Что такое вл – что это: классификация линий электропередач, виды, воздушные, высоковольтные, кабельные ЛЭП

Содержание

Линия электропередачи - это... Что такое Линия электропередачи?

Линии электропередачи Линии электропередачи (Шарья)

Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции.[1]

Различают воздушные и кабельные линии электропередачи.

По ЛЭП также передают информацию при помощи высокочастотных сигналов (по оценкам[каким?], в СНГ используется порядка 60 тысяч ВЧ-каналов по ЛЭП) и ВОЛС. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Линия электропередачи 500 кВ

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам).

Состав ВЛ

Документы, регулирующие ВЛ

Конструкция ВЛ, её проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Строительными нормами и правилами (СНиП).

Классификация ВЛ

По роду тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (например, для связи энергосистем, питания контактной сети и другие) используются линии постоянного тока. Линии постоянного тока имеют меньшие потери на емкостную и индуктивную составляющие. Так, в Ростовской области была построена экспериментальная линия постоянного тока на 500 кВ. Однако широкого распространения такие линии не получили.

По назначению
  • сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем)
  • магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций, а также для связи энергосистем и объединения электростанций внутри энергосистем — к примеру, соединяют электростанции с распределительными пунктами)
  • распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов — соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям.
По напряжению
  • ВЛ до 1000 В (ВЛ низшего класса напряжений)
  • ВЛ выше 1000 В
    • ВЛ 1–35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110–220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330–750 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ выше 750 кВ (ВЛ ультравысокого класса напряжений)

Эти группы существенно различаются, в основном — требованиями в части расчётных условий и конструкций.

В сетях СНГ общего назначения переменного тока 50 Гц, согласно ГОСТ 721-77, должны использоваться следующие номинальные междуфазные напряжения: 380 В; (6)[2], 10, 20, 35, 110, 220, 330, 500, 750 и 1150 кВ. Могут также существовать сети, построенные по устаревшим стандартам с номинальными межфазными напряжениями: 220 В, 3 и 150 кВ.

Самой высоковольтной ЛЭП в мире является линия Экибастуз-Кокчетав, номинальное напряжение — 1150 кВ. Однако, в настоящее время линия эксплуатируется под вдвое меньшим напряжением — 500 кВ.

Номинальное напряжение для линий постоянного тока не регламентировано, чаще всего используются напряжения: 150, 400 (Выборгская ПС — Финляндия) и 800 кВ.

В специальных сетях могут использоваться и другие классы напряжений, в основном это касается тяговых сетей железных дорог (27,5 кВ, 50 Гц переменного тока и 3,3 кВ постоянного тока), метрополитена (825 В постоянного тока), трамваев и троллейбусов (600 В постоянного тока).

По режиму работы нейтралей в электроустановках
  • Трёхфазные сети с незаземлёнными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с больши́м сопротивлением). В СНГ такой режим нейтрали используется в сетях напряжением 3—35 кВ с малыми токами однофазных замыканий на землю.
  • Трёхфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В СНГ используется в сетях напряжением 3–35 кВ с большими токами однофазных замыканий на землю.
  • Трёхфазные сети с эффективно-заземлёнными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220 кВ, в которых применяются трансформаторы (автотрансформаторы требуют обязательного глухого заземления нейтрали).
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1 кВ, а также сети напряжением 220 кВ и выше.
По режиму работы в зависимости от механического состояния
  • ВЛ нормального режима работы (провода и тросы не оборваны)
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов)
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов)

Основные элементы ВЛ

  • Трасса — положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) — отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак на трассе строящейся ВЛ обозначает центр расположения опоры.
  • Производственный пикетаж — установка пикетных и центровых знаков на трассе в соответствии с ведомостью расстановки опор.
  • Фундамент опоры — конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузку от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента — грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) — расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный пролёт (между двумя соседними промежуточными опорами) и анкерный пролёт (между анкерными опорами). Переходный пролёт — пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии — угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса — вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода — вертикальное расстояние от провода в пролёте до пересекаемых трассой инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля) — отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) — линия для передачи электроэнергии или отдельных её импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепёжными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

По классификации кабельные линии аналогичны воздушным линиям.

Кабельные линии делят по условиям прохождения

  • Подземные
  • По сооружениям
  • Подводные
К кабельным сооружениям относятся
  • Кабельный тоннель — закрытое сооружение (коридор) с расположенными в нём опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонт и осмотр кабельных линий.
  • Кабельный канал — непроходное сооружение, закрытое и частично или полностью заглубленное в грунт, пол, перекрытие и т. п. и предназначенное для размещения в нём кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта — вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж — часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол — полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).
  • Кабельный блок — кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера — подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в неё, называется кабельным колодцем.
  • Кабельная эстакада — надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея  — надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.
Пожарная безопасность кабельных сооружений

Основная статья: Пожары в электроустановках

При пожарах в кабельных помещениях в начальный период происходит медленное развитие горения и только спустя некоторое время скорость распространения горения существенно увеличивается. Практика свидетельствует, что при реальных пожарах в кабельных туннелях наблюдаются температуры до 600 °C и выше. Это объясняется тем, что в реальных условиях горят кабели, которые длительное время находятся под токовой нагрузкой и изоляция которых прoгревается изнутри до температуры 80 °C и выше. Может возникнуть одновременное воспламенение кабелей в нескольких местах и на значительной длине. Связано это с тем, что кабель находится под нагрузкой и eгo изоляция нагревается до температуры, близкой к температуре самовоспламенения

[3].

Кабель состоит из множества конструктивных элементов, для изготовления которых используют широкий спектр горючих материалов, в число которых входят материалы, имеющие низкую температуру воспламенения, материалы склонные к тлению. Также в конструкцию кабеля и кабельных конструкций входят металлические элементы. В случае пожара или токовой перегрузки происходит прогрев этих элементов до температуры порядка 500—600 ˚C, которая превышает температуру воспламенения (250–350 ˚C) многих полимерных материалов, входящих в конструкцию кабеля, в связи с чем возможно их повторное воспламенение от прогретых металлических элементов после прекращения подачи огнетушащего вещества. В связи с этим необходимо выбирать нормативные показатели подачи огнетушащих веществ, чтобы обеспечивать ликвидацию пламенного горения, а также исключить возможность повторного воспламенения

[4].

Длительное время в кабельных помещениях применялись установки пенного тушения. Однако опыт эксплуатации выявил ряд недостатков:

  • ограниченный сpoк хранения пенообразователя и недопустимость хранения их водных растворов;
  • неустойчивость в работе;
  • сложность наладки;
  • необходимость специального ухода за устройством дозировки пенообразователя;
  • быстрое разрушение пены при высокой (около 800 °C) температуре среды при пожаре.

Исследования показали, что распыленная вода обладает большей огнетушащей способностью по сравнению с воздушно-механической пеной, так как она хорошо смачивает и охлаждает горящие кабели и строительные конструкции[5].

Линейная скорость распространения пламени для кабельных сооружений (горение кабелей) составляет 1,1 м/мин[6].

По типу изоляции

Изоляция кабельных линий делится на два основных типа:

  • жидкостная
    • кабельным нефтяным маслом
  • твёрдая
    • бумажно-масляная
    • поливинилхлоридная (ПВХ)
    • резино-бумажная (RIP)
    • сшитый полиэтилен (XLPE)
    • этилен-пропиленовая резина (EPR)

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Высокотемпературные сверхпроводники

HTS кабель

Технология высокотемпературной сверхпроводимости (HTS), разработанная «Sumitomo Electric», применяется в демонстрационной системе силовой сети, запущенной в эксплуатацию в июле 2006 в США (Лонг-Айленд). При напряжении 138 кВ передаётся мощность в 574 МВА на длину 600 метров.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче её на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различные разрядные явления.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Коронный разряд возникает, когда напряжённость электрического поля E у поверхности провода превысит пороговую величину Eкр, которую можно вычислить по эмпирической формуле Пика: МВ/м, где r - радиус провода в метрах, β - отношение плотности воздуха к нормальной.[7] Напряженность электрического поля прямо пропорциональна напряжению на проводе и обратно пропорциональна его радиусу, поэтому бороться с потерями на корону можно, увеличивая радиус проводов, а также (в меньшей степени) - применяя расщепление фаз, т.е. используя в каждой фазе несколько проводов, удерживаемых специальными распорками на расстоянии 40-50 см. Потери на корону приблизительно пропорциональны произведению U(U-Uкр).

Потери на корону резко возрастают с ростом напряжения, среднегодовые потери на ЛЭП напряжением 500 кВ составляют около 12 кВт/км, при напряжении 750 кВ - 37 кВт/км, при 1150 кВ - 80 кВт/км. Потери также резко возрастают при осадках, особенно изморози, и могут достигать 1200 кВт/км[8].

Потери в ЛЭП переменного тока

Важной величиной, влияющей на экономичность ЛЭП переменного тока, является величина, характеризующая соотношение между активной и реактивной мощностями в линии — cos φ. Активная мощность — часть полной мощности, прошедшей по проводам и переданной в нагрузку; Реактивная мощность — это мощность, которая генерируется линией, её зарядной мощностью (ёмкостью между линией и землёй), а также самим генератором, и потребляется реактивной нагрузкой(индуктивной нагрузкой). Потери активной мощности в линии зависят и от передаваемой реактивной мощности. Чем больше переток реактивной мощности - тем больше потери активной.

При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц, провод работает как антенна.

См. также

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ / Магидин Ф. А.; Под ред. А. Н. Трифонова. — М.: Высшая школа, 1991. — 208 с. — ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. — 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С.С.; Под ред. С.А. Мартынова. — Л.: ЛПИ им. М. И. Калашникова, 1980. — 76 с. — УДК 621.311.2(0.75.8)

Ссылки

Примечания

dik.academic.ru

ЛЭП - это... Что такое ЛЭП?

Линии электропередачи

Линии электропередачи город Шарья

Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии.

Согласно МПТЭЭП (Межотраслевые правила технической эксплуатации электроустановок потребителей) Линия электропередачи — Электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии.


Различают воздушные и кабельные линии электропередачи.

По ЛЭП также передают информацию при помощи высокочастотных сигналов, по оценкам в России используется порядка 60 тыс. ВЧ-каналов по ЛЭП. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам).

Состав ВЛ

Документы, регулирующие ВЛ

Конструкция ВЛ, ее проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Строительными нормами и правилами (СНИП).

Классификация ВЛ

По роду тока
  • ВЛ переменного тока
  • ВЛ постоянного тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (напр., для связи энергосистем, питания контактной сети и др.) используют линии постоянного тока.

Для ВЛ переменного тока принята следующая шкала классов напряжений: переменное — 0.4, 6, 10, (20), 35, 110, 150, 220, 330, 400 (Выборгская ПС - Финляндия), 500 , 750 и 1150 кВ ; постоянное - 400 кВ.

По назначению
  • сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем)
  • магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций, а также для связи энергосистем и объединения электростанций внутри энергосистем — к примеру, соединяют электростанции с распределительными пунктами)
  • распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов — соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям
По напряжению
  • ВЛ до 1 кВ (ВЛ низшего класса напряжений)
  • ВЛ выше 1 кВ
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110—220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330—500 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ 750 кВ и выше (ВЛ ультравысокого класса напряжений)

Это группы существенно различаются в основном требованиями в части расчётных условий и конструкций.

По режиму работы нейтралей в электроустановках
  • Трехфазные сети с незаземленными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с большим сопротивлением). В России такой режим нейтрали используется в сетях напряжением 3-35кВ с малыми токами однофазных замыканий на землю.
  • Трехфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В России используется в сетях напряжением 3-35кВ с большими токами однофазных замыканий на землю.
  • Трехфазные сети с эффективно-заземленными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220кВ, т.е. сети в которых применяются трансформаторы, а не автотрансформаторы, требующие обязательного глухого заземления нейтрали по режиму работы.
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1кВ, а так же сети напряжением 220кВ и выше.
По режиму работы в зависимости от механического состояния
  • ВЛ нормального режима работы (провода и тросы не оборваны)
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов)
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов)

Основные элементы ВЛ

  • Трасса — положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) — отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак обозначает центр расположения опоры в натуре на трассе строящейся ВЛ.
  • Производственный пикетаж — установка пикетных и центровых знаков на трассе в соответствие с ведомостью расстановки опор.
  • Фундамент опоры — конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузки от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента — грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) — расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный (между двумя соседними промежуточными опорами) и анкерный (между анкерными опорами) пролёты. Переходный пролёт — пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии — угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса — вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода — вертикальное расстояние от низшей точки провода в пролёте до пересекаемых инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля) — отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) —называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

По классификации кабельные линии аналогичны воздушным линиям

Кабельные линии делят по условиям прохождения

  • Подземные
  • По сооружениям
  • Подводные
к кабельным сооружениям относятся
  • Кабельный туннель — закрытое сооружение (коридор) с расположенными в нем опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонты и осмотры кабельных линий.
  • Кабельный канал — закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т. п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта — вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж — часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол — полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).
  • Кабельный блок — кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера — подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в нее, называется кабельным колодцем.
  • Кабельная эстакада — надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея  — надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.

По типу изоляции

Изоляция кабельных линий делится на два основных типа:

  • жидкостная
    • кабельным нефтяным маслом
  • твёрдая
    • бумажно-маслянная
    • поливинилхлоридная (ПВХ)
    • резино-бумажная (RIP)
    • сшитый полиэтилен (XLPE)
    • этилен-пропиленовая резина (EPR)

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче ее на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различного рода разрядные явления.

Другой важной величиной, влияющей на экономичность ЛЭП, является cos(f) — величина, характеризующая отношение активной и реактивной мощности.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Эти потери зависят во многом от погодных условий (в сухую погоду потери меньше, соответственно в дождь, изморось, снег эти потери возрастают) и расщепления провода в фазах линии. Потери на корону для линий различных напряжений имеют свои значения (для линии ВЛ 500кВ среднегодовые потери на корону составляют около ΔР=9,0 -11,0 кВт/км). Так как коронный разряд зависит от напряжённости на поверхности провода, то для уменьшения этой напряжённости в воздушных линиях свервысокого напряжения применяют расщепление фаз. То есть в место одного провода применяют от трёх и более проводов в фазе. Распологаются эти провода на равном расстоянии друг от друга. Получается эквивалентный радиус расщеплённой фазы, этим уменьшается напряжённость на отдельном проводе, что в свою очередь уменьшает потери на корону.

См. также

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ. / Магидин Ф. А.; Под ред. А. Н. Трифонова. — М.: Высшая школа, 1991. — 208 с ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. — 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С.С.; Под ред. С.А. Мартынова. - Л.: ЛПИ им. М.И. Калашникова, 1980. - 76 с. УДК 621.311.2(0.75.8)

Ссылки

Wikimedia Foundation. 2010.

dal.academic.ru

Строительство ВЛ и КЛ | Особенности строительства воздушных линий

Компания «Новая Энергия» специализируется на строительстве воздушных линий ВЛ и кабельных КЛ, оказывая услуги по строительству ЛЭП. Наши специалисты занимаются проектированием и возведением линий. Это сложный и ответственный процесс, который можно доверить профессионалам нашей компании. Большой опыт и знания позволяют нам быстро и эффективно решать задачи любой сложности. Мы оказываем услуги под ключ, занимаемся оформлением документации и реализацией проектов.

Строительство ВЛ и КЛ Ремонт ВЛ и КЛ

Особенности строительства

ЛЭП – система оборудования, предназначенная для передачи электричества на большие расстояния. Используется два вида линий: кабельные и воздушные.

Компания работает с разными видами опор, предлагая лучшие решения на различных участках. Работы по строительству линий ВЛ и КЛ ведутся в строгом соответствии с государственными стандартами и правилами безопасной эксплуатации.

Воздушные линии формируют из опор, траверс, арматуры, проводов, разрядников, изоляторов, систем заземления и вспомогательного оборудования. Проектирование и строительство ВЛ ведется с соблюдением норм и правил. Специалисты учитывают все моменты:

  • выбор места расположения опор и прохождения трассы линии электропередач;
  • подбор кабельных элементов, типа опор и конструкции столбов;
  • правильный расчет провесов и параметров фундамента под опоры;
  • подключение к подстанции, применение распределительных устройств.

Монтаж ВЛ

При сложном рельефе местности применяется монтаж «под натяжением», позволяющий сократить расходы на использование спецтехники. Строительство ВЛ в данном случае не требует раскатывать провод по земле, т.к. он должен раскатываться по роликам. Провод защищен от царапин и сколов, коронного разряда. Для упрощения монтажа переходов линий через сооружения задействуют специальные программируемые машины. Раскатку выполняют роликами на опоры, при этом риск повреждения практически исключен. Когда достигается необходимый уровень натяжения, машины отключаются.

При строительстве воздушных линий ВЛ «под натяжением» обеспечивается ряд преимуществ:

  • поверхности не повреждаются, нагрев кабеля исключен;
  • сокращается или отсутствует коронный эффект;
  • исключено появление радиопомех;
  • мероприятия выполняются быстро и более экономично;
  • безопасность работ увеличивается.
Строительство ВЛ и КЛ Ремонт ВЛ и КЛ

Стоимость

Расчет цены производится в соответствии с постановлением Региональной энергетической комиссии. Строительство ВЛ и КЛ осуществляется согласно государственным стандартам, правилам безопасности электромонтажа.

У нас работают специалисты высокой квалификации, обладающие знаниями в сфере электротехники. Мы строго соблюдаем параметры: расстояние проводов над землей, длину пролетов.

Классы напряжений ЛЭП

Данный параметр зависит от вида электросети. В жилых зданиях используется напряжение 220В, на производственных предприятиях 380 В. Классифицируют также по  роду тока (постоянный и переменный), назначению (распределительный, магистральный, сверхдальний) и по режимам функционирования.

Для линий передач используют провода разных марок, выбор зависит от напряжения, которое будет передаваться. Специалист порекомендует марку с учетом факторов, оказывающих влияние на строительство ВЛ и КЛ. Мы внимательны к выбору изоляторов, применяем изделия из полимера, фарфора, стекла в зависимости от загрязненности и климатических условий.

Строительство линий электропередач ВЛ ведется на охраняемых территориях, для обеспечения безопасности человека. Мы выполняем комплекс работ с полной ответственностью, с соблюдением норм и стандартов.

 

nskenergo.ru

Воздушная линия электропередачи - это... Что такое Воздушная линия электропередачи?


Воздушная линия электропередачи
(ВЛ) – устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам или кронштейнам и стойкам на инженерных сооружениях (мостах, путепроводах и т. п.). За начало и конец ВЛ принимаются линейные порталы или линейные вводы РУ, а для ответвлений – ответвительная опора и линейный портал или линейный ввод РУ.

МПБЭЭ, термины.

С точки зрения питания потребителей ВЛ делятся на две категории: тупиковые – линии, получающие напряжение с одной стороны и питающие подстанции, к шинам которых не подключены электростанции, а также линии, получающие напряжение с одной стороны и питающие подстанции, к шинам которых подключены мелкие электростанции, оборудованные делительной автоматикой; транзитные .

Коммерческая электроэнергетика. Словарь-справочник. — М.: Энас. В.В. Красник. 2006.

  • ВЛ
  • Возмездный договор

Смотреть что такое "Воздушная линия электропередачи" в других словарях:

  • воздушная линия электропередачи — ВЛ Линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов. [ГОСТ 24291 90] воздушная линия электропередачи Устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным… …   Справочник технического переводчика

  • Воздушная линия электропередачи — (ВЛ) – линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов. [ГОСТ 24291 90] Рубрика термина: Энергетическое оборудование Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

  • ВОЗДУШНАЯ ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ — (линия электропередачи, ЛЭП сооружение, предназначенное для передачи на расстояние электрической энергии от электростанций к потребителям; размещена на открытом воздухе и выполнена обычно неизолированными проводами, которые подвешены с помощью… …   Большая политехническая энциклопедия

  • Воздушная линия электропередачи — (ВЛ) устройство для передачи и распределения электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам, стойкам на инженерных сооружениях (мостах, путепроводах и т.п.) …   Официальная терминология

  • воздушная линия электропередачи — 51 воздушная линия электропередачи; ВЛ Линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов 601 03 04 de Freileitung en overhead line fr ligne aérienne Источник: ГОСТ 24291 90: Электрическая часть… …   Словарь-справочник терминов нормативно-технической документации

  • Воздушная линия электропередачи — Линии электропередачи Линии электропередачи город Шарья Линия электропередачи (ЛЭП)  один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии. Согласно МПТЭЭП (Межотраслевые правила …   Википедия

  • Воздушная линия электропередачи (ВЛ) — English: Overhead line Линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов (по ГОСТ 24291 90) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • Воздушная линия — установленная линия, определяющая пункты, между которыми осуществляются регулярные воздушные перевозки. Источник: Руководство по грузовым перевозкам на внутренних воздушных линиях Союза ССР 3.1 воздушная линия; ВЛ: Устройство для передачи… …   Словарь-справочник терминов нормативно-технической документации

  • Линия электропередачи, воздушная — Воздушная линия электропередачи Линия электропередачи, в которой неизолированные провода подвешивают на столбах или опорах с помощью линейной арматуры и изоляторов над землей Смотреть все термины ГОСТ 17613 80. АРМАТУРА ЛИНЕЙНАЯ. ТЕРМИНЫ И… …   Словарь ГОСТированной лексики

  • линия электропередачи вдольтрассовая — Воздушная линия электропередачи, используемая для обеспечения электрической энергией средств электрохимзащиты и электрооборудования линейной части магистральных нефтепроводов. [РД 01.120.00 КТН 228 06] Тематики магистральный нефтепроводный… …   Справочник технического переводчика

commercial_electric_power.academic.ru

ВЛ60к - это... Что такое ВЛ60к?

Электровоз ВЛ60
Электровоз ВЛ60К-1196
Годы постройки 1957-1967
Страна постройки СССР
Заводы НЭВЗ
Страны эксплуатации СССР
Всего построено 2618
Система тока переменный, 25 кВ
Осевая формула 3O-3O
Часовая мощность ТЭД 6*(647-800) кВт (в зависимости от модификации)
Скорость часового режима 43,4-65 км/ч (в зависимости от модификации)
Длительная мощность ТЭД 6*(550-675) кВт (в зависимости от модификации)
Скорость длительного режима 46,2-71,1 км/ч (в зависимости от модификации)
Конструкционная скорость 100 км/ч (110 км/ч для пассажирских)

Электровоз ВЛ60 — советский электровоз переменного тока «Владимир Ленин», тип 60.

История

Опытные электровозы Н6О

Положительной опыт эксплуатации электровозов серии ВЛ61 послужил толчком к проектированию более мощных шестиосных электровозов переменного тока. В течение 1956 года на Новочеркасском электровозостроительном заводе (НЭВЗ) был разработан технический проект нового электровоза со следующими заданными параметрами:

  • Ток — однофазный, 50 Гц, 20 кВ
  • Мощность — 4000 кВт
  • Скорость часового режима — 45 км/ч
  • Конструкционная скорость — 110 км/ч
  • Масса электровоза — 138 т

После широкого обсуждения в январе 1957 года проекта электровоза началось его рабочее проектирование, а затем постройка двух опытных локомотивов. Новые электровозы первоначально получили обозначение Н6О, что значило: Новочеркасский 6-осный однофазный. Затем буква О стала читаться как цифра 0 и электровоз стали называть «эн шестьдесят». С января 1963 года электровозам Н6О присвоена серия ВЛ60.

В декабре 1957 и феврале 1958 г. НЭВЗ построил два первых шестиосных электровоза переменного тока напряжением 20 кВ — Н6О-001 и Н6О-002.

Конструкция механической части электровозов ВЛ60 значительно отличается от всех ранее построенных в Советском Союзе электровозов. Кузов электровоза ВЛ60 служит не только для размещения оборудования и кабин машиниста, а также для передачи тягового усилия. Поэтому автосцепки установлены на раме кузова, а не на тележках, как это сделано на электровозах ВЛ61. Электровоз ВЛ60 является первый магистральным локомотивом, спроектированным без буферов. На двух первых электровозах была установлена двусторонняя, жесткая косозубая передача от тяговых электродвигателей к колёсным парам с разным передаточным отношением, что позволило выбрать оптимальное отношение для серийного производства.

На электровозах Н6О-001 и Н6О-002 были установлены тяговые электродвигатели НБ-410 мощностью 695 кВт и 610 кВт в часовом и длительном режимах соответственно. На электровозе размещены две выпрямительные установки, каждая из которых имеет четыре игнитронных запаянных вентиля с жидкостным охлаждением. Схема силовой цепи тяговых электродвигателей на электровозах Н6О-001 и Н6О-002 принципиально такая же, как и на электровозах серии ВЛ61.

По данным взвешивания электровоз Н6О-001 имел вес выше ранее запланированного — 141,3 т. После замены тележек с литыми боковинами на тележки с боковинами, сваренными из листовой стали, вес электровоза снизился до 139,6 т. При диаметре колес 1250 мм и передаточном числе 1:4,19 (Н6О-001) и 1:3,74 (Н6О-002) электровозы реализовали: при часовом режиме — силу тяги 33100 кГ и 29600 кГ, скорость 45,0 км/ч и 50,4 км/ч; при длительном режиме — силу тяги 27500 кГ и 24600 кГ и скорость 47,5 и 53,2 км/ч соответственно. Конструктивная скорость была снижена до 100 км/ч.

В связи с переводом участка Ожерелье — Павелец с напряжения 20 кв на напряжение 25 кв на электровозах Н6О-001 и Н6О-002 в 1959 году были заменены первичные обмотки трансформаторов. В дальнейшем электровозы были подвергнуты более серьезным переделкам (новые тяговые электродвигатели НБ-412М, главные контроллеры, …), что приблизило их конструкцую к серийным локомотивам.

Серийный выпуск

Электровоз ВЛ60К-1196

Принятое в октябре 1958 года решение об электрификации участка Мариинск — Красноярск — Зима на переменном токе со сроком ввода его в эксплуатацию в течение 1959—1960 гг. значительно ускорило организацию выпуска электровозов ВЛ60 на Новочеркасском электровозостроительном заводе. Уже в 1959 году было выпущено несколько десятков электровозов. Эти электровозы строились заводом с 1959 г. по 1965 г. и стали основным типом грузового локомотива на линиях, электрифицированных на переменном токе. При этом завод непрерывно работал над улучшением конструкции локомотивов данной серии.

На основании результатов эксплуатации тяговые электродвигатели НБ-410 были переработаны и получили наименование НБ-412. Выполненные на несколько меньшее номинальное напряжение (1450 В против 1600 В у НБ-410) они имели следующие параметры: мощность часового режима — 647 кВт, продолжительного — 564 кВт (против 695 кВт и 610 Квт у НБ-410 соответственно). Электродвигатель стал тяжелее. ТЭД НБ-412 установлены на электровозах № 003—033.

Позднее с целью повышения мощности двигатель снова был модифицирован и получил обозначение НБ-412М. Новая модификация имела следующие параметры: мощность часового режима — 690 кВт, продолжительного — 550 кВт. Этими двигателями были оборудованы почти все электровозы выпуска 1959—1965 гг.

В дальнейшем попытки усовершенствовать тяговые электродвигатели (в первую очередь повысить напряжение на зажимах) не прекращались и привели к возникновению новой модификации — НБ-412К. При номинальном напряжении 1600 В данный двигатель имел следующие параметры: мощность часового режима — 800 кВт, продолжительного — 675 кВт. Также немного понизилась и масса двигателя. ТЭД НБ-412К стали устанавливаться на электровозы с № 1810 с 1965 года.

Также в процессе постройки было изменено количество игнитронов (с 8 на первых четырёх электровозах до 12 на последующих) и схема их соединения и монтажа. В конце 1963 года стала выпускаться усовершенствованная модель игнитронов, которая и устанавливалась на электровозы ВЛ60, начиная с № 1277.

В процессе серийного выпуска было сделано и множество других изменений в конструкции электровоза.

Локомотивы серии ВЛ60 первоначально поступили на Красноярскую, а затем на Северо-Кавказскую, Одесско-Кишеневскую, Горьковскую, Дальневосточную, Юго-Восточную дороги и на участок Ожерелье — Павелец Московской дороги.

Китай

На основе электровоза Н60 с помощью СССР в КНР в 1958 году был спроектирован первый китайский магистральный электровоз, получивший наименование 6Y1 (zh). До 1968 года было построено 7 таких электровозов.

Начиная с 1968 года вместо ртутных игнитронов стали использовать кремниевые выпрямители. С этого момента электровоз получил наименование SS1 (Shaoshan 1) и стал выпускаться серийно до 1988 года. Всего построено 819 электровозов серии SS1.

Модификации

ВЛ60П-001

В конце 1961 года Новочеркасский электровозостроительный завод выпустил электровоз ВЛ60П-001, предназначенный для пассажирской службы.

На этом электровозе установлены тяговые электродвигатели НБ-415, изменена зубчатая передача (передаточное отношение), установлены электропневматические тормоза. Остальное электрооборудование такое же, как на серийных электровозах выпуска 1961 г. При напряжении на зажимах 1450 В ТЭД НБ-415 имеет следующие параметры: мощность часового режима — 690 кВт, продолжительного — 595 кВт.

При часовом режиме сила тяги равна 19000 кГ и скорость 73,3 км/ч, при длительном режиме соответственно — 16900 кГ и 75,4 км/ч. Скорость электровоза, соответствующая максимальной по якорю — 130 км/ч (однако при работе максимальная скорость была ограничена 100 км/ч для более надежной работы двигателей).

Снижение веса тягового электродвигателя на 1,2 т по сравнению с тяговыми электродвигателями электровоза ВЛ60, применение алюминия вместо меди, а также облегчение отдельных конструкций позволили уменьшить вес электровоза со 138 до 129 т.

Электровоз ВЛ60П-001 обслуживал пассажирские поезда на Северо-Кавказской железной дороге.

ВЛ60П

С целью повышения скорости движения пассажирских поездов, которые из-за отсутствия специальных пассажирских электровозов переменного тока обслуживались грузовыми электровозами, в период 1962 — 1965 гг. часть электровозов серии ВЛ60 выпускалась с передаточным отношением зубчатых колес 30:82=1:2,733 и электропневматическими тормозами. Электровозы получили обозначение ВЛ60П (пассажирские).

Электровозы ВЛ60П выпускались с тяговыми электродвигателями НБ-412К. Скорость часового режима тепловозов этой серии равнялась 73,3 км/ч, продолжительного — 77,1 км/ч. Максимальная скорость была установлена равной 110 км/ч.

Всего был выпущен 301 электровоз этой серии.

ВЛ60Р

В 1962 году были выпущены два опытных электровоза серии ВЛ60 с рекуперативным торможением. После успешных испытаний в 1964-1966 гг. была выпущена серия подобных электровозов с рекуперацией в количестве 85 локомотивов. Серия получила обозначение ВЛ60Р.

ВЛ60К

После постройки опытных электровозов ВЛ62 с кремниевыми выпрямителями Новочеркасский электровозостроительный завод в конце 1962 года выпустил два электровоза ВЛ60К.

Электровоз ВЛ60К-002 прошел испытания на экспериментальном кольце ЭлНИИ. Электровоз ВЛ60К-001 после выхода с завода сразу же поступил для эксплуатации на Северо-Кавказскую железную дорогу.

В 1963 году НЭВЗ выпустил еще несколько электровозов ВЛ60К с тяговыми электродвигателями НБ-412М, а во второй половине 1965 года завод вместо электровозов ВЛ60 начал выпускать электровозы ВЛ60К с кремниевыми выпрямителями и тяговыми электродвигателями НБ-412К. По своим тяговым характеристикам эти электровозы незначительно отличаются от электровозов ВЛ60 с тяговыми электродвигателями НБ-412К и имеют одинаковые с ними номинальные значения силы тяги и скорости при часовом и длительном режимах.

Всего был выпущен 501 электровоз серии ВЛ60К. Такое же наименование получили и ранее выпущенные ВЛ60, переоборудованные с игнитронных установок на кремниевые.

ВЛ60ПК (ВЛ60КП)

Электровоз ВЛ60К-1196

Электровоз ВЛ60пк

Электровозы ВЛ60П, оборудованные кремниевыми выпрямителями, а также ВЛ60К, переоборудованные в пассажирские.

ВЛ60КУ

11 электровозов были переоборудованы из ВЛ60К с введением плавного регулирования напряжения на выводах тяговых электродвигателей и одновременно бестоковой коммутации при этом регулировании. Индекс «У» обозначает «управляемый».

ВЛ60КР

В течение 1971 — 1973 гг. был сделан проект переоборудования электровоза ВЛ60К для работы с рекуперативным торможением. Опытный электровоз получил обозначение ВЛ60КР-2370 и в августе 1974 года поступил для испытаний на экспериментальном кольце ЦНИИ МПС.

Ремонтные заводы

Раков В. А. Электровозы серии ВЛ60 и их разновидности // Локомотивы отечественных железных дорог 1956 - 1975. — М.: Транспорт, 1999. — С. 69 - 89. — ISBN 5-277-02012-8

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

ВЛ82 - это... Что такое ВЛ82?

Электровоз ВЛ82 — советский двухсистемный электровоз «Владимир Ленин», тип 82.

История и конструкция

Двухсистемные электровозы используются на тех железнодорожных магистралях, где есть стыки между участками линий, электрифицированных на постоянном и переменном токе, однако строительство специальной станции стыкования по тем или иным причинам невыгодно. В свою очередь двухсистемные электровозы, реализуя полную мощность в обоих режимах, отличаются повышенным весом и стоимостью электрооборудования и его эксплуатации.

ВЛ82

Первые опытные двухсистемные восьмиосные двухсекционные электровозы ВЛ82-001 и ВЛ82-002 были построены Новочеркасским электровозостроительным заводом (НЭВЗ) в июле 1966 года.

Большинство элементов механической части новых локомотивов были унифицированы с электровозами серии ВЛ80К. На каждой секции электровоза установлен трансформатор производства Таллинского электротехнического завода. Масса трансформатора с маслом — 5800 кг. Шестиполюсные тяговые электродвигатели (ТЭД) НБ-420А были спроектированы специально для данного локомотива. Масса электродвигателя — 4500 кг. Для их охлаждения на каждой секции установлено два мотор-вентилятора. Также каждая из секций оборудована аккумуляторной батареей. В процессе эксплуатации ВЛ82 ТЭД были заменены на двигатели, устанавливаемые впоследствии на электровозы серии ВЛ82М.

Секции электровоза имеют одинаковые электрические схемы и могут работать по системе многих единиц. При работе с переменным током напряжение к ТЭД подводится через понижающий трансформатор и выпрямительную установку. При питании постоянным током напряжение подводится непосредственно к цепи ТЭД. В обоих случаях напряжение на зажимах двигателей регулируется реостатами. Схема локомотива позволяет использовать реостатное торможение, при котором ТЭД соединяются перекрёстно.

Соединений тяговых двигателей два - сериес-параллельное (СП), при котором на каждой из секций все четыре тяговых двигателя секции соединяются последовательно, и параллельное (П), по два последовательно соединённых двигателя соединяются параллельно. Последовательного соединения всех восьми тяговых двигателей электровоза не предусмотрено. Переключение соединений двигателей и секций пускового реостата выполняется находящимся в каждой секции имеющим электропривод главным контроллером ЭКГ-82, по конструкции аналогичным главному контроллеру ЭКГ-8Ж электровозов ВЛ80к, ВЛ80с. Контроллер машиниста также аналогичен контроллеру ВЛ80.

Вспомогательные машины каждой секции – четыре мотор-вентилятора МВ, мотор-компрессор МК, мотор-насос МН масла трансформатора. Все машины, кроме мотор-насоса, имеют высоковольтные (на напряжение 3000 В) коллекторные двигатели, мотор-насос имеет асинхронный двигатель, так как он работает только при езде электровоза на переменном токе и получает питание переменным током от трансформатора. МВ №3 и №4 подключены к отпайкам пуско-тормозного реостата и получают питание при протекании по реостату тока, обдувая реостат. Двигатели МВ №1, МВ №2 и МК имеют каждый свой контактор, демпферный резистор (ограничивающий пусковой ток) и сглаживающий реактор. Пуск МК – реостатный, через несколько секунд после включения часть демпферного резистора закорачивается. На вал МВ №1 насажен генератор тока управления. Генератор синхронный трёхфазный с выпрямителем, в отличие от архаичных коллекторных генераторов электровозов ВЛ8, ВЛ10, ВЛ11, ВЛ60.

По результатам испытаний на Северо-Кавказской железной дороге завод построил до 1968 года еще 22 электровоза серии ВЛ82.

Первоначально электровозы ВЛ82 эксплуатировались на участке Свеча-Буй-Ярославль Северной железной дороги, а после постройки станции стыкования были переданы в депо Купянск Южной дороги. В 1977—1980 годах большинство локомотивов были переданы в депо Минеральные воды Северо-Кавказской железной дороги.

ВЛ82М

Электровоз ВЛ82М

С 1972 года Новочеркасский электровозостроительный завод начал выпуск усовершенствованного варианта двухсистемного электровоза, получившего обозначение ВЛ82М. Всего до 1979 года включительно было построено 67 таких локомотивов.

От своих предшественников новые локомотивы отличаются уменьшенным передаточным числом, разработанными специально для них новыми ТЭД НБ-407Б, изменениями в схеме электроцепей, новым контроллером машиниста, токоприёмниками и пр. Вес электровоза с 2/3 запаса песка составил 200 т против 188 т для ВЛ82. Различия в конструкции кузова и тележек между ВЛ82 и ВЛ82м такие же, как между ВЛ10 и ВЛ10у или ВЛ80к и ВЛ80т - установлены круглые окна машинного отделения вместо прямоугольных большой площади, боковые опоры заменены люлечными подвесками. Главное отличие в электрической части - вместо силового контроллера ЭКГ-82 применены индивидуальные линейные и реостатные контакторы и групповые переключатели соединений, контроллер машиниста выполнен по типу контроллера электровоза ВЛ10.

Эксплуатировались электровозы серии ВЛ82М в депо Купянск Южной железной дороги (и эксплуатируются ныне), депо Красноуфимск (до оборудования станицей переключения), депо Минеральные воды Северо-Кавказской дороги и на Октябрьской железной дороге для вождения поездов от Выборга до границы с Финляндией.

По мере поступления на железные дороги электровозов серии ВЛ82М электровозы ВЛ82 из-за склонности к боксованию переводились на работу с пассажирскими поездами.

Электровозы серии ВЛ82 фактически представляли из себя электровозы постоянного тока с трансформаторно-выпрямительными устройствами для работы под переменным током.

Устройство определения рода тока

Задача устройства определения рода тока — надёжно автоматически определять род тока (переменный или постоянный) на токоприёмнике электровоза и выдавать сигналы на соответствующие переключения в высоковольтных цепях — в частности, на разворот переключателя рода тока ПРТ. На электровозах ВЛ82 и ВЛ82м эту задачу выполняет устройство УРТ-3, работающее в паре с сухим однофазным трансформатором ТОС-41, первичная обмотка которого одним выводом подключена к крышевой шине токоприёмников, а вторым выводом к УРТ-3. Вторичная обмотка, при первичном напряжении 25 кВ выдающая напряжение 160 В, также подключена к УРТ.

При появлении на крышевой шине постоянного тока напряжением 2,2-4 кВ ток проходит через первичную обмотку ТОС, добавочные резисторы и катушку реле РВ4, вызывая срабатывание реле. Реле своими контактами подаёт питание на вентиль постоянного тока ПРТ, низковольтную катушку вентиля защиты ВЗ, подающего сжатый воздух в блокировки высоковольтной камеры, и создаёт цепь удержания БВ.

URT-3-s.gif УРТ на электровозе

При переменном токе на токоприёмнике напряжение понижается ТОС, выпрямляется мостом, собранным из двух высоковольтных диодных сборок Д1 и Д2, и вызывает включение реле РВ2. Это, в свою очередь, вызывает разворот ПРТ в положение переменного тока, создание цепей удержания БВ и ГВ и подачу питания на низковольтную катушку ВЗ. Реле РВ4 при этом не срабатывает, так как в дополнение к активному сопротивлению в цепи появляется значительное индуктивное (реактивное — сопротивление переменному току) сопротивление первичной обмотки ТОС, имеющей 1350 витков. Поэтому, несмотря на значительное повышение напряжения, почти всё оно падает на первичной обмотке ТОС и для включения РВ4 оказывается недостаточным.

На высоковольтную катушку ВЗ напряжение подаётся через диодную сборку Д3. При отсутствии этой сборки ток из цепи РВ2 перетекал бы в цепь РВ4 (или наоборот), что вызывало бы неизбежное срабатывание обоих реле. Таким образом, Д3 служит для развязки.

На упрощённой принципиальной схеме УРТ не показаны некоторые элементы — реле РВ1 и РВ3, включенные параллельно соответственно реле РВ2 и РВ4 для дублирования (повышения надёжности работы) и развязывающая диодная сборка Д4 в цепи питания ВЗ от цепи реле РВ3, РВ4. УРТ-3 смонтировано на текстолитовой панели, ТОС-41 установлен отдельно.

Литература

  • Раков В. А. Электровозы серий ВЛ82 и ВЛ82М // Локомотивы отечественных железных дорог 1956 - 1975. — М.: Транспорт, 1999. — С. 130 - 134. — ISBN 5-277-02012-8

dik.academic.ru

ВЛ84 - это... Что такое ВЛ84?

Электровоз ВЛ84 — серия опытных советских грузовых магистральных электровозов переменного тока с опорно-рамным подвешиванием тяговых электродвигателей, разработанных на основе электровоза ВЛ81. Построены в 1979 Новочеркасским электровозостроительным заводом в количестве двух единиц. Электровозы были рассчитаны на работу в тяжёлых условиях, таких как крутые подъёмы и низкие температуры. Планировался серийный выпуск этих локомотивов для эксплуатации на Байкало-Амурской магистрали, однако в ходе испытаний не удалось добиться нормальной работы тягового привода и электровозы так и не пошли в серию.

История

Новочеркасский электровозостроительный завод на основе двухсекционных восьмиосных грузовых электровозов серии ВЛ80 спроектировал усиленный электровоз с опорно-рамным подвешиванием тяговых электродвигателей, предназначенный для вождения тяжёлых грузовых поездов на железнодорожных линиях с крутыми подъёмами, в том числе при низких температурах. При создании новых моделей электровозов, получивших серию ВЛ84, использовались результаты испытания электровоза ВЛ81. Для этих электровозов часто применялось название – электровозы для БАМа, это связано с тем, что их планировалось внедрить на Байкало-Амурскую магистраль. Опытные электровозы в количестве двух единиц были выпущены в 1979 году.

В 1980 году электровоз ВЛ84-001 прошёл тягово-энергетические испытания на экспериментальном кольце ВНИИЖТа в Щербинке. Второй локомотив проходил динамические испытания на участке Белореченская — Армавир. После завершения испытаний электровозы поступили для эксплуатации в депо Батайск Северо-Кавказской железной дороги.

В настоящее время электровоз ВЛ84-001 разобран — с него сняты тележки и электрооборудование, а кузов используется в качестве сарая в депо Батайск. Электровоз ВЛ84-002 долгое время эксплуатировался в депо Батайск, при этом его экспериментальные тележки были заменены на серийные. В настоящее время он передан в Ростовский музей железнодорожной техники.

Конструкция

По сравнению со стандартными ВЛ80, электровозы ВЛ84 имеют более удлинённый кузов за счёт увеличения размера кабины машиниста. Также в локомотивах было установлено дополнительное кондиционирующее оборудование для дополнительной более тонкой очистки воздуха.

Кузова секций имеют опоры, которыми служат двухосные тележки на которые они опираются через люльки; параллельно цилиндрические пружины над которыми находиться колесные пары включены демпферы гидравлические, на колесные пары опираются рамы тележек. Рессорная система имеет статистический прогиб, который равен 120 мм. Установленные буксы — бесчелюстные. Наклонные тяги передают кузову тормозные и тяговые усилия. От тяговых электрических двигателей вращающий момент передаётся с помощью прямозубого одностороннего редуктора, установленного на рамах тележек. Полый вал с большим зубчатым колесом соединен с помощью поводков и упругой резинокордной муфтой, колесный центр и полый вал соединены таки ми же элементами. В целом конструкция привода электровоза ВЛ84 аналогична конструкции привода электровоза ВЛ81. Впервые данная схема была применена на пассажирском тепловозе ТЭП75 который был построен в 1976 году. ВЛ84 имел два варианта привода, это было сделано с той целью, чтобы на основаниях опытной эксплуатации и исследований выбрать наиболее совершенную конструкцию. При новых бандажах диаметр колеса составлял 1350 мм, модуль зубчатых колес был равен 13, редуктор имел передаточное число которое выражалось соотношением 72:23=3,13.

На этой модели механические тормоза имели двустороннее нажатие колодок на колеса. На каждой колесной паре был установлен свой тормозной цилиндр, диаметр которого составлял 10 дюймов.

Трансформатор ОДЦЭ-5300/25-78 ХЛ-2, который имел сетевую обмотку номинальная мощность которой составляет 5590 кВ · А (напряжение 25 кВ), обмотку собственных нужд для питания вспомогательных машин, номинальная мощность которой составляет 223 кВ · А , две обмотки тяговой группы, состоящие из шести секций, каждая из которых рассчитана на номинальный выпрямленный ток 1950 А и напряжение холостого хода 435 В, напряжение холостого хода 638, 406, 232 В, (номинальный ток 550 А) и обмотку для возбуждения тяговых электродвигателей 2X261 В, 750 А. Трансформатор имел масляное охлаждение с принудительной вентиляцией масла и воздушным охлаждениям в радиаторах.

Каждая группа состояла из тяговых обмоток напряжения в количестве трёх штук, с помощью которых плавно регулировалось напряжение. Плавное регулирование напряжение достигалось за счёт трёх последовательно соединённых полунаправляемых мостов, которые подавались на зажимы двух включенных параллельно тяговых электродвигателей. Раньше такая схема использовалась при изготовлении электровозов Sr1 для Финляндии. Три полупроводниковых моста смонтировано в одной выпрямительной установке. На электровозе таких установок было всего три штуки. Шесть параллельно включённых тиристоров является неотъемлемыми деталями, из которых состоит каждое управляемое плечо; если плечо моста неуправляемо, то в нем параллельно включено пять диодов марки В2-1600. Номинальный ток, который способна пропустить выпрямительная установка, равен 2Х1600 А.

В режиме реостатного торможения и режиме тяги возбуждение электровозов является независимым. При этом после последовательного включения обмотки всех восьми электродвигателей они получают питание по двум полупериодичным схемам с нулевым выводом. Каждое из двух плеч установки включает в себя по четыре тиристора. Подключение якоря электродвигателей к индивидуальным тормозным резисторам происходит при реостатном торможении.

Изначально планировалось, что электровозы ВЛ84 будут изготавливаться с рекуперативным торможением, но спустя некоторое время все же было применено реостатное торможение.

На электровозах устанавливались 8 шестиполюсных тяговых электродвигателей НБ-507 несколько измененной конструкции. Эти двигатели, в отличие от электродвигателей, установленных в электровозах ВЛ81, отличались номинальным напряжением, которое было повышено до 1050 В, длиной централи, увеличенной на 17 мм и расходом охлаждающего воздуха, который составляет 95 м³/мин. Минимальное возбуждение составляет 42 %, масса электродвигателя 4600 кг. Контролер машиниста имеет рукоятку скорости, главную и реверсивную рукоятки. Реверсивная рукоятка имеет положения: Р — реостатное торможение (вперёд — назад), 0 — нулевое, Т — тяга (вперёд — назад). Положения главной рукоятки: 0 — нулевое, БВ — быстрое выключение главного выключателя, П — позиции — сбора схемы управления, линейными контакторами цепи тяговых электродвигателей, 1—25 позиции в которых при тяговом режиме регулируется ток, а также тормозного усилия при режиме реостатного торможения. Скорость движения электровоза позволяет регулировать рукоятка скорости в позициях 1-25. Оба электровоза рассчитаны на работу по системе многих единиц.

В качестве фазоразщепителей, вентиляторов электрических тяговых двигателей и компрессорного привода применяются электрические асинхронные двигатели АЭ-92-4. Электрические двигатели постоянного тока НБ-107 служат для привода вентилятора, охлаждающего тормозные резисторы, данные вентиляторы питаются от секций этих резисторов. Такие электродвигатели ранее уже применялись в электровозах ВЛ82М.

При продолжительном режиме КПД электровоза равняется 0,86, мощностной коэффициент также равняется 0,86. Тормозные резисторы имеют мощность 6800 кВт, при скорости 80 км/ч тормозные усилия равняются 324 кН (33 000 кгс), при конструкционной скорости 120 км/ч тормозные усилия равняются 137 кН (14 000 кгс). Фактическая масса электровоза составляет 206—207 т, исходя из технических условий, она должна равняться 200±4 т.

См. также

  • ВЛ40 — опытные пассажирские электровозы с опорно-рамным подвешиванием тяговых двигателей и групповым приводом.
  • ВЛ81 — опытный грузовой электровоз с опорно-рамным подвешиванием тяговых двигателей и с индивидуальным приводом.

med.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *