Дроссель для чего нужен: для чего нужен дроссель, лампа уличного освещения

Содержание

для чего нужен дроссель, лампа уличного освещения

Для освещения улиц, промышленных и архитектурных объектов, сельскохозяйственных комплексов, не требующих высокого качества цветопередачи, применяется светильник ДРЛ (дуговая ртутная лампа высокого давления). Особенность прибора заключается в высоком КПД, экономичности, длительной эксплуатации.

Существует множество разновидностей осветительного устройства: дневного, ультрафиолетового света, вольфрамные, натриевые варианты. Все газоразрядные изделия объединяет непостоянство сопротивления (соответственно тока). Ограничить рабочий ток источников света помогает электронный (ЭПРА) или электромагнитный (ЭмПРА) пускорегулирующий аппарат, выполненный в виде катушки индуктивности — дросселя.

Рабочая схема подключения светильника ДРЛ

Преимущества и недостатки

Главным достоинством люминесцентной лампы выступает высокая светоотдача, относительно типовых светильников. Если ртутная ДРЛ 250 обеспечивает световой поток 12000 лм при расходе энергии 250 Вт, обычное устройство будет потреблять 1000 Вт. Размеры мощных лампочек (более 400 Вт) отличаются от стандартных устройств компактностью. Спектр излучения прибора естественный, свет интенсивный, далеко излучается.

Ртутный светильник 250 Вт

Отрицательными характеристиками приборов высокого давления выступают:

  1. Выделение озона в ходе эксплуатации, важно позаботиться о вентиляции помещения.
  2. Стоимость люминесцентных светильников в 5–7 раз дороже обычных ламп высокой мощности.
  3. Размеры отдельных модификаций (например, ДРЛ 125 Е40) превышают аналогичные устройства с вольфрамовой нитью.
  4. Спустя 2-3 месяца эксплуатации неизбежно изменение спектра излучения. Недостаток вызван техническими характеристиками люминофора.
  5. Светильник ДРЛ чувствителен к перепадам напряжения и требует подключения через пускорегулирующий аппарат.
  6. Неприятное гудение и моргание световых лучей определяет ощутимые неудобства в жилых помещениях. Применять приборы высокого давления в цехах с вращающимися предметами нежелательно в силу стробоскопического эффекта (подвижные устройства кажутся неподвижными).
  7. Нормальная рабочая высота для светильника ДЛР — четыре метра.
Сравнение ДРЛ светильников в процессе работы

Важно помнить! Ртутный состав горелки требует отдельной утилизации прибора.

Характеристики

Рабочие параметры светильников ДРЛ:

  • Мощность лампочек 80-1000 Вт. Определяется количеством электродов: два электрода — 250…1000 Вт, четыре электрода — 80…1000 Вт. Особой популярностью пользуются приборы мощностью 250 Вт.
  • Цоколь. Зависит от мощности: приборы до 250 Вт оснащают цоколем е27, свыше 250 Вт подойдет вариант е40.
  • Тактовая нагрузка сети достигает 8 ампер. Показатель взаимосвязан с мощностью осветительного прибора.
  • Световой поток ртутных устройств составляет минимум 3 2 00 люмен. Значение характерно для источника света на 80 Вт. Дроссельные лампы уличного освещения с максимальной мощностью 1 кВт излучает световой поток близко 52 000 люмен.

Интересно! Срок эксплуатации дроссельного светильника достигает 20 000 часов. Однако лампочка перестает работать раньше на 30-50 %.

Параметры ртутной лампы мощностью 150 Вт

Сфера использования

Люминесцентные лампы эффективно используются на автодорогах, улицах и в скверах, производственных цехах и объектах технического назначения (АЗС, стоянках, складах). Часто встречаются в качестве декоративных источников освещения архитектурных сооружений и административных зданий. Разнообразие конструктивных особенностей продукции ДРЛ позволяет подобрать оптимальный вариант для привлечения косяков рыб и планктона в процессе промысла, обеспечить холодным светом медицинское оборудование для обеззараживания помещений.

Разновидности светильников

Светильники типа ДРЛ характеризуются широким разнообразием. Отличия составляет область применения (внутренние, наружные), типы конструкций и мощность устройств.

Типоразмеры ртутных ламп внутреннего назначения

Внутренние

Светильники с люминесцентными лампами рекомендованы для освещения производственных объектов с повышенным уровнем пыли и влаги, а также прачечных, автомоек, закрытых складов, гаражей. Приборы работают от сети переменного тока с частотой 50 Гц и номинальным напряжением 220 В. Температура окружающей среды при эксплуатации —20°С до +50°С.

Уличные

Наружные лампы используются для прямого, рассеянного, местного освещения, удачно сочетаются с симметричными или асимметричными отражателями. Светильник уличный типа ДРЛ заключен во влагозащищенный прочный корпус, способен противостоять сильному ветру, заморозкам и ливням.

Классификация светильников по типу ламп:

  • ДРЛ. Изделия характеризуются небольшим индексом цветопередачи, выделением тепла, 5-х минутным выходом на требуемый уровень светового потока. При выборе ртутной продукции также стоит учитывать необходимость стабильного источника энергии и термостойких проводников.
Источник освещения для растений
  • ДРЛФ. Лампы с фокусированным светом отличаются способностью стимулировать фотосинтез у растений.
  • ДРВЭД. Серия дуговых ртутных эритемных вольфрамовых лампочек не требует подключения ПРА. Активация происходит под действием балласта, аналогично обычным лампам накаливания. В основе конструкции лежат йодиды металлов, позволяющие обеспечить желаемый уровень цветности. Лампы испускают УФ (эритемное) излучение, эффективно работают при переменном токе. Работают без ПРА, достигая максимального индекса светоотдачи и длительного периода эксплуатации. Мощность ламп составляет диапазон 125-1000 Вт.
Образец дугового натриевого светильника
  • ДНаТ. Принцип действия дуговой натриевой трубчатой лампы аналогичен лампам ДРЛ. Однако светильникам ДНаТ свойственно специфическое свечение и свет оранжево-желтого или золотисто-белого оттенка. Приборы потребляют 70-400 Вт мощности и считаются наиболее экономичными источниками света.

Важно! Самыми популярными и широко применяемыми являются лампы ДРЛ мощностью 250 и 400 Вт.

Конструкция

Лампа дуговая представлена стеклянным баллоном 1 с резьбовым цоколем 2. По центру колбы размещена ртутно-кварцевая горелка (трубка) 3, наполненная аргоном и одной каплей ртути. Четырех электродные лампы располагают главными катодами 4 и дополнительными электродами 5. Электроды подключены к катоду противоположной полярности посредством добавочного угольного резистора 6.

Конструктивные особенности ртутного светильника

Подробное описание элементов позволяет выделить следующие особенности дроссельной лампы:

  • Цоколь — простейшее устройство, принимающее энергию от электросети за счет контакта токоведущей части лампы ДРЛ (резьбовой и точечной) с контактами патрона. Полученная энергия поступает на электроды горелки.
  • Горелка служит главным функциональным элементом ДРЛ лампы. Внешне деталь представлена кварцевой колбой, оснащенной с обеих сторон по два электрода (основные и дополнительные). Внутреннее пространство горелки заполнено газом аргоном для изоляции теплообмена между горелкой и средой, а также одной каплей ртути.
  • Внешняя колба содержит кварцевую горелку светильника, подключенную к проводникам от контактного цоколя. Также стеклянная емкость содержит азот и два ограничителя сопротивления (подсоединены к дополнительным электродам), покрыта изнутри люминофором.
Дуговой источник освещения в разрезе

Первые лампы ДРЛ оснащали двумя электродами. Для поджога светильника приходилось дополнительно включать в схему пусковой элемент (высоковольтный импульсный пробой промежутка горелки). Более затратный вариант ДРЛ был снят с производства, заменен 4-х электродным вариантом. Для бесперебойной работы достаточно дросселя.

Принцип работы

Принцип действия электроприбора основан на использовании светящегося тела в качестве столба дугового разряда. Особенность достигается особой технологией запуска устройства:

  • При подаче электроэнергии на светильник между электродами образуется разряд, сразу принимает дуговую форму.
  • На протяжении 10 минут после разряда технические параметры устройства достигают номинальных значений. Время пускового периода определяется внешней температурой — в теплых условиях лампа разгорается быстрее.
  • От разряда внутри колбы образуется голубое (фиолетовое) свечение и ультрафиолетовые лучи, заставляющие светиться люминофор. Потоки смешиваются, лампа получается белой.
Запуск светильника в работу

Обратите внимание! Напряжение сети в процессе горения лампы способствует колебаниям светового потока в диапазоне 20–30 %. Приборы нагреваются, возникает необходимость применять термостойкие проводники и надежные контакты для патронов.

Для чего необходим дроссель в светильнике

Дроссель стабилизирует работу ДРЛ. Запуск светильника напрямую, без дополнительного устройства не рекомендуется — лампа сгорит. Причиной выступает пусковой ток, превышающий номинальный в 2,5 раза. Розжиг лампы сопровождается электрическим пробоем в атмосфере инертных газов, заполненных парами ртути или натрия, затем следует тлеющий или дуговой разряд. Сопротивление газа снижается в десятки раз, ток увеличивается. Отсутствие ограничений для тока грозит чрезмерным выделением тепла, в доли секунд газы внутри лампы сгорят, светильник выйдет из строя. Во избежание поломок, последовательно в систему добавляют сопротивление.

Подключение дросселя в лампе дневного света

Применять активное сопротивление нецелесообразно, ввиду повышенных потерь энергии на теплоотдачу. Более эффективным решением станет добавление электронной схемы или дроссели. Активного сопротивления ограничитель не имеет, мощности не расходует, энергию накапливает и отдает в цепь.

Как правильно подключить

С дросселем. Схема предусматривает последовательное соединение дросселя с лампой ДРЛ, подключенных к переменной сети ~ 220 вольт. Полярность подключения не имеет значения.

Без дросселя. Эксплуатация дуговой лампы без дополнительных приспособлений возможна при соблюдении ряда условий:

  1. Использования источника света типа ДРВ. Лампы, способные работать без дросселя, оснащены дополнительной вольфрамовой спиралью, выполняющей роль пускателя. Характеристики спирали соответствуют параметрам горелки.
  2. Запуска светильника ДРЛ посредством импульса напряжения, исходящего от конденсатора.
  3. Розжига лампы ДРЛ при последовательном подключении лампы накаливания.
Схема экономичного подключения лампы для освещения подсобных помещений

 

Важно!

При включении ДРЛ разгорается не сразу — процесс занимает близко 5 минут, при повторном запуске работающего светильника — лампа должна остыть (5 — 15 мин).

Знание параметров и принципа работы ртутных ламп позволяет правильно подобрать светильник и подключить.

Что такое дроссель и для чего он нужен?

Узнайте, для чего нужен дроссель в люминесцентных лампах, сварочных аппаратах и электрических сетях


В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного. Содержание:

Конструкция и принцип работы

Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:

Внешний вид изделия может быть таким, как на фото:

Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.

Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике. Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление. Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.

Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.

Интересное пояснение по данному вопросу вы также можете просмотреть на видео:

Наглядное сравнение, объясняющее принцип работы

Теоретическая часть вопроса

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь. В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение. Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.

Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.

В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.

Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.

Где применяется изделие?

Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!

Будет интересно прочитать:

  • Как сделать индукционный котел своими руками
  • Как проверить работоспособность транзистора
  • Как сделать светодиодную лампу в домашних условиях

Наглядное сравнение, объясняющее принцип работы

Теоретическая часть вопроса

Где применяется изделие?


Нравится0)Не нравится0)

что такое, для чего нужен и как работает

Что такое дроссель? Как отличить от резистора или трансформатора? Как правильно подключить и зачем вообще это делать? Всё самое интересное далее в статье!

Дроссель в электрике

Дроссель в электрике

Это особый вид катушек индуктивности. Его особенность заключается в том, что он может удерживать в течение некоторого времени токи из определённого диапазона частот. Механизм срабатывания действует быстро, что позволяет пропускать только нужный сигнал.

Это предотвращает ситуацию, при которой напряжении в сети резко меняется. Чтобы повысить уровень безопасности и стабильность работы, дроссель ставят в цепь обязательно. Разберем пропускной диапазон, виды, принцип работы более подробно.

Для чего нужен дроссель

Виды дросселей

Дроссель используется вместо последовательного резистора, потому что обеспечивает лучшую фильтрацию (меньше остаточной пульсации переменного тока на источнике питания, что означает меньшее гудение на выходе усилителя) и меньшее падение напряжения. «Идеальный» индуктор будет иметь нулевое сопротивление постоянному току. При использовании резистора большего размера, вы быстро достигаете точки, где падение напряжения возрастает до пиковых величин, и, кроме того, «провал» питания становится значительным, потому что разность токов между полной выходной мощностью и холостым ходом может быть немалой, особенно в усилителе класса AB.

Существует две распространенные конфигурации источника питания: конденсаторный вход и дроссельный вход. Входной фильтр конденсатора не обязательно должен иметь дроссель, но для дополнительной фильтрации тот необходим. Источник питания дросселя по определению обязан оснащаться дросселем.

Источник питания с дросселем

На входе конденсатора будет конденсатор фильтра, следующий непосредственно за выпрямителем. Тогда он может иметь или не иметь второго фильтра, состоящего из последовательного резистора или дросселя, за которым следует другой конденсатор. Сеть «колпачок – индуктор – колпачок» обычно называется сетью «пи-фильтр». Преимущество входного фильтра конденсатора заключается в более высоком выходном напряжении, но он имеет более низкое регулирование напряжения, чем входной фильтр дросселя.

Источник питания дросселя будет иметь дроссель, следующий сразу за выпрямителем. Основное преимущество входного питания дросселя – лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него для поддержания регулирования.

Дроссель в собранном приборе

Пример:

Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть трансформатор 300-0-300 и двухполупериодный выпрямитель.

Если вы используете конденсаторный входной фильтр, вы получите максимальное напряжение постоянного тока без нагрузки в 424 вольт, которое снизится до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток.

Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет составлять 270 В и будет гораздо более строго регулироваться, чем входной фильтр конденсатора (меньше перемен напряжения питания с изменениями тока нагрузки).

Как работает дроссель

Дроссель

Во всех переключающих регуляторах индуктор используется в качестве устройства накопления энергии. Когда полупроводниковый переключатель включен, ток в индукторе увеличивается и энергия накапливается. Когда выключатель выключается, эта энергия высвобождается в нагрузку. Количество накопленной энергии определяется как Энергия = ½L·I 2 (Дж)

Где L – индуктивность в Генри, а I – пиковое значение тока индуктора.

Величина, на которую ток в катушке индуктивности изменяется во время цикла переключения, называется пульсирующим током и определяется следующим уравнением:

V l = L·di / DT

Где V l – напряжение на катушке индуктивности, di – ток пульсации, а DT – длительность, в течение которой подается напряжение. Отсюда видно, что значение пульсационного тока зависит от значения индуктивности.

Для понижающего преобразователя выбор правильного значения индуктивности важен для получения приемлемых размеров индуктивности выходного конденсатора и достаточно низкой пульсации выходного напряжения.

Ток индуктора состоит из компонентов переменного и постоянного тока. Поскольку компонент переменного тока является высокочастотным, он будет проходить через выходной конденсатор, который обеспечивает низкий ВЧ-импеданс. Это создаст пульсации напряжения из-за эквивалентного последовательного сопротивления конденсатора (ESR), которое появляется на выходе понижающего преобразователя. Это пульсирующее напряжение должно быть достаточно низким, чтобы не влиять на работу цепи, которую поставляет регулятор.

Дроссель в собранной схеме

Выбор правильного пульсирующего тока также оказывает влияние на размер индуктора и выходного конденсатора. Этот конденсатор должен иметь достаточно высокий номинальный ток пульсации, иначе он перегреется и высохнет. Чтобы получить хороший компромисс между размерами индуктора и конденсатора, вы должны выбрать значение пульсационного тока от 10 % до 30 % от максимального тока нагрузки. Это также подразумевает, что ток в катушке индуктивности будет непрерывным для выходных токов, превышающих 5–15 % от полной нагрузки.

Вы можете использовать индукторы понижающего преобразователя в непрерывном или прерывистом режиме. Это означает, что ток индуктора может течь непрерывно или падать до нуля во время цикла переключения (прерывистый). Однако работа в прерывистом режиме не рекомендуется, так как это делает конструкцию преобразователя более сложной. Выбор пульсирующего тока индуктивности менее чем в два раза ниже минимальной нагрузки обеспечивает работу в непрерывном режиме.

При подборе индуктора для понижающего преобразователя, как и для всех переключающих регуляторов, вам необходимо определить или рассчитать следующие параметры:

  • максимальное входное напряжение;
  • выходное напряжение;
  • частоту переключения;
  • максимальный ток пульсации;
  • рабочий цикл.

Например, для понижающего преобразователя выберем частоту переключения 200 кГц, диапазон входного напряжения 3,3 В ± 0,3 В и выход 1,8 В при 1,5 А с минимальной нагрузкой 300 мА.

Дроссель в блоке питания

Для входного напряжения 3,6 В рабочий цикл будет:

D = V o / V i = 3,6 / 1,8 = 0,5

Где V o – выходное напряжение, а V i – входное напряжение.

Напряжение на индуктивности:

V l = V i – V o = 1,8 В, когда переключатель включен;

V l = – V o = –1,8 В, когда переключатель выключен.

При выборе пульсирующего тока 600 мА необходимая индуктивность: L = V l. Dt / di = (1,8 × 0,5 / 200 × 103 ) / 0,6

L = 7,5 мкГн

Чтобы разрешить некоторый запас, вы должны выбрать значение 10 мкГн. Это дает номинальный пиковый ток пульсации 450 мА. В готовом проекте это можно рассматривать как выходное пульсирующее напряжение 0,45 × ESR выходного конденсатора.

Как измерить индуктивность дросселя мультиметром

Ламповый усилитель с дросселем

Любое проводящее тело обладает определенной конечной индуктивностью. Эта индуктивность является внутренним свойством проводящего тела, и она всегда одинакова независимо от того, находится ли этот проводник или устройство под напряжением в электрической цепи или хранится на полке склада.

Индуктивность прямолинейного сегмента может быть значительно увеличена путем намотки его в виде спиральной катушки, после чего магнитные поля, установленные вокруг соседних витков, объединяются, создавая одно более сильное магнитное поле. Индуктивность катушки зависит от квадрата суммы числа витков.

Индуктивность катушки также значительно увеличивается, если та построена вокруг сердечника, который состоит из материала, имеющего высокую проницаемость для магнитного потока. (Поток – это произведение среднего магнитного поля на величину перпендикулярной области, которую он пересекает. Поток в магнитной цепи аналогичен току в электрической цепи.) Это ситуация в силовых трансформаторах, принадлежащих коммунальным предприятиям, и других катушках, предназначенных для работы на 50 или 60 Гц. Индуктивные эффекты более выражены на более высоких частотах, поэтому для ВЧ-индуктора обычно достаточно воздушного сердечника.

Воздушный сердечник

Одно из определяющих качеств катушки состоит в том, что при снятии приложенного напряжения, прерывая ток, магнитное поле разрушается, и электрическая энергия, ранее использованная для создания магнитного поля, внезапно возвращается в цепь. Это просто проявление того факта, что магнитное поле и проводник, движущиеся относительно друг друга, вызывают поток тока в проводнике.

Скорость изменения тока в катушке индуктивности пропорциональна приложенному к ней напряжению, определяемому известным уравнением:

V = L dI / dt

Где:

  • L – индуктивность в Генри;
  • V – напряжение, I – ток;
  • t – время.

Подобно конденсатору и в отличие от резистора полное сопротивление индуктора зависит от частоты. Импеданс – это векторная сумма сопротивления (когда и если в цепи есть резистор или эквивалент) и индуктивного или емкостного сопротивления.

В конденсаторе более высокая частота соответствует более низкому емкостному сопротивлению. В индукторе более высокая частота соответствует более высокому индуктивному сопротивлению.

Катушка не оказывает противодействия потоку постоянного тока, за исключением:

  • небольшого сопротивления из-за большой емкости провода;
  • мгновенного индуктивного сопротивления при первом включении катушки из-за работы, необходимой для установления магнитного поля. (В течение времени нарастания постоянный ток по существу переменный.)
Ламповый усилитель

Уравнение для емкостного сопротивления:

X C = 1 / 2πfC

Где X C = емкостное сопротивление в омах; f = частота в герцах; C = емкость.

Уравнение для индуктивного сопротивления:

X L = 2πfL

Где X L = индуктивное сопротивление в омах; f = частота в герцах; L = индуктивность.

Эти уравнения «симметричны». Один является зеркальным отражением другого, различие заключается в роли, которую играет частота. В емкостном сопротивлении f находится в знаменателе, а в индуктивном сопротивлении – в числителе. Емкостное и индуктивное реактивное сопротивление, а также общий импеданс выражены в омах как сопротивление постоянному току, и они полностью соответствуют закону Ома при том понимании, что эти свойства меняются с частотой.

Как обозначается дроссель на схеме

Условные обозначения:

Условное графическое обозначение дросселей

Из чего состоит дроссель

Элементы:

  • катушка;
  • провод, намотанный на сердечник;
  • магнитопровод.

Есть схожесть с трансформатором, но слой обмотки всего один. Такая конструкция помогает стабилизировать сеть, а также исключить шанс резкого скачка напряжения.

Как подключить дроссель

Схема подключения очень простая и представляет собой цепь последовательно соединённого дросселя и самого устройства ДРЛ 250. Подключение идёт через сеть 220 вольт и работает при обычной частоте. Поэтому их без труда можно поставить в домашнюю сеть. Дроссель работает как стабилизатор и корректировщик напряжения.

Схема подключения дросселя

Как отличить резистор от дросселя

По внешнему виду: от резисторов отличаются обычно толщиной (дроссели толще), от конденсаторов – неправильной формой «капельки».

Более точный способ – сопротивление. У дросселя оно почти нулевое.

Таблица с маркировкой:

Серебряный  0,0110
Золотой  0,15 %
Черный 0120 %
Коричневый1110 
Красный22100 
Оранжевый331000 
Желтый44  
Зеленый55  
Голубой66  
Фиолетовый77  
Серый88  
Белый99  
 1-я цифра2-я цифраМножительДопуск

Чем отличается дроссель от трансформатора

Наглядная схема трансформатора

Трансформатор оснащён несколькими мотками и меняет величину напряжения. Дроссель имеет одну обмотку и уравнивает пульсации постоянного тока (не пропускает переменную часть дальше в сеть).

Как рассчитать дроссель на ферритовом кольце

Дроссель на ферритовом кольце

Индукторы обычно указываются с двумя номиналами тока: непрерывный (Irms) и пиковый (Isat). Irms обычно указывается как постоянный ток, вызывающий повышение температуры индуктора на 40 °C. Isat – это пиковый ток, который вызывает определенный спад индуктивности – определяется как процентное уменьшение от значения разомкнутой цепи и может варьироваться от 5 % до 50 %. Эти номиналы тока являются руководством к характеристикам индуктора. Фактический максимальный рабочий ток будет зависеть от применения. Учитывая это, необходимо проверить ряд факторов, чтобы обеспечить правильный выбор индуктора.

Во-первых, важно посмотреть, как индуктивность «падает» с увеличением тока. Для таких материалов, как железный порошок, порошок пермаллоя молибдена (MPP), сендуст и аморфный порошок, которые используют распределенный воздушный зазор, спад индуктивности начинается при очень низких уровнях тока и продолжается почти линейным образом при увеличении тока. Если используется ферритовый материал, любое постепенное изменение индуктивности затопляется большим зазором, который необходимо ввести для накопления энергии. В результате индуктивность резко падает в точке насыщения всего ядра. До достижения этой точки индуктивность остается практически постоянной.

Пускорегулируещие устройство для ламп

Для материалов с ферритовым сердечником пиковый ток обычно указывается для снижения индуктивности от 10 % до 30 % от значения разомкнутой цепи. Работа при более высоких уровнях тока не рекомендуется, так как индуктивность быстро упадет до низкого уровня. Однако для порошкообразных материалов максимальный ток может быть задан при любом спаде до 50 % при работе за пределами возможной, если индуктор не перегрелся.

Как рассчитать дроссель для импульсного блока питания

Регуляторы напряжения на материнской плате

Высококачественные мультиметры часто включают емкостный режим. Чтобы сделать это измерение, просто исследуйте выводы тестируемого устройства. В целях безопасности и точности может потребоваться разрядка устройства с высокой емкостью, такого как электролитический конденсатор, с использованием разумного сопротивления в течение соответствующего промежутка времени. Шунтирование с помощью отвертки не является хорошей практикой, потому что электролит может быть пробит из-за сильного тока, не говоря уже о вспышке дуги в больших единицах. После разряда проверьте, измерив напряжение.

Можно ожидать, что конденсаторы, протестированные с помощью мультиметра в емкостном режиме, будут показывать значения ниже на целых 10 %. Эта точность достаточна для многих применений, таких как цепь запуска для электродвигателя или для фильтрации источника питания. Большая точность достигается путем проведения динамического теста. Одной из стратегий точного измерения является создание схемы, преобразующей емкость в частоту, которую затем можно определить с помощью счетчика.

Схема с дросселем

Для измерения индуктивности устройства, собственной индуктивности цепи или более распространенной распределенной индуктивности прибор LCR является предпочтительным инструментом. Он подвергает тестируемое устройство (надлежащим образом разряжается и изолируется от любых окружающих цепей, которые могут запитать его или создать нерелевантный параллельный импеданс) переменному напряжению известной частоты, обычно одно среднеквадратичное значение на один килогерц. Измеритель одновременно измеряет напряжение и ток через устройство. Из соотношения этих величин он алгебраически рассчитывает импеданс.

Впоследствии усовершенствованные измерители фиксируют фазовый угол между приложенным напряжением и результирующим током. Они используют эту информацию для отображения эквивалентной емкости, индуктивности и сопротивления рассматриваемого устройства. Счетчик работает в предположении, что емкость и индуктивность, которые он обнаруживает, существуют в параллельной или последовательной конфигурации.

Фильтр питания

Конденсаторы имеют определенное количество непреднамеренной индуктивности и сопротивления в результате их выводов и пластин. Точно так же индукторы имеют некоторое сопротивление из-за своих выводов, и они обладают определенной емкостью, потому что их клеммы приравниваются к пластинам. Аналогично резисторы, а также полупроводники на высоких частотах приобретают емкостные и индуктивные качества.

Как правило, счетчик предполагает, что подразумеваемые устройства включены последовательно, когда он выполняет измерения LR. Аналогично предполагается, что они параллельны, когда проводятся измерения CR, из-за последовательной геометрии катушки и параллельной геометрии конденсатора.

Для чего служит дроссель - Морской флот

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Дроссель – это катушка индуктивности, которая обладает большим сопротивлением по отношению к переменному току. В схеме постоянного тока дроссель оказывает гораздо меньшее сопротивление. Название электрического компонента имеет немецкое происхождение – Drossel, что означает сглаживание, торможение.

Конструкция

Принципиальная схема дросселя представляет собой намотанный провод на ферромагнитный сердечник. Отсюда становится понятно, что такое дроссель. Электроэлемент напоминает трансформатор, но имеет одну обмотку.

Принцип работы

Принцип работы электрического дросселя заключается в сдерживании резкого нарастания тока и сглаживании линии падения напряжения. Как работает электрический дроссель, видно на примере люминесцентного светильника. Чтобы газ в колбе не сгорел, а постепенно разогревался, катушка постепенно доводит ток до номинального значения.

Входящий ток «тратит» свою силу на индукцию магнитного поля вокруг катушки. Когда магнитный поток достигнет своего максимума, ток начнёт проходить беспрепятственно через катушку.

Руководство по чокеру для дробовика. Все, что Вам нужно знать.

Чок для дробовика может иметь большое значение для вашей стрельбы, поэтому вам стоит следовать подробному руководству The Field. Узнайте, что такое чок для дробовика, для чего он нужен, как он влияет на вашу стрельбу и какие вам следует использовать

Когда дело доходит до удушения дробовика, вы можете рискнуть одержимостью, но знание того, что может иметь большое значение для вашей стрельбы. Единственное, чему следует следовать - это подробное руководство Field по чокеру для дробовика.Узнайте точно, что это такое, какое оружие следует использовать для какого оружия и в какой карьере, как его измерить и, что, возможно, наиболее важно, когда прекратить возиться.

ЧТО ТАКОЕ ДРОБОВИК?

Чок для дробовика - это сужение на дульном конце ружья, которое сужает рисунок пули. В среднем патроне примерно 300 пуль, поэтому то, насколько широкая картина выстрела или насколько ограничена, имеет значение для вашей стрельбы.

Нет необходимости нервничать из-за удушения дробовика, даже если некоторые люди так делают.Что наиболее важно, регулярные промахи на поле редко сводятся к удушению. Причина, скорее всего, кроется в направлении, в котором указывают стволы.

Choke - одна из тех вещей, которые, как и оружейная, должны посещаться время от времени и выбрасываться из головы после того, как будет принято обоснованное решение относительно того, что лучше всего соответствует вашим потребностям.

С учетом этого, давайте двигаться вперед.

РАБОТАЕТ ЛИ ДРОБОВИК У ВАС?

Вы должны поднести свой пистолет к шаблонной пластине (или импровизировать с листами бумаги или карточек и подходящей рамкой и безопасным задником) и стрелять из него на разных дистанциях - 20, 30 и 40 ярдов - используя патрон, который вы предпочитаете.Вы надеетесь увидеть ровный узор без слишком большого количества скоплений, разрывов или чрезмерной центральной концентрации.

Если есть дыры, через которые может пролететь птица - иногда применяется тест по кругу 5 дюймов - или если схема явно слишком узкая, ваш дробовик и его чокеры могут работать против вас.

После тестирования обычных боеприпасов поэкспериментируйте с разными патронами. Вы можете, например, попытаться наблюдать конечные эффекты переключения между волокнистыми и пластиковыми подушечками (первые часто создают больше открытых схем) или увеличения полезной нагрузки гранул (что может быть альтернативой увеличению дросселирования).Если у вашего пистолета есть несколько дульных сужений, попробуйте другие патроны.

Торговые инструменты для измерения чока ружья

ДРОССЕЛЬ ОБРАТНЫЙ

У спортсменов возникают странные предубеждения по поводу удушения дробовика. Мой подход, и я с радостью признаю, что прошел через стадию замешательства, практичен. Я обнаружил, что работает для меня в разных ситуациях, и теперь придерживаюсь этого. Для обычной стрельбы мне нравится немного чока в первом стволе, но не слишком - это первые несколько тысяч, которые имеют наиболее очевидное отличие.Слегка забитый ствол намного эффективнее настоящего цилиндра и тоже внушает доверие.

Многие охотничьи ружья с 12-ю и 20-ю стволами имеют избыточный чугун для выполнения своей задачи. Узкие модели могут быть средством для более точных убийств на большей дистанции, но они являются препятствием на более коротких дистанциях, поскольку требуют большей точности.

Похоже, что в психологии многих спортсменов есть что-то, что ошибочно предлагает больше удушающего приема, а меньшего - плохого. Если вы собираетесь гулять в обычный день или пешком, вам не нужно много дросселировать в 12-цилиндровом.Первые несколько действительно имеют значение; после этого вступает в силу закон убывающей доходности. Те, кто видит выстрел, подтвердят это. Вы часто можете наблюдать что-то похожее на группу выстрелов размером с теннисный мяч, движущуюся мимо птицы с близкого расстояния. Я видел это много раз и думал: «Это намного сложнее, чем я ожидал, с таким же успехом можно было бы использовать винтовку».

Несколько лет назад я собрал то, что впоследствии стало называться моим «дуфферским ружьем», на основе старой простой модели Jane Beretta Essential.Первоначальная идея заключалась в том, чтобы создать рабочую лошадку без оглядки на эстетику, которую можно было бы легко снимать в обычные дни. Это было основано на принципе «сверху-снизу», потому что, хотя я люблю расположенные бок о бок, перекрытия обычно легче контролировать и легче наводить. Более того, затвор Beretta в высшей степени надежен, а Essential, хотя и бюджетное ружье, имеет более живые стволы, чем в среднем, поскольку у него отсутствуют боковые планки.

Ружье представляло собой модель с несколькими дульными насадками, что позволило провести множество экспериментов с чоками для дробовика на шаблонных пластинах, а затем и в шкурах и на стрельбище.После нескольких месяцев экспериментов я пришел к выводу, что наиболее устойчивый успех с первого выстрела я получил с помощью штуцера, называемого Seminole spreader choke . Это устройство сделано в США. Его можно описать как обратный чок: у него есть секция, которая простирается от дула и трубы до большего размера, чем канал ствола.

Форма этого сечения - коническая. Концепция обратного сужения не нова. В эпоху дульного заряжания, до повсеместного применения чокового сверления, многие ружья были «облегчены» на дульных срезах, потому что было обнаружено, что они стреляют лучше, чем настоящий цилиндр.Мой опыт, казалось бы, подтверждает это; удушающий прием семинолов все еще действует на глиняных птиц на расстоянии 50 ярдов, но он очень щадящий вблизи.

Второй чок для дробовика, который действительно хорошо зарекомендовал себя в полевых условиях - в том, что он был эффективным и щадящим в использовании - был стандартный Beretta Improved Cylinder Mobilchoke tube . Это обычный чок для дробовика с пятью тысячами сужений. Когда-то я насчитал 18 фазанов в среднем на 17 выстрелов. Они не тестировали, но промахнуться было довольно сложно.С тех пор я одолжил его друзьям, попавшим в беду, и они всегда стреляли из него лучше, чем из другого, более традиционного оружия. У меня был аналогичный неестественный успех с другим открытым дульным сужением Beretta, использующим патроны средней скорости и тяжелой полезной нагрузки (11⁄4 унции, № 6).

Ружье и патроны мне одолжили в Италии. Он был чрезвычайно эффективен против легких птиц, но опыт был примечательным, потому что в 36-граммовых патронах было много выстрелов, но они не давали чрезмерной отдачи (более низкая скорость, тяжелая боевая нагрузка была исследована охотником на птиц доктором Чарльзом Хитом несколько лет назад).

ОТКРЫТЫЕ Дроссели?

Означает ли это, что каждый должен открыть свои дроссели? Нет, если только кто-то регулярно стреляет в птиц, близких к средним. Чок для дробовика, безусловно, может быть полезен при стрельбе на дальние дистанции, его эффекты перестают действовать на экстремальных дистанциях и если птицы особенно сильны, например, дикие цесарки в Африке. Чуть больше удушения, чем действительно требуется, может также повысить уверенность - немаловажный фактор при стрельбе - и дать человеку чутье, если не реальную способность лучше подбирать птиц.Если ваша уверенность падает из-за опасений по поводу удушья или чего-то еще, ваше внимание может отвлечься от птицы и ваши движения могут быть нерешительными (что приведет к промахам).

ЧТО ДУШИТЬ ДЛЯ ПТИЦ?

Найджел Тиг, человек, который экспериментировал с чокером для дробовика больше, чем, возможно, кто-либо другой в Британии сегодня, выступает за 7/8 чока - около 35 тысяч - в обоих стволах для действительно высоких предметов. Это согласуется с моим опытом высокой птицы, когда я обнаружил, что три четверти и три четверти работают хорошо из 12, лучше, чем полный и полный.Для многих современных картриджей оптимальная производительность рисунка требует меньшего, чем полное сужение; чрезмерное удушение может вызвать взрыв.

Многие иностранные ружья, особенно малокалиберные, могут иметь чрезмерно высокий чугун. Это говорит о том, что я думаю, что 20 и, особенно, 28 немного лучше работают с чуть большим количеством чоков для дробовика, чем я рекомендовал бы для 12. Мой 30-дюймовый Beretta EELL 28, например, стреляет особенно хорошо с двумя установленными чоками на три четверти. (около 20 тыс. перетяжек в 28).

Хотя можно попытаться сформулировать общие принципы, касающиеся дроссельной заслонки, я считаю, что некоторые ружья, кажется, просто хорошо стреляют с определенным сужением, и нет никакой реальной науки - по крайней мере, такой, которая доступна, - чтобы подтвердить, почему это должно быть.

Баллистика ружья намного сложнее, чем можно подумать, потому что существует множество переменных: атмосферные условия; размер выстрела; плотность выстрела; дробеструйное покрытие; пыж, грунт, порошок и гильза; диаметр ствола (номинальное значение 12 может быть от 0,710 до 0,740 внутреннего диаметра) и внутренняя геометрическая форма; сталь ствола и толщина стенки; и, что не менее важно, длина и форма самих сужений штуцера. Одни дроссели короткие, другие длинные. Некоторые из них представляют собой простые конические сужения, другие имеют конус, ведущий в параллельную секцию, третьи имеют сложную форму, включая такие элементы, как закругленные стенки, секции с облегчением или камеры расширения.

Пока мы уточняем технические вопросы, позвольте мне отметить, что плотный чок ствола дробовика увеличивает давление и, следовательно, скорость. Точка дросселирования стоит около 1 фута в секунду по скорости.

Так как длина ствола также имеет небольшое влияние на скорость - около 5 кадров в секунду на дюйм в 12-канальном канале - это может стать более значительным при сочетании крайних значений дульного сужения и длины ствола. Например, интересно отметить, что 32-дюймовое ружье с полным чоком может иметь скорость на 100 кадров в секунду быстрее, чем 25-дюймовое ружье с открытым стволом, при прочих равных условиях.

Что наиболее интригующе, сужение дульного среза также снижает натяжение выстрела, если оно находится значительно впереди дула (сразу перед дулами может быть некоторое удлинение колонны выстрела, но конечный эффект дульного сужения заключается в уменьшении длина струны выстрела и тем самым повысить ее эффективность). Это может показаться нелогичным, но это было аккуратно продемонстрировано мистером Гриффитсом из компании Schultz Powder Company более ста лет назад, когда он стрелял из чугунного и незакрепленного оружия по вращающемуся диску.Результаты были опубликованы в The Field, как и многое другое о баллистике чока и дробовика в Золотой век.

ВЫБЕРИ ДУШКУ ДЛЯ РУЖЬЯ И ЗАБУДЬТЕ ЕГО

Переходя к преследованию и избегая опасности стать слишком сложным, мой универсальный выбор в 12-канальном игровом ружье обычно был бы улучшен наполовину или улучшен и на три четверти (полезное удушение в сочетании с мгновенным выбором двойной спусковой крючок). Я не стал бы спорить с такими, как мой друг и бывший олимпиец Кевин Гилл, которые выступают за четверть с половиной для многоборья.(Кевин переходит на половину и три четверти для более высоких птиц.) Мое объяснение состоит в том, что мне нравится инстинктивно привлекать средних птиц, но также хорошо иметь возможность более точного подхода на расстоянии.

Дроссель для высоких птиц

Два плотных, но не крайних чокера для дробовика в порядке (в паре с высокопроизводительным патроном; чок нельзя отделять от патрона, используемого с ним).

Дроссель для голубя

Четверть и четверть или половина и половина обычно работают хорошо.Для отверстий меньшего диаметра я предпочитаю немного больший штуцер, чем обычно советуют. Я должен сказать, однако, что я понятия не имею, что находится в моих 32-дюймовых Guerini 20, орудиях, которые я использую больше всего для игры. Я вставил чоки некоторое время назад после игры с тарелками и с тех пор не смотрел на них. Они работают.

ДРОБОВИК ИЗМЕРИТЕЛЬНЫЙ

Ружье мультичок

Обычно чок в стволе обозначают как истинный цилиндр, улучшенный, четверть, половину, три четверти или полный. Оружейники говорят о «точках» удушения.Они измеряют штуцер ружья относительно диаметра канала ствола (который может значительно варьироваться в пределах любого назначенного размера канала ствола, а не только на дульном срезе).
Одна точка соответствует сужению в одну тысячную дюйма. Ниже показано, что можно было бы ожидать от 12-канального орудия.

  • True Cylinder 0-1 балл
  • Цилиндр улучшенный 3-6
  • Quarter (American Improved) 8-12
  • Половина (американская модификация) 17-23
  • Три четверти (Улучшено Модифицировано) 25-30
  • Полный 35-40
  • Супер полный 40+

Однако эти описания не следует оценивать в отрыве от их наблюдаемых эффектов.При правильном рассмотрении, дросселирование касается количества гранул, брошенных любым данным стволом / сужением в 30-дюймовый круг на 40 ярдах. Качество выстрела, тип пыжа и другие факторы, такие как точный диаметр канала ствола и форма дульного сужения - короткий или длинный, простой конический или конический конус плюс параллельное сечение (фаворит британских оружейников) - все это может иметь большое значение.

Процент гранул внутри
30-дюймового круга на 40 ярдах

  • Настоящий цилиндр 30-40
  • Улучшено 50
  • Квартал 55
  • Половина 60
  • Три четверти 65
  • Полный 70-75
  • Супер полный 76+

Чок для дробовика может быть определен окончательно только по шаблонным пластинам и применительно к конкретному патрону.Само по себе измерение сужения может ввести в заблуждение. Раньше оружейник всегда спрашивал своего клиента, какие патроны он намеревался использовать, а затем регулировал чоки в соответствии с желаемым процентом. Если бы клиент выбрал собственную марку оружейника, ему пришлось бы продолжать использовать патроны оружейного мастера, чтобы обеспечить постоянство характеристик.

Общие сведения о чоках для дробовика - полные чоки, I / C, модифицированные и др.

Изучение практического применения чоков для дробовика при стрельбе по крыльям

Позвольте мне быть впереди.Идея чока для дробовика ускользала от меня на долгие годы. Все, что мне когда-либо объясняли, это то, что чем больше открывается заслонка, тем быстрее происходит распространение. Просто и точно, но бесполезно, когда дело доходит до практического применения. Я хотел бы, чтобы случилось, чтобы кто-нибудь сказал мне: «Дроссель, который вы должны использовать, зависит от расстояния , которое вы стреляете в свою игру». Я, прежде всего, охотник на вальдшнепа и рябчика, поэтому мне всегда нравились широко открытые чоки.

Однако я так и не смог полностью понять научные данные, лежащие в основе выбора одного дросселя вместо другого. Мои рассуждения были просты: для быстрых птиц в плотном укрытии я хочу, чтобы выстрел распространялся быстро. Мой руководящий принцип должен был заключаться в том, что будет заключаться в том, что большинство птиц будет стрелять на расстоянии от 10 до 25 ярдов, поэтому выбор тарелки и удушения IC имеет смысл в двуствольном ружье.

Если вам нужен совет по применению определенного вида, ознакомьтесь со следующими статьями:

Заяц на снегоступах: Знакомство с дробовиками, чоками и размером выстрела для охоты на зайца на снегоступах
Фазан с кольцевой шеей: Патроны для охоты на фазана и удушающие патроны - Руководство для охотников на фазанов
Грубый рябчик: Как выбрать размер дробовика Чок для охоты на рябчика
Голубя: Какие узлы и размер выстрела использовать для охоты на голубя
Чешуйчатый перепел: Выбор дробовика, размера выстрела и заслонки для охоты на чешуйчатого перепела
Перепел Бобуайт: Какой самый лучший размер выстрела и дроссели для перепела Bobwhite
Дикие индейки: Выбор дросселей, боеприпасов и паттернов для выстрелов индейки
* Будут опубликованы другие статьи по конкретным видам мелкой дичи.

Изобретение чоков для дробовика

Прежде чем мы продолжим, давайте исследуем историю чоков для дробовика. Хотя мы не можем точно определить всю историю, считается, что чок для дробовика был изобретен в Род-Айленде в начале-середине 19 века оружейным мастером Джереми Смитом. 14 июля 1868 года изобретатель из Бостона создал первые запатентованные «съемные дула для ружей». Эти чоки должны были навинчиваться снаружи ствола и не фиксировались.Есть некоторые ссылки на книги, предшествующие этим изобретениям в Испании; однако этой истории уделяется мало внимания.

На более крупной сцене, знаменитый У. В. Гринер из Англии усовершенствовал чоки для дробовика. Ранние американские версии были непоследовательными и плохо структурированными. Уильям Гринер подверг теорию множеству экспериментов и в конечном итоге создал первый метод, который можно было постоянно повторять. Это были фиксированные чоки, то есть они были неотъемлемой частью конструкции ствола.Его часто называют изобретателем первых чоков для дробовика, которые на самом деле работали .

Утверждения о том, насколько эффективны дроссели Greener, были проверены в 1875 году редакторами Field Magazine. «Цилиндровые» ружья классического производства во всех категориях уступили удушающим продуктам Greener. Это положило начало новой эре и более практическому применению дробовика в стрельбе по крыльям.

Идея сменных или «ввинчиваемых чоков» не использовалась до примерно 1960-х годов, когда Winchester выпустила модель 1200, первое серийное ружье с их системой «Winchoke».С этого момента наука, теория и применение чоков для дробовика превратились в постоянно развивающийся мир.

Размеры и обозначения дробовиков

Чок для дробовика может быть очень сложной темой, и с ней не всегда соглашаются. С первых дней его изобретения у нас теперь есть целые компании, единственный бизнес которых - производство чоков для дробовика. Чтобы все было просто и практично, мы рассмотрим классические чоки, часто применяемые при стрельбе по крыльям - начиная с чока цилиндра и заканчивая полным чоком.

Обратите внимание, что измерения дросселей основаны на разностях . Например, штуцер для тарелки 12-го калибра на 0,005 дюйма (0,725 дюйма) плотнее, чем отверстие цилиндра (0,730 дюйма). Разница в 0,005 дюйма основана на дробовике 12-го калибра, который имеет диаметр ствола 0,730 дюйма; все отличия указаны из этого числа. Как вы прочитаете ниже, улучшенная дроссельная заслонка цилиндра 12-го калибра составляет 0,010 дюйма, что на 0,010 дюйма отличается от диаметра цилиндра 0,730 дюйма, расположенного на 0,720 дюйма

.

В других калибрах измерения другие.Например, калибр 28 с внутренним диаметром 0,550 дюйма будет отличаться на 0,003 дюйма в улучшенном цилиндре. Тем не менее, мы остановимся на примере калибра 12, чтобы упростить визуализацию и предоставить ориентир того, как дроссели отличаются друг от друга.

Многие из этих измерений могут отличаться от производителя, страны и даже истории. Мы решили догнать Griffin и Howe в Нью-Джерси, чтобы подтвердить их стандарты в отношении размеров штуцеров по диаметру ствола.

Также важно отметить, что оценки расстояния между свинцом и сталью основаны на разбросе , а не на скорости , поскольку свинец обычно весит в три раза больше, чем сталь. Свинец - гораздо более плотный металл и по умолчанию будет уноситься дальше вниз с более высокой скоростью. Однако дробь из стали распространяется медленнее и в результате имеет более плотный узор. Это причина того, что наши графики показывают большее расстояние в оценках стали для достижения аналогичных моделей спреда для свинца.

Цилиндровый штуцер - Цилиндровый штуцер измеряется на 0,00 дюйма (0,730 дюйма) и, по сути, означает отсутствие сужения ствола вообще. Эффективное расстояние для дроссельной заслонки цилиндра составляет 25 ярдов.За пределами этого расстояния шаблон часто становится слишком непоследовательным и беспорядочным, чтобы быть эффективным. Некоторые указывают на идеальные расстояния от 0 до 15 ярдов. Идеальный диапазон стального выстрела составляет от 0 до 20 ярдов.

Идентификация дросселей по визуальной маркировке (не по измерению) может быть сложной задачей, поскольку существует множество версий в зависимости от страны и даже производителя. Мы продолжим добавлять в эти списки по мере открытия новых систем.

Если для обозначения дроссельной заслонки цилиндра используются насечки, они будут обозначены как IIIII или 5 (однако, у Браунинга насечки не будут).Испанцы идентифицируются с помощью 5 звезд *****, а у британцев нет идентификационных маскировщиков, поскольку цилиндр считается «нулем» измерения.

2
Калибр 12 0,00 ″ .730 ″
Калибр 16 0,00 ″ .662 ″
20 Манометр 0,00 ″ Калибр 0,00 ″ .550 ″
.410 0.00 ″ .410 ″

Skeet Choke - Этот дроссель часто упускается из виду традиционными средствами массовой информации, но он довольно популярен при охоте на рябчика и вальдшнепа. На 0,005 дюйма он удерживает средний зазор между цилиндром и улучшенной воздушной заслонкой цилиндра. Лучшее применение - от 5 до 20 ярдов свинцом и от 10 до 30 ярдов стальной дробью.

У британцев на этом штуцере имеется опознавательная маркировка с использованием 1/8. Испанская система и система насечки не имеют опознавательных знаков для этого штуцера.

Калибр 12 0,005 ″ .725 ″
Калибр 16 0,004 ″ . 658 ″
0,005 ″ ″ 20 Калибр 28 Калибр 0,003 ″ .547 ″
.410 0,002 ″ .408 ″

Улучшенный цилиндр с дробовиком (IC) еще один популярный дроссель 9guned. Мир.Практический диапазон составляет от 10 до 25 ярдов для свинца и от 15 до 30 ярдов для стали. В зависимости от таких вещей, как производитель и возраст, чок для дробовика IC для 12-го калибра может варьироваться от 0,009 до 0,010 дюйма. Это изменение происходит в трех чоках, связанных с 12-м калибром, как вы увидите на ските II и модифицированном задыхается.

Этот штуцер имеет обозначение IIII или 4 деления. Испанцы обозначают их как **** или 4 звезды, а британцы - как 1/4.

9022
Калибр 12 0.009 ″ / 0,010 ″ .721 ″ /. 720 ″
Калибр 16 0,007 ″ ,665 ″
20 Калибр 0,006 . 0,005 ″ .545 ″
.410 0,004 ″ .406 ″

Light Modified (LM) или Skeet II - популярный легкий дроссель поскольку это редко становится стандартной проблемой в сменных чоках с серийными ружьями.При приземлении с размером от 0,012 до 0,015 дюйма, его практическое применение - для диапазонов от 15 до 30 ярдов с упором и от 20 до 35 ярдов со стальной дробью.

Эти штуцеры не имеют опознавательных знаков ни одной из упомянутых систем.

Смотрите также
Калибр 12 0,012 / 0,015 ″ .718 ″ /. 715 ″
Калибр 16 0,010 ″ , 652 ″
. 652 ″
2030606 ″
Калибр 28 0,007 ″ .543 ″
.410 0,006 ″ . 404 ″

Модифицированный дроссель (наиболее эффективный) Модифицированный от 20 до 35 ярдов с упором и со стальным выстрелом с 25 до 45 ярдов. Для калибра 12 его размер может составлять 0,019 дюйма и 0,020 дюйма (или 0,711 и 0,710 дюйма).

Обозначается III или 3 отметками, 1/4 у британцев и *** или 3 звездочками у испанцев.

14230 601 ″
Калибр 12 0,019 ″ / 0,020 ″ .711 ″ /. 710 ″
Калибр 16 0,015 ″ .647 ″ 0,647 ″
28 Калибр 0,012 ″ .538 ″
.410 0,008 ″ . 402 ″

Модифицированный модифицированный для целей на расстоянии от 25 до 40 ярдов с опорой и от 30 до 50 ярдов со сталью.Измерено на расстоянии 0,025 дюйма на ружье 12-го калибра.

Будет отображаться как II или две метки. Испанцы используют ** или две звезды. Британская марка как 3/4.

Калибр 12 0,025 ″ .705 ″
Калибр 16 0,020 ″ .642 ″
Калибр 20 0,019 9022 Калибр 0,016 ″ .534 ″
.410 0.011 ″ .399 ″

Full Choke - Важно указать, что - это такая вещь, как light full choke. Однако его популярность никогда не росла. Следовательно, полный штуцер на 0,010 дюйма больше, чем у усовершенствованной модификации 0,035 дюйма. Его эффективный диапазон составляет от 30 до 45 ярдов с свинцом. Очень важно понимать стальную дробь, в некоторых случаях не может быть выпущен через полный штуцер, хотя широко обсуждается, что более высокое качество производства позволит использовать сталь.Но некоторые до сих пор утверждают, что схемы несовместимы со стальными и полными дросселями. К счастью для нас, горных охотников, использование полного чока не имеет практического применения в полевых условиях. Мы можем предоставить эту догадку охотникам за водоплавающими птицами. . .

Полный штуцер - это одна ступенька (или I), 1/1 согласно британцам и одна звезда (*) испанцам.

Калибр 12 0,035 ″ 0,695 ″
Калибр 16 0,028 ″ .633 ″
Калибр 20 0,025 ″ . 590 ″
Калибр 28 0,022 ″ . 528 ″
.210 0,035
.410 0,035
.410 0,035

Как применить дроссель к вашей ситуации

Мы работали над серией статей, посвященных практическому применению размеров чока для дробовика в условиях горной дичи. Мы рассмотрели такие способы применения удушающих средств для птиц, как удушения для фазана, подавители для куропаток и удушающие для перепелов.В некоторых из этих статей будет предлагаться переключение чока для дробовика в зависимости от сезона. Например, рябчик в начале сезона стреляет гораздо ближе, чем в конце сезона, когда опадают листья. Проще говоря, вы должны учитывать средние расстояния, на которые вы стреляете на , независимо от того, какую игру на возвышенности вы преследуете, а затем применять расстояния, указанные выше. В дни, когда птицы более нервные, вы можете подумать о более плотном удушении для более длительных выстрелов.

20229 до 30 ярдов
Размер штуцера Свинец Стальная дробь
Цилиндр от 0 до 15 ярдов от 0 до 20 ярдов
Улучшенный цилиндр От 10 до 25 ярдов От 15 до 30 ярдов
Легкая модификация От 15 до 30 ярдов от 20 до 35 ярдов
Модифицированная от 209 до 35229 От 25 до 45 ярдов
Улучшенный Модифицированный От 25 до 40 ярдов От 30 до 50 ярдов
Полный От 30 до 45 ярдов - - -
9000 Указанные здесь расстояния основаны на 60% или более выстрела, появляющегося в 30-дюймовом круге, а не на эффективной скорости выстрела, которая намного ниже в сравнении со стальной дробью. готовы возглавить.Как показывает эта диаграмма, поскольку сталь весит меньше свинца, она распространяется медленнее.

Мы должны проверить наши ружья и чоки по образцу

Также важно учитывать, что не все чоки и дроби, смешанные вместе, одинаковы. Птица № 6, пробитая Beretta сверху и снизу с модифицированным дульным сужением, может иметь другой рисунок, чем тот же чок и комбинация с таким же размером выстрела у другой марки. Это относится к разным маркам патронов для дробовика, чокам, типам пыжов и даже к самому ружью.

Тестирование на бумаге, чтобы увидеть, на каких расстояниях 30-дюймовый круг имеет эффективный рисунок, должно быть частью наших предсезонных тренировок. Широко распространено мнение, что если в 30-дюймовом круге попадает менее 60 процентов выстрела, выстрел уже не является эффективным на таком расстоянии. Изучение брендов и комбинаций, чтобы найти идеальный сценарий для вашего приложения, должно быть частью повседневной практики для всех из нас.

Признаки, опасность удушья и профилактика

Признаки удушья

Удушье возникает, когда кусок пищи, предмет или жидкость блокирует горло.Дети часто задыхаются из-за попадания в рот посторонних предметов. Взрослые могут задохнуться от вдыхания паров, слишком быстрого приема пищи или питья.

Большинство людей задыхаются в какой-то момент своей жизни. Обычно это недолговечно и не представляет реальной опасности. Однако удушье может быть опасным и вызвать опасные для жизни осложнения.

Человек, который задыхается, может непрерывно кашлять до тех пор, пока пища или жидкость не выйдут из горла или дыхательных путей. Однако в некоторых случаях предмет, еда или жидкость застревают в горле и перекрывают подачу воздуха.

Человек, который задыхается, может демонстрировать неспособность:

  • говорить
  • кашлять
  • шуметь
  • дышать

У них также может быть голубоватый оттенок губ, кожи или ногтей из-за недостатка кислорода.

Человек может скрестить руки на горле, чтобы вы знали, что задыхается.

Дети обычно задыхаются, когда кладут предметы в рот. Обычно они делают это из любопытства. Однако они также могут подавиться, если едят слишком быстро или разговаривают с едой во рту.

Обычные предметы, которыми дети подавляются:

  • попкорн
  • конфеты
  • ластики для карандашей
  • морковь
  • хот-доги
  • жевательная резинка
  • арахис
  • помидоры черри
  • цельный виноград
  • крупные кусочки фруктов
  • большие куски овощей

Взрослые обычно задыхаются, когда глотают пищу, не пережевывая ее должным образом, или когда смеются во время еды или питья.

Используйте метод Красного Креста «пять и пять» для лечения человека, который задыхается: ударьте человека по спине пяткой руки между лопатками.Затем выполните маневр Геймлиха пять раз. Чередуйте их, пока человек не перестанет задыхаться.

Не выполняйте метод «пять и пять» с ребенком. Вы должны давать ребенку только маневр Геймлиха.

Маневр Геймлиха

Чтобы выполнить маневр Геймлиха, выполните следующие действия:

  1. Встаньте позади человека, обхватив его руками за талию.
  2. Наклоните человека вперед.
  3. Сожмите руку в кулак и положите ее на живот человека выше его пупка.
  4. Свободной рукой сожмите кулак и надавите на живот человека движением вверх.
  5. Повторите этот метод пять раз.
  6. Если предмет все еще застрял в горле человека, повторите эти шаги еще пять раз.

Если человек без сознания, по возможности прочистите дыхательные пути. Вы можете сделать это пальцем. Однако будьте осторожны, чтобы не протолкнуть объект дальше в горло. Позвоните в службу 911 или в местную службу экстренной помощи, а затем начните СЛР.

Получите дополнительную информацию о том, как выполнить маневр Геймлиха, включая ссылки на видео, которые показывают, как это делается.

СЛР

Для выполнения СЛР необходимо выполнить следующие действия:

  1. Уложите человека на спину на ровную поверхность.
  2. Встаньте на колени сбоку от человека без сознания и положите руку ему на середину груди ладонью вниз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *