Что такое заземление защитное заземление – , .

Содержание

Использование защитного заземления и отличие его от зануления

Устройство защитного заземления – способ, электротехнического присоединения защитного проводника с нетоковедущими корпусами электроустановок, подвергаемые действию токов короткого замыкания фазного электротока. Защитный контур, главной задачей которого, является предохранение нанесения электротравм, связанных, с пиковыми значениями тока при коротком замыкании.

Для понимания сути устройства, следует знать основные теоретические вопросы.

Основные цели, задачи заземления

Основной задачей защитного заземления, согласно требованиям ГОСТа – предупреждение воздействия на людей пиковыми токами при КЗ и отведения напряжения с корпусов электроустановок через устройство заземления в грунт. Все меры принимаются для предупреждения возможностей получения электротравм.

Принцип действия защитного зануления и заземления – понижение до минимального уровня силы тока и поражающих факторов при прикосновении к короткозамкнутым деталям электроприборов и установок.

При этом происходит понижение уровня напряжения на корпусах защищенных приборов, потенциалы выравниваются в связи с ростом этой величины на поверхности до уровня равного потенциала оборудования с земляным проводом.

Областью применения являются трехфазное оборудование и цепи. Они должны оборудоваться глухозаземленной нейтралью при напряжении ниже 1000. В, при большем напряжении цепи выбирается любой способ проведения нейтрального провода.

Основной целью устройства защиты является снижение уровня напряжения до безопасного значения на корпусе оборудования и контуре защиты, а также снижение силы тока, идущего через корпус человека при касании участка под напряжением.

Номинальное значение напряжения цепи переменного тока свыше 380 В и значении постоянного тока в 440 В – такие электрические цепи подлежат обязательному оснащению заземлением, особенно при особо опасных условиях и местах повышенной опасности.

Обязательно должны заземляться устройство с металлическим корпусом:

  • станки;
  • приборы;
  • корпуса электрощитовых;
  • пульты управления механизмами;
  • металлический корпус кабеля и муфт;
  • металлические трубы для укладки проводов.

При КЗ фазного провода на корпуса устройств, и касании человека их рукою, через его тело проходит опасный по величине электрический ток. При заземлении, основная часть напряжения уйдет на контур, потому, что его сопротивление меньше чем человеческого тела.

Отличие рабочего заземления от защитного

Рабочее заземление. Принцип работы – это выполнение соединения с землей несколько отдельно стоящих объектов электросхемы здания. Это могут быть нейтраль обмотки генератора, и других различных устройств.

Оно предназначено для обеспечения правильной работы электроустановки, независимо от условий его применения. Осуществление этого вида защиты происходит, непосредственно соединяя заземляемые корпуса электроустановок с заземлителями.

Достаточно редко, рабочее заземление может проводиться с помощью специализированных приспособлений – это могут быть пробивные предохранители, резисторы.

Защитное зануление и заземление, как указывалось выше, выполнение работ по электрическому соединению с металлическими нетоковедущими частями устройств. При этом основной работой защитного контура, является предохранение нанесения электротравм при касании человеком корпуса оборудования, потому, что ток с него отводится на заземляющий контур, сопротивление которого меньше чем сопротивление человеческого тела.

Поэтому отличием этих двух защитных устройств, является принцип их работы. Если рабочее уравнивает потенциалы, то защитное отводит ток на заземляющий контур, как правило, по глухозаземленной нейтрали.

Но при оснащении своего помещения любым из видов защиты, наибольшая эффективность работы, будет достигаться при условии, что токи короткого замыкания не будут увеличиваться в связи с уменьшением уровня сопротивления заземлителя.

Еще о чем следует помнить. Ни один заземляющий контур не сможет выполнить работу автоматов отключения тока и устройства защитного отключения при утечках тока. А также эти приборы, не смогут выполнить свою работу надежно, без защитного заземления.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника.

Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства.

Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Как правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование.

При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

Производственное защитное заземление

Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей. Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник.

В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

  • приводы электрических машин;
  • корпуса каждой электроустановки, находящейся в помещении;
  • коммуникации металлических труб, металлоконструкции;
  • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
  • электрощитовые, различные корпуса системы электропроводки.

Детали, не требующие защиты:

  • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
  • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
  • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
  • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

В заключение необходимо отметить.

Защитное заземление применяется в сетях переменного тока до 1кВ с глухозаземленной нейтралью, свыше этого значения напряжения со всеми видами проведения нейтрального провода.

После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

evosnab.ru

Рабочее заземление, отличие от защитного заземления

Заземляющими принято называть устройства, способные обеспечить надежные пути стекания аварийного тока в землю. Необходимость в этом может возникнуть по самым разным причинам, основные из которых – создать условия для нормального функционирования электроустановки или гарантировать безопасность работающих на ней людей. Эти функциональные различия следует четко усвоить. Они помогут понять, что называется рабочими заземлениями и в чем их отличие от защитных мер. В рассмотренных ранее причинных определениях в первом случае используется рабочее или функциональное заземление, а во втором – его аналог.

Рабочее заземление

Выдержка из ПУЭ-7, пункт 1.7.30. Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

В отличие от защитного заземления, используемого исключительно в целях безопасности людей, рабочее заземление предназначается для того, чтобы гарантировать нормальную работу электрических приборов и устройств.

Обратите внимание: Эта его функция должна выполняться независимо от того, в каких условиях работает электрооборудование: в нормальных штатных или в аварийных.

Реализуется функциональное заземление самым непосредственным образом – через подсоединение металлических токопроводящих частей к так называемому «заземлителю». В качестве этой разновидности ЗУ допускается использовать подключенные к заземляющей конструкции молниеотводы, защищающие предприятия и другие объекты от грозы. Эти же устройства помогают уберечь действующее оборудование от наведенных (или индуцированных) ЭДС, представляющих ничуть не меньшую угрозу для него.

схема рабочего заземления через пробивной предохранительсхема рабочего заземления через пробивной предохранитель Схема рабочего заземления через пробивной предохранитель в трехпроводной сети схема рабочего заземления с глухозаземленной нейтралью
схема рабочего заземления с глухозаземленной нейтралью Схема рабочего заземления с глухозаземленной нейтралью в четырехпроводной сети

В ряде случаев функциональное заземление организуется для того, чтобы создать условия для срабатывания специальных приспособлений пробивного типа (предохранителей, резисторов и подобных им).

Хорошо усвоив, что называют рабочими заземлениями, пользователь сможет понять не только их отличие от защитного, но и то, что эффективность его действия зависит от параметров конструкции ЗУ. Под ним в первую очередь понимается сопротивление цепи стекания тока в землю, величина которого согласно требованиям ПУЭ не должна превышать нормируемого значения (25-30 Ом).

Защитное заземление

Защитным заземлением называют умышленное соединение металлических нетоковедущих частей с землей или же ее аналогом с целью защиты людей от удара током.

Дополнительная информация: Функцию заземлителя в этом случае могут выполнять и естественные ЗУ, под которыми понимаются уже проложенные в земле элементы строительных конструкций и коммуникаций.

схема сетисхема сетиСхема сети с заземленной нейтралью и защитным заземлением потребителя электроэнергии.

С помощью искусственных и естественных заземляющих конструкций удается предотвратить поражение человека током в ситуациях, когда корпус оборудования или бытового прибора случайно оказывается под напряжением. В этом случае срабатывает принцип шунтирования аварийной цепи более низким сопротивлением, по которому опасный ток «уходит» в землю.

Согласно этому рисунку через тело прикоснувшегося к корпусу человека протекает лишь малая доля общего тока, а большая его часть «стекает» в грунт через параллельную цепь.

Чем они отличаются

Разницу между двумя этими видами сможет уловить только основательно изучивший их особенности человек. Для непрофессионала они с трудом различимы, поскольку чаще всего организуются с привлечением одних и тех же технических средств.

Отличия между рабочим заземлением и защитным заземлением проявляется не столько в технической части, сколько в том, для каких конкретных целей они организуются. В обоих случаях для обустройства ЗУ используются специальные приспособления (конструкции), способные отводить опасные токи на землю. И там и там потребуется присоединить корпуса приборов через толстую медную жилу к тому сооружению, которое выбрано для надежной защиты электрооборудования и людей.

Хорошо различимое отличие рабочего заземления от своего аналога состоит в следующем:

  1. функциональное заземление делается с целью защиты оборудования и приборов, подключенных к данной электрической сети, от выхода их из строя;
  2. для его реализации допускается использовать молниеотводы и распределенные системы выравнивания потенциалов, подключенные к местному заземляющему контуру;
  3. оно в меньшей мере, чем защитное, обеспечивает безопасность работающего на линии персонала и простых людей.

Хороший пример такой разницы – так называемые «переносные» или временные конструкции, применяемые исключительно для защиты работающих на отключенном оборудовании специалистов. К защите электроустановок они никакого отношения не имеют (последние отключены) и даже при случайной подаче в линию стороннего напряжения представляют угрозу лишь для человека. То есть это – чисто защитная мера.

Другим характерным отличием защитного заземления является обязательное присоединение к заземлителю все металлические части корпусов оборудования, то есть каркасы, рамы, стальные ограждения и тому подобное. Функцию самого заземлителя в этом случае могут выполнять как искусственно созданные конструкции, так и уже проложенные в земле стальные элементы коммуникаций (включая различные виды металлических труб и кабельных экранов).

Важно! Исключение составляют элементы газовых и нефтяных трубопроводов.

К частям оборудования, подлежащим обязательному рабочему занулению и заземлению относятся:

  • Приводы всех без исключения электрических аппаратов.
  • Корпуса работающих на объекте электрических машин, а также понижающих трансформаторов, используемых для питания переносных светильников.
  • Обмотки измерительных преобразователей, относящихся к разряду вторичных.
  • Стальные остовы и корпуса передвижных (переносных) электрических приемников.
  • Все открытые части работающего в данный момент оборудования.

Во всех этих случаях при невозможности организации заземления для снижения опасности поражения людей согласно ПУЭ используют электроприемники, рассчитанные на напряжение не более, чем 42 Вольта.

В заключение еще раз отметим, что различия двух типов заземлений в основном проявляются в их назначении и касаются технической стороны лишь не в значительной мере.

fishkielektrika.ru

Защитное и рабочее заземление

Содержание:
  1. Что такое защитное заземление
  2. Что такое рабочее заземление

В процессе эксплуатации электрооборудования возникает необходимость в использовании заземляющих устройств. В зависимости от назначения, может использоваться защитное и рабочее заземление. В первом случае обеспечивается безопасность персонала, работающего на электроустановках, а во втором случае речь идет о нормальной работе устройств в обычном и аварийном режимах. Оба заземления различаются между собой и не могут быть использованы совместно. Для того чтобы лучше понять назначение и принцип действия, нужно подробнее рассмотреть каждое из них.


                            

Что называется защитным заземлением

Устройств защитного заземления выполняется путем преднамеренного электрического соединения с землей металлических частей, к которым не подведен электрический ток и которые могут неожиданно оказаться под напряжением.

Главной функцией защитного заземления считается надежная защита людей от поражения током в случае соприкосновения с металлическими нетоковедущими частями, которые оказываются под напряжением по разным причинам, в основном, из-за повреждения изоляции.

Защитное заземление не следует путать с молниезащитой, рабочим и повторным заземлением, нулевым защитным проводником. Его действие в первую очередь направлено на снижение до безопасного значения напряжений шага и прикосновения, образующихся при замыкании на корпус. Это достигается снижением потенциала заземленного оборудования за счет уменьшения сопротивления заземляющего устройства. Одновременно выравниваются потенциалы основания, где находится человек и самого заземленного оборудования.

Защитное заземление используется в следующих областях:

  • В трехфазных сетях переменного тока, напряжением до 1 кВ с изолированной нейтралью.
  • В однофазных двухпроводных сетях переменного тока, изолированных от земли, с напряжением до 1 кВ.
  • В двухпроводных сетях постоянного тока, в которых изолирована средняя точка обмоток источника тока.
  • В сетях переменного и постоянного тока с любыми режимами обмоток источника тока при напряжении более 1 кВ.

Непосредственное соприкосновение с землей или ее эквивалентом осуществляется с помощью заземлителей. Они разделяются на два основных типа:

  1. Искусственные заземлители. Применяются только в целях заземления. Они изготавливаются из различных стальных конструкций и не должны окрашиваться. Для защиты от коррозии может использоваться оцинкованное покрытие, увеличенное количество заземлителей, специальная электрическая защита. В некоторых случаях в качестве заземлителя может использоваться электропроводящий бетон.
  2. Естественные заземлители. С этой целью используются электропроводящие части сетей и коммуникаций в зданиях и сооружениях, находящиеся в соприкосновении с землей. Заземление электроустановок рекомендуется выполнять в первую очередь из естественных заземлителей. Следует использовать трубы водопровода и системы отопления, конструкции зданий и сооружений из металла и железобетона, рельсовые пути, свинцовые оболочки кабелей и т.д. Нельзя использовать трубопроводы, по которым подаются горючие жидкости, газы или смеси.

                            

Что называется рабочим заземлением

Рабочим заземлением считается преднамеренное соединение с землей определенных точек, имеющихся в электрических цепях. В первую очередь, это нейтральные точки генераторных и трансформаторных обмоток. В качестве соединений применяются надежные проводники, а также специальное оборудование в виде пробивных предохранителей, разрядников, резисторов и т.д.

Главным предназначением рабочего заземления является создание препятствий сбоям и замыканиям, поддержание системы в случае возникновения аварийной ситуации. Под его воздействием происходит снижение электрического напряжения в деталях и частях механизма, непосредственно находящихся под напряжением. Принятые меры способствуют локализации электрических сбоев, их отводу и недопущению дальнейшего распространения.

В соответствии с правилами техники безопасности, запрещается совмещать защитное и рабочее заземление. Это связано с тем, что различные токи помех, например, атмосферные электрические разряды, могут наложиться на токи, протекающие в однопроводных цепях. Это может привести к нарушениям внешних связей устройств и даже повреждениям аппаратуры. Кроме того, подобные совмещения могут сделать неэффективной защиту от напряжения. В случае аварийных ситуаций она будет работать в качестве рабочей или не будет функционировать вообще.

Сопротивление рабочего заземления должно быть не более 4 Ом. Такое ограничение связано с величиной напряжения, возникающего относительно земли на нулевом проводе, в процессе протекания тока замыкания на землю через рабочее заземление. Это особенно актуально при замыкании трансформаторной обмотки высокого напряжения на обмотку низкого напряжения.

electric-220.ru

Заземление и зануление: в чем разница

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию. Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

схемаФото — схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S. Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C. Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Рисунок TN-C

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.
вариант землиФото — вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.

переносная шинаФото — переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит. После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током. Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.

схема зануленияФото — схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями. Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения. Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

принцип работы зануленияФото — принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

Видео: в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

отличие зануления и заземленияФото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

www.asutpp.ru

Защитное заземление и зануление

Введение

Защитное заземление, (зануление), является основной мерой защиты металлоконструкции. Основная цель этого мероприятия — защитить от возможного удара током пользователя прибора при замыкании на корпус в том случае, например поражения электрическим током в случае замыкания фазного провода на, когда нарушена изоляция. Иными словами, заземление является дублером защитных функций предохранителей. Заземлять все электроприборы, имеющиеся в доме, нет необходимости: у большинства из них имеется надежный пластмассовый корпус, который сам по себе защищает от поражения электрическим током. Защитное зануление отличается от заземления тем, что корпуса машин и аппаратов соединяются не с "землей", а с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередач. Для обеспечения полной безопасности человека сопротивление заземлителей (вместе с контуром) не должно превышать 4 ом. С этой целью два раза в год (зимой и летом) производится их контрольная проверка специальной лабораторией.

Заземление — преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое можно снизить, увеличивая площадь заземлителей или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ

Терминология

· Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях постоянного тока.

· Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Обозначения

Обозначение на схемах (два символа справа)

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение PE (Protective Earthing) и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

· T — непосредственное соединения нейтрали источника питания с землёй;

· I — все токоведущие части изолированы от земли.

Вторая буква определяет состояние открытых проводящих частей относительно земли:

· T — открытые проводящие части заземлены, независимо от характера связи источника питания с землёй;

· N — непосредственная связь открытых проводящих частей электроустановки с глухозаземленной нетралью источника питания.

Буквы, следующие через чёрточку за N, определяют характер этой связи — функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

· S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

· C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.


Защитная функция заземления

Принцип защитного действия

Защитное действие заземления основано на двух принципах:

· Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

· Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ÷ сотые доли секунды — время срабатывания УЗО).

Разновидности систем заземления

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT. Система TN-C

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном AEG в 1913 году. Рабочий ноль и PE-проводник (англ. ProtectionEarth) в этой системе совмещены в один провод. Самым большим недостатком была возможность появления фазного напряжения на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, данная система все еще встречается в постройках стран бывшего СССР.

Система TN-S

Разделение нулей в TN-S и TN-C-S

На замену условно опасной системы TN-C в 1930-х годах была разработана система TN-S (фр.Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Система TN-C-S

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция — электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи — отдельный нулевой защитный проводник (PE).

Система TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

Система IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединенного оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надежности и безопасности, например в больницах для аварийного электроснабжения и освещения.

Зануление — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора, в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью.

Принцип действия

Принцип действия зануления

Принцип работы зануления: если напряжение (фаза) попадает на соединенный с нулем металлический корпус прибора, происходит короткое замыкание. Автоматический выключатель, включенный в поврежденную цепь срабатывает от короткого замыкания и отключает линию от электричества. Кроме этого, отключение электричества от линии может выполнять плавкий предохранитель. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В. оно не должно превышать 0,4 с.

mirznanii.com

Рабочее заземление: определение, устройство и назначение

Заземление электроустановок делится на два основных вида – функциональное рабочее и защитное. В некоторых источниках встречаются и дополнительные виды заземлений, такие как измерительное, контрольное, инструментальное и радио.

рабочее заземление

Рабочее или функциональное заземление

В разделе ПУЭ в параграфе № 1.7.30 дано определение рабочего заземления: «рабочим называют заземление одной или нескольких точек токоведущих частей электроустановки, которое служит не в целях безопасности».

Такое заземление подразумевает электрический контакт с грунтом. Оно необходимо для нормальной эксплуатации электроустановки в штатном режиме.

Назначение функционального заземления

Для того чтобы понять, что называется рабочим заземлением, следует знать его основное назначение – устранение опасности удара током в случае соприкосновения человека к корпусу электроустановки или к её токоведущим частям, которые в данный момент находятся под напряжением.

Такая защита применяется в сетях с трёхфазной системой распределения тока. Изолированная нейтраль необходима для электросети, где напряжение не превышает 1 кВ. В сетях с напряжением свыше 1 кВ защитное заземление допускается делать с любым режимом нейтрали.

Как работает защитное (функциональное) заземление

что называется рабочим заземлением

Принцип действия функционального заземления заключается в снижении напряжения между корпусом, который в результате непредвиденной аварии оказался под током, и землёй до безопасной для человека величины.

Если корпус электроустановки, оказавшийся под током, не оснащён функциональным заземлением, то прикосновение человека к нему равносильно контакта с фазным проводом.

Если учесть, что сопротивление обуви человека, который дотронулся до электроустановки, и пола, на котором он стоит, ничтожно мала относительно земли, то ток может достигнуть опасной величины.

При правильной работы функционального заземления ток, проходящий через человека, будет безопасным. Напряжение во время прикосновения также будет незначительным. Основная часть электроэнергии будет уходить через заземляющий проводник в землю.

Различия между рабочим и защитным заземлениями

Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от поражения электрическим током. Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.

Рабочее заземление электроустановок, в случае возникновения чрезвычайной ситуации, сыграет роль защитного, но основная её функция - обеспечение правильной бесперебойной работы электрооборудования.

В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя глухозаземлённую нейтраль.

Домашние приборы, которые требуется подключить к рабочему заземлению:

  1. Микроволновка.
  2. Духовка и плита, которые работают за счёт электричества.
  3. Стиральная машина.
  4. Системный блок персонального компьютера.

Конструкция заземления

заземляющий проводник

Рабочее заземление представляет собой вбитые в землю железные штыри, играющие роль проводников, на глубину около 2-3 метров.

Такие металлические прутья соединяют заземлительные клеммы электрооборудования с шиной заземления, тем самым образуя металлосвязь.

Металлосвязь есть в каждом жилом доме. Это сварная железная конструкция, которая соединяет друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.

В качестве заземляющего проводника используют шину или провод с сечением не менее 4 кв. мм, окрашенные в жёлтые и зелёные полосы. Кабель в основном используют для переноса функционального заземления от шины к шине.

В целях безопасности проводится периодическая проверка электронного сопротивления металлической связи заземления. Оно измеряется от клеммы заземления электроустановки до наиболее удалённого от неё наземного контура заземления. Показатель сопротивления в любой части рабочего заземления не должен превышать 0,1 Ом.

Для чего делают несколько заземлителей

рабочее и защитное заземление

Электроустановку нельзя оснащать только одним заземлителем, поскольку почва является нелинейным проводником. Сопротивление земли находится в сильной зависимости от напряжения и площади контакта с воткнутыми штырями рабочего заземления. У одного заземлителя площадь контакта с почвой будет недостаточной, чтобы обеспечить бесперебойную работу электроустановки. Если установить 2 заземлителя на расстоянии в несколько метров друг от друга, то появляется достаточная площадь контакта с землёй. Однако следует помнить, что разносить слишком далеко металлические части заземления нельзя, поскольку связь между ними прервётся. В итоге останется только два отдельно установленных в почву заземлителя, никак не связанных друг с другом. Оптимальное расстояние между двумя контурами заземления составляет 1-2 метра.

Как нельзя осуществлять заземление

рабочее заземление электроустановок

Согласно параграфу 1.7.110 ПУЭ, запрещается использовать в качестве рабочего заземления любые виды трубопроводов. Кроме того, запрещено выводить заземляющий кабель наружу и подключать его к неподготовленной контактной площадке на шине. Такой запрет объясняется тем, что каждый металл имеет свой индивидуальный потенциал. При воздействии внешних факторов образуется гальванический пар, который способствует процессу электроэрозии. Коррозия может распространиться под оболочку заземляющего провода, что повышает опасность его оплавления во время подачи больших токов на контур заземления в случае аварии. Специальная защитная смазка предотвращает разрушение металла, но действует она лишь в сухом помещении.

Также ПУЭ запрещает осуществлять поочерёдное заземление электроустановок друг с другом, подключать более одного кабеля на одну площадку заземляющей шины. Если пренебречь такими правилами, то в случае аварии на одной установке она будет создавать помехи в работе соседа. Такое явление называется электрической несопоставимостью. При неправильном подключении рабочего заземления работы по устранению недостатков опасны для жизни.

Требования к заземляющим конструкциям

Чтобы разобраться в том, что называется рабочим заземлением, а также какие требования предъявляются к таким конструкциям, следует знать, что для защиты людей от удара электрическим током, напряжение которого не превышает 1000 В, необходимо заземлять абсолютно все металлические части электрооборудования. Немаловажно, чтобы все конструкции, построенные в целях заземления, отвечали всем нормам безопасности, предъявляемым для обеспечения нормальной работоспособности сетей и дополнительных предохранителей от возможной перегрузки.

Опасность соприкосновения с токоведущими частями

При контакте человека с токоведущими частями электрической цепи или с металлическими конструкциями, которые оказались под напряжением в результате нарушения изоляционного слоя кабеля, возможно поражение электрическим током. Полученная травма проявляется в виде ожога на кожном покрове. От такого удара человек может потерять сознание, возможна остановка дыхания и сердца. Встречаются случаи, когда удар тока при малом напряжении приводит к смерти человека.

Меры предосторожности от поражения током

рабочее заземление определение

Чтобы максимально обезопасить людей от контакта с токоведущими частями электроустановки, а также с её металлическими частями, необходимо полностью изолировать опасный объект. Для этого устанавливают различные ограждения вокруг электроустановок.

fb.ru

Заземление и зануление электроустановок | Electricdom.ru

Заземление электроустановки — преднамеренное электрическое соединение ее корпуса с заземляющим устройством.

Заземление электроустановок бывает двух типов: защитное заземление и зануление, которые имеют одно и тоже назначение — защитить человека
от поражения электрическим током, если он прикоснулся к корпусу элекроустановки или других ее частей, которые оказались под напряжением.

Защитное заземление — преднамеренное электрическое соединение части электроустановки с заземляющим устройством с целью обеспечения электробезопасности. Предназначено для защиты человека от прикосновения к корпусу электроустаноувки или других ее частей, оказавшихся под напряжением. Чем ниже сопротивление заземляющего устройства, тем лучше. Чтобы воспользоваться преимуществами заземления, надо купить розетки с заземляющим контактом.

В случае возникновения пробоя изоляции между фазой и корпусом электроустановки корпус ее может оказаться под напряжением. Если к корпусу в это время прикоснулся человек — ток, проходящий через человека, не представляет опасности, потому что его основная часть потечет по защитному заземлению, которое обладает очень низким сопротивлением. Защитное заземление состоит из заземлителя и заземляющих проводников.

Есть два вида заземлителейестественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий, надежно соединенные с землей.

В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединенных друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.

Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусcтвенных заземлителей.

Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью с нулевым проводом. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления.

Различают нулевой рабочий проводник и нулевой защитный проводник.

Нулевой рабочий проводник служит для питания электроустановок и имеет одинаковую с другими проводами изоляцию и достаточное сечение для прохождения рабочего тока.

Нулевой защитный проводник служит для создания кратковременного тока короткого замыкания для срабатывания защиты и быстрого отключения
поврежденной электроустановки от питающей сети. В качестве нулевого защитного провода могут быть использованы стальные трубы электропроводок и нулевые провода, не имеющие предохранителей и выключателей.

Обозначения системы заземления

Cистемы заземления различаются по схемам соединения и числу нулевых рабочих и защитных проводников.

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

T — непосредственное соединения нейтрали источника питания с землёй.

I — все токоведущие части изолированы от земли.

Вторая буква в обозначении системы заземления определяет характер заземления открытых проводящих частей электроустановки здания:

T — непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй.

N — непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через чёрточку за N, определяют способ устройства нулевого защитного и нулевого рабочего проводников:
C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.
S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками.

Основные системы заземления

1. Система заземления TN-C

К системе TN-C относятся трехфазные четырехпроводные (три фазных проводника и PEN- проводник, совмещающий функции нулевого рабочего и нулевого защитного проводников) и однофазные двухпроводные (фазный и нулевой рабочий проводники) сети зданий старой постройки. Эта система простая и дешевая, но она не обеспечивает необходимый уровень электробезопасности.

2. Система заземления TN-C-S

В настоящее время применение системы TN-C на вновь строящихся и реконструируемых объектах не допускается. При эксплуатации системы TN-C в
здании старой постройки, предназначенном для размещения компьютерной техники и телекоммуникаций, необходимо обеспечить переход от системы TN-C к системе TN-S (TN-C-S).

Система TN-C-S характерна для реконструируемых сетей, в которых нулевой рабочий и защитный проводники объединены только в части схемы, во вводном устройстве электроустановки (например, вводном квартирном щитке). Во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник PEN разделен на нулевой защитный проводник PE и нулевой рабочий проводник N. При этом нулевой защитный проводник PE соединен со всеми открытыми токопроводящими частями электроустановки. Система TN-C-S является перспективной для нашей страны, позволяет обеспечить высокий уровень электробезопасности при относительно небольших затратах.

3. Система заземления TN-S

В системе TN-S нулевой рабочий и нулевой защитный проводники проложены отдельно. С подстанции приходит пяти жильный кабель. Все открытые проводящие части электроустановки соединены отдельным нулевым защитным проводником PE. Такая схема исключает обратные токи в проводнике РЕ, что снижает риск возникновения электромагнитных помех. Хорошим вариантом для минимизации помех является пристроенная трансформаторная подстанция (ТП), что позволяет обеспечить минимальную длину проводника от ввода кабелей электроснабжения до главного заземляющего зажима. Система TN-S при наличии пристроенной подстанции не требует повторного заземления, так как на этой подстанции имеется основной заземлитель. Такая система широко распространена в Европе.

4. Система заземления TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.

5. Система заземления IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в будет низким и не повлияет на условия работы присоединенного оборудования. Такая система используется, как правило, в электроустановках зданий, к которым предъявляются повышенные требования по безопасности.

Схема контурного заземления

1. Заземлители
2. Заземляющие проводники
3. Заземляемое оборудование
4. Производственное здание.

Пример схемы заземления дома

1. Водонагреватель
2. Заземлитель молниезащиты
3. Металлические трубы
водопровода, канализации, газа
4. Главная заземляющая шина

5. Естественный заземлитель (арматура фундамента здания)

Меры для защиты от поражения электрическим током

Для защиты человека от поражения электрическим током применяют защитные средства — резиновые перчатки, инструмент с изолированными ручками,
резиновые боты , резиновые коврики, предупредительные плакаты.

Контроль изоляции проводов

Для предупреждения несчастных случаев от поражения электрическим током необходимо контролировать состояние изоляции проводов электроустановок. Состояние изоляции проводов проверяют в новых установках, после реконструкции, модернизации, длительного перерыва в работе.
Профилактический контроль изоляции проводов проводят не реже 1 раза в 3 года. Сопротивление изоляции проводов измеряют мегаомметрами на номинальное напряжение 1000 В на участках при снятых плавких вставках и при выключенных токоприемниках между каждым фазным проводом и нулевым рабочим проводом и между каждыми двумя проводами. Сопротивление изоляции должно быть не меньше 0,5 Мом.

www.electricdom.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *