Дроссель в блоке питания для чего нужен: Для чего нужен дроссель в блоке питания

Содержание

Зачем нужен дроссель в блоке питания

Катушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте — называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).

Для чего нужен дроссель?

Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.

Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, — данное положение прямо следует из Правила Ленца. Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.

Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением.

Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.

В радиотехнике, в электротехнике, в СВЧ-технике, — используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон — до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.

Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.

Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.

Одна из широчайших сфер применения дросселей — это высокочастотные схемы. Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.

Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.

Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки. Единица измерения данного параметра — генри, а обозначение — Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).

Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, — крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.

Итак, по назначению электрические дроссели подразделяются на:

Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.

Дроссели для пуска двигателей — ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).

Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.

Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.

Катушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте — называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).

Для чего нужен дроссель?

Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.

Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, — данное положение прямо следует из Правила Ленца. Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.

Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением.

Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.

В радиотехнике, в электротехнике, в СВЧ-технике, — используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон — до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.

Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.

Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.

Одна из широчайших сфер применения дросселей — это высокочастотные схемы. Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.

Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью.

Такие дроссели способны работать в довольно широком диапазоне частот.

Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки. Единица измерения данного параметра — генри, а обозначение — Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).

Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, — крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.

Итак, по назначению электрические дроссели подразделяются на:

Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.

Дроссели для пуска двигателей — ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).

Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.

Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

НАШ САЙТ РЕКОМЕНДУЕТ:

Метки:  

НПЦ "СОТИС" | Подавление помех от импульсных блоков питания

Помехи от импульсных БП

Все импульсные блоки питания создают электромагнитные помехи во всех КВ диапазонах и в начале УКВ. Количество таких блоков исчисляется десятками в одном жилище (компьютеры, мониторы, освещение, различные зарядные устройства и т.п.) и сотнями в одном доме, т.е. в ближней зоне КВ антенны. Один блок может закрыть возможность приёма во всей полосе КВ в радиусе десятков метров. Поэтому имеет смысл знать, как подавлять паразитное излучение кабелей импульсного блока питания, чтобы правильно дорабатывать существующие и выбирать новые.На схеме показана упрощенная схема импульсного блока питания. Узел преобразования напряжения показан предельно упрощенно, а вот цепи подавления помех – полностью.  Это общий случай питания от трехпроводной (с отдельным проводом электротехнического заземления) розетки..

 

Рис. 1

 

 

С1 – конденсатор. Он подавляет низкочастотные дифференциальные помехи, идущие от блока питания в сеть.

С2 и С3 – керамические конденсаторы малой емкости С2 и С3, включенные параллельно С1. Они подавляют высокочастотные синфазные помехи и помехи  синфазной составляющей импульсов переключения на корпус устройства. Но это не единственная функция С2 и С3. Они подавляют синфазную составляющую импульсов переключения на корпус устройства.

Разберемся с этим подробнее. На стоке силового транзистора присутствуют прямоугольные импульсы с размахом 300 В (выпрямленное и отфильтрованное напряжение сети) с частотой несколько десятков – сотен Кгц. Фронты этих импульсов короткие (меньше микросекунды). Во время этих фронтов ключевой транзистор находится в активном режиме и греется (поэтому фронты стараются сделать короче). Но это расширяет полосу создаваемых помех. И все равно в мощных блоках питания транзистор греется. Для охлаждения его сажают на радиатор, в качестве которого почти всегда используется металлический корпус блока питания (про экранирование не забываем). Транзистор изолируют от корпуса тонкой слюдяной прокладкой. Емкость стока на корпус получается заметной, несколько десятков пикофарад.

Tr1 и L1 – синфазные дроссели, которые подавляют синфазные помехи, идущие от нашего блока питания и подключенного к нему устройства (например, трансивера с антенной) в сетевой провод и далее в линии электропитания. Это основные элементы подавления помех в питающей сети. Они должны быть качественными и обладать высоким импедансом во всей подавляемой полосе, начиная от частоты переключения транзистора (десятки, сотни Кгц) нашего блока питания до нескольких Мгц, а иногда (чувствительные приемники и их антенны рядом) – до десятков и сотен Мгц. Один дроссель это сделать не может, поэтому последовательно с Tr1 и L1 включают такие же дроссели, но с индуктивностью в 50-500 раз меньшей, чем указано на рис. 1. Эти дополнительные маленькие дроссели должны иметь настолько высокую собственную резонансную частоту, чтобы эффективно подавлять верхние частоты требуемой полосы.

И так, у нас получилось: транзисторный генератор прямоугольных импульсов с размахом 300 В и короткими фронтами через конденсатор в несколько десятков пикофарад (конструктивный между стоком охлаждаемого транзистора и корпусом устройства на рис. 1 показан штриховыми линиями) подключен к корпусам и блока питания, и питаемого им устройства. Мы считаем, что это корпус с нулевым потенциалом, а на самом деле там текут большие ВЧ токи от фронтов переключения транзистора через конструктивную емкость радиатора. Это приведет к появлению большого синфазного тока (а, значит, и помех) на корпусах всех устройств, подключенных к нашему источнику питания.

Для устранения этой проблемы и установлены конденсаторы C2 и С3. Фронты импульсов со стока транзистора, просочившиеся через конструктивную емкость радиатора через эти конденсаторы и диоды моста (точнее, через один диод, открытый в данный момент), замыкаются на исток транзистора. Это путь для них оказывается проще, чем синфазно растекаться по корпусам. Но проблемы с высоковольтными короткими фронтами импульсов на стоке силового транзистора не кончаются с установкой С2 и С3.

Конденсаторы С2, С3, С4 оказываются включенными между безопасными для человека цепями (выходами и корпусом источника) и силовой сетью 220 В. Для обеспечения безопасности людей пробивное напряжение этих конденсаторов делают очень высоким (несколько киловольт), а их конструкцию такой, чтобы в случае аварии они обрывались, а не замыкались. Конденсаторы, устанавливаемые как С2, С3, С4 выпускаются как отдельный тип и называются Y-конденсаторами. Конденсаторы с маркировкой Y1 рассчитаны на импульсы до 8 кВ, Y2 – до 5 кВ.

С точки зрения подавления помех, емкость С2,С3, С4 должна быть побольше. Надо иметь в виду, что при двухпроводной сети (или обрыве земли в трехпроводной), выходы и корпус источника через С2, С3, С4 оказываются соединенными с фазой сети, поэтому их суммарная емкость должна выбираться так, чтобы утечка тока 50 Гц на корпус не превышала бы 0,5 мА. С учетом возможного максимального напряжения в сети, разброса, температурных уходов и старения, получается не более 5 нФ.

Ошибки в фильтрации помех импульсных источников:

1). Иногда, для экономии, ставят только один из двух конденсаторов С2 или С3. Идея, на первый взгляд, кажется разумной, ведь они соединены параллельно через большую емкость С1. Но, как мы видели в п. 5.4.1 на высоких частотах конденсаторы большой емкости  имеют заметный и индуктивный импеданс, поэтому такая экономия может привести к тому, что на десятках Мгц (выше резонансной частоты С1, которая будет невелика, т.к. это конденсатор большой ёмкости) заметно снизится подавление синфазного тока, затекающего на корпус. Отсутствие С2, С3 может быть переносимо, но только если  выполняются все три следующих условия сразу: сеть двухпроводная, силовой транзистор не на радиаторе, корпус блока питания не имеет контакта с корпусами питаемых устройств (пластмассовый, например). Если хотя бы одно из условий нарушено, С2 и С3 надо иметь.

2). Встречается отсутствие С4, если производитель решает что можно С4 не ставить, т.к. в его трансформаторе емкость мала, или пытливый потребитель выкусывает, чтобы от источника не пощипывало током утечки 50 Гц через этот конденсатор. Это неправильное решение, С4 необходим на своем рабочем месте.

3). Установка перемычек вместо основного развязывающего дросселя Tr1. Редко, но встречается в дешевых источниках плохих производителей. Эта экономия компенсируется  установкой нормального дросселя. В крайнем случае, такой дроссель делается снаружи сетевым шнуром на большом феррите.

4). Перемычка вместо L1. Встречается, увы, часто. Даже у приличных производителей. Видимо, полагают, что раз в двухпроводной сети этот дроссель не нужен (а там он действительно не требуется, току некуда течь), то обойдется и в трехпроводной. Увы, нет, т.к. это открывает прямую дорогу в сеть для синфазных помех (и помех из сети на наш корпус). Исправляется установкой L1 в разрыв провода между разъемом сети и платой. На худой конец допустим внешний дроссель на сетевом шнуре

Наиболее  частая ошибка, которая относится не только к импульсным, а ко всем блокам питания:

нередко слева (по рис. 1) от Tr1 устанавливают дополнительные конденсаторы, как показано на рис. 2 (нумерация деталей совпадает и продолжает рис. 1). Они должны блокировать чужие помехи, идущие из сети в наш источник питания. С5 блокирует дифференциальные помехи и нам не мешает. А вот С6 и С7, блокирующие синфазные помехи в силовых проводах сети на её земляной провод, могут стать причиной соединения по ВЧ корпуса нашего устройства и силовых (фазы и нуля) проводов сети. Это произойдёт, если среднюю точку С6 и С7 вывести на корпус устройства, как показано штриховой линией на рис. 2. Делать так нельзя, хотя печально часто именно так и подключают. ВЧ синфазные помехи из сети пойдут через С6 и С7 на корпус нашего устройства и назад: синфазные токи нашего устройства (например, трансивер с антенной). Правильное подключение средней точки С6 и С7 должно быть только к земле трехпроводной розетки, но не к корпусу устройства, т.е. к левому выводу дросселя L1, как показано утолщенной линией на рис. 2.

 

Рис. 2.

 

При  использовании двухпроводной питающей сети проверьте, нет ли в вашем блоке питания конденсаторов с проводов сети на корпус устройства. И если есть, удалите их, т.к. это прямая дорога для ВЧ синфазных токов из сети в ваше устройство и назад. Если сеть трехпроводная, то установите дроссель L1 между корпусом своего устройства и землей сети (он разорвёт путь для синфазных токов между ними), а среднюю точку входных конденсаторов (С6, С7 по рис. 2) переместите на землю сети.

Если сеть трехпроводная, то установите дроссель L1 между корпусом своего устройства и землей сети. Он разорвёт путь для синфазных токов между ними), а среднюю точку входных конденсаторов (С6, С7 по рис. 2) переместите на землю сети.

Сетевой фильтр, показанный на рис. 2 с конденсаторами С1-С3 с рис 1 является общим случаем для питания любых устройств, генерирующих радиочастотные помехи, например КВ передатчиков.

Автор: И. Гончаренко.

Дроссель для блока питания лампового усилителя

Ничто так не выдаёт консерватизм, чем изготовление ламповых усилителей звука. А может это просто признак особого изысканного вкуса настоящих аудиофилов? В любом случае собрать такой УНЧ представляется прикольным и теоретически выгодным занятием. Как знать, сколько подобный шедевр будет стоить спустя 20 лет. Тут один только внешний вид лампового усилителя уже делает достойной установку его на самом видном месте кабинета. А звук.. Ну это каждый решит после прослушки для себя сам. В общем приступая к сборке самого усилителя, вначале продумайте сам блок питания. Это вам не 12В взятые из БП ATX. Здесь должны присутствовать минимум два напряжения разной величины и мощности. Напряжение накала берётся в пределах 5,5 – 6,5В и чаще всего подаётся на схемы переменным, сразу с обмоток трансформатора, а питание анодов достигает 300 и даже 500В. При уже постоянной форме тока.

Несмотря на то, что в последнее время наметилась стойкая тенденция к импульсным источникам питания всего и вся, рекомендую всё-же забыть на время про электронные трансформаторы и задействовать старый добрый ТС180 (ТС160) от любого чёрно-белого лампового телевизора. Тому есть две причины. Во-первых обычный трансформатор прощает невнимательность монтажа и не взорвётся, как электронный, при случайных боках и замыканиях, а во-вторых цена ЭТ может быть весьма и ввесьма, в отличии от обычных ТС, коих у многих хватает в закромах. Представляется правильным собрать один универсальный блок питания с анодным и накальным напряжением, и питать от него или один конкретный ламповый усилитель (спрятав сам БП подальше), или собирая другие ламповые схемы переключать его при необходимости на них. На каждый ламповый УНЧ блоков питания не напасёшся:)

Смотрим схему простого блока питания лампового усилителя:

По питанию 220В ставим модный пластмассовый тумблер 250В 5А с зелёной подсветкой. Не забываем про предохранители – один на пару ампер по сети, второй трёхамперник по накалу, и третий по высоковольтному напряжению анода. В отличии от электронных трансформаторов, где предохранители сгорают последними, здесь они выполнят свою миссию, так как даже и без них блок питания выдержит кратковременные замыкания выходов. За что я и уважаю трансы в железе. Диоды для двухполупериодных мостов или собираем из советских КД202 с нужной буквой, или берём готовый диодный мост на подходящее напряжение и ток. Если у вас усилитель на пару ламп типа 6П14П с небольшой мощностью выхода, диодный мост выпрямителя пойдёт и советский коричневый КЦ405 или КЦ402. Накал выпрямлять следует только для входных ламп первого одного – двух каскадов. Дальше влияние постоянного накала сводится к нулю и это будет только расход тепла на диодах.

Можно питать накал от моста с конденсатором 4700 – 10000мкФ, а можно и КРЕН5 поставить. и не стремитесь на входные лампы подавать строго 6,3В – лучше питать их немного заниженным напряжением вплоть до 5В. Так что обычная пятивольтовая КРЕНка и всё будет ОК. Обязательно советую поставить пару светодиодов – индикаторов напряжения анода и накала. Во-первых красиво, а во-вторых информативно, сразу видны возможные проблемы с питанием.

Корпус лучше делать делезный, точнее из листового алюминия – он обрабатывается очень удобно. Или просто взять готовый подходящих размеров, где просверлить гнёзда под кнопку сети, светодиоды и разъёмы. Сеть тоже вводите в корпус не просто через дырку, а подключив штеккером к специальному сетевому гнезду. Лично я делаю только так на всех конструкциях – это удобно.

Конденсаторы фильтров анода берём чем больше – тем лучше. Минимум два по 300 микрофарад. Напряжение на них должно быть на 100В выше, чем напряжение на выходе БП. Если у вас схема рассчитана на 250В, то берём конденсатор на 350. Конечно я это правило выполняю далеко не всегда, а бывает вообще ставлю один к одному, но вы так не делайте и в этом с меня пример не берите. Резистор на 47 Ом 5 ватт уточняем по конкретной схеме лампового усилителя. Для простого однотактного его хватит, а для мощного двухтактника надо вообще ставить дроссель. Выдиратся он из любого лампового телевизора и называется ДР-0,38. Трансформатор питания перед установкой в БП обязательно послушайте на предмт гудения и жужжания. А то купите, рассчитете и соберёте под него корпус, а он гудит громче вечернего Пинк Флойда. Будет большой облом. И напоследок порекомендую все диоды шунтировать конденсаторами на 0,01-0,1 мкФ с соответствующими напряжениеми.

Обсудить статью БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ

Ничто так не выдаёт консерватизм, чем изготовление ламповых усилителей звука. А может это просто признак особого изысканного вкуса настоящих аудиофилов? В любом случае собрать такой УНЧ представляется прикольным и теоретически выгодным занятием. Как знать, сколько подобный шедевр будет стоить спустя 20 лет. Тут один только внешний вид лампового усилителя уже делает достойной установку его на самом видном месте кабинета. А звук.. Ну это каждый решит после прослушки для себя сам. В общем приступая к сборке самого усилителя, вначале продумайте сам блок питания. Это вам не 12В взятые из БП ATX. Здесь должны присутствовать минимум два напряжения разной величины и мощности. Напряжение накала берётся в пределах 5,5 – 6,5В и чаще всего подаётся на схемы переменным, сразу с обмоток трансформатора, а питание анодов достигает 300 и даже 500В. При уже постоянной форме тока.

Несмотря на то, что в последнее время наметилась стойкая тенденция к импульсным источникам питания всего и вся, рекомендую всё-же забыть на время про электронные трансформаторы и задействовать старый добрый ТС180 (ТС160) от любого чёрно-белого лампового телевизора. Тому есть две причины. Во-первых обычный трансформатор прощает невнимательность монтажа и не взорвётся, как электронный, при случайных боках и замыканиях, а во-вторых цена ЭТ может быть весьма и ввесьма, в отличии от обычных ТС, коих у многих хватает в закромах. Представляется правильным собрать один универсальный блок питания с анодным и накальным напряжением, и питать от него или один конкретный ламповый усилитель (спрятав сам БП подальше), или собирая другие ламповые схемы переключать его при необходимости на них. На каждый ламповый УНЧ блоков питания не напасёшся:)

Смотрим схему простого блока питания лампового усилителя:

По питанию 220В ставим модный пластмассовый тумблер 250В 5А с зелёной подсветкой. Не забываем про предохранители – один на пару ампер по сети, второй трёхамперник по накалу, и третий по высоковольтному напряжению анода. В отличии от электронных трансформаторов, где предохранители сгорают последними, здесь они выполнят свою миссию, так как даже и без них блок питания выдержит кратковременные замыкания выходов. За что я и уважаю трансы в железе. Диоды для двухполупериодных мостов или собираем из советских КД202 с нужной буквой, или берём готовый диодный мост на подходящее напряжение и ток. Если у вас усилитель на пару ламп типа 6П14П с небольшой мощностью выхода, диодный мост выпрямителя пойдёт и советский коричневый КЦ405 или КЦ402. Накал выпрямлять следует только для входных ламп первого одного – двух каскадов. Дальше влияние постоянного накала сводится к нулю и это будет только расход тепла на диодах.

Можно питать накал от моста с конденсатором 4700 – 10000мкФ, а можно и КРЕН5 поставить. и не стремитесь на входные лампы подавать строго 6,3В – лучше питать их немного заниженным напряжением вплоть до 5В. Так что обычная пятивольтовая КРЕНка и всё будет ОК. Обязательно советую поставить пару светодиодов – индикаторов напряжения анода и накала. Во-первых красиво, а во-вторых информативно, сразу видны возможные проблемы с питанием.

Корпус лучше делать делезный, точнее из листового алюминия – он обрабатывается очень удобно. Или просто взять готовый подходящих размеров, где просверлить гнёзда под кнопку сети, светодиоды и разъёмы. Сеть тоже вводите в корпус не просто через дырку, а подключив штеккером к специальному сетевому гнезду. Лично я делаю только так на всех конструкциях – это удобно.

Конденсаторы фильтров анода берём чем больше – тем лучше. Минимум два по 300 микрофарад. Напряжение на них должно быть на 100В выше, чем напряжение на выходе БП. Если у вас схема рассчитана на 250В, то берём конденсатор на 350. Конечно я это правило выполняю далеко не всегда, а бывает вообще ставлю один к одному, но вы так не делайте и в этом с меня пример не берите. Резистор на 47 Ом 5 ватт уточняем по конкретной схеме лампового усилителя. Для простого однотактного его хватит, а для мощного двухтактника надо вообще ставить дроссель. Выдиратся он из любого лампового телевизора и называется ДР-0,38. Трансформатор питания перед установкой в БП обязательно послушайте на предмт гудения и жужжания. А то купите, рассчитете и соберёте под него корпус, а он гудит громче вечернего Пинк Флойда. Будет большой облом. И напоследок порекомендую все диоды шунтировать конденсаторами на 0,01-0,1 мкФ с соответствующими напряжениеми.

Обсудить статью БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ

Генератор Маркса – теория и практика создания импульсов высокого напряжения.

Изготовление корпуса радиоконструкции, на примере корпуса ультразвукового отпугивателя комаров.

Схема, фотографии и описание китайского прибора для экономии электроэнергии.

Качественная работа ламповой аппаратуры высокой верности воспроизведения звука в значительной степени зависит от применяемого блока питания, который из сетевого напряжения формирует питающие напряжения, необходимые для функционирования отдельных элементов, каскадов и блоков лампового усилителя в пределах заданных параметров. При этом среди основных требований, предъявляемых к таким источникам, помимо формирования напряжений и токов необходимых величин, особое место занимает обеспечение соответствующей степени фильтрации питающих напряжений. Дело в том, что одной из основных причин появления фона в ламповых усилителей являются пульсации выпрямленного напряжения, питающего цепи анодов и экранных сеток ламп. Поэтому добиться уменьшения фона, возникающего из-за пульсаций напряжения, можно в первую очередь, усовершенствованием схемы и улучшением параметров источника питания.

Блоки питания ламповых УНЧ, как правило, формируют два вида напряжений. Это постоянные напряжения величиной от нескольких десятков до сотен вольт для питания цепей анодов и экранных сеток, а также постоянные или переменные напряжения от единиц до полутора десятков вольт для цепей накала. Поэтому работа по улучшению параметров блоков питания также ведется в двух направлениях, которые соответствуют указанным видам формируемых напряжений.

Источники питания цепей анода и экранных сеток

Для формирования постоянных напряжений, необходимых для питания анодных цепей и цепей экранных сеток ламп УНЧ, обычно применяются ламповые или полупроводниковые выпрямители. В зависимости от особенностей применяемых схемотехнических решений, выпрямительные элементы могут подключаться по одпополупериодной, двухполупериодной или мостовой схеме. Однако в высококачественных ламповых усилителях формирование питающих напряжений для цепей анодов и экранных сеток обеспечивается чаще всего двухполупериодными или мостовыми выпрямителями, что позволяет при неизменных данных фильтра получить значительно меньший коэффициент пульсаций, чем от однополупериодного выпрямителя. Принципиальные схемы простого лампового и полупроводникового двухполупериодного выпрямителя с искусственно созданной средней точкой приведены на рис. 1.

В данных схемах сетевое напряжение подается на первичную обмотку трансформатора Тр1 (выводы 1-2), а аноды двойного диода Л1 или полупроводниковых диодов D1 и D2 подключены к крайним выводам основной вторичной обмотки (выводы 3-5). Параметры трансформатора Тр1 обычно выбираются такими, чтобы значения переменных напряжений между выводами 3-4 и 4-5 находились в пределах 200-500 В. С катода лампы Л1 или с соединенных катодов полупроводниковых диодов D1 и D2 снимается выпрямленное положительное напряжение, а в качестве отрицательной шины используется вывод 4 от середины вторичной обмотки, который является искусственно созданной средней точкой. На конденсаторах C1, С2 и дросселе Др1, который может быть заменен резистором R1, собран фильтр. Необходимо отметить, что при замене дросселя резистором параметры этого резистора (сопротивление и мощность) следует выбирать с учетом тока, потребляемого усилителем, и напряжения, необходимого для питания анодных цепей ламп.

Напряжение накала для двойного диода Л1 выпрямителя (рис. 1, а) обычно формируется отдельной обмоткой трансформатора Тр1 (выводы 6-7), не связанной с обмоткой, с которой снимается напряжение накала Uн для остальных ламп усилителя (выводы 8-9). Дело в том, что на катоде лампы выпрямителя обычно присутствует высокое положительное напряжение, а у многих диодов катод соединен с нитью накала внутри баллона лампы. В схеме выпрямителя на полупроводниковых диодах (рис. 1, б) напряжение накала Uн для ламп усилителя также снимается с отдельной обмотки (выводы 6-7).

Главным достоинством рассмотренной схемы формирования напряжения анодного питания с помощью двойного выпрямительного диода косвенного накала (рис. 1, а) является постепенное возрастание уровня высокого напряжения до номинального значения по мере разогрева лампы. Процесс разогрева лампы выпрямителя по времени практически совпадает с разогревом остальных ламп усилителя, поэтому не возникает перегрузки конденсаторов фильтра при росте анодного напряжения. При использовании полупроводникового выпрямителя (рис. 1, б) постоянное напряжение на конденсаторы фильтра подается практически сразу после включения аппаратуры, что приводит к их перегрузке, поскольку номинальное потребление тока начинается только после разогрева ламп усилителя.

Необходимо отметить, что в двойных диодах с косвенным накалом при перегорании общей нити накала или хотя бы нити накала одного из диодов (в лампах с раздельным накалом) происходит весьма значительное увеличение фона переменного тока с одновременным падением выпрямленного напряжения.

Если в двухполупериодном выпрямителе применяется двойной диод с непосредственным накалом, то напряжение на первый конденсатор сглаживающего фильтра следует снимать со средней точки обмотки накала кенотрона или с искусственно созданной средней точки. Принципиальные схемы выпрямителей на двойном диоде с непосредственным накалом приведены на рис. 2.

В схеме выпрямителя с искусственно созданной средней точкой (рис. 2, б) резисторы R1 и R2 помимо функции формирования средней точки одновременно обеспечивают снижение импульсов тока при включении блока питания, что способствует увеличению срока службы кенотрона. В обеих схемах напряжение накала Uн для ламп усилителя также снимается с отдельной обмотки (выводы 9-10 на рис. 2, а и выводы 8-9 на рис. 2, б).

На практике в радиолюбительских конструкциях в качестве источника анодного питания ламповых УНЧ обычно используются простые мостовые выпрямители с фильтрами. Принципиальная схема одного из вариантов такого выпрямителя приведена на рис. 3. В данной схеме напряжение питания для цепей анодов и экранных сеток ламп выходных каскадов (Uа1) снимается с точки соединения конденсаторов С1 и С2. В то же время напряжение Uа2, необходимое для питания анодных цепей ламп входных каскадов, дополнительно сглаживается специальным фильтром.

Источники питания цепей накала

В ламповых усилителях низкой частоты питание цепей накала ламп может осуществляться напряжением как переменного, так и постоянного тока. Формирование этих напряжений обеспечивается соответствующими цепями и каскадами блока питания. Обычно в аппаратуре среднего класса напряжение переменного тока для накала ламп снимается со специальной обмотки силового трансформатора (рис. 4, а). В данной схеме с первой вторичной обмотки трансформатора Тр1 (выводы 3-4) снимается переменное напряжение для источника формирования постоянного анодного напряжения, а со второй вторичной обмотки (выводы 5-6) – переменное напряжение накала требуемой величины, которое подается непосредственно на соответствующие выводы ламп. Большинство электронных ламп, применяемых в усилителях НЧ, рассчитаны на номинальное напряжение накала величиной 6,3 В. Однако иногда для снижения уровня фона первого каскада питание цепи накала лампы предварительного усилителя осуществляется от отдельной обмотки меньшим напряжением. Так, например, для лампы типа 6Н2П это напряжение может составлять 5,7 В, а для лампы 6Н3П – 5,5 В.

Не следует забывать о том, что провода, используемые для подачи переменного напряжения к нитям накала ламп, часто оказываются источником наводок, приводящих к появлению фона переменного тока. Поэтому для ослабления влияния наводок рекомендуется использовать несколько способов. Так, например, самым простым решением является применение так называемых электрически симметричных цепей питания накала, которые образуются путем заземления средней точки обмотки накала относительно шасси или же созданием искусственной средней точки с помощью потенциометра. Упрощенные принципиальные схемы электрически симметричных цепей питания накала приведены на рис. 4, б и 4, в.

В схеме, приведенной на рис. 4, в, потенциометр R1 должен быть рассчитан на мощность не менее 1 Вт и иметь сопротивление в несколько сотен Ом, например от 100 до 680 Ом.

Необходимо отметить, что в некоторых случаях при использовании схемы с искусственной средней точкой (рис. 4, в) для накала ламп входных каскадов движок симметрирующего потенциометра не подключается к корпусу. На него подается небольшой положительный потенциал в несколько десятков вольт, который формируется специальным делителем из постоянного напряжения питания анодных цепей (рис. 5, а). Так, например, для лампы типа 6Н2П это напряжение может составлять 20-30 В. Постоянное напряжение в несколько десятков вольт может подаваться и непосредственно на среднюю точку накальной обмотки силового трансформатора (рис. 5, б). Для лампы типа 6Н2П это напряжение может составлять 50 В.

В ламповых усилителях аппаратуры высокой верности воспроизведения звука, если для снижения уровня фона рассмотренных мер недостаточно, накал ламп входных каскадов следует питать напряжением постоянного тока, которое формируется отдельным источником. Принципиальные схемы таких источников питания, основу которых составляет двухполупериодный или мостовой выпрямитель, приведены на рис. 6. Необходимо отметить, что схему, изображенную на рис. 6, а, рекомендуется применять для ламп с током накала меньше 300 мА. Для ламп с током накала 0,3 А и выше желательно использовать схему, приведенную на рис. 6, в. При этом обмотка накала должна быть рассчитана на напряжение, вдвое большее, чем номинальное напряжение накала соответствующей лампы. Так, например, для ламп с напряжением накала 6,3 В обмотка накала силового трансформатора должна обеспечивать напряжение 12,6 В.

Дополнительную защиту от возникновения наводок с одновременным снижением фона, вызванного пульсациями питающего напряжения, обеспечивают стабилизированные источники питания, формирующие напряжения для цепей накала ламп УНЧ. Принципиальная схема одного из вариантов такого источника, выполненного на интегральной микросхеме, приведена на рис. 7.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ КОРПУСОВ
ПРИБОР ДЛЯ ЭКОНОМИИ ЭЛЕКТРОЭНЕРГИИ

Лаборатория звуковой техники: Блок питания с фильтрацией для лампового предусилителя: электронный дроссель

При построении любой маломощной конструкции на лампах одним из первых встаёт вопрос анодного питания.

Блок питания это и так - в принципе - наиважнейшая часть любого электронного устройства, но почему в данной статье я упоминаю питание именно маломощных и именно ламповых устройств? И вообще - что я подразумеваю под этими самыми устройствами?

Ну, во-первых, в соответствии с тематикой блога, это устройства звукоусиления. А это могут быть - в первую очередь - предварительные усилители для звукозаписи, которые в последнее время очень популярны именно на лампах. Ну и устройства на их основе - ламповые фонокорректоры, ламповые темброблоки, ламповые гитарные эффекты.

Специфика питания маломощных ламп - это малый ток, но при этом довольно высокое напряжение. И - для этого типа устройств - постоянное напряжение с очень хорошей фильтрацией, т.е. максимально сглаженное, с минимумом (отсутствием?) пульсаций.

В классических усилителях мощности с линейными блоками питания проблема пульсаций решается, как правило, применением конденсаторов большой ёмкости (зачастую соединённых помногу в параллель) и даже дросселей. Но я не просто так в самом начале подчеркнул, что речь идёт о блоке питания именно для микромощного (предварительного) усилителя. В этом случае конденсаторы большой ёмкости будут

  • занимать слишком много места, если конструкция компактна
  • стоить, возможно, дороже, чем вся конструкция в целом
  • перегружать маломощный анодный трансформатор в момент заряда
  • Чтоб обеспечить хорошую фильтрацию сигнала и при этом сэкономить место/средства, помогает популярная конструкция под названием "электронный дроссель".
  • Схема эта известна очень давно и имеет огромное множество повторений и модификаций, ею воспользовались сотни радиолюбителей-конструкторов. Поэтому принцип ещё действия я описывать не буду (мы против копипасты!), хотя порекомендую, всё таки, почитать самую удачную, на мой взгляд, статью об этой схеме от Олега Иванова.

    Мы не претендуем на авторство данной схемы, и, в свою очередь,  взяли за основу схему, описанную в статье по ссылке выше и немного модифицировали её, как, в своё время, Олег Иванов модифицировал одну из первых схем стабилизатора.

    Данная схема - ниже.

    В начале - как и обычно - идёт диодный мост, который может быть выполнен как из четырёх отдельных диодов, так и в виде конструкции в одном корпусе. Диоды рекомендуем использовать на ток не менее 2А. Несмотря на то, что рабочие токи схем, которые будут питаться данной конструкцией, составляют десятки, а то и единицы миллиампер, сравнительно высок и скачкообразен ток в момент заряда конденсатора. Он может вывести из строя маломощные диоды даже при целой и работоспособной внешне конструкции.

    Затем идут включённые в параллель два или более конденсатора на высокое напряжение, ёмкость которых сравнительно невелика (может быть 22мкФ, 33мкф, 47мкФ). Решение в пользу именно нескольких конденсаторов, включённых в параллель, вместо одного большого, сделано в пользу понижения стоимости конструкции и уменьшения её размера.
    Затем, через резистор в 0,47 - 1кОм, чтобы обеспечить второй порядок в фильтрации, включается ещё один или несколько соединённых конденсаторов в параллель, общей ёмкостью, соизмеримой с общей ёмкостью конденсаторов, стоящих перед резистором.

    Далее - схема с использованием полевого транзистора, принцип работы которой подробно описан в статье, одной из ключевых частей которой является множество соединённых в параллель металоплёночных или других, не электролитических конденсаторов. Впрочем, некоторые другие авторы в данной конструкции считают допустимым использовать и оксидные конденсаторы, соблюдая при этом полярность.
    После непосредственно стабилизатора мы предусмотрели делитель напряжения, который, с которого, при необходимости, можно подать смещающее напряжение на нить накала лампы, как это рекомендуют конструкторы ламповой техники, особенно в SRPP каскадал, чтобы снизить фон и вероятность пробоя через нить накала.

    Резистор R8 нужен, если в схему будет вводиться миллиамперметр или индикатор появления нагрузки. Сопротивление его подбирается таким образом, чтобы падение напряжения на нём при рабочем токе соответствовало нужному напряжению для отклонения стрелки индикатора или свечения светодиода. Так, R=U/I, где U - необходимое напряжение, I - рабочий ток. Например, чтобы при токе 10мА загорался светодиод с рабочим напряжением 2.2В, необходимо сопротивление 22Ом мощностью не менее 0,25Вт.
    Если же потребности в индикации нет, резистор следует заменить шунтом.


    Теперь рассмотрим конструкцию, которую мы разработали и теперь выпускаем серийно для использования коллегами-радиолюбителями в своих изделиях.

    На одной печатной плате размером 170х40мм мы, помимо электронного дросселя, расположили выпрямитель и стабилизатор напряжения накала. Рабочий ток его, правда, невелик и эта часть схемы может быть использована только в случае работа на одну лампу с током накала 150мА и входным напряжением не более 12В. Для работы с лампами с бОльшим током накала, но не более 1А, понадобится более массивный радиатор.
    При питании накала переменным напряжением или от отдельного выпрямителя данная (нижняя) часть схемы (левая часть платы) часть схемы не собираться.

    Как вы видите на изображении разводки (layout), на плате предусмотрено место для диодов разных типоразмеров а так же для диодного моста. Переменное высокое напряжение с анодного трансформатора подаётся на точки 250V AC in.

    Два конденсатора в параллель второй части фильтра могут быть заменены на один бОльшей ёмкости, предусмотрено место ИЛИ для двух малых ИЛИ для одного большого. В самой правой части платы предусмотрено место для включения нескольких конденсаторов в параллель. Оно выполнено в виде макетной области специально для того, чтобы можно было установить различное количество конденсаторов разных типоразмеров (предположим, 3 конденсатора по 3,3мкФ 400В или 4 конденсатора по 2,2мкФ 400В).
    Так же предусмотрена возможность расположить на плате предохранитель-плавкую вставку или многоразовый термостатический предохранитель. Выход выпрямленного и отфильтрованного напряжение - HV DC out +-, выход делителя для смещения на нить накала - heat DC shift.

    Существует несколько модификаций данной конструкции. Вы можете скачать по ссылкам ниже файлы разводки для самостоятельного изготовления. Так же вы можете заказать у нас качественный (заводские) готовые платы данного проекта.

    Для этого используйте расположенную слева форму для обратной связи.

    Модификация 1: 160х40мм, только электронный дроссель.

  • Скачать файл в формате Sprint Layout
  • Разводка
  • Внешний вид устройства (плата справа)

    Модификация 2. 170х40мм, электронный дроссель и выпрямитель для накала.

  • Скачать файл в формате Sprint Layout
  • Разводка
  • Внешний вид готовых плат
  • Собранное устройство

    Модификация 3. 170х37мм, расширенная ёмкость (увеличено количество посадочных мест под конденсаторы)

  • Скачать файл в формате Sprint Layout
  • Разводка

    Модификация 4. 90х39мм, уменьшенный размер.

  • Скачать файл в формате Sprint Layout
  • Разводка

  • СТАБИЛИЗАЦИЯ ВЫХОДНЫХ НАПРЯЖЕНИЙ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

    СТАБИЛИЗАЦИЯ ВЫХОДНЫХ НАПРЯЖЕНИЙ
    ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

    СТАТЬЯ ПОДГОТОВЛЕНА НА ОСНОВЕ КНИГИ А. В. ГОЛОВКОВА и В. Б ЛЮБИЦКОГО "БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT" ИЗДАТЕЛЬСТВА «ЛАД и Н»

    СТАБИЛИЗАЦИЯ ВЫХОДНЫХ НАПРЯЖЕНИЙ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

        Схема стабилизации выходных напряжений в рассматриваемом классе ИБП представляет собой замкнутую петлю автоматического регулирования (рис. 31). Эта петля включает в себя:
        • схему управления 8;
        • согласующий предусилительный каскад 9;
        • управляющий трансформатор DT;
        • силовой каскад 2;
        • силовой импульсный трансформатор РТ;
        • выпрямительный блок 3;
        • дроссель межканальной связи 4;
        • блок фильтров 5;
        • делитель напряжения обратной связи 6;
        • делитель опорного напряжения 7.
        В составе схемы управления 8 имеются следующие функциональные узлы:
        • усилитель сигнала рассогласования 8.1 с цепью коррекции Zk;
        • ШИМ-компаратор (модулятор) 8.2;
        • генератор пилообразного напряжения (осциллятор) 8.3;
        • источник опорного стабилизированного напряжения Uref 8.4.
        В процессе работы усилитель сигнала рассогласования 8.1 сравнивает выходной сигнал делителя напряжения б с опорным напряжением делителя 7. Усиленный сигнал рассогласования поступает на широтно-импульсный модулятор 8.2, управляющий предоконечным каскадом усилителя мощности 9, который, в свою очередь, подает модулированный управляющий сигнал на силовой каскад преобразователя 2 через управляющий трансформатор DT. Питание силового каскада производится по бестрансформаторной схеме. Переменное напряжение питающей сети выпрямляется сетевым выпрямителем 1 и подается на силовой каскад, где сглаживается конденсаторами емкостной стойки. Часть выходного напряжения стабилизатора сравнивается с постоянным опорным напряжением и затем осуществляется усиление полученной разности (сигнала рассогласования) с введением соответствующей компенсации. Широтно-импульсный модулятор 8.2 преобразует аналоговый сигнал управления в широтно-модулированный сигнал с переменным коэффициентом заполнения импульса. В рассматриваемом классе ИБП схема модулятора осуществляет сравнение сигнала, поступающего с выхода усилителя сигнала рассогласования с напряжением пилообразной формы, которое получается от специального генератора 8.3.


        Рисунок 31. Контур регулирования типового импульсного блока питания на основе управляющей микросхемы TL494.

        Основными передаточными функциями ИБП являются функция вход-выход, характеризующая способность схемы подавлять входные шумы и пульсации и не пропускать их на выход, и функция управление-выход, характеризующая степень изменения выходных напряжений при различных коэффициентах заполнения импульсов. В системе с замкнутой обратной связью коэффициент заполнения импульсов определяется усиленным и компенсированным сигналом рассогласования. Поясним это подробнее.
        Допустим, некоторое возмущающее воздействие (например, увеличение токопотребления в нагрузке) первоначально вызвало отклонение выходного напряжения на некоторую величину в сторону уменьшения. Поэтому между опорным напряжением и сигналом обратной связи изменяется величина рассогласования. Благодаря этому увеличивается ширина выходных импульсов модулирующей схемы 8-2. Поэтому выходное напряжение увеличивается, но не достигает прежнего значения, а устанавливается на уровне чуть меньшем, чем до воздействия возмущения, и сохраняется на этом новом уровне до тех пор, пока повышенное токопотребление в нагрузке не прекратится. Вновь установившийся уровень выходного напряжения обеспечивает ту величину сигнала рассогласования, которая, будучи усиленной усилителем ошибки 8.1, определяет новую ширину управляющего импульса, поддерживающую этот новый уровень выходного напряжения. Другими словами, система переходит в новое состояние динамического равновесия, но при большем, чем ранее, сигнале рассогласования и другой (большей) ширине управляющих импульсов.
        Совершенно очевидно, что чем больше коэффициент усиления усилителя ошибки, тем меньше изменение выходного напряжения, которое обусловит необходимую для поддержания этого напряжения ширину управляющих импульсов. Поэтому, казалось бы, коэффициент усиления усилителя 8.1 желательно иметь максимально большим. Однако величина усиления ограничивается условием устойчивой работы всей петли регулирования в целом. Значение коэффициента усиления по петле обратной связи равно произведению коэффициентов усиления типовых звеньев, входящих в контур обратной связи, а его фазовый сдвиг равен сумме фазовых сдвигов типовых звеньев. Поэтому коэффициент усиления по петле обратной связи и его фаза определяют стабильность работы системы и возможность возникновения в ней генерации.
        Для того, чтобы система работала устойчиво, АЧХ и ФЧХ усилителя 8.1 схемотехнически подвергается коррекции с помощью корректирующей цепи Zk, которая включается как звено отрицательной обратной связи, охватывающей усилитель ошибки 8.1. При этом конфигурация цепочки Zk обеспечивает необходимую зависимость глубины этой ООС от частоты усиливаемого сигнала. Проще говоря, Zk - это цепь, при помощи которой вводится отрицательная частотно-зависимая обратная связь. Поясним подробнее физический смысл включения этой очень важной цепочки. Как известно из теории, для возникновения генерации в замкнутой системе необходимо, чтобы выполнялись два условия. Первое из этих условий называется балансом фаз и заключается в том, чтобы суммарный фазовый сдвиг, вносимый всеми звеньями замкнутой системы на данной частоте, был бы равен 360 градусов. Тогда обратная связь превращается в положительную и появляется возможность для самовозбуждения системы. Второе условие, называемое балансом амплитуд, заключается в том, чтобы коэффициент петлевого усиления на данной частоте был бы больше 1. При выполнении обоих этих условий одновременно в замкнутой петле регулирования возникает генерация.
        Применительно к контуру регулирования выходных напряжений ИБП это будет выглядеть примерно таким же образом. Фазовый сдвиг, вносимый каждым из элементов петли регулирования, не является постоянным, а зависит от частоты. Поэтому обязательно имеется некоторая час тота, на которой суммарный фазовый сдвиг петли регулирования становится равным 360 градусов. Именно на этой частоте и возможно возникновение генерации. Эта возможность реализуется, если коэффициент петлевого усиления, который, как было отмечено, определяется произведением коэффициентов усиления всех звеньев петли, будет иметь величину, превышающую 1 на указанной частоте. Из сказанного ясно, что для того, чтобы избежать возникновения такой паразитной генерации, имеется только один путь. Поскольку петлевое усиление определяется в основном усилителем ошибки 8.1, то этот путь заключается в том, чтобы скорректировать АЧХ усилителя ошибки (а значит и АЧХ всей петли регулирования в целом) таким образом, чтобы на частоте, где суммарный фазовый сдвиг в петле становится равным 360 градусов, коэффициент петлевого усиления был бы меньше 1. Функцию такого изменения АЧХ усилителя 8.1 и выполняет цепь коррекции Zk, которая обычно выполняется в виде интегрирующего RC-звена. Несмотря на то, что цепь компенсации Zk является очень малой частью полной схемы ИБП, именно она является "ключом" для устойчивой работы системы.
        Поясним все вышесказанное применительно к рассматриваемому классу ИБП на основе управляющей микросхемы TL494.
        Стабилизация выходных напряжений осуществляется методом широтно-импульсной модуляции. Суть его заключается в том, что сигнал обратной связи, пропорциональный уровню напряжения в канале +5В, при гальванической подаче его на неинвертирующий вход усилителя ошибки DA3 (вывод 1 микросхемы TL494), определяет ширину выходного импульса микросхемы и изменяет ее в соответствии с отклонениями выходного напряжения канала +5Вот номинального значения.
        Рассмотрим динамику процесса стабилизации.
        Пусть под воздействием какого-либо дестабилизирующего фактора (например, скачкообразного изменения нагрузки) выходное напряжение в канале +5В уменьшилось. Тогда уменьшится уровень сигнала обратной связи на неинвертирующем входе усилителя ошибки DA3. Следовательно, выходное напряжение усилителя уменьшится. Поэтому увеличится ширина выходных импульсов микросхемы на выводах 8 и 11. Значит увеличится время открытого состояния за период силовых ключевых транзисторов инвертора. Следовательно, большую, чем ранее, часть периода через первичную обмотку силового импульсного трансформатора будет протекать нарастающий ток. Следовательно, большую, чем ранее, часть периода в сердечнике трансформатора будет существовать нарастающий магнитный поток, а значит, дольше, чем ранее, на вторичных обмотках этого трансформатора будут действовать наведенные этим потоком ЭДС Другими словами, импульсы ЭДС на вторичной стороне силового трансформатора станут шире (при неизменном периоде следования). Поэтому увеличивается постоянная составляющая, выделяемая сглаживающим фильтром из импульсной последовательности после выпрямления, т.е. выходное напряжение канала +5В увеличится, возвращаясь к номинальному значению.
        При увеличении выходного напряжения +5В процессы в схеме будут обратными.
        Стабилизация выходных напряжений остальных каналов может осуществляться по-разному в разных схемах. Традиционным схемотехническим решением является применение метода групповой стабилизации. Для этого в схему блока включается специальный элемент межканальной связи, в качестве которого обычно используется многообмоточный дроссель.
        При этом изменение любого выходного напряжения приводит благодаря электромагнитной связи между обмотками дросселя групповой стабилизации к соответствующему изменению выходного напряжения +5В с последующим включением механизма ШИМ. Дроссель групповой стабилизации обычно представляет собой четыре обмотки (по одной обмотке в каждом выходном канале БП), намотанные на одном кольцевом ферритовом сердечнике и включенные синфазно. В этом случае дроссель выполняет в схеме две функции:
        • функцию сглаживания пульсации выпрямленного напряжения - при этом каждая обмотка для своего канала представляет сглаживающий дроссель фильтра и работает как обычный дроссель;
        • функцию межканальной связи при групповой стабилизации - при этом благодаря электромагнитной связи через общий сердечник дроссель работает как трансформатор, передающий изменения величины токов, протекающих через обмотки каналов +12В, -12В и -5В в обмотку канала +5В.
        Поясним это подробнее. Особенностью работы ИБП в персональном компьютере является то, что потребляемый от ИБП ток зависит от выполняемой в данный момент операции, т.е. скачкообразно изменяется. Пусть, например, в данный момент времени скачкообразно возросла токовая нагрузка в канале +12В. Увеличение тока через обмотку дросселя, включенную в канале +12В, вызывает увеличение магнитного потока в сердечнике дросселя. Изменение магнитного потока, в свою очередь, наводит во всех остальных обмотках дросселя ЭДС, полярность которых (благодаря синфазной намотке обмоток дросселя) во всех каналах оказывается включенной встречно по отношению к выходным напряжениям выпрямителей. Поэтому выходные напряжения всех каналов (в том числе и канала +5 В) уменьшаются. Сигнал обратной связи с канала +5 В гальванически передается на схему ШИМ, которая увеличивает длительность выходных управляющих импульсов. Поэтому выходные напряжения всех каналов ИБП увеличиваются, возвращаясь к номинальному значению. При изменении токовой нагрузки в других каналах схема работает аналогично. Однако коэффициент стабилизации выходных напряжений во всех каналах, кроме канала +5В, получается невысоким, т.е. стабилизация напряжений +12В, -12В и -5В будет хуже, чем в канале +5В, за которым производится непосредственное "слежение". Такой способ полной групповой стабилизации используется, например, в ИБП KYP-150W (рис.27).
        Существуют варианты импульсных блоков питания с неполной групповой стабилизацией, как например LPS-02-150ХТ. В схеме этого ИБП через дроссель групповой стабилизации "связаны" только три выходных напряжения (+5В, +12В и -12В). Стабилизация напряжения -5В производится другим способом - с помощью линейного интегрального стабилизатора типа 7905 (рис.28). Дроссель связи в этом случае выполнен трехобмоточным. Механизм использования дросселя групповой стабилизации применяется в подавляющем большинстве случаев, однако изредка встречаются ИБП, в которых этот механизм не используется. В таких ИБП на выходе канала выработки -5В и -12В стоят стабилизаторы напряжений типа 7905 и 7912 (гораздо реже - 7805 и 7812), а обратная связь на микросхему IC1 по выводу 1 заведена через рези-стивный делитель-датчик от выходных напряжений +5В и +12В (рис. 32). Сигнал обратной связи в этом случае является суммарным, т.к. уровень его определяется уровнями напряжений на обеих шинах, и поэтому оба выходных напряжения (+5В и +12В) стабилизируются методом ШИМ. И, наконец, встречаются варианты ИБП, в которых напряжение -5В получается из -12В с помощью интегрального стабилизатора, а само напряжение -12В вообще не стабилизируется. В схемах последних двух типов многообмоточный дроссель межканальной связи отсутствует.
        Схемы стабилизации могут различаться, кроме того, способом подачи сигнала обратной связи и опорного напряжения на входы усилителя ошибки DA3. При этом в этих цепях могут быть установлены регулировки, позволяющие изменять уровни выходных напряжений ИБП при его настройке. Поскольку усилитель ошибки по напряжению DA3 является дифференциальным усилителем, т.е. усиливает разность подаваемых на его входы 1 и 2 сигналов, то регулировка может стоять в цепи как одного, так и другого входа. При этом неинвертирующий вход DA3 (вывод 1 микросхемы) всегда используется для подачи сигнала обратной связи, а инвертирующий вход (вывод 2 микросхемы) - для подачи опорного напряжения. Это объясняется тем, что для нормальной работы петли регулирования выходное напряжение усилителя ошибки DA3 должно изменяться в фазе с сигналом обратной связи.
        Регулировка выходных напряжений блока может осуществляться двояко:
        • с помощью изменения уровня сигнала обратной связи при неизменном опорном напряжении на выводе 2;
        • с помощью изменения уровня опорного напряжения на выводе 2 при неизменном уровне сигнала обратной связи по входу 1.
        Первый из этих случаев иллюстрируется рис. 32, а второй - рис. 33.


    Рисунок 32. Регулировка уровня выходных напряжений ИБП PS-200B.


    Рисунок 33. Регулировка уровня выходных напряжений ИБП LPS-02-150XT.


    Рисунок 34. Регулировка уровня выходных напряжений ИБП "Appis".


    Рисунок 35. Регулировка уровня выходных напряжений ИБП GT-200W.

        Однако наиболее распространенным является случай, когда регулировка, позволяющая воздействовать на выходные напряжения блока, отсутствует. В этом случае напряжение на любом из входов 1 или 2 выбирается произвольным в пределах от +2,5 до +5 В, а напряжение на оставшемся входе подбирается с помощью высокоом-ного шунтирующего резистора таким, чтобы блок выдавал оговоренные в паспорте выходные напряжения в номинальном нагрузочном режиме. Рис. 35 иллюстрирует случай подбора уровня опорного напряжения, рис. 34 - показывает случай подбора уровня сигнала обратной связи. Ранее было отмечено, что значение нестабильности выходного напряжения при воздействии любых дестабилизирующих факторов (изменение тока нагрузки, напряжения питающей сети и температуры окружающей среды) можно было бы уменьшить, увеличивая коэффициент усиления цепи обратной связи (коэффициент усиления усилителя DA3).
        Однако максимальное значение коэффициента усиления DA3 ограничивается условием обеспечения устойчивости. Поскольку как ИБП, так и нагрузка содержат реактивные элементы (индуктивность или емкость), накапливающие энергию, то в переходных режимах происходит перераспределение энергии между этими элементами. Это обстоятельство может привести к тому, что при определенных параметрах элементов переходный процесс установления выходных напряжений ИБП примет характер незатухающие колебаний, или же величина перерегулирования в переходном режиме будет достигать недопустимых значений.


    Рисунок 36. Переходные процессы (колебательный и апериодический) выходного напряжения ИБП при скачкообразном изменении тока нагрузки (а) и входного напряжения (б).

        На рис. 36 изображены переходные процессы выходного напряжения при скачкообразном изменении тока нагрузки и входного напряжения. ИБП работает устойчиво, если выходное напряжение вновь принимает установившееся значение после прекращения действия возмущения, выведшего его из первоначального состояния (рис. 37,а).


    Рисунок 37. Переходные процессы выходного напряжения ИБП в устойчивой (а) и неустойчивой (б) системах.

        Если это условие не соблюдается, то система является неустойчивой (рис.37,6). Обеспечение устойчивости импульсного блока питания является необходимым условием его нормального функционирования. Переходный процесс в зависимости от параметров ИБП носит колебательный или апериодический характер, при этом выходное напряжение ИБП имеет определенное значение перерегулирования и время переходного процесса. Отклонение выходного напряжения от номинального значения выявляется в измерительном элементе цепи обратной связи (в рассматриваемых ИБП в качестве измерительного элемента используется резистивный делитель, подключаемый к шине выходного напряжения +5В). Из-за инерционности петли регулирования номинальное значение выходного напряжения устанавливается с определенным запаздыванием. При этом схема управления по инерции некоторое время еще будет продолжать свое воздействие в том же направлении. В результате этого имеет место перерегулирование, т.е. отклонение выходного напряжения от его номинального значения в направлении, противоположном первоначальному отклонению. Схема управления вновь изменяет выходное напряжение в противоположную сторону и т.д. Для того чтобы обеспечить устойчивость петли регулирования выходных напряжений ИБП при минимальной длительности переходного процесса, амплитудно-частотная характеристика усилителя ошибки DA3 подвергается коррекции. Это делается с помощью RC-цепочек, включаемых как цепи отрицательной обратной связи, охватывающей усилитель DA3. Примеры таких корректирующих цепочек показаны на рис. 38.


    Рисунок 38. Примеры конфигурвции корректирующих RC-цепочек для усилителя ошибки по напряжению DA3.

        Для уменьшения уровня помехообразования на вторичной стороне импульсного блока питания устанавливаются апериодические RC-цепочки. Остановимся подробнее на принципе их действия.
        Переходный процесс тока через диоды выпрямителя в моменты коммутации происходит в виде ударного возбуждения (рис. 39,а).


    Рисунок 39. Временные диаграммы напряжения на диоде восстановления обратного сопротивления:
    а) - без RC-цепочки; б) - при наличии RC-цепочки.

        Этот процесс создает электромагнитные помехи с частотой десятки мегагерц. Через межобмоточные емкости трансформатора и межвитковые емкости дросселя сглаживающего фильтра эти помехи проникают в первичную сеть и на выход ИБП. Для уменьшения этих помех необходимо изменить характер переходного процесса в области обратного тока диодов выпрямителя так, чтобы он имел апериодический характер. Преимущество апериодического переходного процесса перед колебательным заключается в снижении амплитуды первоначального выброса за счет заряда конденсатора RC-цепочки, а также в более быстром его затухании за счет резистора этой цепочки, который снижает добротность паразитного колебательного контура. Эффективным методом обеспечения апериодического характера переходного процесса и является подключение RC-цепочки параллельно обмоткам трансформатора и диодам выпрямителя, как показано на рис.30. При использовании RC-цепочки переходный процесс изменения тока через диод в режиме восстановления его обратного сопротивления имеет вид, показанный на рис. 39,6.

     

     


    Адрес администрации сайта: [email protected]
       

     

    Дроссель энергосберегающей лампы. Инструкция по изготовлению импульсного блока питания из энергосберегающей лампы

    Энергосберегающие лампы широко применяются в быту и на производстве, со временем они приходят в негодность, а между тем многие из них после несложного ремонта можно восстановить. Если вышел из строя сам светильник, то из электронной «начинки» можно сделать довольно мощный блок питания на любое нужное напряжение.

    Как выглядит блок питания из энергосберегающей лампы

    В быту часто требуется компактный, но в то же время мощный низковольтный блок питания, сделать такой можно, используя вышедшую из строя энергосберегающую лампу. В лампах чаще всего выходят из строя светильники, а блок питания остается в рабочем состоянии.

    Для того чтобы сделать блок питания, необходимо разобраться в принципе работы электроники, содержащейся в энергосберегающей лампе.

    Достоинства импульсных блоков питания

    В последние годы наметилась явная тенденция к уходу от классических трансформаторных блоков питания к импульсным. Это связано, в первую очередь, с большими недостатками трансформаторных блоков питания, таких как большая масса, малая перегрузочная способность, малый КПД.

    Устранение этих недостатков в импульсных блоках питания, а также развитие элементной базы позволило широко использовать эти узлы питания для устройств с мощностью от единиц ватт до многих киловатт.

    Схема блока питания

    Принцип работы импульсного блока питания в энергосберегающей лампе точно такой же, как в любом другом устройстве, например, в компьютере или телевизоре.

    В общих чертах работу импульсного блока питания можно описать следующим образом:

    • Переменный сетевой ток преобразуется в постоянный без изменения его напряжения, т.е. 220 В.
    • Широтно-импульсный преобразователь на транзисторах превращает постоянное напряжение в прямоугольные импульсы, с частотой от 20 до 40 кГц (в зависимости от модели лампы).
    • Это напряжение через дроссель подается на светильник.

    Рассмотрим схему и порядок работы импульсного блока питания лампы (рисунок ниже) более подробно.

    Схема электронного балласта энергосберегающей лампы

    Сетевое напряжение поступает на мостовой выпрямитель(VD1-VD4) через ограничительный резистор R 0 небольшого сопротивления, далее выпрямленное напряжение сглаживается на фильтрующем высоковольтном конденсаторе (С 0), и через сглаживающий фильтр (L0) подается на транзисторный преобразователь.

    Запуск транзисторного преобразователя происходит в тот момент, когда напряжение на конденсаторе С1 превысит порог открытия динистора VD2. Это запустит в работу генератор на транзисторах VT1 и VT2, благодаря чему возникает автогенерация на частоте около 20 кГц.

    Другие элементы схемы, такие как R2, C8 и C11, играют вспомогательную роль, облегчая запуск генератора. Резисторы R7 и R8 увеличивают скорость закрытия транзисторов.

    А резисторы R5 и R6 служат как ограничительные в цепях баз транзисторов, R3 и R4 предохраняют их от насыщения, а в случае пробоя играют роль предохранителей.

    Диоды VD7, VD6 – защитные, хотя во многих транзисторах, предназначенных для работы в подобных устройствах, такие диоды встроены.

    TV1 – трансформатор, с его обмоток TV1-1 и TV1-2, напряжение обратной связи с выхода генератора подается в базовые цепи транзисторов, создавая тем самым условия для работы генератора.

    На рисунке выше красным цветом выделены детали, подлежащие удалению при переделке блока, точки А–А` нужно соединить перемычкой.

    Переделка блока

    Перед тем как приступить к переделке блока питания, следует определиться с тем, какую мощность тока необходимо иметь на выходе, от этого будет зависеть глубина модернизации. Так, если требуется мощность 20-30 Вт, то переделка будет минимальной и не потребует большого вмешательства в существующую схему. Если необходимо получить мощность 50 и более ватт, то модернизация потребуется более основательная.

    Следует иметь в виду, что на выходе блока питания будет постоянное напряжение, а не переменное. Получить от такого блока питания переменное напряжение частотой 50 Гц невозможно.

    Определяем мощность

    Мощность можно вычислить по формуле:

    Р – мощность, Вт;

    I – сила тока, А;

    U – напряжение, В.

    Например, возьмем блок питания со следующими параметрами: напряжение – 12 В, сила тока – 2 А, тогда мощность будет:

    С учетом перегрузки можно принять 24-26 Вт, так что для изготовления такого блока потребуется минимальное вмешательство в схему энергосберегающей лампы мощностью 25 Вт.

    Новые детали

    Добавление новых деталей в схему

    Добавляемые детали выделены красным цветом, это:

    • диодный мост VD14-VD17;
    • два конденсатора С 9 , С 10 ;
    • дополнительная обмотка, размещенная на балластном дросселе L5, количество витков подбирается опытным путем.

    Добавляемая обмотка на дроссель играет еще одну немаловажную роль разделительного трансформатора, предохраняя от попадания сетевого напряжения на выход блока питания.

    Чтобы определить необходимое количество витков в добавляемой обмотке, следует проделать следующие действия:

    1. на дроссель наматывают временную обмотку, примерно 10 витков любого провода;
    2. соединяют с нагрузочным сопротивлением, мощностью не менее 30 Вт и сопротивлением примерно 5-6 Ом;
    3. включают в сеть, замеряют напряжение на нагрузочном сопротивлении;
    4. полученное значение делят на количество витков, узнают, сколько вольт приходится на 1 виток;
    5. вычисляют необходимое число витков для постоянной обмотки.

    Более детальный расчет приведен ниже.

    Испытательное включение переделанного блока питания

    После этого легко вычислить необходимое число витков. Для этого напряжение, которое планируется получить от этого блока, делят на напряжение одного витка, получается количество витков, к полученному результату добавляют про запас примерно 5-10%.

    W=U вых /U вит, где

    W – количество витков;

    U вых – требуемое выходное напряжение блока питания;

    U вит – напряжение на один виток.

    Намотка дополнительной обмотки на штатный дроссель

    Оригинальная обмотка дросселя находится под напряжением сети! При намотке поверх нее дополнительной обмотки необходимо предусмотреть межобмоточную изоляцию, особенно если наматывается провод типа ПЭЛ, в эмалевой изоляции. Для межобмоточной изоляции можно применить ленту из политетрафторэтилена для уплотнения резьбовых соединений, которой пользуются сантехники, ее толщина всего 0,2 мм.

    Мощность в таком блоке ограничена габаритной мощностью используемого трансформатора и допустимым током транзисторов.

    Блок питания повышенной мощности

    Для этого потребуется более сложная модернизация:

    • дополнительный трансформатор на ферритовом кольце;
    • замена транзисторов;
    • установка транзисторов на радиаторы;
    • увеличение емкости некоторых конденсаторов.

    В результате такой модернизации получают блок питания мощностью до 100 Вт, при выходном напряжении 12 В. Он способен обеспечить ток 8-9 ампер. Этого достаточно для питания, например, шуруповерта средней мощности.

    Схема модернизированного блока питания приведена на рисунке ниже.

    Блок питания мощностью 100 Вт

    Как видно на схеме, резистор R 0 заменен на более мощный (3-ваттный), его сопротивление уменьшено до 5 Ом. Его можно заменить на два 2-ваттных по 10 Ом, соединив их параллельно. Далее, С 0 – его емкость увеличена до 100 мкф, с рабочим напряжением 350 В. Если нежелательно увеличивать габариты блока питания, то можно подыскать миниатюрный конденсатор такой емкости, в частности, его можно взять из фотоаппарата-мыльницы.

    Для обеспечения надежной работы блока полезно несколько уменьшить номиналы резисторов R 5 и R 6 , до 18–15 Ом, а также увеличить мощность резисторов R 7 , R 8 и R 3 , R 4 . Если частота генерации окажется невысокой, то следует увеличить номиналы конденсаторов C­ 3 и C 4 – 68n.

    Самым сложным может оказаться изготовление трансформатора. Для этой цели в импульсных блоках чаще всего используют ферритовые кольца соответствующих размеров и магнитной проницаемости.

    Расчет таких трансформаторов довольно сложен, но в интернете есть много программ, с помощью которых это очень легко сделать, например, «Программа расчета импульсного трансформатора Lite-CalcIT».

    Как выглядит импульсный трансформатор

    Расчет, проведенный с помощью этой программы, дал следующие результаты:

    Для сердечника используется ферритовое кольцо, его внешний диаметр – 40, внутренний – 22, а толщина – 20 мм. Первичная обмотка проводом ПЭЛ – 0,85 мм 2 имеет 63 витка, а две вторичных тем же проводом – 12.

    Вторичную обмотку необходимо наматывать сразу в два провода, при этом их желательно предварительно слегка скрутить между собой по всей длине, так как эти трансформаторы очень чувствительны к несимметричности обмоток. Если не соблюдать это условие, то диоды VD14 и VD15 будут нагреваться неравномерно, а это еще больше увеличит несимметричность что, в конце концов, выведет их из строя.

    Зато такие трансформаторы легко прощают значительные ошибки при расчете количества витков, до 30%.

    Так как эта схема изначально рассчитывалась для работы с лампой мощностью 20 Вт, то установлены транзисторы 13003. На рисунке ниже позиция (1) – транзисторы средней мощности, их следует заменить на более мощные, например, 13007, как на позиции (2). Возможно, их придется установить на металлическую пластину (радиатор), площадью около 30 см 2 .

    Испытание

    Пробное включение стоит проводить с соблюдением некоторых мер предосторожности, чтобы не вывести из строя блок питания:

    1. Первое пробное включение производить через лампу накаливания 100 Вт, чтобы ограничить ток на блок питания.
    2. К выходу обязательно подключить нагрузочный резистор 3-4 Ома, мощностью 50-60 Вт.
    3. Если все прошло штатно, дать поработать 5-10 мин., отключить и проверить степень нагрева трансформатора, транзисторов и диодов выпрямителя.

    Если в процессе замены деталей не были допущены ошибки, блок питания должен заработать без проблем.

    Если пробное включение показало работоспособность блока, остается испытать его в режиме полной нагрузки. Для этого сопротивление нагрузочного резистора уменьшить до 1,2-2 Ом и включить его в сеть напрямую без лампочки на 1-2 минуты. После чего отключить и проверить температуру транзисторов: если она превышает 60 0 С, то их придется установить на радиаторы.

    В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
    Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

    В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

    В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


    Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

    В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

    Отличие схемы КЛЛ от импульсного БП

    Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

    А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

    Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

    Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

    Какой мощности блок питания можно изготовить из КЛЛ?

    Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

    Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

    В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

    Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

    В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

    Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

    Импульсный трансформатор для блока питания

    Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

    Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

    Ёмкость входного фильтра и пульсации напряжения

    Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

    Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

    Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

    Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

    На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

    Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

    Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

    Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

    Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

    Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

    Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

    Мощность, подводимая к нагрузке – 20 Ватт.
    Частота автоколебаний без нагрузки – 26 кГц.
    Частота автоколебаний при максимальной нагрузке – 32 кГц
    Температура трансформатора – 60ºС
    Температура транзисторов – 42ºС

    Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

    Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

    Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

    Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

    Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

    Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

    Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

    Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

    Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
    Мощность, выделяемая на нагрузке – 100 Ватт.
    Частота автоколебаний при максимальной нагрузке – 90 кГц.
    Частота автоколебаний без нагрузки – 28,5 кГц.
    Температура транзисторов – 75ºC.
    Площадь радиаторов каждого транзистора – 27см².
    Температура дросселя TV1 – 45ºC.
    TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

    Выпрямитель

    Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

    Существуют две широко распространённые схемы двухполупериодных выпрямителей.

    1. Мостовая схема.
    2. Схема с нулевой точкой.

    Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

    Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

    Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

    Пример.
    Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

    100 / 5 * 0,4 = 8(Ватт)

    Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

    100 / 5 * 0,8 * 2 = 32(Ватт).

    Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

    В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

    Как правильно подключить импульсный блок питания к сети?

    Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

    При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

    На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

    Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

    Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

    Будьте осторожны, берегитесь ожога!
    Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
    То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

    Как наладить импульсный блок питания?

    Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

    Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

    Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

    Если сильно греются транзисторы, то нужно установить их на радиаторы.

    Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

    Каково назначение элементов схемы импульсного блока питания?

    R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

    VD1… VD4 – мостовой выпрямитель.

    L0, C0 – фильтр питания.

    R1, C1, VD2, VD8 – цепь запуска преобразователя.

    Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

    R2, C11, C8 – облегчают запуск преобразователя.

    R7, R8 – улучшают запирание транзисторов.

    R5, R6 – ограничивают ток баз транзисторов.

    R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

    VD7, VD6 – защищают транзисторы от обратного напряжения.

    TV1 – трансформатор обратной связи.

    L5 – балластный дроссель.

    C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

    TV2 – импульсный трансформатор.

    VD14, VD15 – импульсные диоды.

    C9, C10 – конденсаторы фильтра.

    Энергосберегающие лампочки нашли широкое применение, как в бытовых, так и в производственных целях. Со временем любая лампа приходит в неисправное состояние. Однако при желании светильник можно реанимировать, если собрать блок питания из энергосберегающей лампы. При этом в качестве составляющих блока используется начинка вышедшей из строя лампочки.

    Импульсный блок и его назначение

    На обоих концах трубки люминесцентной лампы имеются электроды, анод и катод. В результате подачи электропитания компоненты лампы разогреваются. После нагрева происходит выделение электронов, которые сталкиваются со ртутными молекулами. Следствием происходящего становится ультрафиолетовое излучение.

    За счет наличия в трубке люминофора осуществляется конвертация люминофора в видимое свечение лампочки. Свет появляется не сразу, а спустя определенный промежуток времени после подключения к электросети. Чем более выработан светильник, тем длительнее интервал.

    Работа импульсного блока питания основывается на следующих принципах:

    1. Преобразование переменного тока из электросети в постоянный. При этом напряжение не меняется (то есть остается 220 В).
    2. Трансформация постоянного напряжения в прямоугольные импульсы за счет работы широтного импульсного преобразователя. Частота импульсов составляет от 20 до 40 кГц.
    3. Подача напряжения на светильник посредством дросселя.

    Источник бесперебойного питания (ИБП) состоит из целого ряда компонентов, каждый из которых в схеме имеет свою маркировку:

    1. R0 - выполняет ограничивающую и предохраняющую роль в блоке питания. Устройство предотвращает и стабилизирует чрезмерный ток, идущий по диодам в момент подключения.
    2. VD1, VD2, VD3, VD4 - выступают в качестве мостов-выпрямителей.
    3. L0, C0 - являются фильтрами передачи электрического тока и защищают от перепадов напряжения.
    4. R1, C1, VD8 и VD2 - представляют собой цепь преобразователей, использующихся при запуске. В качестве зарядки конденсатора C1 используется первый резистор (R1). Как только конденсатор пробивает динистор (VD2), он и транзистор раскрываются, в результате чего начинается автоколебание в схеме. Далее прямоугольный импульс посылается на диодный катод (VD8). Возникает минусовой показатель, перекрывающий второй динистор.
    5. R2, C11, C8 - облегчают начало работы преобразователей.
    6. R7, R8 - оптимизируют закрытие транзисторов.
    7. R6, R5 - образуют границы для электротока на транзисторах.
    8. R4, R3 - используются в качестве предохранителей при скачках напряжения в транзисторах.
    9. VD7 VD6 - защищают транзисторы БП от возвратного тока.
    10. TV1 - является обратным коммуникативным трансформатором.
    11. L5 - балластный дроссель.
    12. C4, C6 - выступают как разделительные конденсаторы. Делят все напряжение на две части.
    13. TV2 - трансформатор импульсного типа.
    14. VD14, VD15 - импульсные диоды.
    15. C9, C10 - фильтры-конденсаторы.

    Обратите внимание! На схеме ниже красным цветом отмечены компоненты, которые нужно удалить при переделывании блока. Точки А-А объединяют перемычкой.

    Только продуманный подбор отдельных элементов и правильная их установка позволит создать эффективно и надежно работающий блок питания.

    Отличия лампы от импульсного блока

    Схема лампы-экономки во многом напоминает строение импульсного блока питания. Именно поэтому изготовить импульсный БП несложно. Чтобы переделать устройство, понадобятся перемычка и дополнительный трансформатор, который станет выдавать импульсы. Трансформатор должен иметь выпрямитель.

    Чтобы сделать БП более легким, удаляется стеклянная люминесцентная лампочка. Параметр мощности ограничивается наибольшей пропускной способностью транзисторов и размерами охлаждающих элементов. Для повышения мощности необходимо намотать дополнительную обмотку на дроссель.

    Переделка блока

    Прежде чем начинать переделку БП, необходимо выбрать выходную мощность тока. От этого показателя зависит степень модернизации системы. Если мощность будет находиться в пределах 20-30 Вт, не понадобятся глубокие изменения в схеме. Если же запланирована мощность свыше 50 Вт, модернизация нужна более системная.

    Обратите внимание! На выходе из БП будет постоянное напряжение. Получение переменного напряжения на частоте 50 Гц не представляется возможным.

    Определение мощности

    Вычисление мощности осуществляется согласно формуле:

    В качестве примера рассмотрим ситуацию с блоком питания, имеющим следующие характеристики:

    • напряжение - 12 В;
    • сила тока - 2 А.

    Вычисляем мощность:

    P = 2 × 12 = 24 Вт.

    Конечный параметр мощности будет больше - примерно 26 Вт, что позволяет учесть возможные перегрузки. Таким образом, для создания блока питания потребуется достаточно незначительное вмешательство в схему стандартной эконом-лампы на 25 Вт.

    Новые компоненты

    В число новых электронных компонентов входят:

    • диодный мост VD14-VD17;
    • 2 конденсатора C9 и C10;
    • обмотка на балластном дросселе (L5), количество витков которой определяется эмпирически.

    Дополнительная обмотка выполняет еще одну важную функцию - является разделяющим трансформатором и защищает от проникновения напряжения на выходы ИБП.

    Чтобы вычислить нужное количество витков в дополнительной обмотке, выполняются такие действия:

    1. Временно наносим обмотку на дроссель (приблизительно 10 витков провода).
    2. Стыкуем обмотку с сопротивлением нагрузки (мощность от 30 Вт и сопротивление 5-6 Ом).
    3. Подключаемся к сети и делаем замер напряжения при нагрузочном сопротивлении.
    4. Полученный результат делим на число витков и узнаем, сколько вольт приходится на каждый виток.
    5. Выясняем нужное количество витков для постоянной обмотки.

    Более подробно порядок расчета показан ниже.

    Для вычисления нужного количества витков планируемое напряжение для блока делим на напряжение одного витка. В результате получаем число витков. К итоговому результату рекомендуется прибавить 5-10 %, что позволит иметь определенный запас.

    Не стоит забывать, что оригинальная дроссельная обмотка находится под сетевым напряжением. Если нужно намотать на нее новый слой обмотки, позаботьтесь о межобмоточном изоляционном слое. Особенно важно соблюдать данное правило, когда наносится провод типа ПЭЛ в эмалевой изоляции. В качестве межобмоточного изоляционного слоя подойдет политетрафторэтиленовая лента (толщина 0,2 миллиметра), которая позволит повысить плотность резьбовых соединений. Такую ленту используют сантехники.

    Обратите внимание! Мощность в блоке ограничивается габаритной мощностью задействованного трансформатора, а также максимально возможным током транзисторов.

    Самостоятельное изготовление блока питания

    ИБП можно изготовить своими руками. Для этого понадобятся небольшие изменения в перемычке электронного дросселя. Далее выполняется подключение к импульсному трансформатору и выпрямителю. Отдельные элементы схемы удаляются ввиду их ненужности.

    Если блок питания не слишком высокомощный (до 20 Вт), трансформатор устанавливать необязательно. Хватит нескольких витков проводника, намотанных на магнитопровод, расположенный на балласте лампочки. Однако осуществить эту операцию можно только при наличии достаточного места под обмотку. Для нее подходит, к примеру, проводник типа МГТФ с фторопластовым изоляционным слоем.

    Провода обычно нужно не так много, поскольку практически весь просвет магнитопровода отдается изоляции. Именно этот фактор ограничивает мощность таких блоков. Для увеличения мощности потребуется трансформатор импульсного типа.

    Отличительной характеристикой такой разновидности ИИП (импульсного источника питания) считается возможность его подстраивания под характеристики трансформатора. Кроме того, в системе нет цепи обратной связи. Схема подключения такова, что в особенно точных подсчетах параметров трансформатора нет необходимости. Даже если будет допущена грубая ошибка при расчетах, источник бесперебойного питания скорее всего будет функционировать.

    Импульсный трансформатор создается на основе дросселя, на который накладывается вторичная обмотка. В качестве таковой используется лакированный медный провод.

    Межобмоточный изоляционный слой чаще всего выполнен из бумаги. В некоторых случаях на обмотку нанесена синтетическая пленка. Однако даже в этом случае следует дополнительно обезопаситься и намотать 3-4 слоя специального электрозащитного картона. В крайнем случае используется бумага толщиной от 0,1 миллиметра. Медный провод накладывается только после того, как предусмотрена данная мера безопасности.

    Что касается диаметра проводника, он должен быть максимально возможным. Количество витков во вторичной обмотке невелико, поэтому подходящий диаметр обычно выбирают методом проб и ошибок.

    Выпрямитель

    Чтобы не допустить насыщения магнитопровода в источнике бесперебойного питания, используют исключительно двухполупериодные выходные выпрямители. Для импульсного трансформатора, работающего на уменьшение напряжения, оптимальной считается схема с нулевой отметкой. Однако для нее нужно изготовить две абсолютно симметричные вторичные обмотки.

    Для импульсного источника бесперебойного питания не подойдет обычный выпрямитель, функционирующий согласно схеме диодного моста (на кремниевых диодах). Дело в том, что на каждые 100 Вт транспортируемой мощности потери составят не менее 32 Вт. Если же изготавливать выпрямитель из мощных импульсных диодов, затраты будут велики.

    Наладка источника бесперебойного питания

    Когда собран блок питания, остается присоединить его к наибольшей нагрузке, чтобы проверить - не перегреваются ли транзисторы и трансформатор. Температурный максимум для трансформатора - 65 градусов, а для транзисторов - 40 градусов. Если трансформатор чересчур нагревается, нужно взять проводник с большим сечением или же увеличить габаритную мощность магнитопровода.

    Перечисленные действия можно выполнить одновременно. Для трансформаторов из дроссельных балансов нарастить сечение проводника вероятнее всего не удастся. В этом случае единственный вариант - сокращение нагрузки.

    ИБП высокой мощности

    В некоторых случаях стандартной мощности балласта не хватает. В качестве примера приведем такую ситуацию: есть лампа мощностью 24 Вт и необходим ИБП для зарядки с характеристиками 12 B/8 A.

    Для реализации схемы понадобится неиспользуемый компьютерный БП. Из блока достаем силовой трансформатор вместе с цепью R4C8. Данная цепочка защищает силовые транзисторы от чрезмерного напряжения. Силовой трансформатор соединяем с электронным балластом. В этой ситуации трансформатор заменяет дроссель. Ниже изображена схема сборки источника бесперебойного питания, основанная на лампочке-экономке.

    Из практики известно, что данная разновидность блоков дает возможность получать до 45 Вт мощности. Нагревание транзисторов находится в рамках нормы, не превышая 50 градусов. Чтобы полностью исключить перегревание, рекомендуется вмонтировать в транзисторные базы трансформатор с большим сечением сердечника. Транзисторы ставят непосредственно на радиатор.

    Потенциальные ошибки

    Нет смысла упрощать схему, накладывая базовые обмотки непосредственно на силовой трансформатор. В случае отсутствия нагрузки возникнут немалые потери, поскольку в транзисторные базы станет поступать ток большой величины.

    Если используется трансформатор с возрастанием тока нагрузки, повысится и ток в транзисторных базах. Эмпирически установлено, что после того, как показатель нагрузки доходит до 75 Вт, в магнитопроводе наступает насыщение. Результатом этого является снижение качества транзисторов и их чрезмерный нагрев. Чтобы не допустить такого развития событий, рекомендуется самостоятельно обмотать трансформатор, используя большее сечение сердечника. Также допускается складывание вместе двух колец. Еще один вариант состоит в использовании большего диаметра проводника.

    Базовый трансформатор, выступающий в качестве промежуточного звена, можно удалить из схемы. С этой целью токовый трансформатор присоединяют к выделенной обмотке силового трансформатора. Делается это с использованием высокомощного резистора на основе схемы обратной коммуникации. Минусом такого подхода является постоянное функционирование трансформатора тока в условиях насыщения.

    Недопустимо подключение трансформатора вместе с дросселем (находится в преобразователе балласта). В противном случае из-за снижения общей индуктивности возрастет частота ИБП. Следствием этого станут потери в трансформаторе и чрезмерный нагрев транзистора выпрямителя на выходе.

    Нельзя забывать о высокой отзывчивости диодов к повышенным показателям обратного напряжения и тока. К примеру, если поставить в схему на 12 вольт 6-вольтовый диод, данный элемент быстро придет в негодность.

    Не следует менять транзисторы и диоды на низкокачественные электронные компоненты. Рабочие характеристики элементной базы российского производства оставляют желать лучшего, и результатом замены станет снижение функциональности источника бесперебойного питания.

    Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

    Схема блока питания из лампочки


    Так как основной причиной выхода из строя компактных люминесцентных ламп является перегорание одной из нитей накала колбы, то практически их все можно переделать под импульсный блок питания с нужным напряжением.

    В данном конкретном случае я переделывал схему электронного балласта 15 ваттной лампочки в импульсный блок питания 12 вольт 1 ампер.


    Каждый производитель ламп имеет свои собственные наборы деталей с определенными номиналами в схемах изготавливаемых электронных балластов, но все схемы типовые. Поэтому на схеме я не приводил всю схему лампы, а указал только ее типовое начало и обвязку колбы лампы. Схема электронного балласта нарисована черным и красным цветом. Красным – выделены колба и конденсатор, подсоединенный к двум нитям накала. Их следует удалить. Зеленым цветом на схеме указаны элементы которые нужно добавить. Конденсатор С1 – следует заменить большей емкости, например, 10-20u 400v.


    В левой части схемы добавлен предохранитель и входной фильтр. L2 выполнен на кольце от материнской платы, имеет две обмотки по 15 витков проводом от витой пары Ø – 0.5 мм. Кольцо имеет наружный диаметр 16мм, внутренний – 8,5мм, ширину – 6,3мм. Дроссель L3 имеет 10 витков Ø – 1 мм, выполнен на кольце от трансформатора другой энергосберегающей лампы.

    Следует выбирать лампу с большей пустотой окна дросселя Tr1, так как его необходимо будет переделать в трансформатор. У меня получилось намотать по 26 витков Ø – 0.5 мм на каждую из половины вторичной обмотки. Такой вид намотки требует идеально симметричных половин обмотки. Чтобы добиться этого, рекомендую мотать вторичную обмотку сразу в два провода, каждый из которых будет служить симметричной половиной друг друга.

    Транзисторы оставил без радиаторов, т.к. предполагаемое потребление схемы меньше мощности, которую потребляла лампа. В качестве теста было подключено на максимальное свечение на 2 часа 5 метров RGB светодиодной ленты, потреблением 12v 1A.


    Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

    В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

    Можно посмотреть процесс изготовления самоделки в видео:

    Перечень инструментов и материалов
    -энергосберегающая люминисцентная лампа;
    -отвертка;
    -паяльник;
    -тестер;
    -светодиод белого свечения 10вт;
    -эмальпровод диаметром 0,4мм;
    -термопаста;
    -диоды марки HER, FR, UF на 1-2А
    -настольная лампа.

    Шаг первый. Разборка лампы.
    Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.


    Шаг второй. Переделка электронного преобразователя.
    Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

    Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
    Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.


    Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА, но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

    Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.


    Шаг третий. Сборка светодиодной настольной лампы.
    Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.


    Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.

    Драйвер и импульсный блок питания. Отличия, принцип работы. Что лучше выбрать?

    Многие довольно часто путают блоки питания и драйвера, подключая светодиоды и светодиодные ленты не от тех источников что нужно.

    В итоге через небольшой промежуток времени они выходят из строя, а вы и не подозреваете в чем была причина и начинаете ошибочно грешить на «некачественного» производителя.

    Рассмотрим подробнее в чем их отличия и когда нужно применять тот или иной источник питания. Но для начала кратко разберемся в типах блоков питания.

    Трансформаторный блок

    Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

    Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

    Частота сети при этом, привычные нам всем 50 Герц.

    Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

    У такой схемы 3 главных достоинства:

    • незамысловатость конструкции
    • относительная надежность

    Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.

    • во-первых это большой вес и приличные габариты
    • как следствие первого недостатка - большой расход металла на сборку всей конструкции
    • ну и ухудшает все дело низкий косинус фи и низкий КПД

    Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

    Импульсные блоки питания

    Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

    Далее стоит генератор импульсов. Главная его задача - создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

    Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

    Третий элемент в схеме - импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие - это маленькие габаритные размеры.

    Это как раз таки и достигается за счет высокой частоты.

    Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

    Преимущества импульсных блоков:

    • маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе
    • напряжение питания можно подавать в большом разбросе
    • при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

    Есть и недостатки:

    • усложненность сборочной схемы
    • сложная конструкция
    • если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования
    Проще говоря, блок питания что обычный, что импульсный - это устройство у которого на выходе строго одно напряжение. Его конечно можно "подкрутить", но в не больших диапазонах.

    Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

    В чем отличия драйвера от блока питания

    Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

    Драйвер - это устройство похожее на блок питания.

    Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

    Светодиоды "питаются" электрическим током. Также у них есть такая характеристика, как падение напряжения.

    Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

    При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

    Более того, светодиод - это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику - вольтамперной характеристике.

    Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

    Причем зависимость не прямо пропорциональная. 

    Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

    Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут "кушать" разный ток.

    Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

    А температурный диапазон работы светодиодных светильников очень большой.
    Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

    Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

    Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково - выгоранием светодиода.

    Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

    У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

    Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

    Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

    Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

    А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

    Недостатки драйверов

    Безусловно и у драйверов есть свои неоспоримые недостатки:

    • во-первых они рассчитаны только на определенный ток и мощность 

    А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

    Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

    Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже.

    • узкоспециализированность на светодиодах 

    Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

    Основное же предназначение драйверов - это светодиоды.

    А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

    Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

    Светодиодные ленты — подключение от блока питания или драйвера?

    Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

    Казалось бы в чем подвох? Там же тоже стоят светодиоды.

    А дело в том, что драйвер уже автоматически присутствует в самой ленте.

    Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

    Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

    Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

    И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

    Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства - эти резисторы не проделывают никакой полезной работы.

    Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

    Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

    Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

    Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

    Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

    Какие они? Что они делают? - 300Guitars.com

    Дроссель - это индуктор с железным сердечником, используемый в блоке питания гитарного усилителя в качестве фильтрующего элемента. Очень похожий на трансформатор, дроссель имеет только два вывода, выходящих из корпуса. Они предназначены для блокировки переменного тока при прохождении постоянного тока. Их цель в источниках фильтров гитарного усилителя - сгладить пульсации выпрямленного постоянного тока.

    В некоторых гитарных усилителях вместо дросселя используется резистор высокой мощности.Резистор вместо дросселя экономит деньги и до некоторой степени экономит время производства. Недостатком использования резистора является то, что после выпрямления в источнике питания возникает остаточная пульсация переменного тока, что приводит к немного большему фоновому гудению в вашем усилителе. Одним из примеров является твидовая модель 5E3 Fender Deluxe. В его питании фильтра нет дросселя.

    Дроссели имеют номиналы напряжения, постоянного тока (измеряется в миллиамперах), сопротивления (измеряется в омах) и индуктивности (измеряется в Генри). Типичный дроссель для гитарного усилителя мощностью 50 Вт рассчитан примерно на 500 вольт и 50 миллиампер.Сопротивление измеряется в диапазоне 250 Ом, а индуктивность составляет от 10 до 20 Генри. Индуктивность дросселя в сочетании с емкостью конденсаторов фильтра определяют низкочастотную характеристику усилителя. Дроссель с большим значением индуктивности будет иметь лучший басовый отклик, чем дроссель с меньшим значением. Усилитель с дросселем источника питания будет иметь более глубокие и четкие басы, чем тот, в котором вместо дросселя используется резистор.

    Говоря простыми словами, использование дросселя в источнике фильтра приводит к уменьшению фонового шума и более чистому, лучшему отклику низких частот.Использование резисторов позволяет сэкономить время и деньги, а также дает немного больше фонового шума и более слабый басовый отклик.

    Мой магазин находится по адресу 1 Executive Dr Unit L Toms River, NJ 08755 . Пожалуйста, напишите мне, если у вас есть какие-либо вопросы или вам нужна техническая работа.
    • Понедельник: 10.00 - 17.00
    • Вторник: 10.00 - 17.00
    • среда: выходной
    • Четверг: 10.00 - 17.00
    • Пятница: 10.00 - 17.00
    • Суббота 10.00 - 14.00.(Я бываю каждую вторую субботу).
    Я также являюсь дилером Eminence, Mercury Magnetics, Mojo Musical Supply. Я сам делаю всю техническую работу, так что вы имеете дело со мной напрямую. Я - магазин одного человека, и мои часы работы могут варьироваться, поэтому, пожалуйста, свяжитесь со мной, чтобы подтвердить, что я буду открыт. Напишите мне: [email protected] Позвоните или напишите мне: 848-218-0362 Информация о доставке для всех ремонтных работ: Пожалуйста, отправляйте весь ремонт по адресу: 1 Executive Dr Unit L Toms River, NJ 08755 В настоящее время я предлагаю все этапы гитарной работы, включая:
    • Установки
    • Ладовая повязка
    • Перетяжка
    • Новые костяные гайки и седла ручной резки на заказ
    • Электроника рабочая
    И усилитель рабочий в составе:
    • Базовое обслуживание
    • Регулировка смещения
    • Ремонт и реставрация
    • Модификации
    • И многое другое....
    Отзывы:
    Дэвид Николас - 20-ваттный усилитель звучит фантастически! Доставил товар на концерте, и я нахожу повсюду крутые тона с ним. Мне очень нравится кабина с Emenince Tonkerlites - идеально подходит для моих звуков! Делает 12-струнный звук похожим на рояль!
    Peter Lacis - Недавно у меня было прослушивание на что-то, что было полностью посвящено Led Zeppelin I. Мой пользовательский Pennalizer поразил умы парней, с которыми я играл.Они не могли поверить звукам, исходящим из этого усилителя. Когда мне в голову пришла эта идея, я никогда не думал об этом альбоме ... так что это еще одно свидетельство той потрясающей работы, которую вы делаете.
    Скотт Голдберг - Я очень доволен настройкой и быстрым поворотом. С «нижним» действием играть легче. Я обязательно буду распространять информацию.

    Что такое моторный дроссель и для чего он используется?

    Дроссель - это пассивное устройство, которое увеличивает индуктивность цепи.


    Изображение предоставлено: KEB America

    Индуктивность - это свойство катушки с проволокой, которая сопротивляется любому изменению тока, протекающего через нее. (Прямые провода также обладают небольшой индуктивностью.) Другими словами, если ток через катушку увеличивается, магнитное поле катушки создает напряжение (ЭДС), которое препятствует изменению. Индуктивность устройства определяет количество ЭДС, генерируемой при заданном изменении тока:

    Где:

    ЭДС = индуцированное напряжение (В)

    L = индуктивность (В * с / А = Генри, Гн)

    dI / dt = время нарастания тока (А / с)

    Дроссель двигателя - это общее название индуктивного устройства, установленного между выходом сервопривода или частотно-регулируемого привода (VFD) и выводами серводвигателя или асинхронного двигателя переменного тока.Его цель - уменьшить пики тока, возникающие на выходе привода из-за широтно-импульсной модуляции (ШИМ) напряжения.

    Дроссель двигателя - это индуктивное устройство, устанавливаемое между приводом и двигателем, которое часто рекомендуется, когда длина кабеля двигателя превышает 25 метров.
    Изображение предоставлено: Force Control Industries

    Широтно-импульсная модуляция - ключевой принцип работы большинства частотно-регулируемых приводов и сервоприводов. Он работает путем включения и выключения напряжения на управляющих транзисторах с очень высокой частотой - обычно в диапазоне 20 кГц - создавая импульсы напряжения.Частота переключения определяет ширину импульсов, а отношение времени включения к времени выключения определяет среднее напряжение, подаваемое на двигатель.

    Без моторного дросселя длинные кабели могут привести к отраженным волнам, которые вызовут скачки напряжения на двигателе.
    Изображение предоставлено: KEB America

    Однако ШИМ-управление вызывает резкие изменения сигналов привода, а также шум из-за высокочастотного переключения - проблемы, которые усугубляются при использовании длинных кабелей между приводом и двигателем.Как и катушки двигателя, кабели также обладают импедансом, и если импеданс кабеля сильно отличается от импеданса двигателя, может возникнуть отраженная волна, посылая напряжение обратно через кабель от клемм двигателя к приводу. Это напряжение может, в худшем случае, добавить к напряжению, подаваемому приводом, и привести к очень высокому напряжению на двигателе, вызывая значительный нагрев двигателя и повреждение изоляции двигателя и подшипников.

    Дроссель двигателя помогает решить эти проблемы, увеличивая время нарастания (dV / dt) сигналов привода.Это уменьшает острые углы или пики формы волны напряжения до закругленных краев, защищая двигатель от скачков напряжения и связанного с ними нагрева. Дроссель, расположенный между приводом и двигателем, также помогает уменьшить электромагнитные помехи от кабелей и возможность отраженных волн.

    Без дросселя двигателя производители приводов обычно рекомендуют максимальную длину кабеля двигателя около 25 метров (рекомендации различаются в зависимости от двигателя, привода и области применения).С моторным дросселем максимальная длина кабеля может быть значительно увеличена, часто до 50 или 100 метров.


    Дроссели и реакторы являются индуктивными устройствами, и термины «дроссель», «реактор» и «индуктор» часто используются как синонимы.

    При обсуждении систем моторного привода термин «реактор» чаще всего используется для индуктивного устройства, расположенного между основным источником питания и приводом. Термин «дроссель» чаще всего используется для обозначения индуктивного устройства, расположенного между приводом и двигателем.И «дроссель», и «реактор» - это обычно используемые термины для индуктивного устройства, размещенного после входных диодов (между входным выпрямителем и звеном шины постоянного тока) в частотно-регулируемом приводе.

    Меры по борьбе с шумом в линии электропередач с использованием синфазных дроссельных катушек

    Руководство по фильтрам подавления шума

    1. Введение

    Электронные устройства обычно состоят из нескольких полупроводниковых и функциональных блоков, каждый из которых должен получать питание с заданным напряжением.

    Во многих случаях все требуемые напряжения различны и должны быть преобразованы с помощью преобразователя постоянного тока в постоянный (схема, преобразующая источник питания в напряжение, необходимое для работы электронных компонентов).

    Из-за соображений размера и электрических характеристик в таких случаях часто используются импульсные преобразователи постоянного тока. Однако следует обращать внимание на шум, вызываемый переключением. Если не соблюдаются стандарты регулирования шума, требуются какие-то меры противодействия шуму.
    В этой статье представлены примеры контрмер с использованием дроссельной катушки синфазного режима для борьбы с шумом источника питания.

    2. Пример меры противодействия шуму в линии электропередач

    Для этого примера мер противодействия шумам мы подготовили типичный неизолированный понижающий преобразователь постоянного тока (от 5 В до 1,8 В, Pout = 27 Вт) с частотой переключения 500 кГц.

    Цель состоит в том, чтобы поддержать общий стандарт устройств CISPR22 класса B (устройства, используемые в обычных домах и в легкой промышленности).Эффективные меры противодействия шуму применялись после определения того, был ли шумовой режим в основном дифференциальным или синфазным.

    См. Следующую ссылку для объяснения режимов шума.

    「Основы противодействия помехам [Урок 6] Синфазные дроссельные катушки」

    (1) Шумовое напряжение на клеммах (от 150 кГц до 30 МГц)

    Синфазное напряжение (напряжение на клеммах шума) было измерено для одной линии относительно земли с использованием искусственной сети питания (AMN).Когда напряжение на клеммах шума измеряется при начальных условиях, мы можем видеть, что спектр шума возникает в количестве, кратном (частота преобразуется в n кратных) частоте переключения 500 кГц. (Рисунок 1)

    Перед тем, как приступить к противодействию шуму, мы выполнили разделение мод с помощью Delta-LISN (сеть стабилизации импеданса линии), чтобы определить, был ли шумовой режим в основном дифференциальным или синфазным. Как показано на рисунке 2, очевидно, что шум в этом случае - это в первую очередь шум дифференциального режима.

    Рис. 2. Разделение шумовых мод

    В результате уровень шума был значительно снижен при использовании фильтра блочного типа EMIFIL® BNX029-01 из-за его высокоэффективных мер противодействия дифференциальному шуму. (Рисунок 3)

    Рисунок 3. Шумоподавляющие эффекты блочного типа EMIFIL®

    (2) Радиационный шум (от 30 МГц до 6 ГГц)

    После применения мер противодействия, описанных выше, мы оценили радиационный шум на расстоянии 10 м, чтобы измерить интенсивность поля, излучаемого в пространство, и обнаружили радиационный шум, который значительно превышает допустимый уровень шума CISPR22 класса B (рис. 4).

    При исследовании пути излучения было обнаружено, что входной кабель питания преобразователя постоянного тока действует как антенна и излучает шум в окружающее пространство.

    BNX029-01 может удалять дифференциальный шум в широком диапазоне частот от 100 кГц до 1 ГГц, поэтому оставшийся шум считался синфазным.

    Когда была установлена ​​дроссельная катушка синфазного режима PLT10HH9016R0PN для борьбы с синфазным шумом, уровень радиационного шума значительно улучшился, чтобы соответствовать допустимому уровню шума CISPR22 класса B.В результате мы узнали, что радиационный шум был в основном синфазным шумом (рис. 5).

    Рисунок 5. Эффекты противодействия шуму синфазной дроссельной катушки

    3. Модельный ряд синфазных дроссельных катушек для линий электропередачи

    В Murata Manufacturing Co., Ltd. мы поддерживаем широкий диапазон размеров и характеристик компонентов, чтобы обеспечить оптимальные компоненты для приложений клиентов (Таблица 1).

    Таблица 1. Состав синфазных дроссельных катушек

    Название продукта Размер Общий режим
    Импеданс
    Номинальный ток * 1

    Номинальное напряжение

    DLW44SN *** SK2
    4.0x4,0 мм
    T = 1,5 мм макс.
    от 100 Ом до 2400 Ом
    при 100 МГц
    от 3.1A до 1.1A 60Vdc
    DLW5BTM *** TQ2
    5,0x5,0 мм
    T = 2,5 мм макс.
    от 100 Ом до 1400 Ом
    при 100 МГц
    6A - 2A 50 В постоянного тока
    PLT5BPH ****** SN
    5,0x5,0 мм
    T = 5,0 мм макс.
    от 100 Ом до 500 Ом
    при 100 МГц
    от 5,6 A до 3,1 A 80Vdc
    PLT10HH ****** PN
    12.9x6,6 мм
    T = 9,3 мм макс.
    от 45 Ом до 100 Ом
    при 10 МГц
    18A - 15A 300 В постоянного тока
    от 400 Ом до 1000 Ом
    при 10 МГц
    от 10А до 6А 100 В постоянного тока

    * 1 Что касается номинального тока, конфигурируется снижение номинальных значений, поэтому см. Подробные спецификации для каждого продукта.

    * 2 Диапазон рабочих температур отличается для каждого типа продукта, поэтому, пожалуйста, ознакомьтесь с подробными техническими характеристиками для каждого продукта.

    Поиск из приложения.

    ・ Для линии электропередачи - не автомобильный класс -
    ・ Для линии электропередачи - автомобильный класс -

    4. Резюме

    При применении мер противодействия шуму чрезвычайно важно определить, является ли режим шума синфазным или дифференциальным. В Murata мы производим дроссельные катушки синфазного режима для линий электропередач любого размера, и они имеют высокий номинальный ток и высокие вносимые потери, чтобы обеспечить оптимальные продукты для подавления шума для ваших цепей питания.

    Тадаши Танака
    Секция разработки продукта 3, Отдел разработки продукта, EMI Filter Division
    Murata Manufacturing Co., Ltd.

    Сопутствующие товары

    Шумоподавляющие продукты / Фильтры для подавления электромагнитных помех / Устройства защиты от электростатического разряда

    Синфазные дроссельные катушки / Синфазные фильтры помех

    Статьи по теме

    Оставайтесь в курсе!

    Получайте электронные письма от Мураты с последними обновлениями на этом сайте.
    Информационный бюллетень Murata (электронный информационный бюллетень)

    mail_outline Двухрежимные дроссели

    учат старые инверторы новым хитростям

    Загрузите эту статью в формате PDF.

    Важные изменения в способах производства и использования электроэнергии, такие как растущая зависимость от энергии из возобновляемых источников, переход на эффективные приводы с регулируемой скоростью в промышленных и бытовых приборах, а также внедрение гибридных транспортных средств или электромобилей на батареях, вызывают растущий спрос на электронные инверторы, которыми можно управлять для подачи переменного тока с заданным напряжением и частотой.

    Если взять в качестве примера возобновляемую энергию, стратегии коммунальных компаний двигаются в сторону распределенного производства электроэнергии, когда микрогенераторы подключаются к сети в нескольких точках сети. Также есть интерес к небольшим генераторам, не связанным с сетью, для развертывания на потребительских или сельскохозяйственных и легких коммерческих / промышленных объектах.

    Для таких приложений требуются компактные и недорогие устройства электронного кондиционирования питания. Это позволило бы преобразовать богатый гармониками и нестабильный выходной сигнал ветряной турбины или изменяющийся выход постоянного тока массива фотоэлектрических панелей, сначала в высоковольтный, конденсаторно-стабилизированный постоянный ток, который затем вводится в инвертор для генерации постоянного переменного тока. форма волны с частотой, подходящей для подачи в сеть.

    Аналогичным образом, в гибридных / электромобилях или моторных приводах, где постоянная регулировка выходной частоты инвертора с помощью логических или программных команд является ключом к управлению скоростью двигателя, компактные размеры, малый вес и доступность имеют решающее значение для обеспечения роста рынка.

    Принципы работы и источники шума

    Инвертор, подобный мостовому инвертору, показанному на рис. 1 , коммутирует ток через нагрузку, последовательно включая и выключая верхний и нижний переключатели мощности.Силовые переключатели могут быть биполярными транзисторами с изолированным затвором (IGBT) или полевыми МОП-транзисторами с суперпереходом, или - в высокопроизводительных приложениях, таких как электромобили премиум-класса или где требуется максимальная энергоэффективность - устройствами с широкой запрещенной зоной, такими как карбид кремния (SiC) МОП-транзисторы. Каждый вентиль управляется последовательно относительно всех остальных с помощью сигнала с широтно-импульсной модуляцией (ШИМ).

    1. Показан простой однофазный мостовой инвертор.

    Если силовые переключатели представляют собой IGBT, частота сигналов ШИМ, подаваемых на каждый вентиль, обычно составляет около 20 кГц.МОП-транзисторы могут работать на гораздо более высоких частотах до нескольких сотен килогерц. В любом случае быстрое переключение вызывает резкие изменения напряжения на транзисторах, вызывая колебания, содержащие высокочастотный шум на гармониках частоты переключения.

    В любом инверторе на базе IGBT для ветряного или солнечного генератора шумовые сигналы могут присутствовать на частотах до 1 МГц и более. Эти и другие источники шума, такие как переключение преобразователя постоянного / постоянного тока в другом месте системы, подключенные к выходным линиям питания переменного тока, могут ухудшить качество выходной мощности и вызвать помехи.Это может повлиять на собственные управляющие сигналы системы, такие как аналоговые сигналы обратной связи, а также на находящееся поблизости оборудование.

    Чтобы предотвратить такие искажения и помехи, стандарты, такие как IEEE 1547 и UL 1741, которые применяются к инверторам для систем с распределенным энергоснабжением, таких как ветряные или солнечные генераторы, налагают ограничения на содержание гармоник, разрешенных на выходе инвертора. На излучаемые электромагнитные помехи (EMI) также распространяются ограничения, налагаемые такими стандартами, как FCC, часть 15 B.

    Снижение шума переключения

    Чтобы соответствовать применимым спецификациям по шуму и электромагнитной совместимости, фильтры, размещенные по всей системе, удаляют гармоники из сигналов напряжения и тока, корректируют коэффициент мощности, обеспечивая совпадение фаз напряжения и тока, и минимизируют искажения.

    На рисунке 2 показано расположение фильтров для ослабления шума в системе кондиционирования солнечной энергии. Фильтр на выходе инвертора предназначен для устранения переходных процессов частоты коммутации. Он содержит комбинацию конденсаторов X и Y, катушек индуктивности и дросселей для устранения синфазных и дифференциальных помех на основных гармониках частоты переключения.

    2. Вот основные функциональные блоки системы кондиционирования солнечной энергии, подчеркивающие требования к фильтрации.

    На рис. 3 представлена ​​более подробная информация о составе фильтра. В принципе, конденсаторы X и дроссели устраняют дифференциальный шум, а конденсаторы Y и синфазные катушки индуктивности устраняют синфазный шум. Синфазный шум появляется в одном направлении на двух проводниках, тогда как дифференциальный шум появляется в противоположных направлениях на двух проводниках.

    3. Дроссели и конденсаторы на выходе инвертора ослабляют синфазный (синий) и дифференциальный (красный) шум.

    Синфазная дроссельная катушка, показанная на Рис. 3 - это четырехконтактное устройство, которое состоит из двух проводников, намотанных в противоположных направлениях вокруг единственного магнитного сердечника. Обычно этот сердечник состоит из ферритового материала. Поскольку магнитный поток течет внутри сердечника, синфазные дроссельные катушки действуют как индукторы, которые обеспечивают высокий импеданс по отношению к синфазным (шумовым) токам, позволяя проходить нужным дифференциальным токам.

    Что касается синфазного дросселя, идентичные токи, протекающие в противоположных направлениях через обмотки дросселя, будут создавать равные и противоположные магнитные поля, которые нейтрализуют друг друга.Следовательно, дроссель имеет минимальное сопротивление току, протекающему в нагрузку и обратно через обратный путь. Дифференциальный шум относится к искажениям, которые вызывают разницу между этими двумя токами. Магнитные поля, создаваемые этими разными сигналами, не отменяются; вместо этого они будут иметь высокий импеданс, уменьшающий искажения.

    Передовые технологии фильтрации для легких инверторов

    Растущая зависимость от возобновляемых источников энергии, электромобилей и разнообразных приводов двигателей продолжает стимулировать спрос на компактные, легкие и доступные по цене инверторы.Следовательно, промышленность ищет способы уменьшить размер, вес и стоимость обычно громоздких компонентов, таких как фильтрующие конденсаторы и дроссели.

    Решая эту проблему, компания KEMET разработала запатентованные материалы ферритового сердечника, которые помогают значительно уменьшить размер стандартных дросселей. Кроме того, они позволяют создавать двухрежимные дроссели, сочетающие синфазную и дифференциальную фильтрацию в одном корпусе. Габаритные размеры аналогичны аналогичным обычным синфазным дросселям. Рисунок 4 иллюстрирует принцип.

    4. Двухрежимные дроссели объединяют три магнитных компонента, что позволяет сэкономить на размере решения и количестве деталей.

    KEMET также использовала дополнительную гибкость конструкции, обеспечиваемую его запатентованными материалами, для оптимизации формы этих двухрежимных дросселей. Конечным результатом является значительно улучшенное подавление шума в дифференциальном (нормальном) режиме.

    На рис. 5 показаны высокие характеристики двухрежимных дросселей SSHB10, обеспечивающих высокое сопротивление как синфазному, так и дифференциальному шуму.Стандартный тип, представленный на этой диаграмме SSHB10H-04320, оптимизирован для работы при высоких температурах. SSHB10H-R04760 имеет материал сердечника с повышенной проницаемостью, который дополнительно увеличивает сопротивление синфазному шуму при сохранении идентичных характеристик дифференциального режима. Оба дросселя рассчитаны на ток до 3 А.

    5. Сравнение нового двухрежимного дросселя с обычным синфазным дросселем.

    Заключение

    Ожидается рост спроса на компактные и легкие силовые инверторы на рынках экологически чистой энергии, в промышленности и автомобилестроении.Усовершенствованные магнитные технологии, которые могут значительно уменьшить громоздкие шумовые фильтры и уменьшить количество компонентов, теперь дают разработчикам дополнительную свободу в достижении этих целей.

    Майкл Фрайтаг, директор по управлению магнитными продуктами в KEMET Corp.

    Частота задаваемых вопросов: шум источника питания, часть 2

    Часть 1 рассмотрела основы шума, особенно в отношении источников питания. Есть два источника шума, которые не так очевидны для многих инженеров, как шум, возникающий в результате переключения источника питания: шум дифференциального режима и шум синфазного режима.Эти два режима шума имеют разные причины и, следовательно, разные решения

    В: Что такое шум в дифференциальном режиме?

    Дифференциальный шум (часто называемый просто дифференциальным шумом) - это шум, который передается по линии и нейтрали в противоположных направлениях, Рисунок 1, левая сторона .

    Рис. 1: (слева) Дифференциальный шум передается по линии и нейтрали в противоположных направлениях; (справа) его можно фильтровать с помощью однообмоточной катушки индуктивности на пути линии и конденсатора от линии к нейтрали.(Источник: Murata Manufacturing Co., Ltd)

    Вопрос: Как лучше всего справляться с шумом в дифференциальном режиме?

    A: Обычно проблема решается с помощью дросселя (индуктора), размещенного, как показано. В базовом фильтре шума дифференциального режима используется однообмоточный дроссель, который вставляется в тракт линии вместе с конденсатором от линии к нейтрали, таким образом блокируя распространение шума по системе, Рис. 1 , правая сторона.

    Поскольку индуктор шума дифференциального режима находится на пути линии, он обрабатывает как шум, так и смещение постоянного тока из-за тока, подаваемого на нагрузку.Следовательно, он должен быть спроектирован так, чтобы обеспечивать необходимую индуктивность, но с низким сопротивлением постоянному току (DCR), чтобы выдерживать как среднеквадратичный, так и пиковый линейный ток без насыщения. Если текущий уровень низкий, можно использовать компонент с ферритовым шариком в виде микросхемы.

    Q Что сделано для уменьшения синфазного шума?

    A: Опять же, специализированный индуктор - это ответ. Базовый фильтр синфазных помех использует двухобмоточную катушку индуктивности как на линии, так и на нейтрали, а также конденсатор между фазой и землей, Рис. 2, правая сторона .Поскольку линейный и нейтральный токи проходят через синфазные обмотки в противоположных направлениях, нет чистого потока постоянного тока и, следовательно, нет возможности насыщения магнитного сердечника дросселя. Синфазный дроссель должен иметь только необходимую индуктивность и достаточно низкое сопротивление постоянному току (DCR) для среднеквадратичного тока.

    Рис. 2: (слева) Синфазный шум передается как по линии, так и по нейтрали (земле), но в одном направлении; (справа) двухобмоточная катушка индуктивности как в цепи, так и в нейтрали, а также конденсатор между фазой и землей могут эффективно ее фильтровать.(Источник: Murata Manufacturing Co., Ltd)

    В: Есть ли способ определить, какой тип шума присутствует в конструкции?

    A: Да, в некоторой степени. Сначала установите на кабель ферритовый зажим, помня, что обе линии (питание постоянного тока и земля) будут в этом кабеле. Если шум уменьшается или повышается устойчивость, это указывает на проблему общего режима; если эффекта нет, скорее всего, проблема в дифференциальном режиме. Если есть проблема общего режима, попробуйте дроссель синфазного режима.Если проблема связана с дифференциальным режимом, используйте ферритовый чип с бортиком или дроссель дифференциального режима.

    Как правило, для частот выше 10 МГц это, скорее всего, проблема синфазного шума, но это не гарантируется. Дифференциальный шум выше 10 МГц возможен, но это случается нечасто.

    Список литературы

    1. Radio-Electronics.com, «Устранение помех в обычном и синфазном электромагнитных помехах»
    2. Импульсная электроника, «Общие сведения о шумах в синфазном режиме»
    3. Мурата, «Дифференциальный и синфазный шум»
    4. Мурата, «Условия для электромагнитных помех и будущие тенденции»
    5. Würth Elektronik GmbH, «Основы электромагнитной совместимости: общий режим vs.Дифференциальный шум »(и предыдущие блоги этой серии)

    Мастер клапанов

    Сглаживание и фильтрация источника питания

    Источник питания - самая важная часть усилителя, потому что, В конечном счете, именно источник питания определяет ограничения усилителя в целом. Гитарные усилители почти всегда имеют очень простые блоки питания, лишенные современных изысков, таких как электронные регуляторы и т. Д. что упрощает их разработку.

    Резервуарный конденсатор
    Первый конденсатор после выпрямителя - это накопительный конденсатор. Этот конденсатор хранит большую часть энергии для всего усилителя. Каждый выпрямленный полупериод заряжает конденсатор до пикового напряжения переменного тока коротким, но большим импульсом тока. Затем напряжение спадает по мере того, как ток нагрузки постоянно снимается схемой усилителя, до тех пор, пока выпрямитель не сможет снова пополнить его в течение следующего полупериода. Таким образом, исходное напряжение постоянного тока не является идеально чистым, но имеет остаточную пульсацию напряжения.

    Напряжение пульсаций часто выражается в процентах от максимального напряжения постоянного тока. Типичное значение может составлять 10% для двухтактного усилителя или 5% для несимметричного усилителя. хотя, конечно, это сильно зависит от индивидуальных требований схемы. Таким образом, если бы мы стремились к источнику питания 400 В постоянного тока с 5% -ной пульсацией, нам нужно было бы не более 4000,05 = 20 В (пик.) Пульсации напряжения. В таком случае резервуарный конденсатор можно приблизительно выбрать по следующей формуле:

    C = I / (2 фазы Vripple)

    Где I - средний постоянный ток нагрузки, f - частота сети (50 или 60 Гц), а Vripple - желаемое размах пульсаций напряжения.Это несколько консервативная формула; на практике пульсирующее напряжение будет немного меньше этого. Чем больше емкость, тем плавнее будет постоянный ток и тем медленнее будет «проседание» напряжения во время громкого воспроизведения. Однако большая емкость также увеличивает нагрузку на выпрямитель и трансформатор, поскольку требует больших импульсов тока для поддержания его заряда. Большинство традиционных конструкций усилителей используют от 22 мкФ до 60 мкФ, если используется вентильный выпрямитель, или до 220 мкФ с кремниевыми диодами. (редко требуется больше).Несимметричные усилители могут выиграть от большей емкости, потому что они не подавляют гул, как это делают двухтактные усилители.

    Конденсаторы, рассчитанные на 450 В, являются обычным явлением, но вы не увидите много конденсаторов выше этого. Если вам нужно более высокое рабочее напряжение, то обычный трюк состоит в том, чтобы подключить два конденсатора последовательно, чтобы их номинальные напряжения складывались. Однако общая емкость будет уменьшена вдвое, поэтому два конденсатора по 100 мкФ составят 50 мкФ. Кроме того, резисторы необходимо добавлять параллельно, чтобы обеспечить равное распределение напряжения между конденсаторами.Резисторы должны быть равны 50 / C или меньше, поэтому для двух конденсаторов по 100 мкФ потребуется резистор 500000 Ом (470 кОм будет очевидным выбором). Они также действуют как прокачка при выключении усилителя.

    Сглаживающие фильтры
    Большинство усилителей питают первичную обмотку выходного трансформатора непосредственно от накопительного конденсатора. Однако одного резервуарного конденсатора недостаточно для обеспечения бесшумного постоянного тока, необходимого для экранных решеток и каскадов предусилителя. поэтому необходимо дальнейшее сглаживание.Это достигается с помощью цепочки фильтров LC или RC (нижних частот), которые по-разному называются фильтрами сглаживания, обхода или развязки. Эти альтернативные названия основаны на том факте, что на самом деле необходимо выполнить три взаимосвязанных задания:
    1: Сглаживание / фильтрация остаточных пульсаций напряжения;
    2: Обход / обеспечение местного энергоснабжения для внезапных требований тока;
    3: Отсоедините / изолируйте каждый каскад усилителя от остальных.

    Каждая ступень сглаживания RC представляет собой фильтр нижних частот с частотой среза:

    f = 1 / (2 пи R C)

    Конечно, единственная частота, которую мы действительно хотим передать, - это 0 Гц или постоянный ток, поэтому мы просто делаем частоту среза как можно более низкой, часто ниже 1 Гц.Обычно вы видите сглаживающие конденсаторы от 10 до 100 мкФ - все, что есть в наличии. Для данной емкости большее сопротивление снижает частоту среза и, следовательно, улучшает сглаживание. Однако есть также некоторое падение постоянного тока на резисторе из-за протекающего в нем тока нагрузки, так что существует компромисс между сглаживанием и падением напряжения. Каскады предусилителя обычно имеют катодное смещение и очень устойчивы к напряжению питания, поэтому обычно не имеет значения, какое именно напряжение вы получите после понижающего резистора.Все, что угодно - от 250 до 400 В. Резистор должен выдерживать полное напряжение питания и зарядку конденсатора. ток при запуске, что обычно означает использование устройств мощностью 1 Вт или выше, даже если средняя рассеиваемая мощность может быть минимальной.

    Объединяя фильтры в цепочку, мы добиваемся лучшего снижения пульсации. Менее чувствительные каскады усилителя, такие как экранные решетки и фазоинвертор, питаются от самых ранних секций фильтра. в то время как более чувствительные каскады получают более тихое питание, но также подвержены наибольшему падению напряжения.Впускной клапан всегда последний в цепи.

    Во многих усилителях, производных от Fender, для питания сеток экрана силового клапана используется дроссельный конденсатор (LC). LC-фильтр - это фильтр второго порядка, поэтому он обеспечивает более резкое ослабление пульсаций, чем RC-фильтр (первого порядка). а дроссель имеет лишь небольшое сопротивление постоянному току, поэтому он не сильно падает по постоянному току. Компания Fender была заинтересована в максимальном увеличении напряжения, чтобы получить максимальную чистую выходную мощность. В наши дни люди любят перегружать свои усилители, поэтому нет необходимости выжимать каждый последний ватт чистой энергии, очень многие усилители используют RC-фильтрацию для экранных решеток, что намного дешевле, чем использование дросселя.2)

    Поскольку сглаживающие конденсаторы наиболее доступны в диапазоне от 10 мкФ до 100 мкФ, вы обычно видите дроссели в диапазоне от 20 до 2 Генри.

    Пример проектирования
    Чтобы спроектировать источник питания, нам нужно знать, сколько в среднем постоянного тока будет потреблять схема усилителя. Каскады предусилителя обычно являются несимметричными (класс A), поэтому они потребляют постоянный средний ток. Если клапаны предусилителя - это ECC83 / 12AX7, то они обычно имеют смещение около 1 мА на триод или меньше.Вы можете решить это с помощью линий нагрузки.
    Если выходной каскад относится к классу AB (например, почти все двухтактные усилители), то его ток будет увеличиваться с увеличением уровня сигнала. Поэтому выходные клапаны обычно смещены примерно до 70% максимального рассеяния на аноде, указанного в паспорте. тем самым обеспечивая некоторый запас мощности, чтобы они не тормозили при полном приводе.

    Предположим, что в усилителе мощностью 50 Вт используются три блока ECC83 / 12AX7 и пара EL34.
    Клапаны предусилителя потребляют около 6 x 1 мА = 6 мА (помните, что на каждый баллон приходится два триода).
    EL34 рассчитаны на максимум 25 Вт, поэтому они, вероятно, будут иметь смещение около 0,7 x 25 Вт = 17,5 Вт. Однако мы должны работать с максимальными средними значениями, то есть с полным приводом, когда средняя рассеиваемая мощность увеличивается до 25 Вт. Таким образом, если исходное напряжение питания постоянного тока составляет 400 В, то каждый из них будет потреблять около 25 Вт / 400 В = 62,5 мА или 125 мА для пары.
    В техническом паспорте предлагается соотношение тока экрана к аноду 6,5, поэтому мы можем ожидать, что токи экрана составят 125 / 6,5 = 19 мА для пары. 2) = 5 генри.2 4700 = 0,17 Вт. Позднее понижающие резисторы, возможно, будут больше, хотя 22 мкФ и 4,7 кОм дают частоту среза 1,5 Гц, что вполне прилично, так что нет ничего плохого в том, чтобы сделать их все одинаковыми. Окончательный вариант показан ниже с номинальными (максимальными) напряжениями.

    Дроссели | Hifi Коллективный

    AfghanistanAland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCaribbean NetherlandsCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Остров и Макдональд Исла ndsГондурасГонконг S.А.Р., ChinaHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle из ManIsraelItalyIvory CoastJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacao S.A.R., ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorth KoreaNorwayOmanPakistanPalauPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussiaRwandaSaint BarthélemySaint HelenaSaint Киттс и NevisSaint LuciaSaint Мартин (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Томе и PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSom aliaЮжная АфрикаЮжная Грузия и Южные Сандвичевы островаЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛестеТогоТокелаТокелаТунгаТринидадТуркейстан и ТобагоТобагоЮжные Виргинские островаУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыМалые отдаленные острова СШАУругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЙеменЗамбияЗимбабве

    Сохранять .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *