Допустимые токи и сечение проводов: Как сечение кабелей и проводов влияет на выбор мощности и тока

Содержание

Диапазон стандартных сечений жил

1.3.10

Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли + 15°С.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах).

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

Сечение токопроводящей жилы, мм2

Ток, А, для кабелей

  одножильных

двухжильных

трехжильных

 

при прокладке

  в воздухе в воздухе в земле в воздухе в земле
2,5 23 21 34 19 29
4 31 29 42 27 38
6 38 38 55 32 46
10 60 55 80 42 70
16 75 70 105 60 90
25 105 90 135 75 115
35 130 105 160 90 140
50 165 135 205 110 175
70 210 165 245 140 210
95 250 200 295 170 255
120 295 230 340 200 295
150 340 270 390 235 335
185 390 310 440 270 385
240 465

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.

Сечение токопроводящей жилы, мм2

Ток *, А, для шнуров, проводов и кабелей

  одножильных двухжильных трехжильных
0,5 12
0,75 16 14
1,0 18 16
1,5 23 20
2,5 40 33 28
4 50 43 36
6 . 65 55 45
10 90 75 60
16 120 95 80
25 160 125 105
35 190 150 130
50 235 185 160
70 290 235 200

________________

* Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее.

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

0,5 3 6
6 44 45 47
10 60 60 65
16 80 80 85
25 100 105 105
35 125 125 130
50 155 155 160
70 190 195

__________________

* Токи относятся к кабелям с нулевой жилой и без нее.

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

Сечение токопроводящей жилы, мм2

Ток *, А, для кабелей напряжением, кВ

3 6 3 6
16 85 90 70 215 220
25 115 120 95 260 265
35 140 145 120 305 310
50 175 180 150 345 350

__________________

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Способ прокладки

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов, питающих группы электро приемников и отдельные приемники с коэффициентом использования более 0,7

одножильных многожильных отдельные электроприемники с коэффициентом использования до 0,7 группы электроприемников и отдельные приемники с коэффициентом использования более 0,7

Многослойно и пучками . . .

До 4 1,0
2 5-6 0,85
3-9 7-9 0,75
10-11 10-11 0,7
12-14 12-14 0,65
15-18 15-18 0,6

Однослойно

2-4 2-4 0,67
5 5 0,6

Таблица сечения проводов в зависимости от тока, мощности и напряжения.

Чтобы правильно выбрать сечение провода для отдельных линий электропроводки, можно воспользоваться справочными таблицами. Но для этого необходимо знать суммарную мощность потребителей, которые будут работать на одной электролинии.

Сечение провода, мм² Для кабелей с медными жилами
Напряжение 220в Напряжение 380в
Ток, А Мощн., кВт Ток, А Мощн., кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
Сечение провода, мм²
Для кабелей с алюминиевыми жилами
Напряжение 220в Напряжение 380в
Ток, А Мощн. , кВт Ток, А Мощн., кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4

Чтобы правильно распределить нагрузку и выбрать, какой кабель использовать для каких электролиний при проведении электромонтажа в вашем городе в Подмосковье, обратитесь к нашим специалистам. Наш электрик в Пушкино проведет профессиональную консультацию на Вашем объекте в день обращения. Или Вы можете оформить вызов электрика в Щелково, и мастер приедет к Вам так же оперативно. Если нужен электрик в Мытищи или в другие города Ярославского направления, звоните, организуем.

Методика выбора сечения провода

Выбор сечения провода основывается на допустимой плотности тока. Например, для медного провода допустимая плотность тока составляет 8 А/мм2. Соответственно если номинальный ток какого-то электроприбора составляет 10 А, то сечение медного провода не должно быть меньше 1,25 мм2.

Разработан и внедрен целый ряд стандартных сечений проводов: 0,75; 1; 1,5; 2; 2,5; 3; 4; 6; 10; 16; 25; 35; 50 мм2. Поэтому при выборе сечения особых сложностей нет – нужно просто выбрать из стандартного ряда с округлением в большую сторону. Стоит отметить, что провод с сечением менее 1,5 мм2 при монтаже электропроводки не применяется. Это связано с его механической прочностью.

Сечение жил кабелей и проводов подбирается с учетом максимально допустимой загрузки кабеля.

И это не постоянная величина. Она может зависеть от количества жил в кабеле, способа и места прокладки кабеля, а также типа его изоляции. Рекомендованные максимальные значения токов для стандартных сечений наиболее распространенных медных кабелей для монтажа домашней электропроводки с резиновой и поливинилхлоридной изоляцией приведены ниже:

Как рассчитать сечение по току

Расчет сечения кабеля по току осуществляется также на основании ПУЭ, в частности, с использованием таблиц 1.3.6. и 1.3.7. Зная суммарную мощность электроприборов, можно по формуле определить номинальную силу тока:

I = (P · Кс) / (U · cos ϕ).

Для трехфазной сети используется другая формула:

I=P/(U√3cos φ),

где U будет равно уже 380 В.

Если к трехфазному кабелю подключают и однофазных, и трехфазных потребителей, то расчет ведется по наиболее нагруженной жиле. Для примера с общей мощностью приборов, равной 5 кВт, и однофазной закрытой сети получается:

I = (P · Кс) / (U · cos ϕ) = (5000 · 0,75) / (220 · 1) = 17,05 А, при округлении 18 А.

BBГнг 3×1,5 – медный трехжильный кабель. По таблице 1.3.6. для силы тока 18 А ближайшее в значение – 19 А (при прокладке в воздухе). При номинальной силе тока 19 А сечение его токопроводящей жилы должно составлять не менее 1,5 мм2. У кабеля BBГнг 3×1,5 одна жила имеет сечение S = π · r2 = 3,14 · (1,5/2)2 = 1,8 мм2, что полностью соответствует указанному требованию.

Если рассматривать кабель ABБбШв 4×16, необходимо брать данные из таблицы 1.3.7. ПУЭ, где указаны значения для алюминиевых проводов. Согласно ей, для четырехжильных кабелей значение тока должно определяться с коэффициентом 0,92. В рассматриваемом примере к 18 А ближайшее значение по таблице 1.3.7. составляет 19 А.

С учетом коэффициента 0,92 оно составит 17,48 А, что меньше 18 А. Поэтому необходимо брать следующее значение – 27 А. В таком случае сечение токопроводящей жилы кабеля должно составлять 4 мм2. У кабеля ABБбШв 4×16 сечение одной жилы равно:

S = π · r2 = 3,14 · (4,5/2)2 = 15,89 мм2.

Согласно таблице 1.3.7. этот кабель рациональнее использовать при номинальном токе 60 А (при прокладке по воздуху) и до 90 А (при прокладке в земле).

Сечение провода и мощность. Как определить максимальный ток по сечению провода.

Правилами монтажа электропроводки предусмотрено, что установочные провода должны соответствовать подключаемой нагрузке. Для одной и той же марки и одного и того же сечения провода допускаются различные по величине нагрузки, которые зависят от условий прокладки а значит и возможности охлаждения. Провода или кабели, проложенные открыто, лучше охлаждаются чем проложенные в трубах или скрыто под штукатуркой.

Сечение токопроводящих жил выбирают исходя из предельно допустимого нагрева жил, при котором не повреждается изоляция проводов. Допустимые значения длительных токов нагрузки для проводов, шнуров и кабелей рассчитаны и приведены в Правилах устройства установок (ПУЭ).

Допустимая нагрузка (при прочих равных условиях) с увеличением сечения возрастает не пропорционально сечению, а медленнее.

Например, при сечении 1 мм² допустим ток 17 А. При сечении 1,5мм² — не 25,5 А, а только 23 А.

При расположении нескольких проводов в общей гофрированной трубе, в канале скрытой проводки, условия их охлаждения ухудшаются, они также нагревают друг друга, поэтому допустимый ток для них должен быть уменьшен на 10 — 20%.

Рабочая температура проводов и шнуров в резиновой изоляции не должна превышать +65°С, в пластмассовой — +70°С. Следовательно при комнатной температуре +25°С допустимый перегрев не должен превышать температуру +40 — 45°С.

Определение площади сечения

Здесь о том, как определить сечение провода. Вообще, это задача из элементарной геометрии, но школьные знания быстро забываются и приходится вспоминать. Поскольку провод – это одна или несколько круглых проволок, то площадь сечения выражается

формулой:

где n – число проволок, d – диаметр проволоки в мм. В результате преобразований вместо чисел π и 4 мы получаем коэффициент 0. 785. Результат получается в квадратных миллиметрах. Если проволок всего одна, тогда n = 1 и про него можно забыть.

Например, мы измерили микрометром диаметр провода и он оказался равным 1.02 мм. Тогда возводим это число в квадрат: 1.02 * 1.02 = 1.0404 и умножаем на 0.785. Получаем: S = 0.817 мм.кв, для практики можем считать этот результат достаточно точным. Для многопроволочных жил результат нужно дополнительно умножить на n.

Измерять диаметр проволоки следует штангенциркулем, лучше всего – микрометром. Но если таких приборов нет, можно измерить диаметр проволоки обычной миллиметровой линейкой, при помощи следующей хитрости (радиолюбительский способ): на карандаш или ровный твердый стержень вплотную наматывается столько витков проволоки, сколько удобно держать вместе.

Затем ширина намотки измеряется линейкой с точностью до 1 мм и делится на число витков

Важно при измерении избегать зазоров между витками и наползания витков друг на друга! Это плохо повлияет на точность

Допустимая плотность тока для медного провода

Формула для расчета допустимого тока выглядит следующим образом: I = P/V, в которой I является силой тока (А), P – суммарная мощность потребителей (Вт), V – напряжение электрической цепи. Зная величину общего тока всех имеющихся потребителей, а также соотношение, где присутствуют допустимые токи нагрузки медных проводов, рассчитанные на определенное сечение, можно вычислить плотность тока.

Так для медных проводов она будет составлять 10А на 1 мм2. Эта же величина для алюминиевого провода составит 8А на квадратный миллиметр. То есть плотность тока у медного провода при одинаковом сечении будет выше, чем у проводов из алюминия. С помощью такого показателя легко определяется, подходят ли имеющиеся провода для планируемой цепи или есть необходимость в выборе другого сечения.

Примеры расчета сечения кабеля по мощности.

К примеру, для трёхфазной нагрузки в 15 кВ необходимо использовать медный провод (прокладка по воздуху). Как же рассчитать необходимое сечение кабеля по мощности? Сперва вычисляется токовая нагрузка, исходя из данной мощности. Для трёхфазного кабеля применяется 2 формула: I = P / √3 • 380 = 22.8 ≈ 23 А. Однако, согласно ГОСТ 31996—2012, в том случае, когда применяется четырёхжильный кабель, значение тока необходимо умножить на коэффициент 0.93. I = 0.93 * 27 = 25 A. Из расчётов выходит, что для данного случая, можно взять медный провод с сечением 2.5 мм2 (согласно ГОСТ).

К сожалению, многие производители выпускают кабели с заниженным сечением по мощности, поэтому в этой статье рекомендуется взять кабель с большим запасом. Для рассмотренного случая рекомендованное сечение провода будет составлять приблизительно 4 мм2.

Необходимо помнить, что большинство пожаров происходят из-за использования некачественной электропроводки. Такую продукцию частенько выпускают многие малые предприятия, чтобы сэкономить на производстве. Из-за этого своё предпочтение лучше отдавать той продукции, которая произведена согласно нормативам ГОСТ крупными предприятиями.

Какой провод лучше использовать для проводки медный или алюминиевый?

В настоящее время, наибольшей популярностью пользуются медные провода. Такие кабели, в сравнении с алюминиевыми, обладают следующими преимуществами:

1)    медь прочнее, мягче, в местах перегибов не ломается;

2)    медь меньше подвержена коррозии и окислению;

3)    медный провод выдерживает большую токовую нагрузку.

Главный недостаток медных проводов – это цена. В среднем их стоимость выше в 3-4 раза. Несмотря на это, медные провода являются более распространёнными и популярными.

Выбор сечения проводов

Медь — надежный материал, обладающий достаточной устойчивостью к сгибам, повышенным уровнем электрической проводимости, а также незначительной подверженностью коррозийным изменениям. Именно по этой причине, в условиях одинакового уровня электрической нагрузки, предусматривается меньшее сечение медной жилы по сравнению с алюминиевыми кабельными изделиями.

Приобретение электрического провода медного типа осуществляется с определенным запасом по сечению, снижающим риск перегрева в результате возрастания нагрузки при подключении новых энергозависимых приборов.

Кабель ВВГнг 4х4 0,66 кВ

Важно, чтобы сечение полностью соответствовало максимальным показателям нагрузки, а также токовой величине, на которую рассчитаны автоматические защитные устройства. Токовая величина — один из основных показателей, влияющих на расчет площади проводного сечения в медных кабельных изделиях

Определенной площадью обуславливается пропускная возможность прохождения тока на протяжении длительного времени. Такой параметр носит название — длительно допустимая нагрузка. В этом случае сечение медной жилы является общей площадью среза центральной части, проводящей ток к потребителям

Токовая величина — один из основных показателей, влияющих на расчет площади проводного сечения в медных кабельных изделиях. Определенной площадью обуславливается пропускная возможность прохождения тока на протяжении длительного времени. Такой параметр носит название — длительно допустимая нагрузка. В этом случае сечение медной жилы является общей площадью среза центральной части, проводящей ток к потребителям.

Площадь поперечного сечения жилы определяется основными размерами, замеряемыми при помощи штангенциркуля:

  • для круга — S = πd2 / 4;
  • для квадрата — S = a2;
  • для прямоугольника — S = a × b;
  • для треугольника — πr2 / 3.

Силовой 16-жильный кабель

Стандартные расчетные обозначения: радиус (r), диаметр (d), ширина(b) и длина (а) сечения, а также π = 3,14. Как правило, стандартное сечение вводного кабеля составляет 4-6 мм2, проводки для подключения розеточной группы — 2,5 мм2, а площадь сечения для подсоединения системы основного освещения — порядка 1,5 мм2.

Прежде чем выбрать сечение медной жилы, необходимо учесть конкретные эксплуатационные условия и предполагаемые показатели максимальной токовой нагрузки, которая будет протекать по электрической проводке продолжительное время.

Расчет сечения провода

Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно провести расчет сечения кабеля по току. Для этого потребуется штангенциркуль и формула.

Если рассмотреть сечение кабеля, то это круг с определенным диаметром. Существует формула площади круга:

S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» – диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².

Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков? Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.

Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу

Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство. Поэтому полученную величину надо умножить на снижающий коэффициент – 0,91

Выбор толщины кабеля и автоматического выключателя, исходя из потребляемой мощности и тока.

Ниже — таблица выбора сечения кабеля, исходя из известной мощности или тока. А в правом столбце — выбор автоматического выключателя, который ставится в этот кабель.

Макс. мощность,кВт

Макс. ток нагрузки,А

Сечениекабеля, мм2

Ток автомата,А

1

4.5

1

4-6

2

9. 1

1.5

10

3

13.6

2.5

16

4

18.2

2.5

20

5

22.7

4

25

6

27.3

4

32

7

31.8

4

32

8

36.4

6

40

9

40.9

6

50

10

45.5

10

50

11

50.0

10

50

12

54.5

16

63

13

59.1

16

63

14

63.6

16

80

15

68.2

25

80

16

72.7

25

80

17

77.3

25

80

В этой таблице данные приведены для следующего случая.

— Одна фаза, напряжение 220 В

— Температура окружающей среды +30 С

— Прокладка в воздухе или коробе (в закрытом пространстве)

— Провод трехжильный, в общей изоляции (кабель)

— Используется наиболее распространенная система TN-S с отдельным проводом заземления

— Достижение потребителем максимальной мощности — крайний, но возможный случай. При этом максимальный ток может действовать длительное время без отрицательных последствий.

В том случае, если температура окружающей среды будет больше хотя бы на 20 C, или в жгуте будет находиться несколько кабелей, то рекомендуется выбрать большее сечение.

Еще важно знать какой кабель вы покупаете. Некоторые производители занижают сечение жил в кабеле, чтобы сэкономить средства и время

Существует ряд компаний делающих такие провода(перечислять их я не буду).

Пример выбора проводов в квартире

Чтобы выбрать сечение провода по диаметру, нужно руководствоваться потребляемой мощностью в линии и длиной трассы, как наглядно показывает предыдущий рисунок. Для осветительных приборов, особенно современных энергосберегающих, вполне можно взять минимальное допустимое по ПУЭ сечение 1,5 кв.мм медного провода.

Очень целесообразно отделить линию освещения от линий розеток. Это позволит ремонтировать розетки при свете, и наоборот, обезопасит ремонт светильников если использовать переноску или лампу, включенную в розетки.

Мощные линии желательно ничем не нагружать «по дороге» от щитка. Это сделает их питание стабильным. Линию для розеток общего назначения можно рассчитывать на пару нагрузок средней величины (1,5 кВт)

Также важно отделить линию для питания электронного оборудования, связи и вычислительной техники, если они используются для ответственной работы

И в заключение, в качестве примера, рассмотрим простой проект квартирной проводки. Исходными данными можно считать план помещения и расстановку электроприборов. Для каждого прибора нужно выяснить его мощность, для каждой линии сложить все мощности ее нагрузок, взяв некоторый запас «на вырост», так как есть тенденция на все большее потребление (кто мог представить в 1950-х годах стиралки по 8 кВт, когда утюги потребляли 375 Вт?).

Сначала нужно выполнить план квартиры с точным соблюдением масштаба и линейку на нем. Затем на план наносятся места установки электроприборов и их мощности:

Затем следует выполнить, возможно, по частям, проектирование линий освещения и розеток. Всю работу можно выполнить в каком-либо графическом редакторе, по слоям. Сейчас это доступно любому пользователю ПК. Необязательно соблюдать все правила выполнения чертежей, этот план вы делаете для себя.

Все вместе можно распечатать:

Благодаря линейке и масштабу можно непосредственно на листе (или в программе) делать измерения трасс. Так можно точно подсчитать (не забывая учитывать вертикальные участки) длину всех трасс и проводов групп освещения. На чертеже также отмечается, через какие распределительные коробки проходит трасса.

На этом плане одна линия освещения (оранжевый цвет) и три розеточные линии. Теперь почти очевидно, как выбрать провод. Для линии освещения берем самый тонкий, разрешенный ПУЭ, 1.5 кв.мм трехжильный провод, с желто-зеленым проводником защитной земли. Провода для розеточных линий потребуется немного рассчитать.

Линия Р1 (черный) потребует самого толстого провода, к ней присоединены наиболее мощные нагрузки: стиралка и водогрейный котел, которые в сумме составляют 12 кВт, причем вовсе не исключена их совместная работа, особенно зимой. Каким будет ток? I = 12000/220 = 54 А.

Смотрим в таблице выше. Нам подойдет провод 10 квадратов. Весьма удачно то, что эти розетки расположены близко к электрощитку, трасса получается короткой, недорогой и с малым падением напряжения. (Столь мощные нагрузки обычно характерны уже для трехфазной сети, но наш пример только иллюстрация.)

Вторая линия розеток Р2 в сумме потребляет 5 кВт. Здесь ток I = 5000/220 = 22 А. Подойдет провод сечением 4 квадрата. На кухне очень часто бывают включены все приборы и здесь даже можно взять провод 5 кв.мм.

Третья линия Р3 – самая протяженная. Общая нагрузка на ней составляет 2 кВт, но лучше учитывать возможное подключение обогревателей, например, в спальне или детской, поэтому лучше перестраховаться и добавить еще 3 кВт. Поэтому придется выбрать провод 4 кв.мм.

В конце самой длинной трассы стоит самая небольшая нагрузка – телевизор. Современные телевизоры и другая электроника способны работать при довольно пониженном напряжении (правда, при этом ухудшается тепловой режим их блоков питания, но раз производители обещают работу при 120-150 В, то мы можем считать, что все в порядке).

После всех расчетов остается только подсчитать длину материала каждого вида: трехжильных проводов (фаза, нейтраль и защитная земля) и накинуть процентов 10 на запас. Для участков от коробок до выключателей можно закупить двухжильный провод 1,5 мм.кв, так как у выключателей нет заземления, но эту тонкость вы можете учесть в вашем конкретном проекте. Составление такого плана предотвратит как нехватку провода, так и излишнюю трату денег. И то и другое почти неизбежно, если действовать наугад.

Расчет сечения провода по диаметру.

Эта история у профессиональных мастеров вызывает улыбку. Ведь когда речь идет о сечении провода, то подразумевается не его диаметр, а его площадь, и измеряется оно в квадратных миллиметрах. К сожалению, школьный курс математики-физики у многих далеко за плечами. Мы легко можем рассчитать площадь поперечного сечения провода по его диаметру, если освежим в памяти формулу расчета площади круга.

S = пи * r²,

где S — это площадь круга, пи = 3,14, а r — это радиус.

Поскольку диаметр d — это r*2, то можно преобразовать нашу формулу следующим образом:

S = (пи*d²)/4, где d — это диаметр нашего провода, который мы можем замерить штангенциркулем.

Упростим нашу формулу сечения провода, разделив число пи на 4, и получим S = 0,785*d². Таким образом, зная диаметр провода, мы можем произвести расчет сечения провода.

Когда наша бригада электриков делала электромонтажные работы в Мытищах, заказчик попросил проверить сечение проводов. А под рукой не было штангенциркуля. Тогда диаметр измерили следующим способом. 10 — 20 витков очищенной от изоляции жилы намотали на отвертку, плотно сжали витки провода и измерили обычной линейкой длину спирали. Разделив эту длину на число витков, узнали искомый диаметр жилы.

Для определения сечения многожильных проводов и шнуров следует замерить диаметр одной жилки, вычислить ее сечение, затем величину сечения умножить на число жилок в проводе.

Точно сечение проводов и кабелей напряжением до 1000в определяют, исходя из двух условий.

Первое условие. По условию нагревания длительным расчетным током: Iдоп > Ip, где Iдоп— длительно допустимый электрический ток для принятого сечения провода или кабеля и условий его прокладки. Приводятся данные в ПУЭ или справочной литературе; Ip — расчетный ток, А.

Второе условие. По условию соответствия сечения провода классу защиты: Iдоп > Кз · Iн.пл., где Кз — коэффициент защиты; Iн.пл — номинальный ток плавкой вставки, А.

Кз = 1,25 при защите проводников с резиновой и пластмассовой изоляцией во взрыво- и пожароопасных, торговых и т.п. помещениях плавкими предохранителями и автоматическими выключателями; при защите этих же проводников в невзрыво- и непожароопасных помещениях Кз = 1,0.

Осветительные проводки дополнительно рассчитывают на потерю напряжения. Допустимые длительные токовые нагрузки на провода и кабели, а также выбор пусковой и защитной аппаратуры, проводов и кабелей для отдельно устанавливаемых электродвигателей находят по справочникам.

Сечение купленного провода всегда полезно перепроверить. У нас был случай, когда наш электрик в Сергиевом Посаде выполнял электромонтажные работы проводом, предоставленным заказчиком. Замерив диаметр провода, наш мастер выяснил, что провод с заявленным сечением 2,5 мм² на самом деле с трудом дотягивал до 2 мм². Не смотря на то, что на упаковке стояла отметка ОТК, провод был явной халтурой.

Выбор марки проводов

Для выполнения электропроводки следует брать те провода, которые рекомендуют ПУЭ. Некоторые марки напрямую запрещены в настоящее время. В частности, не допускается применение алюминиевых проводов для внутренней проводки. Каждая новая редакция ПУЭ выпускается после анализа статистических данных об эксплуатации материалов, в том числе аварий и несчастных случаев. Поэтому не стоит пренебрегать таким авторитетным документом.

Наиболее ходовые и практичные марки медных проводов, используемые в настоящее время: ВВГ, NYM, ППВ, ПВС. Есть и некоторые другие. Изоляция всех проводов двойная, обычно используется поливинилхлорид. Допустимый нагрев проводов ограничен величиной около +50°C. Жилы проводов могут быть однопроволочными или многопроволочными.

Последние более удобны при монтаже из-за свой гибкости, но к сожалению, более пожароопасны. Сечение проводов находится в пределах от 1,5 до десятков квадратных миллиметров. Какой провод использовать для проводки решает потребитель, взвесив его допустимость по правилам, поперечное сечение провода, удобство работы с ним и цену.

Допустимый ток и сечение проводов

Правильный выбор кабелей и проводов во время проектирования и расчетов электрических сетей, является гарантией их надежной и безопасной работы в процессе дальнейшей эксплуатации. К приборам и оборудованию питание будет поступать в полном объеме, а изоляция проводников не будет перегреваться и разрушаться. Правильные расчеты сечения по мощности позволят избежать аварийных ситуаций и необходимости восстановления поврежденных линий. Для этого нужно знать, что представляет собой на практике суть такого понятия, как допустимая сила тока для медного провода.

В самом упрощенном варианте каждый кабель ведет себя подобно трубопроводу, по которому транспортируется вода. Точно так же и по кабельным жилам осуществляется движение электрического тока, величина которого ограничивается размерами конкретного токоведущего канала, фактически являющегося сечением данного проводника.

Неверный выбор этого параметра нередко приводит к ошибкам и негативным последствиям. При наличии слишком узкого токоведущего канала плотность тока может возрасти в несколько раз. Это приводит к перегреву и последующему оплавлению изоляции, возникают места с регулярными токовыми утечками. В наиболее неблагоприятной ситуации возможно возгорание.

Однако, слишком большое сечение проводов по току имеет один серьезный недостаток в виде значительного перерасхода денежных средств при устройстве электросетей. Конечно свободная транспортировка электрического тока положительно влияет на функциональность и сроки эксплуатации проводов, но оплата за потребленную электроэнергию может заметно возрасти. Таким образом, первый вариант является просто опасным, а второй нежелательно использовать из-за его высокой стоимости.

От чего зависит длительно допустимый ток кабеля

Для того чтобы определить, какие параметры оказывают влияние на длительно допустимый ток кабеля, следует для начала рассмотреть происходящие в условиях протекания электрического тока переходные тепловые процессы. Как известно, после включения тока происходит постепенное повышение температуры проводника, причем, в определенный момент времени нарастание тепловых показателей прекращается. В результате температура стабилизируется. Но как только ток будет отключен, температура начнет спадать до исходных значений.

Как этот процесс проистекает и какие факторы оказывают на его влияние? Прежде всего, выделяющееся в проводнике тепло при включении тока направлено непосредственно на нагрев самого проводника. Это и является первопричиной роста температуры, что, в свою очередь, связанно с теплоемкостью материала.

В процессе роста температуры между проводником и окружающей средой увеличивается разность температурных показателей. В связи с этим в определенный момент часть выделяемого тепла тратится на нагрев окружающей среды. В момент достижения температуры проводника установившегося стабильного значения окружающей среде начинает передаваться уже все выделяющееся тепло. Вместе с этим проводник перестает нагреваться.

Длительно допустимый ток

Итак, какое же значение следует присвоить длительно допустимому току для проводника или кабеля? Очевидно, каждый проводник или кабель обладает собственной нормальной длительной температурой, в соответствии с указанными в документации данными. При этой температуре кабель или провод может функционировать непрерывно долго, без риска нанести вред себе или окружающей среде.

Известно, что значению такой температуры соответствует определенное значение тока, который и называют длительно допустимым током проводника. При прохождении по проводнику силы тока с таким значением он будет нагреваться не выше рабочей температуры, т. е. такой, что является безопасной, как дл самого кабеля, так и для окружающей среды.

Если же возникает короткое замыкание, через проводник протекает ток короткого замыкания, под воздействием которого температура достигает критических значений. Поэтому при выборе проводника необходимо рассчитывать его сечение таким образом, чтобы он был способен выдержать кратковременное превышение нормальной температуры.

Влияние сечения кабеля на длительно допустимый ток

Изменение значений длительно допустимого тока вовсе не прямо пропорционально изменениям сечения проводника. Напротив, по сравнению с площадью поперченного сечения кабеля его длительно допустимый ток возрастает гораздо медленнее. Что касается остальных констант, которые должны быть известны при расчете длительно допустимого тока (удельное сопротивление, коэффициент теплопередачи и допустимая температура), то они индивидуальны для каждого проводника.

Практика лишь подтверждает вышеприведенное суждение: зависимость длительно допустимого тока от сечения проводника не может быть прямой. Ведь с увеличением сечения условия охлаждения внутренних слоев материала только ухудшаются. В связи с этим для достижения допустимой температуры приходится прикладывать ток меньшей плотности.

Учитывая сказанное, применение проводников увеличенного сечения с целью предотвращения перегрева крайне не рационально, поскольку такое решение приведет к значительному перерасходу материала. Более целесообразно использовать сочетание определенного количества параллельно уложенных проводников небольшого сечения. Именно в таком исполнении представлены многожильные провода.

Изменение длительно допустимого тока при отличии внешних и расчетных условий

В процессе прокладки в различных условиях (место и температура прокладки) может возникнуть необходимость в корректировке предельно допустимого тока. В этом случае принято использовать поправочный коэффициент, на который домножается длительно допустимый ток в соответствии с известными условиями.

Если несколько проводников прокладываются параллельно и располагаются очень близко друг к другу, возникнет эффект взаимного подогрева. Однако это возможно только в том случае, когда внешняя среда неподвижна. В реальных же условиях воздух или вода находятся в процессе постоянного движения, за счет чего, проводники постоянно охлаждаются.

При создании условий с действительно неподвижной внешней средой, к примеру, когда кабель прокладывают в трубе под землей, из-за взаимного подогрева значение длительно допустимого тока снижается. В данном случае также потребуется коррекция с использованием поправочного коэффициента, данные о котором содержатся в документации к проводам и кабелям.

Подбор сечения провода

При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.

Сечения проводов измеряется в квадратных милиметрах или "квадратах". Каждый "квадрат" алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум  - только 4 ампера, а медный провода  10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.

Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.

Медные жилы проводов и кабелей

Сечение токопроводящей жилы, мм.Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033,0
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066,0260171,6

Алюминиевые жилы проводов и кабелей

Сечение токопроводящей жилы, мм.Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
2,5204,41912,5
4286,12315,1
6367,93019,8
105011,03925,7
166013,25536,3
258518,77046,2
3510022,08556,1
5013529,711072,6
7016536,314092,4
9520044,0170112,2
12023050,6200132,0

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм.ОткрытоТок, А, для проводов проложенных в одной трубе
Двух одножильныхТрех одножильныхЧетырех одножильныхОдного двухжильногоОдного трехжильного
0,511-----
0,7515-----
1171615141514
1,2201816151614,5
1,5231917161815
2262422202319
2,5302725252521
3343228262824
4413835303227
5464239343731
6504642404034
8625451464843
10807060505550
161008580758070
251401151009010085
35170135125115125100
50215185170150160135
70270225210185195175
95330275255225245215
120385315290260295250
150440360330---
185510-----
240605-----
300695-----
400830-----

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм.ОткрытоТок, А, для проводов проложенных в одной трубе
Двух одножильныхТрех одножильныхЧетырех одножильныхОдного двухжильногоОдного трехжильного
2211918151714
2,5242019191916
3272422212218
4322828232521
5363230272824
6393632303126
8464340373832
10605047394238
16756060556055
251058580707565
3513010095859575
50165140130120125105
70210175165140150135
95255215200175190165
120295245220200230190
150340275255---
185390-----
240465-----
300535-----
400645-----

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм.Ток*, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
1,52319331927
2,53027442538
44138553549
65050704260
1080701055590
161009013575115
2514011517595150
35170140210120180
50215175265145225
70270215320180275
95325260385220330
120385300445260385
150440350505305435
185510405570350500
240605----

* Токи относятся к кабелям и проводам с нулевой жилой и без нее.

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм.Ток, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
2,52321341929
43129422738
63838553246
106055804270
1675701056090
251059013575115
3513010516090140
50165135205110175
70210165245140210
95250200295170255
120295230340200295
150340270390235335
185390310440270385
240465----

Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки
Сечение медных жил проводов и кабелей, кв.ммДопустимый длительный ток нагрузки для проводов и кабелей, АНоминальный ток автомата защиты, АПредельный ток автомата защиты, АМаксимальная мощность однофазной нагрузки при U=220 BХарактеристика примерной однофазной бытовой нагрузки
1,51910164,1группа освещения и сигнализации
2,52716205,9розеточные группы и электрические полы
43825328,3водонагреватели и кондиционеры
646324010,1электрические плиты и духовые шкафы
1070506315,4вводные питающие линии

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях
Наименование линийНаименьшее сечение кабелей и проводов с медными жилами, кв.мм
Линии групповых сетей1,5
Линии от этажных до квартирных щитков и к расчетному счетчику2,5
Линии распределительной сети (стояки) для питания квартир4

Сечение провода 1,5 мм. Допустимая нагрузка. Сечение жилы по мощности и току для электропроводки в квартире. Подбор сечения провода

Сечение проводника силовых и токопроводящих для электропроводки в квартире

Электромонтажные работы - мероприятие сложное и ответственное. Если вашей квалификации достаточно, чтобы сделать электропроводку в квартире своими руками, вам пригодятся полезные советы. Если нет, то воспользуйтесь услугами специалистов по электромонтажным работам.Итак, поговорим о выборе сечения провода по току и мощности подробнее.

Расчет длины и максимальной нагрузки электропроводки

Правильный расчет сечения проводов по мощности и току - важное условие бесперебойной и безотказной работы электросистемы. Во-первых, общая длина проводки ... Первый способ - измерить расстояния между панелями, выключателями и розетками на схеме подключения, умножив число на шкалу.Второй способ - определить длину в том месте, где проложена электропроводка. Он включает в себя все провода, монтажные и монтажные кабели вместе с крепежом, опорными и защитными конструкциями. Каждую секцию необходимо удлинить минимум на 1 см с учетом проводных соединений.

Затем рассчитывается общая нагрузка потребляемой электроэнергии. Это сумма номинальных мощностей всех электроприборов, которые будут работать в доме (* см. Таблицу в конце статьи).Например, если на кухне одновременно включены электрочайник, электроплита, микроволновая печь, лампы, посудомоечная машина, суммируем мощности всех приборов и умножаем на 0,75 (коэффициент одновременности). Расчет нагрузки всегда должен иметь запас прочности и прочности. Запоминаем эту цифру для определения сечения проводов.

Простая формула поможет определить ток потребления любого электроприбора. Разделите потребляемую мощность (см. Инструкцию к устройству) на напряжение сети (220 В).Например, по паспорту мощность стиральной машины 2000 Вт; 2000/220 = максимальный ток при работе не превысит 9,1А.

Другой вариант - воспользоваться рекомендациями ПУЭ (Правил электромонтажа), согласно которым стандартная квартирная электропроводка с продолжительной нагрузкой 25А рассчитана на максимальный ток потребления, выполняется медным проводом сечением 5мм. 2. Согласно ПУЭ сечение жилы должно быть не менее 2.5 мм 2, что соответствует диаметру жилы 1,8 мм.

Этот ток устанавливается и автоматом на вводе проводов в квартиру для предотвращения несчастных случаев. В жилых домах используется однофазный ток напряжением 220 В. Рассчитанная общая нагрузка делится на значение напряжения (220 В), и мы получаем ток, который будет проходить через входной кабель и машину. Вам необходимо купить автомат с точными или близкими параметрами, с запасом по текущей нагрузке.

Выбор кабеля для разводки в квартире

* Таблица потребляемой мощности и силы тока
бытовых приборов при напряжении питания 220В

Электроприбор бытовой

Потребляемая мощность в зависимости от модели прибора, кВт (ВА)

Ток потребления, А

Примечание

Лампа накаливания

Электрочайник

Время непрерывной работы до 5 минут

Плита электрическая

Свыше 2 кВ требуется отдельная проводка

Микроволновая печь

Мясорубка электрическая

Кофемолка

При работе в зависимости от нагрузки потребление тока меняется

Кофеварка

Электрический духовой шкаф

Во время работы периодически потребляется максимальный ток

Посудомоечная машина

Шайба

Максимальный ток потребляется с момента включения до нагрева воды

Во время работы периодически потребляется максимальный ток

При работе в зависимости от нагрузки потребление тока меняется

Стационарный компьютер

Во время работы периодически потребляется максимальный ток

Электроинструмент (дрель, лобзик и др.)

При работе в зависимости от нагрузки потребление тока меняется

Значения токов легко определить, зная номинальную мощность потребителей по формуле: I = P / 220. Зная суммарный ток всех потребителей и учитывая соотношение допустимая токовая нагрузка (разомкнутая проводка) для провода на сечение провода:

  • для медного провода 10 ампер на квадратный миллиметр,
  • для алюминия 8 ампер на квадратный миллиметр, вы можете определить, подходит ли ваш существующий провод или вам нужно использовать другой.

При выполнении скрытой силовой разводки (в трубе или в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8. Следует отметить, что разводка открытого питания обычно выполняется проводом сечением не менее 4 квадратных метров. мм при достаточной механической прочности.

Приведенные выше соотношения легко запомнить и обеспечивают достаточную точность для использования с проволокой. Если вам необходимо более точно узнать длительно допустимую токовую нагрузку для медных проводов и кабелей, вы можете воспользоваться приведенными ниже таблицами.

В следующей таблице приведены данные о мощности, токе и поперечном сечении материалов кабелей и проводов для расчетов и выбора средств защиты, материалов кабелей и проводов, а также электрооборудования.

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлической защитной оболочке и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, нитритной или резиновой оболочке, бронированных и небронированных.

* Токи относятся к проводам и кабелям с нулевой жилой и без нее.

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных.


Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ можно выбрать по данной таблице, как для трехжильных кабелей, но с коэффициентом 0.92.

Сводная таблица сечений проводов, токовых, силовых и нагрузочных характеристик.

В таблице приведены данные, основанные на ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальные и максимально возможные токи автоматических выключателей на однофазную бытовую нагрузку, наиболее часто применяемую в быту.


Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых домах.


  • Медь, U = 220 В, однофазный, кабель двухжильный
  • Медь, U = 380 В, трехфазный, кабель трехжильный

* размер сечения можно регулировать в зависимости от конкретных условий прокладки кабеля


Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводке.

Сечение сердечника, мм 2

Проводники

алюминий

Шнуры для подключения бытовых электроприборов

Кабели для подключения переносных и мобильных электроприемников в промышленных установках

Скрученные двухжильные кабели с многопроволочными жилами для фиксированной прокладки на роликах

Незащищенные изолированные провода для стационарной внутренней проводки:

непосредственно на основаниях, на роликах, захватах и ​​тросах

на лотках, в ящиках (кроме глухих):

однопроводной

многопроволочный (гибкий)

на изоляторах

Незащищенные изолированные провода во внешней проводке:

на стенах, конструкциях или опорах на изоляторах;

ВЛ

под навесами на роликах

Незащищенные и защищенные изолированные провода и кабели в трубах, металлические рукава и заглушки

Кабели и изолированные провода защищенные для стационарной проводки (без труб, гильз и заглушек):

для жил, подключенных к винтовым клеммам

для паяных жил:

однопроводной

многопроволочный (гибкий)

Защищенные и незащищенные провода и кабели, проложенные в закрытых каналах или заделанные (в строительные конструкции или под штукатурку)

Таблица мощности кабеля требуется правильно рассчитать сечение кабеля, если мощность оборудования большая, а сечение кабеля небольшое, то он будет нагреваться, что приведет к разрушение утеплителя и потеря его свойств.

Для расчета сопротивления проводника можно использовать калькулятор сопротивления проводника.

Для передачи и распределения электрического тока основным средством являются кабели, они обеспечивают нормальную работу всего, что связано с электрическим током, и насколько качественной будет эта работа, зависит от правильного выбора сечения кабеля по мощности . .. Удобная таблица поможет сделать необходимый выбор:

Текущий раздел
ведущий
жил.мм

Напряжение 220В

Напряжение 380В

Текущий. И

Мощность. кВт

Текущий. И

Мощность, кВт

Поперечное сечение

Текущее
проводящее
проживало.мм

Жилы проводов и кабелей алюминиевые

Напряжение 220В

Напряжение 380В

Текущий. И

Мощность. кВт

Текущий. И

Мощность, кВт

Но для того, чтобы пользоваться таблицей, необходимо рассчитать общую потребляемую мощность устройств и оборудования, которые используются в доме, квартире или другом месте, где будет проложен кабель.

Пример расчета мощности.

Допустим, в доме прокладывается замкнутая электропроводка с взрывоопасным кабелем. Необходимо переписать перечень используемого оборудования на листе бумаги.

А как теперь узнать мощность ? Его можно найти на самом оборудовании, где обычно есть бирка с записью основных характеристик.

Мощность измеряется в ваттах (Вт, Вт) или киловаттах (кВт, кВт).Теперь вам нужно записать данные, а затем сложить их.

В результате получается, например, 20 000 Вт, это будет 20 кВт. На этом рисунке показано, сколько энергии потребляют все потребители электроэнергии вместе. Далее следует учесть, сколько устройств будет использоваться одновременно в течение длительного периода времени. Допустим, получилось 80%, в этом случае коэффициент одновременности будет 0,8. Рассчитываем сечение кабеля по мощности:

20 х 0,8 = 16 (кВт)

Для выбора сечения понадобится таблица мощности кабеля:

Текущий раздел
ведущий
жил.мм

Медные жилы проводов и кабелей

Напряжение 220В

Напряжение 380В

Текущий. И

Мощность. кВт

Текущий. И

Мощность, кВт

10

15.4

Если в трехфазной цепи 380 Вольт, то таблица будет выглядеть так:

Текущий раздел
ведущий
жил.мм

Медные жилы проводов и кабелей

Напряжение 220В

Напряжение 380В

Текущий. И

Мощность. кВт

Текущий. И

Мощность, кВт

16.5

10

15,4

Эти расчеты не представляют особой сложности, но рекомендуется выбирать провод или кабель с наибольшим сечением жил, так как может возникнуть необходимость в подключении какого-либо другого устройства.

Дополнительный кабель силовой таблицы.

В таблице приведены данные по мощности, току и сечений кабелей и проводов , для расчетов и выбора кабелей и проводов , материалов кабелей и электрооборудования.

При расчете использованы данные таблиц ПУЭ, формулы активной мощности для однофазных и трехфазных симметричных нагрузок.

Ниже приведены таблицы для кабелей и проводов с медными и алюминиевыми жилами.

Таблица выбора сечения кабеля по току и мощности с медными жилами
Жилы медных проводов и кабелей
Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33,0
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66,0 260 171,6
Таблица выбора сечения кабеля по току и мощности с алюминиевыми жилами
Сечение жилы, мм 2 Жилы проводов и кабелей алюминиевые
Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,0

Пример расчета сечения кабеля

Задача: запитать ТЭН мощностью Вт = 4.75 кВт с медным проводом в кабельном канале.
Расчет силы тока: I = W / U. Напряжение известно: 220 вольт. По формуле протекающий ток I = 4750/220 = 21,6 ампер.

Ориентируемся на медный провод, поэтому значение диаметра медной жилы берем из таблицы. В столбике 220В - медные проводники находим значение тока, превышающее 21,6 ампер, это линия со значением 27 ампер. С этой же линии берем сечение токопроводящей жилы равным 2.5 квадратов.

Расчет необходимого сечения кабеля по марке кабеля, провода

Количество жил
сечений мм.
Кабели (провода)
Наружный диаметр мм. Диаметр трубы мм. Допустимый длинный
ток (А) для проводов и кабелей при прокладке:
Допустимый длительный ток
для прямоугольных медных шин сечением
(А) ПУЭ
ВВГ ВВГнг КВВГ КВВГЭ NYM PV1 PV3 ПВХ (HDPE) Мет.тр. Du в воздухе в земле Профиль, шины мм Количество шин на фазу
1 1х0,75 2,7 16 20 15 15 1 2 3
2 1х1 2,8 16 20 17 17 15х3 210
3 1x1.5 5,4 5,4 3 3,2 16 20 23 33 20x3 275
4 1х2,5 5,4 5,7 3,5 3,6 16 20 30 44 25х3 340
5 1x4 6 6 4 4 16 20 41 55 30x4 475
6 1х6 6,5 6,5 5 5,5 16 20 50 70 40x4 625
7 1x10 7,8 7,8 5,5 6,2 20 20 80 105 40x5 700
8 1х16 9,9 9,9 7 8,2 20 20 100 135 50x5 860
9 1х25 11,5 11,5 9 10,5 32 32 140 175 50x6 955
10 1х35 12,6 12,6 10 11 32 32 170 210 60х6 1125 1740 2240
11 1х50 14,4 14,4 12,5 13,2 32 32 215 265 80x6 1480 2110 2720
12 1х70 16,4 16,4 14 14,8 40 40 270 320 100x6 1810 2470 3170
13 1х95 18,8 18,7 16 17 40 40 325 385 60x8 1320 2160 2790
14 1х120 20,4 20,4 50 50 385 445 80x8 1690 2620 3370
15 1х150 21,1 21,1 50 50 440 505 100x8 2080 3060 3930
16 1х185 24,7 24,7 50 50 510 570 120x8 2400 3400 4340
17 1х240 27,4 27,4 63 65 605 60x10 1475 2560 3300
18 3х1.5 9,6 9,2 9 20 20 19 27 80x10 1900 3100 3990
19 3х2,5 10,5 10,2 10,2 20 20 25 38 100x10 2310 3610 4650
20 3х4 11,2 11,2 11,9 25 25 35 49 120x10 2650 4100 5200
21 3х6 11,8 11,8 13 25 25 42 60
прямоугольные медные шины
(A) Schneider Electric IP30
22 3х10 14,6 14,6 25 25 55 90
23 3х16 16,5 16,5 32 32 75 115
24 3х25 20,5 20,5 32 32 95 150
25 3х35 22,4 22,4 40 40 120 180 Профиль, шины мм Количество шин на фазу
26 4х1 8 9,5 16 20 14 14 1 2 3
27 4х1.5 9,8 9,8 9,2 10,1 20 20 19 27 50x5 650 1150
28 4х2,5 11,5 11,5 11,1 11,1 20 20 25 38 63x5 750 1350 1750
29 4х50 30 31,3 63 65 145 225 80x5 1000 1650 2150
30 4х70 31,6 36,4 80 80 180 275 100x5 1200 1900 2550
31 4х95 35,2 41,5 80 80 220 330 125x5 1350 2150 3200
32 4х120 38,8 45,6 100 100 260 385 Допустимый длительный ток для медных шин
прямоугольного сечения (A) Schneider Electric IP31
33 4х150 42,2 51,1 100 100 305 435
34 4х185 46,4 54,7 100 100 350 500
35 5х1 9,5 10,3 16 20 14 14
36 5х1.5 10 10 10 10,9 10,3 20 20 19 27 Профиль, шины мм Количество шин на фазу
37 5x2,5 11 11 11,1 11,5 12 20 20 25 38 1 2 3
38 5x4 12,8 12,8 14,9 25 25 35 49 50x5 600 1000
39 5х6 14,2 14,2 16,3 32 32 42 60 63x5 700 1150 1600
40 5х10 17,5 17,5 19,6 40 40 55 90 80x5 900 1450 1900
41 5х16 22 22 24,4 50 50 75 115 100x5 1050 1600 2200
42 5х25 26,8 26,8 29,4 63 65 95 150 125x5 1200 1950 2800
43 5х35 28,5 29,8 63 65 120 180
44 5х50 32,6 35 80 80 145 225
45 5х95 42,8 100 100 220 330
46 5х120 47,7 100 100 260 385
47 5х150 55,8 100 100 305 435
48 5х185 61,9 100 100 350 500
49 7x1 10 11 16 20 14 14
50 7x1.5 11,3 11,8 20 20 19 27
51 7x2,5 11,9 12,4 20 20 25 38
52 10x1 12,9 13,6 25 25 14 14
53 10x1.5 14,1 14,5 32 32 19 27
54 10x2,5 15,6 17,1 32 32 25 38
55 14x1 14,1 14,6 32 32 14 14
56 14x1.5 15,2 15,7 32 32 19 27
57 14x2,5 16,9 18,7 40 40 25 38
58 19x1 15,2 16,9 40 40 14 14
59 19x1.5 16,9 18,5 40 40 19 27
60 19x2,5 19,2 20,5 50 50 25 38
61 27x1 18 19,9 50 50 14 14
62 27x1.5 19,3 21,5 50 50 19 27
63 27x2,5 21,7 24,3 50 50 25 38
64 37x1 19,7 21,9 50 50 14 14
65 37x1.5 21,5 24,1 50 50 19 27
66 37x2,5 24,7 28,5 63 65 25 38

Энергетические решения

Размер проводника кабеля и номинальный ток

Требования к проводникам по ISO 10133 и ISO 13297

Это приложение воспроизведено из приложения «А» (нормативного) стандартов ISO 10133 и 13297.Оба ISO поддерживают стандарты Директивы о развлечениях. Использование этих рекомендаций может быть использовано для демонстрации соответствия данной Директиве.

Текущие рейтинги

В таблице приведены допустимые значения продолжительного тока в амперах, определенные для температуры окружающей среды 30 ° C и минимального количества жил для проводов.

Площадь поперечного сечения проводника, допустимый постоянный ток и скрутка.
Максимальный ток в амперах для одиночного проводника при номинальной температуре изоляции
Площадь поперечного сечения мм2 60 ° С 70 ° С от 85 до 90 ° C 105 ° С 125 ° С 200 ° С Минимальное количество прядей
Тип A * Тип B *

0.75

6

10

12

16

20

25

16

1

8

14

18

20

25

35

16

1.5

12

18

21

25

30

40

19

26

2,5

17

25

30

35

40

45

19

41

4

22

35

40

45

50

55

19

65

6

29

45

50

60

70

75

19

105

10

40

65

70

90

100

120

19

168

16

54

90

100

130

150

170

37

266

25

71

120

140

170

185

200

49

420

35

87

160

185

210

225

240

127

665

50

105

210

230

270

300

325

127

1064

70

135

265

285

330

360

375

127

1323

95

165

310

330

390

410

430

259

1666

120

190

360

400

450

480

520

418

2107

150

220

380

430

475

520

560

418

2107

Примечания:
Номинальные значения тока проводника могут быть интерполированы для площадей поперечного сечения между указанными в таблице.

* Для общей электропроводки плавсредств следует использовать жилы, имеющие по крайней мере скручивание типа А. Проводники со скручиванием типа B должны использоваться для любой проводки, в которой во время использования часто возникает изгиб.

Для проводов в машинных отделениях (окружающая среда 60 ° C) максимальный номинальный ток в таблице должен быть занижен на следующие факторы:
Температурный диапазон изоляции жил, ° C Умножьте максимальный ток из таблицы выше на

70

0.75

85-90

0,82

105

0,86

125

0,89

200

1,0

Объединение в пучки (только для переменного тока)
Когда более трех проводов переменного тока объединены вместе, максимальный номинальный ток в таблице должен быть снижен на следующий коэффициент: -
Количество жгутов в пучке Умножьте максимальный ток от A1 на

от 4 до 6

0.7

от 7 до 24

0,6

25 или более

0,5

Примечания:
Снижение номинальных значений для температуры и здания, где это применимо, является кумулятивным. Коэффициенты уменьшения пакетирования обычно не считаются необходимыми для кабелей постоянного тока на малых судах.

Расчет падения напряжения

Для информации (только для сверхнизкого напряжения постоянного тока) падение напряжения на нагрузке можно рассчитать по следующей формуле: -

Где

E = Падение напряжения в вольтах

S = площадь поперечного сечения проводника в квадратных миллиметрах

I = ток нагрузки в амперах

L = общая длина в метрах проводника от подключения положительного источника питания к электрическому устройству и обратно к подключению отрицательного источника питания.

Состояние зарядки

Следующая таблица позволит преобразовать полученные показания в оценку степени заряда. Стол хорош для аккумуляторов при 25 град. C (77 ° F), находящиеся в состоянии покоя в течение 3 часов или более. Если батареи имеют более низкую температуру, можно ожидать более низких значений напряжения

Процент полной зарядки Система постоянного тока 12 В Система постоянного тока 24 В

100%

12.7

25,4

90%

12,6

25,2

80%

12,5

25

70%

12,3

24,6

60%

12.2

24,4

50%

12,1

24,2

40%

12,0

24

30%

11,8

23,6

20%

11.7

23,4

10%

11,6

23,2

0%

11,6

23,2

Калькулятор падения напряжения

Калькулятор падения напряжения - это простой инструмент, который помогает определить, какая часть напряжения теряется при прохождении электрического тока по проводу, а также рассчитать выходное напряжение на конце кабеля.В качестве альтернативы вы можете использовать его в качестве калькулятора размера провода, чтобы решить, какой диаметр провода гарантирует, что падение напряжения не превысит допустимые уровни.

Если вы все еще не знаете, как рассчитать падение напряжения, не смотрите дальше - просто продолжайте читать, чтобы узнать! Эта статья предоставит вам формулу падения напряжения и наглядный пример ее применения. Обязательно ознакомьтесь с калькулятором закона Ома!

Какое падение напряжения?

По определению, падение напряжения - это уменьшение напряжения, происходящее, когда электрический ток проходит через пассивные элементы схемы.

Рассмотрим провод, соединяющий дом с местным поставщиком электроэнергии. В идеальных условиях электрический ток беспрепятственно течет по проводу, пока не достигнет дома. Там он используется для включения нескольких устройств. На самом деле, однако, потоку препятствует какое-то противодействующее давление. Это означает, что некоторая часть напряжения теряется, когда ток должен преодолеть это сопротивление. Эта потеря называется падением напряжения.

Если у вас проблемы с пониманием этого слова, вы можете представить себе человека, бегущего по прямой дороге.Если путь чист, без препятствий и с подходящим покрытием, человек будет двигаться быстро и устойчиво. С другой стороны, если по дороге трудно ехать, и дорогу преграждают камни, более вероятно, что человек потеряет много энергии, просто пытаясь преодолеть все препятствия.

Что влияет на величину падения напряжения?

Обычно падение напряжения происходит, когда ток должен проходить по проводу. В такой системе оба компонента - ток и провод - влияют на падение напряжения.В частности, можно выделить следующие факторы:

  • Материал проволоки . Применение более качественных проводников приведет к меньшему падению напряжения. Например, медь является проводником намного лучше, чем углеродистая сталь; Если вы проанализируете один и тот же ток, протекающий по двум идентичным проводам, один из которых сделан из меди, а другой из стали, вы обнаружите, что падение напряжения больше в стальном проводе.
  • Сечение провода . Площадь поперечного сечения провода имеет большое влияние на падение напряжения.Чем тоньше провод, тем выше будет падение напряжения.
  • Длина провода . Интуитивно понятно, что более длинный провод означает более длинный путь прохождения тока и, следовательно, более высокие потери напряжения. Вы всегда должны стараться минимизировать длину провода.
  • Ток нагрузки . Чем выше ток, тем больше падение напряжения. Вы также должны дважды проверить, выдерживают ли ваши провода или компоненты, такие как светодиоды, большой ток.

Формула падения напряжения

Формула падения напряжения зависит от типа тока.

  • Для постоянного или однофазного переменного тока, В = 2 * I * L * R / A / n
  • Для трехфазного переменного тока В = √3 * I * L * R / A / n

где:

  • В - падение напряжения, измеренное в вольтах [В];
  • I - ток нагрузки, измеренный в амперах [A];
  • L - длина провода в одном направлении, измеряется в метрах [м];
  • R - удельное сопротивление провода, измеренное в ом-метрах [Ом · м];
  • A - площадь поперечного сечения провода, измеренная в квадратных миллиметрах [мм²];
  • n - количество параллельно включенных проводников.

Последствия падения напряжения

Как правило, падение напряжения не должно превышать 3% от начального напряжения. Более высокое падение может привести к мерцанию огней, а также к перегреву устройств (им нужно будет работать больше, чем обычно, для достижения того же эффекта).

Если вас интересует электричество, не забудьте также взглянуть на наш калькулятор последовательных резисторов!

Примечания к таблицам | Столы

(1) См. Приложение C для получения информации о максимальном количестве проводов и крепежных проводов, все одного и того же размера (общая площадь поперечного сечения, включая изоляцию), разрешенных для торговых размеров применимого кабелепровода или трубки.

(2) Таблица 1 применима только к полным системам кабелепровода или трубок и не предназначена для применения к секциям кабелепровода или трубок, используемых для защиты оголенной проводки от физического повреждения.

(3) Заземляющие или соединительные провода оборудования, если они установлены, должны учитываться при расчете заполнения кабелепровода или трубопровода. При расчете следует использовать фактические размеры заземляющего или соединительного провода оборудования (изолированного или неизолированного).

(4) Если между коробками, шкафами и подобными кожухами устанавливаются патрубки или трубные ниппели, максимальная длина которых не превышает 600 мм (24 дюймов), то ниппели должны быть заполнены до 60 процентов от их общего поперечного сечения. Площадь и Раздел 310.15 (B) (2) (a) не обязательно применять к этому условию.

(5) Для проводников, не включенных в Главу 9, таких как многожильные кабели, должны использоваться фактические размеры.

(6) Для комбинаций проводов разных размеров используйте Таблицы 5 и 5A для размеров проводов и Таблицу 4 для применимых размеров кабелепровода или трубок.

Таблица 4. Размеры и процентная площадь кабелепровода и трубок (участки кабелепровода или трубок для комбинаций проводов, разрешенные в таблице 1, главе 9)

[Полная ширина]

[Полная ширина]

[Полная ширина]

[Полная ширина]

[Полная ширина]

[*] Соответствует 356.2 (2)

[Полная ширина]

[*] Соответствует 356,2 (1)

[Полная ширина]

[Полная ширина]

[Полная ширина]

[Полная ширина]

[Полная ширина]

[Полная ширина]

(7) При расчете максимального количества проводников, разрешенных в кабелепроводе или трубке, все одинакового размера (общая площадь поперечного сечения, включая изоляцию), следующее большее целое число должно использоваться для определения максимального количества проводников, разрешенных, когда результат вычисления десятичной дроби 0.8 или больше.

(8) Если неизолированные проводники разрешены другими разделами настоящего Кодекса, размеры неизолированных проводов в Таблице 8 должны быть разрешены.

(9) Многожильный кабель, состоящий из двух или более проводов, должен рассматриваться как один провод для расчета площади заполнения кабелепровода в процентах. Для кабелей с эллиптическим поперечным сечением расчет площади поперечного сечения должен основываться на использовании большого диаметра эллипса в качестве диаметра окружности.

Таблица 2.Радиус изгиба кабелепровода и НКТ

Кабелепровод (размер)

One Shot and Full Shoe Benders

Другие отводы

Обозначение в метрической системе

Размер сделки

мм

дюйма

мм

дюйма

16

½

101,6

4

101,6

4

21

¾

114.3

127

5

27

1

146,05

152,4

6

35

184.15

203,2

8

41

209,55

254

10

53

2

241.3

304,8

12

63

266,7

10½

381

15

78

3

330.2

13

457,2

18

91

381

15

533,4

21

103

4

406.4

16

609,6

24

129

5

609,6

24

762

30

155

6

762

30

914.4

36

Таблица 5. Размеры изолированных проводников и крепежных проводов

Тип

Размер

(AWG или
kcmil)

Приблизительно
Диаметр

Приблизительно
Площадь

мм

дюйма

мм2

дюйм 2

Тип: FFH-2, RFH-1, RFH-2, RHH [*], RHW [*], RHW-2 [*], RHH, RHW, RHW-2,

SF-1, SF-2, SFF-1, SFF-2, TF, TFF, THHW, THW, THW-2, TW, XF, XFF

RFH-2,

18

3.454

0,136

9,355

0,0145

FFH-2

16

3,759

0,148

11,10

0.0172

RHW-2, RHH,

14

4,902

0,193

18,90

0,0293

RHW

12

5.385

0,212

22,77

0,0353

10

5,994

0,236

28,19

0,0437

8

8.280

0,326

53,87

0,0835

6

9,246

0,364

67,16

0,1041

4

10.46

0,412

86,00

0,1333

3

11,18

0,440

98,13

0,1521

2

11.99

0,472

112,9

0,1750

1

14,78

0,582

171,6

0,2660

1/0

15.80

0,622

196,1

0,3039

2/0

16,97

0,668

226,1

0,3505

3/0

18.29

0,720

262,7

0,4072

4/0

19,76

0,778

306,7

0,4754

250

22.73

0,895

405,9

0,6291

300

24,13

0,950

457,3

0,7088

350

25.43

1,001

507,7

0,7870

400

26,62

1.048

556,5

0,8626

500

28.78

1,133

650,5

1.0082

600

31,57

1,243

782,9

1,2135

700

33.38

1,314

874,9

1,3561

750

34,24

1,348

920,8

1,4272

800

35.05

1,380

965,0

1.4957

900

36,68

1.444

1057

1,6377

1000

38.15

1,502

1143

1.7719

1250

43,92

1,729

1515

2,3479

1500

47.04

1,852

1738

2.6938

1750

49,94

1,966

1959

3,0357

2000

52.63

2,072

2175

3,3719

SF-2, SFF-2

18

3,073

0,121

7,419

0.0115

16

3,378

0,133

8,968

0,0139

14

3,759

0.148

11,10

0,0172

SF-1, SFF-1

18

2.311

0,091

4,194

0,0065

RFH-1, XF, XFF

18

2.692

0,106

5,161

0,0080

TF, TFF, XF, XFF

16

2.997

0,118

7.032

0,0109

TW, XF, XFF, THHW,
THW, THW-2

14

3,378

0,133

8,968

0,0139

TW, THHW, THW,

12

3.861

0,152

11,68

0,0181

THW-2

10

4,470

0,176

15,68

0.0243

8

5,994

0,236

28,19

0,0437

RHH [*], RHW [*],
RHW-2 [*]

14

4.140

0,163

13,48

0,0209

RHH [*], RHW [*], RHW-2 [*],
XF, XFF

12

4,623

0,182

16.77

0,0260

Тип RRH [*], RHW [*], RHW-2 [*], THHN, THHW, THW, THW-2, TFN,

TFFN, THWN, THWN-2, XF, XFF

RHH [*], RHW [*],
RHW-2 [*], XF, XFF

10

5.232

0,206

21,48

0,0333

RHH [*], RHW [*], RHW-2

8

6,756

0,266

35.87

0,0556

TW, THW,

6

7,722

0,304

46,84

0,0726

THHW,

4

8.941

0,352

62,77

0,0973

THW-2

3

9,652

0,380

73,16

0.1134

RHH [*],

2

10,46

0,412

86,00

0,1333

RHW [*]
RHW-2 [*]

1

12.50

0,492

122,6

0,1901

1/0

13,51

0,532

143,4

0,2223

2/0

14.68

0,578

169,3

0,2624

3/0

16,00

0,630

201,1

0,3117

4/0

17.48

0,688

239,9

0,3718

250

19,43

0,765

296,5

0,4596

300

20.83

0,820

340,7

0,5281

350

22,12

0,871

384,4

0,5958

400

23.32

0,918

427,0

0,6619

500

25,48

1.003

509,7

0,7901

600

28.27

1,113

627,7

0,9729

700

30,07

1,184

710,3

1,1010

750

30.94

1,218

751,7

1,1652

800

31,75

1,250

791,7

1,2272

900

33.38

1,314

874,9

1,3561

1000

34,85

1,372

953,8

1.4784

1250

39.09

1,539

1200

1,8602

1500

42,21

1,662

1400

2,1695

1750

45.11

1.776

1598

2,4773

2000

47,80

1.882

1795

2,7818

ТФН,

18

2.134

0,084

3,548

0,0055

ТФФН

16

2,438

0,096

4.645

0.0072

THHN,

14

2,819

0,111

6,258

0,0097

THWN,

12

3.302

0,130

8,581

0,0133

THWN-2

10

4,166

0,164

13,61

0.0211

8

5,486

0,216

23,61

0,0366

6

6.452

0.254

32,71

0,0507

4

8,230

0,324

53,16

0,0824

3

8.941

0,352

62,77

0,0973

2

9,754

0,384

74,71

0.1158

1

11,33

0,446

100,8

0,1562

1/0

12,34

0.486

119,7

0,1855

2/0

13,51

0,532

143,4

0,2223

THHN, THWN,

3/0

14.83

0,584

172,8

0,2679

THWN-2

4/0

16,31

0,642

208,8

0.3237

250

18,06

0,711

256,1

0,3970

300

19,46

0.766

297,3

0,4608

Тип: FEP, FEPB, PAF, PAFF, PF, PFA, PFAH, PFF, PGF, PGFF, PTF, PTFF,

TFE, THHN, THWN, THWN-2, Z, ZF, ZFF

THHN,

350

20.75

0,817

338,2

0,5242

THWN,

400

21,95

0,864

378,3

0.5863

THWN-2

500

24,10

0,949

456,3

0,7073

600

26.70

1.051

559,7

0,8676

700

28,50

1,122

637,9

0.9887

750

29,36

1,156

677,2

1.0496

800

30,18

1.188

715,2

1,1085

900

31,80

1,252

794,3

1,2311

1000

33.27

1,310

869,5

1,3478

PF, PGFF, PGF, PFF,

18

2,184

0,086

3.742

0,0058

ПТФ, ПАФ, ПТФФ,

16

2.489

0,098

4,839

0,0075

PAFF

PF, PGFF, PGF, PFF,

14

2.870

0,113

6.452

0,0100

PTF, PAF, PTFF, PAFF, TFE, FEP, PFA, FEPB, PFAH

TFE, FEP,

12

3.353

0,132

8,839

0,0137

PFA, FEPB,

10

3.962

0,156

12,32

0.0191

PFAH

8

5,232

0,206

21,48

0,0333

6

6.198

0,244

30,19

0,0468

4

7,417

0,292

43,23

0.0670

3

8,128

0,320

51,87

0,0804

2

8.941

0.352

62,77

0,0973

TFE, PFAH

1

10,72

0,422

90,26

0,1399

TFE, PFA

1/0

11.73

0,462

108,1

0,1676

PFAH, Z

2/0

12,90

0,508

130,8

0.2027

3/0

14,22

0,560

158,9

0,2463

4/0

15,70

0.618

193,5

0,3000

ZF, ZFF

18

1,930

0,076

2.903

0,0045

16

2.235

0,088

3.935

0,0061

Z, ZF, ZFF

14

2,616

0,103

5,355

0.0083

Z

12

3,099

0,122

7,548

0,0117

10

3.962

0,156

12,32

0,0191

8

4,978

0,196

19,48

0.0302

6

5,944

0,234

27,74

0,0430

4

7,163

0.282

40,32

0,0625

3

8,382

0,330

55,16

0,0855

2

9.195

0,362

66,39

0,1029

1

10,21

0,402

81,87

0.1269

Тип: KF-1, KF-2, KFF-1, KFF-2, XHH, XHHW, XHHW-2, ZW

XHHW, ZW,

14

3,378

0,133

8,968

0,0139

XHHW-2,

12

3.861

0,152

11,68

0,0181

XHH

10

4,470

0,176

15,68

0.0243

8

5,994

0,236

28,19

0,0437

6

6.960

0.274

38,06

0,0590

4

8,179

0,322

52,52

0,0814

3

8.890

0,350

62,06

0,0962

2

9,703

0,382

73,94

0.1146

XHHW,

1

11,23

0,442

98,97

0,1534

XHHW-2,

1/0

12.24

0,482

117,7

0,1825

XHH

2/0

13,41

0,528

141,3

0.2190

3/0

14,73

0,58

170,5

0,2642

4/0

16,21

0.638

206,3

0,3197

250

17,91

0,705

251,9

0,3904

300

19.30

0,76

292,6

0,4536

350

20.60

0,811

333,3

0.5166

400

21,79

0,858

373,0

0,5782

500

23,95

0.943

450,6

0,6984

600

26,75

1.053

561,9

0,8709

700

28.55

1,124

640,2

0,9923

750

29,41

1,158

679,5

1.0532

800

30,23

1,190

717,5

1,1122

900

31,85

1.254

796,8

1,2351

1000

33,32

1,312

872,2

1,3519

1250

37.57

1.479

1108

1.7180

1500

40,69

1.602

1300

2.0157

1750

43,59

1,716

1492

2,3127

2000

46,28

1.822

1682

2,6073

КФ-2,

18

1,600

0,063

2.000

0,0031

КФФ-2

16

1.905

0,075

2,839

0,0044

14

2,286

0,090

4,129

0.0064

12

2,769

0,109

6.000

0,0093

10

3,378

0.133

8,968

0,0139

КФ-1,

18

1,448

0,057

1.677

0,0026

КФФ-1

16

1.753

0,069

2.387

0,0037

14

2,134

0,084

3,548

0.0055

12

2,616

0,103

5,355

0,0083

10

3,226

0.127

8,194

0,0127

[*] Типы RHH, RHW и RHW-2 без внешнего покрытия.

Таблица 5A. Номинальные размеры компактного алюминиевого строительного провода [*] и площади

[Полная ширина]

[*] Размеры взяты из отраслевых источников.

Таблица 8.Свойства проводника

[Полная ширина]

Таблица 9. Сопротивление и реактивное сопротивление переменному току для 600-вольтных кабелей, 3-фазных, 60 Гц, 75 ° C (167 ° F), три одиночных проводника в кабелепроводе

[Полная ширина]

Инженерное руководство | Диаграмма обжима

Значения вставки / извлечения

Усилия вставки / извлечения разъема «папа / мама»

Типичное среднее усилие, наблюдаемое при вставке / извлечении стандартного тестового штыря NEMA DC2 в стандартный разъем ETCO при использовании датчика усилия вставки / извлечения ETCO в соответствии со стандартными рабочими процедурами показано ниже:

Размер наружной резьбы Первая вставка Первая экстракция Шестая экстракция
Ширина (мм) фунтов.(N) фунтов. (N) фунтов. (Н)
* 0,250 ″ (6,35) 8,5 (37,81) 7,5 (33,36) 5,5 (24,47)
0,187 ″ (4,75) 6,0 (26,78) 10,0 (44,64) 6,0 (26,78)
0,110 ″ (2,79) 6,0 (26,98) 31,25 (7,0) 4,0 (17,85)

углубление для функции обнаружения по сравнению со сквозным отверстием для всех остальных.

Значения испытаний на вытягивание провода / обжимного ушка

Минимальное усилие , необходимое для отделения провода от обжимного ушка с изоляционным ушком, если оно есть, неработающее, будет следующим:

В некоторых случаях ETCO будет рекомендовать более высокие усилия отрыва для увеличения проводимости. ETCO порекомендует высоту обжима для достижения наилучших характеристик обжима.

Размер проводника Усилие отрыва фунт Ньютон
AWG мм2
28 0.08 2 8,9
26 0,13 3 13,4
24 0,2 5 22,3
22 0,324 8 35,6
20 0,507 13 57,7
18 0,823 20 89
16 1,31 30 133.5
14 2,08 50 222,5
12 3,31 70 311,5
10 5,261 80 356
8 8,367 90 400,5
6 13,3 100 455
4 21,15 140 623
Допустимые области измерения

Измерение высоты обжима Высота должна быть измерена шпинделем и опорой микрометра, центрированными по нижней и верхней части обжима соответственно и между ребрами на дне обжима, если применимо.

Выбор ширины кабельного лотка для установки с одножильными кабелями на 600 В

Раздел 318-11 (b) (4) гласит, что если одиночные проводники установлены в треугольной или квадратной конфигурации в открытых кабельных лотках с сохраняемым зазором не менее чем в 2,15 раза больше диаметра кабеля между группами кабелей, допустимая нагрузка Кабели № 1/0 и более не должны превышать допустимую силу тока, указанную в Таблице B-310-2 в Приложении B NEC.

Раздел 318-11 (b) (4) определяет расположение кабелей в кабельном лотке для получения условий, позволяющих кабелям выдерживать более высокие токи.Таким образом, Раздел 318-11 (b) (4) содержит информацию о допустимой допустимой нагрузке, а также информацию, которая влияет на выбор ширины кабельного лотка.

Если ширина лестницы или вентилируемого желоба для кабельного лотка выбрана на основе требований Раздела 318-10 для установки, выполняемой в соответствии с Разделом 318-11 (b) (4), кабельный лоток будет недостаточной ширины для предполагаемая установка. Определить необходимую ширину лестничного лотка или лотка с вентилируемым желобом в соответствии с Разделом 318-11 (b) (4).

Общая ширина кабелей - 8 x 1,07 дюйма = 8,56 дюйма

Расстояние между кабелями должно быть равно 2,15 диаметра одного кабеля - 3 x 2,15 x 1,07 дюйма = 6,90 дюйма. Общая требуемая ширина кабельного лотка составляет 8,56 дюйма + 6,90 дюйма = 15,46 дюйма.

Необходимо использовать кабельный лоток шириной 18 дюймов.

Для установок, показанных на Рисунке 3, допустимая максимальная рабочая сила тока (Таблица B-310-2) для проводов 500кмил составляет 496 ампер на провод (без использования поправочного коэффициента максимальной рабочей температуры окружающей среды).

Установка кабелей в кабельный лоток, как показано на рисунке 3, очень желательна по причинам, указанным на рисунке 1A.

Этот тип установки может быть выполнен только там, где кабели могут быть заделаны без захода в кабельные каналы. Если кабели входят в кабелепровод, необходимо использовать значения силы тока, указанные в Таблице 310-16.

Лучше использовать значения допустимой нагрузки 75 градусов Цельсия, даже если установлен кабель с изоляцией 90 градусов Цельсия, если только не известно, что оборудование может выдерживать заделку проводов с более высокой температурой.Для установки, показанной на Рисунке 3, изолированный проводник 90 ° C, работающий при максимальной допустимой нагрузке, будет производить на 37 процентов больше тепла, чем изолированный проводник 75 ° C. См. Раздел 110-14 (c) NEC. Ограничение температуры.

При использовании кабельного лотка для поддержки кабелей разработчик предлагает варианты компоновки кабелей, которые позволяют кабелям одного и того же размера работать при разной силе тока, если выбрана соответствующая ширина кабельного лотка.

Максимально допустимая допустимая токовая нагрузка для кабелей 500 тыс. Мил, установленных в соответствии с рисунками 1A и 1B, составляет 403 ампера (кабельный лоток шириной 12 дюймов).

Максимально допустимая допустимая токовая нагрузка для кабелей 500 тыс. Мил, установленных в соответствии с рисунком 2, составляет 620 ампер (кабельный лоток шириной 30 дюймов).

Максимально допустимая допустимая токовая нагрузка для кабелей на 500 тыс. Мил, установленных в соответствии с рисунком 3, составляет 496 ампер (кабельный лоток шириной 18 дюймов).

myCableEngineering.com> Уравнение адиабаты

При расчете рейтингов неисправностей кабеля обычно предполагается, что продолжительность короткого замыкания достаточно коротка, чтобы кабель не отводил тепло в окружающую среду.Принятие этого подхода упрощает расчет и дает возможность ошибиться.

Обычно используемым уравнением является так называемое адиабатическое уравнение. Для данной неисправности I , которая длится время t , минимальная требуемая площадь поперечного сечения кабеля определяется по формуле:

А = I2tk

где: A - номинальное сечение, мм 2
I - ток КЗ, А
t - длительность тока КЗ, с
К - коэффициент, зависящий от типа кабеля (см. Ниже )

В качестве альтернативы, учитывая сечение кабеля и ток короткого замыкания, максимальное время, допустимое для срабатывания защитного устройства, можно найти по адресу:

т = k2A2I2

Коэффициент k зависит от изоляции кабеля, допустимого повышения температуры в условиях повреждения, удельного сопротивления проводника и теплоемкости.Типичные значения k :

Температура Материал проводника
Начальная ° C Конечная ° C Медь Алюминий Сталь
Термопласт 70 ° C (ПВХ)

70

160/140

115/103

76/78

42/37

Термопласт 90 ° C (ПВХ)

90

160/140

100/86

66/57

36/31

Термореактивный, 90 ° C (XLPE, EDR)

90

250

143

94

52

Термореактивная, 60 ° C (резина)

60

200

141

93

51

Термореактивная, 85 ° C (резина)

85

220

134

89

48

Термореактивная, 185 ° C (силиконовая резина)

180

350

132

87

47

* где два значения; меньшее значение применяется к проводнику CSA> 300 мм 2
* эти значения подходят для продолжительности до 5 секунд, источник: BS 7671, IEC 60364-5-54

Пример

Рассмотрим максимальный ток короткого замыкания 13.6 кА, и защитное устройство срабатывает за 2,6 с. Минимальная безопасная площадь поперечного сечения медного термореактивного кабеля 90 ° C ( k = 143) составляет:

S = 136002 × 2,6143 = 154 мм2

Любой выбранный кабель большего размера выдержит отказ.

Вывод - адиабатическое уравнение и k

Термин адиабатический применяется к процессу, в котором отсутствует теплопередача. Что касается повреждений кабеля, мы предполагаем, что все тепло, генерируемое во время повреждения, содержится внутри кабеля (а не передается от него).Очевидно, это не совсем так, но это на всякий случай.

Из физики тепло Q , необходимое для подъема материала ΔT , определяется по формуле:

Q = см ΔT

где Q - добавленное тепло, Дж
c - удельная теплоемкость материала, Jg -1 .K -1
м - масса материала, г
ΔT - превышение температуры, К

Энергия, поступающая в кабель во время короткого замыкания, определяется по формуле:

Q = I2Rt

где R - сопротивление кабеля, Ом

Исходя из физических свойств кабеля, мы можем рассчитать м и R как:

m = ρcAl и R = ρrlA

где ρ c - плотность материала в г.мм -3
ρ r - удельное сопротивление жилы, Ом.мм
l - длина кабеля, мм

Комбинируя и заменяя, получаем:

I2Rt = см ΔT

I2tρrlA = cρcAlΔT

и перестановка для A дает:

S = I2tk, положив k = cρcΔTρr

Примечание: ΔT - максимально допустимое превышение температуры для кабеля:

ΔT = θf − θi

где θ f - конечная (максимальная) температура изоляции кабеля, ° C
θ i - начальная (рабочая) температура изоляции кабеля, ° C

Единицы: выражаются в г (граммах) и мм 2 , а не в кг и м.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *