результате чего крутящий момент стремится к нулю;
  • как только частота вращения ротора начинает отставать от скорости вращения поля статора, возникновение ЭДС возобновляется.

Синхронный двигатель

Ротор таких двигателей комплектуется постоянными магнитами или обмотками возбуждения. Обмотки могут быть как явнополюсными, так и распределенными (уложенными в пазы ротора). Кроме того, ротор синхронной машины может иметь и короткозамкнутые обмотки.

После разгона ротора до скорости близкой к частоте вращения магнитного поля статора, на катушки полюсов через щеточно-контактный узел подается постоянное напряжение, которое возбуждает в них постоянное магнитное поле. Противоположные полюса магнитных полей притягиваются друг к другу и частота вращения ротора становится синхронной.

Разгон ротора может осуществляться с помощью вспомогательного двигателя или в асинхронном режиме, благодаря короткозамкнутой обмотке.

Недостатки и преимущества двигателей

Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.

Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.

Энергоэффективный синхронный двигатель с постоянными магнитами Dyneo

Dyneo это новая серия синхронных двигателей с постоянными магнитами, обладающих высоким КПД, повышенными скоростями вращения и относительно широким диапазоном мощностей.

Серия представлена моделями: LSRPM – c алюминиевым корпусом с IP55 для общепромышленных применений; PLSRPM – со стальным корпусом с IP23 для применений, где требуется высокая удельная мощность.

За счет использования постоянных магнитов в роторе, в нем отсутствуют потери, что влечет к увеличению КПД на 2-4 пункта по сравнению со стандартным асинхронным двигателем аналогичной мощности. При этом, в отличие от асинхронного двигателя, КПД остается постоянным на всем диапазоне регулирования скорости.

Поскольку данная серия предназначена для использования в составе частотно-регулируемого электропривода, инженерами LeroySomer проведена большая работа по адаптации двигателей Dyneo к использованию с преобразователями частоты Emerson серий Unidrive M, Powerdrive MD2 и Powerdrive FX. Благодаря этому достигается превосходная точность регулирования скорости и момента приводного двигателя, в сочетании с высочайшей надежностью.

Основные параметры двигателей Dyneo:

LSRPM PLSRPM
Номинальная мощность 6,9…350 кВт 325…390 кВт
Номинальное напряжение 400В/50Гц
Номинальная скорость вращения 750, 900, 1500, 1800, 2400, 3000, 3600, 4500 и 5500 об/мин 3600 об/мин
Номинальный момент 12…1393 Нм 862…1035 Нм
Типоразмер(высота оси вращения, мм) 90…315 315
Класс изоляции F(155°С)
Степень защиты IP55 IP23
Метод охлаждения IC 411, IC410 и IC416A IC 411 и IC416A
Монтажное исполнение IM1001, IM1031, IM1051, IM1061, IM1071, IM1011, IM3001, IM3011, IM3031, IM2001, IM2011, IM2031, IM3601, IM3611, IM3631, IM2101, IM2111, IM2131, IM1201, IM9101
Датчик скорости Абсолютный/инкрементальный энкодер
Дополнительные элементы Комплектная поставка с редуктором, ATEX комплектация, электромагнитный тормоз, антиконденсатные ТЭНы, датчики температуры в обмотках стотора и подшипниковых щитах, усиленная изоляция обмоток статора, модификация размеров фланца и диаметра выходного вала, усиленные подшипники, улучшенная балансировка, адаптация клеммной коробки, защитyые покрытия корпуса двигателя, и др.
Температуры окружающей среды и высота над уровнем моря от -16°С до +40°С и до 1000 м
Цвет RAL3005(вишневый) RAL3005(вишневый)

Основные технические данные двигателей Dyneo:

Тип Р, кВт Мн, Нм I, А ƞ, % Мп/Мн Масса, кг
5500 об/мин
LSRPM 90SL 6,9 12 12,7 93,5 1,37 14
LSRPM 90L 8,6 14,9 15,2 94 1,37 17
LSRPM 100L 10,4 18 19 94 1,37 19
LSRPM 100L 12,1 21 22 94,5 1,37 24
LSRPM 100L 13,8 24 25 94,5 1,37 26
LSRPM 132M 18,6 32 35 94 1,37 40
LSRPM 132M 23 40 44 94 1,37 44
LSRPM 132M 27 47 52 94,5 1,37 49
LSRPM 160MP 35 62 67 94,5 1,37 60
LSRPM 160MP 44 76 82 95 1,37 69
LSRPM 160LR 52 90 97 95 1,37 79
LSRPM 200L1 70 122 140 95,2 1,37 138
LSRPM 200L1 85 148 180 95,4 1,37 148
LSRPM 200L1 100 174 210 95,8 1,37 153
LSRPM 200L2 140 243 265 96,6 1,37 180
4500 об/мин
LSRPM 90SL 6,8 15 12,6 93,5 1,37 14
LSRPM 90L 8,5 18 15,2 94 1,37 17
LSRPM 100L 10,2 22 18,8 94 1,37 19
LSRPM 100L 12 25 22 94,5 1,37 24
LSRPM 100L 13,7 29 25 94,5 1,37 26
LSRPM 132M 18,6 39 35 94,5 1,37 40
LSRPM 132M 23 49 44 94,5 1,37 44
LSRPM 132M 27 58 51 95 1,37 49
LSRPM 160MP 35 75 67 95 1,37 60
LSRPM 160MP 44 93 81 95,5 1,37 69
LSRPM 160LR 52 110 97 95,5 1,37 79
LSRPM 200L1 65 138 130 95,3 1,37 138
LSRPM 200L1 80 170 160 95,7 1,37 148
LSRPM 200L1 100 212 200 96,2 1,37 168
LSRPM 200L2 120 255 230 96,4 1,37 185
LSRPM 200LU2 135 287 270 96,5 1,37 195
LSRPM 225SR2 150 318 277 96,6 1,37 225
LSRPM 250SE 170 361 310 96,5 1,37 310
3600 об/мин
LSRPM 90SL 6,4 17 11,9 93 1,38 14
LSRPM 90L 8 21 14,8 93,5 1,35 17
LSRPM 100L 9,6 26 17,6 94 1,37 19
LSRPM 100L 11,2 30 21 94 1,37 24
LSRPM 100L 12,8 34 23 94,5 1,37 26
LSRPM 132M 17,6 47 33 94,5 1,37 40
LSRPM 132M 22 58 39 94,5 1,37 44
LSRPM 132M 26
69
48 95 1,37 49
LSRPM 160MP 34 89 63 95 1,37 60
LSRPM 160MP 41 110 77 95,5 1,37 69
LSRPM 160LR 49 130 91 95,5 1,28 79
LSRPM 200L 50 133 110 95,5 1,37 135
LSRPM 200L1 70 186 140 96 1,37 153
LSRPM 200L1 85 225 157 96,4 1,37 178
LSRPM 200LU2 115 305 220 96,8 1,37 195
LSRPM 225SG 132 350 250 96,8 1,37 250
LSRPM 250SE1 165 438 330 96,9 1,37 268
LSRPM 250SE1 190 504 350 97,1 1,37 288
LSRPM 280SD1 240 637 430 97,1 1,37 383
LSRPM 280MK1 270 716 480 97,2 1,37 620
PLSRPM 315LD 325 862 575 97,3 1,37 735
PLSRPM 315LD 350 928 660 97,4 1,37 760
PLSRPM 315LD 390 1035 715 97,5 1,37 800
3000 об/мин
LSRPM 90SL 5,8 19 11 91,5 1,37 14
LSRPM 90L 7,3 23 13,5 93 1,37 17
LSRPM 100L 8,7 28 16,2 93 1,37 19
LSRPM 100L 10,2 32 18,8 93,5 1,37 24
LSRPM 100L 11,6 37 21 93,5 1,37 26
LSRPM 132M 15,8 50 30 93 1,37 40
LSRPM 132M 19,7 63 38 93,5 1,37 44
LSRPM 132M 23 74 44 94 1,37 49
LSRPM 160MP 30 96 57 94,5 1,37 60
LSRPM 160MP 37 118 68 95 1,37 69
LSRPM 160LR 44 140 82 95 1,37 79
LSRPM 200L 50 159 112 95,5 1,37 135
LSRPM 200L1 65 207 126 96 1,37 153
LSRPM 200L1 85 271 164 96,5 1,37 178
LSRPM 225ST2 110 350 215 96,6 1,37 195
LSRPM 250SE 145 462 285 97,1 1,37 265
LSRPM 250ME1 170 541 338 97,2 1,37 288
LSRPM 280SC1 200 637 365 97,3 1,37 333
LSRPM 280SD1 220 700 400 97,4 1,37 383
LSRPM 280MK1 260 828 470 97,4 1,37 620
LSRPM 280MK1 290 923 530 97,4 1,37 620
LSRPM 315SP1 320 1019 590 97,5 1,37 670
PLSRPM315LD 340 1082 630 97,5 1,37 800
2400 об/мин
LSRPM 90SL 4,8 19 9,1 90,5 1,37 14
LSRPM 90L 6 24 10,9 91,5 1,2 17
LSRPM 100L 7,2 29 13,4 92 1,37 19
LSRPM 100L 8,4 33 15,2 92,5 1,37 24
LSRPM 100L 9,5 38 17,7 93 1,37 26
LSRPM 132M 13,1 52 25 92,5 1,37 40
LSRPM 132M 16,3 65 31 93 1,37 44
LSRPM 132M 19,2 76 37 93,5 1,37 49
LSRPM 160MP 25 99 47 94 1,37 60
LSRPM 160MP 31 122 58 94,5 1,37 69
LSRPM 160LR 36 145 69 94,5 1,37 79
LSRPM 200L 37,5 149 81 95 1,37 135
LSRPM 200L 50 199 110 95,4 1,37 150
LSRPM 200L1 65 259 137 95,9 1,37 168
LSRPM 200L1 80 318 160 96,6 1,37 183
LSRPM 225MR1 100 398 200 96,9 1,37 218
LSRPM 250SE 125 497 235 97,2 1,37 285
LSRPM 250ME 150 597 285 97,3 1,37 310
LSRPM 280SD1 190 756 350 97,5 1,37 383
LSRPM 280MK1 230 915 429 97,4 1,37 591
LSRPM 315SP1 285 1134 509 97,6 1,37 675
LSRPM 315SR1 310 1233 565 97,7 1,37 715
LSRPM 315MR1 350 1393 645 97,5 1,21 720
1800 об/мин
LSRPM 90SL 3,6 19 6,9 89 1,37 14
LSRPM 90L 4,5 24 8,5 90,5 1,37 17
LSRPM 100L 5,4 29 10,2 91 1,37 19
LSRPM 100L 6,3 33 11,8 91,5 1,37 24
LSRPM 100L 7,2 38 13,4 92 1,37 26
LSRPM 132M 9,8 52 19 92 1,37 40
LSRPM 132M 12,3 65 24 92,5 1,37 44
LSRPM 132M 14,4 76 28 93 1,37 49
LSRPM 160MP 18,7 99 36 93,5 1,37 60
LSRPM 160MP 23 122 43 94 1,37 69
LSRPM 160LR 27,3 145 52 94 1,37 79
LSRPM 200L 33 175 79 94 1,37 135
LSRPM 200L 40 212 82,5 94,8 1,37 150
LSRPM 200L 55 292 115 95,7 1,37 165
LSRPM 225ST1 70 371 143 96,1 1,37 193
LSRPM 225MR1 85 451 172 96 1,37 223
LSRPM 250ME 100 531 204 96,1 1,37 285
LSRPM 280SC 125 663 248 96,3 1,37 330
LSRPM 280SD 150 796 295 96,4 1,37 380
LSRPM 280MK1 175 928 330 96,5 1,37 568
LSRPM 315SP1 195 1035 370 96,7 1,37 635
LSRPM 315MR1 230 1220 425 96,9 1,37 720
1500 об/мин
LSRPM 90SL 3 19 5,9 87 1,37 14
LSRPM 90L 3,7 24 7,2 89 1,37 17
LSRPM 100L 4,5 29 8,6 90 1,37 19
LSRPM 100L 5,2 33 9,9 91 1,37 24
LSRPM 100L 6 38 10,9 91,5 1,37 26
LSRPM 132M 8,2 52 16 91 1,37 40
LSRPM 132M 10,2 65 19,9 91,5 1,37 44
LSRPM 132M 12 76 23 92 1,37 49
LSRPM 160MP 15,6 99 30 92,5 1,37 60
LSRPM 160MP 19,2 122 37 93 1,37 69
LSRPM 160LR 22,8 145 43 93,5 1,37 79
LSRPM 200L 25 159 56 94 1,37 135
LSRPM 200L 33 210 75 94,6 1,37 150
LSRPM 200L 40 255 83 95,2 1,37 165
LSRPM 200LU 55 350 110 95,5 1,37 190
LSRPM 225MR1 70 446 142 95,7 1,37 223
LSRPM 250ME 85 541 175 95,6 1,37 285
LSRPM 280SC 105 668 215 96,3 1,37 330
LSRPM 280SD 125 796 245 96,4 1,37 380
LSRPM 280MK1 145 923 285 96,3 1,37 568
LSRPM 315SP1 175 1114 350 96,5 1,37 635
LSRPM 315MR1 220 1401 430 96,7 1,37 720
900 об/мин
LSRPM 90SL 1,8 19 3,8 82 1,37 14
LSRPM 90L 2,2 24 4,6 84 1,41 17
LSRPM 100L 2,7 29 5,4 85 1,36 19
LSRPM 100L 3,1 33 6,2 87 1,37 24
LSRPM 100L 3,6 38 6,9 88 1,37 26
LSRPM 132M 4,9 52 9,9 88 1,37 40
LSRPM 132M 6,1 65 12,3 89 1,37 44
LSRPM 132M 7,2 76 14,3 90 1,37 49
LSRPM 160MP 9,4 99 18,4 90,5 1,47 60
LSRPM 160MP 11,5 122 23 91 1,37 69
LSRPM 160LR 13,7 145 27 91 1,37 79
LSRPM 200L 15 159 38 90,6 1,37 135
LSRPM 200L 20 212 43 91,6 1,37 150
LSRPM 200L 25 265 52 92,3 1,37 165
LSRPM 200LU 33 350 70 92,9 1,37 190
LSRPM 250SE 40 424 79 95,5 1,37 250
LSRPM 250ME 50 531 98 95,8 1,37 285
LSRPM 280SD 60 637 120 96,2 1,37 350
LSRPM 280SD 75 796 140 96 1,37 380
LSRPM 280MK1 85 902 170 95,9 1,37 545
LSRPM 315SP1 100 1061 190 96,2 1,37 625
LSRPM 315MR1 130 1379 275 96,6 1,37 715
750 об/мин
LSRPM 90SL 1,4 18 3 80 1,2 14
LSRPM 90L 1,8 23 3,7 83 1,2 17
LSRPM 100L 2,1 27 4,4 84 1,2 19
LSRPM 100L 2,5 32 5 85 1,2 24
LSRPM 100L 2,8 36 5,7 86 1,2 26
LSRPM 132M 4,1 52 8,5 86 1,2 40
LSRPM 132M 5,1 65 10,5 87 1,2 44
LSRPM 132M 6 76 12,2 88 1,2 49
LSRPM 160MP 7,8 99 15,6 89 1,2 60
LSRPM 160MP 9,6 122 19 90 1,2 69
LSRPM 160LR 10,8 138 21 90,5 1,2 79
LSRPM 200L 12,5 159 32 89,5 1,2 135
LSRPM 200L 16 204 35 90,8 1,2 150
LSRPM 200L 21 267 44 91,4 1,2 165
LSRPM 200LU 26 337 57 92,2 1,2 190
LSRPM 250SE 33 420 65 94,8 1,2 250
LSRPM 250SE 40 509 80 95,3 1,2 285
LSRPM 280SD 55 700 107 95,5 1,2 350
LSRPM 280MD 70 891 142 95,6 1,2 380
LSRPM 315SP1 85 1082 171 95,9 1,2 625
LSRPM 315MR1 110 1401 215 96,3 1,2 715

Dyneo это новая серия синхронных двигателей с постоянными магнитами, обладающих высоким КПД, повышенными скоростями вращения и относительно широким диапазоном мощностей.

Серия представлена моделями: LSRPM – c алюминиевым корпусом с IP55 для общепромышленных применений; PLSRPM – со стальным корпусом с IP23 для применений, где требуется высокая удельная мощность.

За счет использования постоянных магнитов в роторе, в нем отсутствуют потери, что влечет к увеличению КПД на 2-4 пункта по сравнению со стандартным асинхронным двигателем аналогичной мощности. При этом, в отличие от асинхронного двигателя, КПД остается постоянным на всем диапазоне регулирования скорости.

Поскольку данная серия предназначена для использования в составе частотно-регулируемого электропривода, инженерами LeroySomer проведена большая работа по адаптации двигателей Dyneo к использованию с преобразователями частоты Emerson серий Unidrive M, Powerdrive MD2 и Powerdrive FX. Благодаря этому достигается превосходная точность регулирования скорости и момента приводного двигателя, в сочетании с высочайшей надежностью.

Основные параметры двигателей Dyneo:

LSRPM PLSRPM
Номинальная мощность 6,9…350 кВт 325…390 кВт
Номинальное напряжение 400В/50Гц
Номинальная скорость вращения 750, 900, 1500, 1800, 2400, 3000, 3600, 4500 и 5500 об/мин 3600 об/мин
Номинальный момент 12…1393 Нм 862…1035 Нм
Типоразмер(высота оси вращения, мм) 90…315 315
Класс изоляции F(155°С)
Степень защиты IP55 IP23
Метод охлаждения IC 411, IC410 и IC416A IC 411 и IC416A
Монтажное исполнение IM1001, IM1031, IM1051, IM1061, IM1071, IM1011, IM3001, IM3011, IM3031, IM2001, IM2011, IM2031, IM3601, IM3611, IM3631, IM2101, IM2111, IM2131, IM1201, IM9101
Датчик скорости Абсолютный/инкрементальный энкодер
Дополнительные элементы Комплектная поставка с редуктором, ATEX комплектация, электромагнитный тормоз, антиконденсатные ТЭНы, датчики температуры в обмотках стотора и подшипниковых щитах, усиленная изоляция обмоток статора, модификация размеров фланца и диаметра выходного вала, усиленные подшипники, улучшенная балансировка, адаптация клеммной коробки, защитyые покрытия корпуса двигателя, и др.
Температуры окружающей среды и высота над уровнем моря от -16°С до +40°С и до 1000 м
Цвет RAL3005(вишневый) RAL3005(вишневый)

Основные технические данные двигателей Dyneo:

Тип Р, кВт Мн, Нм I, А ƞ, % Мп/Мн Масса, кг
5500 об/мин
LSRPM 90SL 6,9 12 12,7 93,5 1,37 14
LSRPM 90L 8,6 14,9 15,2 94 1,37 17
LSRPM 100L 10,4 18 19 94 1,37 19
LSRPM 100L 12,1 21 22 94,5 1,37 24
LSRPM 100L 13,8 24 25 94,5 1,37 26
LSRPM 132M 18,6 32 35 94 1,37 40
LSRPM 132M 23 40 44 94 1,37 44
LSRPM 132M 27 47 52 94,5 1,37 49
LSRPM 160MP 35 62 67 94,5 1,37 60
LSRPM 160MP 44 76 82 95 1,37 69
LSRPM 160LR 52 90 97 95 1,37 79
LSRPM 200L1 70 122 140 95,2 1,37 138
LSRPM 200L1 85 148 180 95,4 1,37 148
LSRPM 200L1 100 174 210 95,8 1,37 153
LSRPM 200L2 140 243 265 96,6 1,37 180
4500 об/мин
LSRPM 90SL 6,8 15 12,6 93,5 1,37 14
LSRPM 90L 8,5 18 15,2 94 1,37 17
LSRPM 100L 10,2 22 18,8 94 1,37 19
LSRPM 100L 12 25 22 94,5 1,37 24
LSRPM 100L 13,7 29 25 94,5 1,37 26
LSRPM 132M 18,6 39 35 94,5 1,37 40
LSRPM 132M 23 49 44 94,5 1,37 44
LSRPM 132M 27 58 51 95 1,37 49
LSRPM 160MP 35 75 67 95 1,37 60
LSRPM 160MP 44 93 81 95,5 1,37 69
LSRPM 160LR 52 110 97 95,5 1,37 79
LSRPM 200L1 65 138 130 95,3 1,37 138
LSRPM 200L1 80 170 160 95,7 1,37 148
LSRPM 200L1 100 212 200 96,2 1,37 168
LSRPM 200L2 120 255 230 96,4 1,37 185
LSRPM 200LU2 135 287 270 96,5 1,37 195
LSRPM 225SR2 150 318 277 96,6 1,37 225
LSRPM 250SE 170 361 310 96,5 1,37 310
3600 об/мин
LSRPM 90SL 6,4 17 11,9 93 1,38 14
LSRPM 90L 8 21 14,8 93,5 1,35 17
LSRPM 100L 9,6 26 17,6 94 1,37 19
LSRPM 100L 11,2 30 21 94 1,37 24
LSRPM 100L 12,8 34 23 94,5 1,37 26
LSRPM 132M 17,6 47 33 94,5 1,37 40
LSRPM 132M 22 58 39 94,5 1,37 44
LSRPM 132M 26 69 48 95 1,37 49
LSRPM 160MP 34 89 63 95 1,37 60
LSRPM 160MP 41 110 77 95,5 1,37 69
LSRPM 160LR 49 130 91 95,5 1,28 79
LSRPM 200L 50 133 110 95,5 1,37 135
LSRPM 200L1 70 186 140 96 1,37 153
LSRPM 200L1 85 225 157 96,4 1,37 178
LSRPM 200LU2 115 305 220 96,8 1,37 195
LSRPM 225SG 132 350 250 96,8 1,37 250
LSRPM 250SE1 165 438 330 96,9 1,37 268
LSRPM 250SE1 190 504 350 97,1 1,37 288
LSRPM 280SD1 240 637 430 97,1 1,37 383
LSRPM 280MK1 270 716 480 97,2 1,37 620
PLSRPM 315LD 325 862 575 97,3 1,37 735
PLSRPM 315LD 350 928 660 97,4 1,37 760
PLSRPM 315LD 390 1035 715 97,5 1,37 800
3000 об/мин
LSRPM 90SL 5,8 19 11 91,5 1,37 14
LSRPM 90L 7,3 23 13,5 93 1,37 17
LSRPM 100L 8,7 28 16,2 93 1,37 19
LSRPM 100L 10,2 32 18,8 93,5 1,37 24
LSRPM 100L 11,6 37 21 93,5 1,37 26
LSRPM 132M 15,8 50 30 93 1,37 40
LSRPM 132M 19,7 63 38 93,5 1,37 44
LSRPM 132M 23 74 44 94 1,37 49
LSRPM 160MP 30 96 57 94,5 1,37 60
LSRPM 160MP 37 118 68 95 1,37 69
LSRPM 160LR 44 140 82 95 1,37 79
LSRPM 200L 50 159 112 95,5 1,37 135
LSRPM 200L1 65 207 126 96 1,37 153
LSRPM 200L1 85 271 164 96,5 1,37 178
LSRPM 225ST2 110 350 215 96,6 1,37 195
LSRPM 250SE 145 462 285 97,1 1,37 265
LSRPM 250ME1 170 541 338 97,2 1,37 288
LSRPM 280SC1 200 637 365 97,3 1,37 333
LSRPM 280SD1 220 700 400 97,4 1,37 383
LSRPM 280MK1 260 828 470 97,4 1,37 620
LSRPM 280MK1 290 923 530 97,4 1,37 620
LSRPM 315SP1 320 1019 590 97,5 1,37 670
PLSRPM315LD 340 1082 630 97,5 1,37 800
2400 об/мин
LSRPM 90SL 4,8 19 9,1 90,5 1,37 14
LSRPM 90L 6 24 10,9 91,5 1,2 17
LSRPM 100L 7,2 29 13,4 92 1,37 19
LSRPM 100L 8,4 33 15,2 92,5 1,37 24
LSRPM 100L 9,5 38 17,7 93 1,37 26
LSRPM 132M 13,1 52 25 92,5 1,37 40
LSRPM 132M 16,3 65 31 93 1,37 44
LSRPM 132M 19,2 76 37 93,5 1,37 49
LSRPM 160MP 25 99 47 94 1,37 60
LSRPM 160MP 31 122 58 94,5 1,37 69
LSRPM 160LR 36 145 69 94,5 1,37 79
LSRPM 200L 37,5 149 81 95 1,37 135
LSRPM 200L 50 199 110 95,4 1,37 150
LSRPM 200L1 65 259 137 95,9 1,37 168
LSRPM 200L1 80 318 160 96,6 1,37 183
LSRPM 225MR1 100 398 200 96,9 1,37 218
LSRPM 250SE 125 497 235 97,2 1,37 285
LSRPM 250ME 150 597 285 97,3 1,37 310
LSRPM 280SD1 190 756 350 97,5 1,37 383
LSRPM 280MK1 230 915 429 97,4 1,37 591
LSRPM 315SP1 285 1134 509 97,6 1,37 675
LSRPM 315SR1 310 1233 565 97,7 1,37 715
LSRPM 315MR1 350 1393 645 97,5 1,21 720
1800 об/мин
LSRPM 90SL 3,6 19 6,9 89 1,37 14
LSRPM 90L 4,5 24 8,5 90,5 1,37 17
LSRPM 100L 5,4 29 10,2 91 1,37 19
LSRPM 100L 6,3 33 11,8 91,5 1,37 24
LSRPM 100L 7,2 38 13,4 92 1,37 26
LSRPM 132M 9,8 52 19 92 1,37 40
LSRPM 132M 12,3 65 24 92,5 1,37 44
LSRPM 132M 14,4 76 28 93 1,37 49
LSRPM 160MP 18,7 99 36 93,5 1,37 60
LSRPM 160MP 23 122 43 94 1,37 69
LSRPM 160LR 27,3 145 52 94 1,37 79
LSRPM 200L 33 175 79 94 1,37 135
LSRPM 200L 40 212 82,5 94,8 1,37 150
LSRPM 200L 55 292 115 95,7 1,37 165
LSRPM 225ST1 70 371 143 96,1 1,37 193
LSRPM 225MR1 85 451 172 96 1,37 223
LSRPM 250ME 100 531 204 96,1 1,37 285
LSRPM 280SC 125 663 248 96,3 1,37 330
LSRPM 280SD 150 796 295 96,4 1,37 380
LSRPM 280MK1 175 928 330 96,5 1,37 568
LSRPM 315SP1 195 1035 370 96,7 1,37 635
LSRPM 315MR1 230 1220 425 96,9 1,37 720
1500 об/мин
LSRPM 90SL 3 19 5,9 87 1,37 14
LSRPM 90L 3,7 24 7,2 89 1,37 17
LSRPM 100L 4,5 29 8,6 90 1,37 19
LSRPM 100L 5,2 33 9,9 91 1,37 24
LSRPM 100L 6 38 10,9 91,5 1,37 26
LSRPM 132M 8,2 52 16 91 1,37 40
LSRPM 132M 10,2 65 19,9 91,5 1,37 44
LSRPM 132M 12 76 23 92 1,37 49
LSRPM 160MP 15,6 99 30 92,5 1,37 60
LSRPM 160MP 19,2 122 37 93 1,37 69
LSRPM 160LR 22,8 145 43 93,5 1,37 79
LSRPM 200L 25 159 56 94 1,37 135
LSRPM 200L 33 210 75 94,6 1,37 150
LSRPM 200L 40 255 83 95,2 1,37 165
LSRPM 200LU 55 350 110 95,5 1,37 190
LSRPM 225MR1 70 446 142 95,7 1,37 223
LSRPM 250ME 85 541 175 95,6 1,37 285
LSRPM 280SC 105 668 215 96,3 1,37 330
LSRPM 280SD 125 796 245 96,4 1,37 380
LSRPM 280MK1 145 923 285 96,3 1,37 568
LSRPM 315SP1 175 1114 350 96,5 1,37 635
LSRPM 315MR1 220 1401 430 96,7 1,37 720
900 об/мин
LSRPM 90SL 1,8 19 3,8 82 1,37 14
LSRPM 90L 2,2 24 4,6 84 1,41 17
LSRPM 100L 2,7 29 5,4 85 1,36 19
LSRPM 100L 3,1 33 6,2 87 1,37 24
LSRPM 100L 3,6 38 6,9 88 1,37 26
LSRPM 132M 4,9 52 9,9 88 1,37 40
LSRPM 132M 6,1 65 12,3 89 1,37 44
LSRPM 132M 7,2 76 14,3 90 1,37 49
LSRPM 160MP 9,4 99 18,4 90,5 1,47 60
LSRPM 160MP 11,5 122 23 91 1,37 69
LSRPM 160LR 13,7 145 27 91 1,37 79
LSRPM 200L 15 159 38 90,6 1,37 135
LSRPM 200L 20 212 43 91,6 1,37 150
LSRPM 200L 25 265 52 92,3 1,37 165
LSRPM 200LU 33 350 70 92,9 1,37 190
LSRPM 250SE 40 424 79 95,5 1,37 250
LSRPM 250ME 50 531 98 95,8 1,37 285
LSRPM 280SD 60 637 120 96,2 1,37 350
LSRPM 280SD 75 796 140 96 1,37 380
LSRPM 280MK1 85 902 170 95,9 1,37 545
LSRPM 315SP1 100 1061 190 96,2 1,37 625
LSRPM 315MR1 130 1379 275 96,6 1,37 715
750 об/мин
LSRPM 90SL 1,4 18 3 80 1,2 14
LSRPM 90L 1,8 23 3,7 83 1,2 17
LSRPM 100L 2,1 27 4,4 84 1,2 19
LSRPM 100L 2,5 32 5 85 1,2 24
LSRPM 100L 2,8 36 5,7 86 1,2 26
LSRPM 132M 4,1 52 8,5 86 1,2 40
LSRPM 132M 5,1 65 10,5 87 1,2 44
LSRPM 132M 6 76 12,2 88 1,2 49
LSRPM 160MP 7,8 99 15,6 89 1,2 60
LSRPM 160MP 9,6 122 19 90 1,2 69
LSRPM 160LR 10,8 138 21 90,5 1,2 79
LSRPM 200L 12,5 159 32 89,5 1,2 135
LSRPM 200L 16 204 35 90,8 1,2 150
LSRPM 200L 21 267 44 91,4 1,2 165
LSRPM 200LU 26 337 57 92,2 1,2 190
LSRPM 250SE 33 420 65 94,8 1,2 250
LSRPM 250SE 40 509 80 95,3 1,2 285
LSRPM 280SD 55 700 107 95,5 1,2 350
LSRPM 280MD 70 891 142 95,6 1,2 380
LSRPM 315SP1 85 1082 171 95,9 1,2 625
LSRPM 315MR1 110 1401 215 96,3 1,2 715
  • Помощь в подборе оборудования и консультация по его применению
  • Широчайший спектр электрооборудования и автоматики
  • Гарантийное и послегарантийное обслуживание
  • Гибкая ценовая политика и выгодные условия оплаты

какие они бывают (electric motor)


В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро?
Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые… Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель "самый лучший".

Двигатель постоянного тока (ДПТ)

С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех. Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи.
Двигатели постоянного тока бывают как очень маленького размера ("вибра" в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810 кВт и напряжением 1500 В. 

Почему ДПТ не делают мощнее? Главная проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд — 12,5 МВт). В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.
Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения. Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря. Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже. Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ.

Универсальный коллекторный двигатель

Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ. При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует "постоянный ток", теоретически можно включать в сеть переменного тока. Давайте разберемся.
Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря. А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится. Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться. Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый "универсальный коллекторный двигатель", который по конструкции является подвидом ДПТ, но… прекрасно работает как от переменного, так и от постоянного тока.
Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с "прямым приводом"), пылесосы и т.п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в "курке" электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.

Асинхронный электродвигатель

Еще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле. Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.
Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока "прямым пуском" – его можно включить коммутатором "на сеть", в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым). ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев.
Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения. Чаще всего это так называемые "конденсаторные" двигатели, или, что тоже самое, "однофазные" асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить "двухфазные", просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле. Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.
Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да. Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение. А лучше и вовсе организовать векторное управление. Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.

Синхронный электродвигатель

Синхронных приводов бывает несколько подвидов – с магнитами (PMSM) и без (с обмоткой возбуждения и контактными кольцами), с синусоидальной ЭДС или с трапецеидальной (бесколлекторные двигатели постоянного тока, BLDC). Сюда же можно отнести некоторые шаговые двигатели. До эры силовой полупроводниковой электроники уделом синхронных машин было применение в качестве генераторов (почти все генераторы всех электростанций – синхронные машины), а также в качестве мощных приводов для какой-либо серьезной нагрузки в промышленности. Все эти машины выполнялись с контактными кольцами, о возбуждении от постоянных магнитов при таких мощностях речи, конечно же, не идет. При этом у синхронного двигателя, в отличие от асинхронного, большие проблемы с пуском. Если включить мощную синхронную машину напрямую на трехфазную сеть, то всё будет плохо. Так как машина синхронная, она должна вращаться строго с частотой сети. Но за время 1/50 секунды ротор, конечно же, разогнаться с нуля до частоты сети не успеет, а поэтому он будет просто дергаться туда-сюда, так как момент получится знакопеременный. Это называется "синхронный двигатель не вошел в синхронизм". Поэтому в реальных синхронных машинах применяют асинхронный пуск – делают внутри синхронной машины небольшую асинхронную пусковую обмотку и закорачивают обмотку возбуждения, имитируя "беличью клетку" асинхронника, чтобы разогнать машину до частоты, примерно равной частоте вращения поля, а уже после этого включается возбуждение постоянным током и машина втягивается в синхронизм. И если у асинхронного двигателя регулировать частоту ротора без изменения частоты поля хоть как-то можно, то у синхронного двигателя нельзя никак. Он или крутится с частой поля, или выпадает из синхронизма и с отвратительными переходными процессами останавливается. Кроме того, у синхронного двигателя без магнитов есть контактные кольца – скользящий контакт, чтобы передавать энергию на обмотку возбуждения в роторе. С точки зрения сложности, это, конечно, не коллектор ДПТ, но всё равно лучше бы было без скользящего контакта. Именно поэтому в промышленности для нерегулируемой нагрузки применяют в основном менее капризные асинхронные привода.
Но все изменилось с появлением силовой полупроводниковой электроники и микроконтроллеров. Они позволили сформировать для синхронной машины любую нужную частоту поля, привязанную через датчик положения к ротору двигателя: организовать вентильный режим работы двигателя (автокоммутацию) или векторное управление. При этом характеристики привода целиком (синхронная машина + инвертор) получились такими, какими они получаются у двигателя постоянного тока: синхронные двигатели заиграли совсем другими красками. Поэтому начиная где-то с 2000 года начался "бум" синхронных двигателей с постоянными магнитами. Сначала они робко вылезали в вентиляторах кулеров как маленькие BLDC двигатели, потом добрались до авиамоделей, потом забрались в стиральные машины как прямой привод, в электротягу (сегвей, Тойота приус и т.п.), всё больше вытесняя классический в таких задачах коллекторный двигатель. Сегодня синхронные двигатели с постоянными магнитами захватывают всё больше применений и идут семимильными шагами. И все это – благодаря электронике. Но чем же лучше синхронный двигатель асинхронного, если сравнивать комплект преобразователь+двигатель? И чем хуже? Этот вопрос будет рассматриваться в конце статьи, а сейчас давайте пройдемся еще по нескольким типам электродвигателей.

Вентильно-индукторный двигатель с самовозбуждением (ВИД СВ, SRM)

У него много названий. Обычно его коротко называют вентильно-индукторный двигатель (ВИД) или вентильно-индукторная машина (ВИМ) или привод (ВИП). В английской терминологии это switched reluctance drive (SRD) или motor (SRM), что переводится как машина с переключаемым магнитным сопротивлением. Но чуть ниже будет рассматриваться другой подвид этого двигателя, отличающийся по принципу действия. Чтобы не путать их друг с другом, "обычный" ВИД, который рассмотрен в этом разделе, мы называем "вентильно-индукторный двигатель с самовозбуждением" или коротко ВИД СВ, что подчеркивает принцип возбуждения и отличает его от машины, рассмотренной далее. Но другие исследователи его также называют ВИД с самоподмагничиванием, иногда реактивный ВИД (что отражает суть образования вращающего момента).Конструктивно это самый простой двигатель и по принципу действия похож на некоторые шаговые двигатели. Ротор – зубчатая железка. Статор – тоже зубчатый, но с другим числом зубцов. Проще всего принцип работы поясняет вот эта анимация:
Подавая постоянный ток в фазы в соответствии с текущим положением ротора можно заставить двигатель вращаться. Фаз может быть разное количество. Форма тока реального привода для трех фаз показа на рисунке (токоограничение 600А):

Однако за простоту двигателя приходится платить. Так как двигатель питается однополярными импульсами тока, напрямую "на сеть" его включать нельзя. Обязательно требуется преобразователь и датчик положения ротора. Причем преобразователь не классический (типа шестиключевой инвертор): для каждой фазы у преобразователя для SRD должны быть полумосты, как на фото в начале этого раздела. Проблема в том, что для удешевления комплектующих и улучшения компоновки преобразователей силовые ключи и диоды часто не изготавливаются отдельно: обычно применяются готовые модули, содержащие одновременно два ключа и два диода – так называемые стойки. И именно их чаще всего и приходится ставить в преобразователь для ВИД СВ, половину силовых ключей просто оставляя незадействованной: получается избыточный преобразователь. Хотя в последние годы некоторые производители IGBT модулей выпустили изделия, предназначенные именно для SRD.
Следующая проблема – это пульсации вращающего момента. В силу зубчатой структуры и импульсного тока момент редко получается стабильным – чаще всего он пульсирует. Это несколько ограничивает применимость двигателей для транспорта – кому хочется иметь пульсирующий момент на колесах? Кроме того, от таких импульсов тянущего усилия не очень хорошо себя чувствуют подшипники двигателя. Проблема несколько решается специальным профилированием формы тока фазы, а также увеличением количества фаз.
Однако даже при этих недостатках двигатели остаются перспективными в качестве регулируемого привода. Благодаря их простоте сам двигатель получается дешевле классического асинхронного двигателя. Кроме того, двигатель легко сделать многофазным и многосекционным, разделив управление одним двигателем на несколько независимых преобразователей, которые работают параллельно. Это позволяет повысить надежность привода – отключение, скажем, одного из четырех преобразователей не приведет к остановке привода в целом – трое соседей будут какое-то время работать с небольшой перегрузкой. Для асинхронного двигателя такой фокус выполнить так просто не получается, так как невозможно сделать несвязанные друг с другом фазы статора, которые бы управлялись отдельным преобразователем полностью независимо от других. Кроме того, ВИД очень хорошо регулируются "вверх" от основной частоты. Железку ротора можно раскручивать без проблем до очень высоких частот.

Вентильно-индукторный двигатель с независимым возбуждением (ВИД НВ)

Это совсем другой тип двигателя, отличающийся по принципу действия от обычного ВИД. Исторически известны и широко используются вентильно-индукторные генераторы такого типа, применяемые на самолетах, кораблях, железнодорожном транспорте, а вот именно двигателями такого типа почему-то занимаются мало.
На рисунке схематично показана геометрия ротора и магнитный поток обмотки возбуждения, а также изображено взаимодействие магнитных потоков статора и ротора, при этом ротор на рисунке установлен в согласованное положение (момент равен нулю).
Ротор собран из двух пакетов (из двух половинок), между которыми установлена обмотка возбуждения (на рисунке показана как четыре витка медного провода). Несмотря на то, что обмотка висит "посередине" между половинками ротора, крепится она к статору и не вращается. Ротор и статор выполнены из шихтованного железа, постоянные магниты отсутствуют. Обмотка статора распределенная трехфазная – как у обычного асинхронного или синхронного двигателя. Хотя существуют варианты такого типа машин с сосредоточенной обмоткой: зубцами на статоре, как у SRD или BLDC двигателя. Витки обмотки статора охватывают сразу оба пакета ротора.
Упрощенно принцип работы можно описать следующим образом: ротор стремится повернуться в такое положение, при котором направления магнитного потока в статоре (от токов статора) и роторе (от тока возбуждения) совпадут. При этом половина электромагнитного момента образуется в одном пакете, а половина – в другом. Со стороны статора машина подразумевает разнополярное синусоидальное питание (ЭДС синусоидальна), электромагнитный момент активный (полярность зависит от знака тока) и образован за счет взаимодействия поля, созданного током обмотки возбуждения с полем, созданного обмотками статора. По принципу работы эта машина отлична от классических шаговых и SRD двигателей, в которых момент реактивный (когда металлическая болванка притягивается к электромагниту и знак усилия не зависит от знака тока электромагнита).
С точки зрения управления ВИД НВ оказывается эквивалентен синхронной машине с контактными кольцами. То есть, если вы не знаете конструкцию этой машины и используете её как "черный ящик", то она ведет себя практически неотличимо от синхронной машины с обмоткой возбуждения. Можно сделать векторное управление или автокоммутацию, можно ослаблять поток возбуждения для повышения частоты вращения, можно усиливать его для создания большего момента – всё так, как будто это классическая синхронная машина с регулируемым возбуждением. Только ВИД НВ не имеет скользящего контакта. И не имеет магнитов. И ротор в виде дешевой железной болванки. И момент не пульсирует, в отличие от SRD. Вот, например, синусоидальные токи ВИД НВ при работе векторного управления:

Кроме того, ВИД НВ можно создавать многофазным и многосекционным, аналогично тому, как это делается в ВИД СВ. При этом фазы оказываются несвязанными друг с другом магнитными потоками и могут работать независимо. Т.е. получается как будто бы несколько трехфазных машин в одной, к каждой из которых присоединяется свой независимый инвертор с векторным управлением, а результирующая мощность просто суммируется. Координации между преобразователями при этом не требуется никакой – только общее задание частоты вращения.
Минусы этого двигателя тоже есть: напрямую от сети он крутиться не может, так как, в отличие от классических синхронных машин, ВИД НВ не имеет асинхронной пусковой обмотки на роторе. Кроме того, он сложнее по конструкции, чем обычный ВИД СВ (SRD).

Заключение: какой же электродвигатель самый лучший?

К сожалению, двумя словами здесь не обойтись. И общими выводами про то, что у каждого двигателя свои достоинства и недостатки – тоже. Потому что не рассмотрены самые главные качества – массогабаритные показатели каждого и типов машин, цена, а также их механические характеристики и перегрузочная способность. Оставим нерегулируемый асинхронный привод крутить свои насосы напрямую от сети, тут ему конкурентов нет. Оставим коллекторные машины крутить дрели и пылесосы, тут с ними в простоте регулирования тоже потягаться сложно.
Давайте рассмотрим регулируемый электропривод, режим работы которого – длительный. Коллекторные машины здесь сразу исключаются из конкуренции по причине ненадежности коллекторного узла. Но остались еще четыре – синхронный, асинхронный, и два типа вентильно-индукторных. Если мы говорим о приводе насоса, вентилятора и чего-то похожего, что используется в промышленности и где масса и габариты особо не важны, то здесь из конкуренции выпадают синхронные машины. Для обмотки возбуждения требуются контактные кольца, что является капризным элементом, а постоянные магниты очень дороги. Конкурирующими вариантами остаются асинхронный привод и вентильно-индукторные двигатели обоих типов.
Как показывает опыт, все три типа машин успешно применяются. Но – асинхронный привод невозможно (или очень сложно) секционировать, т.е. разбить мощную машину на несколько маломощных. Поэтому для обеспечения большой мощности асинхронного преобразователя требуется делать его высоковольтным: ведь мощность – это, если грубо, произведение напряжения на ток. Если для секционируемого привода мы можем взять низковольтный преобразователь и наставить их несколько, каждый на небольшой ток, то для асинхронного привода преобразователь должен быть один. Но не делать же преобразователь на 500В и ток 3 килоампера? Это провода нужны с руку толщиной. Поэтому для увеличения мощности повышают напряжение и снижают ток. А высоковольтный преобразователь – это совсем другой класс задачи. Нельзя просто так взять силовые ключи на 10кВ и сделать из них классический инвертор на 6 ключей, как раньше: и нет таких ключей, а если есть, они очень дороги. Инвертор делают многоуровневым, на низковольтных ключах, соединенных последовательно в сложных комбинациях. Такой инвертор иногда тянет за собой специализированный трансформатор, оптические каналы управления ключами, сложную распределенную систему управления, работающую как одно целое… В общем, сложно всё у мощного асинхронного привода. При этом вентильно-индукторный привод за счет секционирования может "отсрочить" переход на высоковольтный инвертор, позволяя сделать привода до единиц мегаватт от низковольтного питания, выполненные по классической схеме. В этом плане ВИПы становятся интереснее асинхронного привода, да еще и обеспечивают резервирование. С другой стороны, асинхронные привода работают уже сотни лет, двигатели доказали свою надежность. ВИПы же только пробивают себе дорогу. Так что здесь надо взвесить много факторов, чтобы выбрать для конкретной задачи наиболее оптимальный привод.Но всё становится еще интереснее, когда речь заходит о транспорте или о малогабаритных устройствах. Там уже нельзя беспечно относиться к массе и габаритам электропривода. И вот там уже нужно смотреть на синхронные машины с постоянными магнитами. Если посмотреть только на параметр мощности деленной на массу (или размер), то синхронные машины с постоянными магнитами вне конкуренции. Отдельные экземпляры могут быть в разы меньше и легче, чем любой другой "безмагнитный" привод переменного тока. Но здесь есть одно опасное заблуждение, которое я сейчас постараюсь развеять.
Если синхронная машина в три раза меньше и легче – это не значит, что для электротяги она подходит лучше. Всё дело в отсутствии регулировки потока постоянных магнитов. Поток магнитов определяет ЭДС машины. На определенной частоте вращения ЭДС машины достигает напряжения питания инвертора и дальнейшее повышение частоты вращения становится затруднительно. Тоже самое касается и повышения момента. Если нужно реализовать больший момент, в синхронной машине нужно повышать ток статора – момент возрастет пропорционально. Но более эффективно было бы повысить и поток возбуждения – тогда и магнитное насыщение железа было бы более гармоничным, а потери были бы ниже. Но опять же поток магнитов повышать мы не можем. Более того, в некоторых конструкциях синхронных машин и ток статора нельзя повышать сверх определенной величины – магниты могут размагнититься. Что же получается? Синхронная машина хороша, но только лишь в одной единственной точке – в номинальной. С номинальной частотой вращения и номинальным моментом. Выше и ниже – всё плохо. Если это нарисовать, то получится вот такая характеристика частоты от момента (красным):

На рисунке по горизонтальной оси отложен момент двигателя, по вертикальной – частота вращения. Звездочкой отмечена точка номинального режима, например, пусть это будет 60 кВт. Заштрихованный прямоугольник – это диапазон, где возможно регулирование синхронной машины без проблем – т.е. "вниз" по моменту и "вниз" по частоте от номинала. Красной линией отмечено, что можно выжать из синхронной машины сверх номинала – небольшое повышение частоты вращения за счет так называемого ослабления поля (на самом деле это создание лишнего реактивного тока по оси d двигателя в векторном управлении), а также показана некоторая возможная форсировка по моменту, чтобы было безопасно для магнитов. Всё. А теперь давайте поставим эту машину в легковое транспортное средство без коробки передач, где батарея рассчитана на отдачу 60 кВт. Желаемая тяговая характеристика изображена синим. Т.е. начиная с самой низкой скорости, скажем, с 10 км/ч привод должен развивать свои 60 кВт и продолжать их развивать вплоть до максимальной скорости, скажем 150 км/ч. Синхронная машина и близко не лежала: её момента не хватит даже чтобы заехать на бордюр у подъезда (или на поребрик у парадной, для полит. корректности), а разогнаться машина сможет лишь до 50-60 км/ч.
Что же это значит? Синхронная машина не подходит для электротяги без коробки передач? Подходит, конечно же, просто надо по-другому её выбрать. Вот так:
Надо выбрать такую синхронную машину, чтобы требуемый тяговый диапазон регулирования был весь внутри её механической характеристики. Т.е. чтобы машина одновременно могла развить и большой момент, и работать на большой частоте вращения. Как вы видите из рисунка… установленная мощность такой машины будет уже не 60 кВт, а 540 кВт (можно посчитать по делениям). Т.е. в электромобиль с батареей на 60 кВт придется установить синхронную машину и инвертор на 540 кВт, просто чтобы "пройти" по требуемому моменту и частоте вращения.
Конечно же, так как описано, никто не делает. Никто не ставит машину на 540 кВт вместо 60 кВт. Синхронную машину модернизируют, пытаясь "размазать" её механическую характеристику из оптимума в одной точке вверх по скорости и вниз по моменту. Например, прячут магниты в железо ротора (делают инкорпорированными), это позволяет не бояться размагнитить магниты и ослаблять поле смелее, а также перегружать по току побольше. Но от таких модификаций синхронная машина набирает вес, габариты и становится уже не такой легкой и красивой, какой она была раньше. Появляются новые проблемы, такие как "что делать, если в режиме ослабления поля инвертор отключился". ЭДС машины может "накачать" звено постоянного тока инвертора и выжечь всё. Или что делать, если инвертор на ходу пробился — синхронная машина замкнется и может токами короткого замыкания убить и себя, и водителя, и всю оставшуюся живой электронику — нужны схемы защиты и т.п.
Поэтому синхронная машина хороша там, где большого диапазона регулирования не требуется. Например, в сегвее, где скорость с точки зрения безопасности может быть ограничена на 30 км/ч (или сколько там у него?). А еще синхронная машина идеальна для вентиляторов: у вентилятора сравнительно мало изменяется частота вращения, от силы раза в два – больше особо нет смысла, так как воздушный поток ослабевает пропорционально квадрату скорости (примерно). Поэтому для небольших пропеллеров и вентиляторов синхронная машина – это то, что нужно. И как раз она туда, собственно, успешно ставится.
Тяговую кривую, изображенную на рисунке синим цветом, испокон веков реализуют двигатели постоянного тока с регулируемым возбуждением: когда ток обмотки возбуждения изменяют в зависимости от тока статора и частоты вращения. При увеличении частоты вращения уменьшается и ток возбуждения, позволяя машине разгоняться выше и выше. Поэтому ДПТ с независимым (или смешанным) управлением возбуждением классически стоял и до сих пор стоит в большинстве тяговых применений (метро, трамваи и т.п.). Какая же электрическая машина переменного тока может с ним поспорить?
К такой характеристике (постоянства мощности) могут лучше приблизиться двигатели, у которых регулируется возбуждение. Это асинхронный двигатель и оба типа ВИПов. Но у асинхронного двигателя есть две проблемы: во-первых, его естественная механическая характеристика – это не кривая постоянства мощности. Потому что возбуждение асинхронного двигателя осуществляется через статор. А поэтому в зоне ослабления поля при постоянстве напряжения (когда на инверторе оно закончилось) подъем частоты в два раза приводит к падению тока возбуждения в два раза и моментоообразующего тока тоже в два раза. А так как момент на двигателе – это произведение тока на поток, то момент падает в 4 раза, а мощность, соответственно, в два. Вторая проблема – это потери в роторе при перегрузке с большим моментом. В асинхронном двигателе половина потерь выделяется в роторе, половина в статоре. Для уменьшения массогабаритных показателей на транспорте часто применяется жидкостное охлаждение. Но водяная рубашка эффективно охладит лишь статор, за счет явления теплопроводности. От вращающегося ротора тепло отвести значительно сложнее – путь отвода тепла через "теплопроводность" отрезан, ротор не касается статора (подшипники не в счет). Остается воздушное охлаждение путем перемешивая воздуха внутри пространства двигателя или излучение тепла ротором. Поэтому ротор асинхронного двигателя получается своеобразным "термосом" - единожды перегрузив его (сделав динамичный разгон на машине), требуется долгое время ждать остывания ротора. А ведь его температуру еще и не измерить… приходится только предсказывать по модели.
Здесь нужно отметить, как мастерски обе проблемы асинхронного двигателя обошли в Тесла в своей Model S. Проблему с отводом тепла из ротора они решили… заведя во вращающийся ротор жидкость (у них есть соответствующий патент, где вал ротора полый и он омывается внутри жидкостью, но достоверно я не знаю, применяют ли они это). А вторую проблему с резким уменьшением момента при ослаблении поля… они не решали. Они поставили двигатель с тяговой характеристикой, почти как у меня нарисована для "избыточного" синхронного двигателя на рисунке выше, только у них не 540 кВт, а 300 кВт. Зона ослабления поля в Тесле очень маленькая, где-то два крата. Т.е. они поставили "избыточный" для легкового автомобиля двигатель, сделав вместо бюджетного седана по сути спорт-кар с огромной мощностью. Недостаток асинхронного двигателя обратили в достоинство. Но если бы они попытались сделать менее "производительный" седан, мощностью 100 кВт или меньше, то асинхронный двигатель, скорее всего, был бы точно таким же (на 300 кВт), просто его искусственно задушили электроникой бы под возможности батареи.
А теперь ВИПы. Что могут они? Какая тяговая характеристика у них? Про ВИД СВ я точно сказать не могу – это по своему принципу работы нелинейный двигатель, и от проекта к проекту его механическая характеристика может сильно меняться. Но в целом он скорее всего лучше асинхронного двигателя в плане приближения к желаемой тяговой характеристике с постоянством мощности. А вот про ВИД НВ я могу сказать подробнее. Видите вон ту желаемую тяговую характеристику на рисунке выше, которая нарисована синим цветом, к которой мы хотим стремиться? Это на самом деле не просто желаемая характеристика. Это реальная тяговая характеристика, которую по точкам по датчику момента сняли для одного из ВИД НВ. Так как ВИД НВ имеет независимое внешнее возбуждение, то его качества наиболее приближены к ДПТ НВ, который тоже может сформировать такую тяговую характеристику за счет регулирования возбуждения.
Так что же? ВИД НВ – идеальная машина для тяги без единой проблемы? На самом деле нет. Проблем у него тоже куча. Например, его обмотка возбуждения, которая "висит" между пакетами статора. Хоть она и не вращается, от неё тоже сложно отводить тепло – получается ситуация почти как ротором асинхронника, лишь немного получше. Можно, в случае надобности, "кинуть" трубку охлаждения со статора. Вторая проблема – это завышенные массогабаритные показатели. Глядя на рисунок ротора ВИД НВ, можно видеть, что пространство внутри двигателя используется не очень эффективно – "работают" только начало и конец ротора, а середина занята обмоткой возбуждения. В асинхронном двигателе, например, вся длина ротора, всё железо "работает". Сложность сборки – засунуть обмотку возбуждения внутрь пакетов ротора надо еще суметь (ротор делается разборным, соответственно, есть проблемы с балансировкой). Ну и просто массогабаритные характеристики пока получаются не очень-то выдающимися по сравнению с теми же асинхронными двигателями Тесла, если накладывать тяговые характеристики друг на друга.
А также есть еще общая проблема обоих типов ВИД. Их ротор – пароходное колесо. И на высоких частотах вращения (а высокая частота нужна, так высокочастотные машины при той же мощности меньше тихоходных) потери от перемешивания воздуха внутри становятся очень значительными. Если до 5000-7000 об/мин ВИД еще можно сделать, то на 20000 об/мин это получится большой миксер. А вот асинхронный двигатель на такие частоты и гораздо выше сделать вполне можно за счет гладкого статора.
Так что же лучше всего в итоге для электротяги? Какой двигатель самый лучший?
Понятия не имею. Все плохие. Надо изобретать дальше. Но мораль статьи такова – если вы хотите сравнить между собой разные типы регулируемого электропривода, то нужно сравнивать на конкретной задаче с конкретной требуемой механической характеристикой по всем-всем параметрам, а не просто по мощности. Также в этой статье не рассмотрены еще куча нюансов сравнения. Например, такой параметр как длительность работы в каждой из точек механической характеристики. На максимальном моменте обычно ни одна машина не может работать долго – это режим перегрузки, а на максимальной скорости очень плохо себя чувствуют синхронные машины с магнитами – там у них огромные потери в стали. А еще интересный параметр для электротяги – потери при движении выбегом, когда водитель отпустил газ. Если ВИПы и асинхронные двигатели будут крутиться как болванки, то у синхронной машины с постоянными магнитами останутся почти номинальные потери в стали из-за магнитов. И так далее, и так далее…
Поэтому нельзя вот так просто взять и выбрать лучший электропривод.

Двухскоростной синхронноасинхронный двигатель Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

Научный журнал КубГАУ, №99(05), 2014 года

1

УДК 631.313; 621.85

ДВУХСКОРОСТНОЙ СИНХРОННОАСИНХРОННЫЙ ДВИГАТЕЛЬ

Стрижков Игорь Г ригорьевич д.т.н., профессор

Стрижков Сергей Игоревич инженер

Кубанский государственный аграрный университет, Краснодар, Россия

В статье обоснована принципиальная возможность создания двухскоростного синхронно-асинхронного электродвигателя средней мощности и представлены научные основы его проектирования

Ключевые слова: АСИНХРОННЫЙ ДВИГАТЕЛЬ, СИНХРОННЫЙ ДВИГАТЕЛЬ, ДВУХСКОРОСТНОЙ ДВИГАТЕЛЬ, СОВМЕЩЕННЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ, ЭЛЕКТРООБОРУДОВАНИЕ

UDC 631.313; 621.85

2-SPEED SYNCHRONOUS AND ASYNCHRONOUS ELECTRIC MOTOR

Strizhkov Igor Grigorievich Dr.Sci.Tech., professor

Strizhkov Sergey Igorevich engineer

Kuban State Agrarian University, Krasnodar, Russia

In the article we present a possibility of creation of the 2-speed synchronous and asynchronous electric motor and scientific bases for its design

Keywords: ASYNCHRONOUS ELECTRIC MOTOR, SYNCHRONOUS MOTOR, 2-SPEED MOTOR, COMBINED ELECTRIC MACHINES, ELECTRIC EQUIPMENT

В современных сельскохозяйственных машинах все более широкое применение находит регулируемый электропривод переменного тока. Одним из наиболее востребованных является ступенчатое регулирование частоты вращения изменением числа полюсов обмотки электродвигателя. При этом в качестве электромеханического преобразователя используется многоскоростной асинхронный двигатель с короткозамкнутым ротором

[1]. Наиболее часто используются двигатели с двумя ступенями скорости (двухскоростные) с соотношением чисел полюсов 2:1. В отдельных электроустановках применяют асинхронные двигатели с тремя или четырьмя ступенями скорости. Как двух-, так и многоскоростные двигатели используются в станках различного назначения, подъемных и транспортных машинах, в приводе насосов, вентиляторов и др. Полюсопереключаемые двигатели имеют хорошие перспективы применения в приводе электротракторов и других мобильных машин полеводства. Их главными достоинствами являются сохранение номинальной мощности электродвигателя на

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

2

нижних ступенях скорости и относительная простота устройства управления (переключения обмоток).

Серийные двухскоростные двигатели с соотношением полюсов 2:1 изготовляются с одной трехфазной статорной обмоткой, выполненной по схеме Деландера. Для обмоток с другим соотношением числа полюсов используют обмотки, построенные по методу амплитудно-фазовой модуляции [2].

У современных синхронных двигателей полюсопереключаемые обмотки не применяются. Причина в том, что на каждой ступени скорости трехфазная обмотка статора (якоря) и обмотка возбуждения (индуктора) должны иметь одинаковое число полюсов и проблемой является изменение числа полюсов вращающегося индуктора. Такое изменение реализуется сложными устройствами, что делает полюсопереключаемый синхронный двигатель неконкурентоспособным в сравнении с асинхронным короткозамкнутым.

Вместе с тем, известные преимущества синхронных двигателей, такие как более высокие энергетические показатели и высокая устойчивость при снижении напряжения питающей сети, делают актуальным поиск эффективных способов их применения в двухскоростном приводе. Одним из решений является применение полюсопереключаемых двигателей с синхронным режимом работы на одной ступени скорости и асинхронным - на другой. В приводе турбомеханизмов и иных механизмов с вентиляторной механической характеристикой может быть целесообразным синхронный режим двигателя на высшей ступени скорости, когда от него требуются высокие перегрузочная способность и энергетические показатели при высокой загрузке двигателя, и асинхронный - на низшей ступени скорости, поскольку у таких механизмов нагрузка резко снижается с уменьшением частоты вращения и высокие энергетические показатели и устойчивость менее актуальны. Для тягового двигателя электротрактора может быть це-

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

3

лесообразным синхронный режим работы на низшей ступени скорости -для выполнения таких энергоемких "тихоходных" операций, как пахота, фрезерование почвы и т.п. [3], и асинхронный - при выполнении более "скоростных", но менее энергоемких операций - внесение минеральных удобрений, опрыскивание и т.п.

Могут быть целесообразны иные варианты использования полюсопереключаемого двигателя. Например, для регулируемых вентиляторов или насосов, работающих продолжительное время на низшей ступени скорости и, следовательно, со значительной недогрузкой по механической мощности, целесообразно на нижней ступени скорости использовать синхронный режим электродвигателя с сильным перевозбуждением для "генерирования" реактивной мощности. В этом случае электродвигатель по использованию близок к синхронному компенсатору. В непродолжительные периоды работы на высшей ступени скорости целесообразен асинхронный режим работы двигателя, поскольку малое время использования снижает актуальность высоких энергетических показателей.

Известны способы изменения числа полюсов обмотки за счет переключений токоподводящих проводников без использования переключений внутри обмотки [4]. Такое изменение, как правило, сопровождается изменением числа фаз обмотки. Речь идет о принципе электрического совмещения обмоток, который позволяет использовать роторную обмотку как в качестве обмотки возбуждения (аналогичной однофазной) с р = р1 при питании от источника постоянного, выпрямленного или однофазного переменного тока, так и в качестве многофазной обмотки переменного тока с р = р2 при реализации асинхронного режима работы электрической машины. В традиционном понимании совмещенной называют обмотку, выполняющую одновременно две или несколько функций. Однако эта же обмотка может выполнять свои совмещаемые функции разновременно, т.е. в одной ситуации (временном интервале) выполнять одну из своих функций, а в

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

4

другой - другую [5, 6]. В этом случае мы считаем целесообразным сохранить термин "совмещенная" для обозначения особенностей этой обмотки. Поскольку использование совмещенных обмоток в двухскоростном синхронно-асинхронном электродвигателе имеет свои особенности, не нашедшие должного отражения в научной литературе, в работе приводится краткая информация по этим вопросам.

Статор

L

1

J

Ротор

Рисунок 1 - Схема включения обмоток двухскоростного синхронно-асинхронного двигателя

http://ej.Рисунок 2 - Схема совмещенной обмотки ротора с р1 = 2

и р2 = 4

Научный журнал КубГАУ, №99(05), 2014 года

5

Рисунок 3 - Схема соединения обмоток двухскоростного синхронно-асинхронного двигателя с упрощенным возбудителем

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

6

Двухскоростной синхронно-асинхронный двигатель, работающий на одной ступени скорости в синхронном режиме, обеспечивающем высокие энергетические показатели и перегрузочную способность двигателю, а на другой ступени - как асинхронный с закороченной многофазной обмоткой на роторе, имеет конструктивные части и магнитопровод асинхронного двигателя с фазным ротором. Общие принципы построения обмоток двухскоростного синхронно-асинхронного двигателя можно показать на примере двигателя с асинхронным режимом на высшей ступени скорости и синхронным на низшей.

На статоре двигателя располагается полюсопереключаемая обмотка (рис. 1) с традиционной для двухскоростных асинхронных двигателей схемой - обмотки и соотношением пар полюсов р1:р2 = 1:2. Предпочтительнее использовать схему “звезда - двойная звезда”. Примеры схем полюсопереключаемых трехфазных обмоток широко известны [2] и здесь не приводятся.

При подключении трехфазного источника к клеммам ВСІ, ВС2, ВС3 и соединении накоротко клемм НС1, НС2, НС3 в машине образуется вращающееся магнитное поле с р = р2. На роторе размещается обмотка совмещенного типа, объединяющая трехфазную обмотку с р = р1 и обмотку возбуждения (постоянного тока) с р = р2. Эта обмотка выполняется как многофазная с двумя параллельными ветвями и разделенными нейтралями (рис. 2,а), причем нейтрали присоединены к двум контактным кольцам для подключения через щетки к возбудителю (возможен и бесконтактный вариант присоединения к возбудителю). Такая обмотка имеет распределение МДС, представленное на рис. 2,б.

При работе на высшей ступени скорости (р = р1) совмещенная роторная обмотка остается не подключенной к внешним цепям и проявляет себя как трехфазная закороченная; обе нейтрали эквипотенциальны. Двигатель работает как асинхронный короткозамкнутый.

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

7

a)

hi

1 234567 89 10 11 12

-C3-

Ic1

б)

в)

Ic2

Рисунок 4 - Схема совмещенной обмотки ротора (а) и графики н.с. трехфазного с Р = 2 (б,) и постоянного с Р = 1 (в) тока.

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

8

При работе на низшей ступени скорости (р = р2) вращающееся магнитное поле машины не наводит трехфазной ЭДС в роторной обмотке, вследствие равенства нулю коэффициента взаимоиндукции с трехфазной обмоткой статора. Обмотка ротора через контактные кольца присоединяется к возбудителю (источнику постоянного или выпрямленного тока), в результате чего образовавшаяся волна МДС ротора заставляет его вращаться синхронно с магнитным полем, т.е. в синхронном режиме.

Задача построения электродвигателя с синхронным режимом на высшей ступени скорости может быть решена следующим образом. Статорная обмотка электродвигателя выполняется полюсопереключаемой с числом пар полюсов р1:р2, а обмотка ротора - совмещенной, объединяющей обмотку возбуждения с числом пар полюсов р = р1, создающую волну магнитодвижущей силы, неподвижную относительно ротора и многофазную обмотку с р = р2 и вращающейся волной МДС; при этом на входе выпрямителя установлены дополнительные клеммы для подключения источника питания (сети) в режиме с р = р2.

Одно из отличий схемы статорной обмотки от известных схем, применяемых в серийных двухскоростных асинхронных двигателях, заключается в различном числе витков этих параллельных ветвей W1 и W2, что продиктовано необходимостью создания нескомпенсированной ЭДС на входе выпрямителя для создания тока возбуждения в синхронном режиме.

На роторе расположена совмещенная обмотка с двумя параллельными ветвями, соединенная по схеме ’’двойная звезда”. На рис. 2 в качестве частного примера представлена развернутая схема такой обмотки (а), диаграммы намагничивающих сил для трехфазной обмотки с р1 = 2 (б) и возбуждения с р2 = 1 (в), детально обоснованная в [4].

Выпрямитель V1-V6 включается последовательно с проходной статорной обмоткой и совмещенной роторной, обеспечивая питание обмотки ротора в синхронном режиме выпрямленным током, пропорциональным

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

9

току проходной обмотки статора W2 [7, 8]. Электрическая связь вращающейся обмотки ротора с неподвижной обмоткой статора осуществляется через контактные кольца. Резистор R используется как пусковой и выполняет те же функции, что и в традиционном синхронном двигателе. Коммутатор (выключатель) К подключает резистор R на период разбега в асинхронном режиме и выключает его при достижении двигателем подсинхронной скорости, а также служит для присоединения обмотки ротора к обмотке W2 в синхронном режиме и для отсоединения этих обмоток друг от друга в асинхронном. Для присоединения двигателя к источнику питания (сети) в синхронном режиме с р = р1 используются клеммы С, а в асинхронном режиме с р = р2 клеммы А.

В синхронном режиме ключ К находится во включенном положении. Обе статорные обмотки создают единое вращающееся магнитное поле с р = р1, а обмотка ротора создает волну МДС, неподвижную относительно ротора, которая выполняет функцию МДС возбуждения. Эта МДС сцепляется с вращающейся МДС обмотки статора и машина работает как синхронная. Требуемый коэффициент мощности получают соответствующим выбором тока возбуждения, который зависит от параметров указанных обмоток ротора и статора.

В асинхронном режиме ключ К может находиться в любом положении (например, выключен). Питание подается на клеммы А, клеммы С остаются свободными. Вследствие изменения направления тока в статорной обмотке W2 изменяется число пар полюсов обмотки статора. В этом случае поле статора вращается со скоростью, соответствующей числу пар полюсов р2.

Обмотка ротора, не имея гальванической связи со статорной, работает как обмотка асинхронного двигателя, у которого все три фазы закорочены, а узлы разомкнутых "звезд" эквипотенциальны.

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

10

Для запуска двигателя могут использоваться разные схемы пуска: для асинхронного режима он может быть прямым подобно пуску традиционного асинхронного короткозамкнутого двигателя. Для использования синхронного режима пуск может быть проведен в несколько ступеней: сначала прямой асинхронный при р = р2, затем переключением схемы статорной обмотки уменьшается число пар полюсов до р1; ключ К переключается, подключая разрядное сопротивление R и двигатель разгоняется за счет тока обмотки ротора и вихревых токов в магнитопроводе ротора до подсинхронной скорости. Затем ключ К переключается и двигатель втягивается в синхронизм аналогично классическому синхронному двигателю.

Также как и базовый синхронный двигатель с двойной якорной обмоткой (СДДЯ), двухскоростной синхронно-асинхронный двигатель может иметь бесконтактное исполнение. Для этого необходимо использовать те же конструктивные схемы двигателя в синхронном режиме, что и для базовой односкоростной машины [7, 9, 10]. В асинхронном режиме глухоподключенный бесконтактный возбудитель должен быть пассивным, т.е. не имеющим ЭДС в вращающейся роторной обмотке, что достигается отключением от источника питания его неподвижной статорной обмотки.

ЛИТЕРАТУРА

1. Оськин С.В. Автоматизированный электропривод: учебное пособие для студентов вузов / С.В. Оськин - Краснодар: Изд-во ООО «КРОН», 2013.- 489 с.

2. Ванурин В.Н. Электрические машины.-М.: Колос, 1995.-256 с.

3. Технологический комплекс на базе ЭДМФ «Кубань» / И.Г. Стрижков, Е.Н. Чеснюк, А.Н. Трубин, С.И. Стрижков / Ж. Механизация и электрификация с.х., 2005, № 2, с. 4-6.

4. Попов В.И. Электромашинные совмещенные преобразователи частоты.-М.: Энергия, 1980. -176 с.

5. Патент РФ 2141713, МКИ Н 02 К 17/26, 17/14. Синхронно-асинхронный двигатель / Стрижков И.Г. и др. Опубл. 20.11.99 Б.И. № 32.

6. Патент РФ 2141714, МКИ Н 02 К 17/26, 17/14. Двухскоростной синхронноасинхронный двигатель / Стрижков И.Г. и др. Опубл. 20.11.99 Б.И. № 32.

7. Стрижков И.Г. Бесконтактное возбуждение синхронного двигателя с двойной якорной обмоткой// Электрификация с.-х. производства: Сб. науч. тр. КГАУ. Вып. 346(374). - Краснодар, 1995. С. 94-103.

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Научный журнал КубГАУ, №99(05), 2014 года

11

8. Strizhkov I.G. Rectifier modelling in excitation systems of special synchronous motors (англ.) (Моделирование выпрямителей специальных синхронных моторов)/ I.G. Strizhkov, E.N. Chesnyuk, R.R. Beglyarov, S.I. Strizhkov Kybernetik (Кибернетика)@Verlag, Hannover: № 10, 2013. ISSN 2190-4146, 10, 2013. p.35-43.

9. Стрижков И.Г. Основы теории синхронных машин с несколькими обмотками на статоре / И.Г. Стрижков / Науч. журнал КубГАУ, 2012, - № 84(10),. Краснодар: КубГАУ, 2012. Шифр ИНФОРМРЕГИСТРа: 0421100012\0260. - Режим доступа http://ej.kubagro.ru/2012/10/pdf/36.pdf

10. Стрижков И.Г. Электропривод оросительного насоса на базе синхронного двигателя с двойной якорной обмоткой / И.Г. Стрижков, Р.Р. Бегляров / Труды Кубанского гос. агр. ун-та. Научный журнал. Выпуск 1(16), 2009, с. 197-199

References

1. Os'kin S.V. Avtomatizirovannyj jelektroprivod: uchebnoe posobie dlja studentov vuzov / S.V. Os'kin - Krasnodar: Izd-vo OOO «KRON», 2013.- 489 s.

2. Vanurin V.N. Jelektricheskie mashiny.-M.: Kolos, 1995.-256 s.

3. Tehnologicheskij kompleks na baze JeDMF «Kuban'» / I.G. Strizhkov, E.N. Chesnjuk, A.N. Trubin, S.I. Strizhkov / Zh. Mehanizacija i jelektrifikacija s.h., 2005, № 2, s.

4-6.

4. Popov V.I. Jelektromashinnye sovmeshhennye preobrazovateli chasto-ty.-M.: Jenergija, 1980. -176 s.

5. Patent RF 2141713, MKI N 02 K 17/26, 17/14. Sinhronno-asinhronnyj dviga-tel' / Strizhkov I.G. i dr. Opubl. 20.11.99 B.I. № 32.

6. Patent RF 2141714, MKI N 02 K 17/26, 17/14. Dvuhskorostnoj sinhronno-asinhronnyj dvigatel' / Strizhkov I.G. i dr. Opubl. 20.11.99 B.I. № 32.

7. Strizhkov I.G. Beskontaktnoe vozbuzhdenie sinhronnogo dvigatelja s dvojnoj ja-kornoj obmotkoj// Jelektrifikacija s.-h. proizvodstva: Sb. nauch. tr. KGAU. Vyp. 346(374). -Krasnodar, 1995. S. 94-103.

8. Strizhkov I.G. Rectifier modelling in excitation systems of special synchronous motors (angl.) (Modelirovanie vyprjamitelej special'nyh sinhronnyh motorov)/ I.G. Strizhkov,

E.N. Chesnyuk, R.R. Beglyarov, S.I. Strizhkov Kybernetik (Kibernetika)@Verlag, Hannover: № 10, 2013. ISSN 2190-4146, 10, 2013. p.35-43.

9. Strizhkov I.G. Osnovy teorii sinhronnyh mashin s neskol'kimi obmotkami na statore /

I.G. Strizhkov / Nauch. zhurnal KubGAU, 2012, - № 84(10),. Krasnodar: KubGAU, 2012. Shifr INFORMREGISTRa: 0421100012\0260. - Rezhim dostupa

http://ej.kubagro.ru/2012/10/pdf/36.pdf

10. Strizhkov I.G. Jelektroprivod orositel'nogo nasosa na baze sinhronnogo dvigatelja s dvojnoj jakornoj obmotkoj / I.G. Strizhkov, R.R. Begljarov / Trudy Kubanskogo gos. agr. un-ta. Nauchnyj zhurnal. Vypusk 1(16), 2009, s. 197-199

http://ej.kubagro.ru/2014/05/pdf/50.pdf

Что значит асинхронный двигатель - Стройпортал Biokamin-Doma.ru

Чем асинхронные двигатели отличаются от синхронных

В данной статье рассмотрим принципиальные отличия синхронных электродвигателей от асинхронных, чтобы каждый читающий эти строки мог бы эти различия четко понимать.

Асинхронные электродвигатели более широко распространены сегодня, однако в некоторых ситуациях синхронные двигатели оказываются более подходящими, более эффективными для решения конкретных промышленных и производственных задач, об этом будет рассказано далее.

Прежде всего давайте вспомним, что же вообще такое электродвигатель. Электродвигателем называется электрическая машина, предназначенная для преобразования электрической энергии в механическую энергию вращения ротора, и служащая в качестве привода для какого-нибудь механизма, например для приведения в действие подъемного крана или насоса.

Еще в школе всем рассказывали и показывали, как два магнита отталкиваются одноименными полюсами, а разноименными — притягиваются. Это постоянные магниты. Но существуют и переменные магниты. Каждый помнит рисунок с проводящей рамкой, расположенной между полюсами подковообразного постоянного магнита.

Горизонтально расположенная рамка, если по ней пустить постоянный ток, станет поворачиваться в магнитном поле постоянного магнита под действием пары сил (Сила Ампера), пока не будет достигнуто равновесие в вертикальном положении.

Если затем по рамке пустить постоянный ток противоположного направления, то рамка повернется дальше. В результате такого попеременного питания рамки постоянным током то одного, то другого направления, достигается непрерывное вращение рамки. Рамка здесь представляет собой аналог переменного магнита.

Приведенный пример с вращающейся рамкой в простейшей форме демонстрирует принцип работы синхронного электродвигателя. У любого синхронного электродвигателя на роторе есть обмотки возбуждения, на которые подается постоянный ток, формирующий магнитное поле ротора. Статор же синхронного электродвигателя содержит обмотку статора, для формирования магнитного поля статора.

При подаче на обмотку статора переменного тока, ротор придет во вращение с частотой, соответствующей частоте тока в обмотке статора. Частота вращения ротора будет синхронна частоте тока обмотки статора, поэтому такой электродвигатель называется синхронным. Магнитное поле ротора создается током, а не индуцируется полем статора, поэтому синхронный двигатель способен держать синхронные номинальные обороты независимо от мощности нагрузки, разумеется, в разумных пределах.

Асинхронный электродвигатель в свою очередь отличается от синхронного. Если вспомнить рисунок в рамкой, и рамку просто накоротко замкнуть, то при вращении магнита вокруг рамки, индуцируемый в рамке ток создаст магнитное поле рамки, и рамка будет стремиться догнать магнит.

Частота вращения рамки под механической нагрузкой будет всегда меньше частоты вращения магнита, и частота не будет поэтому синхронной. Этот простой пример демонстрирует принцип действия асинхронного электродвигателя.

В асинхронном электродвигателе вращающееся магнитное поле формируется переменным током обмотки статора, расположенной в его пазах. Ротор типичного асинхронного двигателя обмоток как таковых не имеет, вместо этого на нем расположены накоротко соединенные стержни (ротор типа «беличья клетка»), такой ротор называется короткозамкнутым ротором. Бывают еще асинхронные двигатели с фазным ротором, там ротор содержит обмотки, сопротивление и ток в которых можно регулировать реостатом.

Итак, в чем же принципиальное отличие асинхронного электродвигателя от синхронного? С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. Главное же отличие заключается в устройстве роторов. Ротор асинхронного электродвигателя не питается током, а полюса на нем индуцирутся магнитным полем статора.

Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.

Обороты асинхронного двигателя под нагрузкой всегда на величину скольжения отстают от вращения магнитного поля статора, в то время как обороты синхронного двигателя равны по частоте «оборотам» магнитного поля статора, поэтому если обороты должны быть постоянными при различных нагрузках, предпочтительней выбирать синхронный двигатель, например в приводе гильотинных ножниц лучше всего справится со своей задачей мощный синхронный двигатель.

Область применения асинхронных двигателей сегодня очень широка. Это всевозможные станки, транспортеры, вентиляторы, насосы, — все то оборудование, где нагрузка сравнительно стабильна, или снижение оборотов под нагрузкой не критично для рабочего процесса.

Некоторые компрессоры и насосы требуют постоянной частоты вращения при любой нагрузке, на такое оборудование ставят синхронные электродвигатели.

Синхронные двигатели дороже в производстве, чем асинхронные, поэтому если есть возможность выбора и небольшое снижение оборотов под нагрузкой не критично, приобретают асинхронный двигатель.

Синхронные электродвигатели широко применяются в электроприводах, не требующих регулирования частоты вращения. По сравнению с асинхронными двигателями они имеют ряд преимуществ:

более высокий коэффициент полезного действия;

возможность изготовления двигателей с низкой частотой вращения, что позволяет отказаться от промежуточных передач между двигателем и рабочей машиной;

частота вращения двигателя не зависит от нагрузки па его валу;

возможность использования в качестве компенсирующих устройств реактивной мощности.

Синхронные электродвигатели могут являться потребителями и генераторами реактивной мощности. Характер и значение реактивной мощности синхронного двигателя зависят от величины тока в обмотке возбуждения. Зависимость тока в обмотке, выдающей напряжение в электрическую сеть, от тока возбуждения носит название U-образной характеристики синхронного двигателя. При 100%-ной нагрузке на валу двигателя его косинус фи равен 1. При этом электродвигатель не потребляет реактивной мощности из электрической сети. Ток в обмотке статора при этом имеет минимальное значение.

Асинхронный двигатель

Среди устройств, преобразующих электрическую энергию в механическую, несомненным лидером является трехфазный асинхронный двигатель – простой и надежный в эксплуатации агрегат. Благодаря своим качествам, он получил широкое применение в промышленности и других областях, где используются механизмы. Название двигателя связано с основным принципом его работы. У этих устройств магнитное поле статора вращается с частотой, превышающей частоту вращения ротора. Работа агрегата осуществляется от сети переменного тока.

Где применяются

Асинхронные двигатели активно используются во многих отраслях промышленности и сельского хозяйства. Они потребляют примерно 70% всей энергии, предназначенной для преобразования электричества во вращательное или поступательное движение. Асинхронные двигатели зарекомендовали себя наиболее эффективными в качестве электрической тяги, без которой не обходятся многие технологические операции.

Асинхронные двигатели обладают множеством положительных качеств. Простая конструкция позволяет изготавливать наиболее дешевые и надежные устройства. Минимальные расходы по эксплуатации обеспечиваются отсутствием скользящего узла токосъема, что одновременно повышает и надежность агрегата.

Данный тип электродвигателей может быть трехфазным или однофазным, в зависимости от количества питающих фаз. В случае необходимости и при соблюдении определенных условий, трехфазный агрегат может питаться и работать от однофазной сети. Эти устройства применяются не только в промышленности, но и в бытовых условиях, а также на садовых участках или домашних мастерских. Однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента.

Для нормального действия асинхронного агрегата необходимо выбирать наиболее рациональную схему управления. Трехфазный двигатель будет работать в однофазном режиме при условии правильного расчета конденсаторов, выбора типа и сечения проводов, аппаратуры защиты и управления.

Устройство асинхронного двигателя

Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.

Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:

  • S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.

Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:

  • Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
  • Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
  • Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
  • Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
  • Подключение кабелей осуществляется с помощью клеммной коробки.

Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.

Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.

Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки. Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов. Соединение осуществляется по схеме звезды или треугольника.

Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.

Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.

Принцип работы

Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле. Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться. Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.

Сам двигатель работает следующим образом:

  • Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
  • Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
  • Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
  • В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.

Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1. Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе. Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.

Что такое скольжение

Понятие скольжения представляет собой отношение частоты вращения к частоте поля. Данная величина S берется в процентном отношении от частоты вращения магнитного поля. В соответствии с формулой, рассмотренной ранее, частота вращения ротора, определяемая с помощью скольжения составит: n2 = n1 x (1 – S).

Ротор асинхронного двигателя вращается в том же направлении, что и его магнитное поле. В свою очередь, направление вращения поля зависит от последовательности фаз трехфазной сети. Изменить направление вращения ротора возможно за счет изменения направления вращения поля, создаваемого статором. В этом случае изменяется порядок поступления импульсов тока к отдельным обмоткам. В случае необходимости может быть задано вращение по часовой или против часовой стрелки.

Важным моментом считается пуск асинхронного двигателя, при котором происходит пересечение обмотки ротора вращающимся магнитным полем. В результате, индуктируется большая ЭДС, создающая высокий пусковой ток. Подобное состояние компенсируется специальной нагрузкой, снижающей скорость вращения ротора.

Двигатель асинхронный

Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины — наиболее распространённые электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.

Содержание

Конструкция

Как и любая электромеханическая машина, асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод; все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120°. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения (вращения) магнитного потока обмотки возбуждения, поэтому его изготавливают шихтованным (набранным из пластин) из электротехнической стали для обеспечения минимальных магнитных потерь.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным.

Короткозамкнутый ротор

Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. В машинах малой и средней мощности ротор обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие самовентиляцию самого ротора и вентиляцию машины в целом. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца.

Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами.

Асинхронные двигатели с таким ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, малый момент инерции и отсутствие механического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание.

Фазный ротор

Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведённую на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы.

В двигателях с фазным ротором имеется возможность увеличивать пусковой момент до максимального значения(в первый момент времени) с помощью пускового реостата, тем самым уменьшая пусковой ток. Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке.

Скорость вращения поля статора

При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения

[об/мин] которого связана с частотой сети [Гц] соотношением:,

где

— число пар магнитных полюсов обмотки статора.

Двигательный режим

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке ротора начинает течь ток. На проводники с током этой обмотки, расположенные в магнитном поле обмотки возбуждения, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор за магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение, и его установившаяся частота вращения

[об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках и инерцией ротора. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать крутящий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:.

Относительная разность частот вращения магнитного поля и ротора называется скольжением:

.

Очевидно, что при двигательном режиме

.

Генераторный режим

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдет в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозящим. В генераторном режиме работы скольжение

.

При отсутствии первоначального магнитного поля в обмотке статора поток возбуждения создают с помощью постоянных магнитов, либо за счёт остаточной индукции машины и пусковых конденсаторов, параллельно подключенных по схеме «звезда» к фазам обмотки статора .

Асинхронный генератор потребляет намагничивающий ток значительной силы и требует наличия в сети генераторов реактивной мощности в виде синхронных машин,синхронных компенсаторов,батарей статических конденсаторов(БСК). Несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном как вспомогательные источники небольшой мощности и как тормозные устройства.

Режим электромагнитного тормоза

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Такой режим работы асинхронной машины называется режимом электромагнитного тормоза, и для него справедливы неравенства

.

Способы управления асинхронным двигателем

Под управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора. Существуют следующие способы управления асинхронным двигателем:

  • реостатный — изменение частоты вращения АД с фазным ротором путём изменения сопротивления реостата в цепи ротора,
  • частотный — изменение частоты вращения АД путём изменения частоты тока в питающей сети, что влечёт за собой изменение частоты вращения поля статора. Применяется включение двигателя через частотный преобразователь,
  • переключением обмоток со схемы «звезда» на схему «треугольник» в процессе пуска двигателя, что даёт снижение пусковых токов в обмотках примерно в три раза;
  • импульсный — подачей напряжения питания специального вида (например, пилообразного),
  • изменением числа пар полюсов, если такое переключение предусмотрено конструктивно,
  • изменением амплитуды питающего напряжения, когда изменяется только амплитуда (или действующее значение) управляющего напряжения. Тогда векторы напряжений управления и возбуждения остаются перпендикулярны,
  • Фазовое управление характерно тем, что изменение частоты вращения ротора достигается путём изменения сдвига фаз между векторами напряжений возбуждения и управления,
  • Амплитудно-фазовый способ включает в себя оба предыдущих способа.

Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигательэто асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Синхронный и асинхронный двигатель: отличия, принцип работы, применение

Классификация двигателей основывается на разных параметрах. По одному из них, различают синхронный и асинхронный двигатель. Отличия приборов, общая характеристика и принцип работы описаны в статье.

Синхронный двигатель

Этот тип двигателя способен работать одновременно и в качестве генератора, и как, собственно, двигатель. Его устройство сродни синхронному генератору. Характерной особенностью двигателя является неизменяемая частота роторного вращения от нагрузки.

Эти виды двигателей широко применяются во многих сферах, например, для электрических проводов, которым необходима постоянная скорость.

Принцип работы синхронного двигателя

В основу его функционирования положено взаимодействие вращающегося магнитного поля якоря и магнитных полей индукторных полюсов. Обычно якорь находится в статоре, а индуктор распологается в роторе. Для мощных моторов используются электрические магниты для полюсов, а для слабых — постоянные.

Принцип работы синхронного двигателя включает в себя (кратковременно) и асинхронный режим, который обычно применяют для разгона до необходимой (то есть номинальной) скорости вращения. В это время индукторные обмотки замыкаются накоротко или посредством реостата. После достижения необходимой скорости индуктор начинают питать постоянным током.

Преимущества и недостатки

Основными минусами этого вида двигателя являются:

  • необходимость питания обмотки постоянным током;
  • сложность запуска;
  • скользящий контакт.

Большинство генераторов, где бы они ни использовались, являются синхронными. Преимуществами таких двигателей в целом являются:

Асинхронный двигатель

Данный вид устройста представляет механизм, направленный на трансформацию электрической энергии переменного тока в механическую. Из самого названия «асинхронный» можно сделать вывод, что речь идет о неодновременном процессе. И действительно, частота вращения магнитного поля статора здесь выше роторной всегда.
Такое устройство состоит из статора цилиндрической формы и ротора, в зависимости от вида которого асинхронные двигатели короткозамкнутые могут быть и с фазным ротором.

Принцип действия

Работа двигателя осуществляется на основе взаимодействия магнитного статорного поля и наводящихся этим же полем токов в роторе. Вращающий момент появляется тогда, когда имеется разность частоты вращения полей.

Резюмируем теперь, чем отличается синхронный двигатель от асинхронного. Чем объясняется широкое применение одного типа и ограниченное — другого?

Синхронный и асинхронный двигатель: отличия

Отличие работы двигателей — в роторе. У синхронного типа он заключается в постоянном или электрическом магните. Благодаря притягиванию разноименных полюсов вращающееся поле статора влечет и магнитный ротор. Их скорость получается одинаковой. Отсюда и название — синхронный.

Асинхронные двигатели, в свою очередь, просты и надежны, но их недостатком является трудность регулировки частоты вращения. Для реверсирования трехфазного асинхронного двигателя (то есть изменения направления его вращения в противоположную сторону) меняют расположение двух фаз или двух линейных проводов, приближающихся к обмотке статора.

Если рассматривать частоту вращения, то имеют и здесь синхронный и асинхронный двигатель отличия. В синхронном типе этот показатель является постоянным, в отличие от асинхронного. Поэтому первый используют там, где необходима постоянная скорость и полная управляемость, например, в насосах, вентиляторах и компрессорах.

Выявить на том или ином устройстве наличие рассматриваемых типов приборов очень просто. На асинхронном двигателе будет не круглое число оборотов (например, девятьсот тридцать в минуту), в то время как на синхронном — круглое (например, тысяча оборотов в минуту).

И те, и другие моторы управляются достаточно сложно. Синхронный тип имеет жесткую характеристику механики: при любой меняющейся нагрузке на вал мотора частота вращения будет одной и той же. При этом нагрузка, конечно, должна меняться с учетом того, чтобы двигатель способен ее выдержать, иначе это приведет к поломке механизма.

Так устроен синхронный и асинхронный двигатель. Отличия обоих видов обуславливают сферу их использования, когда один вид справляется с задачей оптимальным образом, для другого это будет проблематичным. В то же время можно встретить и комбинированные механизмы.

Что такое асинхронный двигатель и принцип его действия

Данный двигатель зачастую используется в промышленности. Он простой в использовании, долговечный, недорогой.

Асинхронный двигатель превращает электрическую энергию в механическую. Его работа основана на принципе вращающегося магнитного поля. Сам принцип действия аппарата можно описать несколькими пунктами поэтапно:

  1. Во время запуска самого двигателя происходит пересечение магнитного поля с контуром ротора, после чего происходит индицирование электродвижущей силы.
  2. В замкнутом роторе происходит возникновение переменного тока.
  3. Магнитные поля: статора и ротора также воссоздают непосредственно так называемый крутящий момент.
  4. Ротор «догоняет» поле самого статора.
  5. Когда частоты вращения самого магнитного поля статора/ротора имеют совпадения, электромагнитные процессы, образованные в месте ротора затухают. После чего крутящий момент приравнивается к «0».
  6. Статор, а вернее его образованное магнитное поле возбуждает контур ротора, который в этот момент вновь позади.

Где применяются?

Как уже уточнялось выше в статье, применяется данный двигатель промышленности (лебедки общепромышленного назначения, краны) и бытовой технике (асинхронные двигатели с небольшой мощностью).

Теперь остановим ваше внимание на электродвигателе непосредственно с короткозамкнутым ротором. Они применяются в самих электроприводах различных типов станков, а если говорить точнее: металлообрабатывающих, а также часто встречающихся на сегодня грузоподъемных и ткацких, в том числе деревообрабатывающих), а также в вентиляторах, лифтах, различных насосах, бытовых приборах.

Если говорить об асинхронном электродвигателе с короткозамкнутым ротором, то благодаря его применению можно добиться существенного снижения энергопотребления оборудования, которое в свою очередь, обеспечивает высокий уровень надежности аппарата. Данные характеристики оказывают положительный эффект на модернизацию производства в целом.

Что такое «скольжение»?

Пришло время поговорить о таком понятии как «скольжение» асинхронного двигателя.
Это, по сути, относительная разность скоростей самого вращения «ротора», это ни что иное, как изменение, так называемого переменного магнитного тока. «Скольжение» измеряется в относительных единицах, а также можно измерять в процентном соотношении.

Устройство асинхронного двигателя

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов.
Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Двигатели статора имеют фазные и короткозамкнутые роторы.

Устройство статора
  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров. Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.
  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.
Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки.
В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).
Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Что лучше короткозамкнутый или фазный: совместная работа ротора и статора

Здесь стоит отметить, что особенных преимуществ нет ни у одного ротора, каждый хорош по-своему. Более подробно на них останавливаться не будем, так как вся необходимая информация по этим двум разновидностям ротора уже была дана выше в статье. остановим внимание на том, как регулируется частота вращения ротора. Это можно сделать при помощи изменения так называемого дополнительного сопротивления самой цепи ротора.

Также можно регулировать частоту вращения ротора, изменив напряжение статора, который подведен к обмотке.

Можно также изменить частоту питающего напряжения или же переключить число пар полюсов, ввести резисторы в цепь ротора.

Классификация по типу ротора

Классификация по типу ротора следующая: однофазный асинхронный двигатель с короткозамкнутым ротором, а также есть такая разновидность ротора, как двухфазный асинхронный двигатель короткозамкнутый.

Плюс ко всему сегодня часто пользуется спросом и асинхронный двигатель с короткозамкнутым ротором с тремя фазами, а также асинхронный двигатель с фазным ротором, также с тремя фазами. Именно так и делится классификация ротора по числу фаз.

Линейные моторы

В линейных двигателях перемещение рабочего органа РО (коротких подач) происходит от самого двигателя через ременную передачу строго на винт (ходовой).

Шариковая гайка скреплена с короткой передачей пружинных механизмов защиты от соударений, именно через нее происходит вращение винта и происходит трансформация в продольное перемещение РО.

Подключение двигателя к питанию

Кнопки “Стоп” должны быть подключены в последовательности друг с другом, а в свою очередь кнопки “Пуск” должны строго настрого быть подключены в параллели между собой в цепи управления.

Во время нажатия на “Пуск” цепь катушки будет замкнута, а сама катушка начинает втягиваться, а во время размыкания кнопки, напряжение питающее катушку, пойдет через блок-контакт КМ. Прервать цепь управления можно при помощи нажатия на одну из кнопок “Стоп”.

Достоинства и недостатки асинхронных двигателей

Достоинства:

  • прежде всего, их легко использовать и никаких сложностей при эксплуатации не возникает
  • конструкция двигателей очень простая и это еще одно их преимущество, а также нельзя не отметить их низкую себестоимость (порой это имеет большое значение для покупателей, так что это еще один плюс таких двигателей)
  • надежность

Недостатки:

  • модели оснащены маленьким пусковым механизмом
  • выдают высокой спусковой ток
  • очень сильно чувствительны к возможной смене параметров в сети
  • для плавного регулирования скорости нужен преобразователь вероятных частот

Несмотря на то, что есть свои недостатки эти асинхронные двигатели, пользуются огромной популярностью. Так что все-таки они заслуживают должного уважения и не зря их часто используют в промышленности.

Принцип действия и достоинства синхронных электродвигателей | RuAut

Синхронные двигатели широко используются в промышленных условиях в качестве электроприводов, которые работают с постоянной скоростью.

Примером распространения синхронных двигателей является широко применяемый на предприятиях высоковольтный компрессор (6 – 10 кВ) с двигателем большой мощности.

В качестве ещё одного примера широкого распространения синхронных двигателей можно упомянуть приводы насосов большой мощности, предназначенные для продолжительного режима работы. Кроме двигателей большой мощности, массовое распространение заслужили так же и синхронные двигатели малых мощностей, используемые в часах, бытовой технике и прочих приборах.

Синхронный двигатель работает по принципу взаимодействия полюсов индуктора (постоянные магнитные поля) и вращающегося якоря (переменное магнитное поле). Как правило, индуктор располагается на роторе, а якорь на статоре. Роль полюсов в мощных двигателях досталась электромагнитам (ток на ротор поступает через скользящий контакт), а в двигателях малой мощности – постоянным магнитам. Исключительно благодаря конструкции ротора синхронные электродвигатели существенно отличаются от асинхронных.

Двигателю необходимо разогнаться до номинального значения скорости, чтобы он смог продолжить работу самостоятельно. При таких значениях скорости магнитные поля полюсов индуктора сцепляются с вращающимся магнитным полем якоря – происходит «вхождение в синхронизм».

Чтобы разогнать синхронный двигатель применяется асинхронный режим, где обмотки индуктора замыкаются с помощью реостата или накоротко. При наборе номинальной скорости индуктор дальше запитывается постоянным током при помощи выпрямителя.

Двигатели, оборудованные постоянными магнитами, разгоняются при помощи внешнего разгонного двигателя (как правило, асинхронного). В таком случае в составе асинхронного двигателя должно использоваться устройство плавного пуска.

Созданы также и комбинированные варианты. В них на ротор, совместно с постоянными и электрическими магнитами, устанавливаются короткозамкнутые обмотки. Порой на вал устанавливаются небольшие генераторы постоянного тока, которые питают электромагниты.

Помимо всего прочего используется и частотный пуск – частота якоря постепенно увеличивается от минимальных до номинальных значений. Возможно использование и противоположного варианта – частота индуктора понижается от номинального значения до нулевого, т.е. до постоянного тока.

Достоинства, которыми обладают синхронные двигатели:
Синхронный двигатель обладает более сложной структурой, нежели асинхронный, благодаря чему у него есть ряд преимуществ, которые позволяют использовать его вместо асинхронного. Основное достоинство синхронного двигателя – возможность достижения оптимального режима при наличии реактивной энергии. Процесс оптимизации режима осуществляется за счет автоматической регулировки тока возбуждающего двигатель. Синхронный двигатель может обходиться без потребления реактивной энергии, при этом, не отдавая её в сеть, при условии, что коэффициент мощности равняется единице. В подобных условиях синхронный двигатель во время работы нагружает сеть исключительно активным током. Именно поэтому обмотка статора у синхронного двигателя рассчитана исключительно на активный ток (обмотка асинхронного двигателя рассчитана как на активный, так и на реактивный токи). Благодаря этому при одинаковых значениях номинальной мощности размеры синхронного двигателя уступают габаритам асинхронного, а вот К.П.Д. синхронного двигателя оказывается большим, в сравнении с асинхроным.

Синхронные двигатели обладают меньшей чувствительностью к возможным колебаниям напряжения сети, нежели асинхронные. Максимальный момент синхронного двигателя является пропорциональным имеющемуся напряжению сети, а критический момент асинхронного двигателя тем самым пропорционален напряжению в квадрате.

Синхронные двигатели обладают высокой перегрузочной способностью. Так же, перегрузочную способность синхронного двигателя можно увеличить, если повысить ток возбуждения – к примеру, если резко кратковременно повысить нагрузку на валу двигателя. Скорость, с которой вращается синхронный двигатель, не изменяется, если нагрузка на валу не превышает перегрузочной способности.

Электромеханика: Электродвигатели Parker Hannifin | VSP-Co.org

Электродвигатели Parker Hannifin

Электродвигатели Parker Hannifin представлены двигателями постоянного тока, коллекторныыми двигателями с постоянными магнитами, и двигателями переменного тока, синхронными и асинхронными с короткозамкнутым ротором.

Синхронные двигатели

Серия GVM

Двигатели GVM являются синхронными серводвигателями переменного тока на постоянных магнитах. Достаточно большая величина крутящего момента, быстродействие и эффективность двигателей Parker Hannifin серии GVM обеспечивают требуемые условия для достижения впечатляющих рабочих характеристик во множестве платформ транспортных средств. Данные двигатели достаточно широко применяются в мотоциклах, скутерах, малотоннажных грузовиках, а также в электрогидравлических насосах.

Одним из знаковых применений двигателей серии GVM является использование в мотоциклах-прототипах фирмы Victory в гонке 2015 года на острове Мэн. Гонка на острове Мэн - самая длинная гонка для электромотоциклов в мире.

Двигатель Parker Hannifin серии GVM выдерживает очень высокие средние скорости порядка 200 км/ч
и обеспечивает длительную беспрерывную работу
в экстремальных температурных условиях.

Питание: 24 - 800 В DC.

Тип: синхронный, с редкоземельными магнитами.

Количество полюсов: 12.

Крутящий момент: до 376 Н·м.

Номинальная мощность: до 170 кВт.

Частота вращения: до 9800 Об/мин.

Обратная связь: резольвер, SinCos энкодер, бессенсорный.

Типоразмер: 142, 210.

Исполнение: IP67, IP6K9K (опц.).

Особенности: Отличное решения для мобильных приложений (электрокары, электромотоциклы и т.д.).

Серия NV

Серия NV - синхронные двигатели с постоянными магнитами разработанные для высокоскоростных приложений. Высокая точность, низкий уровень вибрации и долгий срок службы обеспечивают работу при максимальной скорости вращения до 17000 об/мин. Уровень защиты корпуса: IP64, IP65, IP67 (по запросу).

 

Питание: 230, 400-480 В AC.

Тип: синхронный, с постоянными магнитами.

Количество полюсов: 10.

Крутящий момент: 0,4 - 11,5 Нм.

Номинальная мощность: 0,7 - 11 кВт.

Частота вращения: 7000 - 17000 Об/мин.

Обратная связь: резольвер, абс. энкодер (EnDat, Hiperface), бессенсорный.

Типоразмер: 60, 80, 110, 130.

Исполнение: IP64, IP65 (опц.).

Особенности: Подходят для высокоскоростных приложений.

Серия SMB/H/E, MB/H/E, NX

Серии двигателей SMB/H/E, MB/H/E, NX представляют линейку синхронных двигателей с постоянными или редкоземельными магнитами.

 

Благодаря инновационной технологии «Salient Pole» (использование неодимового магнита - мощного постоянного магнита, состоящего из сплава редкоземельного элемента неодима, бора и железа) двигатели серии SMB/H/E, MB/H/E достигают высоких ускорений и выдерживают большие перегрузки без риска размагничивания или отрыва магнита. Совместимы со следующими сериями приводов: SLVD-N, TPD-M, HiDrive, ViX, TWIN-N/SPD-N.

 

Двигатели серии NX - компактные, с низкой пульсацией момента и плавным ходом, являются эффективной альтернативой традиционным индукционным двигателям. Бессенсорная версия двигателя была разработана в качестве альтернативного решения для минимизации затрат в сочетании с приводом Parker Hannifin AC650S.

 

Питание: 230, 400 - 480 В AC.

Тип: синхронный, с постоянными / редкоземельными магнитами.

Количество полюсов: 4 - 10.

Крутящий момент: 0,35 - 269 Нм.

Номинальная мощность: 0,2 - 67 кВт.

Частота вращения: 0 - 10000 Об/мин.

Обратная связь: резольвер, абс. энкодер (EnDat, Hiperface), инк. энкодер.

Типоразмер: 40, 42, 56, 60, 70, 82, 92, 100, 105, 115, 120, 142, 145, 155,170, 205, 265.

Исполнение: IP44, IP64, IP65, IP67.

Особенности: Компактные с низкой пульсацией момента и плавным ходом.

Серия AC M2n

Серия AC M2n - компактные синхронные электродвигатели для приложений, требующих быстрого ускорения. Благодаря использованию высокоэффективных магнитных материалов и тщательно оптимизированной конструкции ротора, двигатели обладают низким моментом инерции, а стабильность магнитов позволяет использовать максимальные токи четырехкратно превышающие номинальные. В качестве датчика обратной связи двигатели используют встроенный в конструкцию револьвер.

 

Питание: 230, 400 - 480 В AC.

Тип: синхронный, с постоянными магнитами.

Количество полюсов: 6.

Крутящий момент: 0,13 - 34 Нм.

Номинальная мощность: 0,04 - 8,37 кВт.

Частота вращения: 4000 - 6000 Об/мин.

Обратная связь: резольвер.

Типоразмер: 40, 55, 88, 105, 145.

Исполнение: IP45, IP65.

Особенности: Компактные с низкой инерцией.

Серия NK

Серия NK - встраиваемые компактные бескорпусные синхронные электродвигатели с постоянными магнитами для высокоскоростных приложений, обеспечивают работу при максимальной скорости вращения до 15000 об/мин.

 

Питание: 230, 400 - 480 В AC.

Тип: бескорпусной синхронный, с постоянными магнитами.

Количество полюсов: 10.

Крутящий момент: 0,4 - 90 Нм.

Номинальная мощность: 0,2 - 34 кВт.

Частота вращения: 1000 - 15000 Об/мин.

Обратная связь: резольвер, абс. энкодер (EnDat, Hiperface), бессенсорный.

Типоразмер: 42, 56, 62, 80, 110, 143.

Исполнение: IP00.

Особенности: Встраиваемые, компактные, для высокоскоростных приложений.

Серия TM/TK

Серии синхронных двигателей с постоянными магнитами TM/TK обладают высокой прочностью и обеспечивают работу в жестких условиях. Высокий крутящий момент на малых оборотах предоставляет пользователю решение для следующих приложений: прессы, миксеры, намоточные машины, экструдеры. Серия TM имеет бескорпусное исполнение.

 

Питание: 400 - 480 В AC.

Тип: синхронный, с постоянными магнитами / +бескорпусной.

Количество полюсов: 24 - 120.

Крутящий момент: 90 - 22100 Нм.

Номинальная мощность: 6,9 - 394 кВт.

Частота вращения: 29 - 2500 Об/мин.

Обратная связь: Endat энкодер, бессенсорный, резольвер (опц.).

Типоразмер, мм: 398, 600, 830 / 230, 385, 565, 795.

Исполнение: IP54 / IP00.

Особенности: Высокий крутящий момент на малых оборотах, для прессов, миксеров, намоточных машин, экструдеров.

Серия HKW/SKW

Серия HKW/SKW - бескорпусные синхронные электродвигатели с постоянными магнитами для высокоскоростных приложений мощностью до 230 кВт. Электродвигатели используются в приложениях, где высокий крутящий момент на низкой скорости и высокая скорость при постоянной мощности являются критичными характеристиками.

 

Питание: 400 - 480 В AC.

Тип: бескорпусной синхронный, с постоянными магнитами.

Количество полюсов: 4 - 16.

Крутящий момент: 3,5 - 1250 Нм.

Номинальная мощность: 2,0 - 230 кВт.

Частота вращения: 260 - 23200 Об/мин.

Обратная связь: бессенсорный, резольвер (опц.).

Типоразмер: 73, 82, 85, 91, 96, 108, 155.5, 195, 242, 310.

Исполнение: IP00.

Особенности: Встраиваемые, решения для высокоскоростных приложений.

Серия MGV

Синхронный двигатель MGV на постоянных магнитах обеспечивает работу при максимальной скорости вращения до 45000 об/мин, используется во многих компонентах автомобильных или авиационных испытательных установок.

 

Питание: 400 - 480 В AC.

Тип: синхронный, на постоянных магнитах.

Количество полюсов: 4 - 16.

Крутящий момент: 6,8 - 1500 Нм.

Номинальная мощность: 15 - 500 кВт.

Частота вращения: 5000 - 45000 Об/мин.

Обратная связь: резольвер.

Типоразмер: 430, 635, 840, 860, 950, 966, A50, B40, B50.

Исполнение: IP40.

Особенности: Для высокоскоростных приложений тестовых стендов.

Серия EX/EY

Синхронные электродвигатели EX/EY с постоянными магнитами обеспечивают работу в Зоне 2 при окружающей температуре от 40 ºC до 60 º. Оборудование соответствует стандартам ATEX, IECEx (Зона 1, 2).

 

Питание: 230, 400-480 В AC.

Тип: синхронный, с постоянными магнитами.

Количество полюсов: 10.

Крутящий момент: 1,75 - 41 Нм.

Номинальная мощность: до 6,3 кВт.

Частота вращения: 0 - 7600 Об/мин.

Обратная связь: резольвер, энкодер (опц.) (EnDat, Hiperface), бессенсорный.

Типоразмер:, 70, 92, 120, 121, 155.

Исполнение: IP64, IP65.

Особенности: ATEX, IECEx (зона 1, 2).

Асинхронные двигатели. Серия MS/MR

Асинхронные двигатели серии MR подходят для использования со всеми сериями приводов Parker Hannifin переменного тока. Благодаря прочной жесткой конструкции и своим рабочим характеристикам, двигатели серии MR используются в жестких условиях.

 

Серия MS асинхронных двигателей Parker Hannifin была специально разработана для высокодинамичных приложений и использования с приводами переменного тока Parker Hannifin, имеющими векторное управление по замкнутому контуру, а именно: AC890, AC690+. Двигатели позволяют выполнять операции на постоянной мощности при максимальной скорости вращения до 8000 об/мин. Размеры корпуса идентичны корпусу двигателя постоянного тока с аналогичной мощностью. Уровень защиты корпуса: IP23, IP54, IP55 (опционально).

Питание: 400-460 В AC.

Тип: асинхронный.

Количество полюсов: 2 - 6.

Крутящий момент: 0,05 - 19,2 Нм.

Номинальная мощность: 0,09 - 524 кВт.

Частота вращения: 0 - 8000 Об/мин.

Обратная связь: энкодер, резольвер (опц.).

Типоразмер: MS100, MS133, MS166, MS180, MS225, MS280; 56 - 200, 180 - 355.

Исполнение: IP23, IP54, IP55.

Особенности: Решение для широкого ряда приложений.

Коллекторные двигатели. Серия RS, RX / AXEM

Сервомоторы серии RS - малоинерционные двигатели с магнитом из редкоземельных металлов.

Серия RX представляет собой высокоинерционные двигатели с ферритовым магнитом, которые демонстрируют высокие характеристики при работе на холостом ходу. Двигатель RX является экономически эффективным решением для различных серво-приложений. Серия RX также обеспечивает работу маломощных систем в Чистых помещениях.

 

Сервомоторы RS/RX постоянного тока в сочетании с приводами серии RTS полностью подходят для применений, где требуется компактное решение или высокий динамический уровень.

 

Двигатели серии AXEM являются одними из самых распространенных серводвигателей во всем мире - парк установленного оборудования насчитывает более 2 000 000 единиц. Сервомотор обеспечивает высокую динамику и управление на низкой скорости, а также работу без шума и вибраций. Надежное и эффективное решение с низкими эксплуатационными расходами.

 

Питание: 14 - 178 В DC.

Тип: коллекторный с редкоземельными магнитами / с плоским ротором.

Количество полюсов: 4 / нет.

Крутящий момент: 0,05 - 19,2 Нм.

Номинальный ток: 1,5 - 28 А.

Частота вращения: 2000 - 4800 Об/мин.

Обратная связь: тахогенератор, энкодер, резольвер.

Типоразмер: 39, 52, 58, 68, 83, 84, 97, 100, 110, 120, 140, 160, 211, 278.

Исполнение: IP20, IP40, IP54.

Особенности: Отличное управление на низкой скорости вращения, компактность, для медицинских приложений.

Асинхронный электродвигатель

| Empire City Auto Parts

Асинхронный двигатель Электродвигатель представляет собой двигатель переменного тока, в котором в установившемся режиме вращение вала синхронизируется с частотой питающего тока; период вращения в точности равен целому числу циклов переменного тока. Синхронные двигатели содержат многофазные электромагниты переменного тока на статоре двигателя, которые создают магнитное поле, которое вращается во времени с колебаниями сетевого тока.Ротор с постоянными магнитами или электромагнитами вращается синхронно с полем статора с той же скоростью и, как результат, обеспечивает второе синхронизированное вращающееся магнитное поле любого двигателя переменного тока. Асинхронный двигатель называется с двойным питанием, если он снабжен многофазными электромагнитами переменного тока с независимым возбуждением как на роторе, так и на статоре.

Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока. Разница между этими двумя типами заключается в том, что синхронный двигатель вращается со скоростью, привязанной к частоте сети, поскольку он не полагается на индукцию тока для создания магнитного поля ротора.Напротив, асинхронный двигатель требует скольжения: ротор должен вращаться немного медленнее, чем переменный ток, чтобы вызвать ток в обмотке ротора. Небольшие синхронные двигатели используются в устройствах синхронизации, таких как синхронные часы, таймеры в приборах, магнитофонах и прецизионных сервомеханизмах, в которых двигатель должен работать с точной скоростью; Точность скорости - это точность частоты линии электропередачи, которая тщательно контролируется в крупных взаимосвязанных сетевых системах.

Синхронные двигатели доступны в самовозбуждающихся дробных лошадиных силах, типоразмерах от до мощных промышленных размеров. В диапазоне дробных лошадиных сил большинство синхронных двигателей используются там, где требуется точная постоянная скорость. Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время. В промышленных масштабах большой мощности синхронный двигатель выполняет две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в работу. Во-вторых, он может работать с опережающим или единичным коэффициентом мощности и тем самым обеспечивать коррекцию коэффициента мощности.

Тип

Синхронные двигатели подпадают под более общую категорию синхронных машин , которая также включает синхронный генератор. Действие генератора будет наблюдаться, если полюса поля «опережают результирующий поток воздушного зазора за счет поступательного движения первичного двигателя». Действие двигателя будет наблюдаться, если полюса поля «увлекаются за результирующим потоком в воздушном зазоре из-за замедляющего момента нагрузки вала».

В зависимости от намагничивания ротора существует два основных типа синхронных двигателей: без возбуждения и с возбуждением от постоянного тока

Двигатели без возбуждения

Однофазный синхронный двигатель 60 Гц 1800 об / мин для Телетайп с невозбужденным ротором, выпускался с 1930 по 1955 год.

В двигателях без возбуждения ротор изготовлен из стали. На синхронной скорости он вращается синхронно с вращающимся магнитным полем статора, поэтому через него проходит почти постоянное магнитное поле. Внешнее поле статора намагничивает ротор, создавая магнитные полюса, необходимые для его вращения. Ротор изготовлен из стали с высокой удерживающей способностью, например, из кобальтовой стали. Они производятся в конструкциях с постоянным магнитом, реактивным сопротивлением и гистерезисом:

Реактивные двигатели

Основная статья: Редукторный двигатель

Они имеют ротор, состоящий из цельной стальной отливки с выступающими (выступающими) зубчатыми полюсами.Обычно ротора меньше, чем полюсов статора, чтобы минимизировать пульсации крутящего момента и предотвратить одновременное выравнивание всех полюсов - положение, которое не может генерировать крутящий момент. Размер воздушного зазора в магнитной цепи и, следовательно, магнитное сопротивление минимальны, когда полюса выровнены с (вращающимся) магнитным полем статора, и увеличивается с увеличением угла между ними. Это создает крутящий момент, вынуждающий ротор выравниваться с ближайшим полюсом поля статора. Таким образом, при синхронной скорости ротор «заблокирован» вращающимся полем статора.Это не может запустить двигатель, поэтому в полюса ротора обычно встроены обмотки с короткозамкнутым ротором, чтобы обеспечить крутящий момент ниже синхронной скорости. Машина запускается как асинхронный двигатель до тех пор, пока не достигнет синхронной скорости, когда ротор «втягивается» и блокируется с вращающимся полем статора.

Конструкции реактивных двигателей имеют номинальные характеристики от долей лошадиных сил (несколько ватт) до примерно 22 кВт. Электродвигатели с очень маленьким реактивным сопротивлением имеют низкий крутящий момент и обычно используются для измерительных приборов.В многоцелевых двигателях с умеренным крутящим моментом используется конструкция с короткозамкнутым ротором и зубчатыми роторами. При использовании источника питания с регулируемой частотой все двигатели в системе привода могут управляться с одинаковой скоростью. Частота источника питания определяет рабочую скорость двигателя.

Двигатели с гистерезисом

Они имеют прочный гладкий цилиндрический ротор, отлитый из магнитно «твердой» кобальтовой стали с высокой коэрцитивной силой. Этот материал имеет широкую петлю гистерезиса (высокая коэрцитивная сила), что означает, что после намагничивания в заданном направлении ему требуется большое обратное магнитное поле для изменения намагниченности.Вращающееся поле статора заставляет каждый небольшой объем ротора испытывать обратное магнитное поле. Из-за гистерезиса фаза намагниченности отстает от фазы приложенного поля. В результате ось магнитного поля, индуцированного в роторе, отстает от оси поля статора на постоянный угол δ, создавая крутящий момент, поскольку ротор пытается «догнать» поле статора. Пока скорость ротора ниже синхронной, каждая частица ротора испытывает обратное магнитное поле с частотой «скольжения», которое вращает ее вокруг своей петли гистерезиса, заставляя поле ротора отставать и создавать крутящий момент.В роторе имеется двухполюсная конструкция стержня с низким сопротивлением. Когда ротор приближается к синхронной скорости и скольжение достигает нуля, это намагничивается и выравнивается с полем статора, заставляя ротор «блокироваться» с вращающимся полем статора.

Основным преимуществом гистерезисного двигателя является то, что, поскольку угол запаздывания δ не зависит от скорости, он развивает постоянный крутящий момент от запуска до синхронной скорости. Следовательно, он самозапускается и не требует индукционной обмотки для запуска, хотя во многих конструкциях действительно имеется структура проводящей обмотки с короткозамкнутым ротором, встроенная в ротор для обеспечения дополнительного крутящего момента при запуске.

Гистерезисные двигатели производятся с дробной мощностью в лошадиных силах, в основном серводвигатели и синхронизирующие двигатели. Двигатели с гистерезисом, более дорогие, чем реактивные, используются там, где требуется точная постоянная скорость.

Двигатели с постоянными магнитами

В синхронном двигателе с постоянными магнитами (PMSM) используются постоянные магниты, встроенные в стальной ротор для создания постоянного магнитного поля. Обмотки статора подключены к источнику переменного тока для создания вращающегося магнитного поля (как в асинхронном двигателе).При синхронной скорости полюса ротора фиксируются на вращающемся магнитном поле. Синхронные двигатели с постоянными магнитами похожи на бесщеточные двигатели постоянного тока. В этих двигателях чаще всего используются неодимовые магниты.

Двигатели с постоянными магнитами используются в качестве безредукторных двигателей лифтов с 2000 года.

Для запуска большинства PMSM требуется частотно-регулируемый привод. Тем не менее, некоторые включают в себя беличью клетку в роторе для запуска - они известны как линейные или самозапускающиеся PMSM. Они обычно используются в качестве более эффективных замен асинхронных двигателей (из-за отсутствия проскальзывания), но должны быть тщательно указаны для приложения, чтобы гарантировать достижение синхронной скорости и способность системы выдерживать пульсации крутящего момента во время запуска.

Двигатели с возбуждением постоянным током

Обычно эти двигатели больших размеров (более 1 лошадиных сил или 1 киловатта) требуют постоянного тока, подаваемого на ротор для возбуждения. Это наиболее просто подается через контактные кольца, но также можно использовать бесщеточную индукцию переменного тока и схему выпрямителя. Постоянный ток может подаваться от отдельного источника постоянного тока или от генератора постоянного тока, непосредственно подключенного к валу двигателя.

Свяжитесь с нами по вопросам: - OEM-запчасти, бывшие в употреблении автомобильные детали, подержанные автомобильные запчасти Запасные части, двигатели, трансмиссия, кузовные детали, электрические детали

Какие типы электродвигателей существуют? DC Brushed, Asynchronous and Synchronous

Свяжитесь с Valin сегодня для получения дополнительной информации по телефону (855) 737-4716 или заполните нашу онлайн-форму.

The Motion Control Show Мы уже говорили о том, что такое электродвигатель, теперь я собираюсь поговорить о нескольких различных типах электродвигателей.В частности, я собираюсь поговорить о щеточных двигателях постоянного тока, асинхронных и синхронных. Я Кори Фостер из Valin Corporation. Посмотрим, что мы можем узнать.

Есть много людей, которые знают о некоторых типах электродвигателей больше, чем я, поэтому я обратился к моему хорошему другу и коллеге Джону Брокоу, чтобы он поделился своим мнением по некоторым из этих типов.

КОРИ: Джон, что вы можете сказать мне о щеточном двигателе постоянного тока?

ДЖОН: Это самый старый школьный грязный мотор в творении.Эта штука была повсюду. Посмотрите на слайды, изобретенные Фарадеем в 1821 году. Итак, это 200-летняя технология. На самом деле он все еще используется во многих приложениях, потому что он относительно недорог. У него есть несколько известных проблем, о которых все знают. Чаще всего это износ щеток. У вас есть керамические угольные щетки, которые пропускают ток к вращающемуся ротору, и из-за износа этих щеток они, как и все остальное, со временем изнашиваются, и их необходимо заменять.Это приведет к падению вашего мотора, на каком бы транспортном средстве он ни работал, и это просто неприятность.

COREY: Итак, если здесь щеточный двигатель постоянного тока коммутируется обрывом проводов и этих щеток, двигатель переменного тока фактически коммутируется синусоидальной частотой входящего переменного тока и идет на контакторы здесь. Теперь это показывает, что катушка находится внутри, но на самом деле обычно катушка - это статор снаружи с ротором внутри, который вращается.Но это хорошо для сравнения. Разница между переменным и постоянным током и как они коммутируются.

Прежде чем я буду говорить об асинхронных двигателях, давайте поговорим о синхронном и асинхронном. В асинхронном двигателе переменного тока нет магнитов, поэтому он фактически вращается медленнее, чем синхронная скорость входящей в него частоты. Я уже говорил о том, как двигатель переменного тока переключается с входящей частоты переменного тока, 60 Гц здесь, в США, но асинхронный двигатель, поскольку у него нет магнитов, на самом деле будет отставать от этого, и он всегда будет работать на настигнуть.Итак, вы можете видеть, что это частота, умноженная на 120, деленная на количество полюсов за вычетом некоторого сдвига. Таким образом, он всегда будет работать, чтобы наверстать упущенное, в то время как синхронный двигатель имеет несколько постоянных магнитов, поэтому он привязан к регулируемой частоте, которая поступает в него, и всегда будет вращаться с этой синхронной скоростью.

Для этого мне нужно вернуться к Джону Брокоу. Джон, асинхронные и асинхронные двигатели - это одно и то же?

JOHN: Все асинхронные двигатели переменного тока асинхронные.Но вы можете получить из них синхронные, псевдосинхронные приложения, сочетая их с обратной связью и выполняя над ними векторное управление. Вот где вы на самом деле контролируете угол между этими двумя и регулируете эту частоту скольжения, чтобы она была именно там, где вы хотите быть, чтобы обеспечить характеристики крутящего момента / скорости приложения.

А вот и внутренности асинхронного двигателя переменного тока. Вы можете видеть, что это классический асинхронный двигатель, в котором вы не видите никаких щеток или чего-либо, приближающегося к нему.У вас есть этот роторный узел посередине, который привязан к проходящему через него валу. Единственный изнашиваемый компонент типичного асинхронного двигателя переменного тока - это подшипники, которые вы видите на концах двигателя. Существует ряд аксессуаров, которые можно добавить к асинхронному двигателю в зависимости от области применения. Один из основных вопросов, о котором хочется подумать, - это охлаждение. У этого есть вентилятор. Это выглядит как полностью закрытый двигатель с вентиляторным охлаждением. У вас также могут быть герметичные невентилируемые двигатели.У вас может быть открытый мотор, в котором воздух проходит через него. Вы можете надуть эти штуки воздухом. На двигатель можно надеть рубашку гидравлического охлаждения. Есть много разных способов охладить мотор. В конце концов, нужно помнить, что электродвигатель представляет собой катушку из меди, и вы пропускаете через нее электричество. Когда такое случается, это электрический обогреватель. Таким образом, вы собираетесь генерировать тепло в системе и каким-то образом его нужно отводить.Регулирование нагрева является одним из ключевых вопросов при выборе, определении размеров и эксплуатации двигателей.

Другими видимыми точками износа являются подшипники. Подшипники, как и любые другие подшипники, как подшипники в вашем автомобиле, в конечном итоге вам придется заменить их, потому что они действительно изнашиваются. Существуют и другие аксессуары, прокладки, уплотнения, разные вещи, в зависимости от среды, в которую вы фактически помещаете свой асинхронный двигатель, и от области применения.

КОРИ: Давайте поговорим об асинхронных двигателях и частотно-регулируемых приводах, которые их запускают.Что ты о них думаешь?

ДЖОН: ЧРП великолепны. Это действительно зависит от приложения, потому что обычно речь идет о паре разных вещей. Один из них - что ты хочешь? Как вы хотите, чтобы мотор заводился? И есть несколько способов сделать это. Вы можете начать через черту. Это означает, что в основном у вас просто есть выключатель, и вы в основном идете YAK, и внезапно ток начинает выходить из электрической сети. Проблемы с этим. Это немного тяжело для мотора, потому что вы создаете скачок напряжения в моторе.Это также может повлиять на вашу местную электросеть, и компьютерам в этой системе действительно не нравится, когда вы это делаете. Это действительно грубый способ запустить мотор. Готово. Это сделано во многих разных местах, где это не имеет значения. Скажем, если вы используете насос для ирригации, вы обычно используете выделенную линию. Вокруг не так много компьютеров, которые будут к нему чувствительны. Вы просто бросаете вещь и запускаете насос.

Другой метод - плавный пуск.Это электронные компоненты, которые в основном медленно повышают напряжение в течение 5, 10, 15 секунд, чтобы это закрытие было немного более плавным. Это намного проще для двигателя, и ваша электрическая сеть будет генерировать намного меньше шума. Это старый и грязный способ запуска электродвигателя, который применялся за пару сотен лет.

С 60-х годов у нас были преобразователи частоты. С появлением полупроводников мы получили возможность выполнять различные широтно-импульсные модуляции для управления частотой асинхронного двигателя переменного тока.Помните, двигатели следуют входящей в них частоте. Итак, регулируя частоту, вы можете регулировать скорость двигателя. У этого есть много преимуществ. Применение насоса: вы можете фактически контролировать, сколько воды вы перекачиваете, в зависимости от кривой двигателя насоса. Повышает эффективность. Вы можете оптимизировать приложение. Затем вы также можете медленно увеличивать скорость, чтобы вы не просто замыкали линию, что делает ее более плавной и намного более чистой для электросети.Обратите внимание на некоторые VFD, в которые вам может потребоваться установить фильтр, потому что они действительно создают некоторые гармоники, которые могут подаваться обратно в вашу электросеть, но в целом VFD является намного более чистым с точки зрения электричества способом установки и запуска двигателя.

COREY: Чтобы понять суть синхронного двигателя, он характеризуется постоянной скоростью вращения, которая не зависит от нагрузки, но связана с частотой питания или током в зависимости от типа привода. Отсюда и термин «синхронный», и в основном это делается с помощью постоянных магнитов, которые находятся там.Если вы посмотрите на конструкцию, то она выглядит несколько иначе, чем асинхронный двигатель переменного тока. Я хочу попросить Джона Брокоу указать нам на несколько вещей.

Джон: Обратите внимание, что в синхронном двигателе есть пара вещей, которые всегда будут там. У вас всегда будет обратная связь по синхронному двигателю. Вы делаете это, потому что вам нужно знать, где на самом деле находятся магниты, потому что они чередуются с севером, югом, севером и югом вокруг ротора. Как вы можете видеть на схеме в правом нижнем углу, вы можете видеть все маленькие магниты, установленные на поверхности, и они на самом деле, если вы на самом деле поместите туда магнит, вы действительно увидите их чередующиеся север, юг, Север, Юг, Север, Юг при обходе ротора.Это то, против чего затем реагируют катушки, и они могут вращать это поочередно. Без обратной связи с устройством вы не будете знать, где вы должны включить или выключить правую катушку, и в конечном итоге система будет бороться сама с собой.

КОРИ: Итак, Джон, действительно возникает вопрос, синхронные и серводвигатели - это одно и то же?

JOHN: Все серводвигатели переменного тока являются синхронными двигателями. Все синхронные двигатели не являются серводвигателями. Есть несколько необычных двигателей, которые являются синхронными, но не серводвигателями; переключаются реактивные двигатели, шаговые двигатели являются синхронными, потому что они следуют частоте, но они не серводвигатели.

COREY: Если расположить два типа двигателей рядом, вы можете увидеть, насколько их конструкция похожа, но также и насколько она отличается. Асинхронные двигатели могут быть огромными. Они могут быть совершенно огромными, размером с небольшую комнату. Синхронные двигатели и магниты становятся слишком дорогими, так что они действительно не будут больше, чем большая кошка, обычно самое большее. Но есть несколько сходств, несколько отличий.

Так вот, Джон действительно хотел убедиться, что я объяснил важность расчета лошадиных сил.Мощность равна крутящему моменту, умноженному на скорость. Мощность может быть выражена в лошадиных силах или в ваттах. Вычисление, которое я люблю использовать, просто из памяти, состоит в том, что мощность в лошадиных силах равна крутящему моменту в унциях и дюймах, умноженному на скорость в оборотах в секунду, деленному на 16 800. Это важно, потому что асинхронные двигатели и двигатели переменного тока рассчитаны в лошадиных силах, но если у вас есть серводвигатель, у нас есть кривые скорости / крутящего момента, которые часто выглядят так, когда у вас есть крутящий момент здесь и скорость здесь. Это практически одна и та же мощность от начала до конца, но это производство крутящего момента и скорости, поэтому мы не говорим о выборе серводвигателя или синхронного двигателя часто с точки зрения мощности.Мы говорим об этом с точки зрения скорости и крутящего момента. (Один двигатель может иметь высокий крутящий момент, а другой - высокую скорость, но такую ​​же мощность.) Итак, если кто-то хотел перейти от двигателя переменного тока к серводвигателю, он не может просто сказать: эй, дайте мне 1 киловатт. мотор. Они это делают, и мы стараемся приспособиться к ним, но на самом деле лучшая информация - это какая скорость и крутящий момент вам нужны? Так что это действительно важно. Одна лошадиная сила равна 756 Вт.

Последнее сравнение. Важной частью этого рисунка являются различные типы приложений.Асинхронные двигатели действительно лучше подходят для приложений с постоянной скоростью, где синхронные двигатели необходимы для более точной скорости, а также для приложений с позиционированием. Итак, я надеюсь, что это поможет.

Я Кори Фостер из Valin Corporation. Свяжитесь с нами здесь. Спасибо, Джон Брокоу, за помощь. Я многому научился сегодня. Надеюсь, это поможет.

Если у вас есть вопросы или вам просто нужна помощь, мы будем рады обсудить с вами вашу заявку.Свяжитесь с нами по телефону (855) 737-4716 или заполните нашу онлайн-форму.

Ремонт синхронных двигателей

Синхронные двигатели

Синхронные двигатели - это двигатели переменного тока, скорость вращения вала которых пропорциональна частоте тока - фактически, прямо пропорциональна. с технической точки зрения это означает, что период вращения двигателя будет равен целому числу циклов переменного тока. Скорость его вращения фактически привязана к частоте сети.

Наряду с асинхронным двигателем, синхронный двигатель является одним из наиболее широко используемых типов двигателей переменного тока.Однако он работает иначе, чем асинхронный двигатель. В отличие от асинхронного двигателя, синхронный двигатель не требует индукции тока для создания магнитного поля вокруг ротора. Одним из преимуществ использования синхронного двигателя является то, насколько эффективно он может преобразовывать энергию переменного тока в полезную работу по сравнению с другими типами электродвигателей.

Общие типы ремонта синхронных двигателей

Существует несколько различных видов ремонта, из которых три наиболее часто выполняемых ремонта синхронных двигателей - это перемотка катушек, повторная изоляция катушек и устранение проблем с балансировкой ротора и несоосностью.

Перемотка катушек синхронного двигателя

Процесс перемотки, если он сделан правильно, представляет собой очень детальный процесс, который начинается с тщательного осмотра, который включает в себя детали размеров, распорок и изоляции катушки. Затем обмотки очищаются с помощью печи с регулируемой температурой и водяным фильтром. Затем данные обмотки собираются и анализируются, и (в зависимости от того, к кому вы обращаетесь за ремонтом) будут предложены улучшения конструкции. На протяжении всего процесса намотки проводятся подробные электрические испытания, чтобы гарантировать целостность обмотки, строго соблюдая стандарты IEEE.

Повторная изоляция катушек синхронного двигателя

Когда выполняется повторная изоляция (часто как часть процесса перемотки), она начинается с тщательной оценки действующей системы изоляции. Создана новая система изоляции с упором на улучшение теплопередачи и диэлектрической целостности. Изоляция наносится с точностью в зависимости от конструкции, а затем используется процесс пропитки под вакуумом (VPI), чтобы пропитать обмотки и покрыть их слоем эпоксидной смолы без растворителей объемом от 4 до 5 мл.

Устранение дисбаланса и центровки синхронных двигателей

Как дисбаланс, так и несоосность могут стать серьезными проблемами для электродвигателей. Балансировка ротора, также называемая динамической балансировкой, обычно начинается со сбора данных о вибрации. Одним из основных выполняемых тестов является анализ спектра вибрации с помощью быстрого преобразования Фурье (БПФ). Этот тест дает данные, позволяющие соотнести амплитуду вибрации с частотой. Это не только дает полезную информацию о характере вибрации и может ли она быть связана с проблемой конструкции, дисбалансом или несоосностью вала.Другие возможные причины включают дефекты подшипников, обрыв сварных швов, ослабление крепления, неисправности ротора / статора и условия резонанса. Анализ вибрации - отличный инструмент для их определения!

Разница между синхронным и асинхронным двигателем

Разница между синхронным двигателем и асинхронным двигателем объясняется с учетом некоторых факторов, включая его тип, скольжение, источник питания, требования к контактному кольцу и щеткам, стоимость, коэффициент мощности, КПД, скорость, самостатирование, источник тока, различное применение, рабочие скорости указаны ниже с использованием их сравнения.


Определение синхронного двигателя:
Синхронный двигатель - это машина, скорость ротора которой равна скорости магнитного поля статора. N = NS = 120f / P. Синхронный двигатель не запускается автоматически.


Определение асинхронного двигателя:


Асинхронный двигатель - это машина, ротор которой вращается со скоростью меньше, чем у синхронного двигателя. N

Основное ключевое различие между синхронным и асинхронным двигателем указано ниже:
  • Синхронный двигатель - это машина, скорость ротора которой равна скорости магнитного поля статора.А асинхронный двигатель - это машина, ротор которой вращается со скоростью меньше синхронной.
  • Синхронный двигатель не имеет пробуксовки. Значение скольжения равно нулю. Асинхронный двигатель имеет скольжение, поэтому значение скольжения не равно нулю.
  • Синхронный двигатель дороже асинхронного двигателя.
  • КПД синхронного двигателя выше, чем у асинхронного двигателя.
  • Ток подается на ротор синхронного двигателя.Ротор асинхронного двигателя не требует тока.
  • Контактное кольцо и щетки необходимы в синхронном двигателе, тогда как асинхронный двигатель не требует контактного кольца и щеток. Только для этого типа асинхронного двигателя требуются и контактное кольцо, и щетки.
  • Синхронный двигатель не запускается автоматически, асинхронный двигатель запускается автоматически.
  • Скорость синхронного двигателя не зависит от изменения нагрузки. Скорость асинхронного двигателя уменьшается при увеличении некоторой нагрузки.
  • Синхронному двигателю требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Асинхронный двигатель не требует дополнительного источника пуска.
  • Бесщеточный электродвигатель, электродвигатель с регулируемым сопротивлением, электродвигатель с регулируемым сопротивлением и электродвигатель с гистерезисом - это тип синхронного двигателя. Асинхронный двигатель переменного тока - это разновидность асинхронного двигателя.
  • Путем изменения возбуждения мощность синхронного двигателя может быть соответственно отрегулирована как запаздывающая, опережающая или единичная, тогда как асинхронный двигатель работает только с запаздывающим коэффициентом мощности.
  • Синхронный двигатель работает плавно и относительно хорошо на низкой скорости ниже 300 об / мин, в то время как асинхронный двигатель работает со скоростью 600 об / мин отлично.
  • Синхронный двигатель применяется на электростанциях, в обрабатывающих производствах и др. Также применяется, регулятор напряжения. Асинхронный двигатель, используемый в центробежных насосах и вентиляторах, воздуходувках для бумаги, текстильных фабриках, компрессорах, лифтах и ​​т. Д.

Дополнительная информация:

PowerFactory - DIgSILENT

Синхронный двигатель обычно запускается как асинхронная машина, при этом также используется сопротивление обмотки возбуждения.«Асинхронный» запуск двигателя синхронной машины подразумевает использование демпферных обмоток ротора и обход нормального управления напряжением возбуждения путем введения сопротивления в обмотку возбуждения. Синхронная машина должна быть смоделирована с использованием типа «Стандартный», «Модель 3.3» или «Асинхронный запуск», но не «Классический», для которого ток возбуждения недоступен.

Кроме того, специальная определяемая пользователем динамическая модель динамической нагрузки связана с имитационной моделью, чтобы представить типичное поведение нагрузки двигателя: изначально используется модель нагрузки, зависящей от скорости (стартовая нагрузка), в которой нагрузка следует за определенная характеристика.После запуска двигателя нагрузка на машину переключается с зависящей от скорости на зависящую от времени, в которой может быть запрограммирована определяемая пользователем временная характеристика (с целью увеличения мощности до уставки нормальной работы). Если двигатель уже запущен, то нагрузка постоянна и равна уставке потока нагрузки.

Модель поддерживает постоянный коэффициент мощности и постоянный контроль реактивной мощности. Тип динамического контроллера выбирается автоматически на основе настройки «Локальный контроллер» в диалоговом окне (элементе) редактирования двигателя на странице «Поток нагрузки».Динамические уставки (коэффициент мощности и реактивная мощность автоматически считываются со страницы потока нагрузки).

Инструкции:

- Загрузите и импортируйте проект «SynchronousMotorStartup.pfd». Активируйте его и работайте над учебным кейсом по умолчанию.

- Обратите внимание на простую систему питания: два синхронных двигателя SM1 и SM2 (оба изначально отключены) и общая нагрузка подключены к сети 20 кВ. Также обратите внимание на события переключения, рассматриваемые в примере исследования «SC01 - Запуск всех двигателей (последовательно)»: SM1 включается через 1 с, SM2 включается через 30 секунд при моделировании.

- Также обратите внимание на модель динамического управления одним из синхронных двигателей. Например, «Контроллер SM1» - это составная модель двигателя SM1. Он содержит контроллер «Возбуждение» и две модели нагрузки: «Нагрузка (нарастание)» и «Нагрузка (запуск)».

- Нагрузка для нарастания зависит от времени (определяемая пользователем модель DSL), тогда как стартовая нагрузка зависит от скорости (в данном случае встроенная модель типа ElmMdm3). Нагрузку для перехода к нормальному режиму работы можно настроить с помощью двух параметров градиента (параметры DSL с именами «TORQUE_GRADIENT_DOWN» и «TORQUE_GRADIENT_UP»), которые будут определять скорость изменения нагрузки (независимо от временной характеристики модели).Временную характеристику нагрузки можно настроить с помощью объекта характеристики «LoadTimeCharacteristic» (класса IntMat), доступного через диалоговое окно редактирования модели DSL «Загрузка (нормальная работа)», затем страницу «Основные данные», затем «Дополнительно 1». "таб. Характеристика сохраняется внутри модели DSL «Нагрузка (нормальная работа)». Он содержит два столбца (первый - время, а второй - выходной крутящий момент в о.е.). Можно добавить любое количество записей времени (сколько угодно строк), тогда как столбец времени всегда должен содержать значения в возрастающем порядке.Временная характеристика активируется, как только установлен флаг MotorStarted. Этот флаг активируется моделью управления «Возбуждение», которая определяет успешный запуск двигателя.

- Что касается контроллера «Возбуждение», то модель поддерживает процедуру асинхронного запуска. Сопротивление поля можно изменить с помощью параметра «R_field». В обмотку возбуждения будет вставлен резистор до тех пор, пока скорость двигателя ниже определенного порога, определенного параметром «Speed_sw».Как только скорость превышает этот порог, сопротивление поля отключается и используется нормальная система управления возбуждением. Управление возбуждением поддерживает как коэффициент мощности, так и постоянное управление реактивной мощностью через параметр «PF_VAR_CONTROL». Этот параметр автоматически устанавливается с помощью соответствующего сценария конфигурации. Флаг «MotorStarted» (который активирует нагрузку при нормальных рабочих условиях) устанавливается, как только активируется управление возбуждением (скорость двигателя превышает пороговое значение «Speed_sw»), но с задержкой. действие, определенное параметром «T_DELAY_NORMAL_OPERATION».

- Выполните симуляцию RMS в течение 100 секунд без изменения каких-либо настроек. Щелкните на графике «SM1» и «SM2» и наблюдайте за временными кривыми.

- Смоделируйте все другие учебные случаи и наблюдайте за результатами.

4. Типы генераторов; синхронный против асинхронного. Что происходит внутри машин?

Существует два основных типа машин переменного тока, используемых для производства электроэнергии; синхронный и асинхронный. Разница между ними начинается с того, как магнитное поле ротора взаимодействует со статором.Оба типа машин могут использоваться в качестве генератора или двигателя.

Синхронная машина

Начнем с описания синхронного генератора. Ротор - это просто магнит на валу. На практике магнит обычно представляет собой электромагнит. Статор состоит из трех витков проволоки, расположенных так, чтобы пересекаться с магнитным полем ротора, равномерно распределенных по окружности на расстоянии 120 o друг от друга. Каждая катушка подает ток для одной фазы сети.По мере того как ротор вращается вокруг каждой катушки, индуцированный ток в каждой катушке повышается и падает в положительном и отрицательном направлениях по мере прохождения северного и южного полюсов ротора. Каждый оборот генерирует один цикл тока. Генерируемая частота напрямую связана со скоростью вращения ротора. Для машины с одним магнитом (двухполюсной) частота 50 Гц генерируется при вращении со скоростью 3000 об / мин. Ротор с четырьмя полюсами генерирует 50 Гц при вращении со скоростью 1500 об / мин.

Следовательно, рабочая скорость вращения синхронной машины по существу постоянна (в небольшом окне).Его скорость привязана к системной частоте. Синхронные машины управляются регулятором. Регулятор контролирует частоту системы и регулирует мощность первичного двигателя машины для корректировки частоты. Это, конечно, зависит от мощности машины и от того, работает ли она с установленной мощностью, при которой можно легко увеличить (или уменьшить).

Когда к валу прикладывается механическая мощность, ротор движется вперед по отношению к вращающемуся полю, создаваемому системными напряжениями на обмотках статора.Машина по-прежнему остается во вращательном синхронизме с напряжениями системы, но ротор теперь опережает систему на угол d . Угол d изменяется в зависимости от прикладываемой и генерируемой мощности, где мощность пропорциональна Sin ( d) . Если d положительный, машина опережает систему и действует как генератор. Если d отрицательное, значит, система тянет машину за собой и действует как двигатель.Если d равно нулю, машина вращается, но передача энергии не происходит. Обратите внимание, что Sin ( d) максимизируется при 90 o . Это предел угла опережения ротора, относящийся к теоретическому максимальному крутящему моменту, который машина способна выдать.

Вот механическая аналогия синхронной машины, которая может помочь. Представьте магнитный момент между ротором и статором как пружину, соединяющую два вращающихся колеса.Первое колесо подключено к источнику движения, то есть к ротору. Второе колесо представляет нагрузку энергосистемы. Поскольку на второе колесо прикладывается некоторая дополнительная нагрузка, угол между колесами начинает увеличиваться по мере того, как пружина растягивается. Через растянутую пружину передается больший крутящий момент, а кинетическая энергия перемещается от напрямую связанной вращающейся массы первого колеса ко второму.

Асинхронная машина

Как и следовало ожидать из названия, основное различие между асинхронными и синхронными машинами заключается в синхронизме ротора.Ротор асинхронного генератора не работает синхронно с напряжениями системы. Асинхронная машина работает «со скольжением». «Скольжение» - это процентная мера того, насколько медленнее или быстрее ротор работает по сравнению с его синхронной скоростью. Когда ротор вращается медленнее, чем синхронная скорость, машина действует как двигатель. Когда ротор вращается быстрее, чем синхронная скорость, машина действует как генератор.

Вот механическая аналогия асинхронной машины, которая может помочь.Представьте себе магнитный момент между ротором и статором как гидравлическую гидравлическую муфту между двумя колесами. Первое колесо подключено к источнику привода, то есть к ротору. Второе колесо представляет собой систему питания. Когда на второе колесо прикладывается некоторая дополнительная нагрузка, гидравлическая муфта проскальзывает больше, но поток кинетической энергии от первого колеса в значительной степени разделяется гидравлической муфтой.

Асинхронные генераторы обычно используются там, где невозможно управление первичным двигателем, как правило, в ветряных турбинах или речных гидроэлектростанциях.Хотя системы управления реализованы для наилучшего использования этих ресурсов, они не могут регулировать выходную мощность в ответ на изменение частоты. (Некоторое увеличение может быть возможно, если генератор намеренно настроен неоптимально, например: для получения меньшего количества энергии от ветра, чем потенциально доступно. Это делается для того, чтобы по команде машина могла регулировать настройки и тем самым потреблять и увеличивать количество энергии из источника).

Сводка

Есть два ключевых различия, влияющих на их вклад в стабильность.

  1. Кинетическая энергия ротора синхронной машины тесно связана с энергосистемой и поэтому доступна для немедленного преобразования в мощность. Кинетическая энергия ротора асинхронной машины отделена от системы за счет его проскальзывания и поэтому не может быть легко доступна системе.
  2. Синхронные генераторы
  3. управляются регуляторами, которые контролируют частоту системы и регулируют вход первичного двигателя для корректировки колебаний частоты.Асинхронные генераторы обычно используются в приложениях, где источник энергии не регулируется, например, в ветряных турбинах. Эти генераторы не могут реагировать на изменения частоты, представляющие энергетический дисбаланс системы. Вместо этого они являются причиной энергетического дисбаланса.

Кратковременная стабильность

Кинетическая энергия вращения роторов синхронных машин измеряется в мегаватт-секундах. Синхронные машины обеспечивают стабильность при дисбалансе энергосистемы, поскольку кинетическая энергия их роторов (и первичных двигателей) синхронизирована с сетью через магнитное поле между ротором и статором.Обеспечение этой энергией важно для кратковременной стабильности энергосистемы.

Долгосрочная стабильность

Долгосрочная стабильность обеспечивается регулятором. Эти устройства контролируют частоту системы (напомним, что скорость изменения частоты системы пропорциональна энергетическому дисбалансу) и автоматически регулируют выходную мощность машины, чтобы компенсировать дисбаланс и восстановить стабильность.

Индекс

  1. Введение - Устойчивость электроэнергетической системы
  2. Электрический ток вырабатывается «по запросу».В сети нет накопленного электрического тока
  3. Энергетический баланс, дисбаланс и определение устойчивости сети
  4. Типы генераторов; синхронный против асинхронного. Что происходит внутри машин?
  5. Стабильность частоты и энергетический баланс. Описание взаимодействия между частотой и потоком энергии сети
  6. Управление первичным двигателем, губернаторами, как это делается и почему это важно
  7. Анализ события пониженной частоты

Разница между принципом асинхронного двигателя и синхронного двигателя и область его применения

Так называемый синхронный двигатель означает, что скорость вращения магнитного поля обмотки якоря такая же, как и направление вращения ротора, и скорость вращения такая же.Такой двигатель обычно имеет следующую структуру: обмотка на роторе, обмотка сосредоточенного возбуждения; отсутствие обмотки на роторе и конструкция с постоянными магнитами; без обмотки на роторе, без постоянных магнитов, зубцов и пазов. На статоре распределены обмотки. Использование такой конструкции в основном предназначено для минимизации количества контактных колец и щеток, и такой двигатель также называют двигателем переходного типа. Существуют также конструкции, которые размещают обмотки возбуждения на статоре для некоторых особых требований.Такие конструкции обычно называют поворотными (например, бытовые потолочные вентиляторы).

Асинхронный двигатель - это двигатель переменного тока, в котором вращающееся магнитное поле, образованное обмоткой статора, взаимодействует с магнитным полем индуцированного тока в обмотке ротора для создания электромагнитного момента, приводящего во вращение ротора, и также называется как «асинхронный двигатель».
Асинхронные двигатели и синхронные двигатели действительно имеют большую разницу в принципе работы:


Синхронный двигатель работает за счет того, что «магнитное поле всегда проходит по кратчайшему направлению магнитной цепи», на примере двигателя с потерянным полем.После возбуждения на роторе появляются полюса N и S; затем магнитное поле статора вращается, и взаимные изменения полюсов N и S всегда соответствуют магнитным полюсам на роторе. Так образуется синхронизация. Что еще более важно, количество полюсов статора и ротора должно быть одинаковым, иначе двигатель не будет работать.
Асинхронный двигатель использует индукцию для достижения движения. Принцип заключается в том, что после подачи трехфазного напряжения на обмотку статора формируется вращающееся магнитное поле, и стержень на роторе генерирует потенциал из-за перерезания магнитных силовых линий; и поскольку стержни соединены, генерируется ток.В этот момент мы подумали о младших классах средней школы - «заряженный проводник будет производить движение в магнитном поле». Поэтому такой двигатель называют «асинхронным». Для асинхронных или асинхронных двигателей количество полюсов ротора автоматически определяется количеством полюсов статора. Также можно сказать, что у ротора нет полюсов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *