Датчик холла как работает: Датчик Холла | Виды, принцип работы, как проверить

Содержание

Датчик Холла | Виды, принцип работы, как проверить

Что такое датчик Холла


Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения. Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами – это радиоэлемент, который реагирует на внешнее магнитное поле.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C!  Этот эффект и был назван в честь этого великого ученого.

Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла. 

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

где

Supply Voltage – напряжение питания датчика

Ground – земля

Voltage Regulator – регулятор напряжения

А – операционный усилитель

Hall Sensor – собственно сама пластинка Холла

Output transisitor Switch – выходной переключающий транзистор (транзисторный ключ)

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля.

Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила  эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом – датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

Судя по даташиту, на первую ножку подаем плюс питания, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

[quads id=1]

Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.

Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу потух.

Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!

Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков


  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков


  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Они не имеют электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле. В настоящее время они уже почти полностью заменили герконы.

Датчик Холла - описание, схема, как проверить и заменить

Датчик Холла – это один из важнейших элементов бесконтактной системы зажигания бензиновых двигателей. Малейшая неисправность этой детали приводит к серьезным неполадкам в работе мотора. Поэтому, чтобы не допустить ошибки при диагностике, важно знать, как проверить датчик Холла, и при необходимости – уметь его заменить.

Этот материал мы разделили на две части: теоретическую (назначение, устройство и принцип работы датчика Холла) и практическую – признаки неисправности, методы проверки и способы замены.

В конце статьи смотрите видео-инструкцию по самостоятельной замене Датчика Холла.

А перед тем, как проверять датчик Холла на наличие неисправностей, давайте разберемся с его назначением и принципом работы.

Что такое датчик Холла и как он работает

Датчик Холла (он же датчик положения распредвала) является одним из главных элементов трамблера (прерывателя-распределителя). Он находится рядом с валом трамблера, на котором крепится магнитопроводящая пластина, похожая на корону. В пластине столько же прорезей, сколько цилиндров в двигателе. Также внутри датчика находится постоянный магнит.

Принцип работы датчика Холла следующий: когда вал вращается, металлические лопасти поочередно проходят через прорезь в датчике. В результате этого вырабатывается импульсное напряжение, которое через коммутатор попадает в катушку зажигания и, преобразуясь в высокое напряжение, подается на свечи зажигания.

Датчик Холла имеет три клеммы:

  • одна соединяется с "массой",
  • ко второй подходит плюс с напряжением около 6 В,
  • с третьей клеммы уходит преобразованный импульсный сигнал на коммутатор.

Признаки неисправности датчика Холла

Неисправности у датчика Холла проявляются по-разному. Даже опытный мастер не всегда сразу выявит причину неполадок двигателя.

Вот несколько самых распространенных симптомов:

  1. Мотор плохо заводится или не запускается вообще.
  2. На холостом ходу в работе двигателя появляются перебои и рывки.
  3. Машина может дергаться при движении на повышенных оборотах.
  4. Силовой агрегат глохнет во время движения.

При появлении одного из этих признаков, необходимо в первую очередь проверить исправность датчика Холла.

Также не стоит исключать из вида и другие неисправности системы зажигания, встречающиеся в автомобилях.

Как проверить датчик Холла

Простой способ проверки датчика положения распредвала (Холла) показан на следующем видео.

Существует несколько способов, позволяющих проверить исправность датчика Холла. Каждый автомобилист может выбрать для себя наиболее подходящий вариант:

  1. Взять для проверки рабочий датчик у соседа или на автомобильной разборке и установить его вместо "родного". Если проблемы двигателя исчезнут, значит, придется покупать новую деталь.
  2. При помощи тестера можно измерить напряжение на выходе датчика. В исправном устройстве напряжение будет изменяться от 0,4 В до 11 В.
  3. Можно создать имитацию датчика Холла. Для этого с трамблера снимают трехштекерную колодку. Затем включают зажигание и отрезком провода соединяют выходы 3 и 6 коммутатора. Появление искры свидетельствует о выходе датчика из строя.

Если в результате проверки обнаружится, что датчик Холла неисправен, тогда его необходимо заменить на новый.

Замена датчика Холла

Заменить датчик Холла не составит особых затруднений. С этой работой под силу справится своими руками даже начинающему автолюбителю.

Чуть ниже на видео достаточно подробно показан процесс замены датчика в трамблере автомобиля УАЗ.

Обычно замена датчика Холла состоит из нескольких этапов:

  • Прежде всего, трамблер снимается с машины.
  • Далее снимается крышка трамблера и совмещается метка механизма газораспределения с меткой коленвала.
  • Запомнив положение трамблера, нужно открутить крепежные элементы гаечным ключом.
  • При наличии фиксаторов и стопоров, их также следует извлечь.
  • Вал вытаскивают из трамблера.
  • Осталось отсоединить клеммы датчика Холла и открутить его.
  • Оттянув регулятор, неисправная деталь осторожно вынимается через образованную щель.
  • Новый датчик Холла устанавливается в обратной последовательности.

Проверка работоспособности датчика Холла позволяет не только точно определить причину отказа двигателя. Благодаря простым приемам автомобилист сэкономит свое время на ремонт, а также исключит ненужную трату денег.

Видео, как заменить датчик Холла своими руками

Датчик Холла — принцип работы


В системах и устройствах каждого автомобиля есть масса приборов, которые несут только функцию информирования о том или ином процессе. На основе информации, которые эти устройства предоставляют, высшие по иерархии системы принимают решения о том или действии. Эти шпионы называются датчиками и собирают информацию о работе деталей и узлов, а после передают ее водителю. На современных автомобилях водитель избавлен от принятия большинства решений, поэтому всю работу делают за него электронные системы. Бесконтактная система зажигания и датчик Хoлла — яркий тому пример.

Содержание:

  1. Датчик Холла, что это такое
  2. Применение датчика в автомобиле
  3. Преимущества автомобильного датчика Холла
  4. Зажигание с датчиком Холла
  5. Подключение и проверка датчика Холла

Датчик Холла, что это такое

Все автомобильные датчики классифицируются по параметру, который они определяют. Это может быть датчик температуры, датчик массового расхода воздуха, датчик движения или датчик положения. Датчик на эффекте Холла как раз применяется для того, чтобы определять положение коленчатого или распределительного вала.

Вкратце разберемся с этим эффектом, тогда станет понятнее, что представляет собой это устройство. Гальваномагнитное явление было открыто в 1879 году Эдвином Холлом, а суть этого открытия в том, что при установке проводника с постоянным потенциалом в магнитное поле, появляется разность потенциалов, то есть электрический импульс. На основе этого являения работает не только часть системы зажигания автомобиля, но и ионные ракетные двигатели, приборы, которые измеряют напряженность магнитного поля, и даже во многих мобильных устройствах в виде основы для работы электронного компаса.

Применение датчика в автомобиле

Холловское напряжение давно применяется в машиностроении и конструкции серводвигателей. Он идеально подходит для того, чтобы определять углы положения валов, а на машинах архаичной конструкции, датчик применялся для определения момента возникновения искры. Схема датчика проста и мы ее помещаем ниже.

Суть работы устройства в том, что когда подают ток на две клеммы участка полупроводникового материала (на чертеже — клеммы «а») и помещают его в магнитное поле, на двух других клеммах возникает импульсное напряжение, а оно может восприниматься устройством-приемником, как сигнал к определенным действиям.

Автомобильный датчик Холла принцип работы которого показан на схеме ниже, но буквально ее воспринимать было бы ошибкой. Дело в том, что современные датчики Холла представляют собой все элементы начерченного датчика в одном крошечном корпусе. Это стало возможным тогда, когда появились миниатюрные полупроводниковые  приборы.

Преимущества автомобильного датчика Холла

Микроэлектроника позволила добиться от устройства очень маленьких размеров, при этом, сохранив полную функциональность. Основные преимущества устройства современного датчика Холла в следующем:

  • компактность;
  • возможность разместить в любой точке двигателя или любого другого механизма;
  • стабильность работы, то есть при любых оборотах вала, датчик будет корректно реагировать на его вращение;
  • стабильность не только в работе, но и стабильность характеристики сигнала.

Наряду с бесспорными достоинствами и функциональностью устройства, оно имеет некоторые проблемы:

  1.  Помехи — главный враг любого электромагнитного устройства. А помех в электрической цепи автомобиля более, чем достаточно.
  2.  Цена. Датчик, основанный на эффекте Холла дороже обычного магнитоэлектрического датчика.
  3.  Работоспособность датчика Холла сильно зависит от электронной схемы.
  4. Микросхемы могут иметь нестабильные характеристики, что может повлиять на корректность показаний.

Зажигание с датчиком Холла

Теперь попробуем применить датчик на практике, а, точнее, интегрировать его в систему зажигания. А установим мы его в прямо в трамблер для того, чтобы руководить процессом искрообразования в бесконтактной системе. Схема установки датчика Холла показана на рисунке. Он установлен возле вала прерывателя-распределителя, на котором установлена магнитопроводящая пластина. Пластина-ротор имеет столько вращающихся сердечников, сколько цилиндров у двигателя.

Поэтому при прохождении пластины ротора возле датчика с поданным на него напряжением, возникает эффект Холла, с выводов датчика снимается импульс и подается на коммутатор, а оттуда на катушку зажигания. Она преобразует слабый импульс в высоковольтный и передает его по высоковольтному проводу на свечу зажигания.

Подключение и проверка датчика Холла

Подключить любой датчик Холла довольно просто, поскольку он имеет всего три вывода, один из которых минусовой и идет на массу, второй — питание, третий — сигнальный, с него и поступает импульс на коммутатор. Проверить, работает ли датчик довольно просто. Если автомобиль подает признаки неисправности системы зажигания, которые выражаются в плохом пуске или нестабильности работы, первое, что нужно проверить — именно этот датчик.

Для этого не нужно никаких сложных осциллографов, хотя по науке ДХ проверяют именно при помощи осциллографа. Для проверки работоспособности устройства, достаточно просто закоротить 3-й и 6-й вывод на колодке трамблёра. При включенном зажигании закороченные выводы приведут к образованию искры, что говорит о том, что датчик свое отжил.

Замена датчика — занятие на 10 минут, но чтобы не покупать новый, лучше проверить установленный, вполне возможно, что зажигание работает некорректно по другой причине. Таким образом, можно обнаружить поломку, сэкономить время и не покупать лишние детали. Следите за простейшими приборами, и неприятные сюрпризы будут обходить автомобиль стороной. Плотной всем искры и удачи в дороге!

Читайте также:


принцип работы, применение, принципиальная схема, подключение

Датчики стали незаменимой частью жизни людей. Они делают ее проще. Датчики света, звука, движения управляют разными техническими системами. Ту же функцию – управление системами выполняют датчики на основе эффекта Холла (далее ДХ – датчик Холла). Далее будет рассмотрено устройство и особенности датчика Холла, разновидности контроллера, его применение, а также принцип работы.

Описание и применение

Контроллер, в основе которого лежит действие эффекта Холла, относится к датчикам магнитного типа. Они выдают электрический сигнал в зависимости от изменения магнитного поля вокруг них.

Эффект Холла состоит в появлении напряжения в проводнике при прохождении через него электрического тока. Электрический ток меняет магнитное поле, за ним меняется индукция этого поля, в итоге создается разность потенциалов.

Регистр Холла работает следующим образом:

  • вокруг него создается магнитное поле, активирующее контроллер;
  • при внесении в поле какого-либо объекта, оно выходит за первоначальные границы; датчик этот процесс фиксирует и генерирует напряжение, пропорциональное изменению.

Напряжение называется напряжением Холла.

На основе датчика Холла собирают контроллеры приближения, движения, переключатели и другие полезные в быту и промышленности устройства.

Виды, устройство и принцип действия

Всего выделяют два вида датчиков на основе эффекта Холла. Первые – цифровые, вторые – аналоговые. Они значительно отличаются друг от друга в плане конструкции и принципа функционирования.

Цифровые

Цифровые регистры имеют два устойчивых положения: ноль или единица – то есть они срабатывают при определенной величине изменения магнитного поля. В основе таких датчиков лежит устройство под названием триггер Шмитта, которое имеет два устойчивых состояния: логический ноль и логическая единица.

Контроллеры подобного типа делятся на три вида:

  1. Униполярные.
  2. Биполярные.
  3. Омниполярные.

Каждый из этих видов далее будет подробно рассмотрен.

Униполярные

Контроллеры подобного вида работают только в том случае, если к ним прикладывается магнитное поле положительной полярности от южного полюса. Только при этом условии происходит срабатывание и отпускание контроллера.

Биполярные

Эти цифровые датчики работают под действием магнитного поля и южного, и северного полюса. Их особенность состоит в том, что срабатывают они под действием поля от южного полюса, а отпускаются под действием северного полюса.

Омниполярные

Уникальность этих контроллеров Холла состоит в том, что они могут включаться и выключаться под действием поля от любого полюса.

Аналоговые

В отличие от цифровых аналоговые датчики способны выдавать на выходе не два стабильных уровня сигнала, а бесконечное множество. Их принцип работы основан на преобразовании величины индукции поля в напряжение.

Конструкция этих устройств содержит элемент Холла (сам контроллер) и усилитель сигнала.

Применение

И аналоговые (линейные), и цифровые контроллеры нашли широкое применение во всех сферах жизни.

Линейные

Из-за большого количества уровней выходного напряжения такие контроллеры часто применяют в измерительной технике.

Датчик тока

Регистр тока на ДХ сделать очень просто. Необходимо установить лишь правильный преобразователь, который из напряжения, создаваемого в результате прохождения тока через проводник, будет получать ток. Ток с напряжением связаны законом Ома.

Тахометр

Тахометр измеряет частоту вращения чего-либо. Например, вала. Сделать такое устройство на ДХ очень просто. Достаточно установить датчик рядом с вращающимся объектом, а на сам объект повесить небольшой магнит.

Как только магнит будет проходить рядом с датчиком, индукция поля будет изменятся, как и величина напряжения на выходе соответственно.

По изменению последней можно судить о скорости вращения вала.

Датчик вибраций

На основе ДХ можно сконструировать простой регистр вибрации, который будет реагировать на изменение магнитного поля в результате микроперемещений магнита, создающего поле для проводника с током.

Детектор ферромагнетиков

Ферромагнетики – магнитоактивные вещества. Они искажают магнитное поле планеты. По величине этого искажения можно определить, насколько сильный тот или иной ферромагнетик.

Как измерить это искажение? Это можно сделать с помощью ДХ. Если внести в поле магнита, создающего напряжение в проводнике, магнитный материал (ферромагнетик), то поле изменит индукцию и это повлияет на создаваемую разность потенциалов.

Датчик угла поворота

ДХ способны измерять угол вращения какого-то либо объекта. Например, если на нем установлены магнит и контроллер Холла, то по величине индукции (близости магнита к датчику) можно определить угол вращения.

Потребуется лишь правильно определить зависимость между индукцией и углом. В этом поможет университетский курс физики и механики.

Бесконтактный потенциометр

Напряжение с током связаны по закону Ома через сопротивление. Зная ток через проводник и напряжение, не сложно рассчитать подключенное к проводнику сопротивление. Этот факт позволяет строить на ДХ бесконтактные потенциометры.

ДХ в бесколлекторном двигателе постоянного тока

Подобные контроллеры часто применяются в бесколлекторных двигателях в качестве измерителей угла поворота.

Датчик расхода

Датчик расхода на аналоговом ДХ устроен так, что объем пропущенного через этот датчик вещества пропорционален изменению магнитной индукции поля вокруг него.

Датчик положения

Чтобы собрать датчик положения на ДХ, нужно к отслеживаемой цели подключить магнитную пластину. Когда эта пластина будет менять положение относительно магнита в ДХ, поле будет менять свой состав и по изменению индукции этого поля можно будет определить положение объекта.

Цифровые

Такие контроллеры применяются в электронике и промышленности для управления включением и выключением, например, станков с численным программным управлением, а также для регулирования работы автоматизированных систем.

Датчики

На цифровых ДХ собирают различные контроллеры, способные отслеживать изменение различных величин и реагировать на изменения.

Контроллер частоты вращения

Контроллеры Холла, измеряющие частоту вращения чего-либо, называются энкодерами. Обычно их несколько устанавливается на определенную позицию, через которую проходит несколько магнитов с вращающегося объекта.

Как только магнит пересекает первый датчик, последний выдает на выходе уровень логической единицы. С другими контроллерами аналогично. Момент появления логической единицы на одном из датчиков позволяет оценить частоту вращения объекта.

Контроллер системы зажигания авто

Система зажигания устроена таким образом, что имеет два устойчивых состояния: включено-выключено. Такие же устойчивые логические уровни имеют цифровые ДХ. Соединить эти приборы в одно устройство не составляет труда: к системе зажигания присоединяется магнитная пластина.

Когда система находится в положении «включено», пластина пересекает магнитное поле ДХ и разность потенциалов в проводнике контроллера изменяется. Этим изменением можно управлять различными системами авто.

Контроллер положения клапанов

Если к клапану подсоединить магнитную пластину, а ее расположить рядом с контроллером Холла, то при открытии (или, наоборот, закрытии) клапана индукция поля и, как следствие, напряжение в проводнике изменится, а это изменение переведет контроллер в одно из логических состояний (ноль, единица).

Так можно фиксировать открывание и закрывание клапанов.

Контроллер бумаг в принтере

Наличие бумаги в принтере можно фиксировать точно так же, как и положение клапанов. Есть флажок, который устанавливается и пересекает поле постоянного магнита ДХ, если в принтер поступает бумага.

Устройства синхронизации

Датчики синхронизации активно применяются в автомобилестроении, где они регулируют время и объем подачи топлива, углы опережения зажигания и поворота распределительного вала, а также других показателей.

Такие датчики представляют собой намагниченный сердечник с медной обмоткой, на концах которой фиксируют разность потенциалов.

Счетчик импульсов

С помощью эффекта Холла можно считать поступающие в проводник импульсы. Импульс – сигнал высокого уровня. Соответственно, есть сигнал низкого уровня (обычно это 0). Если импульс поступает на проводник, то на его концах создается разность потенциалов под действием магнитного поля. Когда импульс пропадает, разность потенциалов тоже исчезает. По скорости появления-пропадания напряжения в проводнике можно судить о количестве импульсов: зная время и скорость можно определить количество.

Блокировка дверей

Магнит контроллера располагается на двери машины, например, а сам контроллер – на дверной коробке. Как только замок, не снятый с сигнализации, попытается кто-то открыть и потянет на себя ручку двери, подключенная система заблокирует двери и предотвратит доступ в машину. Так и работает блокировка дверей с применением ДХ.

Вместо системы блокировки дверей к датчику можно подключить сирену или другую сигнализацию.

Измеритель расхода

Расходометр на ДХ устроен таким образом, что каждое изменение магнитного потока, фиксируемое контроллером, равняется определенной порции прошедшего вещества (жидкости, например).

Бесконтактное реле

Бесконтактные реле на ДХ так устроены, что при изменении магнитной индукции поля вокруг проводника на нем меняется напряжение и это изменение разности потенциалов провоцирует переключение реле.

Детектор приближения

Контроллер приближения на цифровом ДХ аналогичен контроллеру на линейном ДХ с той лишь разницей, что цифровой выдает только два уровня сигнала – высокий и низкий – а аналоговый –бесконечное множество, то есть, например, цифровым контроллером можно только включить и выключить свет, а аналоговым включить на определенную величину, сделать свет ярче или тусклее, а потом выключить.

Какие функции выполняет в смартфоне

Когда человек подносит смартфон близко к уху, экран телефона гаснет для предотвращения случайных нажатий. Как это удалось реализовать разработчикам? При помощи цифрового датчика приближения, основанного на эффекте Холла.

Как изготовить своими руками

Чтобы сделать простейший ДХ своими руками, понадобится:

  1. Ферритовое кольцо.
  2. Проводник для тока.
  3. Элемент Холла (микросхема ACS 711, например).
  4. Дифференциальный усилитель.

В кольце необходимо пропилить зазор, в котором расположится элемент Холла. Его потребуется подключить к дифференциальному усилителю, который представляет особой ОУ с отрицательной обратной связью.

Если изменение индукции – это своеобразная «ошибка», то ОУ выступает в роли усилителя ошибки, как показано на принципиальной схеме подключения на рисунке 1.

Рис. 1. Принципиальная схема подключения элемента Холла.

Вместо усилителя можно установить микроконтроллер и через ограничительный резистор подключить его к выводу микросхемы ACS 711 в режиме АЦП. Тогда к другому выводу микроконтроллера можно подключить полевой транзистор и получится генератор импульсов, который можно использовать в режиме широтно-импульсной модуляции, например.

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Чем выше температура, тем быстрее движутся заряды в проводнике, тем чувствительнее датчик ко всем колебаниям магнитного поля.

Датчик Холла принцип работы | КакУстроен.ру

Датчик Холла своим появлением обязан американскому учёному-физику Эдвину Холлу, который в 1879 году совершил важное открытие гальваномагнитного явления. Практическая ценность эффекта Холла такова, что датчик, изготовленный на его основе, применяется в самых разных приборах и поныне. Сложное на первый взгляд устройство датчика не является таковым, если детально в нём разобраться. Итак, как же работает датчик Холла?

Датчик Холла: на самом деле – всё просто

Прибор основан на эффекте Холла, который заключается в следующем: если на любой полупроводник, вдоль которого протекает электрический ток, оказать воздействие пересекающим поперёк магнитным полем, то возникнет поле электрическое, называемое электродвижущей силой (ЭДС) Холла. При этом показатель напряжения изменится на величину от 0,4 В до 3 В.

Таким образом, датчик Холла имеет не слишком сложный для понимания принцип работы. Для большей ясности стоит привести наглядный пример. Для создания эффекта Холла понадобятся тонкая пластинка-полупроводник, источник электрического тока, постоянный магнит, провода. Ток пропускается между двумя сторонами пластинки, параллельными друг другу. К двум другим сторонам крепятся провода. Одновременно с этим к полупроводнику подносится постоянный магнит. Это и есть генератор Холла.

Можно сделать его импульсным. Для этого достаточно разместить между пластинкой и магнитом движущийся экран с щелями в нём. Такая щелевая конструкция и принцип работы характерны для всех датчиков Холла.

От теории – к практике. Датчик холла: принцип работы и назначение современных генераторов

Практическое применение ЭДС Холла началось далеко не сразу после её открытия, так как полупроводники с нужными свойствами научились изготавливать промышленным способом лишь через несколько десятков лет.

Первые приборы получались довольно громоздкими и не очень эргономичными. Новую жизнь в судьбу датчика Холла привнесло развитие микроэлектроники, когда были придуманы микросхемы. Их стали активно использовать в генераторах Холла. Благодаря этому был налажен выпуск миниатюрных датчиков, которые могут быть линейными (датчики тока, вибрации, положения, расхода и т.п.) и логическими (датчики приближения, частоты вращения, импульсов и т.д.), цифровыми и аналоговыми.

С помощью датчика Холла стали успешно измерять ток, мощность, скорость, расстояние. Даже в CD-приводе любого персонального компьютера используется ЭДС Холла. Но наибольшее применение генератор Холла получил в автомобильной промышленности – для измерения положения распределительного и коленчатого валов, в качестве бесконтактного электронного зажигания и в других целях. Датчик Холла полезен тем, что он считывает и предоставляет электронному блоку управления информацию, нужную для нормальной работы автомобиля.




Несомненные преимущества датчика Холла – его дешевизна, неприхотливость, долговечность и бесконтактность. Надёжность прибора обусловлена тем, что в нём отсутствуют физически взаимодействующие (трущиеся друг о друга) детали.

Датчик Холла - назначение и принцип действия

На примере датчика Холла, применяемого в бесконтактной системе зажигания автомобилей ВАЗ 2108, 2109, 21099.

Назначение датчика Холла

Датчик Холла предназначен для определения момента искрообразования в бесконтактной системе зажигания (БСЖ) автомобиля.

Принцип действия датчика Холла

Принцип действия датчика основан на эффекте Холла, когда магнитное поле проводника изменяется при прохождении в нем специального экрана с прорезями.

На практике это выглядит так: датчик Холла автомобилей ВАЗ 2108, 2109, 21099 установлен на опорной пластине трамблера и состоит из двух частей – магнита и элемента Холла с усилителем. На датчик Холла подается напряжение с коммутатора (вывод 5) через токовый красный провод. «Масса» так же с коммутатора – бело-черный провод с вывода 3. Магнит создает магнитное поле, элемент Холла принимает его, создает напряжение, которое усиливает усилитель и через зеленый импульсный провод напряжение подается на коммутатор (вывод 6).

Для изменения магнитного поля применяется экран с четырьмя прорезями, который вращается вместе с валом распределителя зажигания (трамблера) проходя между магнитом и принимающей частью датчика Холла. При прохождении в пазу датчика прорези экрана магнитное поле имеет определенную величину и соответственно датчик выдает на коммутатор электрический ток определенного напряжения (9-12 В). При прохождении в пазу датчика зубца экрана магнитное поле экранируется и не поступает на приемник датчика, при этом напряжение, поступающее на коммутатор, падает (0-0,5 В).

Устройство датчика Холла. на примере трамблера системы зажигания карбюраторного двигателя автомобилей ВАЗ 2108, 2109, 21099

Соответственно коммутатор прерывает электрический ток, подающийся на катушку зажигания, магнитное поле в ней резко сжимается и, пересекая витки обмотки, производит ЭДС 22-25 кВ (ток высокого напряжения). Ток через бронепровода попадает на распределитель трамблера и далее на свечи зажигания, производя разряд, поджигающий топливную смесь. Прохождение каждого из четырех зубцов экрана в прорези датчика соответствует такту сжатия в одном из четырех цилиндров двигателя.

Примечания и дополнения

— На эффекте Холла основан принцип действия еще нескольких автомобильных датчиков, например, датчика скорости инжекторных ВАЗ 21083, 21093, 21099.

— Подробно о неисправностях датчика Холла — «Признаки неисправности датчика Холла».

— Самостоятельно снимаем Датчик Холла — «Как своими силами снять и заменить датчик Холла?».

Еще статьи по датчикам автомобилей ВАЗ 2108, 2109, 21099

— Проверка датчика Холла

— Датчик указателя температуры охлаждающей жидкости автомобилей ВАЗ 21083, 21093, 21099

— Принцип действия бесконтактной системы зажигания

— Схема «устройство датчика кислорода ЭСУД ВАЗ 21083, инжектор»

— Датчик давления масла ВАЗ 2108, 2109, 21099

— Датчик уровня тормозной жидкости ВАЗ 2108, 2109, 21099

— Датчик уровня топлива ВАЗ 2108, 2109, 21099

Что такое датчик Холла?

Датчик Холла (датчик положения) представляет собой датчик магнитного поля. Работа устройства основана на эффекте Холла. Данный эффект основан на следующем принципе: если поместить определенный проводник с постоянным током в магнитное поле, то в таком проводнике возникает поперечная разность потенциалов (напряжение Холла). Другими словами, устройство служит для измерения напряжённости магнитного поля. Сегодня датчик Холла может быть как аналоговым, так и цифровым.

Сфера применения датчиков Холла очень широка. Устройство используется в таких схемах, где требуется бесконтактное измерение силы тока. Что касается автомобилей, датчик Холла служит для измерения угла положения распределительного или коленчатого вала, а также нашел свое применение в системе зажигания, указывая на момент образования искры. 

Содержание статьи

Как работает датчик Холла

Во время своих исследований в 1879 году физик Холл выявил такой эффект, что если в магнитном поле находится пластина, на которую подается напряжение (ток протекает через пластину), тогда электроны в указанной пластине начинают отклоняться. Такое отклонение происходит перпендикулярно по отношению к тому направлению, которое имеет магнитный поток.

Также направление этого отклонения происходит в зависимости от той полярности, которую имеет магнитное поле. Получается, электроны будут иметь разную плотность на разных сторонах пластины, создавая разные потенциалы. Обнаруженное явление получило название эффект Холла.

Другими словами, Холл поместил прямоугольную полупроводниковую пластину в магнитное поле и на узкие грани такого полупроводника подал ток. В результате на широких гранях появилось напряжение. Дальнейшее развитие технологий позволило создать на основе обнаруженного эффекта компактное устройство-датчик. Главным преимуществом датчиков подобного рода выступает то, что частота срабатывания устройства не смещает момент измерения. Выходной сигнал от такого устройства всегда устойчивый, без всплесков.

Простейший датчик состоит из:

  • постоянного магнита;
  • лопасти ротора;
  • магнитопроводов;
  • пластикового корпуса;
  • электронной микросхемы;
  • контактов;

Работа устройства построена на следующей схеме: через зазор осуществляется проход металлической лопасти ротора, что позволяет шунтировать магнитный поток. Результатом становится нулевой показатель индукции на микросхеме. Выходной сигнал по отношению к массе практически равняется показателю напряжения питания.

Датчик Холла в системе зажигания является аналоговым преобразователем, который непосредственно коммутирует питание. 

Среди недостатков стоит выделить чувствительность устройства к электромагнитным помехам, которые могут возникнуть в цепи. Также наличие электронной схемы в устройстве датчика несколько снижает его надежность.

Рекомендуем также прочитать статью об устройстве топливного электробензонасоса, а также о механическом решении. Из этой статьи вы узнаете о назначении, конструктивных особенностях и принципах работы данных устройств.

Аналоговые и цифровые решения

Датчики на основе эффекта Холла фиксируют разницу потенциалов. Аналоговое решение, рассмотренное выше, основано на преобразовании индукции поля в напряжение с учетом полярности и силы поля.

Принцип работы цифрового датчика состоит в фиксации присутствия или отсутствие поля. В случае достижения индукцией определенного показателя датчик отмечает наличие поля. Если индукция не соответствует необходимому показателю, тогда цифровой датчик показывает отсутствие поля. Чувствительность датчика определяется его способностью фиксировать поле при той или иной индукции. 

Цифровой датчик Холла может быть биполярным и униполярным. В первом случае срабатывание и отключение устройства происходит посредством смены полярности. Во втором случае включение происходит при появлении поля, отключается датчик в результате того, что индукция снижается.

Самостоятельная проверка устройства

Активное использование данного устройства в автомобилях означает, что при появлении определенных неисправностей или сбоев в работе ДВС может возникнуть острая необходимость проверить датчик Холла своими руками.

Перед началом работ по отсоединению разъема кабеля, который подключен к устройству, следует обязательно выключать зажигание!

Игнорирование данного правила может вывести датчик Холла из строя. Необходимо добавить, что проверка устройства при помощи контрольной лампы также недопустима.

  1. Одним из самых быстрых способов проверки является установка заведомо исправного подменного датчика на автомобиль. Если признаки неисправности после установки исчезают, тогда причина очевидна.
  2. Вторым способом, который подойдет для проверки датчика в системе зажигания, является проверка наличия искры в момент включения зажигания. Дополнительно потребуется осуществить подсоединение концов провода к нужным выходам на коммутаторе.
  3. Для максимально точной диагностики устройство лучше всего поверять при помощи осциллографа. Также в определенных условиях датчик проверяют при помощи мультиметра. Указанный мультиметр переводят в режим вольтметра, после чего подсоединяют к выходному контакту на датчике. Рабочий датчик Холла выдаст показания от 0.4 Вольт до 3-х. Если показания ниже минимального порога, тогда высока вероятность выхода датчика из строя.

Читайте также

Что такое эффект Холла и как работают датчики на эффекте Холла

В этом уроке мы узнаем, что такое эффект Холла и как работают датчики на эффекте Холла. Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.

РЕКОМЕНДУЕТСЯ Обзор

Эффект Холла - это наиболее распространенный метод измерения магнитного поля, а датчики на эффекте Холла очень популярны и находят множество современных применений. Например, их можно найти в транспортных средствах в качестве датчиков скорости вращения колес, а также датчиков положения коленчатого или распределительного вала.Также они часто используются как переключатели, компасы MEMS, датчики приближения и так далее. Теперь мы рассмотрим некоторые из этих датчиков и посмотрим, как они работают, но сначала давайте объясним, что такое эффект Холла.

Что такое эффект Холла?


Вот эксперимент, объясняющий эффект Холла: если у нас есть тонкая проводящая пластина, как показано на рисунке, и мы настроим ток, протекающий через нее, носители заряда будут течь по прямой линии от одной стороны пластины к другой.

Теперь, если мы поднесем некоторое магнитное поле к пластине, мы нарушим прямой поток носителей заряда из-за силы, называемой Сила Лоренца (Википедия).В таком случае электроны отклонятся на одну сторону пластины, а положительные отверстия - на другую сторону пластины. Это означает, что если мы теперь поместим измеритель между двумя другими сторонами, мы получим некоторое напряжение, которое можно измерить.

Таким образом, эффект получения измеримого напряжения, как мы объясняли выше, называется эффектом Холла в честь Эдвина Холла, который открыл его в 1879 году.

Датчики на эффекте Холла

Базовый элемент Холла магнитных датчиков на эффекте Холла в основном обеспечивает очень небольшое напряжение, всего несколько микровольт на гаусс, поэтому эти устройства обычно производятся со встроенными усилителями с высоким коэффициентом усиления.

Существует два типа датчиков Холла: один с аналоговым, а другой с цифровым выходом. Аналоговый датчик состоит из регулятора напряжения, элемента Холла и усилителя. Из принципиальной схемы видно, что выходной сигнал датчика является аналоговым и пропорционален выходному сигналу элемента Холла или напряженности магнитного поля. Датчики этого типа подходят и используются для измерения близости из-за их непрерывного линейного выхода.

С другой стороны, датчики цифрового выхода обеспечивают только два состояния выхода: «ВКЛ» или «ВЫКЛ».Датчики этого типа имеют дополнительный элемент, как показано на принципиальных схемах. Это триггер Шмитта, который обеспечивает гистерезис или два разных пороговых уровня, поэтому выходной сигнал может быть высоким или низким. Для получения более подробной информации о том, как работает триггер Шмитта, вы можете проверить это в моем конкретном руководстве.

Примером датчика этого типа является переключатель на эффекте Холла. Они часто используются в качестве концевых выключателей, например, в 3D-принтерах и станках с ЧПУ, а также для обнаружения и позиционирования в системах промышленной автоматизации.

Другим современным применением датчиков Холла является измерение скорости вращения колеса / ротора или числа оборотов в минуту, а также определение положения коленчатого или распределительного вала в системах двигателя. Эти датчики состоят из элемента Холла и постоянного магнита, которые расположены рядом с зубчатым диском, прикрепленным к вращающемуся валу.

Зазор между датчиком и зубьями диска очень мал, поэтому каждый раз, когда зуб проходит рядом с датчиком, изменяется окружающее магнитное поле, что приводит к тому, что выходной сигнал датчика становится высоким или низким.Таким образом, выходной сигнал датчика представляет собой прямоугольный сигнал, который можно легко использовать для расчета числа оборотов вращающегося вала.

Что такое датчик Холла?

Датчик на эффекте Холла - это электронное устройство, предназначенное для обнаружения эффекта Холла и преобразования его результатов в электронные данные, для включения и выключения цепи, для измерения переменного магнитного поля, для обработки с помощью встроенного компьютера. или отображается в интерфейсе. В 1879 году ученый Эдвин Холл обнаружил, что если магнит помещается перпендикулярно проводнику с постоянным током, электроны, протекающие внутри проводника, притягиваются в одну сторону, создавая разность потенциалов в заряде (т.е. Напряжение). Таким образом, эффект Холла указывает на наличие и величину магнитного поля вблизи проводника.

Используя магнитные поля, датчики на эффекте Холла используются для обнаружения таких переменных, как близость, скорость или смещение механической системы. Датчики на эффекте Холла являются бесконтактными, что означает, что они не должны контактировать с физическим элементом. Они могут генерировать цифровой (включенный и выключенный) или аналоговый (непрерывный) сигнал в зависимости от их конструкции и предполагаемой функции.

Переключатели и защелки на эффекте Холла включены или выключены. Переключатель на эффекте Холла включается при наличии магнитного поля и выключается при удалении магнита. Защелка на эффекте Холла включается (закрывается) при приложении положительного магнитного поля и остается включенной даже при удалении магнита. При наложении отрицательного магнитного поля защелка на эффекте Холла отключается (открывается) и остается выключенной даже после удаления магнита.

Линейные датчики Холла (аналоговые) обеспечивают точные и непрерывные измерения на основе напряженности магнитного поля; они не включаются и не выключаются.В датчике на эффекте Холла элемент Холла передает разность электрических потенциалов (напряжение, вызванное магнитными помехами) в усилитель, чтобы сделать изменение напряжения достаточно большим, чтобы оно было воспринято встроенной системой.

Датчики

на эффекте Холла используются в сотовых телефонах и GPS, сборочных линиях, автомобилях, медицинских устройствах и многих устройствах IoT. Ожидается, что рынок датчиков на эффекте Холла будет расти более чем на 10% в год и к 2026 году достигнет 7,55 млрд долларов.

Что такое датчик Холла и как он работает?

Ⅰ Введение

Эффект Холла является наиболее распространенным методом измерения магнитных полей, а датчики на эффекте Холла широко используются и находят широкий спектр применений в наше время. Например, они используются в автомобилях в качестве датчиков скорости вращения колес и датчиков положения коленчатого или распределительного вала. Их часто используют в качестве переключателей, МЭМС-компасов, датчиков приближения и других приложений.Теперь мы рассмотрим некоторые из этих датчиков, чтобы увидеть, как они работают, но сначала давайте определим эффект Холла.


Каталог


Ⅱ Что такое эффект Холла

Эксперимент, описывающий эффект Холла , выглядит следующим образом: если у нас есть тонкая проводящая пластина, подобная показанной, и подавать на нее ток, носители заряда будут течь по прямой линии от одной сторона к другой.

Теперь, если мы приложим магнитное поле около пластины, мы можем нарушить прямой поток носителей заряда из-за силы, известной как сила Лоренца.Электроны отклонятся на одну сторону пластины, а положительные дырки - на другую. Это означает, что если мы теперь соединим две другие стороны с помощью измерителя, мы можем получить напряжение, которое можно измерить.

Как упоминалось ранее, эффект получения измеримого напряжения известен как эффект Холла в честь Эдвина Холла, который открыл его в 1879 году.


Ⅲ Что такое датчик на эффекте Холла

Датчик на эффекте Холла обнаруживает изменения в силе магнитного поля.Этот датчик открывает широкий спектр возможностей для применения в роботизированных датчиках.

Их можно использовать в таких приложениях, как определение приближения, позиционирования, скорости и тока. Обычно они используются на пневматических цилиндрах, где они используются для передачи положения цилиндра в ПЛК или роботизированный контроллер.

Автомобильная промышленность, персональная электроника и робототехника - это лишь некоторые из отраслей, в которых используются датчики Холла. В зависимости от области применения они имеют некоторые преимущества перед другими датчиками.

Они полностью закрыты, поскольку работают с магнитным полем, что делает их менее уязвимыми для повреждений в грязных или влажных условиях. Они реже, чем механические системы, изнашиваются или искажают показания после большого количества циклов.

Датчики на эффекте Холла

полезны для широкого спектра применений благодаря своей надежности и долговечности, поскольку для правильной работы им не нужен физический контакт. Они могут обеспечить большую повторяемость и точность, чем механические узлы, потому что они физически не мешают работе оборудования или инструментов.


Ⅳ Как работает датчик на эффекте Холла

Чтобы понять, как работает датчик на эффекте Холла, лучше всего начать с основ эффекта Холла. Когда ток течет через проводник в присутствии магнитного поля, электроны отталкиваются магнитным полем к одной стороне проводника.

Эффект Холла можно использовать для измерения электрического тока в проводниках, построенных с учетом определенных параметров. Например, напряжение на плоском металлическом проводнике обнаруживает эффект Холла намного лучше, чем напряжение на примерно единице.

Электроны, движущиеся по проводнику, оттесняются в сторону, когда к плоской пластине прикладывается магнитное поле. Поскольку сумму прогибов можно вычислить, устройство имеет широкий спектр применения.

Плоский проводник используется для расчета магнитной силы в датчике на эффекте Холла. Когда магнит приближается к датчику, датчик обнаруживает его и отправляет информацию контроллеру.

Заряд через пластину смещается в одну сторону, в то время как магнит находится рядом с датчиком, создавая положительный заряд с одной стороны и отрицательный - с другой.Определяется разница напряжений между двумя сторонами пластины, и ее можно использовать для расчета магнитной силы или близости датчика.


Ⅴ Типы датчиков на эффекте Холла

Датчики на эффекте Холла бывают двух основных типов:

5,1 Порог

Когда напряженность поля достигает определенной амплитуды и / или полярности, порог (также известный как цифровой или двухпозиционный) производит постоянное напряжение холла. Существует несколько различных конфигураций пороговых устройств, таких как фиксирующие устройства, которые включаются, когда положительная напряженность поля достигает порогового значения, но выключаются только тогда, когда отрицательное поле такой же напряженности достигает порогового значения, устройства, которые включаются, когда только положительное поле достигает порогового значения. порог, но выключены в противном случае, и устройства, которые включаются, когда положительное или отрицательное поле достигает порога.Пороги также можно запрограммировать на некоторых компьютерах.

5.2 Линейный

Линейный (аналоговый выходной датчик) генерирует напряжение Холла, пропорциональное напряженности магнитного поля вокруг него. Полярность колебаний напряжения определяется направлением окружающего магнитного поля. Когда выразительные движения должны восприниматься как небольшие изменения положения, в музыкальных приложениях чаще используются линейные устройства.


Ⅵ Датчик на эффекте Холла Использует

Датчики на эффекте Холла питаются от магнитного поля, и во многих приложениях один постоянный магнит, подключенный к движущемуся валу или устройству, может управлять устройством.Существует множество различных форм движений с обнаружением магнита, в том числе «лобовое», «вбок», «толкай-толкай» и «толкай-толкай». Для обеспечения оптимальной чувствительности магнитные линии потока всегда должны быть перпендикулярны чувствительной области системы и иметь правильную полярность, независимо от конфигурации.

Магниты с высокой напряженностью поля со значительным изменением напряженности поля для необходимого движения также необходимы для обеспечения линейности. Существует несколько способов обнаружения магнитного поля, и две из наиболее распространенных конфигураций обнаружения с использованием одного магнита показаны ниже: Обнаружение лобового и бокового обнаружения - это два типа обнаружения.

6.1 Обнаружение лобового столкновения

Магнитное поле должно быть перпендикулярно системе обнаружения эффекта Холла и приближаться к датчику прямо к активной поверхности для «лобового обнаружения», как следует из названия. В каком-то смысле это «фронтальный» подход.

Этот прямой подход создает выходной сигнал VH, который в линейных устройствах отражает мощность магнитного поля или плотность магнитного потока как функцию расстояния от датчика Холла.Выходное напряжение увеличивается, когда магнитное поле приближается и, следовательно, становится сильнее, и наоборот.

Положительные и отрицательные магнитные поля также можно различать линейными приборами. Для индикации определения положения нелинейные устройства могут быть сделаны так, чтобы запускать выход «ВКЛ» на предварительно установленном расстоянии воздушного зазора от магнита.

6.2 Обнаружение сбоку

«Обнаружение сбоку» - вторая конфигурация обнаружения.Это требует перемещения магнита вбок по лицевой стороне элемента с эффектом Холла. Например, подсчет вращающихся магнитов или измерение скорости вращения двигателей, вбок или обнаружение скольжения полезно для обнаружения наличия магнитного поля, когда оно движется по лицевой стороне элемента Холла в пределах фиксированного расстояния воздушного зазора.

Линейное выходное напряжение, представляющее как положительный, так и отрицательный выходной сигнал, может генерироваться в зависимости от направления магнитного поля, когда оно проходит через осевую линию нулевого поля датчика.Это позволяет идентифицировать направленное движение как в вертикальном, так и в горизонтальном направлениях.

Датчики на эффекте Холла

имеют широкий спектр применения, особенно в качестве датчиков приближения. Там, где к факторам окружающей среды относятся вода, вибрация, грязь или масло, например, в автомобилях, их можно использовать вместо оптических и световых датчиков. Настоящее зондирование также может быть выполнено с помощью инструментов на эффекте Холла.

Круговое электромагнитное поле образуется вокруг проводника, когда через него проходит ток, как мы узнали в предыдущих уроках.Электрические токи в диапазоне от нескольких миллиампер до тысяч ампер можно рассчитать по индуцированному магнитному полю, поместив датчик Холла рядом с проводником без использования больших или дорогих трансформаторов и катушек.

Датчики на эффекте Холла

могут использоваться для обнаружения ферромагнитных материалов, таких как железо и сталь, в дополнение к обнаружению наличия или отсутствия магнитов и магнитных полей, путем размещения небольшого постоянного «смещающего» магнита позади активной области устройства.Любой сдвиг или нарушение этого магнитного поля, вызванное введением железистого материала, может быть обнаружено с чувствительностью до мВ / Г.

В зависимости от типа устройства, цифрового или линейного, существует множество способов подключения датчиков Холла к электрическим и электронным схемам. Использование светоизлучающего диода, как показано ниже, является очень простым и легким в сборке примером.

Датчики на эффекте Холла

можно использовать по-разному из-за различных магнитных перемещений.Как в промышленных, так и в бытовых условиях эти инструменты чаще всего применяются для измерения присутствия, положения и близости объектов.

Датчики тока, датчики давления и датчики потока жидкости - все это популярные приложения для датчиков Холла в промышленных и производственных процессах. В трансформаторах тока датчики на эффекте Холла представляют собой недорогой бесконтактный способ измерения магнитного потока постоянного тока.


Ⅶ Применение датчика Холла

7.1 Датчик на эффекте Холла для вращающихся приложений

Датчики скорости работают, подсчитывая количество оборотов вала или диска за заданный промежуток времени. Диск, прикрепленный к валу двигателя, вращается рядом с датчиком Холла и имеет магниты по периметру.

Состояние датчика смещается по мере движения магнитов через него. На основании этих данных датчик рассчитывает обороты. Например, если диск или вал имеет четыре магнита, датчик может переключать состояния четыре раза за оборот.

Это позволяет датчику измерять число оборотов в минуту на основе известного параметра, согласно которому на один оборот будет приходиться четыре импульса.

Эта технология используется в бесщеточных двигателях постоянного тока для отслеживания скорости и определения положения вала. Это позволяет им работать в определенных диапазонах оборотов, но при этом изменять скорость двигателя в любое время.

Это значительно упрощает управление двигателями. Это также позволяет им контролировать положение вала на двигателе, что делает их гораздо более гибкими в робототехнике, чем двигатели без датчиков Холла.

7.2 Датчик на эффекте Холла в приложениях для измерения расстояния

На основе магнитного поля датчики на эффекте Холла могут обнаруживать приближение. Если напряженность магнитного поля постоянна и определена, можно определить положение датчика по отношению к магниту.

Когда магнит попадает в зону его действия, датчик меняет состояние и предупреждает контроллер. Бесконтактные датчики на эффекте Холла можно использовать по-разному. Роботизированные инструменты, роботизированные захваты, пневматика и множество других не роботизированных приложений используют их.

7.3 Использование бесконтактных датчиков на эффекте Холла в робототехнике

Бесконтактные датчики на эффекте Холла также могут использоваться в робототехнике. Они хороши для определения магнитной силы и близости магнита. Датчики на эффекте Холла могут использоваться для удовлетворения различных требований безопасности. Они часто используются в инструментах для подтверждения зажима на управляющее устройство.

Подтверждение зажима блокирует работу ячейки до тех пор, пока все секции не будут полностью зажаты, что позволяет ей функционировать безопасно.Магниты, встроенные в инструмент, которые попадают в диапазон чувствительности датчика Холла при правильном зажиме, обычно требуют подтверждения детали. Роботизированный контроллер или ПЛК знает, что ячейка безопасна для работы, когда все датчики отображают сигнал.

В робототехнике датчики на эффекте Холла чрезвычайно полезны. Для определения изменений в клетке большинство роботизированных клеток используют датчик Холла. Они используются для считывания скорости и положения бесщеточных двигателей постоянного тока. Они используются в пневматических цилиндрах, чтобы определить, выдвинут или втянут цилиндр.

Их также можно использовать для поддержания здоровья персонала, уведомив контролирующий орган о подтверждении зажима инструмента. Без датчиков Холла индустрия робототехники будет совсем другой.


Ⅷ Как проверить датчики на эффекте Холла

Датчики положения распределительного и коленчатого валов представляют собой датчики на эффекте Холла, которые управляют положением распредвала и коленчатого вала соответственно. Перед датчиком проходит небольшой магнит. Выходное напряжение увеличивается по мере приближения магнита к датчику.Напряжение падает по мере удаления магнита от датчика. Для оценки положения вала электронный модуль управления отслеживает эти выходные сигналы датчиков. Контроллер ЭСУД может поддерживать точное управление двигателем благодаря датчикам положения распределительного и коленчатого валов, а также другим электрическим датчикам, соленоидам и форсункам. Понимание основ датчиков на эффекте Холла поможет вам правильно протестировать сомнительный датчик.

• Шаг 1

Снимите датчик с блока цилиндров.Удалите масло, грязь или металлическую стружку с наконечника датчика.

• Шаг 2

Изучите схему двигателя, чтобы найти датчик распределительного вала или сигнал коленчатого вала, поступающий в ECM. Сигнальный провод от контроллера ЭСУД должен быть удален. Подключите сигнальный провод к одному концу перемычки. Подключите другой конец перемычки к краю датчика Optimistic. Подключите отрицательный щуп к стабильной земле шасси. При необходимости подключите отрицательный щуп к заземлению шасси с помощью перемычки и зажимов типа «крокодил».

Чтобы проверить напряжение постоянного тока, включите электрический вольтметр. Поверните пусковой переключатель в положение «Вкл.». В идеале напряжение должно быть около 0 вольт. Медленно поверните магнит перпендикулярно передней части датчика. Когда магнит приближается к датчику, напряжение должно расти, а по мере удаления напряжение должно падать. Проблема с датчиком или его подключениями, если напряжение не меняется.


Ⅸ FAQ

1. Как работает датчик Холла?

Используя полупроводники (например, кремний), датчики на эффекте Холла работают, измеряя изменяющееся напряжение, когда устройство находится в магнитном поле.Другими словами, как только датчик на эффекте Холла обнаруживает, что теперь он находится в магнитном поле, он может определять положение объектов.

2. Что запускает устройство на эффекте Холла?

Датчики

на эффекте Холла активируются магнитным полем, и во многих приложениях устройством можно управлять с помощью одного постоянного магнита, прикрепленного к движущемуся валу или устройству. Существует множество различных типов движений магнита, таких как «лобовое», «вбок», «толкающее-толкающее» или «толкающее-толкающее» и т.д.

3. Для чего нужен датчик Холла?

Датчики

на эффекте Холла обычно используются для измерения скорости вращения колес и валов, например, для определения угла опережения зажигания двигателя внутреннего сгорания, тахометров и антиблокировочных тормозных систем. Они используются в бесщеточных электродвигателях постоянного тока для определения положения постоянного магнита.

4. В чем принцип эффекта Холла?

Принцип эффекта Холла гласит, что когда токопроводящий проводник или полупроводник помещается в перпендикулярное магнитное поле, напряжение может быть измерено под прямым углом к ​​пути тока.

5. Насколько чувствителен датчик Холла?

Эти логометрические устройства имеют чувствительность 5 мВ / Гс и 2,5 мВ / Гс соответственно, диапазон рабочих температур от -40 ° C до + 150 ° C и температурную компенсацию во всем рабочем диапазоне.

6. В чем разница между датчиком на эффекте Холла и индуктивным датчиком?

Индуктивные датчики обнаруживают металлические предметы, а датчики на эффекте Холла обнаруживают наличие магнитного поля.

7. Каково происхождение эффекта Холла?

История эффекта Холла начинается в 1879 году, когда Эдвин Х. Холл обнаружил, что небольшое поперечное напряжение появляется на тонкой металлической полоске с током в приложенном магнитном поле.

8. Как определить неисправность датчика Холла?

Потеря мощности, громкий шум и ощущение, что двигатель каким-то образом заблокирован, часто являются признаком того, что либо контроллер не работает, либо у вас могут быть проблемы с датчиками холла внутри двигателя.

9. Что находится внутри датчика Холла?

Датчик на эффекте Холла представляет собой тонкую полоску из полупроводникового материала, похожую на микросхему внутри микро- или RAM-устройства. Он работает по принципу электромагнетизма. При перемещении магнита достаточно близко к датчику генерируется небольшое напряжение. Это идет на усилитель, который повышает напряжение до уровня, достаточного для использования другими электронными устройствами.

Лучший пример - датчик скорости колеса.Небольшой магнит прикреплен к внутренней части автомобильного колеса. Каждый раз, когда магнит проходит мимо датчика, происходит один оборот колеса. Информация передается в блок спидометра и одометра, где отображается водителю.

10. Для чего нужен датчик Холла в автомобиле?

Датчик на эффекте Холла работает с помощью магнитного поля и также может называться датчиком положения кривошипа. Он проверяет положение коленчатого вала двигателя, чтобы зажигались свечи зажигания.Если он плохой, двигатель может заглохнуть и не запустится без сигнала датчика Холла.

Датчики

на эффекте Холла также могут использоваться для определения скорости, расстояния или положения коленчатого вала двигателя и положения распределительного вала. Все датчики на эффекте Холла имеют разную внутреннюю электронику с разными программными измерениями и не являются взаимозаменяемыми.

Что такое датчик Холла?

Автор: Морин ВанДайк |

Датчики на эффекте Холла

используются для обнаружения и измерения приближения, положения и скорости благодаря их способности распознавать магнитные поля.В качестве бесконтактных датчиков они полезны для измерения переменного и постоянного тока. В этом блоге будут описаны принципы, лежащие в основе датчиков на эффекте Холла, и их промышленное применение.

Что такое датчик Холла?

Эффект Холла, названный в честь его первооткрывателя Эдвина Холла, относится к генерации напряжения в проводнике с током, перпендикулярном направлению тока, когда проводник погружен в магнитное поле. Датчик на эффекте Холла представляет собой тонкий кусок проводника, по длине которого течет ток, и датчик напряжения, подключенный по его ширине.

Когда электрический ток проходит через датчик в магнитном поле, датчик регистрирует небольшое напряжение. Это напряжение можно использовать для измерения колебаний магнитного поля, вызванных изменениями положения, близости, давления, скорости, температуры или других факторов.

Поскольку датчики на эффекте Холла не имеют движущихся частей, они более надежны и долговечны, чем герконы. Однако они также более дорогие, поскольку через них протекает постоянный электрический ток.

Типы датчиков Холла

Датчики

на эффекте Холла делятся на две категории: аналоговые и цифровые. Аналоговые датчики выдают постоянно изменяющееся выходное напряжение, в то время как цифровая версия имеет только два выходных напряжения: высокое или низкое.

Некоторые подкатегории переключателей на эффекте Холла включают:

Пластинчатый

Это цифровые датчики приближения, которые обнаруживают наличие или отсутствие железной лопасти, которая проходит через зазор между двумя компонентами лопаточного датчика: постоянным магнитом и датчиком на эффекте Холла.

Цифровой ток

Этот датчик также имеет два компонента в непосредственной близости: датчик Холла и электромагнит. Магнитное поле, создаваемое электромагнитом при прохождении тока через его катушки, изменяет выходной сигнал датчика Холла.

Линейный ток

Аналогичен цифровому датчику тока, но имеет аналоговый выход.

Замкнутый ток

Также называемые датчиками тока нулевого баланса, они работают, обнуляя воспринимаемое магнитное поле, управляя током, полученным на выходе датчика.Хотя они обладают отличными характеристиками отклика, точности и линейности, они громоздки и дороги из-за дополнительных компонентов, необходимых для генерации тока нулевого баланса.

Зуб шестерни

Как следует из названия, эти датчики обнаруживают зубья шестерни, когда они проходят мимо датчика. Датчики зубьев шестерни аналогичны датчикам с лопастным приводом, но имеют дополнительную схему для точного измерения скорости. Они используются в различных приложениях для подсчета и измерения скорости.

Приложения для датчиков Холла

Как видно из различных категорий датчиков, упомянутых выше, датчики на эффекте Холла могут использоваться в широком диапазоне приложений, например:

  • Автоматизированная обработка продуктов
  • Оборудование с ЧПУ
  • Компакторы / пресс-подборщики
  • Датчики движения
  • Датчики положения (например, двери)
  • Робототехника (например, концевые выключатели)
  • Защитные блокировки (например: аварийные выключатели безопасности)

Соображения при проектировании датчика на эффекте Холла

Важными факторами, влияющими на конструкцию датчика Холла, являются:

  • Магнитные поля. Поле, создаваемое магнитом, зависит от его формы и размера, материала, из которого он изготовлен, материала на пути магнитного потока и от того, используется ли он в качестве униполярного или биполярного магнита.
  • Электрооборудование. Какой максимальный ток должен выдержать датчик? Есть ли источник постоянного напряжения для питания датчика? Какой максимальный поток он испытает? Выход должен быть аналоговым или цифровым?
  • Операционная среда. Температурный диапазон, в котором должен работать датчик, является важным фактором окружающей среды. Для наружного применения может потребоваться водонепроницаемый корпус для защиты от дождя и снега.
  • Как и в случае со всеми промышленными компонентами, стоимость датчиков Холла является важным вопросом. Диапазон рабочих температур, требования к упаковке, точность и чувствительность выходного сигнала, а также другие характеристики, требуемые приложением, определяют окончательную стоимость датчика Холла.

Датчики на эффекте Холла от MagneLink

MagneLink имеет более чем 25-летний опыт разработки высококачественных индивидуальных магнитных переключателей и датчиков.Свяжитесь с нами по всем вопросам, касающимся магнитного переключателя на эффекте Холла.


Опубликовано в Переключатель на эффекте Холла

Пять основных областей применения датчиков Холла

Автор: Морин ВанДайк |

Более 100 лет назад был обнаружен эффект Холла. Однако практическое использование этого эффекта было разработано только в течение последних трех десятилетий.Некоторые из его первых применений включают использование в микроволновых датчиках в 1950-х годах и твердотельных клавиатурах в 1960-х годах. С 1970-х годов устройства измерения эффекта Холла нашли свое применение в широком спектре промышленных и потребительских товаров, таких как швейные машины, автомобили, обрабатывающие инструменты, медицинское оборудование и компьютеры.

Прежде чем исследовать пять основных промышленных применений датчиков Холла, необходимо определить их, их функции и различные классификации.

Что такое датчик на эффекте Холла?

Датчики на эффекте Холла

- это магнитные компоненты, которые преобразуют закодированную в магнитном поле информацию, такую ​​как положение, расстояние и скорость, чтобы электронные схемы могли ее обработать. Как правило, они классифицируются в зависимости от способа выпуска продукции или средств работы.

Классификация выходов

Разделение датчиков на эффекте Холла по выходному напряжению дает две классификации датчиков: цифровые датчики и аналоговые датчики.

Датчики Холла с цифровым выходом

Цифровой выход Датчики на эффекте Холла в основном используются в магнитных переключателях для обеспечения цифрового выхода напряжения. Таким образом, они подают в систему входной сигнал ВКЛ или ВЫКЛ.

Основным отличием датчика Холла с цифровым выходом является возможность управления выходным напряжением. Вместо источника питания, обеспечивающего пределы насыщения, цифровые выходные датчики имеют триггер Шмидта со встроенным гистерезисом, подключенный к операционному усилителю.Этот переключатель отключает выход датчика, когда магнитный поток превышает заданные пределы, и снова включает его, когда магнитный поток стабилизируется.

Датчики Холла с аналоговым (или линейным) выходом

Датчик аналогового типа обеспечивает постоянное выходное напряжение, которое увеличивается, когда магнитное поле сильнее, и уменьшается, когда оно слабее. Таким образом, выходное напряжение или усиление аналогового датчика Холла прямо пропорционально интенсивности проходящего через него магнитного потока.

Классификация операций

В дополнение к их классификации по мощности датчики на эффекте Холла можно разделить на категории в зависимости от способа работы, в том числе:

Биполярные датчики на эффекте Холла

Это тип цифрового датчика, который работает как с положительным, так и с отрицательным магнитным полем.Датчик активируется как положительным, так и отрицательным магнитным полем магнита. В этой конфигурации переключатель, использующий биполярный датчик на эффекте Холла, срабатывает почти так же, как и традиционный геркон. Однако переключатель на эффекте Холла имеет дополнительное преимущество, заключающееся в отсутствии механических контактов, что делает его более долговечным в суровых условиях.

Датчики на эффекте Холла униполярные

В отличие от биполярного датчика, этот тип цифрового датчика активируется только одним полюсом (северным или южным) магнита.Использование униполярного датчика на эффекте Холла в переключателе позволяет сделать его более точным и активировать его только при воздействии определенного магнитного полюса.

Датчики на эффекте Холла для прямого и вертикального углов

Более совершенные датчики на эффекте Холла фокусируются не на полюсах, а на других компонентах магнитного поля. Например, датчики прямого угла измеряют измерения синуса и косинуса магнитного поля, в то время как датчики вертикального угла анализируют компоненты магнитного поля, которые параллельны, а не перпендикулярны плоскости чипа.

Пять основных областей применения датчиков Холла

Датчики на эффекте Холла

находят применение в широком спектре приложений в пяти основных отраслях промышленности, а именно:

Автомобильная и автомобильная безопасность

В автомобилестроении и автомобильной индустрии безопасности используются как цифровые, так и аналоговые датчики на эффекте Холла в различных приложениях.

Примеры применения цифровых датчиков Холла в автомобильной промышленности:

  • Датчик положения сиденья и ремня безопасности для управления подушкой безопасности
  • Определение углового положения коленчатого вала для регулировки угла зажигания свечей зажигания

Некоторые примеры использования датчиков аналогового типа включают:

  • Контроль и регулирование скорости вращения колес в антиблокировочной тормозной системе (ABS)
  • Регулирующее напряжение в электрических системах

Приборы и товары народного потребления

Промышленность бытовой техники и товаров народного потребления объединяет различные типы датчиков на эффекте Холла в различные конструкции изделий.Например:

  • Цифровые униполярные датчики помогают стиральным машинам сохранять равновесие во время стирки.
  • Аналоговые датчики служат датчиками доступности источников питания, индикаторами управления двигателями и отключениями на электроинструментах, а также датчиками подачи бумаги в копировальных аппаратах.

Контроль жидкости

Цифровые датчики на эффекте Холла

обычно используются для контроля расхода и положения клапана при производстве, водоснабжении и очистке, а также в технологических процессах в нефтегазовой отрасли.В приложениях для мониторинга жидкости аналоговые датчики на эффекте Холла также используются для определения уровней давления на диафрагме в манометрах с диафрагмой.

Автоматизация зданий

При автоматизации зданий подрядчики и субподрядчики интегрируют как цифровые, так и аналоговые датчики Холла.

Цифровые датчики приближения часто используются в конструкции:

  • Механизм автоматического слива унитаза
  • Автоматические мойки
  • Сушилки для рук автоматические
  • Системы безопасности зданий и дверей
  • Лифты

Аналоговые датчики используются для:

  • Освещение с датчиком движения
  • Камеры с датчиком движения

Персональная электроника

Это еще одна область, в которой продолжают расти популярность как аналоговых, так и цифровых датчиков Холла.

Приложения для цифровых датчиков включают:

  • Устройства управления двигателями
  • Таймеры в фотоаппаратуре

Приложения для аналоговых датчиков включают:

  • Дисководы
  • Защита источника питания

Свяжитесь с MagneLink сегодня

Как указано выше, датчики на эффекте Холла - как аналоговые, так и цифровые - находят применение в широком спектре устройств, оборудования и систем в различных отраслях промышленности.

В MagneLink мы разрабатываем и производим высококачественные магнитные переключатели, в том числе переключатели, в которых используются датчики на эффекте Холла. Чтобы узнать больше о наших переключателях Холла и их применении, свяжитесь с нами сегодня.


Основные сведения о датчиках на эффекте Холла

Датчик на эффекте Холла - это датчик магнитного поля, созданный на основе эффекта Холла. Эффект Холла - это разновидность магнитоэлектрического эффекта. Это явление было открыто Холлом (А.Х. Холл, 1855-1938) в 1879 году, когда он изучал проводящий механизм металлов.

Каталог

Ⅰ Введение

Датчик на эффекте Холла - это датчик магнитного поля, изготовленный на основе эффекта Холла. Эффект Холла - это разновидность магнитоэлектрического эффекта. Это явление было открыто Холлом (A.H. Hall, 1855-1938) в 1879 году, когда он изучал проводящий механизм металлов. Позже было обнаружено, что полупроводники, проводящие жидкости и т. Д. Также обладают этим эффектом, а эффект Холла полупроводников намного сильнее, чем у металлов.Различные элементы Холла, созданные с использованием этого явления, широко используются в технологии промышленной автоматизации, технологии обнаружения, обработки информации и т. Д. Эффект Холла является основным методом изучения характеристик полупроводниковых материалов. Коэффициент Холла, измеренный в эксперименте с эффектом Холла, может определять важные параметры, такие как тип проводимости, концентрация носителей и их подвижность в полупроводниковых материалах.

Ⅱ Как работает датчик холла?

Согласно принципу эффекта Холла, величина потенциала Холла зависит от Rh, постоянной Холла, связанной с материалом полупроводника; I - ток смещения элемента Холла; B - напряженность магнитного поля; d - толщина полупроводникового материала.

Для данного устройства Холла, когда ток смещения I фиксирован, UH будет полностью зависеть от измеренной напряженности магнитного поля B.

Элемент Холла обычно имеет четыре клеммы, две из которых являются входными клеммами тока смещения I. элемента Холла, а два других являются выходными клеммами напряжения Холла. Если две выходные клеммы образуют внешнюю петлю, будет генерироваться ток Холла. Вообще говоря, установка тока смещения обычно задается внешним источником опорного напряжения.Если требования к точности высоки, источник опорного напряжения заменяется источником постоянного тока. Для достижения высокой чувствительности некоторые элементы Холла снабжены сплавами с покрытием с высокой магнитной проницаемостью; потенциал Холла у этого типа датчика велик, но насыщение происходит около 0,05Тл.

Рисунок 1. Эффект Холла

Управляющий ток I прикладывается к обоим концам полупроводникового листа, и однородное магнитное поле с силой магнитной индукции B прикладывается в вертикальном направлении листа, затем напряжение Холла с разностью потенциалов UH будет генерироваться в направлении, перпендикулярном току и магнитному полю.

В магнитном поле находится полупроводниковый кристалл Холла, и постоянный ток I проходит от A к B через кристалл. Под действием силы Лоренца поток электронов I смещается в одну сторону при прохождении через полупроводник Холла, вызывая разность потенциалов листа в направлении CD, которая является так называемым напряжением Холла.

Напряжение Холла изменяется в зависимости от силы магнитного поля. Чем сильнее магнитное поле, тем выше напряжение.Чем слабее магнитное поле, тем ниже напряжение. Напряжение Холла очень мало, обычно всего несколько милливольт, но оно усиливается усилителем в интегральной схеме. Напряжение может быть достаточно усилено для вывода более сильного сигнала. Если в качестве датчика используется ИС Холла, требуется механический метод для изменения интенсивности магнитной индукции. В методе, показанном на рисунке ниже, используется вращающееся рабочее колесо в качестве переключателя для управления магнитным потоком. Когда лопасть крыльчатки находится в воздушном зазоре между магнитом и ИС Холла, магнитное поле отклоняется от встроенного чипа, и напряжение Холла исчезает.Таким образом, изменение выходного напряжения ИС Холла может указывать на определенное положение приводного вала крыльчатки. Используя этот принцип работы, микросхему Hall IC можно использовать в качестве датчика угла опережения зажигания. Датчик на эффекте Холла - пассивный датчик. Для работы требуется внешний источник питания. Эта функция позволяет обнаруживать работу на низкой скорости.

Fgure2. Датчик Холла

Элемент из полупроводниковых материалов 1-Холла 2-Постоянный магнит 3-лезвие, блокирующее силовую линию магнитного поля

Ⅲ Эффект Холла

Приложение магнитного поля, перпендикулярного направлению тока на полупроводнике, вызовет образование электронов и дырок в полупроводнике собираться в разных направлениях под действием силы Лоренца в разных направлениях, и между накопленными электронами и дырками будет создаваться электрическое поле.После того, как сила уравновешивается с силой Лоренца, она больше не собирается. В это время электрическое поле будет подвергать последующие электроны и дырки силе электрического поля и уравновешивать силу Лоренца, создаваемую магнитным полем. Отверстия могут плавно проходить без смещения, это явление называется эффектом Холла. Создаваемое встроенное напряжение называется напряжением Холла.

Эффект Холла особенно важен в прикладной технике. Холл обнаружил, что если ток (Iv) приложен к проводнику (d), находящемуся в магнитном поле (B), направление магнитного поля перпендикулярно направлению приложенного напряжения, тогда оно будет перпендикулярно магнитному полю. поле и перпендикулярно направлению приложенного тока. Другое напряжение (UH) будет генерироваться в направлении.Напряжение называется напряжением Холла. Это явление называется эффектом Холла. Это как дорога. Все равномерно распределились по дороге и двинулись вперед. Когда есть магнитное поле, всех можно оттолкнуть вправо от шага. Будет разница напряжения по обе стороны дороги (проводник). Это называется «эффектом Холла». Устройство Холла, созданное на основе эффекта Холла, должно использовать магнитное поле в качестве рабочего тела для преобразования параметров движения объекта в форму цифрового выходного напряжения, чтобы он имел функции измерения и переключения.

До сих пор устройства Холла, которые широко используются в современных автомобилях, включают датчики сигналов на распределителях, датчики скорости в системах ABS, спидометры и одометры автомобилей, детекторы физического количества жидкости, а также обнаружение токов различных электрических нагрузок и диагностику условий работы. датчики частоты вращения коленчатого вала и угла поворота коленчатого вала, различные переключатели и т. д.

sensor Классификация датчика Холла

Датчики на эффекте Холла делятся на линейные датчики на эффекте Холла и датчики на переключающем эффекте Холла.

(1) Датчик Холла переключаемого типа состоит из регулятора напряжения, элементов Холла, дифференциального усилителя, триггера Шмитта и выходного каскада, который выводит цифровую величину. Существует также особая форма датчика Холла переключаемого типа, называемая датчиком Холла замкового типа.

(2) Линейный датчик на эффекте Холла состоит из элементов Холла, линейного усилителя и эмиттерного повторителя, который выводит аналоговую величину.

Линейные датчики на эффекте Холла можно разделить на разомкнутые и замкнутые.Датчик на эффекте Холла с обратной связью также называется датчиком на эффекте Холла с нулевым потоком. Датчики с линейным эффектом Холла в основном используются для измерения постоянного и переменного тока и напряжения.

1. Тип переключателя

Как показано на рисунке 3, где Bnp - интенсивность магнитной индукции в рабочей точке «включено», а BRP - интенсивность магнитной индукции в точке сброса «выключено». Когда интенсивность приложенной магнитной индукции превышает точку действия Bnp, датчик выдает низкий уровень.Когда интенсивность магнитной индукции падает ниже точки срабатывания Bnp, выходной уровень датчика не изменяется, и датчик переходит с низкого уровня до тех пор, пока он не упадет с точки срабатывания BRP на высокий уровень. Гистерезис между Bnp и BRP делает переключение более надежным.

Рисунок 3. Тип переключателя Датчик Холла

2. Тип ключа

Как показано на Рисунке 4, когда интенсивность магнитной индукции превышает рабочую точку Bnp, выходной сигнал датчика изменяется с высокого уровня на низкий уровень.После отмены внешнего магнитного поля его выходное состояние остается неизменным (то есть состояние фиксации), и только когда интенсивность магнитной индукции достигает BRP, уровень может быть изменен.

Рисунок 4. Датчик Холла типа ключа

3. Линейный тип

Выходное напряжение линейно зависит от напряженности приложенного магнитного поля. Как показано на рисунке 5, можно видеть, что существует хорошая линейность в диапазоне напряженности магнитной индукции от B1 до B2.Когда интенсивность магнитной индукции превышает этот диапазон, он насыщается.

Рисунок 5. Датчик Холла линейного типа

4. Датчик тока без обратной связи

Поскольку внутри соленоида под напряжением существует магнитное поле, его размер пропорционален току в проводе, поэтому датчик на эффекте Холла можно использовать для измерения магнитное поле для определения величины тока в проводе. Используя этот принцип, можно спроектировать и изготовить датчик тока Холла.Преимущество датчика Холла в том, что он не имеет электрического контакта с проверяемой схемой. Таким образом, он не влияет на тестируемую цепь и не потребляет мощность тестируемого источника питания и особенно подходит для измерения большого тока.

Принцип работы датчика тока Холла показан на рисунке. Стандартный кольцевой сердечник имеет зазор. Вставьте датчик Холла в зазор. Кольцо намотано катушкой. Когда ток проходит через катушку, создается магнитное поле, и датчик на эффекте Холла выдает выходной сигнал.

5. Датчик тока с обратной связью

Датчик тока магнитного баланса также называется датчиком тока с обратной связью Холла, также известным как датчик компенсации. Магнитное поле, создаваемое измеренным током Ip основного контура на магнитном кольце, проходит через вторичную катушку, так что устройство Холла находится в рабочем состоянии обнаружения нулевого магнитного потока.

Специфический рабочий процесс датчика тока магнитного баланса: когда ток проходит через главный контур, магнитное поле, генерируемое на проводе, собирается магнитным кольцом и индуцируется на устройстве Холла, а генерируемый выходной сигнал используется для возбуждения соответствующей силовой трубки для получения компенсационного тока Is.Этот ток затем создает магнитное поле через многооборотную обмотку, которое является прямо противоположным магнитному полю, создаваемому измеряемым током, таким образом компенсируя исходное магнитное поле и постепенно уменьшая выходную мощность устройства Холла. Когда магнитное поле, создаваемое умножением Ip на количество витков, становится равным, Is больше не увеличивается, и устройство Холла в это время играет роль индикатора нулевого магнитного потока, который может быть уравновешен Is. Любое изменение измеряемого тока нарушит этот баланс.Как только магнитное поле выходит из равновесия, устройство Холла выдает выходной сигнал. Сразу после усиления мощности соответствующий ток течет через вторичную обмотку для компенсации несбалансированного магнитного поля. Время, необходимое от дисбаланса магнитного поля до восстановления равновесия, теоретически составляет менее 1 мкс, что является процессом динамической балансировки.

Рисунок 6. Датчик тока с обратной связью

Ⅴ Преимущества датчика Холла

1.Датчики на эффекте Холла могут измерять произвольные формы сигналов тока и напряжения, такие как сигналы постоянного и переменного тока, импульсные и даже переходные пики. Вторичный ток точно отражает форму волны первичного тока. Обычный трансформатор несравненный, он обычно подходит только для измерения синусоидальной волны 50 Гц;

2. Между первичной и вторичной цепями имеется хорошая гальваническая развязка, и напряжение изоляции может достигать 9600 В среднеквадратического значения;

3. Высокая точность: точность лучше 1% в рабочем диапазоне температур, который подходит для измерения любой формы волны;

4.Хорошая линейность: лучше 0,1%;

5. Широкая полоса пропускания: время нарастания широкополосного датчика тока может быть менее 1 мкс; однако полоса пропускания датчика напряжения узкая, обычно в пределах 15 кГц, время нарастания высоковольтного датчика напряжения 6400 В среднеквадр. составляет около 500 мкс, а полоса пропускания составляет около 700 Гц.

6. Диапазон измерений: датчики на эффекте Холла являются серийными продуктами, измерение тока может достигать 50 кА, измерение напряжения может достигать 6400 В.

Ⅵ Применение датчика Холла

1.Технология датчиков на эффекте Холла, используемая в автомобильной промышленности

Технология датчиков на эффекте Холла находит широкое применение в автомобильной промышленности, включая силовое управление, контроль тяги и антиблокировочные системы. Чтобы удовлетворить потребности различных систем, датчики на эффекте Холла делятся на три типа: переключатели, аналоговые и цифровые датчики.

Датчики на эффекте Холла могут быть изготовлены из металлов, полупроводников и т. Д. Качество эффекта Холла зависит от материала проводника, который напрямую влияет на положительные ионы и электроны, проходящие через датчик.При производстве элементов Холла в автомобильной промышленности обычно используются три полупроводниковых материала, а именно арсенид галлия, антимонид индия и арсенид индия. Наиболее часто используемый полупроводниковый материал - арсенид индия.

Форма датчика Холла определяет разницу в схеме усилителя, и его выход должен быть адаптирован к управляемому устройству. Этот выходной сигнал может быть аналоговым, например датчиком положения ускорения или датчиком положения дроссельной заслонки, или может быть цифровым, например датчиком положения коленчатого вала или распределительного вала.

Когда элемент Холла используется для аналогового датчика, этот датчик может использоваться для термометра в системе кондиционирования воздуха или датчика положения дроссельной заслонки в системе управления мощностью. Элемент Холла подключен к дифференциальному усилителю, а усилитель - к транзистору NPN. Магнит закреплен на вращающемся валу. Когда вал вращается, магнитное поле на элементе Холла усиливается. Создаваемое им напряжение Холла пропорционально силе магнитного поля.

Когда элемент Холла используется для цифровых сигналов, таких как датчик положения коленчатого вала, датчик положения распределительного вала или датчик скорости автомобиля, сначала необходимо изменить схему. Элемент Холла подключен к дифференциальному усилителю, а дифференциальный усилитель - к триггеру Шмитта. В этой конфигурации датчик выдает сигнал включения или выключения. В большинстве автомобильных цепей датчики на эффекте Холла представляют собой поглотители тока или цепи сигнала заземления. Для этого к выходу триггера Шмитта необходимо подключить NPN-транзистор.Магнитное поле проходит через элемент Холла, а лезвие спускового колеса проходит между магнитным полем и элементом Холла.

2. Датчик эффекта Холла, применяемый к счетчику такси

Применение датчика эффекта Холла к таксометру: сигнал, обнаруженный датчиком эффекта Холла A44E, установленным на колесе, отправляется на однокристальный микрокомпьютер. После обработки и расчета и отправляется на дисплей, тем самым завершая расчет пробега.Порт P3.2 используется как входной терминал сигнала, а внешнее прерывание 0 используется для внутренних целей. Каждый раз, когда колесо поворачивается (окружность колеса 1 м), переключатель Холла обнаруживает и выдает сигнал, вызывая прерывание микроконтроллера. Когда счетчик импульсов достигает 1 000 раз, то есть 1 км, однокристальный микрокомпьютер автоматически увеличивает количество импульсов.

Каждый раз, когда датчик Холла выдает сигнал низкого уровня, микроконтроллер прерывается один раз.Когда счетчик пробега подсчитывает импульсы пробега 1 000 раз, программа накапливает текущую сумму, и микрокомпьютер входит в служебную программу прерывания подсчета пробега. В этой программе необходимо завершить операцию накопления текущего пробега и общей суммы и сохранить результат в регистре пробега и общей суммы.

3. Датчик холлового тока, используемый в преобразователе частоты

Магнитное поле индуцируется вокруг провода, по которому протекает ток, а затем используется устройство Холла для обнаружения магнитного поля, индуцированного током, и величины ток, который генерирует это магнитное поле, можно измерить.Таким образом, можно построить датчики тока и напряжения Холла. Поскольку выходное напряжение устройства Холла пропорционально произведению приложенной к нему магнитной индукции и рабочего тока, протекающего через него, это устройство с функцией умножения и может напрямую взаимодействовать с различными логическими схемами, а также может напрямую управляться. грузы различного характера. Поскольку принцип применения устройства Холла прост, обработка сигналов удобна, а само устройство имеет ряд уникальных преимуществ, оно также играет очень важную роль в инверторе.

В преобразователях частоты основная роль датчиков холловского тока заключается в защите дорогих мощных транзисторов. Поскольку время отклика датчика тока Холла меньше 1 мкс, при возникновении перегрузки и короткого замыкания питание может быть отключено до того, как транзистор достигнет предельной температуры.

Датчик тока Холла

можно разделить на тип прямого измерения и нулевую магнитную формулу в соответствии с его режимом работы. В инверторе из-за необходимости точного контроля и расчета выбран метод нулевого магнитного потока.Усиление выходного напряжения устройства Холла, а затем усиление тока. Этот ток проходит через компенсационную катушку и магнитное поле, создаваемое компенсационной катушкой, и магнитное поле, создаваемое измеряемым током, в противоположном направлении. Если выполняется условие IoN1 = IsN2, то магнитный поток в сердечнике равен 0, тогда выполняется следующая формула:

Io = Is (N2 / N1)

В формуле Io - это измеренный ток, который есть ток в первичной обмотке магнитопровода.N1 - количество витков в первичной обмотке. Is - ток в компенсационной обмотке, а N2 - количество витков в компенсационной обмотке. Из приведенной выше формулы можно узнать, что при достижении магнитного баланса Io можно получить из Is и отношения витков N2 / N1.

Датчик тока Холла характеризуется «беспотенциальным» обнаружением тока. То есть измерительная схема может осуществлять обнаружение тока без доступа к тестируемой цепи, и они связаны магнитным полем.Следовательно, входные и выходные цепи схемы обнаружения полностью электрически изолированы. В процессе обнаружения схема обнаружения и обнаруженная схема не влияют друг на друга.

Рекомендуемый артикул:

Что такое датчики веса?

Принцип работы и разработка магнитных датчиков

Введение Переключатели на эффекте Холла Схемы датчиков Учебное пособие


Рис. 1

by Lewis Loflin

Датчики на эффекте Холла - это твердотельные магнитные датчики, которые используются либо в качестве магнитных переключателей, либо для измерения магнитных полей.Здесь меня интересуют три основных типа: переключатель на эффекте Холла, защелка на эффекте Холла и логометрический или аналоговый выходной датчик. Подробнее об общих принципах работы см. В моем видео на YouTube выше. Здесь я хочу проиллюстрировать различные электронные схемы, а также то, как подключать датчики и использовать их.

Переключатель на эффекте Холла включается при наличии южного магнитного поля на его лицевой стороне или северного магнитного поля на противоположной стороне. Он выключится, когда магнит будет удален.

Защелка на эффекте Холла работает как выключатель, но остается включенной после удаления магнита. Он выключится, если приложить к лицу северный полюс или отключить питание. Ниже у меня есть схема использования переключателя Холла для включения / выключения однополюсного переключателя.

Логометрический датчик на эффекте Холла выдает аналоговое напряжение, пропорциональное напряженности магнитного поля. Устройства, которые я буду использовать на отдельной странице, являются однополярными, и, как правило, без приложения магнитного поля выходное напряжение составляет половину напряжения питания.Напряжение будет увеличиваться с южным магнитным полюсом на лице или уменьшаться с северным магнитным полюсом на лице.

См. Использование ратиометрических датчиков эффекта Холла

Здесь мы рассмотрим переключатели и защелки, которые начинаются как логометрические, а затем добавим компараторы, триггеры Шмитта и выходные транзисторы. Ниже приведен список спецификаций датчиков Холла, используемых в моем видео на YouTube.

На рисунке выше показаны типичные выводы датчиков Холла. Южный полюс магнита направлен в сторону «лица», включающего устройство.Северный полюс на лице не будет иметь никакого эффекта, если устройство не является защелкой, которую он выключит, если он уже включен.

Рассмотрим пятивольтовый переключатель Холла UGN3013T. Для срабатывания переключателя обычно требуется от 500 до 750 Гс. Но для того, чтобы отпустить или отключить, обычно требуется от 225 Гс до 110 Гс. Таким образом, у нас есть разумный диапазон 275, в котором нам нужно оставаться для надежной работы. Таким образом, очевидно, что даже небольшой железный магнит может работать хорошо или должен находиться очень близко к датчику.Обратите внимание, что это старая устаревшая деталь, которая у меня случайно оказалась. Новые устройства намного более чувствительны.


Рис. 2

На рисунке выше показана внутренняя блок-схема переключателя на эффекте Холла в данном случае UGN3013T. Он включает пластину Холла, усилитель, триггер Шмитта и транзисторный выход с открытым коллектором. Некоторые могут использовать МОП-транзистор с открытым стоком вместо биполярного транзистора.


Рис. 3

Логометрический датчик Холла с компаратором LM311 образует переключатель на эффекте Холла с выходом с открытым коллектором, образующий переключатель с регулируемой точкой срабатывания.Vcc составляет 5 вольт при использовании датчика, такого как UGN3502, и 12 вольт для TL174C. Его можно напрямую подключить к входному порту микроконтроллера или другой 5-вольтовой цифровой логике.


Рис. 4

Добавляя JK-триггер к нашему переключателю с эффектом Холла на рис. 3, мы формируем защелку с эффектом Холла. Состояния Q и QNOT "меняются" с каждым циклом включения-выключения на TP2.


Рис. 5

На Рис. 5 показано, как использовать переключатель Холла с выходом «открытый коллектор / сток» с триггером CD4027 JK для формирования схемы защелки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *