Для чего нужен диодный мост: Что такое диодный мост [+ схема подключения], для чего нужен и как работает

Содержание

Что такое диодный мост [+ схема подключения], для чего нужен и как работает

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Содержание статьи

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом.

Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Устройство диода

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник.

Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны.

Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное.

Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Видео: принцип работы диодного моста


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Диодный мост, принцип работы и схема

Диодный мост – это мостовая схема соединения диодов, для выпрямления переменного тока в постоянный.

Диодные мосты являются простейшими и самыми распространенными выпрямителями, их используют в радиотехнике, электронике, автомобилях и в других сферах, там, где требуется получение пульсирующего постоянного напряжения.

Для лучшего понимания принципа работы диодного моста, рассмотрим работу одного диода:

Диод как полупроводниковый элемент, имеет один p-n переход, что дает ему возможность проводить ток только в одном направлении. Ток через диод начинает проходить при подключении анода к положительному, а катода к отрицательному полюсу источника. В обратной ситуации диод запирается, и ток через него не протекает.

Схема и принцип работы диодного моста

На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения 220В. В качестве нагрузки подключен резистор Rн.

Переменное напряжение на входе меняется не только по мгновенному значению, но и по знаку. При прохождении положительной полуволны (от 0 до π) к анодам диодов VD2 и VD4 приложено положительное напряжение относительно их катодов, что вызывает прохождение тока Iн через диоды и нагрузку Rн. В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.

В момент, когда входное напряжение пересекает точку π, оно меняет свой знак. В этом случае диоды VD1 и VD3 начинают пропускать ток, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. Это продолжается до точки 2π, где переменное входное напряжение снова меняет свой знак и весь процесс повторяется заново.

Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, т.е. является постоянным.

Но если обратить внимание на график, то можно заметить, что напряжение на выходе является не постоянным, а пульсирующим. Соответственно, выходной ток, появляющийся от такого напряжения и протекающий через активную нагрузку, будет также – пульсирующим. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста. Напряжение на конденсаторе, согласно закону коммутации, не может измениться мгновенно, а значит в данном случае, выходное напряжение примет более сглаженную форму.

  • Просмотров: 17448
  • Диодный мост | Принцип работы, обозначение, виды

    Что такое диодный мост

    Словосочетание “диодный мост” образуется от слова “диод“. Значит, диодный мост – это радиодеталь, которая состоит из диодов. Здесь очень важно то, как соединены эти диоды, иначе диодный мост превратится просто в кучку из диодов.

    Диод на электрических схемах обозначается вот так.

    Самый простой диодный мост состоит из 4 диодов, которые соединяются вот так.

    Эта рисунок также является самой распространенным обозначением диодного моста на электрических схемах.

    Упрощенный вариант выглядит вот так.

    Можно увидеть на схемах даже что-то типа этого.

     

    Для правильной эксплуатации диодного моста, мы должны его правильно подсоединить. Правильное подключение диодного моста выглядит таким образом.

    Как вы видите, на вход диодного моста мы подаем переменное напряжение, а на выходе диодного моста снимаем постоянное напряжение. Отсюда можно сделать вывод:

    Диодный мост используется в схемах для того, чтобы получить из переменного тока постоянный ток.


    Видео на тему: Что такое диодный мост:

    Принцип работы диодного моста


    Диод в цепи переменного напряжения

    Итак, в статье про диод мы рассматривал, что будет на выходе диода, если подать на него переменный ток. Для этого мы даже собирали вот такую схему, где G – это синусоидальный генератор. С клемм X1 и X2 уже снимали сигнал.

    Мы на диод подавали переменное напряжение.

    А на выходе после диода получали уже вот такой сигнал.

    То есть у нас получилось вот так.

    Да, мы получили постоянный ток из переменного, но стоило ли это того? В этом случае у нас получился

    постоянный пульсирующий ток, где половина мощности сигнала была вообще вырезана.

    Как работает диодный мост в теории

    Как вы знаете, переменный ток меняет свое направление несколько раз в секунду. Поэтому, его можно разбить на положительные полуволны и отрицательные полуволны. Положительные полуволны я пометил красным, а отрицательные – синим.

    Для того, чтобы диодный мост работал, ему нужна какая-либо нагрузка. Пусть это будет резистор. Следовательно, когда на диодный мост приходит положительная полуволна, протекание тока через него будет выглядеть вот так.

    Как вы видите, при положительной полуволне не задействованы диоды, которые я показал штриховой линией.

    После положительной полуволны приходит отрицательная полуволна, и в этом случае протекание тока в диодном мосте выглядит так.

    В этом случае, диоды, которые работали при положительной полуволне, при отрицательной полуволне они отдыхают). Эстафету принимает на себя другая пара диодов. Можно даже сказать, что в диодном мосте они работают попарно. Одна пара диодов работает на положительную полуволну, а другая пара – на отрицательную.

    Обратите внимание на нагрузку. На нее всегда приходит одна и та же полярность тока при любом стечении обстоятельств.

    Работа диодного моста на практике

    Давайте и мы посмотрим, что получается на выходе диодного моста, если подать на него переменное напряжение. Для этого возьмем 4 простых кремниевых диода и соединим их в диодный мост. Важно, чтобы диоды были одной марки.

    На вход диодного моста будем подавать переменное напряжение, и посмотрим, что у нас получается на выходе.

    Итак, на вход я подаю вот такой сигнал.

     

    На выходе получаю постоянное пульсирующее напряжение.

    Здесь мы видим, что отрицательная полуволна в диодном мосте не срезается, а превращается в положительную. Мощность сигнала при этом не теряется, так как отрицательная полуволна просто инвертируется в положительную полуволну. Ну разве не чудо?

    Наблюдательный читатель также может заметить, что амплитуда сигнала чуть-чуть просела. Если мы на вход подавали синусоидальный сигнал с амплитудой в 6 Вольт, то на выходе диодного моста имеем чуть меньше 6 Вольт, а точнее где-то 4,8 Вольта. Почему так произошло? Дело все в том, что на кремниевом диоде падает напряжение 0,6-0,7 Вольт. Так как переменное напряжение проходит через 2 диода при каждой полуволне, то на каждом диоде падает по 0,6 Вольт. 2×0,6=1,2 Вольта. 6-1,2=4,8 Вольта.

    Теперь можно с гордостью нарисовать рисунок.

    Виды диодных мостов

    Примерно так выглядит импортный и советский диодные мосты.

     

    Например, на советском показаны контакты, на которые надо подавать переменное напряжение значком ” ~ “, а контакты, с которых сниамем постоянное пульсирующее напряжение значком “+” и “-“.

    Существует множество видов диодных мостов в разных корпусах.

    Есть даже диодный мост для трехфазного напряжения.

    Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы, а два другие – на постоянное напряжение.

    Он собирается по так называемой схеме Ларионова и состоит из 6 диодов.

    В основном трехфазные мосты используются в силовой электронике.

    Характеристики диодного моста

    Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.

    Почему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.

    Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.

    Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.

    Распиновка и корпус

    Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.

    Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.

    Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.

    Package – тип корпуса. Корпуса GBU выглядят вот так.

    Максимальный ток

    Итак, с этим разобрались. Далее следующий параметр. IF(AV) максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.

    Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.

    В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.

     

    Максимальное пиковое обратное напряжение

    Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”. Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение. Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2). Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт. Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.

     

    Как проверить диодный мост

    1-ый способ.

    Как вы теперь знаете, однофазный диодный мост состоит из 4 диодов. Для того, чтобы узнать их расположение, мы должны скачать даташит на данный диод и посмотреть, как расположены диоды в данном диодном мосте. Например, для моего моста GBU6K диоды расположены вот так.

    То есть все, что мне надо сделать – это просто прозвонить каждый диод с помощью мультиметра. Как это сделать, я писал еще в этой статье.

    Второй способ.

    Он же 100%. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор, а также резистор, желательно 5-10 КОм. После того, как мы нашли его расположение выводов, на “+” и “-”  припаиваем резистор 5-10 КОм. С этих же выводов снимаем осциллограмму.

    То есть все должно выглядеть вот так.

     

     

    Смотрим осциллограмму

    Значит, диодный мост исправен.

    Диодный мост генератора

    Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.

    Диодный мост генератора ВАЗ 2110

    В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.

    Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.

    Как проверить диодный мост генератора

    Для проверки диодного моста генератора есть два способа.

    Проверка с помощью лампы накаливания

    Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)

    Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.

    Далее, все что нам надо сделать – это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод “тыкнуться” два раза, чтобы узнать исправен ли он. Так мы и сделаем.

    Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли. Мой “прибор” для проверки диодов выглядит вот так.

    Красные крокодил – это плюс от аккумулятора, в моем случае – от блока питания, а черный – это минус.

    Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода

     

    а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!

    Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.

    Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.

    Таким же образом проверяем все диоды таблетки.

    Маленькие черные диоды проверяются точь-в-точь таким же способом.

    Меняем выводы и убеждаемся, что диод рабочий.

    Правила:

    1) Если лампочка не горит ни так ни сяк, значит диод неисправен.

    2) Если лампочка горит и так и сяк, значит диод тоже неисправен.

    3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.

    Проверка с помощью мультиметра

    Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.

    В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.

    Берем в руки мультиметр и ставим его в режим прозвонки диодов.

    И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.

    Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).

    Таким же образом проверяем все оставшиеся диоды.

    Похожие статьи по теме “диодный мост”

    Автомобильное зарядное устройство

    Как получить постоянное напряжение из переменного

    Как проверить диод и светодиод мультиметром

    Простой блок питания

     

    Что такое диодный мост, как его проверить

    Диодный мост — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный).

    Диодный мост или, как его ещё называют, выпрямитель нужен для преобразования переменного тока в постоянный. Его используют везде, где нужно получить питание постоянным напряжением независимо от мощности прибора, потребляемого тока или величины напряжения.

    Устройство

    Для выпрямления однофазного напряжения используют схему Гретца из четырёх диодов. Если в схеме стоит трансформатор с отводом от средней точки используют схему из двух диодов.

    Мостом называется именно включение четырёх диодов.

    Диодный мост может быть выполнен в одном корпусе, а может быть из дискретных диодов, то есть отдельных. Входом диодного моста называют точки подключения переменного напряжения, а выходом - точки с которых снимают постоянное.

    Переменное напряжение подают в точки, в которых соединены анод с катодом диодов. На выходе получают плюс и минус, при этом с точки соединения катодов снимают положительный полюс, т.е. плюс питания, а точка соединения анодов является минусом.

    На приведенном рисунке изображена схема диодного моста, где мест подключения переменного напряжения обозначены "AC ~", а выход постоянного "+" и "-".

    Некоторые новички наивно предполагают, исходя из принципа обратимости электрических машин, что подав постоянку на мост на оставшихся контактах они получат переменку. Это не так, это не электрическая машина и здесь нужен преобразователь.

    На современных диодных мостах контакты помечены также: вход переменки "AC" или "~", а выход по стоянки "+" и "-". Совместим схему с изображением реального моста, чтобы разобраться, как это выглядит на практике.

    Где устанавливают

    Диодный мост обычно установлен на входе цепи питания, если выпрямляется сетевое напряжение 220В, такое решение применяется в импульсных блоках питания, в том числе компьютерного блока питания, устройство которого было рассмотрено в одной, из ранее выложенных на сайте (смотрите - Как устроен компьютерный блок питания) . Либо во вторичной обмотке трансформатора, такое включение применяется в обычных блоках питания, например маломощной магнитолы для дома или старого телевизора.

    В современных блоках питания чаще используются импульсные схемы, в них диодный мост выпрямляет именно сетевое напряжение, а трансформатором управляют полупроводниковые ключи (транзисторы).

    Будьте осторожны:

    Если диодный мост стоит на входе по линии 220В, то на его выходе пульсирующее или сглаженное (если есть фильтрующий конденсатор) постоянное по знаку напряжение амплитудой в 310В. В любом случае выпрямленное напряжение увеличивается, относительно переменного.

    Тоже касается и остаточного заряда фильтрующих электролитических конденсаторов, они могут биться током, даже когда питание на плату блока питания не подаётся. Их нужно предварительно разряжать лампой накаливания или резистором.

    Не стоит разряжать емкость закорачиванием железным инструментом: вас может ударить током, вы можете повредить конденсаторы или дорожки платы.

    Приступим к проверке диодного моста

    Я буду рассуждать на примере типовой ситуации. Есть нерабочее устройство и его нужно отремонтировать.

    Вы решили отремонтировать устройство, при разборке увидели на плате перегоревший предохранитель, защитный резистор или дорожку на печатной плате.

    После замены сгоревшего элемента и восстановления дорожки не спешите включать. Начинающие электронщики любят делать "жучки" вместо предохранителя, тогда, тем более, нельзя включать плату.

    Если предохранитель вышел из строя не случайно, а из-за проблем на плате блока питания вы получите повторное перегорание предохранителя. А если вместо него поставили жучек, то это включение сопроводить зрелищный фейерверк, возможное повреждение провода или розетки, выбитые пробки и автоматы.

    Если пробит диодный мост, то после предохранителя на плате будет КЗ. Чтобы проверить диодный мост на пробой без мультиметра пользуйтесь проверенным способом: подключайте сомнительные блоки пиатния, через лампу накаливания на 40-100 Вт 220В. Она выполнит роль ограничителя тока и плата не повредится, и предохранитель не перегорит. Лампу подключают в разрыв одного из питающих кабелей 220В.

    Если диодный мост пробит - лампа засветится в полный накал.

    Это достаточно приблизительный способ диагностики диодного моста без мультиметра. Лампа может засветиться и при исправном мосте, если КЗ находится в схеме после него. Проверить диодный мост на обрыв без мультиметра можно и с помощью индикаторной отвёртки, на его выходе, как уже было сказано, должно быть высокое напряжение, если он установлен на линии 220В, неоновый индикатор в отвёртке должен засветиться.

    Проверка диодного моста мультиметром

    Любую деталь в электрической схеме нужно выпаивать перед её проверкой и прозвонкой. Можно, конечно, проверить и на плате, но есть вероятность получить ложные результаты измерений.

    Также если вы будете прозванивать мост со стороны дорожек и контактных площадок на плате, есть вероятность отсутствия электрического контакта при визуально нормальной пайке. В тоже время, если диодный мост собран на плате из отдельных диодов, его зачастую удобно проверять, не выпаивая из плат, с её лицевой стороны. В таком случае вы получаете удобный доступ к металлическим ножкам диода.

    Вам понадобится любой цифровой мультиметр, например самый дешёвый и распространенный типа dt-830. Включите режим прозвонки диодов, вы его можете найти по пиктограмме с условным его обозначением.

    Часто этот режим совмещён с режимом звуковой прозвонки. Любая прозвонка и большинство омметров состоит из пары щупов, один из которых является плюсом, а второй - минусом. На мультиметра чаще всего красный щуп принимается за плюс, а чёрный за минус.

    Как известно - диод проводит ток в одну сторону. При этом протекание тока возможно только при подключении положительного щупа (плюса) к аноду, а отрицательного к катоду. Тогда при проверке мультиметром в этом режиме силового кремниевого диода на дисплее отображаются цифры в диапазоне 500...700.

    Это количество милливольт, которое падает на pn-переходе. Если вы увидели эти значения - диод уже наполовину исправен. Если цифры большие или у левой стороны экрана появилась единица и больше ничего - диод в обрыве. Если сработала звуковая прозвонка или на экране около 0 - диод пробит.

    Теперь нужно определить, не проходит ли ток в обратном направлении. Для этого меняем щупы местами, на экране либо должно быть значение много больше 1000, порядка 1500, либо единица у левой стороны экрана - так обозначается большое значение, выходящее за пределы измерений. Если значения маленькие - диод неисправен, он пробит.

    Если оба замера совпали с описанными - с диодом все в порядке.

    Таким образом проверяют диодный мост из отдельных диодов.

    У диодов Шоттки падение напряжения от 0.3В, то есть при проверке на экране мультиметра высветится цифра порядка 300-500.

    Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.

    Проверка диодного моста в корпусе мультиметром

    Я начал статью с описания точек, куда подключается переменка и откуда снимается постоянка неспроста. Это поможет при его проверке, давайте разберемся!

    Сразу оговорюсь, что черный щуп вставлен в разъём "COM" на мультиметре.

    Ставим черный щуп мультиметра на контакт, помеченный как "+", а красным попеременно касаемся контактов "~" к которым подключают переменное напряжение по очереди. В обоих случаях на экране вы должны увидеть падение напряжения на прямовключенном pn-переходе, т.е. цифры около 600, если диод исправен. Поменяв щупы местами, если выпрямитель исправен, вы увидите большие значения или единицу.

    На некоторых мультиметрах вместо единицы используют символы 0L.

    Проверяем вторую пару диодов. Для этого красный щуп ставим на вывод "-" диодного моста, а красным по очереди касаемся выводов "~", вы должны увидеть на экране мультиметра значения прямого падения - около 600 при касании любого из контактов со знаком "~" (AC). Меняем щупы местами - на экране больше значения или бесконечность. Если что-то отличается, то диодный мост нужно заменить.

    Быстрая проверка диодного моста

    Иногда возникает необходимость экспресс проверки диодного моста, это можно сделать тремя касаниями щупов мультиметра к мосту. Можно проводить её не выпаивая мост из платы.

    Первое положение щупов: ставим оба щупа между выводами для подключения переменного напряжения (на вход) "~". Если диодный мост пробит - сработает прозвонка, а если её нет, то на экране мультиметра значения устремятся к нулю.

    Второе положение щупов: красный щуп ставим на вывод со знаком "-", а черный на вывод со знаком "+", если диоды исправны - на экране мультиметра будут цифры в двое больше прямого падения на диоде, то есть 1200-1400 мВ. Если на экране около 600 - значит один диод пробит, и вы видите падение напряжения на одном оставшемся.

    На рисунке ниже вы видите, как течет ток при такой проверке подумайте, почему получаются такие результаты.

    Однако если один из диодов в обрыве ток потечет по уцелевшей ветви и на экране будут условно-исправные значения.

    Третье положение щупов - красный щуп на вывод со знаком "-", а черный на вывод со знаком "+", тогда на экране мультиметра будут такие же результаты как при проверке диода подключенного в обратном направлении (бесконечность). Если сработала прозвонка или на экране маленькие значения (от нуля до сотен) – значит, мост пробит.

    Такая проверка эффективна, но не даст такой достоверности как описанная в предыдущем пункте статьи. Если устройство все равно не работает и на выходе диодного моста отсутствует напряжение, то выпаяйте мост и повторно проверьте его. 

    Проверка другими средствами

    Если у вас нет мультиметра, но у вас есть советский тестер или, как его еще называют "цешка" или какой-нибудь Омметр с пределом измерения до десятка кОм можно использовать и эти стрелочные приборы.

    Логика проверки такая же самая, только в прямом включении стрелка будет указывать низкие сопротивления, а в обратном включении диода - высокое.

    Если у вас и этого нет - вам поможет любая батарейка или несколько батареек с выходным напряжением больше пары вольт и лампочка накаливания (можно и светодиодом и кроной, батарейкой на 9В). Взгляните на картинку, и вам все станет ясно.

    Заключение

    Проверка диодного моста - базовый навык для тех, кто занимается ремонтом радиоэлектронной аппаратуры и электроприборов и для тех, кто хочет этому научиться. Для этого нужен минимальный набор инструментов, но хорошие понимание не только способа проверки, а и самой логики работы моста.

    Использование мультиметра, цешки или прозвонки не меняет конечного результата при правильном проведении измерений. Однако на моей практике случалось так, что прибор показывал исправность диодного моста, а в реальности он не работал.

    Возможно он "пробивался" под большим напряжением, чем на клеммах прибора, которым я проводил проверку. Поэтому самым точным способом "посмотреть" процессы, происходящие в схеме - это осциллограф.

    В автоэлектрике, например по одной только осциллограмме напряжения в линии можно определить исправность диодного моста генератора, причем специалист может даже определить, что конкретно произошло - пробой или обрыв.

    Ранее ЭлектроВести писали, что компания AE Solar начала свою деятельность в Германии в 2003 году со строительства солнечных электростанций. С 2009 года компания производит солнечные батареи в Китае. Теперь же она начинает производство в Грузии. В одном из интервью директор по продажам компании Вальдемар Хартманн отвечает на вопросы о продуктах и рыночной стратегии компании.

    По материалам: electrik.info.

    Для чего нужен диодный мост в генераторе

    Для питания потребителей в бортовой сети автомобиля и обмотки возбуждения самого генератора во время работы двигателя, необходим электрический ток постоянного напряжения.

    Расположение диодного моста

    Стандартно выпрямительный блок расположен в задней части генератора. Например, на генераторе 37.3701 он крепится к задней стенке его задней крышки.

    Устройство диодного моста генератора

    На примере выпрямительного блока БПВ56-65-01 генератора 37.3701 автомобилей ВАЗ 2108, 2109, 21099.

    Выпрямительный блок состоит из двух алюминиевых теплоотводящих пластин, которые объединены в целую конструкцию через три изоляционные втулки при помощи заклепок. Одна пластина (нижняя) соединена с «массой», через корпус генератора, другая (верхняя) с «плюсом», через выводы обмоток статора. Плюсовая пластина имеет три контакта для присоединения выводов обмоток статора и вывод через который подается напряжение к потребителям (вывод «30»).

    В каждую из пластин впаяно по три диода, т.е. три положительных диода (Д104-20) и три отрицательных (Д104-20Х), рассчитанных на ток не более 20А. Положительные и отрицательные диоды объединены попарно. Помимо этого имеются три дополнительных диода (КД223А), рассчитанных на 2А. Они установлены на пластмассовом держателе, и питают обмотку возбуждения генератора. Основные и дополнительные диоды объединены в общую шину, имеющую с одной стороны штекерный вывод (вывод 61 генератора) и вывод на регулятор напряжения с другой стороны.

    Принцип действия диодного моста генератора

    Принцип действия диодного моста основан на свойстве диодов пропускать электрический ток только в одном направлении. Электрический ток попадает в диодный мост через крепящиеся к нему выводы обмоток статора. Он протекает через диоды в одном направлении. Но никак обратно. Поэтому ток получается постоянный (выпрямленный).

    Неисправности выпрямительного блока генератора

    Основных неисправностей всего две: «обрыв» и «короткое замыкание» диодов. При наличии «обрыва» диод перестает пропускать электрический ток, при «коротком замыкании» ток проходит в обоих направлениях – диод «пробит». Подробнее:

    Применяемость выпрямительных блоков на автомобилях ВАЗ

    — Генератор 37.3701 – выпрямительные блоки с двумя выводами (до 1996 года выпуска): БПВ-56-65-01, БПВ-56-65-02Б, с одним выводом (вывод «61» на корпусе моста): БПВ-56-65-02Г.

    Примечания и дополнения

    — Электрический ток переменного напряжения – ток, изменяющийся по величине и направлению через равные промежутки времени.

    — Электрический ток постоянного напряжения – ток, не изменяющийся по величине направлению в течении всего времени.

    — Диод (полупроводниковый) – электронный прибор, состоящий из пластин кремния или магния имеющих определенные свойства. Если к его положительному выводу (анод) подсоединить «плюс», а к отрицательному (катод) «минус», то по нему потечет электрический ток в одном направлении (диод открыт). Если полярность поменять местами, то ток не пройдет (диод закрыт).

    Еще статьи по автомобильному генератору

    диодный мост Важность генератора (в том числе и в автомобилях ВАЗ) сложно переоценить. Вместе с аккумулятором он обеспечивает напряжением, необходимым для нормальной работы главных систем и «мелких» приемников автомобиля (магнитолы, фар головного света и прочих). При этом известно, что АКБ питает потребителей до пуска мотора, а генератор подключается к работе уже после, одновременно подзаряжая аккумулятор.

    Диодный мост — устройство, установленное на выходе генератора, обеспечивающее нормальную работоспособность устройства. В случае его поломки генератор не способен выполнять свои функции, а вся нагрузка переходит на АКБ. Емкости аккумулятора хватает на 5-6 часов, после чего автомобиль не способен перемещаться самостоятельно.

    Часто автолюбители паникуют, направляются на СТО и отдают большие деньги за диагностику. На практике в 90% случаев проблема лежит на поверхности. Первым шагом должна стать проверка диодного моста ВАЗ. Как выполнить эту работу? Какие методы существуют, и в чем их особенности? Рассмотрим эти моменты детальнее.

    Функции и причины неисправности

    Генератор — простой узел, в основе которого лежит статор (фиксированная часть) и ротор (движущийся элемент). Статор, в свою очередь, собран из множества стальных пластин, в пазах которой крепится специальная обмотка из меди. Один из выводов обмотки подключен к «0-ой» точке, а второй — к группе диодов (их может быть четыре или шесть).

    На выходе генератора можно получить только переменный ток, который не подходит для бортовой сети автомобиля. Задача диодного моста — преобразование переменного напряжения в постоянный параметр 12-14 Вольт. Диоды подключены таким образом, чтобы ток проходил только в одном направлении, выпрямлялся и больше не возвращался к генератору.

    Главный недостаток выпрямителей — низкая надежность. Время от времени диоды перегорают, что создает ряд проблем для автовладельцев. Но перед тем как проверить диодный мост генератора, определите причину поломки.

    Здесь возможны следующие варианты:

    • На корпус диода попала влага, что привело к замыканию. Такое возможно при въезде на скорости в глубокую лужу или после посещения мойки.
    • На генератор попало масло, грязь или прочие посторонние вещества. Подобная проблема может произойти в дороге, при движении по бездорожью.
    • При пуске двигателя от АКБ другого автомобиля могла быть допущена ошибка. Если перепутать «плюсовой» и «минусовой» проводник, высок риск выхода из строя одного или группы диодов.
    • Неправильное обслуживание. В процессе ремонта или снятия узла имело место короткое замыкание в бортовой сети.

    Особенности проверки

    контакты Для проведения комплексной проверки диодного моста достаточно двух инструментов — цифрового комбинированного прибора (мультиметра) и лампочки с номинальным напряжением 12 Вольт. Все работы реально сделать самостоятельно, без привлечения дорогостоящих мастеров. Чтобы получить доступ к узлу, снимайте защитный корпус, после чего отключайте вывода регулятора. При этом учитывайте цветовые особенности диодов:

    • Выпрямители красного цвета — «плюс».
    • Выпрямители черного цвета — «минус».

    Проверить целостность диодов на ВАЗ можно двумя способами. Для большей надежности рекомендуется их применять в комплексе.

    Сначала рассмотрим, как проверить диодный мост мультиметром. Этот вариант занимает меньше всего времени и пользуется наибольшим спросом у автовладельцев. Алгоритм следующий:

    • Демонтируйте группу выпрямителей с генератора. Без снятия устройства с автомобиля выполнить проверку, к сожалению, не выйдет. Это вызвано тем, что каждый диод требуется проверять по отдельности. Если же они будут «в схеме», точно диагностировать поломку вряд ли удастся.
    • Переводите переключатель цифрового прибора в режим прозвонки. После этого соединяйте щупы друг с другом — вы услышите писк из специального динамика устройства. Если вы используете простой прибор, в котором эта опция не предусмотрена, переводите переключатель в позицию «1кОм».
    • «Садитесь» щупами к вводу и выводу диода, после чего фиксируйте показатель. Далее сделайте обратный замер. Выпрямитель можно считать целым, если при одном измерении показало бесконечность, а при другом — 0,5-0,7 МОм. В случае когда в обоих случаях на приборе высветилось минимальное сопротивление, или же он показывает бесконечность в первом и во втором варианте, это сигнализирует о неисправности одного (группы) диодов.

    Теперь рассмотрим, как проверить диодный мост лампочкой? Такой вариант хорош в случае, когда под рукой нет мультиметра. Роль «прибора» в этом случае выполняет лампочка на 12 Вольт.

    Алгоритм такой:

    • Подключайте «минусовую» клемму аккумулятора к диодному мосту. При этом следите, чтобы пластинка плотно контактировала с внешней частью генератора.
    • Проверьте каждый диод по отдельности. Берите один вывод лампы и подключайте его к «минусу» генератора, а второй — к «плюсу» клеммы под номером «тридцать» (от АКБ). Если лампочка засветилась, это говорит о проблемах с одним или несколькими диодами. Кроме того, свечение часто свидетельствует о наличии КЗ в цепи.
    • Проверьте «минусовые» диоды. Для этого подсоединяйте «минус» лампочки к кожуху генератора, а другой провод — к крепежному болту на мосту. Если при такой проверке имеет место моргание или свечение лампы, с «минусовой» группой имеются проблемы.
    • Проверьте «плюсовые» диоды. Для этого положительный вывод ставьте на «тридцатую» клемму, а отрицательный — к крепежному болту. Свечения лампы быть не должно. Если же такая проблема имеет место, имеют место сбои в одном или нескольких «плюсовых» диодах.
    • Проверьте дополнительную группу выпрямителей. Берите отрицательный край и оставляйте его на прежней позиции, а положительный конец прикладывайте к клемме «шестьдесят один». Свечение лампочки сигнализирует о наличии проблемы.

    Если проверка диодного моста показала неисправность, берите пробитый диод и ставьте на его место новую (исправную) деталь. Оптимальный и более простой вариант — приобрести весь диодный мост в комплексе, но в этом случае придется потратить больше денег.

    При соблюдении упомянутых выше рекомендаций диагностика неисправности занимает не больше 1-2 часов. Так что не стоит торопиться на СТО — сделайте работу своими руками. Так удается набраться опыта и сэкономить личный бюджет.

    Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

    Содержание статьи

    Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

    Схема диодного моста из 4 диодов

    Что такое диодный мост и из каких элементов он состоит

    Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

    Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

    Как работает диодный мост: для чайников, просто и коротко

    На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

    Обозначение диодного моста на схеме

    Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

    Работа диодного моста

    На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

    Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

    На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

    Чем можно заменить диодный мост-сборку

    Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

    • меньшей площади, занимаемой сборкой на схеме;
    • упрощению работы сборщика схемы;
    • единому тепловому режиму для всех четырех полупроводниковых устройств.

    Различные варианты сборки диодного моста

    У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

    Для чего нужен диодный мост в генераторе автотехники

    Диодный мост в генераторе

    Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

    • маломощные – до 300 мА;
    • средней мощности – от 300 мА до 10 А;
    • высокомощные – выше 10 А.

    Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

    Чем заменить диодный мост в генераторе

    В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

    • на плату попала жидкость;
    • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
    • изменение положения полюсов контактов на АКБ.

    Видео: принцип работы диодного моста

    ⚡ Диодный мост: схема, особенности, назначение

    Подавляющее большинство электронной аппаратуры работает на постоянном токе. А источником напряжения может быть как гальванический элемент, так и городская сеть переменного ток 220 В. Вот и приходится переменный ток преобразовывать в постоянный, то есть – «выпрямлять». Для этой цели служит устройство под названием выпрямитель. Это может быть готовый промышленный компонент, а может быть электронная схема, собранная из отдельных, более простых, элементов. Сегодня разберём, что же такое диодный мост, зачем он нужен и как работает.

    Содержание статьи

    Что такое диодный мост и зачем нужен

    Переменный ток в бытовой электросети по синусоидальному закону меняет свою полярность 50 раз в секунду. Диодный мост, собранный из четырёх диодов, 25 раз в секунду пропускает одну положительную полуволну. То есть, превращает ток переменного знака амплитудой, имеющей колебательный характер, в ток одного знака, но с удвоенной частотой колебаний амплитуды. Если потребителя это не устраивает, то после выпрямителя ставится сглаживающий фильтр. Ниже представлена принципиальная электрическая схема диодного моста-выпрямителя.

    ФОТО: go-radio.ruСхема диодного моста

    Диодный мост можно собрать из отдельных конструктивно законченных диодов, но можно в промышленных условиях сразу изготовить из кристаллов в виде цельного изделия, пригодного к дальнейшей установке в электронную схему. Такая диодная сборка имеет технологические преимущества над предыдущим вариантом. Она компактней, монтаж моста надёжней, стоимость существенно ниже, чем у четырёх диодов.

    ФОТО: youtube.comОдин из вариантов исполнения диодаФОТО: youtube.comДиодный мост, собранный из четырёх диодовФОТО: youtube.comДиодный мост в виде одного изделия

    Принцип работы

    Диодный мост представляет собой электрическую схему из четырёх диодов. Схема построена таким образом, что в каждый полупериод переменного тока соответствующая полуволна проходит по одному плечу моста, в другой полупериод другая полуволна проходит по другому плечу. Но в точках моста, где диоды соединены одинаковой полярностью, знак тока всегда один и тот же.

    Основные характеристики

    И отдельные диоды, и промышленные диодные сборки описываются стандартным набором технических характеристик:

    • это напряжение обратной полярности, которое можно, не опасаясь пробоя, приложить к устройству;
    • величина тока обратной полярности, который безопасно можно пропустить по устройству;
    • длительность протекания тока по устройству без его перегрева;
    • максимальная температура устройства, при которой оно сохраняет свою работоспособность;
    • максимальная допустимая частота проходящего тока.
    ФОТО: go-radio.ruВариант изображения моста на принципиальной электрической схемеФОТО: go-radio.ruСборка «Диодный мост» на печатной плате

    Схема диодного моста

    И самодельный мост, и промышленная диодная сборка изготавливаются по одной и той же схеме. Два диода последовательно спаиваются разноимёнными полюсами. Потом две пары спаивают одноимёнными полюсами на концах этих пар. К точкам соединения разноимённых полюсов подключается источник переменного напряжения, к точкам соединения одноимённых полюсов подключают нагрузку.

    Диодные мосты применяются для выпрямления однофазного и трёхфазного тока.

    Однофазный выпрямитель

    Этот выпрямитель применяется в бытовой электронной технике чаще всего, так как бытовая электросеть однофазная. Как правило, пульсации выпрямленного тока с частотой 100 Гц не годятся для нормальной работы аппаратуры, появится неприятный звуковой фон – гудение. После выпрямителя следует ставить качественный сглаживающий фильтр из катушки индуктивности (последовательно) и конденсатора достаточной ёмкости (параллельно выходу выпрямителя).

    ФОТО: electroinfo.netСхема однофазного моста

    Трёхфазный выпрямитель

    Трёхфазные выпрямители на выходе дают меньшую частоту пульсаций, чем однофазные. Понижаются требования к сглаживающим фильтрам.

    Схемы выпрямителей для трёхфазных цепей бывают однотактные и двухтактные. В однотактной схеме к каждой обмотке трёхфазного трансформатора подключается минус диода. Свободные концы каждой из трёх катушек соединяются в общую точку.  Плюсы диодов тоже соединяются в одну точку. Нагрузка подключается между этими двумя общими точками.

    ФОТО: electricalschool.infoПринципиальная схема однотактного трёхфазного моста-выпрямителя

    Если требуется выходное напряжение более высокого значения, а пульсации поменьше, то собирается двухтактна схема. Собираются три пары диодов, в каждой паре плюсовой вывод одного подключается к минусу другого.  Плюсовые выводы трёх пар тоже собираются в одну точку, так же объединяются минусы диодов, а общие точки в каждой паре диодов подключаются к свободным концам трёх обмоток вторичной обмотки трансформатора. Нагрузка подключается между общим минусом и плюсом сборки. В такой схеме выходное напряжение несколько выше, а пульсации намного меньше. Иногда можно обойтись без сглаживающего фильтра. Такая схема имеет название «Мостовой трёхфазный выпрямитель Ларионова».

    ФОТО: electricalschool.infoПринципиальная схема двухтактного трёхфазного моста-выпрямителяФОТО: electricalschool.infoСборка «Трёхфазный диодный мост»

    Где применяется схема диодного моста

    Кстати, автомобильный генератор тоже выдаёт переменный ток, а всё электрооборудование автомобиля работает на постоянном токе. После генератора установлен мощный диодный выпрямитель. Мостовая схема диодного выпрямителя широко применяется в бытовой радиоаппаратуре – радиоприёмниках, телевизорах, всевозможных магнитофонах и проигрывателях. Диодные мосты ставят и в трансформаторных, и в импульсных блоках питания.

    Как сделать диодный мост своими руками

    При необходимости и при наличии нужных диодов и паяльника нетрудно собрать диодный мост своими руками.

    Что нужно для работы

    Для работы нужно подготовить рабочее место с розеткой для паяльника, паяльник с подставкой, припой, канифоль, пинцет, маленькие кусачки. Конечно, нужны диоды с нужными характеристиками. При большом желании мост можно собрать на печатной плате с готовыми дорожками.

    Инструкция по изготовлению

    ИллюстрацияОписание действия

    ФОТО: youtube.com

    Подготовка рабочего места

    ФОТО: youtube.com

    Пайка схемы

    ФОТО: youtube.com

    Приборная проверка собранной схемы

    ФОТО: youtube.com

    Проверка схемы под нагрузкой с конденсатором фильтра

    Проверка на работоспособность

    Первая проверка всегда визуальная. Проверяется, те ли детали установлены, правильно ли собрана схема, качество пайки. Затем собирается проверочная схема с источником и измерительным прибором. И если этот этап прошёл успешно, то можно подключить нагрузку и провести окончательную проверку результатов своей работы.

    Заключение

    Работа с электроникой – это очень интересное занятие. И когда результат собственной деятельности начинает успешно функционировать, человек испытывает огромное удовлетворение.

    Предыдущая

    ОсвещениеПодключение светодиодной ленты: как правильно выполнить, нюансы монтажа

    Следующая

    ОсвещениеСекреты многоуровневого освещения помещений

    Понравилась статья? Сохраните, чтобы не потерять!

    ТОЖЕ ИНТЕРЕСНО:

    ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

    Для чего нужен диодный мост, схема, принцип работы.

    Как мы знаем, в наших розетках протекает переменный электрический ток с напряжением в 220 вольт. Но как быть если нам нужно запитать низковольтный приемник, которому требуется постоянный ток? Если с напряжением все понятно – нам поможет трансформатор, то как сделать из переменного тока постоянный – вопрос.

    В этой ситуации нам на помощь приходит такое устройство как выпрямитель.Это устройство содержится почти во всех электронных приборах, которые работает на постоянном токе, от сварочных полуавтоматов, до блоков питания. В статье мы рассмотрим классическую схему выпрямителя из четырех диодов, которая именуется выпрямительным диодным мостом.

     

    Для чего нужен диодный мост

    Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

    Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

    Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

    Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

    При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

    • Обратное напряжение диодов;
    • Обратный ток диодов;
    • Длительно допустимый ток;
    • Максимальная рабочая температура;
    • Рабочая частота (актуально для высокочастотных приборов).

    Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

    Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

    Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

    Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

    В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

    Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

    Схема диодного моста

    Как мы выяснили выше, схема диодного моста состоит из четырех полупроводниковых диодов, соединенных по схеме Гретца. Такая схема еще называется двухполупериодным выпрямителем.

    На принципиальных схемах диодный мост может обозначаться по-разному, либо как схема из четырех диодов, либо как один большой диод в ромбике. Суть его от этого не меняется, вот несколько примеров:

    А вот так обозначается выпрямитель со сглаживающим конденсатором:

    Как работает диодный мост

    Принцип работы диодного моста достаточно прост. Переменный ток имеет две полуволны: положительную отрицательную. Каждое плечо (2 диода) выпрямляют свою полуволну, в то время как второе плечо блокирует протекание тока в другом направлении. В результате выпрямляется два полупериода, а на выводах всегда неизменная полярность.

    Подключить диодный мост не составит труда, ведь это схематично показано на всех УГО (это и есть схема подключения) этого устройства. В случае с подключением диодной сборки, ее выводы обозначены соответственными обозначениями.

    Собрать диодный мост самостоятельно тоже проще простого. Если вы уже подобрали диоды, то достаточно припаять их концы соответственно схеме. Но перед этим не поленитесь проверить диоды на исправность и не перепутайте их полярность.

    Обычно катод и анод указаны на корпусе диодов.

    Если остались вопросы, то рекомендуем к просмотру видео, чтобы найти ответы на оставшиеся вопросы.

    Вывод

    В статье мы рассмотрели такое классическое электронное устройство как диодный мост. Изучили его схему и разобрались в принципе работы. Я, как автор этой статьи, надеюсь, что она будет понятна даже чайнику и эти знания помогут вам в освоении радиоэлектроники.

    Следующая

    РадиодеталиВаристоры – что это такое, принцип действия, характеристики и параметры.

    Что такое мостовые диоды? | Полупроводник

    Мостовой диод - это диодный модуль, который формирует мостовое соединение от 4 до 6 диодов в одном корпусе, и он используется для выпрямления переменного тока в постоянный или пульсирующий ток.

    Для однофазного переменного тока

    Для трехфазного переменного тока

    Как использовать мостовые диоды… Двухполупериодное выпрямление


    • Входное напряжение: AC
    • Выходное напряжение: пульсирующее / постоянное

    Мостовой диод инвертирует сторону отрицательного напряжения для входа переменного тока и выдает пульсирующий ток.
    Выходная сторона сглажена конденсатором, который позволяет выводить постоянное напряжение.
    Существует множество мостовых диодов, предназначенных для выпрямления промышленных частот 50/60 Гц, и обычные выпрямительные диоды могут использоваться в качестве типа диода.
    Когда эти диоды используются для выпрямления высоких частот, например, вторичного выпрямления на импульсных источниках питания, тогда в качестве мостовых диодов используются диоды с быстрым восстановлением или диоды с барьером Шоттки.

    Значение сертификации мостовых диодов UL

    Может быть прикреплен непосредственно к шасси (заземлению), не проходя через изоляционный лист

    Пример обозначения каталога
    • следующий "Что такое диоды TVS?"
    • Список товаров "Мостовые диоды"

    Диодный мост

    Диодный мост - это комбинация из четырех (или более) диодов в конфигурации мостовой схемы, которая обеспечивает одинаковую полярность вывода для любой полярности входа.

    В наиболее распространенном применении для преобразования входа переменного тока (AC) в выход постоянного тока (DC) он известен как мостовой выпрямитель. Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к снижению стоимости и веса по сравнению с выпрямителем с трехпроводным входом от трансформатора с вторичной обмоткой с центральным отводом.

    Существенной особенностью диодного моста является то, что полярность выхода одинакова независимо от полярности на входе.Схема диодного моста была изобретена польским электротехником Каролем Поллаком и запатентована 14 января 1896 года под номером DRP 96564. Позже она была опубликована в Elektronische Zeitung, vol. 25 в 1897 г. с пометкой, что немецкий физик Лео Грец в то время тоже занимался этим вопросом. Сегодня трассу по-прежнему часто называют трассой Гретца или мостом Гретца.

    Деталь диодного моста на 1000 вольт, 4 ампера

    Ручной диодный мост.Широкая серебряная полоса на диодах указывает на катодную сторону диода.

    Базовая операция

    Согласно общепринятой модели протекания тока (первоначально созданной Бенджамином Франклином и до сих пор используемой большинством инженеров), ток определяется как положительный, когда он течет через электрические проводники от положительного полюса к отрицательному. На самом деле свободные электроны в проводнике почти всегда текут от отрицательного полюса к положительному.Однако в подавляющем большинстве приложений фактическое направление тока не имеет значения. Поэтому в нижеследующем обсуждении сохраняется традиционная модель.

    На схемах ниже, когда вход, подключенный к левому углу ромба, является положительным, а вход, подключенным к правому углу, является отрицательным, ток течет от верхней клеммы питания вправо по красному (положительному) пути к выход, и возвращается к нижней клемме питания по синему (отрицательному) пути.

    Когда вход, подключенный к левому углу, отрицательный, а вход, подключенный к правому углу, является положительным, ток течет от нижнего вывода питания вправо по красному (положительному) пути к выходу и возвращается к верхнему источнику питания. терминал через синий (отрицательный) путь.

    В каждом случае верхний правый выход остается положительным, а нижний правый выход - отрицательным.Поскольку это верно независимо от того, является ли вход переменным или постоянным током, эта схема не только выдает выход постоянного тока из входа переменного тока, но также может обеспечивать то, что иногда называют «защитой от обратной полярности». То есть, он обеспечивает нормальное функционирование оборудования с питанием от постоянного тока, когда батареи установлены в обратном направлении или когда провода (провода) от источника постоянного тока перевернуты, и защищает оборудование от возможных повреждений, вызванных обратной полярностью.

    До появления интегральных схем мостовой выпрямитель строился из «дискретных компонентов», т.е.е., отдельные диоды. Примерно с 1950 года один четырехконтактный компонент, содержащий четыре диода, соединенных в мостовую конфигурацию, стал стандартным коммерческим компонентом и теперь доступен с различными номинальными значениями напряжения и тока.

    Сглаживание вывода

    Для многих приложений, особенно с однофазным переменным током, где двухполупериодный мост служит для преобразования входного переменного тока в выход постоянного тока, может потребоваться добавление конденсатора, поскольку мост сам по себе обеспечивает выход импульсного постоянного тока (см. Диаграмму ниже). .

    Переменный ток, полуволновые и двухполупериодные выпрямленные сигналы.

    Функция этого конденсатора, известного как накопительный конденсатор (или сглаживающий конденсатор), заключается в уменьшении вариации (или «сглаживании») формы волны выпрямленного выходного напряжения переменного тока от моста. Есть еще одна вариация, известная как рябь. Одно из объяснений «сглаживания» заключается в том, что конденсатор обеспечивает путь с низким импедансом к компоненту переменного тока на выходе, уменьшая напряжение переменного тока и ток через резистивную нагрузку.Говоря менее техническим языком, любое падение выходного напряжения и тока моста обычно компенсируется потерей заряда в конденсаторе. Этот заряд протекает через нагрузку как дополнительный ток. Таким образом, изменение тока нагрузки и напряжения уменьшается по сравнению с тем, что произошло бы без конденсатора. Повышение напряжения соответственно сохраняет избыточный заряд в конденсаторе, таким образом смягчая изменение выходного напряжения / тока.

    Показанная упрощенная схема имеет заслуженную репутацию опасной, потому что в некоторых приложениях конденсатор может сохранять смертельный заряд после отключения источника переменного тока.При подаче опасного напряжения практическая схема должна включать надежный способ безопасной разрядки конденсатора. Если нормальная нагрузка не может гарантировать выполнение этой функции, возможно, потому, что она может быть отключена, в схему следует включить спускной резистор, подключенный как можно ближе к конденсатору. Этот резистор должен потреблять ток, достаточно большой, чтобы разрядить конденсатор за разумное время, но достаточно мал, чтобы свести к минимуму ненужные потери энергии.

    Конденсатор и сопротивление нагрузки имеют типичную постоянную времени τ = RC, где C и R - емкость и сопротивление нагрузки соответственно.Пока резистор нагрузки достаточно большой, так что эта постоянная времени намного больше, чем время одного цикла пульсации, вышеуказанная конфигурация будет создавать сглаженное напряжение постоянного тока на нагрузке.

    Когда конденсатор подключен непосредственно к мосту, как показано, ток протекает только в небольшой части каждого цикла, что может быть нежелательно. Диоды трансформатора и моста должны иметь такие размеры, чтобы выдерживать скачок тока, который возникает, когда питание включается на пике переменного напряжения и конденсатор полностью разряжен.Иногда для ограничения этого тока перед конденсатором включается небольшой последовательный резистор, хотя в большинстве случаев сопротивления трансформатора источника питания уже достаточно. Добавление резистора или, еще лучше, катушки индуктивности между мостом и конденсатором может гарантировать, что ток будет протекать в течение большей части каждого цикла и не произойдет большого выброса тока.

    За конденсатором могут быть установлены дополнительные фильтрующие элементы (конденсаторы плюс резисторы и катушки индуктивности) для дальнейшего уменьшения пульсаций.Когда индуктор используется таким образом, его часто называют дросселем. Дроссель имеет тенденцию поддерживать более постоянным ток (а не напряжение). Хотя катушка индуктивности дает наилучшие характеристики, обычно резистор выбирается из соображений стоимости.

    Из-за увеличения доступности микросхем регуляторов напряжения пассивные фильтры используются реже. Микросхемы могут компенсировать изменения входного напряжения и тока нагрузки, чего не делает пассивный фильтр, и в значительной степени устранять пульсации.

    Идеализированные формы сигналов, показанные выше, видны как для напряжения, так и для тока, когда нагрузка на мост является резистивной. Когда в нагрузку входит сглаживающий конденсатор, формы волны как напряжения, так и тока сильно изменяются. В то время как напряжение сглаживается, как описано выше, ток будет течь через мост только в то время, когда входное напряжение больше, чем напряжение конденсатора. Например, если нагрузка потребляет средний ток n Ампер, а диоды проводят в течение 10% времени, средний ток диода во время проводимости должен составлять 10 нАмпер.Этот несинусоидальный ток приводит к гармоническим искажениям и низкому коэффициенту мощности в сети переменного тока.

    Некоторые ранние консольные радиоприемники создавали постоянное поле громкоговорителя с помощью тока от источника высокого напряжения («B +»), который затем направлялся к потребляющим цепям (постоянные магниты тогда были слишком слабыми для хорошей работы), чтобы создать постоянную громкоговорителя магнитное поле. Катушка возбуждения динамика, таким образом, выполняла 2 работы в одном: она действовала как дроссель, фильтруя источник питания, и создавала магнитное поле для управления динамиком.

    Мосты полифазные диодные

    Диодный мост можно использовать для выпрямления многофазных входов переменного тока. Например, для трехфазного входа переменного тока однополупериодный выпрямитель состоит из трех диодов, а двухполупериодный мостовой выпрямитель состоит из шести диодов.

    Полупериодный выпрямитель

    можно рассматривать как соединение звездой (соединение звездой), потому что он возвращает ток через центральный (нейтральный) провод. Двухполупериодное соединение больше похоже на соединение треугольником, хотя оно может быть подключено к трехфазному источнику по схеме звезды или треугольника, и при этом не используется центральный (нейтральный) провод.

    Трехфазный двухполупериодный мостовой выпрямитель

    Трехфазный мостовой выпрямитель для ветряной турбины

    Трехфазный входной сигнал переменного тока (вверху), полуволновой выпрямленный сигнал (в центре) и двухполупериодный выпрямленный сигнал (внизу)

    Источник: en.wikipedia.org

    Принципиальная схема

    , типы, работа и применение

    Схема выпрямителя используется для преобразования переменного (переменного тока) в постоянный (постоянный ток).Выпрямители в основном делятся на три типа: полуволновые, двухполупериодные и мостовые выпрямители. Основная функция всех этих выпрямителей такая же, как преобразование тока, но они неэффективно преобразовывают ток из переменного в постоянный. Двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразуют. Схема мостового выпрямителя - обычная часть электронных источников питания. Многие электронные схемы требуют выпрямленного источника питания постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока.Мы можем найти этот выпрямитель в большом количестве электронных устройств питания переменного тока, таких как бытовая техника, контроллеры двигателей, процесс модуляции, сварочные аппараты и т. Д. В этой статье обсуждается обзор мостового выпрямителя и его работы.


    Что такое мостовой выпрямитель?

    Мостовой выпрямитель - это преобразователь переменного тока в постоянный ток, который выпрямляет входной переменный ток сети в выход постоянного тока. Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронных компонентов или устройств.Они могут быть сконструированы с четырьмя или более диодами или любыми другими управляемыми твердотельными переключателями.

    Мостовой выпрямитель

    В зависимости от требований к току нагрузки выбирается соответствующий мостовой выпрямитель. Номинальные характеристики и характеристики компонентов, напряжение пробоя, диапазоны температур, номинальный переходный ток, номинальный прямой ток, требования к установке и другие соображения принимаются во внимание при выборе источника питания выпрямителя для соответствующей области применения электронной схемы.


    Конструкция

    Конструкция мостового выпрямителя показана ниже. Эта схема может быть спроектирована с четырьмя диодами, а именно D1, D2, D3 и D4, а также с нагрузочным резистором (RL). Подключение этих диодов может быть выполнено по схеме с обратной связью для эффективного преобразования переменного (переменного тока) в постоянный (постоянный ток). Основное преимущество такой конструкции - отсутствие эксклюзивного трансформатора с центральным отводом. Таким образом, размер, как и стоимость, уменьшится.

    Как только входной сигнал подается на два терминала, такие как A и B, сигнал постоянного тока может быть получен через RL.Здесь нагрузочный резистор подключен между двумя выводами, такими как C и D. Расположение двух диодов может быть выполнено таким образом, что электричество будет проводиться двумя диодами в течение каждого полупериода. Пары диодов, такие как D1 и D3, будут проводить электрический ток в течение положительного полупериода. Точно так же диоды D2 и D4 будут проводить электрический ток в течение отрицательного полупериода.

    Схема мостового выпрямителя

    Основным преимуществом мостового выпрямителя является то, что он выдает почти вдвое большее выходное напряжение, чем в случае двухполупериодного выпрямителя с трансформатором с центральным отводом.Но этой схеме не нужен трансформатор с центральным отводом, поэтому она напоминает недорогой выпрямитель.

    Схема мостового выпрямителя состоит из различных каскадов устройств, таких как трансформатор, диодный мост, фильтрация и регуляторы. Как правило, комбинация всех этих блоков называется регулируемым источником постоянного тока, питающим различные электронные устройства.

    Первым каскадом схемы является трансформатор понижающего типа, который изменяет амплитуду входного напряжения.В большинстве электронных проектов используется трансформатор 230/12 В для понижения напряжения сети переменного тока с 230 В до 12 В переменного тока. Схема мостового выпрямителя

    Следующим этапом является диодно-мостовой выпрямитель, в котором используются четыре или более диодов в зависимости от типа мостового выпрямителя. При выборе конкретного диода или любого другого переключающего устройства для соответствующего выпрямителя необходимо учитывать некоторые особенности устройства, такие как пиковое обратное напряжение (PIV), прямой ток If, номинальное напряжение и т. Д. Оно отвечает за создание однонаправленного или постоянного тока на нагрузке путем проведения набор диодов для каждого полупериода входного сигнала.

    Так как выход после диодных мостовых выпрямителей имеет пульсирующий характер, и для его создания как чистого постоянного тока необходима фильтрация. Фильтрация обычно выполняется с одним или несколькими конденсаторами, подключенными к нагрузке, как вы можете видеть на рисунке ниже, где выполняется сглаживание волны. Этот номинал конденсатора также зависит от выходного напряжения.

    Последней ступенью этого стабилизированного источника постоянного тока является регулятор напряжения, который поддерживает выходное напряжение на постоянном уровне.Предположим, микроконтроллер работает при 5 В постоянного тока, но выход после мостового выпрямителя составляет около 16 В, поэтому для снижения этого напряжения и поддержания постоянного уровня - независимо от изменений напряжения на входе - необходим регулятор напряжения.

    Работа мостового выпрямителя

    Как уже говорилось выше, однофазный мостовой выпрямитель состоит из четырех диодов, и эта конфигурация подключается к нагрузке. Чтобы понять принцип работы мостового выпрямителя, мы должны рассмотреть приведенную ниже схему в демонстрационных целях.

    Во время положительного полупериода входных диодов переменного тока D1 и D2 смещены в прямом направлении, а D3 и D4 - в обратном. Когда напряжение, превышающее пороговое значение диодов D1 и D2, начинает проводиться - через него начинает течь ток нагрузки, как показано на пути красной линии на диаграмме ниже.

    Работа схемы

    Во время отрицательного полупериода входного сигнала переменного тока диоды D3 и D4 смещены в прямом направлении, а D1 и D2 - в обратном направлении. Ток нагрузки начинает течь через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.

    Мы можем заметить, что в обоих случаях направление тока нагрузки одинаково, то есть вверх-вниз, как показано на рисунке - так однонаправлено, что означает постоянный ток. Таким образом, с помощью мостового выпрямителя входной переменный ток преобразуется в постоянный. Выходной сигнал на нагрузке с этим мостовым выпрямителем имеет пульсирующий характер, но для получения чистого постоянного тока требуется дополнительный фильтр, такой как конденсатор. Такая же операция применима для разных мостовых выпрямителей, но в случае управляемых выпрямителей срабатывание тиристоров необходимо для подачи тока на нагрузку.

    Типы мостовых выпрямителей

    Двухфазные выпрямители подразделяются на несколько типов в зависимости от следующих факторов: тип источника питания, возможности управления, конфигурация промежуточных цепей и т. Д. Мостовые выпрямители в основном делятся на однофазные и трехфазные. Оба эти типа далее подразделяются на неуправляемые, полууправляемые и полностью управляемые выпрямители. Некоторые из этих типов выпрямителей описаны ниже.

    Однофазные и трехфазные выпрямители

    Характер питания, т.е.То есть однофазное или трехфазное питание решает эти выпрямители. Однофазный мостовой выпрямитель состоит из четырех диодов для преобразования переменного тока в постоянный, тогда как трехфазный выпрямитель использует шесть диодов, как показано на рисунке. Это могут быть неуправляемые или управляемые выпрямители, в зависимости от компонентов схемы, таких как диоды, тиристоры и т. Д. Однофазные и трехфазные выпрямители

    Неуправляемые мостовые выпрямители

    В этом мостовом выпрямителе используются диоды для выпрямления входа, как показано на рисунке.Поскольку диод - это однонаправленное устройство, которое позволяет току течь только в одном направлении. Такая конфигурация диодов в выпрямителе не позволяет мощности изменяться в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя используется в постоянных или фиксированных источниках питания.

    Неуправляемые мостовые выпрямители

    Управляемые мостовые выпрямители

    В этом типе выпрямителя, преобразователя переменного / постоянного тока или выпрямителя - вместо неуправляемых диодов используются управляемые твердотельные устройства, такие как SCR, MOSFET, IGBT и т. Д.используются для изменения выходной мощности при разных напряжениях. Посредством срабатывания этих устройств в различные моменты времени выходная мощность на нагрузке изменяется соответствующим образом.

    Управляемый мостовой выпрямитель

    Мостовой выпрямитель IC

    Мостовой выпрямитель, такой как конфигурация выводов IC RB-156, обсуждается ниже.

    Контакт-1 (фаза / линия): Это входной контакт переменного тока, где можно подключить фазный провод от источника переменного тока к этому фазовому контакту.

    Контакт-2 (нейтраль): Это контакт входа переменного тока, на котором можно подключить нейтральный провод от источника переменного тока к этому нейтральному контакту.

    Контакт 3 (положительный): Это выходной контакт постоянного тока, где положительное напряжение постоянного тока выпрямителя получается с этого положительного контакта.

    Контакт 4 (отрицательный / заземляющий): Это выходной контакт постоянного тока где напряжение заземления выпрямителя получается с этого отрицательного вывода.

    Технические характеристики

    Подкатегории этого мостового выпрямителя RB-15 варьируются от RB15 до RB158. Из этих выпрямителей наиболее часто используется RB156.Технические характеристики мостового выпрямителя РБ-156 включают следующее.

    • Выходной постоянный ток составляет 1,5 А
    • Максимальное пиковое обратное напряжение составляет 800 В
    • Выходное напряжение: (√2 × VRMS) - 2 В
    • Максимальное входное напряжение составляет 560 В
    • Падение напряжения для каждого моста составляет 1V @ 1A
    • Импульсный ток составляет 50A

    RB-156 - наиболее часто используемый компактный, недорогой однофазный мостовой выпрямитель. Эта ИС имеет самое высокое напряжение переменного тока i / p, например 560 В, поэтому ее можно использовать для однофазной сети питания во всех странах.Максимальный постоянный ток этого выпрямителя - 1,5 А. Эта микросхема - лучший выбор в проектах для преобразования переменного тока в постоянный и обеспечивает до 1,5 А.

    Характеристики мостового выпрямителя

    Характеристики мостового выпрямителя включают следующие:

    • Коэффициент пульсаций
    • Пиковое обратное напряжение (PIV)
    • Эффективность
    Коэффициент пульсаций

    Измерение плавности выходного сигнала постоянного тока с использованием коэффициента: называется фактором пульсации.Здесь плавный сигнал постоянного тока можно рассматривать как сигнал постоянного тока o / p, включающий небольшое количество пульсаций, тогда как сигнал постоянного тока с высокой пульсацией можно рассматривать как сигнал постоянного тока с высокой частотой, включающий высокие пульсации. Математически его можно определить как долю пульсационного напряжения и чистого постоянного напряжения.

    Для мостового выпрямителя коэффициент пульсаций может быть задан как

    Γ = √ (Vrms2 / VDC) -1

    Значение коэффициента пульсаций мостового выпрямителя составляет 0,48

    PIV (пиковое обратное напряжение)

    Пиковое обратное напряжение или PIV может быть определено как максимальное значение напряжения, которое исходит от диода, когда он подключен в состоянии обратного смещения в течение отрицательного полупериода.Мостовая схема включает четыре диода типа D1, D2, D3 и D4.

    В положительном полупериоде два диода, такие как D1 и D3, находятся в проводящем положении, тогда как оба диода D2 и D4 находятся в непроводящем положении. Аналогично, в отрицательном полупериоде диоды, подобные D2 и D4, находятся в проводящем положении, тогда как диоды, подобные D1 и D3, находятся в непроводящем положении.

    КПД

    КПД выпрямителя в основном определяет, насколько правильно выпрямитель преобразует переменный ток (переменный ток) в постоянный (постоянный ток).КПД выпрямителя можно определить как; это соотношение мощности постоянного тока и мощности переменного тока. Максимальный КПД мостового выпрямителя составляет 81,2%.

    η = DC o / p Power / AC i / p Power

    Форма волны мостового выпрямителя

    Из принципиальной схемы мостового выпрямителя мы можем сделать вывод, что ток через нагрузочный резистор одинаков на всем положительном и отрицательном полюсах. отрицательные полупериоды. Полярность сигнала постоянного тока o / p может быть либо полностью положительной, либо отрицательной.В данном случае это абсолютно положительно. Когда направление диода меняется на противоположное, может быть достигнуто полное отрицательное напряжение постоянного тока.

    Таким образом, этот выпрямитель позволяет протекать току в течение как положительных, так и отрицательных циклов сигнала переменного тока i / p. Формы выходных сигналов мостового выпрямителя показаны ниже.

    Почему он называется мостовым выпрямителем?

    По сравнению с другими выпрямителями, это наиболее эффективный тип выпрямительной схемы. Это тип двухполупериодного выпрямителя, как следует из названия, в этом выпрямителе используются четыре диода, которые соединены в виде моста.Поэтому такой выпрямитель называется мостовым выпрямителем.

    Почему мы используем 4 диода в мостовом выпрямителе?

    В мостовом выпрямителе четыре диода используются для создания схемы, которая обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным отводом. Этот выпрямитель в основном используется для обеспечения двухполупериодного выпрямления в большинстве приложений.

    Расположение четырех диодов может быть выполнено в замкнутом контуре для эффективного преобразования переменного тока в постоянный. Основным преимуществом такой схемы является отсутствие трансформатора с центральным отводом, поэтому размер и стоимость будут уменьшены.

    Преимущества

    К преимуществам мостового выпрямителя можно отнести следующее.

    • Эффективность выпрямления двухполупериодного выпрямителя вдвое выше, чем у полуволнового выпрямителя.
    • Более высокое выходное напряжение, более высокая выходная мощность и более высокий коэффициент использования трансформатора в случае двухполупериодного выпрямителя.
    • Пульсации напряжения низкие и более высокие частоты, в случае двухполупериодного выпрямителя требуется простая схема фильтрации
    • Во вторичной обмотке трансформатора не требуется центральный отвод, поэтому в случае мостового выпрямителя требуется более простой трансформатор .Если повышение или понижение напряжения не требуется, можно даже отказаться от трансформатора.
    • Для заданной выходной мощности в случае мостового выпрямителя можно использовать силовой трансформатор меньшего размера, поскольку ток как в первичной, так и во вторичной обмотке трансформатора питания течет в течение всего цикла переменного тока.
    • Эффективность выпрямления вдвое выше по сравнению с однополупериодным выпрямителем
    • Использует простые схемы фильтрации для высокой частоты и низкого напряжения пульсаций
    • TUF выше по сравнению с выпрямителем с центральным отводом
    • Трансформатор с центральным ответвлением не требуется

    Недостатки

    К недостаткам мостового выпрямителя можно отнести следующее.

    • Требуется четыре диода.
    • Использование двух дополнительных диодов вызывает дополнительное падение напряжения, что снижает выходное напряжение.
    • Для этого выпрямителя требуется четыре диода, поэтому стоимость выпрямителя будет высокой.
    • Схема не подходит, если необходимо выпрямить небольшое напряжение, потому что соединение двух диодов может быть выполнено последовательно и обеспечивает двойное падение напряжения из-за их внутреннего сопротивления.
    • Эти схемы очень сложные.
    • По сравнению с выпрямителем с центральным отводом, мостовой выпрямитель имеет большие потери мощности.

    Приложение - преобразование переменного тока в постоянный с помощью мостового выпрямителя

    Регулируемый источник постоянного тока часто требуется для многих электронных приложений. Один из самых надежных и удобных способов - преобразовать имеющийся источник питания переменного тока в источник постоянного тока. Это преобразование сигнала переменного тока в сигнал постоянного тока выполняется с помощью выпрямителя, который представляет собой систему диодов. Это может быть однополупериодный выпрямитель, который выпрямляет только половину сигнала переменного тока, или двухполупериодный выпрямитель, выпрямляющий оба цикла сигнала переменного тока.Двухполупериодный выпрямитель может быть выпрямителем с центральным отводом, состоящим из двух диодов, или мостовым выпрямителем, состоящим из 4 диодов.

    Здесь демонстрируется мостовой выпрямитель. Устройство состоит из 4 диодов, расположенных таким образом, что аноды двух соседних диодов соединены для обеспечения положительного питания на выходе, а катоды двух других соседних диодов подключены для подачи отрицательного питания на выход. Анод и катод двух других соседних диодов подключены к плюсу источника переменного тока, тогда как анод и катод двух других соседних диодов подключены к минусу источника переменного тока.Таким образом, 4 диода расположены в виде моста, так что в каждом полупериоде два чередующихся диода проводят ток, создавая постоянное напряжение с отталкиванием.

    Данная схема состоит из мостового выпрямителя, чей нерегулируемый выход постоянного тока подается на электролитный конденсатор через токоограничивающий резистор. Напряжение на конденсаторе контролируется с помощью вольтметра и продолжает увеличиваться по мере заряда конденсатора, пока не будет достигнут предел напряжения. Когда нагрузка подключается к конденсатору, конденсатор разряжается, чтобы обеспечить необходимый входной ток для нагрузки.В этом случае в качестве нагрузки подключается лампа.

    A Регулируемый источник питания постоянного тока

    Регулируемый источник питания постоянного тока состоит из следующих компонентов:

    • Понижающий трансформатор для преобразования переменного тока высокого напряжения в переменный ток низкого напряжения.
    • Мостовой выпрямитель для преобразования переменного тока в пульсирующий постоянный ток.
    • Схема фильтра, состоящая из конденсатора для удаления пульсаций переменного тока.
    • Регулятор IC 7805 для получения регулируемого постоянного напряжения 5 В.

    Понижающий трансформатор преобразует сетевое питание переменного тока 230 В в 12 В переменного тока.Это 12 В переменного тока подается на схему мостового выпрямителя, так что чередующиеся диоды проводят в течение каждого полупериода, создавая пульсирующее напряжение постоянного тока, состоящее из пульсаций переменного тока. Конденсатор, подключенный к выходу, позволяет сигналу переменного тока проходить через него и блокирует сигнал постоянного тока, тем самым действуя как фильтр верхних частот. Таким образом, выходной сигнал через конденсатор представляет собой нерегулируемый фильтрованный сигнал постоянного тока. Этот выход может использоваться для управления электрическими компонентами, такими как реле, двигатели и т. Д. Регулятор IC 7805 подключен к выходу фильтра.Он дает постоянный регулируемый выход 5 В, который можно использовать для ввода многих электронных схем и устройств, таких как транзисторы, микроконтроллеры и т. Д. Здесь 5 В используется для смещения светодиода через резистор.

    Это все о теории мостовых выпрямителей, их типах, схемах и принципах работы. Мы надеемся, что этот полезный материал по этой теме будет полезен при разработке студентами электронных или электрических проектов, а также при наблюдении за различными электронными устройствами или приборами.Благодарим вас за внимание и сосредоточенность на этой статье. И поэтому, пожалуйста, напишите нам для выбора требуемых характеристик компонентов в этом мостовом выпрямителе для вашего приложения и для любых других технических рекомендаций.

    Теперь мы надеемся, что вы получили представление о концепции мостового выпрямителя и его применениях, если какие-либо дополнительные вопросы по этой теме или концепции электрических и электронных проектов оставляют комментарии в разделе ниже.

    Фото:

    Идеальный диодный мост | Analog Devices

    Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности.Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

    Принять и продолжить Принять и продолжить

    Файлы cookie, которые мы используем, можно разделить на следующие категории:

    Строго необходимые файлы cookie:
    Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
    Аналитические / рабочие файлы cookie:
    Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
    Функциональные файлы cookie:
    Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
    Файлы cookie для таргетинга / профилирования:
    Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
    Отклонить файлы cookie

    Схема мостового выпрямителя - Детали конструкции и советы »Электроника

    Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным ответвлением.


    Цепи диодного выпрямителя Включают:
    Цепи диодного выпрямителя Полуволновой выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


    Мостовой выпрямитель - это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения.

    Используя четыре диода в мостовом выпрямителе, схема имеет характерный формат, принципиальная схема которого основана на квадрате с одним диодом на каждой ножке.

    Благодаря своим характеристикам и возможностям, двухполупериодный мостовой выпрямитель используется во многих линейных источниках питания, импульсных источниках питания и других электронных схемах, где требуется выпрямление.

    Типовой мостовой выпрямитель для монтажа на печатной плате

    Цепи мостового выпрямителя

    Схема основной схемы мостового выпрямителя имеет блок мостового выпрямителя в центре.Он состоит из мостовой схемы с четырьмя диодами. Это могут быть отдельные диоды или мостовые выпрямители в виде единого электронного компонента.

    Двухполупериодный выпрямитель с использованием мостового выпрямителя

    Мостовой выпрямитель обеспечивает двухполупериодное выпрямление и имеет преимущество перед двухполупериодным выпрямителем, использующим два диода, в том, что в трансформаторе не требуется центральный отвод. Это означает, что для обеих половин цикла используется одна обмотка.

    Электронные компоненты

    с обмоткой дороги, а наличие центрального отвода означает, что для обеспечения двухполупериодного выпрямления необходимы две идентичные обмотки, каждая из которых обеспечивает полное напряжение.Это удваивает количество витков и увеличивает стоимость трансформатора. Это может быть особенно важно при разработке линейных источников питания или других электронных устройств.

    Чтобы увидеть, как работает двухполупериодный выпрямитель с мостовым диодом, полезно увидеть ток, протекающий в течение полного цикла входящей формы волны.

    Двухполупериодный мостовой выпрямитель, показывающий протекание тока

    В большинстве приложений источников питания, будь то линейные регуляторы напряжения или импульсные источники питания, выход мостового выпрямителя будет подключен к сглаживающему конденсатору как часть нагрузки.

    Эти электронные компоненты принимают заряд во время высоковольтных частей сигнала, а затем отдают заряд на нагрузку при падении напряжения. Таким образом, они обеспечивают более постоянное напряжение, чем прямой выход мостового выпрямителя. Это позволяет другим схемам, таким как линейные регуляторы напряжения и импульсные источники питания, работать правильно.

    Примечание по сглаживанию конденсатора источника питания:
    Конденсаторы

    используются во многих источниках питания как для линейных регуляторов напряжения, так и для импульсных источников питания, чтобы сгладить выпрямленную форму волны, которая в противном случае варьировалась бы от пикового напряжения формы волны до нуля.Сглаживая форму волны, можно запускать из нее электронные схемы.

    Подробнее о Конденсаторное сглаживание.

    Что касается мостового выпрямителя и его диодов, включение конденсатора означает, что ток, проходящий через диоды, будет иметь значительные пики по мере заряда конденсатора.

    Период, в течение которого конденсатор источника питания заряжается

    При выборе электронных компонентов для мостового выпрямителя необходимо убедиться, что они могут выдерживать пиковые уровни тока.

    Мостовые выпрямители

    Компоненты мостового выпрямителя могут быть разных форм. Их можно сделать с помощью дискретных диодов. Кольцо из четырех диодов можно легко изготовить как на бирке, так и в составе печатной платы. Необходимо обеспечить достаточную вентиляцию диодов, поскольку они могут рассеивать тепло под нагрузкой.

    Схема мостового выпрямителя и маркировка

    В качестве альтернативы мостовые выпрямители поставляются как отдельные электронные компоненты, содержащие четыре диода в едином блоке или корпусе.Четыре соединения выведены и отмечены «+», «-» и «~». Соединение «~» используется для подключения к переменному входу. Соединения + и - очевидны.

    Некоторые из этих мостовых выпрямителей предназначены для монтажа на печатной плате и могут иметь провода для монтажа в сквозные отверстия. Другие могут быть устройствами для поверхностного монтажа.

    Некоторые мостовые выпрямители заключены в корпуса большего размера и предназначены для установки на радиаторе. Поскольку эти выпрямители предназначены для пропускания значительных уровней тока, они могут рассеивать значительный уровень тепла в результате падения напряжения на диодах, а также внутреннего сопротивления объемного кремния, используемого для диодов.

    Рекомендации по проектированию схемы мостового выпрямителя

    При использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока необходимо учитывать несколько моментов:

    • Падения напряжения: Нельзя забывать, что ток, протекающий в мостовом выпрямителе, будет проходить через два диода. В результате выходное напряжение упадет на эту величину. Поскольку в большинстве мостовых выпрямителей используются кремниевые диоды, это падение будет минимум 1.2 вольта и будет увеличиваться с увеличением тока. Соответственно, максимальное выходное напряжение, которое может быть достигнуто, составляет минимум 1,2 В от пикового напряжения на входе переменного тока.
    • Рассчитайте количество тепла, рассеиваемого в выпрямителе: Напряжение на диодах будет падать минимум на 1,2 В (при использовании стандартного кремниевого диода), которое будет расти по мере увеличения тока. Это результат стандартного падения напряжения на диоде, а также сопротивления внутри диода.Обратите внимание, что ток проходит через два диода внутри моста в течение любого полупериода. Сначала один комплект из двух диодов, затем другой.

      Чтобы увидеть падение напряжения для предполагаемого уровня тока, стоит обратиться к паспорту диодов мостового выпрямителя или всего электронного компонента мостового выпрямителя.

      Падение напряжения и ток, протекающий через выпрямитель, вызывают нагрев, который необходимо отводить. В некоторых случаях его можно легко рассеять за счет воздушного охлаждения, но в других случаях мостовой выпрямитель может потребоваться прикрутить болтами к радиатору.Многие мостовые выпрямители для этой цели крепятся болтами к радиатору.

    • Пиковое обратное напряжение: Очень важно обеспечить, чтобы максимальное обратное напряжение мостового выпрямителя или отдельных диодов не превышалось, в противном случае диоды могут выйти из строя.

      Рейтинг PIV диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с центральным ответвлением трансформатора. Если пренебречь падением диода, мостовому выпрямителю требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом для того же выходного напряжения.Это может быть еще одним преимуществом использования данной конфигурации.

      Пиковое обратное напряжение на диодах равно пиковому вторичному напряжению V sec , потому что в течение одного полупериода диоды D1 и D4 являются проводящими, а диоды D2 и D3 имеют обратное смещение.

      Двухполупериодный мостовой выпрямитель, показывающий обратное пиковое напряжение

      Предполагая идеальные диоды, на которых нет падения напряжения - хорошее предположение для этого объяснения. Используя это, можно увидеть, что точки A и B будут иметь такой же потенциал, как и точки C и D.Это означает, что пиковое напряжение трансформатора появится на нагрузке. Такое же напряжение появляется на каждом непроводящем диоде.

    Мостовые выпрямители - идеальный способ обеспечить выпрямленный выход на переменном входе. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выход, что во многих случаях позволяет достичь лучшей производительности.

    Мостовой выпрямитель с разделенным питанием

    Для многих схем, таких как операционные усилители, могут потребоваться разделенные источники питания от линейного источника питания.Можно очень легко создать разделенное питание для этих и других приложений, используя двухполупериодный мостовой выпрямитель. Хотя он возвращается к использованию разделенного трансформатора, то есть с центральным отводом, может быть стоит получить импульсный или линейный источник питания с комбинацией как отрицательного, так и положительного источников питания с использованием мостового выпрямителя.

    Двухполупериодный мостовой выпрямитель с двойным питанием

    Схема работает эффективно и рационально, поскольку обе половины входной волны используются в каждой секции вторичной обмотки трансформатора.

    Мостовой выпрямитель с двойным питанием требует использования трансформатора с центральным ответвлением, но в любом случае часто требуется вторая обмотка для обеспечения двойного питания.

    Схема двухполупериодного выпрямителя на основе диодного моста работает хорошо и используется в большинстве приложений двухполупериодного выпрямителя. Он использует обе половины формы волны в обмотке трансформатора и, как результат, снижает тепловые потери для данного уровня выходного тока по сравнению с другими решениями.Кроме того, это решение не требует трансформатора с центральным ответвлением (за исключением версии с двумя источниками питания), и в результате снижаются затраты.

    Мостовой выпрямитель, вероятно, наиболее известен своим использованием в импульсных источниках питания и линейных источниках питания, но он также используется во многих других схемах.

    Другие схемы и схемотехника:
    Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
    Вернуться в меню «Конструкция схемы».. .

    Диодный мост - обзор

    5.3.1 Однофазный диодный мостовой выпрямитель на одной фазе DG-1

    Нагрузка выпрямительного диодного моста подключается к одной из фаз системы DG-1. Это создаст ситуацию нелинейности, а также дисбаланса в MG. Токи в соединительных линиях равны

    (5.7) ia (t) = μI1cos (ωt − ϕ1) + I3cos (3ωt − ϕ3) + I5cos (5ωt − ϕ5) + ⋯, ib (t) = I1sin (ωt − 2π / 3 − ϕ1), Ic (t) = I1sin (ωt + 2π / 3 − ϕ1).

    Где I 1 - пиковое значение тока основной гармоники, когда подключена только линейная сбалансированная нагрузка, а I 3 и I 5 - пиковые значения гармонических токов.Из-за нагрузки однофазного выпрямителя на фазе-а основная составляющая будет изменена, и о ней позаботятся с коэффициентом « µ ». Эти линейные токи преобразуются в стационарную систему отсчета с помощью (5.4). В сложной форме записи трехфазные токи могут быть представлены в виде комплексного вектора:

    (5.8) I = iα − jiβ.

    Обратите внимание, что компонент i γ не рассматривается, поскольку при анализе мгновенного потока мощности нет соответствующей составляющей v γ для напряжений на клеммах [23].Токи в неподвижной системе отсчета также могут быть представлены через векторы всех составляющих прямой и обратной последовательности основных и гармонических токов как

    (5.9) I = (Iqd1pejωt + Iqd1ne − jωt + Iqd3pej3ωt + Iqd3ne − j3ωt + Iqd5ωt + Ipeqd5 −j5ωt).

    Коэффициенты для всех компонентов последовательности, таких как Iqd1p, Iqd1n и т. Д., Являются векторами. В общем, они представлены как

    fqdk = fqk + jfdk,

    , где k обозначает k -ю гармоническую составляющую.Верхний индекс p и n предназначен для компонентов положительной и отрицательной последовательности соответственно. Используя (5.6) и (5.9), кажущийся поток мощности в линии рассчитывается как:

    (5.10) S = (Vqdpejω1t) (Iqd1pejω1t + Iqd1ne − jω1t + Iqd3pej3ω1t + Iqd3ne − j3ω1t + Iqd5 * j5q5 .

    Действительная часть (5.10) дает активную мощность, а мнимая часть дает реактивную мощность. Активную мощность можно компактно выразить как

    (5.11) P12 (t) = P0 + ∑k = 1,3,5 (Pcnkcos ((k + 1) ω1t) + Psnksin ((k + 1) ω1t)) + ∑k = 3,5 (Pcpkcos ((k − 1) ω1t) + Pspksin ((k − 1) ω1t)).

    Коэффициенты мощности Pcn1, Psn1, Qcn1, Qsn1 и т. Д. Определены в Приложении 5.1, Коэффициенты мощности. В (5.11) P 0 обусловлено основными составляющими прямой последовательности напряжений и токов. Его можно заменить выражением (5.12), которое обычно представляет собой поток мощности в условиях сбалансированной нагрузки.

    (5.12) P0 (t) = B12sinδ12, при B12 = 3V1V2ω0L12,

    , где В 1 и В 2 - напряжения на клеммах инвертора, ω 10 0 - номинальная частота L 12 - индуктивность линии между DG-1 и DG-2.Подставляя (5.12) в (5.11), P 12 можно записать как:

    (5.13) P12 (t) = B12sinδ12 + ∑k = 1,3,5 (Pcnkcos ((k + 1) ω1t) + Psnksin ((k + 1) ω1t)) + ∑k = 3,5 (Pcpkcos ((k − 1) ω1t) + Pspksin ((k − 1) ω1t)).

    Поток мощности в соединительной линии P 12 , таким образом, представляет собой комбинацию мощности, обусловленной напряжением прямой последовательности основной частоты и основной частотой, а также гармоническими и несимметричными токами.

    Аналогичное выражение получено для потока реактивной мощности в соединительных линиях, который задается как

    (5.14) Q12 (t) = Q0 + ∑k = 1,3,5 (Qcnkcos ((k + 1) ω1t) + Qsnksin ((k + 1) ω1t)) + ∑k = 3,5 (Qcpkcos ((k− 1) ω1t) + Qspksin ((k − 1) ω1t)).

    Мостовой выпрямитель - определение, изготовление и работа

    Раньше собираясь на мостовой выпрямитель, нам нужно знать, что на самом деле выпрямитель есть и зачем нужен выпрямитель. Так Сначала давайте посмотрим на эволюцию выпрямителей.

    Эволюция выпрямители

    Выпрямители находятся в основном подразделяется на три типа: полуволна выпрямитель, Центр двухполупериодный выпрямитель с отводом и мостовой выпрямитель.Все у этих трех выпрямителей есть общая цель - преобразовать Чередование Ток (переменный ток) в постоянный Ток (постоянный ток).

    Нет все эти три выпрямителя эффективно преобразуют Переменный ток (AC) в постоянный ток (DC), только двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).

    В однополупериодный выпрямитель, допускается только 1 полупериод и оставшаяся половина цикла заблокирована. В результате почти половина приложенная мощность тратится на полуволновой выпрямитель. В в дополнение к этому, выходной ток или напряжение производимый однополупериодным выпрямителем - это не чистый постоянный ток, а пульсирующий постоянный ток, который не очень полезен.

    В чтобы преодолеть эту проблему, ученые разработали новый тип выпрямителя, известный как двухполупериодный с отводом по центру выпрямитель.

    Основным преимуществом двухполупериодного выпрямителя с центральным ответвлением является то, что пропускает электрический ток как во время положительного, так и отрицательного полупериоды входного сигнала переменного тока.В результате DC выходная мощность двухполупериодного выпрямителя с отводом в два раза больше то из полуволнового выпрямителя. В дополнение к этому, DC выход двухполупериодного выпрямителя с центральным ответвлением содержит очень меньше ряби. В результате выход постоянного тока центра двухполупериодный выпрямитель с ответвлениями более плавный, чем полуволновой выпрямитель.

    Однако двухполупериодный выпрямитель с центральным ответвлением имеет один недостаток: трансформатор с центральным отводом, используемый в нем, очень дорого и занимает большую площадь.

    Кому сократить эти дополнительные расходы, ученые разработали новый тип выпрямитель, известный как мостовой выпрямитель. В мостовом выпрямителе, центральный кран не требуется. Если уйти или подняться напряжения не требуется, тогда даже трансформатор можно устраняется в мостовом выпрямителе.

    выпрямительный КПД мостового выпрямителя практически равен к центру двухполупериодного выпрямителя.Единственное преимущество мостового выпрямителя над двухполупериодным выпрямителем с отводом по центру это снижение стоимости.

    В мостовой выпрямитель, вместо использования центрального отвода трансформатор, используются четыре диода.

    Сейчас мы получаем представление о трех типах выпрямителей. Половина волновой выпрямитель и двухполупериодный выпрямитель с отводом по центру (двухполупериодный выпрямитель) уже обсуждались в предыдущем учебные пособия.В этом уроке основное внимание уделяется мосту. выпрямитель.

    Let’s взгляните на мостовой выпрямитель…!

    Мост выпрямитель определение

    А мостовой выпрямитель - это тип двухполупериодного выпрямителя, в котором используется четыре или более диодов в конфигурации мостовой схемы для эффективного преобразовать переменный ток (AC) в постоянный ток (ОКРУГ КОЛУМБИЯ).

    Мост выпрямитель строительный

    строительство Схема мостового выпрямителя показана на рисунке ниже. Мостовой выпрямитель состоит из четырех диодов. а именно D 1 , D 2 , D 3 , D 4 и нагрузочный резистор R L . Четыре диода подключены в конфигурации с замкнутым контуром (мостом) к эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).Главное достоинство этой мостовой схемы конфигурация такова, что нам не нужен дорогой центр трансформатор с ответвлениями, что снижает его стоимость и габариты.

    входной сигнал переменного тока подается на две клеммы A и B и выходной сигнал постоянного тока получается через нагрузочный резистор R L , который подключается между клеммами C и Д.

    четыре диода D 1 , D 2 , D 3 , D 4 расположены последовательно только с двумя диодами, что позволяет электрическому ток в течение каждого полупериода. Например, диоды D 1 и D 3 рассматриваются как одна пара, которая позволяет электрический ток в течение положительного полупериода, тогда как диоды D 2 и D 4 считаются другая пара, которая пропускает электрический ток во время отрицательный полупериод входного сигнала переменного тока.

    Как мост выпрямитель работает?

    Когда входной сигнал переменного тока подается на мостовой выпрямитель, во время положительного полупериода диоды D 1 и D 3 имеют прямое смещение и пропускают электрический ток, в то время как диоды D 2 и D 4 имеют обратное смещение и блокирует электрический ток.С другой стороны, во время отрицательные полупериодные диоды D 2 и D 4 имеют прямое смещение и пропускают электрический ток, а диоды D 1 и D 3 имеют обратное смещение и блокирует электрический ток.

    Во время положительный полупериод, клемма A становится положительной в то время как клемма B становится отрицательной.Это вызывает диоды D 1 и D 3 с прямым смещением и при при этом вызывает диоды D 2 и D 4 обратный смещенный.

    направление тока в течение положительного полупериода равно показано на рисунке A (то есть от A до D, от C до B).

    Во время отрицательный полупериод, клемма B становится положительной в то время как клемма A становится отрицательной.Это вызывает диоды D 2 и D 4 с прямым смещением и при при этом вызывает диоды D 1 и D 3 обратный смещенный.

    показано текущее направление потока во время отрицательного полупериода на рисунке B (то есть от B до D, от C до A).

    От на двух рисунках (A и B), мы можем заметить, что направление тока через резистор нагрузки R L то же самое в течение положительной половины цикла и отрицательной половины цикл.Следовательно, полярность выходного сигнала постоянного тока то же самое как для положительных, так и для отрицательных полупериодов. Выход Полярность сигнала постоянного тока может быть либо полностью положительной, либо отрицательный. В нашем случае это полностью положительно. Если направление диодов перевернут, то мы получаем полный отрицательный постоянный ток Напряжение.

    Таким образом, мостовой выпрямитель пропускает электрический ток во время обоих положительные и отрицательные полупериоды входного сигнала переменного тока.

    формы выходных сигналов мостового выпрямителя показаны на рисунок ниже.

    Характеристики из мостовой выпрямитель

    Пик обратный Напряжение (PIV)

    максимальное напряжение, которое диод может выдержать при обратном смещении состояние называется пиковым обратным напряжением (PIV)

    или

    максимальное напряжение, которое может выдержать непроводящий диод называется пиковым обратным напряжением (PIV).

    Во время положительный полупериод, диоды D 1 и D 3 находятся в проводящем состоянии, а диоды D 2 и D 4 находятся в непроводящем состоянии. На с другой стороны, во время отрицательного полупериода диоды D 2 и D 4 находятся в проводящем состоянии, в то время как диоды D 1 и D 3 находятся в непроводящее состояние.

    Пиковое обратное напряжение (PIV) для мостового выпрямителя дано по

    PIV = V Smax

    Коэффициент пульсации

    гладкость выходного сигнала постоянного тока измеряется с использованием известного коэффициента как фактор пульсации. Выходной сигнал постоянного тока с очень меньшим рябь рассматривается как плавный сигнал постоянного тока, в то время как выходной сигнал постоянного тока с высокой пульсацией считается высоким пульсирующий сигнал постоянного тока.

    Пульсация фактор математически определяется как отношение пульсации напряжения к чистое постоянное напряжение.

    коэффициент пульсаций для мостового выпрямителя равен

    .

    коэффициент пульсаций мостового выпрямителя составляет 0,48, что аналогично в качестве двухполупериодного выпрямителя с отводом по центру.

    Выпрямитель эффективность

    выпрямитель КПД определяет, насколько эффективно выпрямитель преобразует Переменный ток (AC) в постоянный ток (DC).

    Высокая выпрямитель КПД указывает на самый надежный выпрямитель, в то время как низкий КПД выпрямителя указывает на плохой выпрямитель.

    Выпрямитель эффективность определяется как отношение выходной мощности постоянного тока к мощности переменного тока. входная мощность.

    Максимальный выпрямительный КПД мостового выпрямителя - 81.2% который аналогичен двухполупериодному выпрямителю с отводом по центру.

    Преимущества выпрямителя моста

    Низкий пульсации в выходном сигнале постоянного тока

    Выходной сигнал постоянного тока мостового выпрямителя более плавный, чем однополупериодный выпрямитель. Другими словами, мост выпрямитель имеет меньше пульсаций по сравнению с полуволновым выпрямитель.Однако коэффициент пульсации моста Выпрямитель такой же, как двухполупериодный выпрямитель с отводом по центру.

    Высокая выпрямитель эффективность

    выпрямитель КПД мостового выпрямителя очень высок по сравнению с к однополупериодному выпрямителю. Однако выпрямитель КПД мостового выпрямителя и двухполупериодного отвода с центральным ответвлением выпрямитель такой же.

    Низкий потеря мощности

    В однополупериодный выпрямитель только на один полупериод входного переменного тока сигнал разрешен, а оставшийся полупериод ввода Сигнал переменного тока заблокирован. В результате почти половина приложенная входная мощность тратится впустую.

    Однако в мостовом выпрямителе допускается наличие электрического тока в течение как положительных, так и отрицательных полупериодов ввода Сигнал переменного тока.Таким образом, выходная мощность постоянного тока почти равна входная мощность переменного тока.

    Недостатки из мостовой выпрямитель

    Мост выпрямитель схема выглядит очень сложной

    В полуволновой выпрямитель, используется только один диод, тогда как в двухполупериодном выпрямителе с отводом по центру используются два диода. Но в мостовом выпрямителе мы используем четыре диода для схема работы.Так выглядит схема мостового выпрямителя более сложный, чем однополупериодный выпрямитель и с отводом по центру двухполупериодный выпрямитель.

    Подробнее потеря мощности по сравнению с полной волной с центральным ответвлением выпрямитель

    В электронный цепей, чем больше диодов мы используем, тем больше будет падение напряжения происходить. Потери мощности в мостовом выпрямителе почти равны двухполупериодный выпрямитель с отводом по центру.Однако в мосту выпрямитель, падение напряжения немного выше по сравнению с двухполупериодный выпрямитель с отводом по центру. Это связано с двумя дополнительные диоды (всего четыре диода).

    В двухполупериодный выпрямитель с центральным ответвлением, проводит только один диод в течение каждого полупериода. Значит падение напряжения в цепи составляет 0,7 вольт. Но в мостовом выпрямителе два диода, которые соединены последовательно в течение каждого полупериода.Так падение напряжения происходит из-за двух диодов, что равно 1,4 вольта (0,7 + 0,7 = 1,4 вольта). Однако потеря мощности из-за этого падение напряжения очень мало.

    "Это статья посвящена только мостовому выпрямителю. Если вы хотите читайте про мостовой выпрямитель с посещением фильтра: мостовой выпрямитель с фильтром «

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *