Частотник это что: Что такое частотный преобразователь

Содержание

Преобразователь частоты: описание и применение

Преобразователь частоты: вся информация об устройстве

Оглавление

Физическая основа преобразователей частоты.

Конструкция и принцип работы преобразователей частоты.

Выпрямитель.

Промежуточная цепь.

Инвертор.

Типы управления частотным преобразователем.

Интерфейсы частотных преобразователей.

ГОСТы и ТУ для частотных преобразователей.

Преимущества использования частотных преобразователей.

Недостатки преобразователей частоты.

Назначение и область применения частотных преобразователей.

Как выбрать частотный преобразователь?

Как осуществляется подключение преобразователя частоты?

Техника безопасности при подключении преобразователя частоты.

Преобразователь частоты – это статическое преобразовательное устройство, которое предназначено для регулировки частоты электрического тока.

Преимущественно он используется для управления скоростью вращения двигателей асинхронного типа и позволяет повысить эффективность их работы, а также снизить изнашиваемость узлов.

Теоретические основы по работе преобразователей частоты были изложены еще в 30-х годах 20 столетия, но на тот период из-за отсутствия транзисторов и микропроцессоров практическая их реализация была невозможной. Только, когда в США, Европе и Японии были разработаны недостающие компоненты, начали появляться первые вариации частотных преобразователей. С тех пор они претерпели существенных технологических изменений, но принцип их работы до сих пор строится на одних и тех же физических законах.

Работа преобразователей частоты строится на следующей формуле:

Из данного выражения сразу становится ясно, что при изменении частоты входного напряжения, которое в формуле обозначено, как f1, будет меняться и угловая скорость магнитного поля статора, которая определяет и скорость вращения самого статора. Такой эффект может быть достигнут только в случае, если величина p (количество пар полюсов) будет оставаться неизменной.

Что же это дает нам? Во-первых, возможность плавного регулирования скорости вращения. Особенно актуально это на пиковых нагрузках при запуске. Во-вторых, такая зависимость позволяет повысить скольжение двигателя асинхронного типа, увеличив его КПД.

Стоит также отметить, что такие характеристики, как коэффициент мощности, КПД, коэффициент перегрузочной способности принимают высокие значения именно при одновременном регулировании частоты и напряжения тока. Закономерности изменения этих параметров напрямую зависят от нагрузочного момента, который может принимать следующий характер:

  • Постоянный. При таком характере нагрузочного момента напряжение на статоре будет прямо пропорционально зависеть от частоты:

  • Вентиляторный. В данном случае напряжение будет пропорционально частоте в квадрате:

  • Обратно пропорциональный. В данном случае формула будет иметь следующий вид:

Вышеописанные выкладки подтверждают, что при одновременной регулировке частоты и напряжения с помощью частотного преобразователя можно обеспечить плавное и равномерное изменение скорости вращения вала.

Если рассматривать общую конструкцию преобразователей частоты, то в ней стоит выделить два основных блока компонентов:

  • Управления.
  • Электропреобразований.

Первый блок обычно представлен микропроцессором, который воспринимает команды от внешних систем управления и интерфейсов и передает непосредственно на электропреобразовательные элементы.

Блок электропреобразований является основным рабочим механизмом всей системы. Именно он отвечает за прием входного тока и преобразование его параметров до нужных значений, установленных оператором через управляющий блок. В состав данного блока входят следующие элементы:

  • Выпрямитель.
  • Промежуточная цепь.
  • Инвертор.

Поговорим о каждом более подробно.

Данный компонент предназначен для формирования пульсирующего напряжения в одно- или трехфазных сетях переменного тока. Выпрямители обычно строятся либо на диодах, либо на тиристорах. В первом случае они считаются неуправляемыми, а во втором управляемыми.

  • Неуправляемые выпрямители. В их конструкции используется две группы диодов, которые подсоединены к различным клеммам и проводят различные напряжения – положительное и отрицательное. В конечном счете выходное напряжение равняется разности напряжений на этих группах диодов и в математическом выражении имеет следующее значение: 1,35*входное напряжение сети.
  • Управляемые выпрямители. В конструкции таких выпрямителей вместо диодов используются тиристоры. На них может подаваться входящий сигнал a, который стимулирует задержку тока, выражаемую в градусах. В случаях, когда значение данного параметра колеблется в пределах 0-90 градусов, тиристоры играют роль выпрямителей, а когда в 90-300 градусов – инвертора. Выходное значение постоянного напряжения составляет: 1,35* входное напряжение сети*cos α.

Промежуточная цепь выполняет роль своеобразного хранилища, из которого электродвигатель получает энергию через инвертор. В зависимости от комбинации инвертора и выпрямителя промежуточная цепь может иметь одну из следующих формаций:

  1. Инвертор-источник питания. В данном случае промежуточная цепь имеет в составе мощную индуктивную катушку, которая преобразует напряжение выпрямителя в изменяющийся постоянный ток. Само напряжение двигателя определяется по нагрузке. Такой тип цепей может работать только с управляемыми выпрямителями.
  2. Инверторы — источники напряжения. В данном случае в промежуточной цепи используется фильтр, в состав которого входит конденсатор. Он сглаживает напряжение, поступающее от выпрямителя. Такие цепи способны работать с любыми типами выпрямителей.
  3. Цепь изменяющегося постоянного напряжения. В данном случае перед фильтром устанавливается прерыватель, в котором имеется транзисторы, выключающий и включающий подачу напряжения от выпрямителя. В данном случае фильтр обеспечивает сглаживает прямоугольные напряжения после прерывателя, а также поддерживает постоянное напряжение на заданной частоте.

Инвертор является последним звеном в частотном преобразователе перед самим электродвигателем. Именно он окончательно преобразует напряжение в нужный для работы вид. Вследствие вышеописанных преобразований, происходящих на выпрямителе и промежуточной цепи, инвертор получает:

  • Постоянный ток изменяющегося характера.
  • Изменяющееся или неизменное напряжение постоянного тока.

Собственно, сам инвертор и обеспечивает подачу напряжения необходимой частоты. Если на него поступает изменяемое напряжение или ток, то он создает только нужную частоту. Если же неизменяемое, то он создают и нужную частоту, и нужное напряжение.

Обычно в конструкции инверторов используются высокочастотные транзисторы, частота коммутации которых находится в диапазоне от 300 до 20 кГц.

Существует два основным метода управления электродвигателями с использованием частотных преобразователей:

  • Скалярный.
  • Векторный.

Асинхронные системы управления на сегодняшний день считаются самыми распространенными. Они используются в приводах вентиляторов, насосов, компрессоров и т.д. Главный принцип, который лежит в основе скалярного управления, состоит в изменении частоты и амплитуды напряжения по закону U/fn = const, где n всегда больше 1. Соответственно, меняя напряжение U, мы изменяем и частоту f в степени n. При этом степенное значение определяется в зависимости от особенностей самого частотного преобразователя и его назначения.

Сама методика скалярного управления достаточно проста с точки зрения ее технической реализации, но при этом имеет два существенных недостатка. Первый заключается в том, что без дополнительного датчика скорости вы не сможете регулировать скорость вала, ведь она напрямую зависит от нагрузки. Данную проблему можно решить простым приобретение датчика.

Но существует еще один недостаток – невозможность регулировки момента. Казалось бы, данная проблема тоже решается покупкой датчика момента. Но он достаточно дорог, да и само управление получится весьма спорным. К тому же, совместно управлять и скоростью и моментом при скалярном типе управления невозможно.

Векторный тип управления подразумевает, что в саму систему закладывается математическая модель работы электродвигателя, что позволяет на программном уровне по входным параметрам рассчитывать и скорость, и момент. При этом обязательно только наличие датчика, который будет снимать показатели тока фаз статора.

Существует два класса векторных систем управления:

  • Без датчиков скорости.
  • С датчиками скорости.

Их использование в тех или иных случаях определяется в зависимости от условий эксплуатации двигателя. Если диапазон изменения скорости вращения вала не превышает 1:100, а требования по точности не более 0,5%, то отлично подойдет система без датчиков.

Если же диапазон изменения скорости составляет 1:1000, а требования по точности установлены на уровне до 0,02%, то лучше использовать системы управления с датчиками.

Стоит отметить, что у векторного управления также есть свои недостатки. Например, для их настройки требуются большие вычислительные мощности и знание рабочих параметров двигателей. Кроме того, векторное управление не может использоваться там, где в преобразователю частот подключено сразу несколько рабочих агрегатов – там целесообразно применять скалярные системы.

В конструкции большинства современных частотных преобразователей имеется целый набор различных интерфейсов, через которые можно осуществлять подключение стороннего оборудования или синхронизировать несколько частотников. Рассмотрим основные входы и выходы, используемые в подобных устройствах:

  • Аналоговый вход. Данный интерфейс служит для приема стандартного аналогового сигнала производственного диапазона, который располагается в пределах от 0(4) до 20мА или от 0 до 10В. Через него можно осуществлять регулировку работы частотного преобразователя. Например, минимальная величина аналогового сигнала может сигнализировать устройству о том, что выходная частота, поступающая на двигатель, должна иметь свое минимальное значение и наоборот – максимальная должна соответствовать максимальной. 
  • Аналоговый выход. Данный выход по своему функционалу аналогичен входу. Только в этом случае он передает информацию о частоте, поступающей на двигатель, через аналоговый сигнал определенной величины, что позволяет контролировать режим работы.
  • Дискретный вход. Данный вход способен принимать скачкообразные сигналы. Как и аналоговый вход, он способен изменять параметры. Например, минимальный сигнал может соответствовать мгновенной минимальной выходной частоте преобразователи, а максимальный – максимальной выходной частоте.
  • Дискретный выход. Данный выход позволяет выполнять аналогичные входу операции только в обратном порядке.
  • RS-485. Данный интерфейс является полноценным входом, который позволяет в полной мере взаимодействовать с преобразователем частот, например, через компьютер. С его использованием можно настраивать рабочие параметры оборудования, отслеживать его состояние и т.д. В интерфейсе RS-485 используется особенный дифференциальный сигнал, который позволяет проводить линии длиной до 120 метров. Таким образом, можно установить преобразователь частот на производственном участке, а управление им осуществлять в командной рубке, удаленной от рабочего пространства.

Кроме того, в частотных преобразователях могут использоваться и другие интерфейсы. Все зависит от конкретной модели устройства и его производителя.

Собственно, как и любые технические средства, используемые на производственных предприятиях и в оборудовании, частотные преобразователи и требования к ним регламентируются определенной технической базой, а именно следующими документами:

  • Правила устройства электроустановок 7-е издание.
  • ГОСТ 24607-88 Преобразователи частоты.
  • ГОСТ 13109-97 Совместимость технических средств электромагнитная.
  • ГОСТ Р 51137-98 Электроприводы регулируемые асинхронные.
  • ФЗ 261 Федеральный закон об энергосбережении и энергоэффективности.
  • ТР ТС 00_2011 Электромагнитная совместимость технических средств.
  • ГОСТ26284-84 — Преобразователи электроэнергии полупроводниковые. Условные обозначения.
  • ГОСТ23414-84 — Преобразователи электроэнергии полупроводниковые. Термины и определения.
  • ГОСТ 4.139-85 Система показателей качества продукции. Преобразователи электроэнергии полупроводниковые. Номенклатура показателей.

В соответствии с описанными в этих документах требованиями должен осуществлять выбор конкретной модели устройства, а также ее установка и отладка.

Частотные преобразователи нашли широкое применение в самых различных производственных нишах и оборудовании. Столь высокий спрос на подобные устройства обусловлен следующими преимуществами их использования:

  • Уменьшение тока запуска. В случае запуска электродвигателя с помощью прямых пускателей наблюдается резкое увеличение тока, значения которого превышают номинальное в 7-15 раз. Это негативно сказывается на электропривод и может привести к пробою изоляции, выгоранию контактов и ряду других негативных последствий. Кроме того, такой способ запуска оказывает влияние и на механические компоненты системы. В момент пуска рабочие узлы двигателя подвергаются высоким нагрузкам, что приводит к их более быстрому износу. Благодаря частотным преобразователям можно существенно снизить пусковые нагрузки на электродвигатель, продлив срок его безремонтной эксплуатации.
  • Экономичность. Как правило, двигатели, поддерживающие работу вентиляционных и насосных систем, всегда работают на одной и той же частоте, а регулировка давления и других рабочих показателей осуществляется с помощью арматуры (шиберы, заслонки и т.д.). Это приводит к нерациональному расходованию электроэнергии. В случае использования преобразователей частот можно осуществлять настройку рабочих параметров системы за счет корректировки интенсивности работы двигателя. Это дает возможность более рационально расходовать его ресурсы.
  • Повышенная адаптивность. При использовании частотных преобразователей можно конструировать автоматизированные системы, которые по установленным алгоритмам будут корректировать работу оборудования. Это снижает трудозатраты производственных процессов и позволяет сделать их более точными за счет исключения человеческого фактора.
  • Ремонтопригодность. В случае поломки преобразователя частот вы можете отдать его в мастерскую, где мастер заменит вышедшие из строя детали. Правда, это касается только электропреобразующего блока – с блоками управления все намного сложнее и они более требовательны с точки зрения восстановления.

Частотные преобразователи являются оптимальным решением для организации самых различных производственных процессов и отладки рабочего оборудования, на базе которого используются электромоторы.

Частотные преобразователи также имеют и свои недостатки. К ним следует отнести:

  • Дороговизна. Частотные преобразователи являются самым дорогим преобразовательным оборудованием. Правда, данный недостаток весьма относителен с учетом того, что такие устройства позволяют продлить срок эксплуатации электродвигателей, а также увеличить срок их безремонтной эксплуатации.
  • Ограниченность. Далеко не все старые электродвигатели способны работать в связке с частотным преобразователем. Даже, если это возможно с технической точки зрения, то эксплуатационного ресурса устаревших моделей может просто не хватить на постоянные скачки частоты и скорости вращения вала.
  • Сложность настройки и подключения. Преобразователь частот достаточно сложно установить самостоятельно, поэтому для выполнения подобных работ часто приходится привлекать сторонних специалистов, а это в свою очередь влечет определенные финансовые затраты.

Если сопоставить недостатки и преимущества частотных преобразователей, то они, все равно, выглядят более эффективными даже на фоне других преобразовательных устройств. Именно это и делает их особенно популярными в производственных отраслях, где они используются практически повсеместно.

Частотные преобразователи уже много лет используются в строительстве электромеханических устройств и агрегатов. Они позволяют модулировать частоту тока, что в свою очередь делает возможной точную регулировку скорости вращения двигателя. На сегодняшний день частотники используются во многих отраслях деятельности. Мы рассмотрим лишь некоторые из них:

  • Пищевая промышленность. Частотные преобразователи часто используются для регулировки работы фасовочных линий. Они позволяют настроить скорость подачи продукта и движения ленты в соответствии с пропускной способностью самого упаковочного станка. Кроме того, их часто используют в крупных миксерных агрегатах, вентиляционных системах и т.д.
  • Механизация производственного оборудования. Без преобразователей частоты не обходятся конвейерные ленты, покрасочные и моющие станки, прессы, штамповочное оборудование и т.д. Такие устройства позволяют контролировать скорость рабочих процессов, снижая вероятность повреждения продукции и повышая качество конечного результата.
  • Медицина. Относительно любого медицинского оборудования всегда устанавливаются самые высокие технические требования, добиться соответствия которым невозможно без использования управляемых электродвигателей в связке с частотником. Они устанавливаются в различных системах жизнеобеспечения, подъемных механизмах кроватей и т.д.
  • Подъемно-транспортное обеспечение. Лифты, подъемные краны, подъемники – все эти средства уже давно используют преобразователи частоты. Они позволяют точно контролировать скорость выполнения различных операций, а также продлевать срок безремонтной эксплуатации оборудования.

Перечислять области применения частотных преобразователей можно бесконечно, ведь их можно использовать в любом оборудовании, использующем электродвигатели.  

Следует выделить несколько основных параметров, на которые нужно обращать внимание  при выборе частотного преобразователя:

  • Мощность. Данный параметр частотного преобразователя должен соответствовать мощности двигателя, с которым он будет использоваться. Следует выбирать устройство, мощность которого будет соответствовать номинальному току. Покупать частотный преобразователь с очень завышенными характеристиками попросту бессмысленно, ведь он обойдется намного дороже, да и с наладкой могут возникнуть проблемы.
  • Тип нагрузки. Тут все зависит от того, как осуществляется работа агрегата, к которому будет подключен частотный преобразователь. Например, при вентиляторных нагрузках не бывает перегрузок, а в случае с работой пресса – ток может превышать номинальные значения  на 60 и более процентов. Соответственно, необходимо учитывать это при выборе и оставлять определенный запас «хода».
  • Тип охлаждения двигателя. Двигатели могут оснащаться принудительными системами охлаждения либо иметь самообдув. Во втором случае к крыльчатке ротора прикрепляются специальные лопасти, которые вращаются вместе с ним и обдувают двигатель. Соответственно, нормальная степень обдува в данном случае напрямую зависит от частоты вращения. Если двигатель продолжительное время будет работать на пониженной частоте, то это может привести к перегреву. Соответственно, лучше позаботиться о дополнительном охлаждении, если изменение частоты будет больше 10% от номинального значения.
  • Входное напряжение. Данный показатель определяет, при каком напряжении способен работать преобразователь частот. Тут мало знать, что в сети напряжение обычно составляет около 380 В. Часто происходят скачки в диапазоне +-30%. Кроме того, в сетях, куда подключено большое количество силового оборудования, часто случаются выбросы в 1 кВ. Соответственно, чем шире диапазон рабочих напряжений у преобразователя частот, тем надежнее он будет работать.
  • Способ торможения. Остановка двигателя может осуществляться либо инверторным мостом, либо электродинамическим способом. Первый метод больше подходит для точного и быстрого торможения, а второй – в механизмах с частым торможением либо при необходимости постепенной остановки. На это обязательно следует обратить внимание.
  • Окружающая среда и защита. Обычно в паспорте преобразователя частоты указаны условия, при которых должно использоваться устройство. Например, влагозащищенные модели соответствуют стандарту IP 54 – они устойчивы к воздействию влаги и могут использоваться в помещениях с паровыми испарениями и повышенной влажностью.
  • Тип управления и интерфейсы. Обязательно необходимо обратить внимание на наличие подходящих для подключения разъемов, а также возможностей правления – некоторые модели предназначены для монтажа на месте, а другие – в отдельной рубке управления.

Если вы никогда не работали с преобразователями частоты, лучше обратиться за консультацией к специалисту.

Если рассмотреть монтаж преобразователя частоты схематически, то вес процесс сводиться к соединению контактов самого устройства, электродвигателя и управляющего блока-предохранителя. Достаточно соединить провода всех элементом, подключить двигатель к сети и запустить его.

На первый взгляд, ничего сложного в этом нет, но, на самом деле, процедура монтажа имеет некоторые свои нюансы:

  • Очень важно, чтобы в цепи между самим частотником и источником питания был установлен предохранитель. Он позволит своевременно отключать устройства в случае перепадов напряжения, сохраняя их работоспособность. Примечательно, что при подключении к трехфазной сети, необходимо, чтобы сам предохранитель также был трехфазным, но имел общий рычаг для отключения. Это даст возможность отключать питание сразу на всех фазах даже, если только на одной случилось короткое замыкание или перегрузка. Если преобразователь подключается к однофазной сети, то и предохранитель должен быть однофазным. В данном случае при расчетах необходимо учитывать ток только одной фазы, но умноженный на 3. Всегда стоит помнить, что в инструкции практически к любому преобразователю указаны требования и нормы по его установке. С ними необходимо ознакомиться еще до начала работ.
  • Фазовые выходы частотного преобразователя подключаются к контактам самого электродвигателя. При этом в зависимости от напряжения частотника обмотки двигателя могут иметь формацию «звезда» или «треугольник».  Обычно на корпусе двигателя указано два значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются «звездой», если большему – «треугольником». Вся эта информация обычно пропечатывается в инструкции.
  • В комплекте практически с каждым преобразователем частоты прилагается выносной пульт управления. Он не является обязательным элементов цепи, ведь на самом устройстве также есть свои элементы управления, но позволяют существенно упростить работу с оборудованием. Пульт можно монтировать на любом расстоянии от частотника. Обычно делается это следующим образом: преобразователи частоты, которые имеют низкую степень защиты располагаются подальше от двигателя, а сам пульт выносится непосредственно к рабочему месту около оборудования.

Не менее важным этапом установки частотного преобразователя является его тестовый запуск. Он осуществляет по следующей схеме:

  • После подключения всех элементов системы (предохранитель, панель управления, частотник, двигатель) необходимо перевести рукоять на пульте управления в активное положение на несколько градусов.
  • Тумблеры предохранителя переключить в положение «ВКЛ». После этого на частотном преобразователи должны загореться световые индикаторы, которые будут сигнализировать, что оборудование подключено правильно, а двигатель должен начать медленно вращаться.
  • Если вал двигателя начал вращаться в другу от нужной сторону, необходимо перепрограммировать сам частотный преобразователь на реверсное движение. Практически все современные устройства поддерживают такую функцию.
  • Постепенно передвигайте рукоять управления и следите за работой двигателя – частота вращения вала должна расти по мере того, как вы передвигаете рукоять.

Если при тестовом запуске никаких проблем обнаружено не было, значит, вы сделали все правильно и система может включаться в рабочий процесс.

Следует выделить несколько основных правил безопасности, о которых нужно помнить при выполнении работ по подключению частотных преобразователей:

  • Категорически запрещается касаться любой частью тела к токоведущим элементам цепи. Это может нанести ущерб вашему здоровью или даже лишить жизни. Перед началом работ рекомендуется полностью обесточить оборудование и использовать специальные электромонтажные инструменты с защитой от ударов током.
  • Стоит помнить, что даже после угасания индикаторов на устройстве в цепи может оставаться напряжение. Чтобы избежать ударов током при работе с системами до 7 кВт необходимо выждать 5 минут до начала работ, с агрегатами свыше 7 кВт – 15 минут. Этого времени должно хватить, чтобы все конденсаторы в цепи разрядились.
  • Заземление является неотъемлемой частью любой электрической цепи, включая цепь частотный преобразователь-двигатель. Оно должно устанавливаться в виде отдельного кабеля и ни в коем случае не может присоединяться к нулевой шине.
  • Стоит помнить, что отключения частотного преобразователя не гарантирует, что в других узлах сети не осталось напряжения, поэтому перед ремонтом или обслуживанием необходимо полностью отключить цепь от сети.

Выполнять работы по подключению преобразователей частоты могут только квалифицированные специалисты, имеющие соответствующую подготовку, а также необходимые допуски.

Рекомендации по покупке частотных преобразователей

Покупка частотного преобразователя является достаточно ответственным делом, ведь подобные устройства стоят достаточно дорого и на них возлагаются очень серьезные задачи, поэтому некорректность работы оборудования может привести не только к финансовым потерям, но и остановке всего производства или других работ.

Перед тем как покупать преобразователь частот, необходимо:

  • Определиться с параметрами, которые будут соответствовать вашему электродвигателю.
  • Составить рабочую схему, по которой будет осуществляться монтаж и подключение оборудования.
  • Выбрать дополнительные модели, которые будут подключаться к самому преобразователю.
  • Закупить все необходимые кабеля, крепления и каркасы, необходимые для установки.
  • Подготовить рабочую площадку для монтажа. Возможно, нужно будет оборудовать дополнительные источники питания или реорганизовать производственное оборудование для возможности его подключения к преобразователю.

Многие в связи с дороговизной преобразователей частот покупают б/у устройства. Такой подход более рискованный, чем покупка новой продукции, но позволяет сэкономить некоторую сумму денег.  Если вы также решили купить бывший в употреблении преобразователь, то стоит его тщательно проверять не только по внешним признакам, но и в работе. Лучше всего, если продавец не будет демонтировать его со своего объекта и сможет продемонстрировать его работоспособность на практике.

Опять же, если вы никогда не сталкивались с покупкой преобразователя частоты, лучше поручить это дело профессионалу, который сможет подобрать для вас подходящую модель и помочь с ее установкой.

Преобразователь частоты высоковольтный «Геркулес»

Описание товара

Полное описание

Высоковольтные преобразователи частоты серии «Геркулес» — это автоматические системы нового поколения, управляющие частотой вращения электродвигателей за счет создания на выходе преобразователя электрического напряжения заданной амплитуды и частоты. Основой системы, которую разработала и производит наша компания, является прямая схема преобразования высокого напряжения, позволяющая получать выходной сигнал напряжения, близкий к синусоидальной форме. Это достигается за счет использования каскада инверторных ячеек на выходе, что позволяет системе работать с высоковольтными асинхронными и синхронными двигателями без дополнительного повышения напряжения и без установки дополнительных электрических фильтров.

В преобразователях используется высокоэффективный режим бессенсорного векторного управления частотой вращения и режим U/f управления. Преимуществом нашей системы является низкое искажение синусоидальности входного и выходного напряжения, высокий коэффициент мощности, высокая точность регулирования, быстрая реакция на динамическое изменение крутящего момента и высокое значение крутящего момента на низкой скорости.

Высоковольтные преобразователи частоты серии «Геркулес» могут использоваться с трехфазными электродвигателями переменного тока при следующих значениях напряжения – 3, 3,3, 4,16, 6, 6.6, 10 и 11 кВ. Ниже перечислены основные отличительные характеристики.


Малое искажение входного напряжения и тока

Величина коэффициента искажения синусоидальности кривой напряжения и тока соответствует самым строгим требованиям стандарта IEEE 519-1992 на содержание гармоник в силовых электрических системах. Это достигается смещением фаз вторичной обмотки фазосдвигающего трансформатора и использованием многопульсной схемы выпрямления (30-ти пульсной для 6 кВ, 48-ми пульсной для 10 кВ). Использование фазосдвигающего трансформатора позволяет реализовать гальваническую развязку инверторных ячеек от источника питания, что устраняет большую часть гармонических составляющих тока, вызываемых работой инверторных ячеек.

Низкий уровень выходных гармоник

Использование технологии PWM позволяет снизить уровень выходных гармоник без применения выходного фильтра. Это имеет следующие положительные аспекты применения:

  • низкий уровень шума электродвигателя при работе;

  • не требуется завышение номинальных характеристик электродвигателя;

  • практически отсутствует нагрев электродвигателя, вызываемый гармоническими составляющими;

  • устранена неравномерность крутящего момента даже в условиях низкой скорости;

  • минимизируется соотношение dU/dt, что благоприятно влияет на изоляцию кабеля и электродвигателя;

  • нет ограничения на длину кабеля по причине возникающих перенапряжений на конце кабельной линии.

Всё это снижает износ электродвигателя и механизма, а также сокращает затраты на техобслуживание.


Высокоэффективный режим бессенсорного векторного управления

Эффективность этого режима управления сопоставима с эффективностью режима векторного управления. При этом достигается высокая точность регулирования и быстрый динамический отклик, а максимальный крутящий момент на выходе достигается даже при низкой частоте.


Векторизированный режим U/f управления

Выполнена оптимизация стандартного U/f управления для обеспечения быстрого динамического отклика, автоматического увеличения крутящего момента и достижения высокого крутящего момента на низких частотах.


Отличная низкочастотная коррекция

Форма выходного тока высоковольтных преобразователей частоты, как правило, была неустойчива на низких частотах, особенно на частотах ниже 10 Гц. Кроме того, на низких частотах присутствовали механические колебания, вызванные гармоническими составляющими в токе. В векторных преобразователях серии «Геркулес» применяется алгоритм компенсации прерывистых токов и подавления низкочастотных колебаний, позволяющий получать качественный выходной сигнал в векторном и скалярном режимах управления.


Высокая адаптивность напряжения

Имеется возможность адаптировать работу преобразователя частоты к широкому диапазону входного напряжения, этим достигается устойчивость работы при изменениях напряжения в сети в пределах -15%~+10%. Функция автоматического регулирования напряжения предназначена для автоматической подстройки выходного напряжения в соответствии с колебаниями напряжения в сети. Высоковольтные преобразователи частоты серии «Геркулес» способны непрерывно работать при кратковременных просадках напряжения в сети до уровня 85%~65% от номинального значения или при превышении его до 110% ~120% от номинального значения.


Отслеживание частоты вращения

Функция отслеживания частоты вращения автоматически запускается после запуска электродвигателя от преобразователя частоты, если в системе заданы определенные параметры. По умолчанию для режима пуска установлен режим отслеживания частоты вращения, при котором частота вращения электродвигателя может быть определена во всём диапазоне частот вращения, что позволяет избежать возникновения динамической перегрузки при запуске.


Повышенная надёжность

Для обеспечения надёжности в преобразователе частоты серии «Геркулес» имеется: 2 входа напряжения для питания системы управления, возможность байпасирования инверторной ячейки и автоматическое переключение между работой на регулируемой частоте и частоте сети.


Функция байпаса инверторных ячеек

В случае отказа какой-либо инверторной ячейки электропривод может продолжать работу с исключением из цепи неисправной ячейки. При этом преобразователь частоты будет работать на пониженных номинальных характеристиках. Пользователи могут выбрать как автоматический, так и ручной режим байпаса инверторных ячеек, изменяя соответствующий параметр.


Плавный пуск без бросков тока

Преобразователи частоты серии «Геркулес» имеют возможность осуществления плавного пуска без превышения тока. Время пуска задается пользователем. Внутренняя функция защиты ограничивает скорость разгона при превышении тока и предназначена для подавления бросков тока во время пуска электродвигателя, что позволяет обеспечить безопасность работы и увеличить срок эксплуатации, а также осуществлять пуск без негативного воздействия на сеть и электродвигатель. Кроме того, данная функция позволяет предотвращать поломку короткозамкнутого ротора электродвигателя при пуске и возникновение неисправностей связанных с тяжёлыми условиями пуска.


Плавное торможение без перенапряжения

Оптимизированный алгоритм торможения позволяет распределить энергию, выделяющуюся при торможении между всеми инверторными ячейками, предотвращая перенапряжение. Время торможения задается пользователем.


Различные интерфейсы терминала пользователя

Стандартный преобразователь частоты серии «Геркулес» оборудован множеством клемм ввода/вывода: 3 аналоговых входа, 4 аналоговых выхода, 16 цифровых входов, 20 релейных выходов, 1 высокочастотный импульсный вход и 1 высокочастотный импульсный выход. Все входы и выходы являются программируемыми, что позволяет пользователю создавать свою прикладную систему, а также гарантирует возможность расширения системы.

Продолжение работы после внезапного отключения электропитания

Электропитание в сети может пропасть из-за отключения, однако электродвигатель способен вырабатывать энергию для поддержания работы системы, поэтому система будет готова к продолжению работы после включения питания. Преобразователь частоты серии «Геркулес» может продолжить работу после внезапного отключения питания и вернуться на нормальный режим работы после включения питания. Функция рестарта позволяет перезапустить преобразователь при продолжительности отключения до 5 секунд.


Многочисленные функции интерфейса оператора

В преобразователях частоты серии «Геркулес» взаимодействие с оператором осуществляется с помощью сенсорной панели, которая содержит большое количество настроечных функций и процессов, отображаемых в режиме реального времени на дисплее с удобным интерфейсом. Пользователь может легко отслеживать состояние оборудования во время работы и управлять электроприводом в соответствии с требованиями технологического процесса. Ведётся учёт расхода потребляемой электроэнергии.


Функции аварийной сигнализации и защиты от повреждений

Преобразователи частоты серии «Геркулес» обеспечивают множество функций аварийной сигнализации и защиты, среди которых 50 видов сообщений о неисправности, касающихся инверторных ячеек. Работу всех этих функций можно настроить с использованием параметров группы P9.


Устойчивый управляющий сигнал

Управляющий сигнал преобразователя частоты серии «Геркулес» изолирован от сети. Для передачи ответственных сигналов используется оптоволоконный кабель, обладающий помехозащищенностью и способностью передавать сигналы на большие расстояния.


Режим одного преобразователя и нескольких электродвигателей

Высоковольтный преобразователь частоты серии «Геркулес» может работать с несколькими шкафами байпасного переключения (поставляются опционально), к которым подключаются электродвигатели. Эта функция может использоваться для систем водоснабжения и для гибкого пуска с плавным переключением между регулируемой частотой и частотой сети.

Управление устройствами ведущий-ведомый

Функция управления ведущим и ведомым устройствами распределяет нагрузку на несколько технологически (или механически) связанных электродвигателей, выполняет синхронизацию частот вращения, работая как сеть с единым контуром управления. Используется, например, для управления несколькими электродвигателями ленточного конвейера.


Высокая надежность и удобное техобслуживание

Модуль IGBT высоковольтного преобразователя частоты серии «Геркулес» имеет относительно большой расчетный запас по напряжению и току. Для защиты модуля IGBT при запуске и сверхтоке используется специальная задающая схема модуля (так называемый драйвер), которая обеспечивает высокую надежность.

Преобразователь частоты серии «Геркулес» создан на основе применения модульного принципа. Инверторные ячейки, представляющие собой блоки одинакового размера, разработаны для удобства и универсальности использования. В случае неполадки любой блок можно легко и быстро заменить в течение нескольких минут с помощью простых инструментов.

Вентиляционные решётки с фильтрами, установленные с внешней стороны шкафа преобразователя, удобны для обслуживания.


Синхронизированное переключение электродвигателя между работой от сети и от преобразователя частоты (опционально)

Функция синхронизированного переключения позволяет осуществлять плавное переключение электродвигателя между работой от сети и от преобразователя частоты (и наоборот), что уменьшает воздействие на сеть и двигатель.

* Указанная в документах степень защиты IP41 опционально может быть изменена на IP42.

** ООО «НПП «ИТ СПб» оставляет за собой право изменять технические характеристики изделия без предварительного уведомления.

10 типичных проблем с частотными преобразователями

В процессе эксплуатации преобразователя частоты (ПЧ) рано или поздно возникают проблемы, связанные с его корректной работой. Ошибки и сбои могут происходить как при включении (настройке) частотника, так и при его эксплуатации.

При возникновении большинства ошибок преобразователь прекращает работу. Реакцию на некоторые ошибки можно программировать. Например, при возникновении сбоя ПЧ может останавливаться либо продолжать работать, выдав сообщение о неисправности. В некоторых частотных преобразователях существует так называемый «пожарный режим», когда ПЧ работает, несмотря на проблемы, вплоть до поломки и возгорания.

Для начала рассмотрим типичные сообщения об авариях и ошибках ПЧ, которые отображаются на экране пользователя. Отметим, что большинство этих сообщений передаются по каналу связи (если он присутствует) в контроллер и соответствующим образом обрабатываются.

1. Перегрузка по току

Код на дисплее: OC (Over Current). Это сообщение говорит о том, что выходной ток преобразователя частоты превысил допустимое значение. Если данная ошибка появилась при первом пуске ПЧ, необходимо проверить соответствие номинального тока частотника номинальному и реальному току двигателя – возможно, произошло замыкание внутри двигателя. В некоторых типах ПЧ перегрузка OC может разделяться на 3 разных ошибки – перегрузка по току при разгоне, при торможении, при работе на постоянной скорости.

2. Перегрузка

Код на дисплее: OL (Over Load). Данное сообщение связано с предыдущим и в некоторой степени дублирует его. Сообщение OL может высвечиваться из-за срабатывания внутренней электронной тепловой защиты двигателя, либо из-за превышения механической нагрузки на двигатель (превышения момента). Уровень перегрузки устанавливается при настройке частотного преобразователя, причем задаются как уровень тока (в амперах или процентах), так и время реакции в секундах.

3. Превышение напряжения

Код на дисплее: OV (Over Voltage). Это сообщение появляется, когда напряжение на звене постоянного тока превышает допустимый порог. В первую очередь данная ошибка возникает во время торможения, когда электродвигатель входит в режим генерации электроэнергии. Эту проблему можно решить несколькими способами – увеличить время торможения, применить тормозной резистор, отключить торможение (остановка двигателя на свободном выбеге), поднять предельный уровень ограничения перенапряжения при наличии соответствующей возможности.

4. Низкое напряжение

Код на дисплее: LV (Low Voltage). Данное сообщение может появиться, когда напряжение на звене постоянного тока падает ниже установленного порога. Возможные причины: пониженное напряжение в сети, пропадание одной из фаз. К слову, частотный преобразователь может продолжать работать без одной или даже двух фаз, если подключенный двигатель допускает работу на пониженной мощности и отключено обнаружение пропадания фазы.

5. Перегрев ПЧ

Код на дисплее: OH (Over Heat). Это сообщение говорит о том, что температура ПЧ слишком высока. В первую очередь следует проверить исправность внутренних вентиляторов преобразователя и прочистить его сжатым воздухом. Также необходимо проверить отвод тепла от ПЧ, температуру и циркуляцию воздуха внутри электрошкафа. Возможно, потребуется установить дополнительное охлаждение или уменьшить нагрузку.

Мы перечислили лишь основные сообщения о неисправностях. Их число может доходить до нескольких десятков, что позволяет точнее настраивать работу преобразователя и диагностировать неисправности. В различных моделях ПЧ эти сообщения могут индицироваться по-разному, например, в частотнике ProStar PR6000 они выглядят как Er01, Er02, и т.д., но смысл имеют аналогичный.

При ряде неисправностей преобразователей частоты сообщения на экране не выводятся. В основном, это связано с проблемами питания или с фатальными сбоями в работе ПЧ. Кроме того, если существуют проблемы с первоначальным запуском, то есть вероятность ошибки в подключении цепей управления (запуска). Рассмотрим подробнее такие неисправности.

6. Двигатель не запускается

Шаг 1. Проверяем подключение питания и электродвигателя. Шаг 2. Проверяем цепи запуска. В некоторых моделях ПЧ для запуска двигателя необходимо активировать более одного входа, например, «Пуск» и «Вперед», а также вход разрешения работы. Шаг 3. Проверяем способ задания частоты. Проще всего активировать и задать скорость вращения в панели управления, а затем, после устранения проблем, переключиться на задание скорости с внешнего источника.

7. Двигатель вращается в неправильном направлении

Чаще всего в приводах используется «правое» вращение двигателя. Изменить направление вращения можно двумя способами.

  • Аппаратный способ. Необходимо поменять любые две фазы питания двигателя на выходе ПЧ.
  • Программный способ. Необходимо изменить направление вращения в соответствующем меню («Forward/Reverse»).

8. Двигатель не вращается с нужной скоростью

Причиной может быть неверное задание частоты, либо слишком большая нагрузка на двигатель (при неправильной уставке защиты). Также существует вероятность неверной установки значений верхней и нижней границ выходной частоты.

9. Проблемы с разгоном и торможением

Если двигатель слишком медленно разгоняется, и время разгона существенно превышает установленное, есть вероятность, что срабатывает функция токоограничения при разгоне. Если же двигатель слишком долго тормозит, то необходимо проверить в меню преобразователя настройки такого параметра, как ограничение перенапряжения, и убедиться в правильности подключения тормозного резистора.

10. Слишком большой ток и температура двигателя

Перегрев электродвигателя является следствием чрезмерной нагрузки на его валу. Следует принять меры по защите двигателя и частотного преобразователя путем настройки соответствующих параметров через меню.

В общем случае при возникновении неисправностей в работе преобразователя частоты следует обратить внимание на температуру двигателя и сообщения на экране, а также обратиться к руководству по эксплуатации.

Другие полезные материалы:
Выбор преобразователя частоты
Назначение сетевых и моторных дросселей
Использование тормозных резисторов с ПЧ

≫ Что такое частотник и зачем он нужен

Частотный преобразователь – это специализированное электротехническое оборудование, которое предназначено для регуляции частоты переменной разницы потенциалов электрического тока. Принцип работы оборудования этого типа основан на изменении скорости движения магнитного поля относительно частоты питающего напряжения.

Электродвигатели асинхронного типа эксплуатируются почти во всех сферах деятельности человека: в промышленной аппаратуре, насосах, металло- и деревообрабатывающих установках, вентиляторах и т.д., и отличаются несколькими существенными недостатками – перманентной скоростью вращения и большими пусковыми токами. Преобразователь напряжения – это оборудование, которое способно устранить минусы асинхронных электродвигателей и расширить их область применения.

Что такое частотный преобразователь?

Преобразователь частоты – это аппаратура, позволяющая изменять исходную частоту в достаточно широком диапазоне. Электрическая схема оборудования включает в себя два основных структурных элемента:

  • силовой – функционирует благодаря тиристорам или транзисторам, работающим в режиме электроключей;
  • управляющий – работает за счет цифровых микропроцессоров.

Основная задача управляющего элемента заключается в регуляции деятельности силовой части и выполнении дополнительных функций: контроля, защиты и диагностики.

Виды преобразователей напряжения

В зависимости от конструктивных особенностей, принципа действия и типа управления выделяют несколько вариантов частотников. По конструкции частотные преобразователи могут быть:

  • Индукционными. Устройства представляют собой двигатели переменного тока в режиме генератора. Эксплуатируют установки довольно редко в случаях, когда нет возможности использовать электронные приборы.
  • Электронными. Аппаратура состоит из силовой и управляющей частей, и эксплуатируется в одно- и трехфазных приводах. Электронные преобразователи в зависимости от принципа действия могут быть непосредственно связаны с сетью питания и иметь в конструкции промежуточное звено постоянного тока.

Непосредственный электронный частотник – это приспособление, которое подключается к питающей сети. В конструкции оборудования предусмотрено наличие быстродействующих тиристоров – преобразователи включаются по одной из следующих схем: мостовая, нулевая или встречно-параллельная. К преимуществам непосредственных преобразователей частоты относятся возможность увеличения мощности при подключении нескольких приборов этого типа и обеспечение стабильной работы оборудования даже на низких скоростях.

Частотные преобразователи с промежуточным элементом неизменного электрического тока предполагают двойное преобразование разницы потенциалов: из сетевого напряжения — в постоянное, из постоянного – в переменное с заданной частотой. Среди достоинств оборудования: возможность эксплуатации в электроприводах любого типа и разные схемы регуляции.

Для чего нужен частотный преобразователь?

Использование частотных преобразователей дает возможность существенно снизить расходы благодаря уменьшению потребления электроэнергии, затрат на ремонтные работы и техническое обслуживание аппаратуры, возможности эксплуатации более бюджетных вариантов асинхронных двигателей. Приобретение частотника – это выгодное решение, так как оборудование окупается в среднем за три года. Преобразователи частоты используются в следующих сферах:

  • Краны и грузоподъемная аппаратура. Работа оборудования этого типа сопровождается постоянным изменением нагрузки, частыми запусками и остановками. Преобразователи частоты предотвращают рывки при запуске установок, уменьшают уровень нагревания электродвигателя и обеспечивают остановку кранов в конкретном месте.
  • Нагнетательные вентиляторы. Регуляция функционирования оборудования дает возможность провести автоматизацию процесса горения с обеспечением максимальной эффективности работы агрегатов котельной.
  • Транспортерная и конвейерная техника. Регулятор частоты увеличивает срок эксплуатации механических узлов благодаря регуляции скорости перемещения оборудования без сильных рывков и ударов.
  • Насосные установки. Повышение эффективности работы системы водоподачи при внедрении частотного преобразователя заключается в отсутствии необходимости использования задвижек и вентилей для регуляции давления.
  • Оборудование с электродвигателями. Частотник может заменить коробку передач, обеспечивая плавное изменение частоты вращения рабочей детали установок. Чаще всего частотные преобразователи применяются для регуляции работы высокоточных промышленных станков.

Основным назначением частотного преобразователя считается оптимизация производства и увеличение срока эксплуатации подключенного к нему оборудования. Также снижается вероятность аварий и аномальной работы электродвигателей.

Преобразователи частоты для ваших приводов

Являясь одним из ведущих изготовителей приводной техники, к нашим механическим компонентам мы, конечно же, предлагаем и подходящую преобразовательную технику. Мы разрабатываем и производим приводные преобразователи и преобразователи частоты для управления и регулирования приводов в машинах и установках. И это не только для централизованного монтажа в электрошкафу или для настенного монтажа, но и для децентрализованного монтажа.

Что такое преобразователь частоты?

Преобразователи частоты – это электронные устройства, которые позволяют регулировать частоту вращения асинхронного двигателя. Обоснование: Если электрические машины или асинхронные двигатели работают непосредственно от сети переменного напряжения, у них есть только одна фиксированная частота вращения – в зависимости от числа полюсов и частоты местной электросети. Однако если приводной системе или производственному процессу требуется изменяемое переменное напряжение, т. е. регулируемая скорость, то применяются преобразователи частоты. Из фиксированного переменного напряжения они могут вырабатывать переменное напряжение с изменяемой амплитудой (величиной выходного напряжения) и частотой.

Как работает преобразователь частоты?

>Преобразователь частоты подключается перед двигателем, чтобы создавать соответствующее потребностям, изменяемое переменное напряжение. Таким образом, уже не электросеть создает частоту и величину напряжения, с которыми работает двигатель, а преобразователь частоты берет на себя эту задачу и регулирует выходную частоту и выходное напряжение.

Большое преимущество преобразователя частоты? С его помощью вы плавно изменяете частоту вращения двигателя почти от нуля до нужного номинального уровня и заметно расширяете ее диапазон. При этом вращающий момент двигателя остается неизменным. Таким образом пользователи оборудования всегда могут адаптировать свою приводную технику к текущим условиям. Кроме того, преобразователь частоты позволяет быстро менять направление вращения. Чтобы изменить порядок следования фаз, достаточно простого управляющего сигнала. После этого подключенный асинхронный двигатель будет работать в противоположном направлении.

Какие типы преобразователей существуют?

Бывают преобразователи с управлением по току и с управлением по напряжению. В работе они различаются следующим образом:

  • Преобразователи частоты с управлением по току поддерживают отношение тока к частоте (I/f) всегда постоянным и применяются в верхнем мегаваттном диапазоне.
  • А в нижнем мегаваттном и в киловаттном диапазонах последним словом техники являются преобразователи частоты с управлением по напряжению. Они поддерживают на постоянном уровне отношение напряжения к частоте: То есть если двигатель, рассчитанный на напряжение 230 В и частоту 50 Гц, должен работать с частотой 25 Гц, то и напряжение уменьшается вдвое до 115 В.

Проще говоря, в преобразователе частоты с управлением по напряжению происходит следующее: На входе имеется выпрямитель, который преобразует переменное напряжение электросети в постоянное напряжение. Затем это постоянное напряжение сглаживается и стабилизируется звеном постоянного тока. Далее действующий со стороны двигателя инвертор генерирует переменное напряжение с выходной частотой, необходимой для приводной системы. Получаемое при этом отношение „напряжение/частота“ определяет необходимую частоту вращения двигателя. Задание или расчет необходимой частоты вращения выполняет встроенный блок управления, который соединяет друг с другом все компоненты.

Где применяются преобразователи?

Преобразователи частоты используются в самых разных отраслях и задачах промышленности. Будь то приводы насосов и вентиляторов, обрабатывающих станков, конвейеров и сборочных линий, кранов или роботизированных систем: представить себе промышленное производство без преобразователей частоты уже невозможно. Ведь там адаптированная или непрерывно регулируемая частота вращения обеспечивает оптимизированные технологические процессы – с тем дополнительным преимуществом, что приводы с регулированием частоты вращения способствуют экономии энергии при работе

Преобразователи для любых установок и машин

В зависимости от спроса и требований наши преобразователи частоты доступны в различных исполнениях и с множеством дополнительных функций. К тому же очень важно, где нужно разместить преобразователь частоты – на стене, в центральном и защищенном месте в электрошкафу или прямо в цеху, то есть децентрализованно. И в зависимости от того, насколько проста или сложна та или иная приводная система, применяются либо простые преобразователи частоты, либо так называемые специальные преобразователи с большим объемом функций или многоосевые сервоусилители

SEW-EURODRIVE был первой компанией, которая разработала децентрализованную технику и вывела на рынок соответствующие преобразователи частоты и мехатронные приводы. С их помощью пользователи оборудования значительно сокращают затраты на монтаж и создают себе много возможностей для модульного построения своих систем, независимых от электрошкафа. Кроме того, в нашем ассортименте в области преобразовательной техники есть устройства рекуперации энергии в сеть, которые комбинируются с одним или несколькими преобразователями частоты и приводными преобразователями. Также мы предлагаем простые пускатели двигателя для встраивания в

Преобразователи частоты для монтажа в электрошкафу

От простого преобразователя до стандартного или специального преобразователя и далее до модульного сервопреобразователя – мы предлагаем вам широкий ассортимент приводной электроники для централизованного размещения в электрошкафу или распределительном щите:

Преобразователи частоты для настенного монтажа

Еще одна и при этом менее затратная возможность централизованного размещения преобразователей частоты – это настенный монтаж. Он всегда используется в тех случаях, когда приобретать дорогой электрошкаф нерационально. Наши преобразователи частоты, которые подходят для такого способа монтажа, имеют соответствующую степень защиты от IP 54 до IP 66 (для пыльных и влажных условий окружающей среды).

Пускатели двигателя для децентрализованного монтажа

Достаточно ли для вашей приводной системы функции именно преобразователя? Или вам нужно простое включение/выключение двигателя или переключение направления вращения двигателя с левого на правое? Подходящие продукты в ассортименте SEW-EURODRIVE найдутся и для этого случая:

Преобразователи частоты для децентрализованного монтажа

Для размещения вашей приводной электроники рядом с двигателем или мотор-редуктором мы предлагаем широкий выбор преобразователей частоты: от простого преобразователя с настройкой темпа для надежного применения в простых системах до стандартного преобразователя с расширенными функциями регулирования и далее до свободно программируемого специального преобразователя для систем сложной архитектуры. А если вам нужно децентрализованным образом реализовать многоосевые перемещения, а также системы с цепочкой рабочих модулей, то лучшим выбором будут многоосевые сервоусилители. Децентрализованные преобразователи в нашем ассортименте:

принцип работы, особенности и применение в асинхронных электродвигателях

Чаще всего преобразователи частоты используются для асинхронного двигателя, но встречаются они и в бытовой технике. Несмотря на распространённость, они обладают не только преимуществами, но и недостатками, устранять которые приходится, используя дополнительные приборы. Все преобразователи выполняют важную функцию, и представить хоть одно производство без частотника для асинхронных двигателей невозможно.

Сферы применения устройства

Преобразователь частоты – это специальное устройства, которое устанавливается на мощные электродвигатели. Их главное предназначение — изменение частоты поступающего тока. Как известно, ток, который поступает из розетки имеет частоту, она равна 50 Гц. Для того чтобы ускорить или наоборот замедлить двигатель, эту частоту можно изменять. Роль, которую играет частотник – изменение частоты тока.

Самый яркий пример — это стиральные машины, они имеются у каждого в доме, для ускорения частоты вращения барабана частотник электродвигателя увеличивает частоту тока, чтобы уменьшить количество оборотов, производится обратное действие. Также их используют для плавного запуска мощных двигателей: современные частотники, могут изменять колебание тока от 1-800 Герц.

Принцип работы частотника

В основе работы частотника лежит инвертор с двойным преобразованием. Преобразователь работает по следующей схеме:

  • Вначале переменный синусоидальный ток (220-380 В), поступающий в инвертор выпрямляется. Для выпрямления используется диодный мост.
  • После ток поступает на группу конденсаторов, где он фильтруется и сглаживается.
  • Далее, мостовые ключи из биполярных транзисторов (IGBT, БТИЗ) и управляющие микросхемы принимают отфильтрованный ток и формируют из него трёх или однофазную широтно-импульсную модуляцию с требуемыми параметрами.
  • На выходе получается синусоидальный ток с уже изменёнными характеристиками, синусоидальность обеспечивается индуктивностью обмоток.

Более подробно весь процесс изображён на следующей схеме:

Применение в асинхронных двигателях

Асинхронные двигатели превосходят по мощности и производительности обычные электродвигатели, но при этом они обладают рядом недостатков. Основным из них является необходимость увеличения номинальной мощности при запуске в 5-7 раз, а также то, что для регулирования скорости вращения ротора необходимо использовать специальные устройства. Увеличение потребляемой мощности при запуске порождает скачки внутри сети и ударные импульсы, в свою очередь, это негативно влияет на срок службы любого асинхронного двигателя.

Для решения всех проблем сразу был разработан асинхронный преобразователь частоты. Их использование удобно тем, что работа частотника происходит в автоматическом режиме, и поэтому контроль за токами происходит постоянно. Это устройство уменьшает пусковые токи, тем самым не создавая перегрузок в сети и не нанося вред двигателю, также он позволяет регулировать частоту вращения ротора. Отпадает необходимость в использовании магнитного пускателя. Главные плюсы частотника:

  • экономия электроэнергии;
  • увеличение долговечности двигателя;
  • возможность регулирования работы двигателя;
  • обеспечивает обратную связь смежных приводов.

В действительности, это настоящий генератор трехфазного напряжения, при помощи которого можно добиться нужной величины и частоты.

Основные составляющие прибора

В состав любого частотника входит четыре главных модуля:

  • выпрямитель;
  • блок фильтрации напряжения;
  • инверторный узел;
  • система управления на базе микропроцессора.

Все эти модули соединены блоком управления, он контролирует системы и отвечает за работу выходного каскада, выдаваемого инвертором. Современные устройства подобного типа также обладают определёнными защитными узлами, которые защищают его от превышения тока и коротких замыканий. Также они оборудованы датчиками слежения за температурой и прочими системами, позволяющими отслеживать отклонения от нормы при его работе.

Несмотря на то что частотник должен выпрямлять ток и держать постоянную его частоту, полностью сгладить пульсации он не может, это связано с переменной составляющей и непостоянством тока в самой сети. Для того чтобы полностью убрать эти колебания, используются катушки индуктивности и конденсаторы. Их подключение и настройка происходит, как правило, в системе частотного преобразователя. Катушка сглаживает ток, благодаря своему реактивному сопротивлению, в свою очередь, конденсатор, пропуская через себя ток, выдаёт не переменное, а постоянное напряжение.

Встречаются частотные преобразователи как для однофазных сетей, так и для трехфазных. Также они могут отличаться по типу управления, существуют векторные и скалярные модели. Векторные применяются в тех случаях, когда необходимо жёстко регулировать частоту вращения ротора, второй тип частотников используется на объектах, где нет особой необходимости в жёстком регулировании подаваемой частоты, их можно встретить в вентиляционных системах. Скалярный тип управления используется для однофазных систем, в свою очередь, векторная для трехфазных. Принцип регулирования частоты в обоих случаях остаётся одинаковым.

Принцип работы частотника

В различных ситуациях может возникнуть необходимость преобразования частоты исходного тока в ток с напряжением регулируемой частоты. Это требуется, например, при работе асинхронных двигателей для изменения их скорости вращения. 

Что такое частотный преобразователь

Частотный преобразователь (ПЧ) – это электротехническое устройство, которое преобразовывает и плавно регулирует однофазный или трехфазный переменный ток с частотой 50 Гц в аналогичный по типу ток с частотой от 1 до 800 Гц. Такие устройства широко применяются для управления работой различных электрических машин асинхронного типа, например, для изменения частоты их вращения. Также существуют аппараты для использования в промышленных высоковольтных сетях.

Простые преобразователи регулируют частоту и напряжение в соответствии с характеристикой V/f, сложные приборы используют векторное управление. Частотный преобразователь является технически сложным устройством и состоит не только из преобразователя частоты, но и имеет защиту от перегрузок по току, от перенапряжения и короткого замыкания. Также такое оборудование может иметь дроссель для улучшения формы сигнала и фильтры для уменьшения различных электромагнитных помех. Различают электронные преобразователи, а также электромашинные устройства.

Принцип работы частотного преобразователя

Электронный преобразователь состоит из нескольких основных компонентов: выпрямителя, фильтра, микропроцессора и инвертора.

Выпрямитель имеет связку из диодов или тиристоров, которые выпрямляют исходный ток на входе в преобразователь. Диодные ПЧ характеризуются полным отсутствием пульсаций, являются недорогими, но при этом надежными приборами. Преобразователи на основе тиристоров создают возможность для протекания тока в обоих направлениях и позволяют возвращать электрическую энергию в сеть при торможении двигателя.

Фильтр используется в тиристорных устройствах для снижения или исключения пульсаций напряжения. Сглаживание производится с помощью ёмкостных или индуктивно-ёмкостных фильтров.

Микропроцессор – является управляющим и анализирующим звеном преобразователя. Он принимает и обрабатывает сигналы с датчиков, что позволяет регулировать выходной сигнал с преобразователя частоты встроенным ПИД-регулятором. Также данный компонент системы записывает и хранит данные о событиях, регистрирует и защищает аппарат от перегрузок, короткого замыкания, анализирует режим работы и отключает устройство при аварийной работе.

Инвертор напряжения и тока используется для управления электрическими машинами, то есть для плавного регулирования частоты тока. Такое устройство выдает на выходе «чистый синус», что позволяет использовать его во многих сферах промышленности.

Принцип работы электронного частотного преобразователя (инвертора) заключается в следующих этапах работы:

  1. Входной синусоидальный переменный однофазный или трехфазный ток выпрямляется диодным мостом или тиристорами;
  2. При помощи специальных фильтров (конденсаторов) происходит фильтрация сигнала для снижения или исключения пульсаций напряжения;
  3. Напряжение преобразуется в трехфазную волну с определенными параметрами с помощью микросхемы и транзисторного моста;
  4. На выходе из инвертора прямоугольные импульсы преобразовываются в синусоидальное напряжение с заданными параметрами.

//www.youtube.com/embed/OpoJVlCRpIk?feature=oembed&wmode=opaque

Дополнительные функции и параметры

  • Выходная частота или диапазон ее изменения. Тут все понятно. Этим параметром описываются возможности изменения частоты на выходе.
  • Пределы регулирования напряжения. Вопросов тоже не возникает.
  • Тип преобразования частоты. Может быть векторным и скалярным. Скалярный используется в более простых моделях. Параметры отслеживаются по соотношению напряжения и частоты. Векторный тип преобразования частоты в ЧМ подстраивает работу так, чтобы по отношению к нагрузке, момент вращения был постоянным. Такой способ управления более сложный и надежный, используется в более дорогих моделях.
  • Наличие ПИД-регулятора. Удерживает давление, температуру и скорость в заданных пределах (выставляются при помощи ручки или программируются). Для связи с другими средствами управления должен иметь сигнальные выводы (аналоговые и/или цифровые).
  • Юстировка скорости. Помогает при смене или скачках питания стабилизировать работу двигателя.
  • Вид торможения. Обычно рекомендуют останавливать мотор на свободном выбеге — отключить питание и ждать пока остановится. Может применяться плавное торможение — постепенное снижение напряжения. Механическое торможение — когда скорость вращения вала тормозится за счет силы трения. Быстрее всего останавливается ротор при динамическом торможении. В этом случае на одну из фаз подается постоянное напряжение. Оно взаимодействует с ротором, останавливая его за короткий промежуток времени.
  • Количество выходов с различными частотами. Такой частотный преобразователь для электромотора может обслуживать сразу несколько двигателей с различной (фиксированной) скоростью вращения.

Кроме параметров и дополнительных возможностей, на работу влияет качество сборки. Естественно, лучше брать оборудование известных производителей. Хорошо себя зарекомендовали ABB, Siemens, Mitsubishi, Omron. Но их частотники дешевыми назвать нельзя. Если нужно сэкономить и внешний вид не так важен, обратите внимание на отечественных и белорусских производителей. Внешнее оформление, как водится, желает быть лучше, а характеристики и стабильность работы неплохие.

Особенности эксплуатации двигателей с частотными преобразователями

  • При работе на сниженных оборотах возможен перегрев двигателя. Это происходит за счет снижения скорости естественного обдува. Особенно заметен перегрев на скоростях, близких к номинальным. Для снижения температуры в таком случае желательно использовать дополнительный обдув.
  • При работе стандартного электромотора (на 50 Гц) на повышенных скоростях вращения, стоит учитывать состояние подшипников. Из-за возникающей более сильной вибрации они быстрее выходят из строя. Для нивелирования этого явления можно использовать виброгасящие подкладки. Кроме того, частоту надо выбирать так, чтобы не возникало резонанса. И учтите: на повышенных скоростях шуметь вентилятор электромотора будет больше.
  • При снижении частоты вращения вала, для нормальной работы необходимо пропорционально снижать нагрузку. Асинхронный двигатель обеспечивает максимальный крутящий момент только на номинальной частоте вращения. Поэтому с уменьшением частоты, он падает.
  • Для длительной работы на сниженных оборотах используют электродвигатели со сниженной номинальной частотой — от 750 об/мин до 1500 об/мин. Второй вариант — двигатели с завышенной мощностью.
  • Если частотный преобразователь выбираете для погружного насоса, необходимо выбор делать не только по мощности, но и по току. У двигателей для этой категории насосов номинальный ток значительно выше. При большой длине кабеля от ПЧ до насоса, напряжение может значительно понижаться, что ведет к снижению скорости вращения вала электродвигателя. Чтобы падение было менее значительным, используют кабель с завышенным сечением проводников.

Сферы применения устройства

Преобразователь частоты – это специальное устройства, которое устанавливается на мощные электродвигатели. Их главное предназначение — изменение частоты поступающего тока. Как известно, ток, который поступает из розетки имеет частоту, она равна 50 Гц. Для того чтобы ускорить или наоборот замедлить двигатель, эту частоту можно изменять. Роль, которую играет частотник – изменение частоты тока.

Самый яркий пример — это стиральные машины, они имеются у каждого в доме, для ускорения частоты вращения барабана частотник электродвигателя увеличивает частоту тока, чтобы уменьшить количество оборотов, производится обратное действие. Также их используют для плавного запуска мощных двигателей: современные частотники, могут изменять колебание тока от 1-800 Герц.

Принцип работы частотника

В основе работы частотника лежит инвертор с двойным преобразованием.

Преобразователь работает по следующей схеме:

  • Вначале переменный синусоидальный ток (220-380 В), поступающий в инвертор выпрямляется. Для выпрямления используется диодный мост.
  • После ток поступает на группу конденсаторов, где он фильтруется и сглаживается.
  • Далее, мостовые ключи из биполярных транзисторов (IGBT, БТИЗ) и управляющие микросхемы принимают отфильтрованный ток и формируют из него трёх или однофазную широтно-импульсную модуляцию с требуемыми параметрами.
  • На выходе получается синусоидальный ток с уже изменёнными характеристиками, синусоидальность обеспечивается индуктивностью обмоток.

Применение в асинхронных двигателях

Асинхронные двигатели превосходят по мощности и производительности обычные электродвигатели, но при этом они обладают рядом недостатков. Основным из них является необходимость увеличения номинальной мощности при запуске в 5-7 раз, а также то, что для регулирования скорости вращения ротора необходимо использовать специальные устройства. Увеличение потребляемой мощности при запуске порождает скачки внутри сети и ударные импульсы, в свою очередь, это негативно влияет на срок службы любого асинхронного двигателя.

Для решения всех проблем сразу был разработан асинхронный преобразователь частоты. Их использование удобно тем, что работа частотника происходит в автоматическом режиме, и поэтому контроль за токами происходит постоянно. Это устройство уменьшает пусковые токи, тем самым не создавая перегрузок в сети и не нанося вред двигателю, также он позволяет регулировать частоту вращения ротора. Отпадает необходимость в использовании магнитного пускателя. Главные плюсы частотника:

  • экономия электроэнергии;
  • увеличение долговечности двигателя;
  • возможность регулирования работы двигателя;
  • обеспечивает обратную связь смежных приводов.

В действительности, это настоящий генератор трехфазного напряжения, при помощи которого можно добиться нужной величины и частоты.

Основные составляющие прибора

В состав любого частотника входит четыре главных модуля:

  • выпрямитель;
  • блок фильтрации напряжения;
  • инверторный узел;
  • система управления на базе микропроцессора.

Все эти модули соединены блоком управления, он контролирует системы и отвечает за работу выходного каскада, выдаваемого инвертором. Современные устройства подобного типа также обладают определёнными защитными узлами, которые защищают его от превышения тока и коротких замыканий. Также они оборудованы датчиками слежения за температурой и прочими системами, позволяющими отслеживать отклонения от нормы при его работе.

Несмотря на то, что частотник должен выпрямлять ток и держать постоянную его частоту, полностью сгладить пульсации он не может, это связано с переменной составляющей и непостоянством тока в самой сети. Для того, чтобы полностью убрать эти колебания, используются катушки индуктивности и конденсаторы. Их подключение и настройка происходит, как правило, в системе частотного преобразователя. Катушка сглаживает ток, благодаря своему реактивному сопротивлению, в свою очередь, конденсатор, пропуская через себя ток, выдаёт не переменное, а постоянное напряжение.

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Преобразователи частоты — энергосистемы и средства управления

Преобразователи частоты для 400 Гц, 100 Гц, 60 Гц, 50 Гц и 25 Гц

Преобразователи частоты , также называемые Преобразователи частоты , преобразуют мощность 50 Гц и 60 Гц в 400 Гц. Это делается либо с помощью статического преобразователя частоты с двойным преобразованием , либо с помощью мотор-генераторной установки, называемой роторным преобразователем частоты . Преобразователи частоты — это машины, которые преобразуют мощность одной частоты в другую частоту.Либо с помощью статических преобразователей частоты с двойным преобразованием, либо с помощью мотор-генераторной установки, называемой роторным преобразователем частоты. В методе двойного преобразования выпрямитель преобразует переменный ток в постоянный, а инвертор преобразует DC обратно в AC . В мотор-генераторной установке это достигается изменением скорости вращения генератора в версиях с ремнями и шкивами или коробкой передач, а также с помощью двигателей и генераторов с разным числом полюсов для достижения того же результата производства. желаемую выходную частоту.


Примеры преобразователей частоты:


Однофазный преобразователь
: Серия
SFC1 (однофазный статический преобразователь частоты) имеет универсальную коммуникационную платформу, позволяющую осуществлять локальный, сетевой или удаленный мониторинг и управление. Коммуникационные пакеты включают последовательный порт RS-232, а также USB. Компания PS&C потратила много времени на разработку этого сложного коммуникационного пакета для современного технически подкованного клиента. При добавлении батареи к SFC1 серии этот преобразователь частоты превратится в ИБП с преобразователем частоты.Статический преобразователь частоты
: Фазовый статический преобразователь частоты SFC3 серии
использует 6- и 12-импульсную топологию, а также топологию «IGBT» для наиболее эффективного твердотельного преобразования частоты из доступных. Это усовершенствование дает преобразователям PS&C большое преимущество перед другими обычными преобразователями. PS&C избегает использования старых технологий в своих продуктах, что позволяет этой машине поддерживать оборудование в самых экстремальных электрических условиях. При добавлении батареи к SFC3
серии этот преобразователь частоты превратится в ИБП с преобразователем частоты.Динамический регулятор частоты
: DFR серии
обеспечивает такую ​​же бескомпромиссную надежность, как и все оборудование Power Systems & Controls, поскольку оно основано на нашей гибридной роторной технологии. Регулятор частоты доступен от 25 до 500 кВА. Наша приверженность качеству электроэнергии поддержала разработку этого продукта промышленного класса, который будет корректировать частоту и напряжение одновременно. Эта надежность в сочетании с долговечной конструкцией дает регулятору DFR ​​
серии явное преимущество перед всеми другими регуляторами, представленными сегодня на рынке.Роторный преобразователь частоты
: RFC серии
включает в себя проверенную технологию мотор-генераторных установок. Вращающийся преобразователь частоты обеспечивает надежное питание оборудования, одновременно преобразовывая входное напряжение и частоту. RFC действует как вращающийся фильтр, защищающий критическую нагрузку от переходных процессов и выбросов. В целом, это 100% эффект при отключениях менее 100 мс. Наши модели доступны с синхронным или асинхронным двигателем и предлагаются в горизонтальной или вертикальной конфигурации.

Компьютеры и малая электроника работают с импульсными источниками питания, способными работать как на частоте 50 Гц, так и на частоте 60 Гц. В этом случае единственным элементом, который вам может понадобиться, является вилка-преобразователь, поскольку розетки 50 Гц не совпадают с розетками 60 Гц по следующей причине. Поскольку 60 Гц и 50 Гц работают на разных частотах, вы не захотите подключать оборудование к неправильному источнику питания. Однако, если ваше оборудование работает при напряжении 208 В (которое используется как для 50 Гц, так и для 60 Гц), все может быть в порядке. В противном случае вы рискуете повредить оборудование или нанести вред себе.После того, как вы выпустили дым из оборудования, вы не сможете вставить его обратно.

Более крупное и трехфазное оборудование не может работать на неправильной частоте. Это может привести к повреждению или преждевременному износу оборудования. Оборудование, рассчитанное на 50 Гц, не может работать на частоте 60 Гц. Если вы заставите оборудование работать за пределами предусмотренных проектом критериев, возникнут проблемы. Скорее всего, оборудование будет повреждено сразу (помните дым)? Если не сразу, то со временем выйдет из строя от усталости и перегрева.С нашей постоянно растущей глобальной экономикой оборудование из других частей мира все чаще используется в странах, в которых оно не было произведено. Это изменит частоту местной коммунальной сети (а иногда и напряжение) по мере необходимости. В результате он будет совместим с требованиями к питанию оборудования, с которым вы пытаетесь работать (также называемого нагрузкой).

.. .

Какие отрасли промышленности нуждаются в преобразователях частоты:

Определенные отрасли промышленности имеют уникальные требования к частоте, и это зависит от того, как они подают питание на свое оборудование. Для систем авиации и вооружения требуется 400 Гц, поэтому оборудование, используемое на земле, работающее на частоте 400 Гц, требует поддержки наземного питания для электрической системы.

Помимо авиации и военных, использующих частоту 400 Гц, Rail использует частоты 25 Гц, 91,66 Гц или 100 Гц для работы своих систем сигнализации.Верфи и лодочные доки требуют преобразования энергии на берегу. Суда, построенные в странах с частотой 50 Гц, имеют электрические системы, работающие на частоте 50 Гц. В этом случае вам понадобится преобразователь частоты, соответствующий электрическим потребностям строящихся, ремонтируемых или пришвартованных кораблей. Есть также много уникальных и/или переменных частот, необходимых в лабораториях и испытательных центрах.

Если оборудование произведено в одной стране, а используется в другой, есть вероятность, что вам потребуется преобразовать не только напряжение, но и частоту.Наиболее распространенными частотами являются 50 Гц и 60 Гц, поскольку они используются в большинстве коммерческих машин , однако существует множество приложений, не связанных с этим вопросом, которым необходимы преобразователи частоты. Гидроэнергетика, например, производит 25 Гц.

ПОЧЕМУ так много разных частот? Это очень просто и связано с частотой вращения, с которой вращается основной производитель энергии. 1500 об/мин=50 Гц , а 1800 об/мин=60 Гц с использованием 4-полюсного синхронного генератора. С усилением глобализации мировой экономики возрастает потребность в преобразовании частот, поскольку транснациональные корпорации из стран с частотой 60 Гц ведут больше бизнеса в странах с частотой 50 Гц, и наоборот.

. . .

Технология преобразователя частоты:

Существует 2 основных типа преобразователей частоты: роторные преобразователи частоты, изготовленные с использованием двигателя-генератора, и полупроводниковые (статические) преобразователи частоты, изготовленные с использованием полупроводников и силовых каскадов. Вращающаяся машина — это грубая сила, в отличие от статической машины. Статическая установка предназначена для непромышленного применения. Существуют и другие факторы, которые следует учитывать при выборе преобразователя частоты .Один из факторов заключается в том, что вам нужен преобразователь для поддержания выходной мощности, когда утилита больше недоступна. В этом случае преобразователь также будет источником бесперебойного питания, называемым ИБП с преобразователем частоты.

Если преобразователь частоты также должен очищать нестабильную входную частоту, например принимать плохой частотный диапазон на входе, и обеспечивать стабильную выходную частоту и напряжение, следует использовать динамический регулятор частоты. Этот блок допускает очень нестабильную работу утилиты, производя при этом требуемый результат.

Используя опыт работы в отрасли 400 Гц и первых мейнфреймов, PS&C предлагает две технологии для решения этой проблемы с питанием Преобразователь частоты ; Статические ( Твердотельные ) преобразователи частоты и вращающиеся ( Мотор-генератор ) преобразователи частоты. Существует несколько факторов, которые помогут определить, какое решение для преобразования частоты подходит для вашего проекта. Группа технически подкованных приложений PS&C поможет вам оценить ваше приложение и выбрать лучшее решение для ваших конкретных требований.

Какие области применения преобразователя частоты:

  • В Китае открывается завод с производственным оборудованием американского производства (преобразователь 50/60 Гц).
  • Небольшой аэропорт решает добавить центр обслуживания и ремонта вертолетов (преобразователь 400 Гц).
  • Американский производитель закупает оборудование у европейского завода (преобразователь 50/60 Гц).
  • Железная дорога решает увеличить количество путей на новые территории (преобразователь 100/25 Гц).

Преобразователи частоты

Для некоторых приложений требуются определенные герцы и вольты, вы можете купить преобразователь частоты GoHz как для однофазной, так и для трехфазной по разумной цене, тогда вы можете преобразовать герц из 40 Гц в 499.9 Гц, вольт от 0-300В однофазного и 0-520В трехфазного, например:
Преобразовать однофазный
110В 60Гц в 220В 50Гц;
от 230 В 50 Гц до 110 В 60 Гц;
от 120 В 60 Гц до 240 В 50 Гц;
… …
Преобразование трехфазного
480 В 60 Гц в 400 В 50 Гц;
от 380 В 50 Гц до 460 В 60 Гц;
… …
И Герц, и Вольт регулируются отдельно с лучшей выходной чистой синусоидой. Однофазный преобразователь в трехфазный представляет собой трехфазный асинхронный двигатель с короткозамкнутым ротором, соединенный звездой.Он преобразует однофазное напряжение 380 В 50 Гц (на входе UV) в трехфазное напряжение 380 В (UVW) с небольшим дисбалансом (5%) напряжения. Он широко используется на железных дорогах в электровозах 25 кВ 50 Гц для привода трехфазной нагрузки двигателя мощностью 150 кВА вспомогательных приводов, таких как компрессоры, воздуходувки, насосы……… более десятка.

Представьте себе трехфазный двигатель, работающий от трехфазного входа; затем одна линия отключается. То, что происходит, может удивить многих; двигатель продолжает работать и развивать нагрузку (но с пониженным крутящим моментом) с небольшим падением скорости.Напряжение на трех фазах остается (почти) неизменным, и можно ожидать дисбаланс в 5%. Если требуется балансный трехфазный выход; Трасса статического инвертора подойдет (как это практикуется на современных электровозах 25 кВ).

Преобразователи частоты могут быть мощными инструментами в обслуживании процессов за счет использования диагностики для решения проблем с производительностью преобразователя частоты и устранения неполадок, связанных с процессами. Понимание того, как преобразователь частоты взаимодействует с технологическим процессом, может помочь вам улучшить общее производство и качество продукции.Многие неисправности вызваны неправильным использованием преобразователя частоты. Изменения процесса, такие как изменения нагрузки или скорости; проблемы с питанием, такие как переключение мощности коммунальной службой; или изменения окружающих условий эксплуатации не сразу бросаются в глаза, но могут стать основной причиной отказа преобразователя частоты. Оцените согласованность и состояние процесса при попытке определить причину сбоя.

Я слышал об использовании преобразователя частоты с моим насосом и двигателем установка для лучшего управления потоком вместо регулирующих клапанов.Стоит ли оно того? Нужна ли мне еще какая-то мера контроля потока, кроме запорного клапана? Я думаю, что управление преобразователем частоты может обеспечить более высокую эффективность, но снижение точности управления, времени отклика и эффективности отключения.
Решение преобразователя частоты ничем не отличается от управления скорость паровой турбины для регулирования потока от компрессора. Это становится все более распространенным с развитием электроники и с повышенная доступность преобразователей частоты и двигателей для этого оказание услуг.

Преобразователи частоты становятся почти стандартной частью оборудования для водных видов спорта. Большинство преобразователей частоты довольно просты в установке и эксплуатации, однако они довольно сложны в отношении их сложных аппаратных и программных реализаций. Функциональность и работу преобразователя частоты можно значительно улучшить, поняв базовую теорию преобразователя частоты, терминологию и варианты интерфейса.

Первоочередной и непосредственно ощутимой целью экономии энергии с помощью преобразователей частоты являются старые механические системы, обычно использующие центробежные насосы и вентиляторы, которые изменяют расход воды или воздуха в здании или на промышленном объекте. Чтобы определить, производители преобразователей частоты максимально упрощают расчет возможной экономии, предоставляя приложения для ПК и даже iTunes в дополнение к ноу-хау для выполнения быстрых ручных расчетов на месте для количественной оценки потенциальной экономии энергии.

Установка контактора на выходе преобразователя частоты обеспечит немедленное снятие напряжения с двигателя, что и требуется. С другой стороны, некоторые инверторы легко повредить, включив их выход, и возможно, что двигатель может быть повторно подключен к выходу инвертора, который работал на частоте выше нуля, что также может привести к повреждению инвертора. (фактически прямой (немягкий) или полный пуск на выходе преобразователя частоты)

Преобразователи частоты

Flux vector используют метод управления крутящим моментом, аналогичный тому, что используется в системах привода постоянного тока, включая широкий диапазон регулирования скорости с быстрым откликом.Преобразователи частоты с вектором потока имеют ту же силовую часть, что и все преобразователи частоты с ШИМ, но используют сложный замкнутый контур управления от двигателя до микропроцессора преобразователя частоты. Положение и скорость ротора двигателя контролируются в режиме реального времени с помощью резольвера или цифрового энкодера для определения и управления фактической скоростью, крутящим моментом и производимой мощностью двигателя.

Использование частотного преобразователя в конкретном приложении не представляет никакой сложности, если вы понимаете требования нагрузки.Проще говоря, преобразователь частоты должен иметь достаточный ток для двигателя, чтобы двигатель мог создавать требуемый крутящий момент для нагрузки. Вы должны помнить, что крутящий момент машины не зависит от скорости двигателя и что мощность нагрузки увеличивается линейно с увеличением числа оборотов в минуту.

Отраженные волны, вызванные несоответствием импеданса кабеля и двигателя, преобладают во всех применениях преобразователей частоты. Масштабы проблемы зависят от длины кабеля, времени нарастания несущей волны ШИМ (широтно-импульсной модуляции), напряжения преобразователя частоты и величины разности импедансов между двигателем и кабелем.

Среди наиболее успешных стратегий управления потреблением электроэнергии и минимизации затрат на коммунальные услуги, которыми располагают менеджеры, является использование преобразователей частоты. Включение преобразователей частоты в такие устройства, как вентиляторы, насосы и градирни, может снизить потребление энергии до 50 процентов при частичных нагрузках за счет согласования скорости двигателя с изменяющейся нагрузкой и системными требованиями.

Преобразователи частоты используются в любых приложениях, в которых есть механическое оборудование, приводимое в действие двигателями; инверторы обеспечивают чрезвычайно точное управление электродвигателем, так что скорость двигателя может увеличиваться и уменьшаться, а также поддерживаться на требуемой скорости; при этом используется только необходимая энергия, вместо того, чтобы двигатель работал с постоянной (фиксированной) скоростью и использовал избыток энергии.

Эти рекомендации устраняют путаницу, связанную с согласованием преобразователей частоты (преобразователей частоты) и двигателей с вентиляторами и насосами, которые обычно используются в коммерческих зданиях. Хотя мотивация повышения энергоэффективности может быть финансовой (снижение затрат на энергию) или этической (снижение выбросов парниковых газов, связанных с производством электроэнергии), считается само собой разумеющимся, что преобразователи частоты являются простым способом повышения энергоэффективности в двигателе.И с этими благородными намерениями инженер укажет своему клиенту преобразователь частоты. Часто это не конец истории для инженера.

В данной заявке описана энергосберегающая реконструкция вентилятора внутреннего и наружного диаметра котла 4# китайской нефтяной компании, представлены цель, схема, реализация и принцип реконструкции. Анализируется эффект реконструкции, особенно экономический эффект, иллюстрируется смысл реконструкции.Регулировка переменной частоты является эффективным способом управления энергосбережением.

Инверторы некоторых производителей могут обеспечивать 100% крутящий момент при нулевой скорости без энкодера. Для работы с нулевой скоростью и полным крутящим моментом (часто называемые двигателями с диапазоном скоростей 1000:1) может быть обеспечен правильно рассчитанный и сконструированный двигатель. Это очень типичное требование к двигателю для намотки и перемотки бумаги, а также намотчиков и разматывателей стали.

Когда преобразователь частоты установлен, он может уменьшить скорость насоса с N1 до N2 при неизменной кривой сопротивления сети трубопровода (1), поэтому рабочее пересечение A переходит в C.В это время потребляемая мощность оси может быть представлена ​​площадью h4COQ2. По сравнению с инвертором h2BOQ2 легко заметить, что инвертор обладает значительной энергосберегающей способностью.

Преобразователь частоты серии

Gozuk EDS1000 может полностью удовлетворить потребности экструдеров, легко достичь цели управления, в то же время имеет функцию «нулевого сервопривода», которая может обеспечить высокий крутящий момент машины при работе на частоте 0 Гц. Автоматическая функция энергосбережения снижает выходной ток при изменении крутящего момента.Эта функция может не только экономить энергию, но и гарантировать техническую надежность и устойчивость системы, что стало первым выбором для экструдера.

Преобразователь частоты

Gozuk EDS2000 обладает такими преимуществами, как высокий крутящий момент, высокая точность скорости и полная функциональность. Он может автоматически тестировать динамические рабочие параметры и соответствующим образом корректировать их, чтобы гарантировать, что двигатель работает в наилучшем состоянии. Следовательно, инвертор Gozuk может заменить сервосистему переменного тока благодаря высокому соотношению производительности и цены.Он широко используется в токарных станках с ЧПУ.

Использование преобразователя частоты Gozuk с усовершенствованным векторным управлением может обеспечить больший крутящий момент, когда машина работает на низкой скорости, и автоматически компенсировать изменение скорости при работе с высокой нагрузкой. Отличная динамика, а также отличная перегрузочная способность позволяют удовлетворить различные потребности во многих областях.

Машина для литья под давлением обычно использует тройной асинхронный двигатель переменного тока, который не может изменять свою скорость, постоянный лопастной насос, который тормозит, и поток выходного гидравлического масла не может изменяться.Пластмассовая машина, которая работает на низкой скорости, избыточная жидкость возвращается через перепускные клапаны в систему подачи жидкости, а энергия тратится впустую. Преобразователь частоты может регулировать скорость двигателя в соответствии с функцией системы управления и может изменять поток. выход гидравлического масла из лопастного насоса в зависимости от скорости работы пластиковой машины, а также уменьшить потери энергии гидравлического масла от перепускного клапана до подачи масла, чтобы сэкономить больше энергии. В зависимости от продуктов впрыска можно сэкономить 20~70% энергии.

1. Требуемый технологический расход и давление для двигателей переменного тока
2. Существующая методология управления, такая как регулирующий клапан в насосах, демпфер или направляющий аппарат для вентиляторов и воздуходувок и т. д., а также положение клапана или демпферов 90–100 3. Если у вас есть данные о технологическом потоке и давлении, а также данные о конструкции насоса или вентилятора, вы можете рассчитать экономию энергии, используя закон подобия
. 4. Цикл загрузки и разгрузки для компрессора.Если время разгрузки больше для применения с компрессором, вы получите лучшее энергосбережение
5. Используя закон подобия, можно рассчитать энергосбережение с учетом потерь преобразователя частоты. При этом вы можете рассчитать окупаемость инверторов.
Существуют различные способы использования частотного преобразователя или устройства плавного пуска для уменьшения счета за электроэнергию. Тщательно анализирует возможности вашего завода.

Обычно преобразователь частоты имеет следующие режимы управления: векторное управление без обратной связи, управление V/F, управление крутящим моментом без обратной связи, векторное управление с обратной связью, управление частотой скольжения.
Инвертор с векторным управлением без обратной связи
Применяется к высокопроизводительным приложениям общего назначения без энкодера PG, один преобразователь частоты управляет только электродвигателем. Например, станки, центрифуги, машины для волочения проволоки, машины для литья под давлением и т. д.

Преобразователь частоты , предназначенный для применения в грузоподъемной промышленности, имеет хорошие характеристики управления крутящим моментом с помощью передовых технологий управления.Его надежное управление торможением, быстрая остановка, управление возбуждением постоянным током, технология управления ведущий-ведомый обеспечивают безопасность, надежность и высокую эффективность в подъемной отрасли. Для различных требований в подъемной отрасли существуют поступательные структурные преобразователи частоты, полные преобразователи, преобразователи частоты с динамическим торможением и множество зрелых приложений для пользователей. Преобразователи частоты широко используются в грузоподъемных машинах для подъема, качки, подъема стрелы, тачки, вращения, захвата.

Что важнее в преобразователе частоты? Сетевой дроссель переменного тока или дроссель постоянного тока? Каковы возможные последствия отсутствия линейного реактора Ac? Что делать, если дроссель постоянного тока отсутствует?
Сетевые реакторы переменного тока уменьшают гармоники тока в линии переменного тока, вызванные выпрямителем, в то время как дроссели постоянного тока справляются с током шины постоянного тока.

Роторный преобразователь частоты — системы электропитания и управления

Серия

RFC

Роторные преобразователи частоты — это машины, которые преобразуют мощность одной частоты в другую.Это достигается путем соединения двигателя с генератором, который механически связан и электрически изолирован. Метод соединения может быть прямым или через ремни и шкивы . Однако некоторые из них имеют соединение с коробкой передач, и в этом случае они не изолированы электрически. Другими словами, это достигается либо изменением частоты вращения генератора (в версиях с ремнями и шкивами), либо редуктора. Двигатели и генераторы могут иметь или не иметь одинаковое количество полюсов, в зависимости от выходной частоты.Результатом является работа для достижения того же результата, что и для получения желаемой выходной частоты. Роторный преобразователь частоты также способен одновременно вырабатывать другое напряжение. Если вы работаете при другом напряжении, отличном от 208 В, вам необходимо изменить напряжение.

Power Systems & Controls’ серии RFC представляют собой роторные преобразователи частоты , предназначенные для преобразования энергии сети во многие другие частоты. Например, стандартными частотами являются мощность 25 Гц, 50 Гц, 60 Гц, 100 Гц и 400 Гц.Роторный преобразователь частоты обеспечит требуемую номинальную мощность в кВА на требуемой мощности. Кроме того, двигатель и синхронный генератор обеспечат необходимую частоту и напряжение. Роторные преобразователи частоты PS&C изготавливаются с решениями с 2 подшипниками и с 4 подшипниками , а также с вертикальными или горизонтальными конфигурациями. Прецизионный регулятор напряжения, встроенный в систему, поддерживает выходное напряжение на уровне (+/- 0,5%) намного лучше, чем отраслевой стандарт.

Поворотный преобразователь Функциональность:

При нормальной работе серия RFC защищает критическую нагрузку от переходных процессов и отключений сети. Однако роторный преобразователь частоты доступен либо с синхронным, либо с асинхронным двигателем. Другими словами, это будет зависеть от того, какой продукт лучше всего подходит для данного приложения. Синхронный двигатель создает точную выходную частоту без отклонений. Это идеально подходит для лабораторных испытаний, поддержки самолетов и систем вооружения .Асинхронный двигатель с малым скольжением вызывает отклонение выходной частоты (0,6 Гц). Это может быть приемлемо для проектов, требующих более экономичного решения.

Аналогичным образом, при работе на номинальной скорости двигателя частота генератора регулируется числом оборотов двигателя. Это сделает выходную частоту переменной или неконтролируемой. Он также на 100 % эффективен при сбоях продолжительностью менее 100 мс. Кроме того, отсутствие щеток и токосъемных колец как в двигателе, так и в генераторе обеспечивает практически не требующую технического обслуживания работу.Кроме того, благодаря прочной конструкции средний срок службы (EOL) роторного преобразователя частоты значительно превышает 20 лет. Кроме того, существует множество доступных опций, начиная от пультов дистанционного управления и цветных сенсорных дисплеев и заканчивая специализированными корпусами NEMA и ISO.

Общие термины, связанные с конвертером:

  • Мотор-генератор = (набор MG)
  • Общий вал = Комплект прямого соединения вала с валом MG
  • Одиночный вал = Комплект MG представляет собой единую поковку с обмотками двигателя и генератора на одном валу
  • Ременная передача = Гидроцилиндры, установленные бок о бок, соединенные ремнями и шкивами
  • Зубчатая передача = бок о бок или прямое соединение со смещенным комплектом MG, соединенным через зубчатую передачу

Зачем покупать преобразователь частоты вращения:

Преобразователи частоты имеют множество применений (см. ниже).Тем не менее, некоторые приложения требуют наличия машин промышленного класса с грубой силой, в то время как другие требуют 100% изоляции. Следовательно, изоляция по своей сути производится роторной машиной. Прежде всего, электрическая изоляция достигается за счет механически соединенного двигателя-генератора, который не пропускает энергию через вал. Таким образом, осуществляется изоляция от двигателя к генератору и наоборот. Эти машины созданы для работы в очень суровых условиях. Они могут выжить в экстремальных условиях, где твердотельный аналог не сможет работать в таком же.
Преобразователь частоты вращения

Применение:
Преобразователь частоты вращения

Преимущества:
  • 100% настоящая электрическая изоляция
  • Прецизионная регулировка напряжения
  • Комплекты M-G с 2 и 4 подшипниками
  • Контроль и мониторинг неисправностей
  • Защита от переходных процессов и понижения напряжения
  • Вертикальная и горизонтальная конфигурации
  • Общие и одновальные конструкции

Должен ли я использовать мотор-генератор:

Существует еще один вариант преобразования, кроме роторного или мотор-генератора.Подобно роторной машине, PS&C производит статических преобразователей как в однофазном, так и в трехфазном исполнении.

Monarch F2A1X преобразователь частоты/тахометр • MonarchInstrumentation.com

Monarch F2A1X преобразователь частоты/тахометр • MonarchInstrumentation.com перейти к содержанию [email protected] | 800-236-8812

Преобразователь частоты/тахометр Monarch F2A1X

265 долларов.00

Описание

Модуль F2A1X «Частота в аналоговый» преобразует входной сигнал частоты в пропорциональный аналоговый выходной сигнал напряжения (0–5 В пост. тока) или тока (4–20 мА пост. тока). Выходной сигнал электрически изолирован от входного сигнала и входного источника питания, эффективно устраняя нежелательные контуры заземления. Входной сигнал может подаваться от датчика Monarch (например, измеряющего обороты) или любого источника цифрового сигнала напряжением не более 12 вольт. F2A1X предварительно запрограммирован на заводе с полной шкалой выходного и входного масштабного коэффициента по вашему выбору.Эти настройки также настраиваются пользователем с помощью дополнительного USB-кабеля для программирования и программного обеспечения PM Remote. PM Remote Software также отображает данные в режиме реального времени и позволяет сохранять данные непосредственно в Microsoft Excel™. Для F2A1X требуется входное питание 12–24 В постоянного тока.

Дополнительная информация

Режим измерения ввода

1 — частота (Гц/об/с), 2 — об/мин (предполагается 1 импульс на оборот), 3 — пользовательский (свяжитесь с нами или закажите программное обеспечение PM Remote)

Аналоговый выход

0–5 В постоянного тока, изолированный, 4–20 мА, изолированный

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

РУКОВОДСТВА

Сопутствующие товары