Для чего нужен диодный мост: Для чего нужен диодный мост, схема, принцип работы.

Для чего нужен диодный мост, схема, принцип работы.

Как мы знаем, в наших розетках протекает переменный электрический ток с напряжением в 220 вольт. Но как быть если нам нужно запитать низковольтный приемник, которому требуется постоянный ток? Если с напряжением все понятно – нам поможет трансформатор, то как сделать из переменного тока постоянный – вопрос.

Диодный мост mb10f

В этой ситуации нам на помощь приходит такое устройство как выпрямитель.Это устройство содержится почти во всех электронных приборах, которые работает на постоянном токе, от сварочных полуавтоматов, до блоков питания. В статье мы рассмотрим классическую схему выпрямителя из четырех диодов, которая именуется выпрямительным диодным мостом.

 

Содержание

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Изобретатель диодного моста - Лео Гретц

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Диодный мост на радиаторе

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Схема диодного моста

Как мы выяснили выше, схема диодного моста состоит из четырех полупроводниковых диодов, соединенных по схеме Гретца. Такая схема еще называется двухполупериодным выпрямителем.

Принципиальная схема диодного моста

На принципиальных схемах диодный мост может обозначаться по-разному, либо как схема из четырех диодов, либо как один большой диод в ромбике. Суть его от этого не меняется, вот несколько примеров:

Обозначение диодного моста на схемах

А вот так обозначается выпрямитель со сглаживающим конденсатором:

Выпрямитель с сглаживающим конденсатором

Как работает диодный мост

Принцип работы диодного моста достаточно прост. Переменный ток имеет две полуволны: положительную отрицательную. Каждое плечо (2 диода) выпрямляют свою полуволну, в то время как второе плечо блокирует протекание тока в другом направлении. В результате выпрямляется два полупериода, а на выводах всегда неизменная полярность.

Подключить диодный мост не составит труда, ведь это схематично показано на всех УГО (это и есть схема подключения) этого устройства. В случае с подключением диодной сборки, ее выводы обозначены соответственными обозначениями.

Собрать диодный мост самостоятельно тоже проще простого. Если вы уже подобрали диоды, то достаточно припаять их концы соответственно схеме. Но перед этим не поленитесь проверить диоды на исправность и не перепутайте их полярность.

Обычно катод и анод указаны на корпусе диодов.

Анимация работы диодного мостаГрафик синусоиды до и после выпрямления

Если остались вопросы, то рекомендуем к просмотру видео, чтобы найти ответы на оставшиеся вопросы.

Вывод

В статье мы рассмотрели такое классическое электронное устройство как диодный мост. Изучили его схему и разобрались в принципе работы. Я, как автор этой статьи, надеюсь, что она будет понятна даже чайнику и эти знания помогут вам в освоении радиоэлектроники.

Следующая

РадиодеталиВаристоры – что это такое, принцип действия, характеристики и параметры.

Что такое диодный мост [+ схема подключения], для чего нужен и как работает

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Содержание статьи

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодной сборки из 4-х диодов

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Устройство диода

Устройство диода

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Схема диодного моста

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

Пульсации диодного моста

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.
Различные варианты сборки диодного моста

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Видео: принцип работы диодного моста


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Диодный мост в генераторе

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


устройство, принцип работы, обозначение на схеме

Наряду с линейными устройствами в электрической цепи можно встретить и нелинейные полупроводниковые элементы, имеющие самый разнообразный функционал в составе электронной схемы. Среди полупроводниковых приборов особое место занимает диодный мост, выполняющий роль преобразователя переменного напряжения в постоянное. Хоть для этих целей с тем же успехом может применяться и обычный диод, но сфера их применения существенно ограничивается рабочими параметрами одного элемента. Решить недостатки единичной детали помогла диодная сборка из нескольких, существенно отличающихся характеристиками и принципом работы.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Принцип работы диодного мостаРис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Обозначение на схемеРис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Схема трехфазного диодного моста Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга. Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Напряжение выпрямленное трехфазным мостомРис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Технические характеристики

При выборе конкретного диодного моста для замены в выпрямительном блоке или для любой другой схемы важно хорошо ориентироваться в основных технических параметрах.

Среди таких характеристик наиболее значимыми для диодного моста являются:

  • Амплитудное максимальное напряжение обратной полярности – это пороговое значение более которого уже произойдет необратимый процесс и полупроводник выйдет со строя. Обозначается как UАобр в отечественных моделях или V­rpm для зарубежных.
  • Среднее обратное напряжение – представляет собой номинальное значение электрической величины, которое может прикладываться в процессе эксплуатации. Имеет обозначение  Uобр в отечественных образцах или V­r(rms) для зарубежных диодных мостов.
  • Средний выпрямленный ток – обозначает действующую величину электрического тока на выходе диодного моста. На устройствах указывается как Iпр или Io для моделей отечественного или зарубежного производства соответственно.
  • Амплитудный выпрямленный ток – это максимальный ток на выходе выпрямителя, определяемый пиком полуволны на кривой, обозначается как Ifsm для пульсирующего тока на положительном и отрицательном выводе.
  • Падение напряжения в прямой полярности – определяет потерю напряжения от собственного сопротивления диодного моста. На устройстве обозначается как V­fm.

Если вы хотите выбрать модель на замену, допустим в сети 220 В, то главный параметр для диодного моста обратный ток и напряжение. Рабочие характеристики должны значительно превышать номинал сети, к примеру, при напряжении 220 В – диодный мост должен выдерживать около 400 В. По току подойдет и меньший запас, но его также следует предусмотреть.

Преимущества и недостатки

Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:

  • И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
  • За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
  • Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
  • Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.

К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки. Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д. В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.  

Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Схема зарядного устройстваРис. 5. Схема зарядного устройства

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

Схема карманного фонаряРис. 6. Схема карманного фонаря

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост  VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Пример схемы сварочного агрегатаПример схемы сварочного агрегата

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Диодный мост | Принцип работы, обозначение, виды

Что такое диодный мост

Словосочетание “диодный мост” образуется от слова “диод“. Значит, диодный мост – это радиодеталь, которая состоит из диодов. Здесь очень важно то, как соединены эти диоды, иначе диодный мост превратится просто в кучку из диодов.

Диод на электрических схемах обозначается вот так.

диод на электрических схемах обозначение

Самый простой диодный мост состоит из 4 диодов, которые соединяются вот так.

диодный мост на схеме

Эта рисунок также является самой распространенным обозначением диодного моста на электрических схемах.

Упрощенный вариант выглядит вот так.

упрощенный вариант обозначения диодного моста

Можно увидеть на схемах даже что-то типа этого.

современное обозначение диодного моста

 

Для правильной эксплуатации диодного моста, мы должны его правильно подсоединить. Правильное подключение диодного моста выглядит таким образом.

подключение диодного моста

Как вы видите, на вход диодного моста мы подаем переменное напряжение, а на выходе диодного моста снимаем постоянное напряжение. Отсюда можно сделать вывод:

подключение диодного моста

Диодный мост используется в схемах для того, чтобы получить из переменного тока постоянный ток.

Принцип работы диодного моста

Диод в цепи переменного напряжения

Итак, в статье про диод мы рассматривал, что будет на выходе диода, если подать на него переменный ток. Для этого мы даже собирали вот такую схему, где G – это синусоидальный генератор. С клемм X1 и X2 уже снимали сигнал.

Мы на диод подавали переменное напряжение.

А на выходе после диода получали уже вот такой сигнал.

То есть у нас получилось вот так.

что получается на выходе диода если на него подать переменное напряжение

Да, мы получили постоянный ток из переменного, но стоило ли это того? В этом случае у нас получился постоянный пульсирующий ток, где половина мощности сигнала была вообще вырезана.

Как работает диодный мост в теории

Как вы знаете, переменный ток меняет свое направление несколько раз в секунду. Поэтому, его можно разбить на положительные полуволны и отрицательные полуволны. Положительные полуволны я пометил красным, а отрицательные – синим.

переменный сигнал

Для того, чтобы диодный мост работал, ему нужна какая-либо нагрузка. Пусть это будет резистор. Следовательно, когда на диодный мост приходит положительная полуволна, протекание тока через него будет выглядеть вот так.

работа диодного моста

Как вы видите, при положительной полуволне не задействованы диоды, которые я показал штриховой линией.

После положительной полуволны приходит отрицательная полуволна, и в этом случае протекание тока в диодном мосте выглядит так.

принцип работы диодного моста

В этом случае, диоды, которые работали при положительной полуволне, при отрицательной полуволне они отдыхают). Эстафету принимает на себя другая пара диодов. Можно даже сказать, что в диодном мосте они работают попарно. Одна пара диодов работает на положительную полуволну, а другая пара – на отрицательную.

Обратите внимание на нагрузку. На нее всегда приходит одна и та же полярность тока при любом стечении обстоятельств.

полярность тока после диодного моста

Работа диодного моста на практике

Давайте и мы посмотрим, что получается на выходе диодного моста, если подать на него переменное напряжение. Для этого возьмем 4 простых кремниевых диода и соединим их в диодный мост. Важно, чтобы диоды были одной марки.

диодный мост из диодов

На вход диодного моста будем подавать переменное напряжение, и посмотрим, что у нас получается на выходе.

диодный мост что на выходе

Итак, на вход я подаю вот такой сигнал.

синусоидальный сигнал

 

На выходе получаю постоянное пульсирующее напряжение.

постоянное пульсирующее напряжение после диодного моста

Здесь мы видим, что отрицательная полуволна в диодном мосте не срезается, а превращается в положительную. Мощность сигнала при этом не теряется, так как отрицательная полуволна просто инвертируется в положительную полуволну. Ну разве не чудо?

Наблюдательный читатель также может заметить, что амплитуда сигнала чуть-чуть просела. Если мы на вход подавали синусоидальный сигнал с амплитудой в 6 Вольт, то на выходе диодного моста имеем чуть меньше 6 Вольт, а точнее где-то 4,8 Вольта. Почему так произошло? Дело все в том, что на кремниевом диоде падает напряжение 0,6-0,7 Вольт. Так как переменное напряжение проходит через 2 диода при каждой полуволне, то на каждом диоде падает по 0,6 Вольт. 2×0,6=1,2 Вольта. 6-1,2=4,8 Вольта.

Теперь можно с гордостью нарисовать рисунок.

как работает диодный мост

Виды диодных мостов

Примерно так выглядит импортный и советский диодные мосты.

 

Например, на советском показаны контакты, на которые надо подавать переменное напряжение значком ” ~ “, а контакты, с которых сниамем постоянное пульсирующее напряжение значком “+” и “-“.

Существует множество видов диодных мостов в разных корпусах.

корпуса диодных мостов

Есть даже диодный мост для трехфазного напряжения.

трехфазный диодный мост

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы, а два другие – на постоянное напряжение.

Он собирается по так называемой схеме Ларионова и состоит из 6 диодов.

схема ларионова

В основном трехфазные мосты используются в силовой электронике.

Характеристики диодного моста

Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.

диодный мост видыПочему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.

Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.

GBU6K диодный мост

Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.

Распиновка и корпус

Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.

распиновка GBU606K

Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.

Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.

характеристики диодного моста

Package – тип корпуса. Корпуса GBU выглядят вот так.

GBU корпус

Максимальный ток

Итак, с этим разобрались. Далее следующий параметр. IF(AV) максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.

максимальный прямой ток через диодный мост

Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.

В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.

кврс 5010 диодный мост

 

Максимальное пиковое обратное напряжение

Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”. Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение. Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2). Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт. Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.

максимальное обратное напряжение диодного моста

 

Как проверить диодный мост

1-ый способ.

Как вы теперь знаете, однофазный диодный мост состоит из 4 диодов. Для того, чтобы узнать их расположение, мы должны скачать даташит на данный диод и посмотреть, как расположены диоды в данном диодном мосте. Например, для моего моста GBU6K диоды расположены вот так.

распиновка GBU606K

То есть все, что мне надо сделать – это просто прозвонить каждый диод с помощью мультиметра. Как это сделать, я писал еще в этой статье.

Второй способ.

Он же 100%. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор, а также резистор, желательно 5-10 КОм. После того, как мы нашли его расположение выводов, на “+” и “-”  припаиваем резистор 5-10 КОм. С этих же выводов снимаем осциллограмму.

как проверить диодный мост

То есть все должно выглядеть вот так.

как работает диодный мост

 

 

Смотрим осциллограмму

переменное напряжение после диодного моста

Значит, диодный мост исправен.

Диодный мост генератора

Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.

Диодный мост генератора ВАЗ 2110

В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.

диодный мост генератора ВАЗ 2110

Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.

диодный мост генератора ваз2110 схема

Как проверить диодный мост генератора

Для проверки диодного моста генератора есть два способа.

Проверка с помощью лампы накаливания

Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)

Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.

прибор для проверки диодного моста

Далее, все что нам надо сделать – это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод “тыкнуться” два раза, чтобы узнать исправен ли он. Так мы и сделаем.

Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли. Мой “прибор” для проверки диодов выглядит вот так.

автомобильная лампа накаливания

Красные крокодил – это плюс от аккумулятора, в моем случае – от блока питания, а черный – это минус.

Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода

проверка диодов генератора

 

а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!

как проверить диодный мост генератора

Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.

проверка диода на генераторе ваз 2110

Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.

Таким же образом проверяем все диоды таблетки.

Маленькие черные диоды проверяются точь-в-точь таким же способом.

как проверить диод на генераторе ваз

Меняем выводы и убеждаемся, что диод рабочий.

проверка диода генератора

Правила:

1) Если лампочка не горит ни так ни сяк, значит диод неисправен.

2) Если лампочка горит и так и сяк, значит диод тоже неисправен.

3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.

Проверка с помощью мультиметра

Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.

В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.

Берем в руки мультиметр и ставим его в режим прозвонки диодов.

режим прозвонки на мультиметре мастек

И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.

прозвонка диодного моста генератора с помощью мультиметра

Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).

проверка генератора мультиметром

Таким же образом проверяем все оставшиеся диоды.

Похожие статьи по теме “диодный мост”

Автомобильное зарядное устройство

Как получить постоянное напряжение из переменного

Как проверить диод и светодиод мультиметром

Простой блок питания

 

Что такое диодный мост — простое объяснение

Подробно рассмотрены устройство, принцип работы и назначение диодного моста. Характеристики данного элемента и схемы выпрямителей. Как спаять и подключить диодный мост.


Мы рассматривали пассивные компоненты электронных схем, такие как резисторы и конденсаторы. Но кроме них электрикам и радиолюбителям приходится сталкиваться и с другими, например полупроводниковыми диодами, стабилитронами и т.д. В этой статье мы расскажем, что такое диодный мост, как он работает и для чего нужен. Содержание:

Определение

Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.

Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.

Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.

Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.

В зависимости от сферы применения и схемы подключения диодные мосты бывают:

  • однофазные;
  • трёхфазные.

Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.


Принцип действия

Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.

Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.

Что такое диодный мост — простое объяснение

Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:

  • На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или ~).
  • Каждая из полуволн синусоидального напряжения (рисунок ниже) пропускается парой вентилей, расположенных на схеме по диагонали.
Что такое диодный мост — простое объяснение

Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.

Что такое диодный мост — простое объяснение

Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.

Что такое диодный мост — простое объяснение

Основные характеристики

Рассмотрим основные характеристики полупроводниковых диодов. Латинскими буквами приведено их обозначение в англоязычной технической документации (т.н. Datasheet):

  • Vrpm – пиковое или максимальное обратное напряжение. При превышении этого напряжения pn-переход необратимо разрушается.
  • Vr(rms) – среднее обратное напряжение. Нормальное для работы, то же что и Uобр в характеристиках отечественных компонентов.
  • Io – средний выпрямленный ток, то же что и Iпр у отечественных.
  • Ifsm – пиковый выпрямленный ток.
  • Vfm – падение напряжения в прямом смещении (в открытом проводящем состоянии) обычно 0.6-0.7В, и больше у высокотоковых моделей.

При ремонте электронной техники и блоков питания или их проектировании новички спрашивают: как правильно выбрать диодный мост?

В этом случае самыми важными для вас параметрами будут обратное напряжение и ток. Например, чтобы подобрать диодный мост на 220В, нужно смотреть на модели с номинальным напряжением больше 400В и нужный ток, например, KBPC106 (или 108, 110). Его технические характеристики:

  • максимальный выпрямленный ток – 3А;
  • пиковый ток (кратковременно) – 50А;
  • обратное напряжение – 600В (800В, 1000В у KBPC108 и 110 соответственно).
Что такое диодный мост — простое объяснение

Запомните эти характеристики и вы легко сможете определить, какой выбрать вариант по каталогу.

Схемы выпрямителей

Выпрямление тока в блоках питания – основное назначение, среди других компонентов схемы можно выделить входной фильтр, который подключают после выпрямителя – он предназначен для сглаживания пульсаций. Давайте разберемся в этом вопросе подробнее!

В первую очередь стоит отметить, что диодным мостом называют схему однофазного выпрямителя из 4 диодов или трёхфазного из 6. Но любители часто так называют схему выпрямителя со средней точкой.

У двухполупериодного выпрямителя к нагрузке поступает две полуволны, а у однополупериодного – одна.

Чтобы не было путаницы, давайте разбираться в терминологии.

Ниже вы видите однофазную двухполупериодную схему, её правильное название «Схема Гретца», именно её чаще всего подразумевают под названием «диодный мост».

Что такое диодный мост — простое объяснение

Схема Ларионова – трёхфазный диодный мост, на выходе сигнал двухполупериодный. Диоды в нём пропускают полуволны, открываясь на линейное напряжение, т.е. поочередно: верхний диод фазы A и нижний диод фазы B, верхний фазы B и нижний фазы C и т.д.

Что такое диодный мост — простое объяснение

Для полноты картины следует рассказать и о других схемах выпрямителей переменного напряжения.

Однополупериодный выпрямитель из 1 диода, включенного последовательно с нагрузкой. Применяется в балластных блоках питания, маломощных миниатюрных блоках питания, а также в приборах, нетребовательных к коэффициенту пульсаций. К нагрузке поступает только одна полуволна.

Что такое диодный мост — простое объяснение

Двухполупериодный со средней точкой – это и есть то, что ошибочно называют мостом из 2 диодов. Здесь каждую полуволну проводит только один диод. Её преимуществом является больший КПД, чем у схемы Гретца, за счет меньшего числа полупроводниковых вентилей. Однако её использование осложнено тем, что нужен трансформатор с отводом от средней точки, что отражено на схеме принципиальной. Её нельзя использовать для выпрямления сетевого напряжения 220В.

Что такое диодный мост — простое объяснение

Выпрямитель из сборок Шоттки. Используется в импульсных блоках питания, потому что у диодов Шоттки меньше время обратного восстановления, малая барьерная ёмкость (быстрее переход из открытого состояния в закрытое) и малое прямое падение напряжения (меньше потерь). Чаще всего Шоттки встречаются в сборках, с общим анодом или катодом, как изображено на рисунке ниже.

Что такое диодный мост — простое объяснение

Поэтому для сборки схемы моста потребуется несколько сборок. Ниже приведен пример из 3 сборок Шоттки с общим катодом.

Что такое диодный мост — простое объяснение

Из 4 сборок с общим катодом. Отличается от предыдущей тем, что выдерживает больший ток, при тех же компонентах потому, что Шоттки в ней соединены параллельно.

Что такое диодный мост — простое объяснение

Из 2 сборок Шоттки – одна с общим анодом и одна с общим катодом. Узнать о том, что такое анод и катод, вы можете в нашей отдельной статье.

Что такое диодный мост — простое объяснение

Как спаять и подключить

Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.

Что такое диодный мост — простое объяснение

Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.

Что такое диодный мост — простое объяснение

Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.

Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:

Область применения и назначение

Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора

Что такое диодный мост — простое объяснение

В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).

Что такое диодный мост — простое объяснение

На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.

Что такое диодный мост — простое объяснение

В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.

 

Что такое диодный мост — простое объяснение

Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.

Способы проверки

Для проверки диодного моста лучше всего подходит мультиметр в режиме проверки диодов.

Что такое диодный мост — простое объяснение

Для этого нужно прозвонить на короткое замыкание входную, затем выходную (диодный мост должен быть выпаян).

Что такое диодный мост — простое объяснение

Не выпаивая прямо на плате, вы можете измерить падение напряжения на переходах диодов. Для этого нужно определить цоколевку моста, обычно она указывается прямо на корпусе, что мы и рассматривали выше.

Что такое диодный мост — простое объяснение

На экране мультиметра в прямом смещении должно отображаться цифры в пределах 500-800 мВ, а в обратном – выше 1500 и до бесконечности (зависит от конкретного компонента и измерительного прибора). Тоb же самое можно сделать в режиме Омметра, как показано на рисунке ниже.

Что такое диодный мост — простое объяснение

Более подробно этот процесс описан в статье «как проверить диодный мост», где кроме методики проверки мы рассказали и о признаках неисправности. Также ознакомьтесь с видео о том, как проверить однофазный выпрямитель и диодный мост автомобильного генератора:

На этом мы и заканчиваем наше подробное объяснение. Надеемся, теперь вам стало понятно, для чего нужен диодный мост и что он делает в электрической цепи. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

  • Как выпаивать радиодетали из плат
  • Как пользоваться мультиметром — инструкция для чайников
  • Как понизить напряжение в сети
Опубликовано: 20.02.2019 Обновлено: 20.02.2019 нет комментариев
Диодный мост. Назначение, обозначение на схеме и внешний вид.

Схема диодного моста

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.

Схема диодного моста
Схема диодного моста

Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

В железе это выглядит следующим образом.

Диодный мост из отдельных диодов
Диодный мост из отдельных диодов S1J37

Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

Как работает диодный мост?

Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «~») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

Обозначение диодного моста на схеме.

На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

Различные варианты изображения диодного моста

Диодная сборка.

Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

Условное обозначение сборки диодного моста

Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «~». Иногда могут иметь обозначение AC (Alternating Current - переменный ток).

Оставшиеся два вывода имеют обозначения « + » и « - ». Это выход выпрямленного, пульсирующего напряжения (тока).

Внешний вид и цоколёвка монолитной диодной сборки

Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

В реальности сборка диодного моста может выглядеть вот так.

Диодная сборка KBL02
Диодная сборка KBL02 на печатной плате

Или вот так.

Диодная сборка на плате компьютерного блока питания
Диодная сборка RS607 на плате компьютерного блока питания

А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

Диодная сборка DB107S

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

Диодный мост KBPC2504

Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.

Условное обозначение диодного моста и диодной сборки
Условное изображение диодного моста и диодной сборки

Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.

Где применяется схема диодного моста?

Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах... . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

принцип работы и преимущества устройства, где используется, как собрать своими руками

Диодный мостНесмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.

Постоянный и переменный ток

Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

Схема диодного моста

На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.

Схема диодного моста выпрямителя

Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

Особенности видов напряжения

Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.

Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

Выпрямление электроэнергии

До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

Выпрямитель на одном диоде

Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.

Выпрямительный мост

На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.

Как собрать диодный мост

На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.

Чем выше емкость конденсатора, тем больше энергии он сможет запасти, и тем больше напряжение будет походить на постоянное.

Двухполупериодный прибор

Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.

Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:

Назначение и виды выпрямительных устройств

При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.

Чем отличается диод Шоттки от обычного

Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.

Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.

Как самостоятельно собрать диодный мост на 12 В

Выпрямительный мост своими руками

Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:

  1. Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
  2. Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
  3. Прямое напряжение. Величина падения напряжения на открытом диоде.
  4. Граничная частота. Частота переменного тока, на которой прибор еще может работать.

При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.

Схема диодного моста 12 вольт

Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):

  • Д226 — 400 В, 0,3 А, 1 кГц;
  • КД204А — 400 В, 0,4 А, 50 кГц;
  • КД201А — 100 В, 5 А, 1,1 кГц;
  • Д247 — 500 В, 10 А, 1 кГц.

Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.

Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.

Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.

Выбор типа сборки

Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:

  • максимальное обратное напряжение диодов — 300 В;
  • прямой ток всей сборки — 1 А;
  • граничная частота — 5 кГц.

Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.

Проверка элементов

Нередко в самодельных устройствах приходится использовать детали, уже бывшие в употреблении. Перед установкой все такие комплектующие должны быть проверены. Поскольку выпрямительная сборка представляет собой четыре диода, подключенных встречно-последовательно, а до выводов всех диодов можно добраться щупом, вопрос от том, как прозвонить диодный мост, решается элементарно.

Для этого достаточно измерить обычным омметром сопротивление каждого диода, ориентируясь на схему выпрямителя и цоколевку моста. В одной полярности щупов прибор должен показывать высокое сопротивление, в другой — низкое. Когда соответствующий диод пробит, в обоих положениях щупов сопротивление будет низким, если сгорел — высоким.

Использование барьера Шоттки

Еще одна основная характеристика, которая не использовалась в предыдущих расчетах, — прямое падение напряжения на открытом диоде. Диод только теоретически проводит ток в одну сторону, а диэлектрик — в другую. На практике в прямом подключении на приборе падает напряжение, которое может достигать 1,5 В и более.

Это значит, что напряжение на выходе однополупериодного выпрямителя будет ниже входного на 1,5 В, а если использовать мостовую схему, то на все 3 В. Кроме того, вольты, помноженные на протекающий через выпрямитель ток, будут бесполезно рассеиваться на диодах в виде тепла, уменьшая КПД схемы.

Избежать подобной неприятности позволяют диоды с барьером Шоттки. Они отличаются низким (десятые вольта) прямым падением напряжения, а значит, собранная на них схема будет обладать более высоким КПД и работать в облегченном режиме. Вид и схема мощной диодной сборки Шоттки представлены на изображении.

Принцип работы диодного моста

Сегодня и отдельные диоды, и диодные мосты Шоттки используются в качестве выпрямительных очень широко и выпускаются как отдельными приборами, так и сборками. Монтаж выпрямителя на диодах Шоттки ничем не отличается от сборки на обычных диодах.

Основы, типы, символы, характеристики, приложения и пакеты

Хотя резисторы, конденсаторы и индукторы образуют основные элементы цепи, именно полупроводниковое устройство фактически удерживает магию внутри. Каждая электронная схема имеет десятки полупроводниковых устройств, таких как диоды, транзисторы, регуляторы, операционные усилители, выключатели питания и т. Д. Внутри. У каждого из них есть свои свойства и применение. В этой статье мы рассмотрим самое основное полупроводниковое устройство - диода .

Возможно, вы уже слышали, что «Диоды - это полупроводниковые устройства с двумя клеммами, которые проводят только в одном конкретном направлении, позволяя току проходить через них…», но почему? И какое это имеет отношение к нам при разработке схемы? Каковы различных типов диодов и в каком приложении мы должны их использовать? Держитесь за вас, и вы получите ответы на все эти вопросы, когда будете читать эту статью.

Что такое диод?

Давайте начнем с ответа на самый основной вопрос. Что такое диод ?

Диод, как я уже говорил ранее, представляет собой полупроводниковый цилиндрический компонент с двумя выводами. Существует много типов диодов , но наиболее часто используемый показан ниже.

What is a diode?

Два терминала названы как Анод и Катод , мы перейдем к символу и узнаем, как идентифицировать клеммы позже, но сейчас просто помните, что любой диод будет иметь только две клеммы (по крайней мере, большинство из них) и это анод и катод.Другое золотое правило с диодами заключается в том, что они позволяют току проходить через них только в одном направлении - от анода к катоду. Это свойство диода делает его полезным во многих приложениях.

Чтобы узнать, почему они ведут себя только в одном направлении, нам нужно посмотреть, как они построены. Диод изготавливается путем соединения двух одинаково легированных полупроводниковых материалов P-типа и полупроводниковых материалов N-типа. Когда эти два материала соединяются вместе, происходит что-то интересное, они образуют еще один небольшой слой между ними, называемый слоем истощения.Это происходит потому, что слой P-типа имеет избыточное отверстие, а слой N-типа имеет избыточные электроны, и они оба пытаются диффундировать друг в друга, образуя блокировку с высоким сопротивлением между обоими материалами, как на изображении, показанном ниже. Этот слой блокировки называется слоем истощения.

Diode Structure

Этот слой обеднения (блокировка) должен быть разрушен, если ток должен протекать через диод. Когда положительное напряжение подается на анод, а отрицательное напряжение подается на катод, говорят, что диод находится в прямом смещенном состоянии.Во время этого состояния положительное напряжение будет накачивать больше дырок в область P-типа, а отрицательное напряжение будет накачивать больше электронов в область N-типа, что приводит к разрушению обедненного слоя, в результате чего ток протекает от анода к катоду. Это минимальное напряжение, необходимое для того, чтобы диод проводил в прямом направлении, называется прямым напряжением пробоя.

В качестве альтернативы, если отрицательное напряжение приложено к аноду и положительное напряжение приложено к катоду, говорят, что диод находится в состоянии обратного смещения.Во время этого состояния отрицательное напряжение будет накачивать больше электронов в P-тип, а материал N-типа будет получать больше дырок от положительного напряжения, что делает обедненный слой еще сильнее и, таким образом, не пропускает ток через него. Имейте в виду, что эти характеристики применимы только к идеальному (теоретическому) диоду, практически будет протекать небольшой ток даже в режиме с обратным смещением. Мы обсудим это позже.

Diode working

Приведенная выше анимация иллюстрирует работу диода в цепи , есть две цепи, в которых мы пытаемся зажечь светодиод с батареей.В одном контуре диод смещен в прямом направлении, а в другом диод смещен в обратном направлении. Когда симуляция запущена, вы можете заметить, что только смещенный вперед диод пропускает ток, хотя при этом светящийся светодиод, а смещенный диод не пропускает ток через него.

Типы диодов, распиновка и символы

Теперь, когда мы поняли основы диодов, важно знать, что существуют различные типы диодов, каждый из которых имеет особое свойство и применение.В этой статье мы рассмотрим только три основных типа диодов: выпрямительный диод, стабилитрон и диод Шоттки. Изображение, клемма и символ всех диодов приведены в таблице ниже

Диод Тип

Распиновка

Символ

Выпрямительный Диод

стабилитрон

Zener diode pinout

Zener diode symbol

Диод Шоттки

Schottky diode symbol

Как показано в таблице, выпрямительный диод и диод Шоттки выглядят одинаково по внешнему виду, но диод Шоттки обычно больше по размеру, чем обычные диоды.С другой стороны, стабилитрон можно легко идентифицировать по его своеобразному оранжевому цвету и серой линии на нем, как показано в таблице выше.

Анодные и катодные выводы могут быть идентифицированы серой линией на диоде, контакт рядом с серой линией будет катодным. Аналогично с символами нижняя часть треугольника всегда будет анодом, а другая - катодом. Очень важно помнить об этом, так как он всегда считал себя понятным при интерпретации схемы подключения диода.

Диодная терминология и характеристики

Когда вы выбираете диод для своей схемы или пытаетесь понять работу диода в цепи, вы должны рассмотреть технические характеристики диода, которые можно найти в его спецификации. Чтобы понять, что на самом деле означают значения, давайте рассмотрим несколько часто используемых терминов.

Падение прямого напряжения (Vf): Когда диод работает в прямом смещенном состоянии, он пропускает ток через них.Во время этого состояния на диоде будет некоторое падение напряжения, которое называется прямым падением напряжения. Для идеального диода он должен быть как можно ниже.

Максимальный прямой ток (если): мы уже знаем, что диод будет позволять току течь через него, когда он смещен в прямом направлении, на то, какой максимальный ток, который может быть разрешен, определяется максимальным прямым током. Обычно следует убедиться, что этот ток больше, чем ток нагрузки вашей цепи.

Ток обратного пробоя (Vr): Хорошо, вот уловка. Я сказал вам, что диод не позволит току течь через него, когда он смещен в обратном направлении. Это верно, но не для всех значений напряжения. Таким образом, максимальное напряжение, до которого диод может выдержать пробой, называется обратным пробивным напряжением. Обычно значения такого напряжения будут очень высокими, например, если напряжение обратного пробоя составляет 500 В, диод не позволит току проходить через него в обратном смещенном состоянии, пока напряжение не превысит эти 500 В.

Обратный смещенный ток (Ir): Хотя это правда, что диод не позволит току течь, хотя в режиме с обратным смещением значение тока в идеале не будет равно нулю. Там будет очень маленький и незначительный (зависит от цепи) ток, который все еще течет через диод. Этот ток называется обратным смещенным током. Значение этого тока будет в диапазоне мА или даже в мкА. Для идеального диода значение этого тока должно быть как можно ниже.Ток называется током обратной утечки.

Время обратного восстановления: допустим, вы работаете с диодом в режиме прямого смещения, а затем переключите его в режим обратного смещения, изменив полярность напряжения. Теперь диод не остановится внезапно, потребуется некоторое время, чтобы заблокировать протекание тока через него. Это время называется временем обратного восстановления.

Характеристики клеммной колодки (I-V)

диода перехода: Есть и другие параметры, такие как рассеиваемая мощность, тепловое сопротивление и т. Д.связано с диодом. Эти значения также можно найти в техническом описании диода. Чтобы узнать больше о диоде, давайте посмотрим на важный график диода, который представляет собой кривую зависимости тока от напряжения I-V. Кривая I-V идеального диода будет выглядеть примерно так.

Diode I-V curve

Здесь в первом квадранте вы видите диод, работающий в режиме прямого смещения, а в третьем квадранте диод работает в области обратного смещения и области пробоя. Ось X графика показывает напряжение на диоде, а ось Y показывает ток через диод.В режиме прямого смещения вы можете заметить, что диод начинает проводить (разрешать ток) только тогда, когда напряжение на диоде (V D ) больше 0,5 В, это значение прямого напряжения диода для кремния диод это прямое напряжение может быть до 0,7 В, как показано на графике выше.

Во время обратного смещения напряжение на диоде находится в отрицательном потенциале, поэтому ток также отображается в отрицательном направлении. Здесь, как вы можете видеть, диод не позволяет току (кроме небольшого значения) течь через него, пока не будет достигнуто напряжение пробоя (V BD ).

Схемы применения

Диоды

имеют широкий спектр применения в зависимости от их свойств и типа. Давайте попробуем охватить наиболее важные области применения выпрямителя, стабилитрона и диода Шоттки с помощью их принципиальных схем.

Выпрямительный Диод

Выпрямительный диод a.k.a Common Diode - это наиболее часто встречающийся диод в любой цепи питания, будь то простой линейный источник питания или цепь SMPS. Как следует из названия, эти диоды используются для выпрямления в таких цепях, как двухполупериодный и полуволновой выпрямитель.Кроме того, они также используются в качестве диодов свободного хода в коммутационных системах и в цепях преобразователя.

Выпрямительная схема

Выпрямительные диоды используются как в полуволновых, так и в двухполупериодных выпрямительных диодах. Давайте посмотрим на схему выпрямителя полуволны для простоты. Принципиальная электрическая схема и график для полуволнового выпрямителя показаны ниже

diode rectifier circuit

Источник входного напряжения Vs является синусоидальной волной переменного тока со среднеквадратичным напряжением 220 В.Эта волна переменного тока может быть исправлена ​​с помощью одного диода. Как показано на графике во время положительного полупериода, диод смещен в прямом направлении, и, следовательно, выходное напряжение присутствует на нагрузке, а ток течет в положительном направлении. Но во время отрицательного полупериода диод смещен в обратном направлении, и, следовательно, ток не достигает нагрузки, а выходное напряжение остается равным 0 В, как показано на графике выше. Таким образом, ток всегда может течь только в одном направлении и, следовательно, преобразовывать переменный ток в постоянный.

Конечно, эта схема имеет много недостатков, таких как выходное напряжение не является равномерным и практически не используется. Но теперь, когда у вас есть идея, вы можете рассмотреть полные мостовые выпрямители, которые имеют четыре диода и обычно используются в цепях линейного регулятора. Кроме того, цепь выпрямителя будет иметь конденсатор на конце, чтобы фильтровать пульсации, если вы хотите узнать больше о конденсаторе, прочитайте введение в статью о конденсаторе.

стабилитрон

Стабилитрон широко используется в двух цепях, одна из которых является стабилизатором напряжения, а другая - схемой защиты от перенапряжения.Стабилитрон имеет две важные оценки, которые нужно искать, это напряжение Зенера и Мощность. Общие доступные значения диодов: 3,9 В, 4,7 В, 5,1 В, 6,8 В, 7,5 В и 15 В

В приведенной ниже схеме входное напряжение может варьироваться от 0 до 12 В, но выходное напряжение никогда не будет превышать 5,1 В, поскольку обратное напряжение пробоя (напряжение Зенера) стабилитрона составляет 5,1 В. Когда входное напряжение меньше 5,1 В, выходное напряжение будет равно входному напряжению, но когда оно превысит 5.1 В выходное напряжение будет регулироваться до 5,1 В.

Zener Diode Circuit

Это свойство схемы может быть использовано для защиты выводов АЦП (схема защиты от перенапряжения), которые имеют напряжение 5 В, поскольку на контакте может считываться напряжение от 0 до 5 В, но если оно превышает 5 В, стабилитрон не допустит превышения напряжения. Точно так же ту же схему можно использовать для регулирования 5,1 В для нагрузки, когда входное напряжение высокое. Но ограничение тока очень меньше для такой схемы.

При проектировании схемы с стабилитроном важно учитывать резистор стабилитрона.Этот резистор используется для ограничения тока через стабилитрон, защищая его от нагревания и повреждения. Значение резистора Зенера зависит от напряжения Зенера и номинальной мощности стабилитрона. Формула для расчета резистора стабилитрона серии Rs показана ниже

zener resistor formula

Для стабилитрона 1N4734A значение Vz составляет 5,9 В, а Pz - 500 мВт, теперь при напряжении питания (Vs) 12 В значение Rs будет

рупий = (12-5,9) / из

Из = Pz / Vz = 500 мВт / 5.9 В = ~ 85 мА

Следовательно, Rs = (12-5,9) / 85 = 71 Ом

рупий = 71 Ом (приблизительно)

Диод Шоттки

Диод Шоттки

также используется в схемах защиты, таких как схема защиты от обратной полярности, из-за низкого падения прямого напряжения. Давайте посмотрим на общую схему защиты от обратной полярности

Когда Vcc и Земля подключены в правильной полярности, диод проводит в прямом направлении, и НАГРУЗКА получает питание.Преимущество здесь заключается в том, что прямое падение напряжения на диоде, например, около 0,04 В меньше, чем на 0,7 В диода выпрямителя. Таким образом, на диоде не будет большой потери мощности, также диод Шоттки может пропускать больший ток, чем обычный диод, и он также имеет более высокую скорость переключения, следовательно, может использоваться в высокочастотной цепи. Теперь, когда я сказал это, у вас может возникнуть вопрос.

В чем разница между диодом Шоттки и обычным диодом?

Да, диод Шоттки имеет более высокую скорость переключения, низкие потери проводимости и более высокий прямой ток, чем обычный диод.Может показаться, что он превосходит обычный диод, но у него есть один существенный недостаток. То есть оно имеет низкое обратное напряжение пробоя, из-за этой функции его нельзя использовать в цепях выпрямителя, поскольку в цепях выпрямителя всегда будет высокое обратное напряжение, возникающее на нем во время переключения.

Специальные диоды

Помимо широко используемых диодов типов Rectifier, Zener и Schottky , существуют и другие специальные диоды, которые имеют специальное применение и позволяют быстро проходить через них.

LED: Да, светодиод, как следует из названия, является диодом. Вы должны быть уже знакомы с этими вещами, поскольку они обычно обнаруживаются и используются. Опять же, есть много типов светодиодов, но 5-миллиметровый круглый светодиод является наиболее заметным.

Мостовой выпрямитель

: Как мы знаем, выпрямительный диод используется в цепи выпрямителя, а для полной мостовой выпрямительной схемы нам понадобится четыре диода, соединенных упорядоченным образом. Сама эта установка доступна в комплекте с выпрямительным диодом.RB156 является одним из таких примеров.

Фотодиод

: Фотодиод - это диод, который пропускает ток, хотя и зависит от падающего на него света. Он используется в качестве датчика для обнаружения света, его обычно можно найти в линейном повторителе, роботах, избегающих препятствий, и даже в качестве счетчика объектов или датчика скорости. Вы можете узнать больше о фотодиодах по этой ссылке.

Лазерный диод: Лазерный луч также является типом диода, похожего на светодиод. Они имеют аналогичное свойство диода, но в режиме прямого смещения они излучают свет с падением напряжения на них, действуя как нагрузка.Лазерный диод 650 нм является наиболее распространенным лазерным диодом.

TVS-диод. Другим важным специальным типом диодов является TVS-диод, который обозначает ограничитель переходного напряжения. Это специальный тип диода, который обычно используется в цепях электропитания, чтобы справиться с пиками напряжения, чтобы защитить цепь. Эти диоды также называются диодами или тиристорами.

Варакторные диоды. В качестве переменных конденсаторов используются диоды.Когда этот диод работает в режиме обратного смещения, можно управлять шириной области обеднения, что делает его конденсатором. Эти диоды также называются диодами Varicap и обычно используются в радиочастотных цепях.

различных типов диодных пакетов

Теперь, когда мы изучили все основы диодов, я считаю, что теперь вы можете выбрать диод, необходимый для вашей схемы. Но пока что мы видели один диод сквозного отверстия, который обычно доступен и хорош для прототипов, но в большинстве продуктов вы не найдете этих пакетов с отверстиями.Существует много различных типов диодных пакетов, которые мы сейчас обсудим.

Сквозное отверстие

Это наиболее часто используемые, которые подходят для макетов и перфорированных досок. Эти пакеты называются DO-7, DO-35, DO-41, DO-204 и т. Д., Из которых DO-41 является наиболее распространенным. Эти пакеты также называются осевыми свинцовыми диодами .

Стили для поверхностного монтажа

В большинстве готовых к производству конечных продуктов используются SMD компонентов.Они дешевле, чем дыра, и имеют небольшой форм-фактор. SOD-323, SOD-523, SOD-123 SOD-80C являются одними из популярных диодных SMD-пакетов. В большинстве проектировщиков силовых цепей все еще используются сквозные отверстия, поскольку они имеют высокую токовую емкость и меньше проблем с электромагнитными помехами, поэтому SMD обычно предпочтительнее в цифровых цепях.

3-контактное крепление для болтов

Существует также три специальных клеммных диода, которые используются в передовых приложениях, таких как космическая промышленность.Они имеют высокий ток и возможность переключения. Их можно найти в упаковках TO-64, TO-208, TO-254. Промежуточная щель между ними позволяет прикрепить их к корпусу мойки, они также называются крепежными диодами.

.

Диодный мост

Три мостовых выпрямителя. Размер обычно связан с текущей способностью обработки. Диоды. Один внизу - диодный мост. Деталь диодного моста, рассчитанного на 1000 вольт х 4 ампера Диодный мост ручной работы. Толстая серебряная полоса на диодах указывает на катодную сторону диода.

Диодный мост представляет собой компоновку из четырех (или более) диодов в конфигурации мостовой схемы, которая обеспечивает одинаковую полярность выхода для любой полярности входа.При использовании в наиболее распространенном приложении для преобразования входа переменного тока (AC) в выход постоянного тока a (DC) он известен как мостовой выпрямитель. Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к более низкой стоимости и весу по сравнению с выпрямителем с трехпроводным входом от трансформатора с вторичной обмоткой с центральным отводом. [1]

Существенной особенностью диодного моста является то, что полярность выхода одинакова независимо от полярности на входе.Схема диодного моста также известна как схема Гретца по имени ее изобретателя, физика Лео Гретца.

Основная операция

Согласно традиционной модели протекания тока, первоначально созданной Бенджамином Франклином и до сих пор используемой большинством инженеров, ток равен , предполагается, что протекает по электрическим проводникам от положительного к к отрицательному полюсу . [2] В действительности свободные электроны в проводнике почти всегда текут от отрицательного к положительному полюсу .Однако в подавляющем большинстве случаев фактическое направление потока тока на не имеет значения. Таким образом, в обсуждении ниже обычная модель сохраняется.

На приведенных ниже схемах, когда вход, подключенный к левому углу ромба , равен положительного значения , а вход, подключенный к правому углу , равен отрицательного значения , ток течет от верхней клеммы питания к прямо вдоль красного (положительного) пути к выходу и возвращается к нижнему терминалу питания по синему (отрицательному) пути.

Когда вход, подключенный к левому углу , равен , отрицательный , а вход, подключенный к правому углу , равен , положительный , ток течет от верхней клеммы питания вправо вдоль красного (положительный ) путь к выходу и возврат к нижней клемме питания по синему (отрицательному) пути. [3]

В каждом случае правый верхний выход остается положительным, а правый нижний - отрицательным.Так как это верно, является ли вход переменного или постоянного тока, эта схема не только производит выход постоянного тока от входа переменного тока, она также может обеспечить то, что иногда называют «защитой от обратной полярности». Таким образом, он обеспечивает нормальное функционирование оборудования с питанием от постоянного тока, когда батареи установлены в обратном направлении или когда провода (провода) от источника постоянного тока поменялись местами, и защищает оборудование от возможного повреждения, вызванного обратной полярностью.

До появления интегральных схем мостовой выпрямитель был сконструирован из «дискретных компонентов», т.е.отдельные диоды. Примерно с 1950 года один четырехполюсный компонент, содержащий четыре диода, соединенных в мостовой конфигурации, стал стандартным коммерческим компонентом и теперь доступен с различными номиналами напряжения и тока.

Выходное сглаживание

Для многих применений, особенно с однофазным переменным током, где двухполупериодный мост служит для преобразования входа переменного тока в выход постоянного тока, может потребоваться добавление конденсатора, поскольку только мост обеспечивает выход импульсного постоянного тока (см. Схему справа ). [1] [4]

Функция этого конденсатора, известного как накопительный конденсатор (или сглаживающий конденсатор), заключается в уменьшении отклонения (или «сглаживания») формы выпрямленного выходного напряжения переменного тока от моста. Есть еще некоторые вариации, известные как «пульсация». Одно из объяснений «сглаживания» заключается в том, что конденсатор обеспечивает низкоимпедансный путь к компоненту переменного тока на выходе, уменьшая переменное напряжение поперек и переменный ток через резистивную нагрузку. В менее технических терминах любое падение выходного напряжения и тока моста может быть нейтрализовано потерей заряда в конденсаторе.Этот заряд вытекает как дополнительный ток через нагрузку. Таким образом, изменение тока и напряжения нагрузки уменьшается относительно того, что произошло бы без конденсатора. Повышение напряжения соответственно накапливает избыточный заряд в конденсаторе, тем самым сдерживая изменение выходного напряжения / тока.

Показанная упрощенная схема имеет заслуженную репутацию опасной, поскольку в некоторых приложениях конденсатор может сохранять смертоносного заряда после удаления источника переменного тока.При подаче опасного напряжения практическая схема должна включать надежный способ безопасной разрядки конденсатора. Если нормальная нагрузка не может гарантировать выполнение этой функции, возможно, потому, что она может быть отключена, цепь должна включать в себя резистор для прокачки, подключенный как можно ближе к конденсатору. Этот резистор должен потреблять ток, достаточно большой, чтобы разрядить конденсатор за разумное время, но достаточно маленький, чтобы минимизировать ненужные потери энергии.

Конденсатор и сопротивление нагрузки имеют типичную постоянную времени τ = RC , где C и R - емкость и сопротивление нагрузки соответственно.Пока нагрузочный резистор достаточно велик, так что эта постоянная времени намного больше, чем время одного цикла пульсации, вышеуказанная конфигурация будет генерировать сглаженное постоянное напряжение на нагрузке.

Когда конденсатор подключен непосредственно к мосту, как показано, ток протекает только в небольшой части каждого цикла, что может быть нежелательным. Диоды трансформатора и моста должны быть рассчитаны таким образом, чтобы выдерживать скачок тока, возникающий при включении питания на пике напряжения переменного тока и полной разрядке конденсатора.Иногда для ограничения этого тока перед конденсатором используется небольшой последовательный резистор, хотя в большинстве случаев сопротивление трансформатора источника питания уже достаточно. Добавление резистора, или, что еще лучше, индуктора, между мостом и конденсатором может гарантировать, что ток протекает на большой части каждого цикла, и большой скачок тока не происходит.

Затем можно улучшить сглаживание, добавив дополнительные каскады пар конденсатор-резистор, которые часто выполняются только для вспомогательных источников в критических цепях с высоким коэффициентом усиления, которые, как правило, чувствительны к шуму напряжения питания.Выход также можно сгладить с помощью дросселя и второго конденсатора. Дроссель имеет тенденцию поддерживать ток (а не напряжение) более постоянным. Хотя индуктор дает наилучшие характеристики, обычно резистор выбирается из соображений стоимости.

В настоящее время благодаря широкой доступности микросхем регулятора напряжения пассивные фильтры используются реже. Микросхемы могут компенсировать изменения входного напряжения и тока нагрузки, чего нет у пассивного фильтра, и в значительной степени устранить пульсации. Некоторые из этих чипов имеют довольно впечатляющую мощность; в случае, если этого недостаточно, их можно комбинировать с силовым транзистором.

Идеализированные формы волны, показанные выше, видны как для напряжения, так и для тока, когда нагрузка на мост является резистивной. Когда нагрузка включает в себя сглаживающий конденсатор, сигналы напряжения и тока будут сильно изменены. Пока напряжение сглаживается, как описано выше, ток будет течь через мост только в то время, когда входное напряжение больше, чем напряжение на конденсаторе. Например, если нагрузка потребляет средний ток n ампер, а диоды проводят в течение 10% времени, средний ток диода во время проводимости должен составлять 10n ампер.Этот несинусоидальный ток приводит к гармоническим искажениям и плохому коэффициенту мощности в источнике переменного тока.

Некоторые ранние консольные радиостанции создавали постоянное поле говорящего с током от источника питания высокого напряжения («B +»), который затем направлялся к потребляющим цепям (постоянные магниты были тогда слишком слабы для хорошей производительности), чтобы создать говорящего постоянное магнитное поле. Таким образом, полевая катушка динамика выполняла 2 задания в одном: она действовала как дроссель, фильтруя источник питания, и создавала магнитное поле для управления динамиком.

Полифазные диодные мосты

Диодный мост можно обобщить для выпрямления многофазных входов переменного тока. Например, для трехфазного входа переменного тока с трехфазным напряжением полуволновой выпрямитель состоит из трех диодов , а двухполупериодный мостовой выпрямитель состоит из шести диодов .

Трехфазный двухполупериодный мостовой выпрямитель. 3-фазный входной сигнал переменного тока (вверху), полуволновой выпрямленный сигнал (в центре) и двухполупериодный выпрямленный сигнал (внизу).

См. Также

Внешние ссылки

Рекомендации

  1. ^ a b Горовиц, Пол и Уинфилд Хилл, Искусство электроники , второе издание. a b "Выпрямитель", Краткая энциклопедия науки и техники , третье издание, Сибил П. Паркер, изд. McGraw-Hill, Inc., 1994, p. 1589.
,

диодов < Типы диодов > | Основы электроники

Выпрямительный диод

(REC): структура и характеристики

Структура Символ Приложения ・ Характеристики
  • Используется для выпрямления (то есть первичная сторона блока питания)
  • Преимущественно класс 1A и выше, высокое напряжение пробоя (400 В / 600 В)
Выпрямительные диоды

, как следует из их названия, предназначены для выпрямления общих частот переменного тока.Выпрямление в основном включает в себя преобразование из переменного тока в постоянное и может включать в себя высокие напряжения и токи. Эффективность преобразования может сильно различаться в зависимости от рабочей частоты и условий. Таким образом, предлагаются различные типы, включая модели с низким V F (прямое напряжение), высокоскоростное переключение и модели с низким уровнем шума.

Configuration Конфигурация выпрямительной цепи]

Коммутационный диод

(SW): структура и особенности

Структура Символ Приложения ・ Характеристики
  • Идеально подходит для различных коммутационных приложений
  • Скорость переключения: короткое время обратного восстановления trr

Эти диоды обеспечивают коммутацию.Подача напряжения в прямом направлении приведет к току (ВКЛ). И наоборот, подача напряжения в обратном направлении остановит протекание тока. Переключающие диоды обычно характеризуются более коротким временем обратного восстановления (trr), что приводит к лучшей производительности переключения.

Включить Выключить
>

Что такое обратное время восстановления (trr)?

Время обратного восстановления trr относится ко времени, которое требуется переключающему диоду для полного выключения из состояния ВКЛ.Как правило, электроны не могут быть остановлены сразу после выключения работы, что приводит к некоторому току, протекающему в обратном направлении. Чем выше этот ток утечки, тем больше потери. Однако время обратного восстановления можно сократить за счет диффузии тяжелых металлов, оптимизации материала или разработки FRD (диодов быстрого восстановления), которые подавляют звон после восстановления.

Ключевые точки
  • трр означает время, за которое ток исчезает после переключения напряжения в противоположном направлении.
  • Более короткое значение trr означает меньшие потери и более высокие скорости переключения

Барьерные диоды Шоттки (SBD): структура и особенности

Структура Символ Приложения ・ Характеристики
  • Используется для выпрямления вторичного источника питания
  • Низкое V F (малые потери), большое I R
  • Быстрая скорость переключения

В отличие от обычных диодов, которые обеспечивают характеристики диодов через переход PN (полупроводник-полупроводник), барьерные диоды Шоттки используют барьер Шоттки, состоящий из перехода металл-полупроводник.Это приводит к значительно более низким характеристикам V F (прямое падение напряжения) по сравнению с диодами с PN-переходами, что обеспечивает более высокие скорости переключения. Однако одним недостатком является больший ток утечки (I R ), что делает контрмеры необходимыми для предотвращения теплового разгона.

SBD

, которые часто используются для выпрямления вторичного источника питания, имеют характеристики, которые могут сильно различаться в зависимости от типа используемого металла. ROHM предлагает широкую линейку ведущих SBD, в которых используются различные металлы.

  • RB ** 1 серия low V F тип
  • RB ** 0 серия низкая I R тип
  • ROHM предлагает серии RB ** 8 диодов ультранизкого уровня I R для автомобильной промышленности
Ключевые точки
    Типы
  • Low V F и I R могут быть достигнуты простым изменением типа металла.

Тепловой побег

Барьерные диоды Шоттки чувствительны к чрезмерному выделению тепла при большом потоке тока.В результате сочетание высокой температуры с увеличением I R (ток утечки) может привести к повышению температуры корпуса и окружающей среды. Следовательно, реализация неправильного теплового проекта может привести к тому, что количество выделяемого тепла превысит количество рассеиваемого, что может привести к увеличению тепловыделения и тока утечки и в конечном итоге привести к повреждению. Это явление называется «тепловым побегом».

Ключевые точки
  • Высокие температуры окружающей среды могут стать причиной теплового разгона
Стабилитрон

(ZD) : Структура и особенности

Структура Символ Приложения ・ Характеристики
  • Используется в цепях постоянного напряжения
  • Защищает микросхемы от повреждений в результате скачков тока и ESD
  • Генерирует постоянное напряжение, когда напряжение подается в обратном направлении.
Стабилитроны

обычно используются в цепях постоянного напряжения для обеспечения постоянного напряжения, даже если ток колеблется, или в качестве элементов защиты от импульсных токов и электростатических разрядов.В отличие от стандартных диодов, которые используются в прямом направлении, стабилитроны предназначены для использования в обратном направлении. Напряжение обратного пробоя стабилитрона называется напряжением стабилитрона V Z , а значение тока в это время называется током стабилитрона (I Z ). В последние годы, в связи с продолжающейся миниатюризацией и повышением производительности электронных устройств, возникла необходимость в более совершенных защитных устройствах, что привело к появлению диодов TVS (подавление переходного напряжения).

Ключевые точки
  • Только диоды Зенера работают в обратном направлении

высокочастотных диодов (PIN-диодов): структура и особенности

Что такое диодная емкость (C т )

Количество накопленного заряда внутри при подаче обратного смещения называется емкостью диода (C t ). Электрически нейтральный обедненный слой формируется путем заполнения собственного слоя, созданного между слоями P и N, носителями заряда (дырками и электронами).Слой истощения действует как паразитный конденсатор, емкость которого пропорциональна площади PN-соединения и обратно пропорциональна расстоянию d. Расстояние определяется концентрацией слоев P и N. Подача напряжения на диод приведет к увеличению обедненного слоя и уменьшению C t . Требуемое значение Ct будет варьироваться в зависимости от применения.

[При подаче обратного напряжения]

Ключевые точки
  • Чем шире слой обеднения (и больше расстояние), тем ниже емкость C t .

диодов к странице продукта

ROHM использует оригинальные передовые технологии, чтобы предложить широкую линейку диодов. Кроме того, передовые знания в области малосигнальных диодов и диодов средней и высокой мощности позволили разработать высококачественные диоды Шоттки и диоды с быстрым восстановлением.

,

Теория мостового выпрямителя с рабочим режимом

Bridge Rectifier Bridge Rectifier Мостовой выпрямитель

Мостовой выпрямительный контур является общей частью электронных источников питания. Многие электронные схемы требуют выпрямленного источника постоянного тока для питания различных электронных базовых компонентов от доступной сети переменного тока. Мы можем найти этот выпрямитель в самых разнообразных электронных силовых устройствах переменного тока, таких как бытовая техника, контроллеры двигателей, процесс модуляции, сварочные работы и т. Д.

Что такое мостовой выпрямитель?

Мостовой выпрямитель - это преобразователь переменного тока в постоянный ток (DC), который выпрямляет вход переменного тока переменного тока в выход постоянного тока.Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронных компонентов или устройств. Они могут быть выполнены с четырьмя или более диодами или любыми другими управляемыми твердотельными переключателями.
В зависимости от требований тока нагрузки выбирается правильный мостовой выпрямитель. При выборе источника питания выпрямителя для применения в соответствующих электронных схемах учитываются номинальные характеристики и характеристики компонентов, напряжение пробоя, диапазоны температур, номинальные значения переходного тока, номинальные значения прямого тока, требования к монтажу и другие факторы.


Типы мостовых выпрямителей

Невыпрямительные выпрямители подразделяются на несколько типов в зависимости от следующих факторов: тип питания, возможности управления, конфигурации коммутационных цепей и т. Д. Мостовые выпрямители в основном подразделяются на однофазные и трехфазные выпрямители. Оба эти типа далее классифицируются на неконтролируемые, полууправляемые и полностью контролируемые выпрямители. Некоторые из этих типов выпрямителей описаны ниже.

1. Однофазные и трехфазные выпрямители

Single Phase and Three Phase Rectifiers Single Phase and Three Phase Rectifiers Однофазные и трехфазные выпрямители

Характер поставки, т.е.однофазное или трехфазное питание решает эти выпрямители. Однофазный мостовой выпрямитель состоит из четырех диодов для преобразования переменного тока в постоянный, тогда как трехфазный выпрямитель использует шесть диодов, как показано на рисунке. Это могут быть снова неконтролируемые или управляемые выпрямители в зависимости от компонентов схемы, таких как диоды, тиристоры и так далее.

2. Неконтролируемые мостовые выпрямители

PCBWay PCBWay
Uncontrolled Bridge Rectifiers Uncontrolled Bridge Rectifiers Неконтролируемые мостовые выпрямители

Этот мостовой выпрямитель использует диоды для выпрямления входа, как показано на рисунке.Поскольку диод является однонаправленным устройством, которое позволяет току течь только в одном направлении. При такой конфигурации диодов в выпрямителе она не позволяет изменять мощность в зависимости от требуемой нагрузки. Таким образом, этот тип выпрямителя используется в постоянных или фиксированных источниках питания.

3. Управляемый мостовой выпрямитель

Controlled Bridge Rectifier Controlled Bridge Rectifier Управляемый мостовой выпрямитель

В этом типе выпрямителя, преобразователя переменного / постоянного тока или выпрямителя - вместо неуправляемых диодов, управляемых твердотельных устройств, таких как SCR, MOSFET, IGBT и т. Д.используются для изменения выходной мощности при разных напряжениях. При запуске этих устройств в различные моменты выходная мощность на нагрузке соответствующим образом изменяется.

Принципиальная схема мостового выпрямителя

Основным преимуществом мостового выпрямителя является то, что он выдает почти удвоенное выходное напряжение, как в случае двухполупериодного выпрямителя с использованием трансформатора с центральным отводом. Но эта схема не нуждается в трансформаторе с центральным отводом, поэтому она напоминает недорогой выпрямитель.

Принципиальная схема мостового выпрямителя состоит из различных ступеней таких устройств, как трансформатор, диодный мост, фильтрация и регуляторы.Как правило, все эти комбинации блоков называются регулируемым источником питания постоянного тока, который питает различные электронные приборы.

Первая ступень схемы представляет собой трансформатор понижающего типа, который изменяет амплитуду входного напряжения. В большинстве электронных проектов используется трансформатор 230/12 В для снижения напряжения в сети переменного тока 230 В до 12 В.

Bridge Rectifier Circuit Diagram Bridge Rectifier Circuit Diagram Принципиальная схема мостового выпрямителя

Следующий этап - диодно-мостовой выпрямитель, который использует четыре или более диода в зависимости от типа мостового выпрямителя.Выбор конкретного диода или любого другого переключающего устройства для соответствующего выпрямителя требует некоторых соображений относительно устройства, таких как пиковое обратное напряжение (PIV), прямой ток If, номинальное напряжение и т. Д. Он отвечает за создание однонаправленного или постоянного тока в нагрузке путем проведения набор диодов для каждого полупериода входного сигнала.

Поскольку выходной сигнал после выпрямительных диодных мостов имеет пульсирующий характер, и для его производства в виде чистого постоянного тока необходима фильтрация. Фильтрация обычно выполняется с одним или несколькими конденсаторами, подключенными к нагрузке, как вы можете видеть на рисунке ниже, где выполняется сглаживание волны.Эта емкость конденсатора также зависит от выходного напряжения.

Последней ступенью этого регулируемого источника постоянного тока является регулятор напряжения, который поддерживает выходное напряжение на постоянном уровне. Предположим, что микроконтроллер работает при 5 В постоянного тока, но выходной сигнал после мостового выпрямителя составляет около 16 В, поэтому для снижения этого напряжения и поддержания постоянного уровня - независимо от изменений напряжения на входной стороне - необходим регулятор напряжения.

Работа мостового выпрямителя

Как мы уже говорили выше, однофазный мостовой выпрямитель состоит из четырех диодов, и эта конфигурация подключена к нагрузке.Чтобы понять принцип работы мостового выпрямителя, мы должны рассмотреть схему ниже для демонстрационных целей.

Во время положительного полупериода входного сигнала переменного тока диоды D1 и D2 смещены в прямом направлении, а D3 и D4 - в обратном направлении. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводить - через него начинает течь ток нагрузки, как показано красной линией на схеме ниже.

Bridge Rectifier Operation Bridge Rectifier Operation Работа мостового выпрямителя

Во время отрицательного полупериода входного сигнала переменного тока диоды D3 и D4 смещены в прямом направлении, а D1 и D2 - в обратном смещении.Ток нагрузки начинает протекать через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.

Мы можем заметить, что в обоих случаях направление тока нагрузки одинаково, то есть вверх-вниз, как показано на рисунке, - так однонаправлено, что означает постоянный ток. Таким образом, при использовании мостового выпрямителя входной переменный ток преобразуется в постоянный ток. Выход на нагрузку с этим мостиковым волновым выпрямителем носит пульсирующий характер, но для получения чистого постоянного тока требуется дополнительный фильтр типа конденсатора.Та же операция применима для разных мостовых выпрямителей, но в случае управляемых выпрямителей для запуска тока необходимо подать ток на нагрузку.

Это все о теории мостовых выпрямителей, ее типах, схемах и принципах работы. Мы надеемся, что этот полезный вопрос по этой теме будет полезен при создании проектов для электроники или электрики учащихся, а также при наблюдении за различными электронными устройствами или приборами. Благодарим Вас за внимание и внимание к этой статье.И поэтому, пожалуйста, напишите нам, чтобы выбрать необходимые характеристики компонентов в этом мостовом выпрямителе для вашего приложения и для любых других технических рекомендаций.

Фото Кредиты:

.

Отправить ответ

avatar
  Подписаться  
Уведомление о