Что значит асинхронный двигатель: Трехфазный асинхронный двигатель

Содержание

Что значит асинхронный двигатель — Всё о электрике

Чем асинхронные двигатели отличаются от синхронных

В данной статье рассмотрим принципиальные отличия синхронных электродвигателей от асинхронных, чтобы каждый читающий эти строки мог бы эти различия четко понимать.

Асинхронные электродвигатели более широко распространены сегодня, однако в некоторых ситуациях синхронные двигатели оказываются более подходящими, более эффективными для решения конкретных промышленных и производственных задач, об этом будет рассказано далее.

Прежде всего давайте вспомним, что же вообще такое электродвигатель. Электродвигателем называется электрическая машина, предназначенная для преобразования электрической энергии в механическую энергию вращения ротора, и служащая в качестве привода для какого-нибудь механизма, например для приведения в действие подъемного крана или насоса.

Еще в школе всем рассказывали и показывали, как два магнита отталкиваются одноименными полюсами, а разноименными — притягиваются. Это постоянные магниты. Но существуют и переменные магниты. Каждый помнит рисунок с проводящей рамкой, расположенной между полюсами подковообразного постоянного магнита.

Горизонтально расположенная рамка, если по ней пустить постоянный ток, станет поворачиваться в магнитном поле постоянного магнита под действием пары сил (Сила Ампера), пока не будет достигнуто равновесие в вертикальном положении.

Если затем по рамке пустить постоянный ток противоположного направления, то рамка повернется дальше. В результате такого попеременного питания рамки постоянным током то одного, то другого направления, достигается непрерывное вращение рамки. Рамка здесь представляет собой аналог переменного магнита.

Приведенный пример с вращающейся рамкой в простейшей форме демонстрирует принцип работы синхронного электродвигателя. У любого синхронного электродвигателя на роторе есть обмотки возбуждения, на которые подается постоянный ток, формирующий магнитное поле ротора. Статор же синхронного электродвигателя содержит обмотку статора, для формирования магнитного поля статора.

При подаче на обмотку статора переменного тока, ротор придет во вращение с частотой, соответствующей частоте тока в обмотке статора. Частота вращения ротора будет синхронна частоте тока обмотки статора, поэтому такой электродвигатель называется синхронным. Магнитное поле ротора создается током, а не индуцируется полем статора, поэтому синхронный двигатель способен держать синхронные номинальные обороты независимо от мощности нагрузки, разумеется, в разумных пределах.

Асинхронный электродвигатель в свою очередь отличается от синхронного. Если вспомнить рисунок в рамкой, и рамку просто накоротко замкнуть, то при вращении магнита вокруг рамки, индуцируемый в рамке ток создаст магнитное поле рамки, и рамка будет стремиться догнать магнит.

Частота вращения рамки под механической нагрузкой будет всегда меньше частоты вращения магнита, и частота не будет поэтому синхронной. Этот простой пример демонстрирует принцип действия асинхронного электродвигателя.

В асинхронном электродвигателе вращающееся магнитное поле формируется переменным током обмотки статора, расположенной в его пазах. Ротор типичного асинхронного двигателя обмоток как таковых не имеет, вместо этого на нем расположены накоротко соединенные стержни (ротор типа «беличья клетка»), такой ротор называется короткозамкнутым ротором. Бывают еще асинхронные двигатели с фазным ротором, там ротор содержит обмотки, сопротивление и ток в которых можно регулировать реостатом.

Итак, в чем же принципиальное отличие асинхронного электродвигателя от синхронного? С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. Главное же отличие заключается в устройстве роторов. Ротор асинхронного электродвигателя не питается током, а полюса на нем индуцирутся магнитным полем статора.

Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.

Обороты асинхронного двигателя под нагрузкой всегда на величину скольжения отстают от вращения магнитного поля статора, в то время как обороты синхронного двигателя равны по частоте «оборотам» магнитного поля статора, поэтому если обороты должны быть постоянными при различных нагрузках, предпочтительней выбирать синхронный двигатель, например в приводе гильотинных ножниц лучше всего справится со своей задачей мощный синхронный двигатель.

Область применения асинхронных двигателей сегодня очень широка. Это всевозможные станки, транспортеры, вентиляторы, насосы, – все то оборудование, где нагрузка сравнительно стабильна, или снижение оборотов под нагрузкой не критично для рабочего процесса.

Некоторые компрессоры и насосы требуют постоянной частоты вращения при любой нагрузке, на такое оборудование ставят синхронные электродвигатели.

Синхронные двигатели дороже в производстве, чем асинхронные, поэтому если есть возможность выбора и небольшое снижение оборотов под нагрузкой не критично, приобретают асинхронный двигатель.

Синхронные электродвигатели широко применяются в электроприводах, не требующих регулирования частоты вращения. По сравнению с асинхронными двигателями они имеют ряд преимуществ:

более высокий коэффициент полезного действия;

возможность изготовления двигателей с низкой частотой вращения, что позволяет отказаться от промежуточных передач между двигателем и рабочей машиной;

частота вращения двигателя не зависит от нагрузки па его валу;

возможность использования в качестве компенсирующих устройств реактивной мощности.

Синхронные электродвигатели могут являться потребителями и генераторами реактивной мощности. Характер и значение реактивной мощности синхронного двигателя зависят от величины тока в обмотке возбуждения. Зависимость тока в обмотке, выдающей напряжение в электрическую сеть, от тока возбуждения носит название U-образной характеристики синхронного двигателя. При 100%-ной нагрузке на валу двигателя его косинус фи равен 1. При этом электродвигатель не потребляет реактивной мощности из электрической сети. Ток в обмотке статора при этом имеет минимальное значение.

Асинхронный двигатель – принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигательэто асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 – вал, 2,6 – подшипники, 3,8 – подшипниковые щиты, 4 – лапы, 5 – кожух вентилятора, 7 – крыльчатка вентилятора, 9 – короткозамкнутый ротор, 10 – статор, 11 – коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется “беличьей клеткой“. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье – асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s – это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины

sкр – критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме – 1 – 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Что значит асинхронный двигатель

Как и любая электромеханическая машина, асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод; все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120°. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения (вращения) магнитного потока обмотки возбуждения, поэтому его изготавливают шихтованным (набранным из пластин) из электротехнической стали для обеспечения минимальных магнитных потерь.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным.

Короткозамкнутый ротор

Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. В машинах малой и средней мощности ротор обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие самовентиляцию самого ротора и вентиляцию машины в целом. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца.

Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами.

Асинхронные двигатели с таким ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, малый момент инерции и отсутствие механического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание.

Фазный ротор

Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведённую на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы.

В двигателях с фазным ротором имеется возможность увеличивать пусковой момент до максимального значения(в первый момент времени) с помощью пускового реостата, тем самым уменьшая пусковой ток. Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке.

Скорость вращения поля статора

При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения [об/мин] которого связана с частотой сети [Гц] соотношением:

,

где — число пар магнитных полюсов обмотки статора.

Двигательный режим

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке ротора начинает течь ток. На проводники с током этой обмотки, расположенные в магнитном поле обмотки возбуждения, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор за магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение, и его установившаяся частота вращения [об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках и инерцией ротора. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать крутящий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:

.

Относительная разность частот вращения магнитного поля и ротора называется скольжением:

.

Очевидно, что при двигательном режиме .

Генераторный режим

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдет в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозящим. В генераторном режиме работы скольжение .

При отсутствии первоначального магнитного поля в обмотке статора поток возбуждения создают с помощью постоянных магнитов, либо за счёт остаточной индукции машины и пусковых конденсаторов, параллельно подключенных по схеме «звезда» к фазам обмотки статора .

Асинхронный генератор потребляет намагничивающий ток значительной силы и требует наличия в сети генераторов реактивной мощности в виде синхронных машин,синхронных компенсаторов,батарей статических конденсаторов(БСК). Несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном как вспомогательные источники небольшой мощности и как тормозные устройства.

Режим электромагнитного тормоза

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Такой режим работы асинхронной машины называется режимом электромагнитного тормоза, и для него справедливы неравенства .

Способы управления асинхронным двигателем

Под управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора. Существуют следующие способы управления асинхронным двигателем:

  • реостатный – изменение частоты вращения АД с фазным ротором путём изменения сопротивления реостата в цепи ротора,
  • частотный – изменение частоты вращения АД путём изменения частоты тока в питающей сети, что влечёт за собой изменение частоты вращения поля статора. Применяется включение двигателя через частотный преобразователь,
  • переключением обмоток со схемы «звезда» на схему «треугольник» в процессе пуска двигателя, что даёт снижение пусковых токов в обмотках примерно в три раза;
  • импульсный – подачей напряжения питания специального вида (например, пилообразного),
  • изменением числа пар полюсов, если такое переключение предусмотрено конструктивно,
  • изменением амплитуды питающего напряжения, когда изменяется только амплитуда (или действующее значение) управляющего напряжения. Тогда векторы напряжений управления и возбуждения остаются перпендикулярны,
  • Фазовое управление характерно тем, что изменение частоты вращения ротора достигается путём изменения сдвига фаз между векторами напряжений возбуждения и управления,
  • Амплитудно-фазовый способ включает в себя оба предыдущих способа.

{SOURCE}

Двигатель асинхронный — это… Что такое Двигатель асинхронный?

Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины — наиболее распространённые электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.

Конструкция

Как и любая электромеханическая машина, асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод; все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120°. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения (вращения) магнитного потока обмотки возбуждения, поэтому его изготавливают шихтованным (набранным из пластин) из электротехнической стали для обеспечения минимальных магнитных потерь.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным.

Короткозамкнутый ротор

Ротор асинхронной машины типа «беличья клетка»

Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. В машинах малой и средней мощности ротор обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие самовентиляцию самого ротора и вентиляцию машины в целом. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца.

Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами.

Асинхронные двигатели с таким ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, малый момент инерции и отсутствие механического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание.

Фазный ротор

Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведённую на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы.

В двигателях с фазным ротором имеется возможность увеличивать пусковой момент до максимального значения(в первый момент времени) с помощью пускового реостата, тем самым уменьшая пусковой ток. Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке.

Скорость вращения поля статора

При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения [об/мин] которого связана с частотой сети [Гц] соотношением:

,

где  — число пар магнитных полюсов обмотки статора.

Двигательный режим

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке ротора начинает течь ток. На проводники с током этой обмотки, расположенные в магнитном поле обмотки возбуждения, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор за магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение, и его установившаяся частота вращения [об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках и инерцией ротора. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать крутящий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:

.

Относительная разность частот вращения магнитного поля и ротора называется скольжением:

.

Очевидно, что при двигательном режиме .

Генераторный режим

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдет в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозящим. В генераторном режиме работы скольжение .

При отсутствии первоначального магнитного поля в обмотке статора поток возбуждения создают с помощью постоянных магнитов, либо за счёт остаточной индукции машины и пусковых конденсаторов, параллельно подключенных по схеме «звезда» к фазам обмотки статора .

Асинхронный генератор потребляет намагничивающий ток значительной силы и требует наличия в сети генераторов реактивной мощности в виде синхронных машин,синхронных компенсаторов,батарей статических конденсаторов(БСК). Несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном как вспомогательные источники небольшой мощности и как тормозные устройства.

Режим электромагнитного тормоза

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Такой режим работы асинхронной машины называется режимом электромагнитного тормоза, и для него справедливы неравенства .

Способы управления асинхронным двигателем

Под управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора. Существуют следующие способы управления асинхронным двигателем:

  • реостатный — изменение частоты вращения АД с фазным ротором путём изменения сопротивления реостата в цепи ротора,
  • частотный — изменение частоты вращения АД путём изменения частоты тока в питающей сети, что влечёт за собой изменение частоты вращения поля статора. Применяется включение двигателя через частотный преобразователь,
  • переключением обмоток со схемы «звезда» на схему «треугольник» в процессе пуска двигателя, что даёт снижение пусковых токов в обмотках примерно в три раза;
  • импульсный — подачей напряжения питания специального вида (например, пилообразного),
  • изменением числа пар полюсов, если такое переключение предусмотрено конструктивно,
  • изменением амплитуды питающего напряжения, когда изменяется только амплитуда (или действующее значение) управляющего напряжения. Тогда векторы напряжений управления и возбуждения остаются перпендикулярны,
  • Фазовое управление характерно тем, что изменение частоты вращения ротора достигается путём изменения сдвига фаз между векторами напряжений возбуждения и управления,
  • Амплитудно-фазовый способ включает в себя оба предыдущих способа.

Ссылки

Wikimedia Foundation. 2010.

Асинхронный двигатель. Принцип работы. — Help for engineer

Асинхронный двигатель. Принцип работы.

Асинхронный двигатель – это асинхронная электрическая машина переменного тока в двигательном режиме, у которой частота вращения магнитного поля статора больше чем частота вращения ротора.

Принцип работы берет основу из создания вращающегося магнитного поля статора, о чем подробнее вы можете почитать из указанной ссылки.

Асинхронные двигатели – одни из самых распространённых электрическим машин, и зачастую являются одним из основных преобразователей электрической энергии в механическую энергию. Самым большим достоинством является отсутствие контакта между подвижными и подвижными частями ротора, я имею ввиду электрический контакт, к примеру, в двигателях постоянного тока через щетки и коллектор. Однако это справедливо только к АД с короткозамкнутым ротором, в асинхронных двигателях с фазным ротором, этот контакт имеет место, но об этом чуть позже.

Конструкция асинхронного двигателя.

Рассмотрим конструкцию, примером послужит асинхронный двигатель с короткозамкнутым ротором, но так же существует фазный тип ротора. Асинхронный двигатель состоит из статора и ротора между которыми воздушный зазор. Статор и ротор в свою очередь еще имеют так называемые активные части – обмотка возбуждения (отдельно статорная и отдельно роторная) и магнитопровод (сердечник). Все остальные детали АД, такие как: вал, подшипники, вентилятор, корпус, и т.п. – чисто конструктивные детали, обеспечивающие защиту от окружающей среды, прочность, охлаждение, возможность совершать вращение.

Рисунок 1 – Конструкция асинхронного двигателя.

Статор представляет собой трёх (или много)-фазную обмотку, проводники которой равномерно уложены в пазах по всей окружности, с угловым расстоянием в 120 эл. градусов. Концы обмотки статора обычно соединяют по схемам «звезда» или «треугольник», и подключаются к сети питающего напряжения. Магнитопровод выполняется из электротехнической шихтованной (набрано из тонких листов) стали.

Как я уже сказал ранее, в асинхронном двигателе существует всего 2 типа роторов: это фазный тип ротора, и короткозамкнутый. Магнитопровод ротора также выполнен из шихтованной электротехнической стали. Короткозамкнутый ротор имеет вид так называемой «беличьей клетки» из-за схожести своей конструкции на эту клетку. Состоит эта клетка из медных стержней, которые накоротко замкнуты кольцами. Стержни непосредственно вставлены в пазы сердечника ротора. Для улучшения пусковых характеристики АД с таким типом ротора, применяют специальную форму паза, это дает возможность использования эффекта вытеснения тока, что влияет на увеличение активного сопротивления роторной обмотки при пуске (больших скольжения). Сами по себе, АД с короткозамкнутым ротором имеют малый пусковой момент, что пагубно сказывается на области их использования. Наибольшее распространение они нашли в системах которые не требуют больших пусковых моментов. Однако, данный тип ротора отличается тем, что на его обслуживание тратится меньше средств чем на обслуживание двигателя с фазным ротором, вследствие отсутствия физического контакта в типе ротора беличья клетка.

Рисунок 2 – Ротор АД «беличья клетка»

Фазный ротор состоит из трёхфазной обмотки, зачастую соединенной по схеме «звезда», и выведенную на контактные кольца, которые вращаются вместе с валом. Щетки выполнены из графита. Фазный ротор дает много преимуществ, таких как пуск звезда-треугольник, регулирование частоты вращения изменением сопротивления ротора.

Режимы работы

Подробнее рассмотреть механическую характеристику в моей ранней статье, а так же способы пуска с реверсом.

К тормозным режимам стоит отнести несколько основных:

– торможение противовключением;

– торможение однофазным переменным током и конденсаторное торможение;

– динамическое торможение.

Асинхронный двигатель имеет низкую стоимость, надёжен, и очень дешевый в обслуживании, особенно если он выполнен с короткозамкнутым ротором.

Недостаточно прав для комментирования

Асинхронный Двигатель Переменного Тока: Подключение, Ремонт

Строение такого двигателя не отличается большой сложностью

Электрические моторы заняли в жизни человека почетное место и применяются в приборах различной мощности и габаритов. Встретить их можно повсеместно, начиная от электрических зубных щеток, стиральных машин микроволновых печей до беговых дорожек, промышленного оборудования или огромных автомобилях.

Причина популярности предельно ясна даже неспециалисту – простота устройства, легкость в обслуживании, рентабельность производства и многое другое, включая повсеместную электрификацию. Исключение, пожалуй, составляют автомобили, так как подать к ним ток по проводам нельзя, если это не троллейбус, но и то, в этом направлении сегодня ведется множество разработок.

Сегодня мы с вами поговорим о том, что представляет собой асинхронный двигатель переменного тока. Узнаем, как он устроен, и за счет каких принципов работает. Погнали!

Что такое асинхронный двигатель

Классический двигатель переменного тока асинхронный

Трехфазный асинхронный двигатель мало чем отличается от своих собратьев и состоит из двух основных частей – вращающейся и неподвижной, или другими словами ротора и статора. Располагаются они один в другом при этом, не касаясь друг друга. Между деталями имеется небольшой воздушный зазор от 0,5 до 2 миллиметров, в зависимости от конструкции двигателя.

Схематическое строение

Однако это не все детали. Давайте разберем строение более подробно.

Схематическое строение трехфазного двигателя

  • Статор – фактически главная рабочая часть, являющаяся мощным электромагнитом. Состоит он их сердечника, выполненного из тонколистовой технической стали, толщиной всего лишь 0,5 миллиметров, которая покрывается токоизоляционным лаком, и обмотки, сделанной из медной проволоки, которая также изолирована и располагается продольных пазах сердечника

Строение статора прекрасно видно на представленной выше схеме, где показано, что сердечник собран из множества пластин совмещенных друг с другом.

Цилиндр на валу снизу – это и есть ротор

  • Ротор – данный элемент также состоит из сердечника, обмотка которого короткозамкнута (хотя бывает и другое строение), который располагается на валу. Сердечник этого элемента также представлена в виде шихтованной детали, однако сталь не покрывается лаком, так как ток, протекающий внутри, будет очень слабым, и естественной оксидной пленки будет вполне достаточно, чтобы ограничить вихревые токи.
  • Вал мотора представляет собой центральную ось, вокруг которой и происходит вращение электромотора. С разных концов на этом элементе располагаются подшипники качения, за счет которых обороты происходят максимально плавно и легко. Сами подшипники запрессованы в боковые крышки, в которых имеются посадочные места под них.

Совет! Подшипники должны сидеть очень плотно, при этом они должны быть отцентрованы, смазаны, легко вращаться, то есть быть исправными, иначе при высоких оборотах двигатель очень быстро выйдет из строя.

Разбитая и новые крыльчатки

  • На конце вала, противоположном приводу, располагается небольшая крыльчатка, которая при включенном двигателе выполняет функцию его охлаждения. Кстати, данный элемент тоже может стать причиной появления вибрации в двигателе, если его лопасти отломаются, что негативно сказывается на сроке службы агрегата. Пример разбитого вентилятора можно увидеть на фото выше.
  • Идем по цепочке. Боковые крышки корпуса крепятся к станине, которая удерживает все вышеназванное вместе.

Также любой двигатель имеет пусковую аппаратуру и силовые цепи, о чем мы подробнее поговорим немного позже.

Принцип вращение электромагнитного поля

Электромагнитная индукция в моторах

Главной особенностью любого электрического двигателя является то, что он способен переводить электрическую энергию в кинетическую, то есть механическую. При этом, разобрав его строение, вы можете увидеть, что никакого прямого или передаточного привода он не имеет. Как же тогда происходит вращение двигателя?

Вся фишка в том, что обмотка статора способна создавать сильное вращающееся магнитное поле, которое увлекает за собой ротор, при включении мотора в электрическую сеть. Данное магнитное поле имеет определенную частоту вращения, которая прямопропорциональна частоте переменного тока, и имеет обратную пропорциональность числу пар полюсов обмотки.

То есть данную частоту можно вычислить по формуле: n1 = f1*60/p, где: n1 – частота вращения магнитного поля; f1 – частота переменного тока в Герцах; p – количество пар полюсов.

Строение асинхронного двигателя переменного тока

Пока ничего не понятно?

Ничего, сейчас во всем разберемся.

  • Чтобы наглядно себе представить принцип вращения магнитного поля, давайте рассмотрим примитивную трехфазную обмотку, имеющую всего три витка.

Пример того, как вращается магнитное поле в электрическом двигателе

  • Витки – это проводники, по которым при включении в сеть протекает электрический ток. Во время этого процесса вокруг проводника возникает электромагнитное поле.
  • Мы знаем, что показатели переменного тока изменяются со временем – сначала он нарастает, затем падает до нуля, потом течет в обратном направлении по тому же принципу, и так до бесконечности. Именно поэтому переменный ток изображают в виде синусоиды.

Графическое изображение переменного тока

  • В то время как изменяются показатели тока, меняются и параметры магнитного поля, вызываемого им.
  • Особенностью трехфазных двигателей и генераторов является то, что в один момент времени по обмотке статора ток протекает в фазах со смещением на 120 градусов, то есть на треть времени одного такта.
  • Такт – это 1 Герц, то есть прохождение переменным током одного полного цикла колебания синусоиды. Схематически это будет выглядеть вот так.

Смещение между фазами составляет ровно 120 градусов

  • В результате в статоре двигателя одновременно образуется несколько магнитных полей, которые, взаимодействуя, дают результирующее поле.

Изменение магнитного поля в разные моменты времени

  • Когда происходит изменение параметров токов, протекающих в фазах, начинает изменяться и результирующее магнитное поле. Выражается это в смене его ориентации, при том, что амплитуда остается одинаковой.
  • В результате получается так, что магнитное поле вращается вокруг некой центральной оси.

А что будет, если внутрь данного магнитного поля поместить проводник?

Принцип электромагнитной индукции

Согласно закону об электромагнитной индукции, который мы подробно описывали в статье про генераторы постоянного и переменного тока, в проводнике возникает электродвижущая сила, сокращенно ЭДС. Если этот проводник замкнут на внешнюю цепь или на себя, то в нем потечет ток.

Согласно закону Ампера, на проводник с током, помещенным в магнитное поле, начинает действовать сила, и контур начинает вращаться. По этому принципу и работают асинхронные двигатели переменного тока, однако вместо рамки в магнитном поле находится короткозамкнутый ротор, который своим внешним видом напоминает беличье колесо.

Строение короткозамкнутого ротора

  • Как видно из схемы выше, такой ротор состоит из параллельно расположенных стержней, которые с торцов замкнуты двумя кольцами.
  • При подключении статора к электрической сети, он начинает формировать вращающееся магнитное поле, которое индуктирует во всех стержнях ротора ЭДС, из-за чего ротор начнет вращаться.
  • При этом в разных стержнях будет отличаться направление текущего тока и его величина, в зависимости от того, в каком положении они находятся относительно полюсов магнитного поля. Опять-таки, если не понятно, то отсылаем вас снова к закону об электромагнитной индукции.

Изменение ЭДС на примере генератора переменного тока

Интересно знать! Стержни на роторе наклоняют относительно оси его вращения. Делается это для того, чтобы пульсация момента и высшие гармоники ЭДС, сокращающие эффективность двигателя, были меньше.

Особенности асинхронного двигателя

Неприхотливые в эксплуатации электромоторы

Итак, давайте разбираться с тем, какие двигатели переменного тока называются асинхронными.

Скольжение ротора

Главной особенностью таких агрегатов является то,  что частота вращения ротора отличается от этого же показателя у магнитного поля. Назовем условно эти значения n2 и n1, соответственно.

Объяснить это можно тем, что индуцироваться ЭДС может только при этом неравенстве – n2 должна быть меньше n1. Разница в частотах этих вращений называется частотой скольжения, а сам эффект отставания ротора и называется скольжением, которое обозначается как «s». Высчитать этот параметр можно по следующей формуле: s = (n1-n2)/n1.

Асинхронный двигатель в разрезе

  • Давайте представим себе ситуацию, в которой частоты n1 и n2 будут одинаковыми. В этом случае положение стержней ротора относительно магнитного поля будет неизменным, а значит, движение проводников относительно магнитного поля происходить не будет, то есть ЭДС не индуктируется, и ток не течет. Отсюда следует вывод, что сил приводящих ротор в движение возникать не будет.
  • Если предположить, что изначально двигатель был в движении, то теперь ротор начнет замедляться, отставая от магнитного поля, а значит, стержни сместятся относительно магнитного поля и снова начнет расти ЭДС и движущая сила, то есть вращение снова возобновится.
  • Приведенное описание довольно грубое. В реальности ротор асинхронного двигателя никогда не может догнать скорость вращения магнитного поля, поэтому крутится равномерно.
  • Уровень скольжения тоже величина непостоянная, и может изменяться от 0 до 1, или другими словами, от 0 до 100 процентов. Если скольжение близко к 0, что соответствует холостому режиму работы двигателя, то есть ротор не будет испытывать противодействующий момент. Если значение этого параметра близко к 1 (режим короткого замыкания), то ротор будет неподвижен.
  • Отсюда можно сделать вывод, что скольжение напрямую будет зависеть от механической нагрузки на вал двигателя, и чем она больше, тем выше и коэффициент.

Принцип работы асинхронного двигателя

  • Для асинхронных двигателей средней и малой мощности допустимый коэффициент скольжения находится в диапазоне от 2 до 8%.

Мы уже написали, что такой двигатель преобразует электрическую энергию с обмоток статора в кинетическую, однако стоит понимать, что эти силы не равны друг другу. Всегда при преобразовании происходят потери на гистерезисе, нагреве, трении и вихревых токах.

Данная часть энергии рассеивается в виде тепловой, поэтому двигатель и оборудуется вентилятором для охлаждения.

Питание двигателя

Схема подключения

Давайте теперь разберемся с тем, как происходит подключение асинхронного электродвигателя переменного тока.

  • Мы уже вкратце описывали, как протекает ток в трехфазной сети, но не совсем понятно, какие выгоды такое питание имеет перед однофазными или двухфазными аналогами.
  • В первую очередь можно отметить экономичность системы с таким подключением.
  • Также для нее характерна большая эффективность.

Фазы подключаются к обмотке статора по определенным схемам, называемым звезда и треугольник, каждая из которых имеет свои особенности. Соединения эти могут быть выполнены как внутри двигателя, так и снаружи, в распределительной коробке. В первом случае из корпуса выходит три провода, а во втором шесть.

Для лучшего понимания принципов работ схем давайте введем некоторые понятия:

  1. Фазное напряжение – напряжение в одной фазе, то есть разница потенциалов между ее концами.
  2. Линейное напряжение – это разница в потенциалах разных фаз.

Эти значения очень важны, так как позволяют рассчитать потребляемую мощность электромотора.

Вот формулы, предназначенные для этого:

Формулы расчета мощности двигателя

Данные формулы вычисления мощности двигателя справедливы для подключения и звездой, и треугольником. Однако стоит всегда учитывать, что подключение одного и того же двигателя разными способами будет сказываться на его энергопотреблении.

А если потребляемая мощность не соответствует параметрам двигателя, то может произойти расплавление обмотки статора, и моментальный выход из строя агрегата.

Чтобы понять это лучше, давайте разберем один наглядный пример:

  • Представьте двигатель, подключенный по схеме «звезда», который подключен в сеть переменного тока. Линейное напряжение будет составлять 380В, а фазовое 220В. Потребляет при этом он 1А.
  • Высчитываем мощность: 1,73*380*1 = 658 Вт – 1,73 является корнем из 3.
  • Если сменить схему подключения на треугольник, то получится следующее. Линейное напряжение останется без изменений и составит 380В, а вот фазовое напряжение (вычисляем по первой формуле) увеличится и станет таким же 380В.
  • Увеличенное в корень из 3 раз фазовое напряжение, приведет к увеличению в такое же количество раз фазового тока. То есть Iл будет равно не 1, а 1,73*1,73, что приблизительно равняется 3
  • Повторяем расчет мощности: 1,73*380*3 = 1975 Вт.

Как видно из примера, потребляемая мощность стала намного больше, и если двигатель не рассчитан на работу в таком режиме, то он неизбежно перегорит.

Как выглядят схематично разбираемые подключения обмотки

Подключение трехфазного двигателя асинхронного типа к однофазной сети

Разобрав принцип работы трехфазного асинхронного двигателя переменного тока, становится понятным, что напрямую подключить его к общественным сетям, в который «царит» одна фаза,  не так просто. Выполнить такое подключение становится возможным, если применить фазосдвигающие элементы.

Варианты подключения трехфазного двигателя к однофазной сети

При таком подключении двигатель может работать в двух режимах:

  1. Первый ничем не отличается от работы однофазных двигателей (смотреть рисунки а, б и г, где применяется пусковая обмотка). При таком режиме работы двигатель способен выдать лишь 40-50% от своей номинальной мощности.
  2. Второй (в, д, е) – режим конденсаторного двигателя, при котором агрегат способен выдать до 80-ти% мощности (в схему включен постоянно работающий конденсатор).

Совет! Емкость конденсатора рассчитывается по специальным формулам, согласно выбранной схеме.

Как управлять электродвигателем

Управление асинхронным электродвигателем переменного тока может быть реализовано тремя способами:

Магнитный пускатель

  • Прямое подключение к питающей сети – для этого применяются магнитные пускатели, с помощью которых можно реализовать нереверсивные и реверсивные режимы работы мотора. Отличие, думаем понятно – во втором случае двигатель мотет вращаться в другом направлении. Недостатком такого подключения является то, что в цепи присутствуют большие пусковые токи, что не очень хорошо для самого агрегата. Цена такого устройства будет самой низкой

Устройство плавного пуска

  • Плавный пуск двигателя – такие устройства для управления применяются тогда, когда вам требуется возможность регулировки скорости вращения вала при запуске двигателя. Показанный прибор уменьшает пусковые токи, в результате чего защищает двигатель от больших пусковых токов. Оно обеспечивает плавный старт и остановку вала.

Частотный преобразователь

  • Самым дорогим и сложным подключением электрического двигателя является применение частотного преобразователя. Такое решение используется тогда, когда требуется регулировка скорости вращения вала двигателя не только при старте и торможении. Данное устройство способно менять частоту и напряжение подаваемого на двигатель тока.
  • Его применение имеет следующие плюсы: во-первых сокращается энергопотребление мотора; во-вторых, как и устройство плавного пуска, двигатель защищается от ненужных перегрузок, что благотворно сказывается на его состоянии и сроке службы.

Частотные преобразователи могут реализовать следующие методы регулирования:

Скалярное управление

  1. Управление скалярного типа. Наиболее простой и недорогой в реализации, обладающий медленным откликом на изменение нагрузки в сети и небольшим диапазоном регулировки, в виде недостатков. Из-за того подобное управление применимо лишь там, где изменение нагрузки происходит по определенному закону, например, переключение режимов в фене.
  2. Управление векторного типа. Данная схема применяется там, где требуется обеспечить независимое управление вращением электродвигателя, например, в лифте. Она позволяет сохранять одинаковые обороты даже при изменяющихся параметрах нагрузки.

Асинхронный двигатель с фазным ротором

Более сложная конструкция асинхронного двигателя

До того момента, как частотные преобразователи получили широкое распространение, асинхронные двигатели большой и средней мощности изготавливались с фазным ротором. Такая конструкция дает двигателю лучшие свойства по плавному пуску и регулировке оборотов, однако  эти агрегаты намного сложнее в плане строения.

  • Статор такого мотора ничем не отличается от того, что устанавливается в двигателях с короткозамкнутым ротором, но вот сам ротор устроен по-другому.
  • Также как и статор, он имеет трехфазную обмотку, которая подключается «звездой» к контактным кольцам. Обмотка укладывается в пазы стального сердечника, от которого она изолируется.

Кольца контактные

  • Контактные кольца соединяются через графитовые щетки с трехфазным пусковым или регулировочным реостатом, с помощью которого и производится пуск ротора.

Реостат жидкостного типа

  • Реостаты бывают металлическими и жидкостными. Первые (их еще называют проволочными) – ступенчатые, которые управляются механическим переключением своими руками рукояти контроллера, либо автоматически, при помощи контроллера с электроприводом. Вторые представляют собой некие сосуды с электролитом, в который опущены электроды. Изменение сопротивления такого реостата осуществляется за счет глубины их погружения.

Интересно знать! Отдельные модели АДФР, с целью увеличения КПД и ресурса щеток, после запуска ротора поднимают щетки и за счет короткозамкнутого механизма замыкают кольца.

На сегодняшний день устройства с фазными роторами практически не применяются, так как их эффективно заменяют асинхронные двигатели с короткозамкнутым ротором, оснащенные частотным преобразователем.

На этом подведем итог. Мы узнали строение асинхронного трехфазного двигателя и принцип его работы. Материал для большинства читателей будет теоретическим, но, думаем, все равно интересным. Если вам нужно узнать, как выполнить ремонт асинхронного двигателя переменного тока, то прочтите предыдущую статью на нашем сайте. Там будет дана инструкция по разбору, и рассказано, что можно диагностировать и исправить самостоятельно, не обращаясь в мастерскую. Также рекомендуем к просмотру подобранное нами видео.

6.3.9. Асинхронные двигатели

Энергопреобразования в асинхронном двигателе. Принцип действия асинхронного двигателя был рассмотрен в 6.3.4, поэтому здесь более подробно рассмотрим особенности энергопреобразования и технико-эксплуатационных показателей таких двигателей.

При работе асинхронного двигателя происходит необратимый процесс преобразования электрической энергии переменных токов сети в механическую энергию вращательного движения. Этот процесс, как и в любой электрической машине, сопровождается бесполезным расходом части энергии на нагрев машины, который характеризуется величинами мощностей магнитных и электрических потерь. Последние обусловлены нагревом обмоток статора и ротора, обладающих сопротивлениями , и, при протекании по ним тока.

На основании баланса активной мощности можно записать

,

где — мощность, потребляемая трехфазной машиной; — мощность электрических потерь в обмотке статора;- фазные напряжения и токи статора, угол сдвига фаз между ними; — мощность магнитных потерь в пакете магнитопровода статора; — полезная механическая мощность двигателя; — мощность механических потерь; — мощность электрических потерь в обмотке ротора. Мощностью магнитных потерь в роторе обычно пренебрегают из-за малой частоты его перемагничивания.

Электромагнитная мощность , передаваемая со статора на ротор вращающимся магнитным полем, меньше активной мощности двигателя на величину электрических и магнитных потерь в статоре: .

Эта мощность может быть выражена через электромагнитный момент , действующий на ротор со стороны вращающегося с частотой вращения (об/мин) поля статора:

, (6.13)

где , с-1.

Аналогично выражается механическая мощность вращающегося с частотой вращения (об/мин) ротора: , где, с-1.

Разность и определяет мощность электрических потерь в роторе:

, (6.14)

где — скольжение.

Таким образом, мощность электрических потерь в роторе пропорциональна скольжению. Поэтому работа асинхронного двигателя более экономична при малых скольженьях (при номинальных режимах составляет сотые доли единицы).

Полезная механическая мощность двигателя меньше механической мощности ротора на величину мощности механических потерь в нем .

В паспорте асинхронных двигателей, как и других электрических двигателей, в качестве номинальной указывается его полезная механическая мощность , а не мощность потребления электрической энергии .

Соответственно КПД асинхронного двигателя . Благодаря отсутствию коллектора КПД асинхронных двигателей выше, чем у двигателей постоянного тока, и при номинальной нагрузке может составлять 0,83 … 0,96.

Кроме необратимого процесса преобразования электроэнергии, учитываемого величиной активной мощности , в асинхронном двигателе происходит обратимый процесс периодического изменения запаса энергии магнитного поля машины, который характеризуют реактивной мощностью.

Соотношение между активной и реактивной мощностями асинхронного двигателя оценивают его коэффициентом мощности — косинусом угла , сдвигом фаз напряжения и тока в обмотке статора: . Коэффициент мощности асинхронного двигателя зависит от нагрузки на его валу — большей нагрузке соответствует его большее значение.

Электромагнитный момент и механическая характеристика асинхронного двигателя. Электромагнитный момент может быть выражен из формулы (6.14) с учетом выражения (6.13):

. (6.15)

Мощность электрических потерь в трех фазах ротора может быть выражена через ЭДС , ток и угол сдвига фаз между ними в роторе при скольжении:

. (6.16)

Активная составляющая тока ротора .

Поэтому с учетом формулы (6.4) выражение (6.16), подставленное в выражение (6.15), можно записать:

, (6.17)

где K — константа, определяемая конструкцией ротора.

Очевидно, что электромагнитный момент асинхронной машины определяется не всем током ротора, а только его активной составляющей.

Выражение (6.17) не всегда является удобным для практики, так как связь между моментом и скольжением неявная. Однако эта связь может быть установлена в явной форме, если ток ротора при скольжении и его активную составляющую выразить через ЭДС, активное и индуктивное сопротивления ротора, где — индуктивное сопротивление и — ЭДС неподвижного ротора (). Тогда

. (6.18)

После преобразований выражение (6.18) можно привести к виду

, (6.19)

где .

Тогда из формулы (6.18) с учетом выражения (6.17) следует, что

. (6.20)

Зависимость , соответствующая выражению (6.20), показана на рис. 6.55а.

а

б

Рис. 6.55

При скольжении , называемом критическим и определяемом по формуле (6.19), величина момента максимальна . Она определяется подстановкой в выражение (6.20) .

Полученная зависимость позволяет перейти к механической характеристике асинхронного двигателя, показанной на Рис. 6.55б. Анализ показывает, что магнитный поток пропорционален фазному напряжению статора, а ЭДС определяется потоком , поэтому электромагнитный момент асинхронного двигателя, т. е. асинхронные двигатели очень чувствительны к уменьшению питающего напряжения. Так, например, уменьшение напряжения от номинального доприводит к уменьшению номинального момента отдо. В этом случае двигатель не сможет нести номинальную нагрузку.

Устойчивая работа двигателя возможна лишь при скольженьях или соответственно от до . При () ротор неподвижен, двигатель развивает пусковой момент.

Как видно из формулы (6.19), критическое скольжение пропорционально величине активного сопротивления ротора. Поэтому при введении в цепь фазного ротора двигателя добавочного сопротивления его зависимости изменятся так, как это показано на Рис. 6.56. При этом величина максимального момента при различных сопротивлениях роторной цепи не изменится.

Пуск асинхронных двигателей. При пуске двигателя () ЭДС велика, соответственно ток ротора большой, ток статора, так же как и ток ротора, может достигать десятикратного номинального значения.

Таким образом, при пуске двигателя без принятия специальных мер значительно возрастают токи, что недопустимо по условиям динамических усилий в обмотках и условиям их нагрева, а пусковой момент настолько низок из-за низкого значения при пуске (6.17), что может быть недостаточным для преодоления момента сопротивления приводного механизма. Поэтому при пуске двигателей с фазным ротором вводят сопротивления в цепь ротора. При этом пусковой ток уменьшается, значениеувеличивается, а пусковой момент возрастает (рис. 6.56).

Рис. 6.56

Пуск асинхронного двигателя малой мощности с короткозамкнутым ротором часто производят прямым включением в сеть. При этом необходимо обеспечить величину начального пускового момента электродвигателя выше начального момента сопротивления приводного механизма.

При необходимости ограничения пускового момента и тока применяют:

— включение статорной обмотки через активное сопротивление;

— включение через автотрансформатор;

— переключение статорной обмотки со звезды на треугольник.

Для улучшения пусковых свойств короткозамкнутых двигателей, работающих в тяжелых условиях, применяют специальные обмотки ротора (глубокопазные, с двойной «беличьей клеткой»), в которых сопротивление в момент пуска автоматически делается большим, а по мере разгона ротора оно уменьшается, как и у двигателя с фазным ротором.

Регулирование частоты вращения. Основные способы регулирования частоты вращения асинхронных двигателей сводятся к изменению частоты вращения магнитного поля статора или введению добавочного сопротивления в фазный ротор.

Частоту вращения магнитного поля статора , как видно из выражения (6.3), регулируют изменением числа пар полюсов обмотки статора p или частотой питающей сети .

Двигатели с изменением числа пар полюсов называют многоскоростными. У них возможно только ступенчатое изменение .

При частотном управлении асинхронный двигатель питают от специального генератора трехфазного напряжения или полупроводникового преобразователя частоты. Частотное регулирование более экономично, однако часто стоимость и габариты преобразователя частоты превышают эти показатели самого двигателя.

При изменении сопротивления в цепи фазного ротора их характеристики изменяются так, как это показано на рис. 6.56.

Регулирование возможно только вниз от номинальной частоты вращения. При данном способе регулирования можно получить широкий диапазон скоростей. Однако он неэкономичен, так как потери в роторной цепи пропорциональны скольжению, а энергия скольжения выделяется в виде теплоты в сопротивлениях роторной цепи.

Асинхронный двигатель — технические характеристики и принцип работы

Среди разнообразия выпускаемых на сегодняшний день типов электрических моторов большое распространение получили асинхронные двигатели. Их мощность и эффективность обеспечивает использование в деревообрабатывающей и металлообрабатывающей промышленности, в насосных агрегатах, на фабриках, в станках и ручном электрическом инструменте.

асинхронный трехфазный двигатель

Содержание:

  1. Асинхронный двигатель: что это такое
  2. Трехфазный асинхронный двигатель. Принцип работы
  3. Однофазный асинхронный двигатель
  4. Двухфазный асинхронный двигатель
  5. Схемы подключения
  6. Функциональные и эксплуатационные особенности
  7. Как производятся расчеты

Асинхронный двигатель: что это

Асинхронный двигатель – это асинхронная электрическая машина, применяемая для преобразования электрической энергии в механическую. Асинхронный дословно означает неодновременный – здесь имеется в виду, что у асинхронного двигателя магнитное поле всегда имеет большую частоту вращения, чем ротор, который словно пытается его догнать. Работают эти машины от сетей с переменным током.

Любой асинхронный двигатель состоит из двух ключевых составляющих: ротора и статора. Эти части не контактируют между собой и отделены друг от друга воздушным зазором, в котором формируется подвижное магнитное поле.

Статор асинхронной машины состоит из следующих частей:

  1. Корпус. Служит для скрепления всех деталей мотора. Для двигателей небольшого размера, как правило, используют цельные литые корпусы из чугуна, стальных и алюминиевых сплавов.
  2. Сердечник или магнитопроводник. Собирается из пластин, для изготовления которых применяют специальную электрическую сталь. Запрессовывается в корпус и улучшает магнитно-индукционные качества машины. Каждая пластина сердечника покрывается особым лаком, позволяющим уменьшить потери при возникновении вихревых токов. В некоторых случаях устройство асинхронного двигателя предусматривает установку корпуса-сердечника, совмещающего в себе обе функции.
  3. Обмотки. Устанавливаются в пазы сердечника. Представляет собой три катушки из меднопроволочных секций, расположенные под углом в 120˚ относительно друг друга. Называется первичной, потому что подключается к сети напрямую.

Конструкция ротора состоит из основного блока с вентиляционной крыльчаткой, опирающегося на подшипники. Связь ротора с приводимым в движение механизмом обеспечивается с помощью прямого подключения, редукторов или других способов передачи механической энергии. В асинхронных двигателях используются два вида роторов:

  1. Массивный ротор – единая схема из прочного ферромагнитного соединения. Внутри неё индуцируются токи, и она же выполняет в конструкции роль магнитопровода.
  2. Короткозамкнутый ротор (изобретён великим русским инженером Михаилом Осиповичем Доливо-Добровольским, как и весь трёхфазный ток) – система соединенных с помощью колец проводников, похожая по внешнему виду на беличье колесо. Внутри него индуцируются токи, чье электромагнитное поле вступает во взаимодействие с магнитным полем статора, в результате чего ротор приводится в движение.

беличье колесо

Рекомендуем посмотреть это видео. Оно хоть и старое, но интересное и познавательное. Позволит закрыть непонятные моменты.

Трехфазный асинхронный двигатель. Принцип работы

Принцип действия асинхронного двигателя заключается во взаимном расположении обмоток и трехфазном напряжении, что приводит к возникновению вращающегося магнитного поля, которое и выступает движущей силой.

Подробнее говоря, при подаче питания на первичную обмотку, на фазах образуются три магнитных потока, изменяющихся в зависимости от частоты входного напряжения. Они смещены между собой не только в пространстве, но и во времени, благодаря чему и появляется вращающийся магнитный поток.

Во время вращения результирующий поток создает ЭДС в роторных проводниках. По причине того, что обмотка ротора представляет собой замкнутую цепь, в ней создается ток, создающий пусковой момент в направлении вращения магнитного поля статора. Это приводит к вращению ротора после превышения пусковым моментом его тормозного момента. Наблюдаемое в этот момент явление называется скольжением — величиной, показывающей в виде процентов соотношение частоты вращения магнитного поля к частоте вращения ротора.

(n1 – частота магнитного поля статора; n2 – частота вращения ротора)

Скольжение является очень важным параметром. На старте его величина всегда равна 1 и, естественно, становится меньше по мере увеличения разности между n1 и n2, что сопровождается также уменьшением электродвижущей силы и вращающего момента. Во время работы на холостом ходу скольжение минимально и растет по мере увеличения статического момента. Достигнув критического скольжения (обозначается как sкр), может спровоцировать опрокидывание двигателя. После уравновешивания тормозного и электромагнитного момента изменения величин прекращаются.

Таким образом, принцип действия асинхронного двигателя основывается на взаимодействии магнитного поля ротора, находящегося во вращении, и токов, наведенных в роторе этим же полем. При этом обязательным условием возникновения вращающего момента является разница частот вращения полей.

Однофазный асинхронный двигатель

Фактически, любой асинхронный электродвигатель является трехфазным и предусматривает подключение к трехфазной сети с напряжением 380 В. Однофазным или двухфазным его называют при подключении к однофазной электросети с напряжением 200 В, когда питание подается лишь на две обмотки. В такой схеме на основную рабочую обмотку подается чистая фаза от сети, а на другую питание идет через фазосдвигающий элемент, как правило, конденсатор. Такая схема позволяет создать необходимую индукцию для смещения ротора и запустить асинхронный двигатель от однофазной сети. Для дальнейшей его работы даже необязательно, чтобы пусковая обмотка (которую подключают через конденсатор) оставалась под напряжением.

Дело в том, что трехфазный асинхронный двигатель продолжает функционировать (под малой нагрузкой) даже если во время работы от него отключить подачу энергии по одному из питающих проводов, сымитировав таким образом работу от однофазной сети. Это обусловлено тем, что результирующее магнитное поле сохраняет вращение.

Двухфазный асинхронный двигатель

Создать вращающееся магнитное поле можно и при использовании двухфазных обмоток. Для обеспечения работоспособности схемы фазы обмоток необходимо расположить с 90˚ смещением друг от друга. При их питании токами, которые смещены по фазе на 90˚, возникает вращающееся магнитное поле, как и в трехфазной машине.

Асинхронный двухфазный электродвигатель приводится в движение за счет токов, образуемых при взаимодействии результирующего поля с роторными стержнями. Он ускоряется до того момента, пока не будет достигнута предельная скорость его вращения. Для питания такого двигателя от электросети однофазного тока необходимо создать сдвиг по фазе на одной из обмоток. Для этого применяются конденсаторы необходимой ёмкости.

На сегодняшний день все большее применение находят двухфазные асинхронных двигатели с полым алюминиевым ротором. Вращение ему придают вихревые токи, образованные внутри цилиндра, при взаимодействии с вращающимся магнитным полем.

Инерционный момент ротора наделяет двигатель хорошими характеристиками для использования в некоторых специализированных отраслях, как, например, системы, регулирующие работу мостовых и компенсационных схем. Одна из обмоток в них подключается к питающей сети через конденсатор, а через вторую проходит управляющее напряжение.

Схемы подключения

Для того чтобы подключить трехфазный асинхронный двигатель используют несколько различных схем, но чаще всего применяются «треугольник» и «звезда».

Треугольник

Преимущество данной схемы заключается в том, что при подключении согласно ей трехфазный двигатель может развивать наибольшую номинальную мощность. Для этого обмотки соединяются по принципу конец-начало, что на схематичном изображении похоже на треугольник, однако в виде треугольника понять что к чему, не всегда удобно. По этому предлагаем для анализа схему снизу, а затем фотографию уже в сборе (еще ниже).

схема подключения «треугольник»

В трехфазных электрических сетях величина линейного напряжения между выводами обмоток составляет 380 В. При этом нет необходимости создания рабочего нуля. Важно отметить, что в такой схеме может возникнуть большой пусковой ток, значительно перегружающий проводку.

Звезда

Этот способ подключения является наиболее используемым в сетях с трехфазным током 380 В. Название схемы связано с тем, что концы обмоток соединяются в одной точке, словно звездные лучи. Начала обмоток подключаются посредством аппаратуры коммутации к фазным проводникам. В такой конструкции линейной напряжение между начал составляет 380 В, а между местом соединения и подключения проводника – 200 В. Ниже представлена схема, а еще ниже уже фотография в собранном виде.

схема подключения «звезда»

Трехфазный двигатель для 380 В сетей, подключенный таким образом, не способен развить максимальную силу из-за того, что напряжение на каждой обмотке составляет 220 В. В свою очередь, такая схема предотвращает возникновение перегрузок по току, чем обеспечивается плавный пуск.

Возможность подключения двигателя тем или иным способом, как правило, указывается на его табличке. Значок Y означает «звезду», а ∆ — «треугольник». Определить схему на уже подключенной машине можно по виду обмоток – одна двойная перемычка между ними говорит, что использована «звезда» (первое фото снизу), а если между клеммами обмоток видно три перемычки – «треугольник» (первое фото сверху).

Асинхронный двигатель, треугольник в сборе.

Асинхронный двигатель, звезда в сборе

В случае, когда необходимо запустить трехфазный асинхронный электродвигатель в обратном направлении вращения, следует поменять два питающих провода от трехфазного источника местами.

Функциональные и эксплуатационные особенности

Характерные преимущества асинхронных двигателей:

  • В их конструкции нет коллекторных групп, которые увеличивают износ других видов двигателей за счет дополнительного трения.
  • Питание асинхронных электрических машин не требует использования преобразователей и может осуществляться промышленной трехфазной сети.
  • Из-за меньшего количества деталей и конструктивных элементов они относительно легко обслуживаются и имеют большой срок службы.

Среди недостатков можно отметить:

  • Сфера применения асинхронных двигателей несколько ограничена из-за малого пускового момента.
  • Высокая реактивная мощность, которую они потребляют во время работы, не оказывает влияние на механическую мощность.
  • Большие пусковые токи, потребляемые на пуске этих двигателей, могут превышать допустимые значения некоторых систем.

Как производятся расчеты

Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:

И выразить из нее скорость вращения ротора:

В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.

При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:

Таким образом, величина скольжения электродвигателя составляет:

И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.

Асинхронные электродвигатели с повышенным скольжением

Что такое скольжение асинхронного двигателя?

Скольжение —это важная характеристика асинхронного электродвигателя, которая определяется как относительная разность скоростей вращения ротора и изменения переменного магнитного потока, создаваемого обмотками статора двигателя переменного тока. Измеряется в относительных единицах и в процентах.

Асинхронные трехфазные двигатели с повышенным скольжением

Двигатели специального назначения с повышенным скольжением строятся на базе унифицированных общепромышленных двигателей, а в маркировку добавляется буква «С» после названия серии (АИРС, АС, 5АС, АДМС, 4АС.). Габаритно-присоединительные размеры двигателей с повышенным скольжением соответствуют аналогичным размерам общепромышленных. Скольжение при номинальной нагрузке у этих электродвигателей выше, чем у базовых, а критическое скольжение составляет около 40%.

Повышенное скольжение достигается двумя способами: занижением индукции путём увеличения витков в обмотке статора или (чаще всего) применением роторной обмотки, усиленной специальным сплавом, имеющим повышенное сопротивление. Если объяснять очень упрощенно, то чем больше сопротивление обмотки ротора, тем ток в роторе меньше и магнитное поле, создаваемое током в этой обмотке, тоже становится меньше. Это и обуславливает повышенное скольжение, магнитное поле статора как бы слабее «цепляет» ротор с ослабленным магнитным полем.

Применение двигателей с повышенным скольжением

Главным достоинством агрегатов повышенного скольжения является возможность работать с большими нагрузками, с неравномерной пульсирующей (ударной) нагрузкой, а также в повторно-кратковременном режиме с частыми пусками и остановками (режимы S2, S3, S4, S6). В таких условиях обычных стандартный двигатель может перегореть, т.к. он предназначен для работы с редкими остановками и пусками. В остальном подобные электродвигатели имеют практически полное сходство со стандартными моделями общепромышленных двигателей.

Электродвигатели с повышенным скольжением используются для привода механизмов с пульсирующей нагрузкой (например, поршневые компрессоры малой мощности) и с ударной нагрузкой (молоты, прессовое оборудование), а также для привода подъемно-транспортных машин. 

 

Асинхронный двигатель

: как он работает? (Основы и типы)

Что такое асинхронный двигатель?

Асинхронный двигатель (также известный как асинхронный двигатель ) — широко используемый электродвигатель переменного тока. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора. Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с намоткой.

Асинхронные двигатели называются «асинхронными двигателями», потому что они работают со скоростью, меньшей, чем их синхронная скорость.Итак, первое, что нужно понять — что такое синхронная скорость? Типичный асинхронный двигатель

Синхронная скорость

Синхронная скорость — это скорость вращения магнитного поля во вращающейся машине, и она зависит от частоты и числа полюсов двигателя. машина. Асинхронный двигатель всегда работает со скоростью меньше его синхронной скорости.

Вращающееся магнитное поле, создаваемое в статоре, будет создавать магнитный поток в роторе, следовательно, заставляя ротор вращаться. Из-за запаздывания между магнитным потоком в роторе и магнитным потоком в статоре ротор никогда не достигнет скорости вращения магнитного поля (т.е.е. синхронная скорость).

Существует два основных типа асинхронных двигателей . Асинхронные двигатели типа зависят от входного источника питания. Есть однофазные асинхронные двигатели и трехфазные асинхронные двигатели. Однофазные асинхронные двигатели не являются самозапускающимися двигателями, а трехфазные асинхронные двигатели — самозапускающимися двигателями.

Принцип работы асинхронного двигателя

Нам нужно дать двойное возбуждение, чтобы двигатель постоянного тока вращался. В двигателе постоянного тока мы подаем одно питание на статор, а другое — на ротор через щеточное устройство.Но в асинхронном двигателе мы даем только один источник питания, поэтому интересно узнать, как работает асинхронный двигатель.

Это просто, из самого названия мы можем понять, что здесь задействован процесс индукции. Когда мы подаем питание на обмотку статора, в статоре создается магнитный поток из-за протекания тока в катушке. Обмотка ротора устроена так, что каждая катушка замыкается накоротко.

Поток от статора разрезает короткозамкнутую катушку в роторе.Поскольку катушки ротора закорочены, согласно закону электромагнитной индукции Фарадея, ток начнет течь через катушку ротора. Когда ток через катушки ротора течет, в роторе генерируется другой поток.

Теперь есть два потока, один поток статора, а другой поток ротора. Поток ротора будет отставать от потока статора. Из-за этого ротор будет ощущать крутящий момент, который заставит ротор вращаться в направлении вращающегося магнитного поля.Это принцип работы как однофазных, так и трехфазных асинхронных двигателей.

Типы асинхронных двигателей

Типы асинхронных двигателей можно классифицировать в зависимости от того, являются ли они однофазными или трехфазными асинхронными двигателями.

Однофазный асинхронный двигатель

Типы однофазных асинхронных двигателей включают:

  1. Асинхронный двигатель с разделенной фазой
  2. Асинхронный двигатель с конденсаторным запуском
  3. Асинхронный двигатель с конденсаторным запуском и запуском от конденсатора
  4. Асинхронный двигатель с экранированным полюсом

Трехфазный Асинхронный двигатель

Типы трехфазных асинхронных двигателей включают:

  1. Асинхронный двигатель с короткозамкнутым ротором
  2. Асинхронный двигатель с контактным кольцом

Мы уже упоминали выше, что однофазный асинхронный двигатель не является самозапускающимся двигателем, и что трехфазный асинхронный двигатель самозапускается.Итак, , что такое самозапускающийся мотор?

Когда двигатель запускается автоматически без приложения какой-либо внешней силы к машине, тогда двигатель называется «самозапуском». Например, мы видим, что когда мы включаем выключатель, вентилятор начинает вращаться автоматически, так что это самозапускающийся механизм.

Следует отметить, что вентилятор, используемый в бытовой технике, представляет собой однофазный асинхронный двигатель, который по своей природе не запускается автоматически. Как? Возникает вопрос, как это работает? Обсудим это сейчас.

Почему трехфазный асинхронный двигатель самозапускается?

В трехфазной системе есть три однофазные линии с разностью фаз 120 °. Таким образом, вращающееся магнитное поле имеет ту же разность фаз, которая заставляет ротор двигаться.

Если мы рассмотрим три фазы a, b и c, когда фаза a намагничивается, ротор будет двигаться к фазе a обмотки a, в следующий момент фаза b намагнитится и притянет к себе ротор, а затем фаза c . Таким образом, ротор продолжит вращаться.

Принцип работы трехфазного асинхронного двигателя — видео

Почему однофазный асинхронный двигатель не запускается автоматически?

У него только одна фаза, но она заставляет ротор вращаться, так что это довольно интересно. Перед этим нам нужно знать, почему однофазный асинхронный двигатель не является самозапускающимся двигателем и как решить эту проблему. Мы знаем, что источник переменного тока представляет собой синусоидальную волну и создает пульсирующее магнитное поле в равномерно распределенной обмотке статора.

Поскольку мы можем принять пульсирующее магнитное поле как два противоположно вращающихся магнитных поля, результирующий крутящий момент не будет создаваться при запуске, и, следовательно, двигатель не работает. После подачи питания, если ротор вращается в любом направлении под действием внешней силы, двигатель начнет работать. Мы можем решить эту проблему, разделив обмотку статора на две обмотки — одна основная обмотка, а другая вспомогательная.

Один конденсатор подключаем последовательно со вспомогательной обмоткой.Конденсатор будет создавать разность фаз, когда ток течет через обе катушки. При наличии разности фаз ротор генерирует пусковой крутящий момент и начинает вращаться.

Практически мы видим, что вентилятор не вращается, когда конденсатор отсоединяется от двигателя, но если мы вращаем рукой, он начинает вращаться. Вот почему мы используем конденсатор в однофазном асинхронном двигателе.

Из-за различных преимуществ асинхронного двигателя существует широкий спектр применения асинхронного двигателя.Одно из их самых больших преимуществ — их высокий КПД, который может доходить до 97%. Основным недостатком асинхронного двигателя является то, что скорость двигателя зависит от приложенной нагрузки.

Направление вращения асинхронного двигателя можно легко изменить, изменив последовательность фаз трехфазного источника питания, то есть, если RYB находится в прямом направлении, RBY заставит двигатель вращаться в обратном направлении. Это в случае трехфазного двигателя, но в однофазном двигателе направление можно изменить, поменяв местами выводы конденсатора в обмотке.

Быстрый ответ: в чем разница между синхронным двигателем и асинхронным двигателем?

Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.

Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.

Синхронный двигатель не имеет скольжения.

В чем разница между синхронным двигателем и асинхронным двигателем?

Синхронный двигатель — это машина с двойным возбуждением, тогда как асинхронный двигатель — это машина с одним возбуждением.В случае синхронного двигателя его обмотка якоря питается от источника переменного тока, а его обмотка возбуждения — от источника постоянного тока, тогда как в случае асинхронного двигателя его обмотка статора питается от источника переменного тока.

Что означает асинхронный двигатель?

Асинхронный двигатель или асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора. Таким образом, асинхронный двигатель может быть изготовлен без электрических соединений с ротором.

В чем разница между синхронным и асинхронным генератором?

Как и следовало ожидать из названия, основное различие между асинхронными и синхронными машинами заключается в синхронизме ротора. Когда ротор вращается медленнее, чем синхронная скорость, машина действует как двигатель. Когда ротор вращается быстрее, чем синхронная скорость, машина действует как генератор.

Где используются синхронные двигатели?

обычно синхронные двигатели используются там, где требуется точная и постоянная скорость.Эти двигатели с низким энергопотреблением включают в себя позиционирующие машины. Они также применяются в приводах роботов. В шаровых мельницах, часах, проигрывателях пластинок также используются синхронные двигатели.

Почему он называется синхронным двигателем?

Следовательно, ротор вращается с той же скоростью, что и вращающееся магнитное поле. Это связано с тем, что двигатель называется синхронным двигателем. Это двигатель с постоянной скоростью, потому что, несмотря на увеличение нагрузки, двигатель работает с той же синхронной скоростью.

Каковы преимущества синхронного двигателя?

Преимущество использования синхронного двигателя — возможность контролировать коэффициент мощности. Синхронный двигатель с избыточным возбуждением имеет опережающий коэффициент мощности и работает параллельно с асинхронными двигателями, тем самым улучшая коэффициент мощности системы. Скорость остается постоянной независимо от нагрузки в синхронных двигателях.

Какие типы двигателей?

Основными типами являются двигатели постоянного и переменного тока, причем первые все чаще заменяются вторыми.Электродвигатели переменного тока бывают асинхронными или синхронными. После запуска синхронному двигателю требуется синхронизация с синхронной скоростью движущегося магнитного поля для всех нормальных условий крутящего момента.

Какой крутящий момент у мотора?

Крутящий момент — это сила поворота через радиус в единицах Нм в системе СИ и фунт-фут в английской системе мер. Крутящий момент, развиваемый асинхронным асинхронным двигателем, изменяется, когда двигатель ускоряется от нуля до максимальной рабочей скорости.

Сколько существует типов двигателей?

Двумя основными типами двигателей переменного тока являются асинхронные двигатели и синхронные двигатели. Асинхронный двигатель (или асинхронный двигатель) всегда полагается на небольшую разницу в скорости между вращающимся магнитным полем статора и скоростью вала ротора, называемую скольжением, для индукции тока ротора в обмотке переменного тока ротора.

Какие бывают два типа синхронных генераторов?

Существует два основных типа синхронных двигателей в зависимости от того, как намагничен ротор: без возбуждения и с возбуждением от постоянного тока.

Почему мы используем синхронный генератор?

Синхронные генераторы являются основным источником коммерческой электроэнергии. Они обычно используются для преобразования механической мощности паровых турбин, газовых турбин, поршневых двигателей и гидротурбин в электрическую энергию для сети. Нагрузка, подаваемая генератором, определяет напряжение.

Почему генератор переменного тока называется синхронным?

Вращающееся магнитное поле индуцирует переменное напряжение в обмотках статора.Поскольку токи в обмотках статора изменяются в зависимости от положения ротора, генератор переменного тока является синхронным генератором. Это увеличивает магнитное поле вокруг катушек возбуждения, что вызывает большее напряжение в катушках якоря.

Почему возбуждение всегда постоянное?

Для успешной работы генератора он должен выдавать синусоидальное переменное напряжение определенной частоты. Теперь возбуждение постоянным током создает электромагнит фиксированной полярности в поле, которое движется с постоянной скоростью от первичного двигателя.Таким образом, якорь статора создает почти синусоидальный переменный ток.

Какое основное применение синхронных двигателей?

Некоторые из типичных областей применения высокоскоростных синхронных двигателей — это такие приводы, как вентиляторы, нагнетатели, генераторы постоянного тока, линейные валы, центробежные насосы, компрессоры, поршневые насосы, резиновые и бумажные фабрики. Синхронные двигатели используются для регулирования напряжения на концах линий электропередачи.

Сколько существует типов синхронных двигателей?

два

Какие основные части синхронного двигателя?

Статор и ротор — две основные части синхронного двигателя.Статор становится неподвижным и несет на себе обмотку якоря двигателя. Обмотка якоря — это основная обмотка, из-за которой в двигателе индуцируется ЭДС. Вращатель несет обмотки возбуждения.

Что такое 3-фазный синхронный двигатель?

Трехфазный синхронный двигатель — это уникальный и специализированный двигатель. Как следует из названия, этот двигатель работает с постоянной скоростью от холостого хода до полной нагрузки синхронно с частотой сети. Это притяжение создает крутящий момент на роторе и заставляет его вращаться с синхронной скоростью вращающегося поля статора.

Какова синхронная скорость двигателя?

В двигателе синхронная скорость — это скорость, с которой вращается магнитное поле. В зависимости от конструкции двигателя фактическая механическая скорость может быть эквивалентной (синхронный двигатель) или немного меньшей (асинхронный двигатель). Синхронная скорость является функцией: используемой электрической частоты, обычно 60 Гц или 50 Гц.

Что такое синхронный двигатель и зачем ему возбудитель?

СИНХРОННЫЙ: означает «повороты со скоростью, пропорциональной приложенной частоте, независимо от нагрузки».

Для этого необходимо, чтобы магнитное поле ротора запитывалось отдельно от магнитного поля статора. Как указал Гектор, поле ротора может быть результатом постоянных (например, редкоземельных) магнитов или электромагнита.

Если поле ротора создается электрически, ток должен откуда-то идти. Один из способов сделать это — использовать отдельный источник постоянного тока и подавать питание через вращающийся механический контакт (щетка и коллектор). Другой способ — использовать меньшую машину с приводом от вала главного двигателя (может быть на валу, может быть с ременным приводом) для подачи энергии на вращающуюся схему выпрямителя для выработки постоянного тока для обмоток возбуждения главного синхронного ротора.

Определенное значение тока ротора соответствует согласованию с требуемой реактивной нагрузкой: больший ток означает большую реактивную мощность. Уменьшите ток, и машина должна потреблять реактивную мощность от электросети.

Синхронный асинхронный двигатель — это двигатель, который будет работать на синхронных скоростях: нет скольжения об / мин. Стандартный четырехполюсный асинхронный двигатель с частотой 50 Гц будет работать со скоростью 1450 об / мин или около того под нагрузкой. 4-полюсный синхронный асинхронный двигатель с частотой 50 Гц будет работать со скоростью 1500 об / мин до тех пор, пока вы не превысите номинальную нагрузку.У него есть статор, который намотан так же, как и у обычного асинхронного двигателя, и у него есть ротор, который имеет поля постоянного тока, установленные на роторе. Количество полей постоянного тока на роторе соответствует количеству полюсов. Двигатель запускается как асинхронный, и когда он достигает скорости скольжения, на поле ротора подается номинальное постоянное напряжение. Если все сделано правильно, ротор и статор синхронизируются, и ротор будет вращаться с синхронной скоростью. Напряжение постоянного тока для поля ротора поступает либо от генератора постоянного тока, либо от твердотельного статического возбудителя.

Возбудитель обеспечивает питание электромагнитов, образующих полюса ротора, которые, в свою очередь, следуют за вращающимся магнитным полем системы. Коэффициент мощности системы — это мера баланса между силой электромагнитов в роторе и требованиями вращающихся полей в нагрузках. Недостаточное возбуждение и падение напряжения в системе, в результате чего реактивная мощность поступает в генератор переменного тока, вызывая отрицательный коэффициент мощности, чрезмерное возбуждение и напряжение в системе повышаются, что приводит к утечке реактивной мощности из генератора, вызывая положительный коэффициент мощности; когда возбуждение точно соответствует реактивным требованиям системы, коэффициент мощности равен единице.

Как работает асинхронный двигатель? »Наука ABC

Сегодня мы щелкаем выключателем и получаем мгновенное питание, но наши предки сочли бы это чудом. Мы знаем, что он работает, потому что он приводится в движение двигателем, но он все равно невероятно впечатляет! На этой ноте вы можете найти двигатели во всех видах устройств и механизмов, которые движутся. Вы когда-нибудь задумывались о том, сколько электродвигателей находится в комнате, в которой вы сейчас сидите? Ну, для начала два — один на жестком диске, а другой в охлаждающем вентиляторе.В вашем доме вы найдете дополнительные моторы в фенах и множество игрушек; в ванной комнате установлены вытяжные вентиляторы и электрические бритвы, а на кухне моторы установлены практически во всех устройствах, которые вы можете назвать, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических открывашек. Электродвигатели зарекомендовали себя как одно из величайших изобретений всех времен. Теперь давайте разберемся с некоторыми и узнаем, как они работают!

Теория двигателей

Электродвигатель работает по очень простому принципу.Если вы подаете электричество на один конец оси двигателя, он вращается на другом конце, что обеспечивает мощность для привода машины. На этом перекрестке можно задаться вопросом — как это электричество привело к движению? Чтобы понять механизм этого явления, давайте возьмем обычный провод, а затем сделаем петлю и проложим его между полюсами двух постоянных магнитов. Если вы подключите концы петли к батарее, вы увидите, что провод на мгновение подпрыгнет. Это может показаться странным, но это основано на очень фундаментальном научном принципе.Это явление возникает из-за того, что при прохождении электрического тока через провод вокруг него создается мгновенное магнитное поле. Когда это мгновенное магнитное поле создается, оно взаимодействует с магнитными полями постоянного магнита. И, как мы знаем, когда генерируются два магнитных поля, происходит одно из двух — они либо притягиваются, либо отталкиваются. Это то, что заставляет проволоку прыгать.

(Фото предоставлено Alistokes / Wikimedia Commons)

Чтобы пойти еще дальше, мы можем даже предсказать движение проводника (в приведенном выше случае — провода).Это можно сделать с помощью правила Флеминга для левой руки (также известного как правило мотора). Чтобы использовать это правило, выставьте большой, указательный и средний пальцы так, чтобы каждый из пальцев был перпендикулярен друг другу. Каждый палец означает определенную силу. Указательный палец указывает направление магнитного поля постоянных магнитов. Средний палец обозначает направление тока в проводнике.

Конструкция асинхронного двигателя

Двигатели всех типов основаны на одних и тех же основных принципах, единственная разница в асинхронном двигателе состоит в том, что провод изгибается в прямоугольную форму.Обычное явление, которое может произойти с проводом, — это то, что он перемещается на девяносто градусов, а затем переворачивает провод обратно в исходное положение. Это неприемлемо, когда нам требуется постоянное вращение в определенном направлении, но это можно преодолеть с помощью коммутатора . Основная задача коммутатора — переключать ток каждый раз, когда провод поворачивается на девяносто градусов, что обеспечивает постоянное вращение провода в одном и том же направлении.

(Фото: Zureks / Wikimedia Commons)

До сих пор мы видели основную конструкцию двигателя постоянного тока.С другой стороны, асинхронный двигатель имеет несколько иную конструкцию, чем двигатель постоянного тока. Когда дело доходит до двигателя переменного тока, есть кольцо электромагнитов, расположенных снаружи, известное как статор, которое предназначено для создания вращающегося магнитного поля. Внутри статора находится цельная металлическая ось, проволочная петля, катушка, беличья клетка , сделанная из металлических стержней и межсоединений (например, вращающиеся клетки, которые люди иногда получают для своих хомяков), или какой-либо другой свободно вращающийся металлический элемент, который может проводить электричество.В отличие от двигателя постоянного тока, где вы посылаете энергию на внутренний ротор, в двигателе переменного тока вы посылаете энергию на внешние катушки, составляющие статор. Катушки получают питание попарно, последовательно, создавая магнитное поле, которое вращается вокруг двигателя снаружи.

Работа асинхронного двигателя

Можно задаться вопросом, как вращающееся магнитное поле заставляет проволоку вращаться. Мы должны помнить, что ротор, подвешенный внутри магнитного поля, является электрическим проводником. Магнитное поле постоянно меняется (потому что оно вращается), поэтому, согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле создает (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора.Если проводник представляет собой кольцо или провод, ток течет вокруг него по петле. Если проводник представляет собой просто цельный кусок металла, вместо этого вокруг него циркулируют вихревые токи. В любом случае индуцированный ток создает свое магнитное поле и, согласно другому закону электромагнетизма (закон Ленца), пытается остановить то, что его вызывает — вращающееся магнитное поле, — тоже вращаясь. Вы можете представить себе ротор, отчаянно пытающийся «догнать» вращающееся магнитное поле, чтобы устранить разницу в движении между ними.Электромагнитная индукция — это ключ к тому, почему такой двигатель вращается, поэтому его называют асинхронным двигателем.

(Фото предоставлено Burns / Wikimedia Commons)

В двигателе присутствуют две пары электромагнитных катушек, которые, в свою очередь, получают питание от источника переменного тока. Две красные катушки соединены последовательно и запитаны вместе. Поскольку это двигатель переменного тока, ток в каждой катушке не включается и не выключается резко, а вместо этого плавно повышается и падает в форме синусоидальной волны.Когда катушки находятся под напряжением, магнитное поле, которое они создают между собой, индуцирует электрический ток в роторе. Этот ток создает собственное магнитное поле, которое пытается противодействовать тому, что его вызвало (магнитному полю от внешних катушек). Взаимодействие между двумя полями заставляет ротор вращаться, эффективно вращаясь вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (теоретически) почти с одинаковой скоростью. Вот так, дорогой читатель, асинхронный двигатель справляется со своей задачей!

Версия с двумя двигателями Tesla Model 3 оснащена как асинхронным двигателем переменного тока, так и двигателем с постоянными магнитами

В преддверии выпуска всех спецификаций и открытия заказов на двухмоторные и производительные версии Model 3 генеральный директор Tesla Илон Маск медленно раскрывает некоторые подробности о новых версиях электромобиля.

Теперь он говорит, что производительность сдвоенного двигателя Model 3 будет включать как асинхронный двигатель переменного тока, так и реактивный двигатель с частичным постоянным магнитом. Генеральный директор также сказал, что версия Performance будет иметь спойлер из углеродного волокна, 20-дюймовые колеса Performance и черно-белые варианты интерьера.

Для программ Model S и Model X компания Tesla использовала асинхронные двигатели переменного тока.

Компания много лет работала исключительно над асинхронными двигателями, когда они решили перейти на двигатели с постоянными магнитами для заднеприводной модели 3, которая была единственной производимой моделью 3.

Ранее в этом году главный конструктор двигателей Tesla Константинос Ласкарис объяснил логику этого шага, заявив, что они увидели повышение эффективности и производительности менее дорогой модели 3.

Но теперь, с появлением версии Model 3 с двумя двигателями, Маск говорит, что новый передний двигатель будет асинхронным двигателем переменного тока:

Передняя индукция переменного тока и переключаемое сопротивление, задняя часть с частичным постоянным магнитом. Инверторы из карбида кремния в обоих.Приводы с высокой производительностью отсортированы по наивысшей сигма-выходной мощности и удваивают выгорание.

— Илон Маск (@elonmusk) 20 мая 2018 г.

Маск говорит, что Performance Model 3 будет использовать те же задние двигатели, что и текущая модель 3 с задним приводом, но они выберут самые высокие номинальные двигатели с удвоенным процессом приработки, чтобы убедиться, что они могут справиться с более высокая производительность.

Что касается переднего двигателя, это будет асинхронный двигатель переменного тока, как у двигателей Model S и Model X.

Передний асинхронный двигатель переменного тока должен позволить Tesla более эффективно оптимизировать крутящий момент и увеличить общий диапазон без увеличения энергоемкости автомобиля.

Использование карбида кремния в инверторах обоих двигателей также должно обеспечить более высокую выходную мощность.

Маск также подтвердил, что версия Performance будет иметь спойлер из углеродного волокна, 20-дюймовые колеса Performance и черно-белые варианты интерьера:

Также, спойлер из углеродного волокна, 20-дюймовые колеса Performance, черно-белый салон.

— Илон Маск (@elonmusk) 20 мая 2018 г.

Хотя это важные подробности о производительной версии Model 3, она не дает нам хорошего представления о технических характеристиках по сравнению с текущей заднеприводной моделью 3.

Работает над моделями 3 с двойным приводом и полным приводом, а также над производительными версиями. Ощущения от вождения потрясающие. Планирую выпустить конфигурацию сегодня поздно вечером.

— Илон Маск (@elonmusk) 19 мая 2018 г.

Генеральный директор сказал, что Tesla планирует начать открытие заказов на новые опционы сегодня поздно вечером.На этом этапе у нас должны быть спецификации и информация о ценах.

Мы ответим, как только у нас будут подробности.

Обновление : Tesla представляет более быструю и мощную Model 3 с двумя двигателями AWD и версии Performance

FTC: Мы используем автоматические партнерские ссылки для получения дохода. Подробнее.


Подпишитесь на Electrek на YouTube, чтобы смотреть эксклюзивные видео, и подписывайтесь на подкаст.