Диодный мост мощный: Товары оптом на Alibaba.com — мощные диодные мосты

Содержание

Как выглядит диодный мост на плате

Схема диодного моста

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.


Схема диодного моста

Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

В железе это выглядит следующим образом.


Диодный мост из отдельных диодов S1J37

Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

Как работает диодный мост?

Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

Обозначение диодного моста на схеме.

На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

Диодная сборка.

Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «

». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).

Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

В реальности сборка диодного моста может выглядеть вот так.


Диодная сборка KBL02 на печатной плате


Диодная сборка RS607 на плате компьютерного блока питания

А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.


Условное изображение диодного моста и диодной сборки

Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.

Где применяется схема диодного моста?

Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

Принцип работы диодного моста

Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.

Трехфазный диодный мост схема

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.

Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

8 thoughts on “ Диодный мост схема, принцип работы ”

Как будет выглядеть синусоида, при полключении двух фаз?

Вопрос на засыпку.
Подключение 3-х диодных мостов к трем фазам с общей нейтралью. То есть на каждом диодном мосту есть N и L1, N и L2, N и L3 по 220 вольт. На выходе с мостов делитель на 100 и конденсатор на общей минусовой земле.
Я считал что нет фазы и нет выходного напряжения с диодного моста, но это не так.
Так как работает однофазный мост установленный 3 раза на каждую фазу и объединенный общим минусом?

Надеюсь правильно представил себе эту схему… Если объединить минусы хотя бы 2-х диодных мостов, то получим межфазное короткое замыкание через диоды.

Если было там КЗ меж фаз, то диоды 1n4007 (1А, 1000 В) испарились бы в пыль. Значит КЗ там скорее всего нет.

Если бы было замыкание был бы бабах, а его не и все работает только криво.

сколько постоянки будет на выходе с моста при условии ровнячка 220 в на фазе?

Если не применять фильтры то после однофазного диодного моста не будет постоянного напряжения, будет однополярное. Если поставить конденсатор сглаживающий пульсации, то можно добиться напряжения : входное напряжение умножить на корень из 2, минус двойное падение на диодах (это около 2 В).
Если смотреть трехфазные схемы, то там и без фильтров пульсации меньше. Среднее выходное напряжение будет сильно зависеть от схемы включения.
Например для схемы треугольник-Ларионова среднее выходное составить 1,35 от действующего входного. А для звезды-Ларионова коэффициент равен 2,34.

Давайте немного уточним терминологию — тогда после реального конденсатора тоже не будет постоянного напряжения. Во всех случаях (даже после однофазного диодного моста) будет постоянная составляющая и переменная. При этом постоянная составляющая будет в первом случае, вроде, равна половине действующего напряжения минус падение на диоде (в количественной оценке могу ошибаться, лень считать)». А переменная во втором случае будет значительно меньше: тем меньше, чем больше приближение реального конденсатора к идеальному бесконечной емкости (при реальном источнике напряжения).

Несмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.

Постоянный и переменный ток

Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.

Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

Особенности видов напряжения

Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.

Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

Выпрямление электроэнергии

До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

Выпрямитель на одном диоде

Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.

На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.

На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.

Чем выше емкость конденсатора, тем больше энергии он сможет запасти, и тем больше напряжение будет походить на постоянное.

Двухполупериодный прибор

Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.

Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:

При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.

Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.

Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.

Выпрямительный мост своими руками

Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:

  1. Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
  2. Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
  3. Прямое напряжение. Величина падения напряжения на открытом диоде.
  4. Граничная частота. Частота переменного тока, на которой прибор еще может работать.

При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.

Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):

  • Д226 — 400 В, 0,3 А, 1 кГц;
  • КД204А — 400 В, 0,4 А, 50 кГц;
  • КД201А — 100 В, 5 А, 1,1 кГц;
  • Д247 — 500 В, 10 А, 1 кГц.

Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.

Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.

Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.

Выбор типа сборки

Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:

  • максимальное обратное напряжение диодов — 300 В;
  • прямой ток всей сборки — 1 А;
  • граничная частота — 5 кГц.

Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.

Проверка элементов

Нередко в самодельных устройствах приходится использовать детали, уже бывшие в употреблении. Перед установкой все такие комплектующие должны быть проверены. Поскольку выпрямительная сборка представляет собой четыре диода, подключенных встречно-последовательно, а до выводов всех диодов можно добраться щупом, вопрос от том, как прозвонить диодный мост, решается элементарно.

Для этого достаточно измерить обычным омметром сопротивление каждого диода, ориентируясь на схему выпрямителя и цоколевку моста. В одной полярности щупов прибор должен показывать высокое сопротивление, в другой — низкое. Когда соответствующий диод пробит, в обоих положениях щупов сопротивление будет низким, если сгорел — высоким.

Использование барьера Шоттки

Еще одна основная характеристика, которая не использовалась в предыдущих расчетах, — прямое падение напряжения на открытом диоде. Диод только теоретически проводит ток в одну сторону, а диэлектрик — в другую. На практике в прямом подключении на приборе падает напряжение, которое может достигать 1,5 В и более.

Это значит, что напряжение на выходе однополупериодного выпрямителя будет ниже входного на 1,5 В, а если использовать мостовую схему, то на все 3 В. Кроме того, вольты, помноженные на протекающий через выпрямитель ток, будут бесполезно рассеиваться на диодах в виде тепла, уменьшая КПД схемы.

Избежать подобной неприятности позволяют диоды с барьером Шоттки. Они отличаются низким (десятые вольта) прямым падением напряжения, а значит, собранная на них схема будет обладать более высоким КПД и работать в облегченном режиме. Вид и схема мощной диодной сборки Шоттки представлены на изображении.

Сегодня и отдельные диоды, и диодные мосты Шоттки используются в качестве выпрямительных очень широко и выпускаются как отдельными приборами, так и сборками. Монтаж выпрямителя на диодах Шоттки ничем не отличается от сборки на обычных диодах.

Отзывы и комментарии

Как электроны и позитроны превращаются друг в друга

GIF анимации: http://tverd4.narod.ru/mosty.gif http://tverd4.narod.ru/Animation-1-.gif

Теория этого явления должна начинаться с осознания того, что не существует в металлических проводниках электрического тока, который распространяется от плюса к минусу.
Разность потенциалов, рождающая силу движения зарядов, формируется не между плюсом и минусом, а между плюсом и нулевым потенциалом (позитронный ток) и между минусом и нулевым потенциалом (электронный ток).
То есть электронный ток имеет разность потенциалов – / 0.
Позитронный ток имеет разность потенциалов + / 0.
По нашей гипотезе превращение электронов и позитронов друг в друга происходит посредством замены вектора движения зарядов на противоположный вектор.
Объясняется это тем, что все элементы магнитоэлектрической системы электрона противоположны всем элементам магнитоэлектрической системы позитрона. И эта противоположность определяется вектором их движения в пространстве.
Поэтому, стоит только поменять вектор движения одного из зарядов на противоположный вектор, так сразу же этот заряд превращается в своего антипода.
Анимация показывает, как полупроводниковый мост пропускает позитронный ток, движимый разностью потенциалов + / 0. Но, когда электронная полуволна на мост подаёт разность потенциала – / 0, здесь-то и происходит замена вектора движения электронов на вектор движения позитронов, с превращением электронов в позитроны.
Аналогичным образом происходит превращение позитронов в электроны в мосте, собранным на вакуумных диодах.
Разница лишь в том, что превращение позитронов в электроны, происходит, когда на мост подаётся разность потенциала + / 0.
Диоды работают парами. Пара диодов всегда открыта, другая – всегда закрыта.
Кроме того, генераторы постоянного тока генерируют позитронный ток при правом вращение, и генерируют электронный ток при левом вращении.
Объясняется это явление тем, что заряд, формирующийся первым, задаёт вектор движения, а антипод вынужден следовать принятому вектору движения.
Вектор движения электрона противоположен вектору движения позитрона, как в проводниках, так и в электромагнитных волнах.
Заключение:
1. Любой любознательный восьмиклассник способен осуществить описанные опыты.
2. Комичность ситуации заключается в том, что с широким распространением осциллографов любой любознательный восьмиклассник на экране видит, что ток есть движение, как отрицательных, так и положительных зарядов.
3. Фарадей двести лет назад получил ток с отрицательными и положительными зарядами, который распространяется в прилегающем к проводнику слое эфира.
4. Все современные тепловые, гидравлические и атомные электростанции получают ток Фарадея.

6 Диодные мосты и модули

Вид каталога:

Сортировать по: Дате поступления (по возрастанию)Дате поступления (по убыванию)Названию (по убыванию)Названию (по возрастанию)Цене (по возрастанию)Цене (по убыванию)

  • Мост диодный высоковольтный MDS 100A 1600V

    1 010 р.

    Купить за 1 клик

    Арт. —
    00000127407
  • Е62320 36МВ60А

    352 р.

    Купить за 1 клик

    Арт. —
    00000010726
  • Диодный мост GBJ5010 (50A ,1000V) (RS-2)-вертик..устан. (ноги в ряд)

    170 р.

    Купить за 1 клик

    Арт. —
    00000116002
  • W10M (1000V 1.5A)

    25 р.

    Купить за 1 клик

    Арт. —
    00000125056
  • W04M, Диодный мост 1.5А 400В

    20 р.

    Купить за 1 клик

    Арт. —
    00000127671
  • TS15P05G =D15XB60 Выпрямительный диодный мост

    170 р.

    Купить за 1 клик

    Арт. —
    00000124677
  • T3SB80

    90 р.

    Купить за 1 клик

    Арт. —
    00000129956
  • STTA806D

    55 р.

    Купить за 1 клик

    Арт. —
    00000120614
  • SQL50A 50A 1200V (60х100), трехфазный диодный мост с радиатором

    870 р.

    Купить за 1 клик

    Арт. —
    00000133048
  • SQL50A 50A 1000V (32х60), трехфазный диодный мост

    390 р.

    Купить за 1 клик

    Арт. —
    00000128418
  • SB360

    7 р.

    Купить за 1 клик

    Арт. —
    00000007563
  • S60SC6M диодн мост

    300 р.

    Купить за 1 клик

    Арт. —
    00000126751
  • S202SE2 (8A 260V) (S202S02)

    484 р.

    Купить за 1 клик

    Арт. —
    00000007420
  • S202S02

    468 р.

    Купить за 1 клик

    Арт. —
    00000007421
  • S202S01F, Реле твердотельное для коммутации переменного тока 240В 8А, вход DC 20-50мА, изоляция …

    590 р.

    Купить за 1 клик

    Арт. —
    00000115341
  • S1WB(A)60 (1A 600V)

    35 р.

    Купить за 1 клик

    Арт. —
    00000007418
  • RS807 (8A/1000V) (KBU810. KBU8M)

    120 р.

    Купить за 1 клик

    Арт. —
    00000115545
  • RS207, мост 2А,1000В

    40 р.

    Купить за 1 клик

    Арт. —
    00000007390
  • RS205 (RS206/RS207)

    40 р.

    Купить за 1 клик

    Арт. —
    00000007389
  • RS1007 (KBU10M/KBU1010) (10.0A/1000V)

    120 р.

    Купить за 1 клик

    Арт. —
    00000116608
  • RS 607 (KBU6M,KBU610, мост 6А,1000В)

    90 р.

    Купить за 1 клик

    Арт. —
    00000007395
  • RS 508

    80 р.

    Купить за 1 клик

    Арт. —
    00000007394
  • RS 507 (kbu510 5A/1000V)

    80 р.

    Купить за 1 клик

    Арт. —
    00000118621
  • RS 407 диодный мост (1000V, 4A)

    40 р.

    Купить за 1 клик

    Арт. —
    00000007393
  • RS 406 (KBL06, KBL406, мост 4А,600В)

    75 р.

    Купить за 1 клик

    Арт. —
    00000007392
  • RS 405 (KBL06, KBL406, мост 4А,600В)

    75 р.

    Купить за 1 клик

    Арт. —
    00000007391
  • RS 206

    40 р.

    Купить за 1 клик

    Арт. —
    00000007397
  • RC 207 (2W10) (2A/1000V)

    40 р.

    Купить за 1 клик

    Арт. —
    00000020877
  • RBL 405

    53 р.

    Купить за 1 клик

    Арт. —
    00000007368
  • RB157 (RB-15) (1.5A, 1000V)

    18 р.

    Купить за 1 клик

    Арт. —
    00000128728
  • MM15F060K

    0 р.

    Арт. —
    00000135499
  • MDS160-16/SKD160-16, Мощный трехфаный выпрямительный мост 160А 1600В

    3 900 р.

    Купить за 1 клик

    Арт. —
    00000009334
  • MB8S диодный мост SMD 0.5А, 800В

    15 р.

    Купить за 1 клик

    Арт. —
    00000134347
  • MB6S диодный мост SMD 0.5А, 600В

    25 р.

    Купить за 1 клик

    Арт. —
    00000120646
  • MB358 (KBPC3508)

    132 р.

    Купить за 1 клик

    Арт. —
    00000020292
  • MB3510 (35A, 1000 V)

    100 р.

    Купить за 1 клик

    Арт. —
    00000006458
  • MB3505 (KBPC35005) 35A. 50V

    121 р.

    Купить за 1 клик

    Арт. —
    00000019527
  • MB2510 (25A, 1000 V)

    80 р.

    Купить за 1 клик

    Арт. —
    00000007089
  • MB10S (B10S), Диодный мост 0.5А 1000В

    30 р.

    Купить за 1 клик

    Арт. —
    00000128966
  • KBU808 8A 800V

    60 р.

    Купить за 1 клик

    Арт. —
    00000125886

Как собрать диодный мост из диодов

Выпрямитель – это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения – амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере. О них мы недавно писали большую статью – Как устроен компьютерный блок питания.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база, подробнее об этом мы писали в статье о биполярных транзисторах. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

Обозначение на схеме

Диодный мост на схемах выглядит подобным образом:

Иногда в схемах его обозначают еще так:

Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “

”. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.

Принцип работы

Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок, как все это будет выглядеть:

Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

На выходе диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

Практические опыты

Для начала возьмем простой диод.

Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.

На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на так называемом “холостом ходу”.

Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки трансформатора. Максимальную амплитуду напряжения нетрудно посчитать. Если не помните как это делать, можно прочитать статью Осциллограф. Основы эксплуатации.

3,3х5=16.5В – это максимальное значение напряжения. А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт – это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу вторичной обмотки трансформатора наш диод.

Цепляемся снова щупами осциллографа

Смотрим на осциллограмму

А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

Находим еще три таких диода и спаиваем диодный мост.

Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.

С двух других концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму

Вот, теперь порядок.

Виды диодных мостов

Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

Например, на советском диодном мосте показаны контакты, на которые нужно подавать переменное напряжение значком ”

“, а контакты, с которых надо снимать постоянное пульсирующее напряжение значком “+” и “-“.

Существует множество видов диодных мостов в разных корпусах

Есть даже автомобильный диодный мост

Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:

В основном трехфазные диодные мосты используются в силовой электронике.

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

Как проверить диодный мост

1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем эту статью.

2) Второй способ 100%-ый. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “

”, а с двух других контактов, с “+” и “-” снимаем показания с помощью осциллографа.

Значит, импортный диодный мост исправен.

Резюме

Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

Диод – это полупроводниковый прибор, который обладает различной проводимостью в зависимости от прикладываемого напряжения. Имеет всего два вывода: анод и катод. При подаче прямого напряжения (на анод подается положительный потенциал по сравнению с катодом) он открыт. При подаче отрицательного напряжения он закрывается.

Эта особенность прибора широко используется в электротехнике, в частности диодный мост применяют для сварочного аппарата, чтобы выпрямлять переменный ток, улучшая качество сварки.

Основные характеристики

Главными параметрами, на которые обращают внимание при выборе выпрямителей для сварочных аппаратов, являются:

  • максимально допустимое постоянное обратное напряжение;
  • максимальный средний прямой ток за период;
  • рабочая частота переключения;
  • постоянное прямое напряжение при максимальном прямом токе;
  • максимально допустимая температура корпуса.

Амплитуда бытовой сети составляет около 310 В, поэтому нужно использовать диоды с обратным напряжением 400 В и выше. Прямой ток жестко связан с мощностью прибора, и на него также обращают внимание. Рабочая частота показывает, в каком выпрямителе можно использовать полупроводник, применять его в сетевом или выходном блоке инвертора.

Прямое напряжение полупроводника характеризует мощность рассеяния на самом приборе. Это позволяет рассчитать размеры радиатора или системы охлаждения. Предельная температура корпуса сварочного аппарата дает возможность предусмотреть схему защиты от перегрева.

Применение в сварке

В любом трансформаторном сварочном аппарате постоянного тока или инверторе присутствуют силовые диоды. Они предназначены для выпрямления переменного тока. Для повышения коэффициента полезного действия диоды подключают по мостовой схеме, в этом случае оба полупериода приходятся на нагрузку.

В трансформаторном сварочном аппарате выпрямительные диоды устанавливают на выходе вторичной обмотки. Сварочное оборудование имеет понижающий трансформатор, соответственно, напряжение холостого хода значительно ниже входного, поэтому здесь требуются приборы большой мощности и низкой частоты. Для этого подойдут выпрямительные диоды В200 (максимальный ток 200А).

Для сварочного инвертора требуется два выпрямителя. Один располагается на входе источника питания. Он преобразует переменный ток 220 вольт 50 Гц в постоянный, который преобразуется в дальнейшем в переменный ток высокой частоты (40-80 кГц).

При мощности аппарата 5 кВт выпрямительные диоды должны иметь обратное напряжение 600-1000 В и средний прямой ток 25-35 А при частоте 50 Гц.

Второй выпрямитель располагается после высокочастотного трансформатора. Здесь требования другие. Максимальный прямой ток должен быть не менее 200 А на частоте 80 кГц, а обратное напряжение превышать напряжение холостого хода (60-70 В).

В любом случае используются диоды из категории мощных, с площадкой для монтажа радиатора, поскольку без отведения тепла устройство быстро сгорит.

Особенность выпрямителей

Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении сварочного аппарата своими руками и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

Установка

При использовании параллельной схемы соединения диодных мостов необходимо учитывать, что все они имеют некоторый разброс по параметрам.

Поэтому при подборе элементов необходимо делать это с некоторым запасом прочности. При соблюдении этого требования для сварочного аппарата можно получить диодный мост более компактный, чем при использовании одиночных диодов.

Диодные сборки позволяют размещать их на одном радиаторе, так как корпусы не находятся под напряжением. Это позволяет монтировать их в любом месте, и даже снаружи.

В зависимости от требуемого сварочного тока для выпрямителя могут потребоваться от 3 до 5 диодных сборок. Для лучшей теплоотдачи диодные мосты устанавливаются на радиатор через теплопроводящую пасту.

К контактам проводники рекомендуется подсоединяться пайкой, в противном случае могут быть потери мощности в месте контакта и его сильный нагрев.

Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFh40US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Как прозвонить диодный мост

Когда пропадает заряд аккумулятора на машине и не помогает замена щеток, значит, проблема скрыта в самом генераторе. Начинать поиск неисправности следует с проверки диодного моста.Вам понадобится

Для поиска неисправности снимите генератор с машины. В зависимости от марки машины и модели двигателя, его расположение может быть разным, что в некоторых случаях сильно усложняет процедуру демонтажа генератора. Чтобы снять генератор, ослабьте его навесной болт, затем ослабляйте натяжение ремня с помощью ключа, вращая в нужную сторону болт регулировки натяжения ремня генератора до тех пор, когда вы сможете снять ремень со шкивов. Если вы не собираетесь менять ремень генератора, снимайте ремень только со шкива генератора, если другие приводные ремни мешают снять его с ведущего шкива. Сняв ремень, отсоедините разъем с управляющими проводами и открутите гайку, которой притянут силовой провод кклемме диодного моста генератора. Освободив генератор, выкрутите полностью навесной болт и открутите крепежный болт, связывающий корпус генератора с регулировочной планкой. После этого, извлеките генератор из моторного отсека.

Разберите генератор. Для этогос помощью торцевого ключа открутите болты, скрепляющие переднюю и заднюю части генератора, затем аккуратно разъедините корпус. Старайтесь, чтобы при разборке корпуса, статор остался на передней стенке, так как обмотки статора напрямую припаяны к диодному мосту.

Снимите диодный мост с передней стенки генератора. С помощью крестовой отвертки открутите крепежные болты диодного моста, затем с помощью торцевого ключа открутите крепежную гайку плюсовой клеммы на генераторе. Посмотрите внимательно, возможно минусовой вывод моста тоже крепится к корпусу отдельной гайкой. Если так, то отверните и эту гайку. После того, как вы открутите все крепежные болты, снимите переднюю стенку генератора.

Отпаяйте диодный мост от обмоток генератора. Разогрейте мощный паяльник, облудите его жало, после чего вы сможете легко отпаять выводы обмоток статора от моста. Отпаивайте выводы обмоток, не торопясь, прикладывая разогретое жало паяльника к месту пайки и в момент расплавления припоя, с помощью плоской отвертки, как бы снимайте выводы моста с выводов обмоток. Отпаяйте все 4 точки, после чего диодный мост будет освобожден и его можно будет прозвонить.

С помощью омметра проверяйте каждый диод по отдельности, не разбирая конструкцию моста, так как другие диоды, если они исправны, не влияют на результат измерения. Диоды должны показывать проводимость только в одну сторону. Если в вашем распоряжении есть цифровой мультиметр, то обращайте внимание на показания прибора. Они должны быть близкими. Такой прибор показывает не только проводимость, но и падение напряжения на переходе диода. Нормальное падение напряжения составляет 170-250 милливольт и зависит от конкретной марки диодов. В обратную сторону никакой проводимости быть не должно.

Диодный мост в сварочном аппарате: силовые выпрямители своими руками

На чтение 8 мин Просмотров 8.8к. Опубликовано

Диод представляет собой полупроводниковый агрегат с разной проводимостью, определяемой прикладываемым напряжением. Он имеет два вывода: катод и анод. Если подается прямое напряжение, то есть на аноде в сравнении с катодом потенциал положителен, агрегат открыт.

Если напряжение отрицательно, он закрывается. Такая особенность нашла применение в электротехнике: диодный мост активно используется в сварочном деле для выпрямления переменного тока и улучшения качества сварных операций.

Выпрямитель для сварки

на переменном токе обладает существенным минусом при использовании в домашних условиях: оно провоцируют перепады напряжения в сети и помехи для работы электроустройств.

По этой причине, при проведении сварных работ своими руками, требуется выпрямитель для сварочного аппарата, позволяющий в некоторой мере сгладить мощные перепады сетевого напряжения.

Особенность выпрямителей

Многие сварочные аппараты требуют доработки, заключающейся в применении специальных выпрямителей. Для их изготовления часто применяют диоды, способные пропускать напряжение исключительно в одну сторону.

Изначально для усовершенствования мастера использовали диодные схемы из четырех диодов на радиолампах. Но данная технология была слишком сложной и дорогой. В наши дни силовые диоды стали доступными по стоимости, поэтому активно используются в сварных операциях.

На заметку! Подбирайте такие электрические элементы, которые обладают высоким качеством, и следите за тем, чтобы фактический ток в цепи был меньшим, чем заданный по номиналу. Тогда аппарат прослужит без поломок максимально длительное время.

Электрическая схема выпрямителя для сварки.

Схема для такого приспособления не отличается особой сложностью: она состоит из проводников, пропускающих электрический поток и направленных в актуальную сторону.

Если быть более точным, то два элемента общей схемы соединены последовательно и направлены друг к другу, а еще два ‒ располагаются один за другим. Первые из них проводят ток в выбранном направлении, вторые ‒ не позволяют току вернуться.

Выпрямители на диодах характеризуются разной мощностью, поэтому вид электрода необходимо подбирать с учетом этого параметра. Чем выше мощность, тем более толстый электрод потребуется.

На промышленном производстве требуется применить мощную аппаратуру, которая позволит выполнять сварные соединения без каких-либо пауз. Для бытового использования подойдут менее мощные выпрямители для сварки.

Применение в сварке

Диодную схему можно собрать из отдельных диодов или приобрести монолитную конструкцию с разными параметрами. Первый вариант менее предпочтителен, чем второй. Но при сгорании одного диода не требуется менять все четыре элемента, как в случае монолитной конструкции.

Если применить такие агрегаты для переориентации на работу с постоянным током, можно добиться расширения ее функциональных возможностей.

Применение выпрямителя из диодов поможет:

  • устранить перебои напряжения в сети;
  • упростить задачу розжига электрической дуги в условиях номинального и пониженного напряжения;
  • увеличить тепловой режим при длительной работе сварочного аппарата.

На заметку! С помощью выпрямителя из диодов для сварочного аппарата можно поддерживать электрическую дугу на стабильном уровне, что позволяет повысить эстетические качества созданных своими руками сварных соединений на металлических конструкциях.

Выпрямитель для сварки собирается по мостовой схеме, но при этом важно учесть, что корпус агрегата находится под напряжением.

Поэтому при установке диодного моста на радиатор, важно изолировать агрегат от иных элементов схемы, от корпуса сварочного аппарата, соседних диодов. А это чревато определенными неудобствами для сварщика: нужно использовать более крупный по размеру корпус сварки.

Выпрямитель тока для сварочных работ.

Как следствие, аппарат получается тяжелым и громоздким.

Чтобы уменьшить габариты сварки, можно подобрать выпрямительный прибор ВЛ200 с другой полярностью, объединив полупроводники на два парных радиатора. Но еще лучше, установить в едином корпусе сварки мощные, но при этом максимально компактные диодные мосты.

Такое решение обойдется сварщику в несколько раз дешевле, нежели покупка диодов В200. Деталь по размеру не больше, чем спичечный коробок. Она имеет площадку для установки радиатора, работает на максимальном, прямом токе ‒ 30-50 А.

Важно! Если в процессе выполнения сварных работ потребовался более мощный мост, стоит воспользоваться параллельным подключением мостовых сборок. Главное понимать, что при таком решении надежность конструкции будет ниже, чем при одиночных мощных диодах.

Если говорить о схемах полупроводникового типа с устройством выпрямителя, важно отметить следующее:

  1. Лучшие показатели имеет трехфазная система, позволяющая использовать мощность сети до 380 В.
    Ее применяют на промышленных предприятиях, где важно создать длительный непрерывный сварной процесс без пауз для соединения больших по размеру металлических деталей: ворот, контейнеров, хозяйственных металлических сооружений и т.п.
  2. Система с одной фазой подходит для бытового использования, когда сварной процесс длится короткий промежуток времени, и нет необходимости в более длительной сварке.

Установка

Если планируется установить параллельную схему соединения диодных мостов, важно учесть некоторый разброс по параметрам каждого диода. Подбирать элементы нужно так, чтобы оставался некоторый запас прочности. Тогда можно получить компактный диодный мост для сварочного аппарата.

Диодные сборки можно разместить на одном радиаторе, но для повышения показателей теплоотдачи их монтируют через теплопроводящую пасту. Актуальное количество таких схем для выпрямителя определяется требуемым сварочным током: стандартное количество 3-5 сборок.

Проводники стоит соединять с контактами при помощи пайки, и иначе в местах контакта потери мощности, или соединение сильно нагревается. При необходимости выполнить сварные операции, выпрямитель подключается .

Как сделать выпрямитель своими руками?

Если в наличии мастера имеются комплектующие детали, вполне реально изготовить самодельный сварочный выпрямитель. При условии соблюдения всех рекомендаций специалистов он гарантировано обеспечит процесс ручной дуговой сварки постоянным током, но потребуется применить электрод с обмазкой.

Использовать проволоку без обмазки также допустимо, но только при условии большого опыта в сварных вопросах. Для неопытного сварщика справиться с ней будет практически нереально.

Диодный мост для сварочного аппарата.

Обмазка при расплавлении электрода препятствует проникновению составляющих воздуха в расплавленный металл сварного соединения. Без нее контакт металла в расплавленном виде с азотом и кислородом снизят прочностные свойства шва, сделав его хрупким и пористым.

Сначала потребуется выбрать или смотать своими руками понижающий трансформатор с требуемыми параметрами. Собирают трансформатор до подключения диодного моста.

Если выбран путь самостоятельного изготовления аппарата, важно правильно рассчитать его элементы, в том числе:

  • параметры магнитопровода;
  • актуальное количество витков;
  • размеры сечения шин, проводов.

На заметку! Расчеты для изготовления трансформаторов осуществляются по единой методике, поэтому данная задача не представляет трудностей даже для малоопытного сварщика со школьными знаниями электричества.

В работе не обойтись без светодиодов: нужны они в качестве проводников тока в одном единственном направлении. Простейший диодный , созданный по мостиковой схеме, монтируют на радиатор с целью теплообмена и охлаждения.

Мощные диоды для сварочного аппарата, по типу ВД-200, выделяют при работе довольно большой объем тепловой энергии. Чтобы обеспечить падающую характеристику тока, в цепь потребуется включить дроссель последовательно.

Активное переменное сопротивление в такой схеме обеспечит сварщику возможность плавно регулировать сварочный ток. Далее, один полюс нужно подключить к сварной проволоке, а второй ‒ к рабочему объекту.

Электролитический конденсатор в составе схемы необходим в качестве сглаживающего фильтра для снижения пульсаций.

Выполнить намотку реостата несложно своими силами, но для такой задачи потребуется керамический сердечник и проволока из никелина или нихрома. Актуальный диаметр проволоки определит величина регулируемого тока сварной операции.

Расчет сопротивления реостата нужно проводиться учетом удельного сопротивления электрода, его сечения и общей длины.

Электрическая схема сварки с диодным мостом.

Шаг регулировки тока для сварки зависит от диаметра витков. Если правильно собрать перечисленные детали в единый агрегат, процесс сварки будет сопровождаться постоянным током. Не лишним будет и монтаж резистора, препятствующего короткому замыканию при работе.

Оно может происходить при касании проволоки о металл без зажигания дуги. Если в это время на конденсаторе нет сопротивления, он мгновенно разрядится, произойдет щелчок, электрод разрушится или прилипнет к металлу.

При наличии резистора можно сгладить разряды на конденсаторе, сделать поджога электрода более простым и мягким. Изготовление аппарата для выпрямления сварного тока своими руками позволит создавать максимально аккуратные и долговечные сварные швы.

Итоги

Диодный мост для сварочного аппарата преобразует переменный ток в постоянный, что позволяет повысить качества сварных соединений. Такое приспособление можно приобрести в готовом виде или создать своими руками, следуя советам, озвученным в статье.

Устройство и работа выпрямительного диода. Диодный мост

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов.

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов.

В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:

малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.

По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

Технология изготовления и конструкция выпрямительных диодов.

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов.

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота, кГц;
Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде.

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку (). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «~», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Диодный мост из стабилитронов — Яхт клуб Ост-Вест

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Применение диодных мостов

В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.

Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах. Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах. Широко применяются и во всех моделях современных сварочных аппаратов.

Как сделать диодный мост

Схема диодного моста

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.


Схема диодного моста

Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

В железе это выглядит следующим образом.


Диодный мост из отдельных диодов S1J37

Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

Как работает диодный мост?

Пару слов о том, как работает диодный мост. Если на его вход (обозначен значком «

») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

Обозначение диодного моста на схеме.

На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

Диодная сборка.

Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «

». Иногда могут иметь обозначение AC (Alternating Current – переменный ток).

Оставшиеся два вывода имеют обозначения « + » и « – ». Это выход выпрямленного, пульсирующего напряжения (тока).

Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

В реальности сборка диодного моста может выглядеть вот так.


Диодная сборка KBL02 на печатной плате


Диодная сборка RS607 на плате компьютерного блока питания

А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.


Условное изображение диодного моста и диодной сборки

Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD.

Где применяется схема диодного моста?

Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

Несмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.

Постоянный и переменный ток

Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.

Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

Особенности видов напряжения

Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.

Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

Выпрямление электроэнергии

До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

Выпрямитель на одном диоде

Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.

На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.

На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.

Чем выше емкость конденсатора, тем больше энергии он сможет запасти, и тем больше напряжение будет походить на постоянное.

Двухполупериодный прибор

Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.

Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:

При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.

Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.

Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.

Выпрямительный мост своими руками

Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:

  1. Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
  2. Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
  3. Прямое напряжение. Величина падения напряжения на открытом диоде.
  4. Граничная частота. Частота переменного тока, на которой прибор еще может работать.

При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.

Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):

  • Д226 — 400 В, 0,3 А, 1 кГц;
  • КД204А — 400 В, 0,4 А, 50 кГц;
  • КД201А — 100 В, 5 А, 1,1 кГц;
  • Д247 — 500 В, 10 А, 1 кГц.

Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.

Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.

Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.

Выбор типа сборки

Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:

  • максимальное обратное напряжение диодов — 300 В;
  • прямой ток всей сборки — 1 А;
  • граничная частота — 5 кГц.

Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.

Проверка элементов

Нередко в самодельных устройствах приходится использовать детали, уже бывшие в употреблении. Перед установкой все такие комплектующие должны быть проверены. Поскольку выпрямительная сборка представляет собой четыре диода, подключенных встречно-последовательно, а до выводов всех диодов можно добраться щупом, вопрос от том, как прозвонить диодный мост, решается элементарно.

Для этого достаточно измерить обычным омметром сопротивление каждого диода, ориентируясь на схему выпрямителя и цоколевку моста. В одной полярности щупов прибор должен показывать высокое сопротивление, в другой — низкое. Когда соответствующий диод пробит, в обоих положениях щупов сопротивление будет низким, если сгорел — высоким.

Использование барьера Шоттки

Еще одна основная характеристика, которая не использовалась в предыдущих расчетах, — прямое падение напряжения на открытом диоде. Диод только теоретически проводит ток в одну сторону, а диэлектрик — в другую. На практике в прямом подключении на приборе падает напряжение, которое может достигать 1,5 В и более.

Это значит, что напряжение на выходе однополупериодного выпрямителя будет ниже входного на 1,5 В, а если использовать мостовую схему, то на все 3 В. Кроме того, вольты, помноженные на протекающий через выпрямитель ток, будут бесполезно рассеиваться на диодах в виде тепла, уменьшая КПД схемы.

Избежать подобной неприятности позволяют диоды с барьером Шоттки. Они отличаются низким (десятые вольта) прямым падением напряжения, а значит, собранная на них схема будет обладать более высоким КПД и работать в облегченном режиме. Вид и схема мощной диодной сборки Шоттки представлены на изображении.

Сегодня и отдельные диоды, и диодные мосты Шоттки используются в качестве выпрямительных очень широко и выпускаются как отдельными приборами, так и сборками. Монтаж выпрямителя на диодах Шоттки ничем не отличается от сборки на обычных диодах.

Отзывы и комментарии

Как электроны и позитроны превращаются друг в друга

GIF анимации: http://tverd4.narod.ru/mosty.gif http://tverd4.narod.ru/Animation-1-.gif

Теория этого явления должна начинаться с осознания того, что не существует в металлических проводниках электрического тока, который распространяется от плюса к минусу.
Разность потенциалов, рождающая силу движения зарядов, формируется не между плюсом и минусом, а между плюсом и нулевым потенциалом (позитронный ток) и между минусом и нулевым потенциалом (электронный ток).
То есть электронный ток имеет разность потенциалов – / 0.
Позитронный ток имеет разность потенциалов + / 0.
По нашей гипотезе превращение электронов и позитронов друг в друга происходит посредством замены вектора движения зарядов на противоположный вектор.
Объясняется это тем, что все элементы магнитоэлектрической системы электрона противоположны всем элементам магнитоэлектрической системы позитрона. И эта противоположность определяется вектором их движения в пространстве.
Поэтому, стоит только поменять вектор движения одного из зарядов на противоположный вектор, так сразу же этот заряд превращается в своего антипода.
Анимация показывает, как полупроводниковый мост пропускает позитронный ток, движимый разностью потенциалов + / 0. Но, когда электронная полуволна на мост подаёт разность потенциала – / 0, здесь-то и происходит замена вектора движения электронов на вектор движения позитронов, с превращением электронов в позитроны.
Аналогичным образом происходит превращение позитронов в электроны в мосте, собранным на вакуумных диодах.
Разница лишь в том, что превращение позитронов в электроны, происходит, когда на мост подаётся разность потенциала + / 0.
Диоды работают парами. Пара диодов всегда открыта, другая – всегда закрыта.
Кроме того, генераторы постоянного тока генерируют позитронный ток при правом вращение, и генерируют электронный ток при левом вращении.
Объясняется это явление тем, что заряд, формирующийся первым, задаёт вектор движения, а антипод вынужден следовать принятому вектору движения.
Вектор движения электрона противоположен вектору движения позитрона, как в проводниках, так и в электромагнитных волнах.
Заключение:
1. Любой любознательный восьмиклассник способен осуществить описанные опыты.
2. Комичность ситуации заключается в том, что с широким распространением осциллографов любой любознательный восьмиклассник на экране видит, что ток есть движение, как отрицательных, так и положительных зарядов.
3. Фарадей двести лет назад получил ток с отрицательными и положительными зарядами, который распространяется в прилегающем к проводнику слое эфира.
4. Все современные тепловые, гидравлические и атомные электростанции получают ток Фарадея.

Схемы выпрямителя | Диоды и выпрямители

Что такое исправление?

Теперь мы подошли к самому популярному применению диода: выпрямление . Проще говоря, выпрямление — это преобразование переменного тока (AC) в постоянный ток (DC). Это включает в себя устройство, которое допускает только односторонний поток электрического заряда. Как мы видели, это именно то, что делает полупроводниковый диод. Самый простой вид схемы выпрямителя — это двухполупериодный выпрямитель .Он позволяет только половине формы сигнала переменного тока проходить к нагрузке. (Рисунок ниже)

Схема однополупериодного выпрямителя.

Полуволновое выпрямление

Для большинства силовых приложений однополупериодного выпрямления недостаточно. Гармонический состав выходного сигнала выпрямителя очень велик и, следовательно, его трудно отфильтровать. Кроме того, источник переменного тока подает питание на нагрузку только в половине полных циклов, а это означает, что половина его мощности не используется.Однако однополупериодное выпрямление — это очень простой способ уменьшить мощность до резистивной нагрузки. Некоторые двухпозиционные диммеры для ламп подают полную мощность переменного тока на нить накала лампы для «полной» яркости, а затем полуволновое выпрямление для меньшей светоотдачи. (рисунок ниже)

Применение однополупериодного выпрямителя: Двухуровневый диммер лампы.

В положении переключателя «Dim» лампа накаливания получает примерно половину мощности, которую она обычно получает при работе от двухполупериодного переменного тока.Поскольку импульсы мощности полуволнового выпрямления намного быстрее, чем успевает нагреться и остыть нить накала, лампа не мигает. Вместо этого его нить просто работает при более низкой температуре, чем обычно, обеспечивая меньший световой поток.

Этот принцип быстрой «импульсной» подачи мощности на медленно реагирующее нагрузочное устройство для управления подаваемой на него электрической мощностью распространен в мире промышленной электроники. Поскольку управляющее устройство (в данном случае диод) является либо полностью проводящим, либо полностью непроводящим в любой момент времени, оно рассеивает мало тепловой энергии при управлении мощностью нагрузки, что делает этот метод управления мощностью очень энергоэффективным.Эта схема, возможно, является самым грубым методом подачи импульсного питания на нагрузку, но ее достаточно для проверки концепции приложения.

Двухполупериодные выпрямители

Если нам необходимо выпрямить переменный ток для полного использования обоих полупериодов синусоиды, необходимо использовать другую конфигурацию схемы выпрямителя. Такая схема называется двухполупериодным выпрямителем . Один тип двухполупериодного выпрямителя, называемый конструкцией с отводом от середины отвода , использует трансформатор с вторичной обмоткой с отводом от центра и двумя диодами, как показано на рисунке ниже.

Двухполупериодный выпрямитель с центральным отводом.

Положительный полупериод

Работу этой схемы легко понять по одному полупериоду за раз. Рассмотрим первый полупериод, когда полярность напряжения источника положительная (+) сверху и отрицательная (-) снизу. В это время работает только верхний диод; нижний диод блокирует ток, а нагрузка «видит» первую половину синусоиды, положительную сверху и отрицательную снизу. Только верхняя половина вторичной обмотки трансформатора пропускает ток в течение этого полупериода, как показано на рисунке ниже.

Двухполупериодный выпрямитель со средним отводом: верхняя половина вторичной обмотки проводит ток во время положительного полупериода на входе, отдавая положительный полупериод на нагрузку.

Отрицательный полупериод

В течение следующего полупериода полярность переменного тока меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора пропускают ток, в то время как части цепи, ранее проводившие ток в течение последнего полупериода, простаивают. Нагрузка по-прежнему «видит» половину синусоиды той же полярности, что и раньше: положительную сверху и отрицательную снизу.(Рисунок ниже)

Двухполупериодный выпрямитель со средним отводом: во время отрицательного входного полупериода нижняя половина вторичной обмотки проводит, обеспечивая положительный полупериод на нагрузку.

Недостатки конструкции двухполупериодного выпрямителя

Одним из недостатков конструкции двухполупериодного выпрямителя является необходимость трансформатора с вторичной обмоткой с отводом от средней точки. Если рассматриваемая цепь имеет большую мощность, размер и стоимость подходящего трансформатора будут значительными.Следовательно, конструкция выпрямителя с центральным отводом используется только в маломощных устройствах.

Другие конфигурации

Полярность двухполупериодного выпрямителя с отводом от средней точки на нагрузке может быть изменена на обратную путем изменения направления диодов. Кроме того, реверсивные диоды можно подключить параллельно существующему выпрямителю с положительным выходом. В результате получается двухполярный двухполупериодный выпрямитель с отводом от средней точки, показанный на рисунке ниже. Обратите внимание, что подключение самих диодов имеет ту же конфигурацию, что и мост.

Двухполярный двухполупериодный выпрямитель со средним отводом

Двухполупериодные мостовые выпрямители

Существует другая, более популярная конструкция двухполупериодного выпрямителя, построенная на четырехдиодной мостовой схеме. По понятным причинам эта конструкция называется двухполупериодным мостом . (Рисунок ниже)

Двухполупериодный мостовой выпрямитель.

Направление тока для схемы двухполупериодного мостового выпрямителя показано на рисунке ниже для положительных полупериодов и на рисунке ниже для отрицательных полупериодов формы волны источника переменного тока.Обратите внимание, что независимо от полярности входа ток протекает в одном направлении через нагрузку. То есть отрицательный полупериод источника является положительным полупериодом на нагрузке.

Ток течет через два последовательно включенных диода для обеих полярностей. Таким образом, в диодах теряется два диодных падения напряжения источника (0,7·2=1,4 В для Si). Это недостаток по сравнению с полноволновой конструкцией с центральным отводом. Этот недостаток характерен только для источников питания с очень низким напряжением.

Двухполупериодный мостовой выпрямитель: ток для положительных полупериодов.

Двухполупериодный мостовой выпрямитель: ток для отрицательных полупериодов.

Альтернативная принципиальная схема двухполупериодного мостового выпрямителя

Запоминание правильного расположения диодов в схеме двухполупериодного мостового выпрямителя часто может разочаровать новичка, изучающего электронику. Я обнаружил, что альтернативное представление этой схемы легче запомнить и понять.Это точно такая же схема, за исключением того, что все диоды нарисованы горизонтально, все «указывая» в одном направлении. (Рисунок ниже)

Альтернативный вид компоновки двухполупериодного мостового выпрямителя.

Многофазная версия с альтернативной компоновкой

Одним из преимуществ запоминания этой компоновки схемы мостового выпрямителя является то, что ее легко расширить до многофазной версии, показанной на рисунке ниже.

Схема трехфазного двухполупериодного мостового выпрямителя.

Каждая трехфазная линия подключается между парой диодов: один для направления питания на положительную (+) сторону нагрузки, а другой — на отрицательную (-) сторону нагрузки.

Многофазные системы с более чем тремя фазами легко встраиваются в схему мостового выпрямителя. Возьмем, к примеру, схему шестифазного мостового выпрямителя на рисунке ниже.

Схема шестифазного двухполупериодного мостового выпрямителя.

При выпрямлении многофазного переменного тока сдвинутые по фазе импульсы накладываются друг на друга, создавая более «гладкий» выходной сигнал постоянного тока (с меньшим содержанием переменного тока), чем выходной сигнал, получаемый при выпрямлении однофазного переменного тока.Это неоспоримое преимущество в схемах мощных выпрямителей, где физические размеры фильтрующих компонентов были бы непомерно высокими, но необходимо обеспечить мощность постоянного тока с низким уровнем шума. На приведенной ниже схеме показано двухполупериодное выпрямление трехфазного переменного тока.

Выход трехфазного переменного тока и трехфазного двухполупериодного выпрямителя.

Напряжение пульсаций

В любом случае выпрямления — однофазного или многофазного — величина напряжения переменного тока, смешанного с выходным напряжением постоянного тока выпрямителя, называется напряжением пульсаций .В большинстве случаев, поскольку желаемой целью является «чистый» постоянный ток, пульсации напряжения нежелательны. Если уровни мощности не слишком велики, можно использовать фильтрующие сети для уменьшения пульсаций выходного напряжения.

1-импульсные, 2-импульсные и 6-импульсные модули

Иногда метод выпрямления называют путем подсчета количества выходных «импульсов» постоянного тока на каждые 360 o электрического «оборота». Таким образом, однофазная схема однополупериодного выпрямителя будет называться 1-импульсным выпрямителем , потому что она производит один импульс в течение времени одного полного цикла (360 o ) формы волны переменного тока.Однофазный двухполупериодный выпрямитель (независимо от конструкции, с центральным отводом или мостом) будет называться двухимпульсным выпрямителем , поскольку он выдает два импульса постоянного тока в течение одного периода переменного тока. Трехфазный двухполупериодный выпрямитель будет называться 6-пульсным блоком .

Фазы цепи выпрямителя

Современное электротехническое соглашение дополнительно описывает функцию схемы выпрямителя, используя трехпольное обозначение фаз , путей и количество импульсов .Однофазная схема однополупериодного выпрямителя имеет несколько загадочное обозначение 1Ph2W1P (1 фаза, 1 путь, 1 импульс), что означает, что напряжение питания переменного тока является однофазным, что ток на каждой фазе линий питания переменного тока движется только в одном направлении (путь), и что на каждые 360 o электрического вращения производится один импульс постоянного тока.

Однофазная двухполупериодная схема выпрямителя со средним отводом будет обозначаться как 1Ph2W2P в этой системе обозначений: 1 фаза, 1 путь или направление тока в каждой половине обмотки и 2 импульса или выходного напряжения за цикл.

Однофазный двухполупериодный мостовой выпрямитель будет обозначаться как 1Ph3W2P: то же, что и для конструкции с центральным отводом, за исключением тока, может проходить в обоих направлениях по линиям переменного тока, а не только в одном направлении.

Схема трехфазного мостового выпрямителя, показанная ранее, будет называться выпрямителем 3Ф3В6П.

Можно ли получить больше импульсов, чем удвоенное число фаз в цепи выпрямителя?

Ответ на этот вопрос положительный, особенно в многофазных цепях.Благодаря творческому использованию трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что для трех фаз переменного тока будет производиться более шести импульсов постоянного тока. Фазовый сдвиг 30 o вводится с первичной обмотки на вторичную в трехфазном трансформаторе, когда конфигурации обмоток не одного типа.

Другими словами, трансформатор, соединенный либо Y-Δ, либо Δ-Y, будет демонстрировать фазовый сдвиг 30 o , в то время как трансформатор, соединенный Y-Y или Δ-Δ, не будет.Это явление можно использовать, если один трансформатор, подключенный Y-Y, питает мостовой выпрямитель, а другой трансформатор, подключенный Y-Δ, питает второй мостовой выпрямитель, а затем запараллеливает выходы постоянного тока обоих выпрямителей. (Рисунок ниже)

Поскольку формы пульсаций напряжения на выходе двух выпрямителей сдвинуты по фазе на 30 o относительно друг друга, их наложение приводит к меньшим пульсациям, чем на любом выходе выпрямителя, рассматриваемом отдельно: 12 импульсов на 360 o вместо шести:

Схема многофазного выпрямителя: 3-фазный 2-полосный 12-импульсный (3Ph3W12P)

ОБЗОР:

  • Выпрямление — это преобразование переменного тока (AC) в постоянный ток (DC).
  • Однополупериодный выпрямитель представляет собой схему, которая позволяет подавать на нагрузку только один полупериод формы волны переменного напряжения, что приводит к одной неизменной полярности на ней. Результирующий постоянный ток, подаваемый на нагрузку, значительно «пульсирует».
  • Двухполупериодный выпрямитель представляет собой схему, которая преобразует оба полупериода сигнала переменного напряжения в непрерывную серию импульсов напряжения той же полярности. Результирующий постоянный ток, подаваемый на нагрузку, не так сильно «пульсирует».
  • Многофазный переменный ток при выпрямлении дает гораздо более «гладкую» форму волны постоянного тока (менее пульсаций напряжения ), чем выпрямленный однофазный переменный ток.

СВЯЗАННЫЕ РАБОЧИЕ ТАБЛИЦЫ:

5254 Двухдиодный мостовой компрессор — Rupert Neve Designs

«При медленных и нежных настройках я обнаружил, что 5254 звучит приятно чисто — определенно чище, чем я помню оригинальный 2254, — но все же есть тонкий намек на гармоническое богатство и характер там, и он совершенно очевидно развивается с более жесткими соотношениями, более быстрыми таймингами и более высокими уровнями сигнала.Все это делает его немного более универсальным, чем оригинальный 2254, и он, несомненно, найдет применение в различных источниках, а также для группового и мастер-шинного сжатия».

Хью Робджонс / Sound On Sound

«Это одно из тех устройств, благодаря которым все, что вы через него запускаете, звучит лучше. Он добавляет веса и насыщенности, оставаясь при этом полезным даже при экстремальных настройках. Диодный мост воздействует на звук совершенно иначе, чем другие типы компрессоров, и я подозреваю, что если вы добавите один из них в свою студию, я быстро стану незаменимым инструментом и постоянным приспособлением.

Stephen Bennett / Audio Media International

«Я всегда был большим поклонником 2254, и теперь 5254 дает мне всю эту атмосферу, с гораздо большей детализацией и контролем. Я испробовал его практически на всех инструментах, которые могут быть в миксе… и это было действительно исключительно на шине микса».

«Когда я впервые услышал Shelford Channel, я снова влюбился в диодный компрессор и понял, что мне понадобится больше Shelfords только для одного компрессора.Все, что я пропускал через диодный мост, звучало лучше, от драм-баса, баса, электрогитары и вокала».

Брайан Форакер
Heart, Soundgarden, Bad Company

«После 10 лет работы с винтажной консолью Neve очень приятно слышать, как Shelford звучат так, как должны звучать 1073 и 2254, но без всего этого багаж».

Митч Дейн
Баночки с глиной

«…чертов 2254, лучший компрессор на планете.Итак, это обновленная версия этого, и у нее есть элемент управления смешиванием, поэтому я могу использовать его параллельно, что является колоссальной болью в заднице по сравнению со старыми компрессорами, и теперь я могу просто сделать это с поворотом ручка — как, вы знаете? Выходи за меня!»

F Reid Shippen
Ingrid Michaelson, Kenny Chesney, Dierks Bentley

Схема двухдиодного двухполупериодного выпрямителя » Electronics Notes

Двухдиодная версия схемы двухполупериодного выпрямителя может использоваться в ряде случаев для использования обеих половин формы переменного сигнала.


Цепи диодного выпрямителя Включает:
Цепи диодного выпрямителя Полупериодный выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


Схема с двумя диодами способна обеспечить двухполупериодное выпрямление при использовании с трансформатором с отводом от середины.

В этом двухдиодном формате для двухполупериодного выпрямителя используется трансформатор с центральным отводом, и он широко использовался, когда использовались термоэлектронные клапаны / вакуумные лампы.Это сэкономило на количестве диодов и, следовательно, на количестве необходимых ламп / ламп, тем самым сэкономив значительные средства.

Сегодня с полупроводниковыми диодными мостовыми выпрямителями схема не так часто встречается, поскольку для мостовых выпрямителей требуется только одна обмотка на трансформаторе.

Схема двухдиодного двухполупериодного выпрямителя

Можно увидеть, что базовая схема двухполупериодного выпрямителя использует два диода и трансформатор с центральным отводом.

Двухполупериодный выпрямитель с двумя диодами и трансформатором с отводом от середины

Эту схему очень легко реализовать, хотя для нее требуется трансформатор с отводом от середины.Есть только два электронных компонента, то есть диоды, и они легко подключаются.

Течение тока в цепи можно увидеть на диаграмме ниже. Это полезно, чтобы увидеть, как работает схема и насколько она не так эффективна с точки зрения использования трансформатора, как схемы, такие как мостовой двухполупериодный выпрямитель.

Двухполупериодный выпрямитель с двумя диодами: протекание тока

Глядя на схему видно, что на одной половине цикла ток проходит через одну половину трансформатора и через диод.Другой диод смещен в обратном направлении и не является проводником. Затем для другой половины цикла в игру вступает другая сторона цепи.

Пиковое обратное напряжение диода

Одной из важных проблем при рассмотрении электронных компонентов, составляющих двухдиодную версию схемы мостового выпрямителя, является номинальное пиковое обратное напряжение, необходимое для используемых диодов.

Глядя на схему, один диод будет проводить одну половину цикла, а другой диод — другую половину цикла.

В случае, когда диод D1 является проводящим, поскольку напряжение на его половине вторичной обмотки начинает расти, то же самое происходит и с напряжением на другой половине. Один диод в этом случае будет проводящим, а другой диод D2 будет смещен в обратном направлении.

Для диодов требуется среднеквадратичное значение напряжения трансформатора 2 x √2, а желательно больше, чтобы справиться с переходными процессами

Напряжение возрастет до напряжения Vp, пиковое напряжение от трансформатора которого в √2 раза превышает среднеквадратичное напряжение. Если к нагрузке подключен конденсатор для сглаживания, это напряжение будет поддерживаться, даже если оно имеет небольшую пульсацию.

При пиковом напряжении на нагрузке в пик цикла диод Д2 увидит этот потенциал на одном конце диода, а на другом увидит пиковое напряжение в другом направлении со своей половины трансформатора . Другими словами, он должен блокировать двойное пиковое напряжение, то есть √2 среднеквадратичного выходного напряжения трансформатора.

Поскольку эта цепь часто подключается к сети сетевого источника питания, могут быть переходные процессы, которые видны поверх этого диодом.Поэтому разумно увеличить номинальное пиковое обратное напряжение PIV для диода с хорошим запасом. Часто выбирают диоды с номиналом PIV, по крайней мере, в четыре раза превышающим пиковое напряжение трансформатора.

Проблемы с этой формой двухполупериодного выпрямителя

Глядя на блок-схему тока, можно увидеть, что ток каждой половины вторичной обмотки используется только в течение половины цикла. Это приводит к очень неэффективному использованию трансформатора с точки зрения затрат и ресурсов.

  • Выходное напряжение трансформатора вдвое меньше, чем могло бы быть:   Использование центрального отвода в трансформаторе означает, что можно использовать только половину полного напряжения на двух половинах обмотки вместе.
  • Повышенные тепловые потери:   Из-за особенностей работы схемы двухдиодного двухполупериодного выпрямителя каждая половина трансформатора используется половину времени. Это означает, что ток через каждую обмотку в два раза больше, чем если бы использовался настоящий однополупериодный выпрямитель, такой как мостовой выпрямитель. Поскольку тепловые потери равны квадрату тока, умноженному на сопротивление, это означает, что за половину времени рассеивается в четыре раза больше тепла.Это означает, что в течение полного цикла тепловые потери в два раза превышают эквивалентную схему двухполупериодного мостового выпрямителя.
  • Увеличение стоимости трансформатора:   Каждая половина вторичной обмотки должна обеспечивать полное напряжение, а также высокий уровень тока. Это означает, что трансформатор будет значительно дороже, чем трансформатор, требующий стандартной вторичной обмотки без центрального ответвления.
  • Для диодов требуется высокий номинал PIV:   Как видно из абзаца выше, пиковое обратное напряжение, PIV для диодов должно быть в два раза больше пикового напряжения от трансформатора, а для обеспечения запаса по переходным процессам оно должно быть больше.Мостовой двухполупериодный выпрямитель требует диодов, которые имеют только половину номинала PIV.

В результате отмеченных выше моментов для создания двухполупериодного мостового выпрямителя с использованием системы двухдиодного двухполупериодного выпрямителя потребуется трансформатор в √2 раза больше, чем трансформатор, необходимый для мостового выпрямителя. Это будет стоить дороже, а также будет тяжелее и громоздче. Поскольку сейчас мостовые выпрямители стоят очень дешево, это предпочтительный вариант для большинства применений.

Дополнительные схемы и схемы:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Транзисторная конструкция Транзистор Дарлингтона Транзисторные схемы схемы полевых транзисторов Символы цепи
    Вернитесь в меню проектирования схем .. .

4 вещи, которые нужно знать о мостовом выпрямителе

1) Как работает мостовой выпрямитель?

Мостовой выпрямитель представляет собой разновидность двухполупериодного выпрямителя, который может преобразовывать переменный ток (переменный ток) в постоянный (постоянный ток). Он использует не менее 4 диодов для выпрямления переменного тока, и на рисунке ниже показано, как работает выпрямление.

 

Рис. 1. Протекание тока мостового выпрямителя (а) во время положительного полупериода входного сигнала переменного тока;
(б) во время отрицательного полупериода входного сигнала переменного тока (Источник: BYJU’S)

 

Рис.1 показан мостовой выпрямитель с подачей на него сигнала переменного тока. На рис. 1(а) показано время, когда сигнал переменного тока находится в положительном полупериоде, а на рис. 1(б) показано время, когда сигнал переменного тока находится в отрицательном полупериоде. Из рис. 1(а) видно, что диоды D1 и D3 смещены в прямом направлении, а диоды D2 и D4 смещены в обратном направлении; и на рис. 1(b) диоды D2 и D4 смещены в прямом направлении, а диоды D1 и D3 смещены в обратном направлении в течение отрицательного полупериода.

Посмотрите на выходной сигнал постоянного тока, мы можем обнаружить, что ток всегда течет от клеммы B к D, поэтому VBD всегда положительный.И так происходит исправление. В результате мостовой выпрямитель снизит входное напряжение почти на 1,4 В (2 падения на диоде).

 

2) Каковы характеристики мостового выпрямителя?

Основными характеристиками мостового выпрямителя являются коэффициент пульсаций , пиковое обратное напряжение (PIV) и КПД .

1. Коэффициент пульсаций
Поскольку любой входной сигнал переменного тока представляет собой синусоидальный сигнал, выходной сигнал постоянного тока после выпрямления будет пульсирующим, а коэффициент, используемый для измерения гладкости сигнала, называется коэффициентом пульсаций.Обычно в мостовом выпрямителе коэффициент пульсаций составляет 0,48. Конденсатор можно использовать для сглаживания выходного сигнала постоянного тока и снижения коэффициента пульсаций.

Рис. 2 (а) Мостовой выпрямитель со сглаживающим конденсатором;
(b) форма напряжения выходного сигнала постоянного тока со сглаживающим конденсатором или без него
(Источник: BYJU’S, Electronics Tutorials)

 

2. Пиковое обратное напряжение (PIV)
Пиковое обратное напряжение (PIV) — это пиковое напряжение на диоде, когда он смещен в обратном направлении.В идеале PIV мостового выпрямителя совпадает с выходным напряжением постоянного тока; практически разница между PIV и выходным напряжением составляет 0,7 В, т. е. PIV = VBD(out) + 0,7 В.

Рис. 3 Взаимосвязь между PIV и VBD(out) (Источник: InstrumentationTools.com)

 

3. Эффективность
Эффективность мостового выпрямителя показывает, насколько эффективно работает мостовой выпрямитель. Он определяется как выходная мощность постоянного тока, деленная на входную мощность переменного тока.
η=выход PDC/вход PAC.

 

3) Какие бывают мостовые выпрямители?

1. Однофазные и трехфазные мостовые выпрямители
4 диода в мостовом выпрямителе, рассмотренном выше, являются базовым случаем, и этот тип мостового выпрямителя является однофазным. Другой тип мостового выпрямителя представляет собой трехфазный выпрямитель с 6 диодами. Трехфазные мостовые выпрямители используются для трехфазных источников питания. При перекрытии 3-х синусоид выходная мощность трехфазного мостового выпрямителя больше, PIV больше, а коэффициент пульсаций меньше.

Рис. 4 Однофазный (слева) и трехфазный (справа) мостовой выпрямитель (Источник: ELPROCUS)

 

2. Неуправляемые и управляемые мостовые выпрямители
Мостовые выпрямители, использующие для выпрямления диоды, называются неуправляемыми мостовыми выпрямителями. Неуправляемый мостовой выпрямитель может обеспечить фиксированное выходное напряжение постоянного тока из заданного входного сигнала переменного тока. Мостовые выпрямители, использующие для выпрямления другие управляемые устройства, такие как MOSFET, SCR и IGBT, называются управляемыми мостовыми выпрямителями.Управляемый мостовой выпрямитель может обеспечить регулируемое выходное напряжение постоянного тока.

 

4) Каковы области применения мостовых выпрямителей?

Любое приложение, которому необходимо преобразовать входной переменный ток в выходной постоянный, может использовать мостовые выпрямители в цепи. Распространенными областями применения являются источники питания, умножители напряжения, генераторы импульсов, AM-радиосигналы, электросварка и т. д.

 

Мостовые выпрямители на TECHDesign

Вы можете напрямую приобрести высококачественные мостовые выпрямители от известного ведущего поставщика PANJIT на сайте TECHDesign.PANJIT предлагает на ваш выбор однофазные неуправляемые мостовые выпрямители, включая мостовые выпрямители общего назначения и мостовые выпрямители Шоттки. Здесь представлены продукты с различными характеристиками для различных областей применения. Приходите и покупайте прямо сейчас!

 

➔ Найти больше Выбор редакции

 

Продолжить чтение

Повышение коэффициента мощности и КПД с помощью безмостовых выпрямителей с коррекцией коэффициента мощности

Ключевые выводы

  • Выпрямители

    с коррекцией коэффициента мощности (PFC) являются продуктом технологии силовой электроники, обеспечивающим выпрямленное выходное напряжение без ущерба для коэффициента мощности.

  • Помимо высокого падения тока и напряжения, низкий коэффициент мощности приводит к уменьшению активной мощности и увеличению реактивной мощности.

  • Мостовые выпрямители с коррекцией коэффициента мощности

    — это управляемые выпрямители, способные выдавать желаемое выходное напряжение постоянного тока с улучшенным коэффициентом мощности. Они исключают диодный мостовой выпрямитель из схемы выпрямления, отсюда и название безмостового выпрямителя с коррекцией коэффициента мощности.

Рис. 1.Большая часть бытовой электроники работает на постоянном токе.

Со стремительным ростом потребительской электроники трудно представить себе день без использования телефона или ноутбука. Для зарядки этой важной электроники требуется питание постоянного тока. Схемы выпрямителя используются для преобразования источника переменного тока в постоянный ток в устройствах с питанием от постоянного тока. Однако использование обычных диодных мостовых выпрямителей не поддерживается энергетическим сообществом. Это связано с низким коэффициентом мощности на стороне переменного тока диодного выпрямителя.Низкий коэффициент мощности увеличивает ток, потребляемый от источника питания, что приводит к высокому падению напряжения и уменьшению входного напряжения. Увеличение тока также может вызвать гармоники, перегрев, отказ компонентов и неисправность цепи. Выпрямители с коррекцией коэффициента мощности (PFC) являются продуктом технологии силовой электроники, обеспечивающей выпрямленное выходное напряжение без ущерба для коэффициента мощности. Коррекция коэффициента мощности — обширная область исследований, и большинство решений основано на использовании выпрямителей с коррекцией коэффициента мощности.

Безмостовые выпрямители с коррекцией коэффициента мощности заменяют диодные мостовые выпрямители

Рассмотрим зарядку электромобиля от сети. Электромобили питаются от аккумуляторов, и их можно заряжать только от источника постоянного тока. Преобразователь переменного тока в постоянный или выпрямитель необходим для подключения электрической сети переменного тока к электрическим автомобилям. Базовая схема выпрямителя представляет собой выпрямитель с диодным мостом, где выходное напряжение постоянного тока (VDC) определяется уравнением:

, где V m — пиковая амплитуда входного синусоидального переменного напряжения.

Диодный мостовой выпрямитель представляет собой неуправляемый выпрямитель, который постоянно выдает фиксированное постоянное напряжение, как указано в приведенном выше уравнении. Для зарядки мобильного телефона требуется 5 В, тогда как для зарядки электромобиля требуется высокое напряжение в диапазоне от 100 В до 480 В. Безмостовые выпрямители с коррекцией коэффициента мощности — это управляемые выпрямители, способные выдавать желаемое выходное постоянное напряжение с улучшенным коэффициентом мощности. Они исключают диодный мостовой выпрямитель из схемы выпрямления. Регулируемый диапазон выходного напряжения и коррекция коэффициента мощности являются преимуществами выпрямителей ККМ на основе силовой электроники.Они также повышают эффективность преобразования энергии, так как количество каскадов уменьшается за счет исключения диодного моста.

Снижение коэффициента мощности является основным недостатком выпрямителей с диодным мостом, что требует включения выпрямителей с коррекцией коэффициента мощности в системах, подключенных к сети. Давайте обсудим, как диодный мостовой выпрямитель обеспечивает низкий коэффициент мощности.

Диодные мостовые выпрямители и низкий коэффициент мощности

Каждый полупериод входного линейного напряжения выпрямляется одной парой диагонально противоположных диодов. Полученное выходное напряжение постоянного тока не является чистым постоянным током, а имеет пульсирующий характер. Пульсирующий постоянный ток можно сгладить, а компоненты переменного тока можно отфильтровать с помощью емкостных фильтров или LC-фильтров. Со стороны питания нагрузка, подключенная к выпрямителю, подключена параллельно большим конденсаторам. Нагрузка стала более реактивной, что может привести к тому, что линейный ток (ток, потребляемый от источника переменного тока) не совпадет по фазе с линейным напряжением, что приведет к снижению коэффициента мощности.Форма линейного тока также становится несинусоидальной и вводит гармоники в систему.

Помимо высокого падения тока и напряжения, низкий коэффициент мощности приводит к уменьшению активной мощности и увеличению реактивной мощности. Низкий коэффициент мощности требует включения в системы распределительных устройств с более высокими характеристиками и увеличивает счет за энергопотребление. Всех этих побочных эффектов, вызванных выпрямителями с диодными мостами, можно избежать, используя выпрямители с коррекцией коэффициента мощности.

Мостовые выпрямители с коррекцией коэффициента мощности — базовый пример

Выпрямитель с коррекцией коэффициента мощности работает таким образом, что входной ток принимает синусоидальную форму и находится в фазе с напряжением питания переменного тока.Независимо от нагрузки, подключенной к стороне постоянного тока, выпрямитель PFC постоянно контролирует входной линейный ток и формирует его соответствующим образом, чтобы поддерживать pf ближе к единице. Функция выпрямителя PFC регулирует пересечение нуля и пиковые значения входного линейного тока в тот же момент времени, что и входное линейное напряжение переменного тока. Выпрямители PFC обычно представляют собой преобразователи переменного тока в постоянный на основе полупроводниковых переключателей и обладают гибкостью в широком диапазоне выходного напряжения. Как правило, в приложениях постоянного тока повышающие выпрямители с коррекцией коэффициента мощности используются таким образом, чтобы коэффициент усиления преобразователя по напряжению был больше единицы.Они также снижают содержание гармоник во входном токе и повышают THD линейного тока. Безмостовые выпрямители с коррекцией коэффициента мощности выполняют все вышеупомянутые функции без диодного мостового выпрямителя во входной цепи схемы.

Базовый безмостовой выпрямитель с коррекцией коэффициента мощности состоит из двух неуправляемых переключателей (D 1 , D 2 ) и двух управляемых переключателей (S 1 , S 2 ). Полупроводниковые переключатели, такие как MOSFET или IGBT, обычно используются в качестве управляемых переключателей.

В течение положительного полупериода напряжения питания диод D 1 и ключ S 1 проводят, и выпрямитель работает в форсированном режиме. Внутренний диод S 2 образует обратный путь для тока в положительном полупериоде линейного напряжения. Во время отрицательного полупериода диод D 2 и переключатель S 2 работают, создавая повышенное выходное напряжение постоянного тока. Внутренний диод S 1 формирует обратный ток. Показанный выше базовый безмостовой выпрямитель с коррекцией коэффициента мощности формирует входной линейный ток в синусоидальную форму, синфазную с линейным напряжением.Количество диодов в каждом полупериоде уменьшается вдвое по сравнению с диодным мостовым выпрямителем. Уменьшение количества компонентов снижает потери проводимости, а эффективность преобразования переменного тока в постоянный повышается по сравнению с выпрямителем с диодным мостом.

Распространение электрических и электронных устройств с питанием от постоянного тока в сети снижает коэффициент мощности и влияет на качество электроэнергии. Традиционный метод преобразования переменного тока в постоянный с помощью диодного выпрямительного моста усугубляет это состояние.Методы коррекции коэффициента мощности с использованием силовых электронных преобразователей являются популярным методом улучшения коэффициента мощности. Среди различных активных схем ККМ наиболее часто используется безмостовой выпрямитель ККМ, так как он повышает коэффициент мощности и КПД.

Активные диоды для мостовых выпрямителей снижают досадное падение 0,6 В

Бренд AlphaZBL, первые две части:

  • AOZ7200 в SOT-23 для внешних мосфетов ( справа )
  • AOZ7270 в DFN 5×7 с внутренним 600 В 190 мОм MOSFET с суперпереходом ( ниже )

«Оба продукта питаются от сети переменного тока и не требуют внешних цепей», — заявляет компания (которая забыла о необходимости конденсаторов Vcc 1 мкФ 25 В).плюс некоторые дополнительные компоненты для 7200). «Запатентованная схема автоматического смещения потребляет минимальную мощность от сети переменного тока, что делает ее очень эффективной при малой нагрузке или в режиме ожидания».

Поскольку они предназначены для использования с сетевым напряжением, прирост эффективности не так высок, как это может быть достигнуто с помощью низковольтных активных мостов — улучшения, скорее всего, будут использоваться для подавления остаточного рассеивания тепла в очень эффективных источниках питания.

«Современные центры обработки данных стремятся к повышению эффективности и теплоотдачи, поскольку охлаждение центра обработки данных требует столько же, если не больше энергии, как и сами серверы», — сказал менеджер по маркетингу Колин Хуанг.«Продукты AlphaZBL упрощают разработку блоков питания класса энергоэффективности Titanium».

В своем примере типичного приложения мощностью 100 Вт компания A&O видит, что встроенный MOSFET AOZ7270DI повышает эффективность на 0,89% при 115 В переменного тока и на 0,44% при 230 В переменного тока по сравнению с диодным мостом.

Блок-схема AOZ7270  — AOZ7200 выносит наружу полевой МОП-транзистор

Как обычно в активных выпрямителях, МОП-транзисторы используются «наоборот» — n-канальная проводимость, когда исток более положителен, чем сток (эффективно замыкая проводимость внутреннего паразитного диода).

Внутри чипы определяют собственное падение напряжения между катодом и анодом, включая MOSFET, если оно <-105 мВ, и выключая при > 1 мВ в соответствии с техническими данными. Помогая понять здесь полярность, компания описывает этот 1 мВ как обратный порог. Внимательный взгляд на прилагаемую диаграмму показывает, что MOSFET включается, когда анод (исток) увеличивается до 105 мВ над катодом (сток), и выключается, когда ток меняет полярность, когда это напряжение меняет полярность и становится более отрицательным, чем -1 мВ.

Высоковольтный полевой МОП-транзистор, работающий в режиме истощения, управляет зарядкой внешнего конденсатора Vcc.

Устойчивость к перенапряжениям, по-видимому, распространяется: «Оба продукта превышают требования к грозовым перенапряжениям, которые являются критическим требованием в приложениях переменного и постоянного тока», — заявила компания. X-cap сломался из-за перенапряжения 3 кВ, AlphaZBL все еще работает без сбоев».

Помимо серверов, A&O находит применение в блоках питания для настольных компьютеров, игровых консолей и телекоммуникационных устройств, а также в адаптерах для высокопроизводительных ноутбуков и телевизоров.

Часть упаковка МОП-транзистор
BV DSS
МОП-транзистор
R DSON
поставка ПАЗ рабочий
текущий
операция
над
AOZ7200CI СОТ23-5 н/д н/д 12,9–15,2 В 2кВ 12 мкА от -40 до 125°C
АОЗ7270ДИ DFN5x7 600 В 190 мОм 12.9-15.2 2 12 от -40 до 125

Спецификация AOZ7200 находится здесь

Спецификация AOZ7270 находится здесь

Что касается спецификаций (в Rev 1.0), я чувствую, что обеим сторонам нужно больше работы, чтобы улучшить понимание этих потенциально интересных ИС.

Помимо странно описанных пороговых значений, в (более подробном) техническом паспорте AOZ7270 есть много заманчивых, но необъяснимых схем применения, объединяющих два активных диода с двумя стандартными выпрямительными диодами — возможно, для добавления обратной блокировки? (не могу найти упоминания о обратной блокировке).

Еще одна вещь, которую я не могу найти, это объяснение дополнительных внешних RC-цепей на схеме приложения AOZ7200, а также объяснение того, почему не все микросхемы имеют конденсатор Vcc в примерной схеме AOZ7270 — предоставленное рекламное изображение ( справа ) предполагает, что возможно совместное использование конденсаторов Vcc.

Руперт Нив Дизайн 535 | Компрессор с диодным мостом серии 500

Rupert Neve Designs 535 — Компрессор с диодным мостом серии 500

  • Запечатлите дух оригинального компрессора Rupert Neves 2254 с современными обновлениями
  • Расширенный контроль времени
  • Незаменимо для выдвижения вокала, электрогитар, баса и ударных на передний план микса
  • Специальные трансформаторы и выходные усилители класса A
  • Встроенная возможность параллельной компрессии
  • Регуляторы Ratio, Threshold, Gain, SC HPF и Link

Мощный, толстый и универсальный, диодный мостовой компрессор 535 воплощает в себе дух оригинального компрессора Руперта Невеса 2254, предлагая современные обновления, включая улучшенное управление синхронизацией, значительно более низкий уровень шума, полностью ступенчатое управление и возможности внутренней параллельной обработки.Первоначально разработанный для динамической схемы знаменитого Shelford Channel, 535 оснащен специальными трансформаторами Rupert Neve Designs и выходными усилителями класса A, специально разработанными для популярного формата 500-й серии.

В то время как VCA-компрессор, присутствующий в 543, и процессор Master Buss обеспечивают непревзойденную четкость, весомая, гармонически богатая тональность компрессии диодного моста может быть необходима для выдвижения ключевых источников, таких как вокал, электрогитары, бас и барабаны, на передний план микса.Оригинальные компрессоры г-на Руперта Невеса с диодным мостом, такие как 2254, послужили источником вдохновения для дизайна 535. Понимая ограничения оригинальной топологии 2254, были предприняты кропотливые усилия для воспроизведения уникального тона 2254 при одновременном улучшении уровня шума. расширение негибких постоянных времени, добавление полноволнового обнаружения боковой цепи для улучшения динамического отклика, расширение диапазона управления порогом и соотношением, а также увеличение запаса мощности самого диодного моста. Обеспечивая мощный звук этих классических конструкций с повышенной гибкостью для современной эпохи, 535 представляет собой динамичный инструмент, способный заявить о себе практически на любом треке.

Синхронизация решает все
Унифицированный регулятор TIMING состоит из шести выбираемых настроек, тщательно подобранных для различных приложений, что является серьезным отличием от фиксированной атаки 2254. Настройки FAST и MF предназначены для подавления более кратковременных сигналов, таких как барабаны, струнные щипковые инструменты и быстрый вокал. MED и MS имеют немного более медленные атаки и релизы, которые могут пропускать больше переходных процессов, но при этом восстановление немного дольше. Наконец, SLOW и AUTO значительно медленнее и предназначены для более плавного управления уровнем.

Режим FAST увеличивает скорость как атаки, так и восстановления для каждой настройки, фактически удваивая количество постоянных времени с 6 до 12. Режим FAST также позволяет резко увеличить скорость по сравнению с известными предками 535s, обеспечивая значительно больше тональная и операционная универсальность.

Быстрые настройки TIMING обычно приводят к более высоким пульсациям управляющего напряжения от пика к пику и, следовательно, вызывают большее количество гармоник, что приводит к большему количеству цветов в основном звуковом тракте.Более медленные настройки TIMING значительно сглаживают управляющее напряжение и, таким образом, уменьшают гармоническое содержание, добавляемое в аудиотракт, что приводит к более прозрачному сжатию. Также стоит отметить, что из-за природы этой топологии эти постоянные времени немного адаптируются в зависимости от нескольких факторов: степени сжатия, порога и исходного материала. Этот динамически генерируемый временной сдвиг и гармоническое содержание придают компрессору с диодным мостом его уникальную индивидуальность.

Правильная смесь
Учитывая естественно окрашенную звуковую сигнатуру диодного моста 535s, эта встроенная возможность параллельной компрессии особенно полезна.Регулятор BLEND позволяет пользователю вводить меньшее количество экстремальной компрессии в незатронутый сигнал, создавая улучшенный, но естественный звук, который поддерживает динамический диапазон с смешиваемыми цветом и панчом.

Взять под контроль
Помимо регулятора TIMING, компрессором диодного моста можно дополнительно управлять с помощью регуляторов RATIO, THRESHOLD, GAIN, SC HPF и LINK. Регулятор RATIO имеет шесть выбираемых позиций на поворотном переключателе и позволяет пользователю устанавливать наклон кривой компрессора с предварительно выбранным коэффициентом 1.От 5:1 до 8:1. Регулятор THRESHOLD имеет 31 положение и позволяет пользователю настроить точку, с которой начинается компрессия, в диапазоне от -25 dBu до +20 dBu. Регулятор GAIN имеет 31 положение для добавления компенсирующего усиления в диапазоне от -6 дБ до +20 дБ. S/C HPF представляет собой фильтр верхних частот боковой цепи 12 дБ/октаву с частотой 150 Гц. Эта функция может быть чрезвычайно полезна для того, чтобы компрессор меньше реагировал на мощные и часто более продолжительные низкие частоты в миксе или инструменте, которые в противном случае могут дать компрессору более мягкий отклик.LINK разработан для использования шины связи серии 500, встроенной во многие стойки серии 500, такие как R6 или R10 (подробности см.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *