Частотные регуляторы для асинхронных двигателей: Частотный регулятор для асинхронного двигателя-все функции

Содержание

принцип работы, способы регулирования частоты вращения асинхронного двигателя, видео

Автор Aluarius На чтение 4 мин. Просмотров 440 Опубликовано

Есть в электроустановках позиции, когда без электродвигателя, работающего на постоянном токе, не обойтись. Именно этот электромотор можно регулировать по скорости вращения ротора, что и требуется в электроустановках. Правда, у него масса недостатков, и одни из них – это быстрый износ щеток, если их установка была проведена с искривлением, да и срок их эксплуатации достаточно низок. При износе происходит искрение, поэтому такой движок во взрывоопасных и запыленных помещениях использовать нельзя. Плюс ко всему электродвигатель постоянного тока стоит дорого. Чтобы изменить данную ситуацию, используют асинхронный двигатель и частотный регулятор для асинхронного двигателя.

Практически по всем показателям электродвигатели, работающие на переменном токе, превосходят аналоги на постоянном.

Во-первых, они надежнее. Во-вторых, имеют меньшие габариты и вес. В-третьих, цена ниже. В-четвертых, они проще в эксплуатации и подключении.

А вот недостаток у них один – это сложность регулирования частоты вращения. В данном случае стандартные способы регулирования частоты асинхронных двигателей здесь не подойдут, а именно – изменения напряжения, установка сопротивления и так далее. Частотное управление асинхронным электрическим двигателем – была проблема номер один. Хотя теоретическая база известна аж с тридцатых годов прошлого столетия. Все дело упиралось в дороговизну частотного преобразователя. Все изменилось, когда изобрели микросхемы, с помощью которых через транзисторы стало возможным собрать преобразователь частоты с минимальной себестоимостью.

Принцип регулирования

Итак, способ регулирования частоты вращения асинхронного двигателя основано на одной формуле. Вот она внизу.

 

ω=2πf/p, где

  • ω – угловая скорость вращения статора;
  • f – частота входного напряжения;
  • p – количество полюсных пар.

То есть, получается так, что изменить скорость вращения электродвигателя можно лишь путем изменения частоты напряжения. Что это дает на практике? Первое – это плавность работы мотора, особенно это будет чувствовать при пуске оборудования, когда сам двигатель работает под самыми высокими нагрузками. Второе – повышенное скольжение. За счет этого растет КПД, и снижаются потери мощностных характеристик.

Структура частотного регулятора

Все современные преобразователи частоты построены на принципе так называемого двойного преобразования. То есть, переменный ток преобразуется в постоянный через неуправляемый выпрямитель и фильтр.

Далее, через импульсный инвертор (он трехфазный) происходит обратное преобразование тока постоянного в ток переменный. Инвертор сам состоит из шести силовых ключей (транзисторных). Так вот каждая обмотка электрического движка подключается к определенным ключам выпрямителя (положительному или отрицательному). Именно инвертор изменяет частоту напряжения, которое прикладывается к статорным обмоткам. По сути, именно через него происходит частотное регулирования электродвигателя.

В этом приборе на выходе устанавливаются силовые транзисторы. Они выполняют роль ключей. Если сравнивать их с тиристорами, то необходимо отметить, что первые вырабатывают сигнал в виде синусоиды. Именно данная форма создает минимальные искажения.

Принцип работы

Теперь сам принцип работы частотного преобразователя. Чтобы понять это, предлагаем разобрать рисунок ниже.

Принцип работы

Итак, пройдемся по рисунку, где

  • «В» – это неуправляемый силовой выпрямитель диодного типа.
  • «АИН» – автономный инвертор.
  • «СУИ ШИМ» – система широтно-импульсного управления.
  • «САР» – система автоматического регулирования.
  • «Св» – конденсатор фильтра.
  • «Lв» – дроссель.

По схеме очень хорошо видно, что инвертор регулирует частоту напряжения  за счет системы широтно-импульсного управления (оно высокочастотное). Именно эта часть регулятора отвечает за подключение обмоток статора электродвигателя попеременно то к положительному полюсу выпрямителя, то к отрицательному. Периодичность подключения к полюсам происходит по синусоидальной кривой. При этом частота импульсов определяется именно частотой ШИМ. Так и происходит частотное регулирование.

Заключение по теме

Как видите, данный способ регулирования частоты вращения асинхронного двигателя достаточно прост. Но и не только. Он позволяет уйти от ненадежных двигателей постоянного тока, перейти на более надежные виды электрического оборудования. К тому же структура прибора, основанная на современных методах преобразования электрического тока, сделала его дешевым и доступным.

Плюс ко всему простота устройства дает возможность собрать частотники своими руками.

Принцип работы частотного преобразователя для асинхронного двигателя

Асинхронный двигатель изобретен достаточно давно и нашел широкое применение в различных областях благодаря простоте конструкции и надежности. Однако он имеет ряд недостатков, ключевыми из которых являются:

  • высокая пусковая мощность до момента выхода на рабочую частоту вращения;

  • низкий крутящий момент на старте;

  • квадратичная зависимость мощности от питающего напряжения;

  • предельная частота вращения для стандартной сети 50 Гц в 3000 об/мин.

Также штатно такой двигатель может работать только в одном направлении вращения. Все эти недостатки устраняются применением частотного преобразователя для управления асинхронным двигателем, использование которого обеспечивает:

  • плавный пуск и остановку;

  • возможность регулировки частоты вращения и повышение штатного числа оборотов в минуту;

  • смену направления вращения;

  • защиту двигателя от перегрузок и заклинивания оборудования;

  • точное поддержание заданной частоты вращения.

Несмотря на то, что это достаточно дорогостоящее оборудование, его применение оправдано как для решения промышленных задач, так и в быту, например, для управления насосом автономного водоснабжения или вентиляцией. 

Как работает частотник для асинхронного двигателя

Несмотря на сложность схемотехнических решений, в том числе и с использованием микропроцессорного управления, принцип работы частотного преобразователя для асинхронного двигателя достаточно прост. Современные частотные преобразователи строятся по инверторной схеме с двойным преобразованием и работают по такому принципу:

  • входное одно- или трехфазное напряжение выпрямляется;

  • фильтруется от пульсаций и стабилизируется;

  • выпрямленное напряжение поступает на управляемые генераторы напряжения и частоты, которые формируют переменное выходное напряжение с заданными характеристиками;

  • режимом работы выходных генераторов управляет контроллер, построенный, как правило, на базе микропроцессора.

Таким образом, на вход питания двигателя подается не напряжение электросети с фиксированной частотой 50 Гц, а переменный ток с частотой, которую задает управляемый генератор частотного преобразователя. При этом частотник управляет не только частотой, но и напряжением, поэтому обеспечивается стабильный режим работы двигателя. В системе управления предусмотрена обратная связь, которая контролирует параметры выходного напряжения и его частоты на соответствие заданным. Также современные преобразователи могут иметь внешнюю обратную связь, которая контролирует параметры работы системы с асинхронным двигателем и оперативно изменяет режим его работы для поддержания, например, давления в системе подачи воды или скорости движения транспортера на заданном уровне.

Потери на такое двойное преобразование у современных частотников составляют всего несколько процентов, а те возможности, которые они предоставляют по управлению электроприводами, значительно расширяют сферу применения асинхронных двигателей.


вернуться в блог

Частотное регулирование однофазного асинхронного двигателя

Частотное управление электроприводами активно развивается и все чаще можно услышать о новом методе управления, или улучшенном частотнике, или о внедрении частотного электропривода в какой-то сфере, где ранее никто и подумать не мог что это возможно. Но это факт!

Если мы внимательно рассмотрим электродвигатели, к которым применяют частотное регулирование – то это асинхронные или синхронные трехфазные двигатели. Существует несколько разновидностей преобразователей частоты. Но ведь есть и однофазные асинхронные машины, почему прогресс не касается их? Почему частотное управление не применяют так активно к однофазным машинам? Давайте рассмотрим.

Содержание:

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Основные виды однофазных электроприводов

Как упоминалось однофазный двигатель не может развивать пусковой момент, следствием чего становится невозможность его самостоятельного запуска. Для этого придумали несколько способов компенсации магнитного поля противоположного по знаку основному.

Двигатели с пусковой обмоткой

В данном способе пуска кроме основной обмотки Р, имеющей фазную зону 1200, на статор наматывают еще и пусковую П, которая имеет фазную зону 600. Также пусковая обмотка сдвигается относительно рабочей на 900 электрических. Для того, чтоб создать фазовый сдвиг между токами обмоток Iр и Iп последовательно в пусковую обмотку подключают элемент, приводящий к сдвигу фаз ψ (фазосдвигающее сопротивление Zп):

Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.

Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:

Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные

Конденсаторный двигатель

Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость Ср. Данные обмотки сдвинуты относительно друг друга на 900 электрических и имеют фазные зоны тоже 900. При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:

Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма

В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.

Частотное регулирование однофазных асинхронных электродвигателей

Итак, все чаще появляются предложения частотных преобразователей, которые могут управлять однофазными асинхронными машинами. В силу того что частотники предназначены для работы с трехфазными машинами, то для регулирования оборотов однофазной машинами необходим особый вид частотного преобразователя. Это обусловлено тем, что трехфазные и однофазные машины имеют немного разный принцип работы. Давайте рассмотрим схему включения, которую предоставляет один из официальных производителей частотных преобразователей для однофазных машин:

Это схема прямого подключения. Где: Ф-фаза питающего напряжения, N-нейтральный проводник, L1, L2 – обмотки двигателя, Ср – рабочий конденсатор.

А вот схема подключения преобразователя:

Как мы можем видеть, конденсатор при включении данной схемы отключается. Обмотка L1 переключается к выходу преобразователя фазы А, а L2 к В. Общий провод подключается к выходу С. Тем самым мы фактически получили двухфазную машину. Фазовый сдвиг теперь будет реализовывать частотный преобразователь, а не конденсатор. На выходе преобразователя будет обычное трехфазное напряжение.

Данный способ частотного регулирования трудно назвать однофазным, так как при питания двигателя от сети напрямую необходимо опять восстанавливать схему с конденсатором. Более того, этот способ регулирования частоты НЕ ПОДХОДИТ для машин с пусковой обмоткой, так как сопротивление рабочей и пусковой обмотки не равны, появится асимметрия.

Можем сделать вывод, что данный вид частотного регулирования подходит не всем электродвигателям, а только конденсаторным. Более того, при такой схеме подключения необходимо провести переподключение обмоток внутри электродвигателя (в коробке выводов электродвигателя), что после переподключения не позволит работать ему от сети напрямую. Поэтому если вы собираетесь питать электродвигатель от однофазной сети через частотник, то, может быть стоит купить преобразователь, который питается от однофазной сети, а двигатель обычный, трехфазный. Это лучше с точки зрения работы самой машины, также отсутствуют переделки внутри электрической машины. Если вы собираетесь таким образом модернизировать систему, то внимательно изучите характеристики электродвигателя, преобразователя, чтоб избежать пустой траты средств или выхода из строя элементов системы.

Частотные преобразователи для асинхронных двигателей

Созданный в конце XIX столетия, трёхфазный асинхронный двигатель стал незаменимой составляющей современного промышленного производства.

Для плавного пуска и остановки такого оборудования требуется специальное устройство – преобразователь частоты. Особо актуально наличие преобразователя для крупных двигателей с большой мощностью. С помощью этого дополнительного устройства можно регулировать пусковые токи, то есть, контролировать и ограничивать их величину.

Принцип работы частотного преобразователя

Если регулировать пусковой ток исключительно механическим способом, не удастся избежать энергетических потерь и уменьшения срока службы оборудования. Показатели этого тока в пять-семь раз превышают номинальное напряжение, что недопустимо для нормальной работы оборудования.

Принцип работы современного преобразователя частоты подразумевает использование электронного управления. Они не только обеспечивают мягкий пуск, но и плавно регулируют работу привода, придерживаясь соотношения между напряжением и частотой строго по заданной формуле.

Основное преимущество устройства – экономия в потреблении электроэнергии, составляющая в среднем 50%. А также возможность регулировки с учётом потребностей конкретного производства.

Устройство функционирует по принципу двойного преобразования напряжения.

  1. Напряжение сети выпрямляется и фильтруется системой конденсаторов.
  2. Затем в работу вступает электронное управление – образуется ток с указанной (запрограммированной) частотой.
На выходе выдаются прямоугольные импульсы, которые под воздействием обмотки статора двигателя (её индуктивности) становятся близкими к синусоиде.

На что обратить внимание при выборе?

Производители делают упор на стоимость преобразователя. Поэтому многие опции доступны только у дорогих моделей. При выборе устройства следует определиться с основными требованиями для конкретного использования.

  • Управление может быть векторным или скалярным. Первое даёт возможность точной регулировки. Второе лишь поддерживает одно, заданное соотношение между частотой и напряжением на выходе и подходит только для простых приборов, вроде вентилятора.
  • Чем выше указанная мощность, тем универсальнее будет устройство — обеспечится взаимозаменяемость и упростится обслуживание оборудования.
  • Диапазон напряжения сети должен быть максимально широким, что обезопасит при перепадах его норм. Понижение не так опасно для устройства, как повышение. При последнем — вполне могут взорваться сетевые конденсаторы.
  • Частота должна полностью соответствовать потребностям производства. Нижний предел указывает на диапазон регулирования скорости привода. Если нужен более широкий, потребуется векторное управление. На практике применяются частоты от 10 до 60 Гц, реже до 100Гц.
  • Управление осуществляется через различные входы и выходы. Чем их больше, тем лучше. Но большее количество разъёмов существенно увеличивает стоимость устройства и усложняет его настройку.
  • Дискретные входы (выходы) используются для ввода команд управления и выхода сообщений о событиях (например, о перегреве), цифровые – для ввода сигналов цифровых датчиков (высокочастотных), аналоговые – для ввода сигналов обратной связи.
  • Шина управления подключаемого оборудования должна совпадать с возможностями схемы частотного преобразователя асинхронного двигателя по количеству входов и выходов. Лучше иметь небольшой запас для модернизации.
  • Перегрузочные способности. Оптимален выбор устройства с мощностью на 15% больше мощности используемого двигателя. В любом случае нужно прочесть документацию. Производители указывают все основные параметры двигателя. Если важны пиковые нагрузки, следует выбрать преобразователь с показателем пикового тока на 10% больше указанного.

Сборка преобразователя частоты для асинхронного двигателя своими руками

Собрать инвертор или преобразователь можно самостоятельно. В настоящее время в сети находится множество инструкций и схем такой сборки.

Основная задача – получить «народную» модель. Дешёвую, надёжную и рассчитанную на бытовое применение. Для работы оборудования в промышленных масштабах, конечно, лучше отдать предпочтение устройствам, реализуемым магазинами.
Порядок действий по сборке схемы частотного преобразователя для электродвигателя

Для работы с домашней проводкой, с напряжением 220В и одной фазой. Примерная мощность двигателя до 1кВт.
  1. Обмотки двигателя соединяются треугольником.
  2. Для сборки частотного преобразователя для однофазного двигателя нужны: IR2135(IR2133) – драйвер трёхфазного моста, AT90SPWM3B – микроконтроллёр (используется как генератор PWM), программатор (например, AVReAl), шесть штук транзисторов IRG4BC30W, ЖКИ индикатор, шесть кнопок.
  3. Преобразователь состоит из двух плат. К первой крепится блок питания, драйвер. Также здесь размещаются транзисторы и силовые клеммы.
  4. На второй устанавливается микроконтроллёр и индикатор. Между собой платы объединяются гибким шлейфом.
  5. Импульсный блок питания своими руками собирается по стандартной схеме.
  6. Для управления двигателем не требуется внешнее управление током. Но можно установить микросхему дополнительно (IL300), создав линейную развязку.
  7. Диодный мост вместе с транзисторами крепятся на общий радиатор.
  8. Оптроны ОС2-4 используются для дублирования кнопок управления. ОС-1 предназначен для пользовательских функций (сигнализации и т.п.)
  9. Трансформатор устанавливать на однофазный частотный преобразователь для электродвигателя не обязательно. Допустимо воспользоваться токовым шунтом, представляющим собой четыре витка манганинового провода с сечением 0,5 миллиметров на оправе 3 миллиметра. Усилитель DA-1 можно подключить к этому же шунту.
  10. Двигателю на 400Вт не потребуется термодатчик. Для измерения напряжения сети может использоваться DA-1-2 (усилитель).
  11. Кнопки изолируются пластмассовыми толкателями, для управления используется опторазвяка.
На заметку. Длинные провода нужно снабдить помехоподавляющими кольцами.

Регулировка вращения ротора двигателя вмещается в диапазон частоты 1:40. Для малых частот необходимо фиксированное напряжение (IR компенсация).

Подключение частотного преобразователя к электродвигателю

Для однофазной проводки на 220В (использования в домашних условиях) подключение осуществляется по схеме «треугольник». Выходной ток не должен превышать 50% от номинального!

Для трёхфазной проводки на 380В (промышленного использования) подключение двигателя к частотному преобразователю осуществляется по схеме «звезда».

Преобразователь (или инвертор) имеет соответствующие клеммы, помеченные буквами.

  • R, S, T– сюда подключаются провода сети, очерёдность не имеет значения;
  • U , V , W – для включения асинхронного двигателя (если двигатель вращается в обратную сторону, нужно поменять местами любой из двух проводов на этих клеммах).
  • Отдельно предусмотрена клемма для заземления.

Рекомендации по обслуживанию электрооборудования

Для продления срока эксплуатации преобразователя необходимо соблюдать следующие правила:

  1. Регулярно очищать внутренности устройства от пыли (лучше выдувать её небольшим компрессором, так как пылесос с загрязнением не всегда справится – пыль уплотняется).
  2. Своевременно заменять узлы. Электролитические конденсаторы рассчитаны на пять лет, предохранители на десять лет эксплуатации. А вентиляторы охлаждения на два-три года использования. Внутренние шлейфы следует заменять раз в шесть лет.
  3. Контролировать внутреннюю температуру и напряжение на шине постоянного тока.
  4. Повышение температур приводит к засыханию термопроводящей пасты и разрушению конденсаторов. На силовых компонентах привода её следует менять ни реже одного раза в три года.
  5. Придерживаться условий эксплуатации. Температура окружающей среды не должна превышать +40 градусов. Недопустима высокая влажность и запылённость воздуха.

Управление асинхронным мотором (например, как подключить трёхфазный электродвигатель в сеть 220в) – довольно сложный процесс. Преобразователи, изготовленные кустарно, дешевле промышленных аналогов и вполне подходят для использования в бытовых целях. Однако для применения на производстве предпочтительнее установить инверторы, собранные в заводских условиях. Обслуживание таких дорогих моделей под силу только хорошо обученному техническому персоналу.

Комментарии для подключения частотника к двигателю на видео

Выбор и расчет частотного преобразователя

Перейти к содержимому
  • Личный кабинет
  • Доставка и оплата
  • Гарантии и возврат
  • Реквизиты Гекомс
e-mail: [email protected] | тел: 8(812)317-00-87
  • Главная
  • Оборудование
    • Частотные преобразователи
      • Allen Bradley
        • PowerFlex 4
        • PowerFlex 4M
        • PowerFlex 40
        • PowerFlex 400
        • PowerFlex 523
        • PowerFlex 525
        • PowerFlex 700
        • PowerFlex 753
        • PowerFlex 755
      • ABB
        • ACS580
        • ACS310
      • Danfoss
        • Danfoss FC 51
        • Danfoss FC 101
        • Danfoss FC 102
        • Danfoss FC 202
        • Danfoss FC 302
      • ESQ
        • ESQ 210
        • ESQ 600
        • ESQ 760
        • ESQ 500
        • ESQ A500
      • INSTART
        • INSTART FCI
        • INSTART MCI
        • INSTART SDI
      • Schneider Electric
        • Altivar 31
        • Altivar 71
        • Altivar 212
        • Altivar 312
        • Altivar 320
        • Altivar 610
        • Altivar 630
        • Altivar 650
        • Altivar 930
      • Siemens
        • Sinamics V20
        • Sinamics G120
        • Sinamics G120C
        • Sinamics G120X
        • Sinamics S120
        • Sinamics G130
        • Sinamics G150
        • Sinamics S150
        • Sinamics G180
      • Hyundai
        • Hyundai N700E
      • Силиум
        • Силиум SL9
    • Устройства плавного пуска
      • Allen Bradley
        • SMC 3
        • SMC Flex
      • Schneider Electric
        • Altistart 22
        • Altistart 48
        • Altistart 01
      • INSTART
        • INSTART SBI
        • INSTART SSI
      • ESQ
        • ESQ GS7
      • Siemens
        • SIRIUS 3RW30
        • SIRIUS 3RW40
        • SIRIUS 3RW44
      • Силиум
        • Силиум EM-GJ3
    • Контроллеры
      • Allen Bradley
        • MicroLogix
        • CompactLogix 1769
        • ControlLogix 1756
      • Siemens
      • B&R
    • Нагреватели канальные НКМУ Ex
    • КИПиА
      • Dwyer instruments
    • Тепловое оборудование
    • Электродвигатели
    • Коммутация
      • Finder
      • Siemens
    • Шкафы
      • Rittal
  • Услуги
    • Проектирование
    • Программирование ПЛК
  • Блог
  • Сертификаты
  • О компании
  • Контакты
  • В Магазин