Блок питания на 12 вольт для галогеновых ламп: Блок питания для галогенных ламп

Содержание

Блок питания для галогенных ламп

Галогеновые лампы с каждым днем все активнее применяются в украшении различных торговых комплексов и витрин. Яркая цветовая гамма, насыщенность в передаче изображения придают им все большую популярность. Срок их службы намного больше, чем у обычных ламп. При этом они могут длительно работать без выключения. В галогенках используются нити накала, но процесс свечения, в сравнении с лампами накаливания, у них отличается благодаря наполнению баллона особым составом. Такие лампочки используются в различных светильниках, люстрах, кухонной мебели и бывают 220 и 12 вольтовые. Блок питания для галогенок напряжением 12 вольт необходим, потому что при прямом их включении в электрическую сеть произойдет короткое замыкание.

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть.

Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, – так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает.

Классификация

Трансформаторы бывают электромагнитными и электронными (импульсными). Электромагнитные доступны по цене, надежны, их можно сделать при желании своими руками. У них есть и свои минусы – приличный вес, большие габаритные размеры, повышение температуры при длительной работе. А перепады напряжения значительно сокращают срок работы галогеновых ламп.

Электронные трансформаторы весят намного меньше, у них стабильное напряжение на выходе, они сильно не нагреваются, могут иметь защиту от КЗ и плавный пуск, увеличивающий срок эксплуатации лампы.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Переделка блока питания своими руками

Для работы галогенных ламп начали применяться импульсные источники тока с высокочастотным преобразованием напряжения. При домашнем изготовлении и налаживании довольно часто сгорают дорогостоящие транзисторы. Так как питающее напряжение в первичных цепях достигает 300 вольт, то к изоляции предъявляются очень высокие требования. Все эти трудности вполне можно обойти, если приспособить готовый электронный трансформатор. Он применяется для питания 12-вольтовых галогенок в подсветке (в магазинах), которые запитываются от стандартной электросети.

Существует определенное мнение, что получить самодельный импульсный блок питания – дело нехитрое. Можно лишь добавить выпрямительный мост, сглаживающий конденсатор и стабилизатор напряжения. На самом деле все обстоит куда сложнее. Если к выпрямителю подключить светодиод, то при включении можно зафиксировать только одно зажигание. Если выключить и включить преобразователь в сеть снова, повторится еще одна вспышка. Чтобы появилось постоянное свечение, необходимо к выпрямителю подвести дополнительную нагрузку, которая, отбирая полезную мощность, превращала бы ее в тепло.

Один из вариантов самостоятельного изготовления импульсного блока питания

Описываемый блок питания вполне можно изготовить из электронного трансформатора мощностью 105 Вт. Практически этот трансформатор напоминает компактный импульсный преобразователь напряжения. Для сборки дополнительно понадобится согласующий трансформатор Т1, сетевой фильтр, выпрямительный мост VD1-VD4, выходной дроссель L2.

Схема двухполярного блока питания

Такой аппарат стабильно функционирует длительное время с усилителем низкой частоты мощностью 2х20 ватт. При 220 В и силе тока 0,1 А выходное напряжение будет 25 В, при увеличении силы тока до 2 ампер напряжение падает до 20 вольт, что считается нормальной работой.

Ток, минуя выключатель и предохранители FU1 и FU2, следует на фильтр, защищающий цепь от помех импульсного преобразователя. Середину конденсаторов С1 и С2 соединяют с экранирующим кожухом блока питания. Потом ток поступает на вход U1, откуда с выходных клемм пониженное напряжение подается на согласующий трансформатор Т1. Переменное напряжение с другой (вторичной обмотки) выпрямляет диодный мост и сглаживает фильтр L2C4C5.

Самостоятельная сборка

Трансформатор Т1 изготавливается самостоятельно. Число витков на вторичной обмотке влияет на выходное напряжение. Сам трансформатор выполнен на кольцевом магнитопроводе К30х18х7 из феррита марки М2000НМ. Первичная обмотка состоит из провода ПЭВ-2 диаметром 0,8 мм, сложенного вдвое. Вторичная обмотка состоит из 22 витков провода ПЭВ-2, сложенного вдвое. При соединении конца первой полуобмотки с началом второй получаем среднюю точку вторичной обмотки. Дроссель также изготавливаем самостоятельно. Его наматывают на таком же ферритовом кольце, обе обмотки содержат по 20 витков.

Выпрямительные диоды располагаются на радиаторе площадью не менее 50 кв.см. Обратите внимание, что диоды, у которых аноды соединены с минусовым выходом, изолируются от теплоотвода слюдяными прокладками.

Сглаживающие конденсаторы С4 и С5 состоят из трех параллельно включенных К50-46 емкостью по 2200 мкФ каждый. Такой способ применяется, чтобы снизить общую индуктивность электролитических конденсаторов.

На входе блока питания лучше будет установить сетевой фильтр, но возможна работа и без него. Для дросселя сетевого фильтра можно использовать ДФ 50 Гц.

Все детали блока питания располагаются навесным монтажом на плате из изоляционного материала. Полученная конструкция помещается в экранирующий кожух из тонкой листовой латуни или луженой жести. В нем не забудьте просверлить отверстия для вентиляции воздуха.

Правильно собранный блок питания не нуждается в налаживании и начинает сразу же работать. Но на всякий случай можно проверить его работоспособность с помощью подключения на выход резистора сопротивлением 240 Ом, мощностью рассеяния 3 Вт.

Рекомендации по использованию трансформатора

Понижающие трансформаторы для галогенных ламп во время работы выделяют очень большое количество тепла. Поэтому необходимо соблюдать несколько требований:

  1. Запрещается подключение блока питания без нагрузки.
  2. Размещайте блок на негорючей поверхности.
  3. Расстояние от блока до лампочки не менее 20 сантиметров.
  4. Для лучшей вентиляции установите трансформатор в нише объемом не менее 15 литров.

Блок питания необходим для галогеновых ламп, работающих от напряжения 12 вольт. Он является своеобразным трансформатором, понижающим входные 220 В до нужных значений.

Блоки питания для галогенных ламп 12в

Галогеновые лампы с каждым днем все активнее применяются в украшении различных торговых комплексов и витрин. Яркая цветовая гамма, насыщенность в передаче изображения придают им все большую популярность. Срок их службы намного больше, чем у обычных ламп. При этом они могут длительно работать без выключения. В галогенках используются нити накала, но процесс свечения, в сравнении с лампами накаливания, у них отличается благодаря наполнению баллона особым составом. Такие лампочки используются в различных светильниках, люстрах, кухонной мебели и бывают 220 и 12 вольтовые. Блок питания для галогенок напряжением 12 вольт необходим, потому что при прямом их включении в электрическую сеть произойдет короткое замыкание.

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, – так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает.

Классификация

Трансформаторы бывают электромагнитными и электронными (импульсными). Электромагнитные доступны по цене, надежны, их можно сделать при желании своими руками. У них есть и свои минусы – приличный вес, большие габаритные размеры, повышение температуры при длительной работе. А перепады напряжения значительно сокращают срок работы галогеновых ламп.

Электронные трансформаторы весят намного меньше, у них стабильное напряжение на выходе, они сильно не нагреваются, могут иметь защиту от КЗ и плавный пуск, увеличивающий срок эксплуатации лампы.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Переделка блока питания своими руками

Для работы галогенных ламп начали применяться импульсные источники тока с высокочастотным преобразованием напряжения. При домашнем изготовлении и налаживании довольно часто сгорают дорогостоящие транзисторы. Так как питающее напряжение в первичных цепях достигает 300 вольт, то к изоляции предъявляются очень высокие требования. Все эти трудности вполне можно обойти, если приспособить готовый электронный трансформатор. Он применяется для питания 12-вольтовых галогенок в подсветке (в магазинах), которые запитываются от стандартной электросети.

Существует определенное мнение, что получить самодельный импульсный блок питания – дело нехитрое. Можно лишь добавить выпрямительный мост, сглаживающий конденсатор и стабилизатор напряжения. На самом деле все обстоит куда сложнее. Если к выпрямителю подключить светодиод, то при включении можно зафиксировать только одно зажигание. Если выключить и включить преобразователь в сеть снова, повторится еще одна вспышка. Чтобы появилось постоянное свечение, необходимо к выпрямителю подвести дополнительную нагрузку, которая, отбирая полезную мощность, превращала бы ее в тепло.

Один из вариантов самостоятельного изготовления импульсного блока питания

Описываемый блок питания вполне можно изготовить из электронного трансформатора мощностью 105 Вт. Практически этот трансформатор напоминает компактный импульсный преобразователь напряжения. Для сборки дополнительно понадобится согласующий трансформатор Т1, сетевой фильтр, выпрямительный мост VD1-VD4, выходной дроссель L2.

Схема двухполярного блока питания

Такой аппарат стабильно функционирует длительное время с усилителем низкой частоты мощностью 2х20 ватт. При 220 В и силе тока 0,1 А выходное напряжение будет 25 В, при увеличении силы тока до 2 ампер напряжение падает до 20 вольт, что считается нормальной работой.

Ток, минуя выключатель и предохранители FU1 и FU2, следует на фильтр, защищающий цепь от помех импульсного преобразователя. Середину конденсаторов С1 и С2 соединяют с экранирующим кожухом блока питания. Потом ток поступает на вход U1, откуда с выходных клемм пониженное напряжение подается на согласующий трансформатор Т1. Переменное напряжение с другой (вторичной обмотки) выпрямляет диодный мост и сглаживает фильтр L2C4C5.

Самостоятельная сборка

Трансформатор Т1 изготавливается самостоятельно. Число витков на вторичной обмотке влияет на выходное напряжение. Сам трансформатор выполнен на кольцевом магнитопроводе К30х18х7 из феррита марки М2000НМ. Первичная обмотка состоит из провода ПЭВ-2 диаметром 0,8 мм, сложенного вдвое. Вторичная обмотка состоит из 22 витков провода ПЭВ-2, сложенного вдвое. При соединении конца первой полуобмотки с началом второй получаем среднюю точку вторичной обмотки. Дроссель также изготавливаем самостоятельно. Его наматывают на таком же ферритовом кольце, обе обмотки содержат по 20 витков.

Выпрямительные диоды располагаются на радиаторе площадью не менее 50 кв.см. Обратите внимание, что диоды, у которых аноды соединены с минусовым выходом, изолируются от теплоотвода слюдяными прокладками.

Сглаживающие конденсаторы С4 и С5 состоят из трех параллельно включенных К50-46 емкостью по 2200 мкФ каждый. Такой способ применяется, чтобы снизить общую индуктивность электролитических конденсаторов.

На входе блока питания лучше будет установить сетевой фильтр, но возможна работа и без него. Для дросселя сетевого фильтра можно использовать ДФ 50 Гц.

Все детали блока питания располагаются навесным монтажом на плате из изоляционного материала. Полученная конструкция помещается в экранирующий кожух из тонкой листовой латуни или луженой жести. В нем не забудьте просверлить отверстия для вентиляции воздуха.

Правильно собранный блок питания не нуждается в налаживании и начинает сразу же работать. Но на всякий случай можно проверить его работоспособность с помощью подключения на выход резистора сопротивлением 240 Ом, мощностью рассеяния 3 Вт.

Рекомендации по использованию трансформатора

Понижающие трансформаторы для галогенных ламп во время работы выделяют очень большое количество тепла. Поэтому необходимо соблюдать несколько требований:

  1. Запрещается подключение блока питания без нагрузки.
  2. Размещайте блок на негорючей поверхности.
  3. Расстояние от блока до лампочки не менее 20 сантиметров.
  4. Для лучшей вентиляции установите трансформатор в нише объемом не менее 15 литров.

Блок питания необходим для галогеновых ламп, работающих от напряжения 12 вольт. Он является своеобразным трансформатором, понижающим входные 220 В до нужных значений.

Трансформатор электронный OSRAM HTN-75W 220-12V для гал.

Блок питания герметичный 35 W 12V

Трансформатор для галогенных ламп Navigator 60W (Вт) Вт.

Блок питания для светодиодной ленты ARJ-KE40300 (12W, 3.

Трансформатор электронный OSRAM HTM-150W 220-12V для га.

Блок питания узкий для светодиодной ленты Ecola LED str.

Трансформатор электронный OSRAM HTM-70W 220-12V для гал.

230 В Мощность нагрузки: от 1 до 53 Вт Напряжение на выходе: 12 В Макс. ток нагрузки: 5 А Степень пыле-влагозащиты: IP 44

Блок питания PowerLight 12V / 60W интерьерный, slim

Блок питания для светодиодной ленты 12 вольт IP66 60 вт.

Блок питания 12В 40Вт Gauss 202023040

GSlight Блок питания для светодиодных лент 12V 200W IP2.

Блок питания для светодиодной ленты GAUSS LED STRIP PS.

При замене галогеновых ламп на 12В в точечных светильниках светодиодными часто возникает вопрос: «нужно ли менять источник питания?». Для галогенок использовали электронные трансформаторы с выходным напряжением 12 вольт, а для светодиодных ламп продаются специальные блоки питания (БП) с выходным напряжением также 12 вольт. В чем же их различие и взаимозаменяемы ли они? Давайте разбираться!

Что такое электронный трансформатор?

Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Они питаются от сети 220В переменного тока, а на их выходе переменное напряжение с действующим значением порядка 12В.

Структурная схема устройства изображена на рисунке ниже.

Здесь мы видим, что питание 220В сначала поступает на выпрямитель, после чего выпрямленное пульсирующее с частотой 100Гц напряжение поступает на узел силовых ключей и генератора, рассмотрим пример типовой принципиальной электрической схемы электронного трансформатора.

Здесь изображена типичная автогенераторная двухтактная схема. Её особенностью является то, что для работы ключей в режиме коммутации (переключений) на высокой частоте им не требуется ШИМ-контроллеров или других специализированных ИМС. Говоря простыми словами работа автогенератора заключается в переключении транзистора в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.

Что мы видим на схеме? Первое что бросается в глаза – отсутствие диодного моста на выходе, а значит, что выходное напряжение переменное, а также отсутствие цепей, предназначенных для стабилизации выходного напряжения. Вы можете подробнее ознакомится с принципом их работы посмотрев видео:

Подобная схема лежит и в основе большинства зарядных устройств для мобильных телефонов, ЭПРА для питания люминесцентных ламп, в том числе в энергосберегающих или компактных люминесцентных лампах в некоторых вариациях и некоторыми доработками.

Рассмотрим выходные осциллограммы.

Здесь видно, что переменное напряжение амплитуда которого пульсирует от нуля до + и – 17Вольт. Такие изменения амплитуды с течением времени – повторяют пульсации выпрямленного сетевого(100Гц). Получается интересная ситуация – есть высокочастотное выходное напряжение, изменяющееся с частотой в десятки тысяч герц, при этом его амплитуда изменяется от 0 до 17 вольт с частотой в 100 Гц или выпрямленные 50 Гц. Если растянуть ось времени и рассмотреть форму на уровне периодов, то картинка примет следующий вид.

Здесь видно, что сигнал по форме далёк от синусоиды, а скорее прямоугольник с небольшим уклоном в сторону заднего фронта.

Блоки питания для светодиодных ламп 12В

Их часто называют блоками питания для светодиодных лент, фактически для подключения и лент и ламп нужен любой источник постоянного стабилизированного напряжения 12В с минимальными пульсациями. На практике в современном мире используются импульсные источники питания, рассмотрим типовую схему.

Или другой вариант:

Что общего у этих двух, казалось бы, разных схем? Они построены на интегральном ШИМ-контроллера который управляет силовыми ключами – транзисторами, они могут быть и полевыми, и биполярными. Кроме того, в выходном каскаде схемы вы видите выпрямитель и конденсаторы для сглаживания пульсаций (фильтр). Всё это значит, что на выходе мы получаем стабилизированный DC источник питания. Величина его пульсаций будет зависеть от нагрузки и ёмкости фильтрующих конденсаторов.

Её также можно реализовать на автогенераторной схеме, подобной электронному трансформатору, добавив цепи обратной связи для стабилизации выходного напряжения. В результате получится схема наподобие такой.

Аналогичная конструкция используется в упомянутых выше зарядных для мобильны телефонов здесь за стабилизацию отвечает цепочка обратной связи на 11 вольтовом стабилитроне VD9 и транзисторной оптопаре U1.

Принцип работы подобных ИИП мы рассматривали в статье ранее — Схемотехника блоков питания светодиодных лент.

5 особенностей и отличий БП для LED-лент и ламп от электронных трансформаторов для галогенных ламп

Итак, подведем итоги и ответим на вопрос: «почему нельзя питать светодиодные лампы от электронного трансформатора?». Для этого мы перечислим основные особенности этих источников питания и требования для работы светодиодных изделий.

1. Для включения светодиодных лент и ламп на 12В нужно постоянное напряжение. Так как у светодиодов нелинейная вольтамперная характеристика – они очень чувствительны к отклонениям напряжения питания от номинального, и при его превышении быстро выйдут из строя.

2. Электронные трансформаторы выдают пульсирующее переменное высокочастотное напряжение. Величина всплесков и пиков может достигать и 40 вольт в некоторых случаях. Это может привести к выходу из строя светодиодов или драйверов, встроенных в LED-лампу, а также к их нестабильной работе.

3. У электронных трансформаторов есть такая характеристика как минимальная нагрузка (смотрите рисунок ниже). Это значит, что, если подключить нагрузку меньше указанной на блоке питания он может либо не запуститься, либо выдавать большие пульсации, а также отключаться или другим образом отклоняться от нормального режима работы. Это критично, поскольку галогенные лампы потребляют в разы большую мощность, чем светодиодные, поэтому электронный трансформатор может проявлять себя подобным образом.

Мощность указана от 20 до 105 Вт, что говорит об ограничении по минимальной подключаемой мощности.

4. У блоков питания для ламп на 12В выходное напряжение и постоянное, и стабилизированное при этом.

5. Для питания галогеновых ламп не разницы в роде тока (постоянный или переменный), которым её будут питать. Важно действующее значение напряжения на ней. Поэтому они подойдут под оба варианта источников питания.

Заключение

Нельзя использовать электронный трансформатор для питания светодиодных изделий. Подбирайте блок питания с постоянным стабилизированным выходным напряжением. В противном случае ваши светильники и лампы могут выйти из строя. Также будьте внимательны – сейчас популярны светильники, предназначенные для питания источником постоянного тока – драйвером, это отдельный вид устройств! Об этом читайте здесь — В чем отличие блока питания от драйвера для светодиодов

Трансформатор для галогенных ламп: назнаяение и виды и правила подключения

Галогеновые лампы с каждым днем все активнее применяются в украшении различных торговых комплексов и витрин. Яркая цветовая гамма, насыщенность в передаче изображения придают им все большую популярность. Срок их службы намного больше, чем у обычных ламп. При этом они могут длительно работать без выключения.

В галогенках используются нити накала, но процесс свечения, в сравнении с лампами накаливания, у них отличается благодаря наполнению баллона особым составом. Такие лампочки используются в различных светильниках, люстрах, кухонной мебели и бывают 220 и 12 вольтовые.

Блок питания для галогенок напряжением 12 вольт необходим, потому что при прямом их включении в электрическую сеть произойдет короткое замыкание.

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, – так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности.

В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока.

Как только он заканчивается, устройство сгорает.

Классификация

Трансформаторы бывают электромагнитными и электронными (импульсными). Электромагнитные доступны по цене, надежны, их можно сделать при желании своими руками. У них есть и свои минусы – приличный вес, большие габаритные размеры, повышение температуры при длительной работе. А перепады напряжения значительно сокращают срок работы галогеновых ламп.

  • Электронные трансформаторы весят намного меньше, у них стабильное напряжение на выходе, они сильно не нагреваются, могут иметь защиту от КЗ и плавный пуск, увеличивающий срок эксплуатации лампы.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор.

Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт.

С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Переделка блока питания своими руками

Для работы галогенных ламп начали применяться импульсные источники тока с высокочастотным преобразованием напряжения. При домашнем изготовлении и налаживании довольно часто сгорают дорогостоящие транзисторы.

Так как питающее напряжение в первичных цепях достигает 300 вольт, то к изоляции предъявляются очень высокие требования. Все эти трудности вполне можно обойти, если приспособить готовый электронный трансформатор.

Он применяется для питания 12-вольтовых галогенок в подсветке (в магазинах), которые запитываются от стандартной электросети.

Существует определенное мнение, что получить самодельный импульсный блок питания – дело нехитрое. Можно лишь добавить выпрямительный мост, сглаживающий конденсатор и стабилизатор напряжения. На самом деле все обстоит куда сложнее.

Если к выпрямителю подключить светодиод, то при включении можно зафиксировать только одно зажигание. Если выключить и включить преобразователь в сеть снова, повторится еще одна вспышка.

Чтобы появилось постоянное свечение, необходимо к выпрямителю подвести дополнительную нагрузку, которая, отбирая полезную мощность, превращала бы ее в тепло.

Один из вариантов самостоятельного изготовления импульсного блока питания

Описываемый блок питания вполне можно изготовить из электронного трансформатора мощностью 105 Вт. Практически этот трансформатор напоминает компактный импульсный преобразователь напряжения. Для сборки дополнительно понадобится согласующий трансформатор Т1, сетевой фильтр, выпрямительный мост VD1-VD4, выходной дроссель L2.

Схема двухполярного блока питания

Такой аппарат стабильно функционирует длительное время с усилителем низкой частоты мощностью 2х20 ватт. При 220 В и силе тока 0,1 А выходное напряжение будет 25 В, при увеличении силы тока до 2 ампер напряжение падает до 20 вольт, что считается нормальной работой.

Ток, минуя выключатель и предохранители FU1 и FU2, следует на фильтр, защищающий цепь от помех импульсного преобразователя. Середину конденсаторов С1 и С2 соединяют с экранирующим кожухом блока питания.

Потом ток поступает на вход U1, откуда с выходных клемм пониженное напряжение подается на согласующий трансформатор Т1.

Переменное напряжение с другой (вторичной обмотки) выпрямляет диодный мост и сглаживает фильтр L2C4C5.

Самостоятельная сборка

Трансформатор Т1 изготавливается самостоятельно. Число витков на вторичной обмотке влияет на выходное напряжение. Сам трансформатор выполнен на кольцевом магнитопроводе К30х18х7 из феррита марки М2000НМ. Первичная обмотка состоит из провода ПЭВ-2 диаметром 0,8 мм, сложенного вдвое.

Вторичная обмотка состоит из 22 витков провода ПЭВ-2, сложенного вдвое. При соединении конца первой полуобмотки с началом второй получаем среднюю точку вторичной обмотки. Дроссель также изготавливаем самостоятельно.

Его наматывают на таком же ферритовом кольце, обе обмотки содержат по 20 витков.

Выпрямительные диоды располагаются на радиаторе площадью не менее 50 кв.см. Обратите внимание, что диоды, у которых аноды соединены с минусовым выходом, изолируются от теплоотвода слюдяными прокладками.

Сглаживающие конденсаторы С4 и С5 состоят из трех параллельно включенных К50-46 емкостью по 2200 мкФ каждый. Такой способ применяется, чтобы снизить общую индуктивность электролитических конденсаторов.

На входе блока питания лучше будет установить сетевой фильтр, но возможна работа и без него. Для дросселя сетевого фильтра можно использовать ДФ 50 Гц.

Все детали блока питания располагаются навесным монтажом на плате из изоляционного материала. Полученная конструкция помещается в экранирующий кожух из тонкой листовой латуни или луженой жести. В нем не забудьте просверлить отверстия для вентиляции воздуха.

Правильно собранный блок питания не нуждается в налаживании и начинает сразу же работать. Но на всякий случай можно проверить его работоспособность с помощью подключения на выход резистора сопротивлением 240 Ом, мощностью рассеяния 3 Вт.

Рекомендации по использованию трансформатора

Понижающие трансформаторы для галогенных ламп во время работы выделяют очень большое количество тепла. Поэтому необходимо соблюдать несколько требований:

  1. Запрещается подключение блока питания без нагрузки.
  2. Размещайте блок на негорючей поверхности.
  3. Расстояние от блока до лампочки не менее 20 сантиметров.
  4. Для лучшей вентиляции установите трансформатор в нише объемом не менее 15 литров.

Блок питания необходим для галогеновых ламп, работающих от напряжения 12 вольт. Он является своеобразным трансформатором, понижающим входные 220 В до нужных значений.

Блок питания для галогенных ламп — классификация, расчет и подключение

Трансформатор для галогенных ламп: зачем нужен, принцип действия и правила подключения

Главная › Электрика

Чем отличается блок питания для светодиодных ламп и электронный трансформатор для галогенных ламп

При замене галогеновых ламп на 12В в точечных светильниках светодиодными часто возникает вопрос: «нужно ли менять источник питания?».

Для галогенок использовали электронные трансформаторы с выходным напряжением 12 вольт, а для светодиодных ламп продаются специальные блоки питания (БП) с выходным напряжением также 12 вольт.

В чем же их различие и взаимозаменяемы ли они? Давайте разбираться!

Что такое электронный трансформатор?

Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Они питаются от сети 220В переменного тока, а на их выходе переменное напряжение с действующим значением порядка 12В.

Структурная схема устройства изображена на рисунке ниже.

Здесь мы видим, что питание 220В сначала поступает на выпрямитель, после чего выпрямленное пульсирующее с частотой 100Гц напряжение поступает на узел силовых ключей и генератора, рассмотрим пример типовой принципиальной электрической схемы электронного трансформатора.

Здесь изображена типичная автогенераторная двухтактная схема.

Её особенностью является то, что для работы ключей в режиме коммутации (переключений) на высокой частоте им не требуется ШИМ-контроллеров или других специализированных ИМС.

Говоря простыми словами работа автогенератора заключается в переключении транзистора в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.

Что мы видим на схеме? Первое что бросается в глаза – отсутствие диодного моста на выходе, а значит, что выходное напряжение переменное, а также отсутствие цепей, предназначенных для стабилизации выходного напряжения. Вы можете подробнее ознакомится с принципом их работы посмотрев видео:

Подобная схема лежит и в основе большинства зарядных устройств для мобильных телефонов, ЭПРА для питания люминесцентных ламп, в том числе в энергосберегающих или компактных люминесцентных лампах в некоторых вариациях и некоторыми доработками.

Рассмотрим выходные осциллограммы.

Здесь видно, что переменное напряжение амплитуда которого пульсирует от нуля до + и – 17Вольт. Такие изменения амплитуды с течением времени – повторяют пульсации выпрямленного сетевого(100Гц).

Получается интересная ситуация – есть высокочастотное выходное напряжение, изменяющееся с частотой в десятки тысяч герц, при этом его амплитуда изменяется от 0 до 17 вольт с частотой в 100 Гц или выпрямленные 50 Гц.

Если растянуть ось времени и рассмотреть форму на уровне периодов, то картинка примет следующий вид.

Здесь видно, что сигнал по форме далёк от синусоиды, а скорее прямоугольник с небольшим уклоном в сторону заднего фронта.

Блоки питания для светодиодных ламп 12В

Их часто называют блоками питания для светодиодных лент, фактически для подключения и лент и ламп нужен любой источник постоянного стабилизированного напряжения 12В с минимальными пульсациями. На практике в современном мире используются импульсные источники питания, рассмотрим типовую схему.

Или другой вариант:

Что общего у этих двух, казалось бы, разных схем? Они построены на интегральном ШИМ-контроллера который управляет силовыми ключами – транзисторами, они могут быть и полевыми, и биполярными.

Кроме того, в выходном каскаде схемы вы видите выпрямитель и конденсаторы для сглаживания пульсаций (фильтр). Всё это значит, что на выходе мы получаем стабилизированный DC источник питания.

Величина его пульсаций будет зависеть от нагрузки и ёмкости фильтрующих конденсаторов.

Её также можно реализовать на автогенераторной схеме, подобной электронному трансформатору, добавив цепи обратной связи для стабилизации выходного напряжения. В результате получится схема наподобие такой.

  • Аналогичная конструкция используется в упомянутых выше зарядных для мобильны телефонов здесь за стабилизацию отвечает цепочка обратной связи на 11 вольтовом стабилитроне VD9 и транзисторной оптопаре U1.
  • Принцип работы подобных ИИП мы рассматривали в статье ранее – Схемотехника блоков питания светодиодных лент.
  • 5 особенностей и отличий БП для LED-лент и ламп от электронных трансформаторов для галогенных ламп

Итак, подведем итоги и ответим на вопрос: «почему нельзя питать светодиодные лампы от электронного трансформатора?». Для этого мы перечислим основные особенности этих источников питания и требования для работы светодиодных изделий.

1. Для включения светодиодных лент и ламп на 12В нужно постоянное напряжение. Так как у светодиодов нелинейная вольтамперная характеристика – они очень чувствительны к отклонениям напряжения питания от номинального, и при его превышении быстро выйдут из строя.

2. Электронные трансформаторы выдают пульсирующее переменное высокочастотное напряжение. Величина всплесков и пиков может достигать и 40 вольт в некоторых случаях. Это может привести к выходу из строя светодиодов или драйверов, встроенных в LED-лампу, а также к их нестабильной работе.

3. У электронных трансформаторов есть такая характеристика как минимальная нагрузка (смотрите рисунок ниже).

Это значит, что, если подключить нагрузку меньше указанной на блоке питания он может либо не запуститься, либо выдавать большие пульсации, а также отключаться или другим образом отклоняться от нормального режима работы.

Это критично, поскольку галогенные лампы потребляют в разы большую мощность, чем светодиодные, поэтому электронный трансформатор может проявлять себя подобным образом.

Мощность указана от 20 до 105 Вт, что говорит об ограничении по минимальной подключаемой мощности.

4. У блоков питания для ламп на 12В выходное напряжение и постоянное, и стабилизированное при этом.

5. Для питания галогеновых ламп не разницы в роде тока (постоянный или переменный), которым её будут питать. Важно действующее значение напряжения на ней. Поэтому они подойдут под оба варианта источников питания.

Заключение

Нельзя использовать электронный трансформатор для питания светодиодных изделий. Подбирайте блок питания с постоянным стабилизированным выходным напряжением. В противном случае ваши светильники и лампы могут выйти из строя.

Также будьте внимательны – сейчас популярны светильники, предназначенные для питания источником постоянного тока – драйвером, это отдельный вид устройств! Об этом читайте здесь – В чем отличие блока питания от драйвера для светодиодов

Питание галогенных ламп 12 В

Установка множества галогенных ламп в магазинах, офисах, обычных квартирах выполняется с применением понижающих трансформаторов. Рабочее напряжение большинства таковых источников света — 6, 12, 24 В. Это разрешает пользоваться низковольтными электроцепями.

Подобная проводка отличается повышенным классом безопасности. При ее монтаже применяют электронный трансформатор для галогенных ламп (один из возможных вариантов).

Чтобы подключить прибор собственноручно, необходимо ознакомиться с его устройством, принципом действия и схемой подсоединения.

Что такое трансформатор для ламп

Производится два вида понижающих приборов:

  • электромагнитные (типичные) — функционируют соответственно с принципом электромагнитной индукции;
  • электронные — вид трансформаторов, изменяющих напряжение с помощью транзисторных схем.

Первые только изредка применяются в частных домах или квартирах, поскольку отличаются немалой массой и габаритами в сравнении с их электронными аналогами.

В электронных трансформаторах с целью обеспечения функционирования галогенных ламп предусмотрены полупроводниковые элементы (участвуют в понижении напряжения к нужному уровню). К тому же, подобные приборы разрешают получить выходящее постоянное напряжение даже в случае значительных колебаний входящего.

Понижающие трансформаторы известных производителей обладают системой защиты от перегрузок, а также коротких замыканий. Тепловыделение подобных устройств существенно ниже, если сравнивать с электромагнитными аналогами. Некоторые модели снабжены конструкцией равномерной подачи напряжения. Последнее повышает продолжительность работы лампочек.

Базовый принцип работы

Электронное преобразовательное устройство предусмотрено для снижения обычного электротока с 220-ти до 12 В. По сути, оно является двухтактным автогенератором (импульсным блоком питания) с довольно-таки простым устройством.

Функционирует по полумостовой обычной схеме, имеет всего лишь форму коробочки с 4-мя выходящими кабелями: 2-мя на вход (220 В) и столько же на выход (12 В).

Корпусная поверхность, как правило, производится из поликарбоната, алюминия, закреплена несколькими болтами.

Внутри такого изделия присутствует сердечник из феррита (в виде буквы «ш» или кольца с 2-мя обмотками). Вид конструкции определяется производителем. Второй тип с кольцевым сердечником легче подстроить под какие-то свои требования (делают питающие блоки для иных электронных приборов). Обычно силовой частью изделия являются биполярные транзисторы. Их частота в противофазе — 30-35 кГц.

Расчёт мощности, выбор трансформаторов

При монтировании осветительной системы с применением электропреобразователя крайне важно просчитать необходимую мощность.

Если выбрать чрезмерно слабое мощное преобразовательное устройство, то лампочки будут перегружаться. Это может привести к их повреждению, сбою работоспособности системы в полном объеме.

В противном случае понижающее устройство тоже будет неблагоприятно влиять на приборы для освещения.

Для начала следует протестировать максимально возможную мощность преобразователя. Специалисты предпочитают отнять от этого значения 30%, хотя по стандарту надежность обеспечивается 10-15%.

К примеру, четыре лампы на 12 Вольт с показателем мощности в 40 Вт при суммировании дают 160 Вт. Если учесть коэффициент необходимого запаса, то получается величина 184 Вт. Следственно требуется приобрести устройство с самой близлежащей мощностью. Поскольку в выпускаемых моделях от 50-ти до 400 Вт, то подойдет прибор с 200 Вт.

Важно! Для тех светильников, которые оборудованы диммером, регулирующим силу свечения, требуется специальный диммируемый трансформатор для галогенных ламп.

Подключение устройства в схему электроснабжения галогенных светильников

В случае подсоединения трансформаторов безусловно рекомендуется придерживаться схематического расположения отдельных источников света, когда их количество более двух. К тому же, требуется выбрать подходящее место для установки преобразователя.

Основные требования к подключению

Инструкции любых трансформаторов непременно содержат главные правила, ими запрещается пренебрегать при выполнении монтажных работ:

  • Понижающий прибор и лампу требуется соединять с кабелем, длина которого не превышает 1,5 м, а сечение от 1 мм2. В ином случае яркость лампы будет недостаточной, свет неравномерным, присутствует возможность нагревания провода.
  • Если подключается два и больше светильников, требуется непременно применить схему «звезда»: к каждой лампе подсоединяется отдельный кабель. Последние должны быть одинаковые.
  • Если предполагается длина кабеля больше 1,5 м, то его сечение увеличивается в пропорциональном соотношении.
  • Расстояние до светильника не меньше 0,2 м.
  • Корректно высчитать мощность ламп, соответствие последних понижающему электроприбору.

Внимание! Категорически запрещается включать трансформаторы без нагрузки.

Требования по установке

Допустимо использование нескольких схем подключения галогенных ламп через трансформатор:

  • Одна из самых простых: применяется один выключатель (с 1-ой клавишей) и трансформатор. Проводники крепятся на клеммы «входа» L и N. Для присоединения ламп на «выходе» предпочитают провода из меди (минимальное сечение 1,2 мм2). Подключение галогенных ламп 12В — параллельное.
  • Разделение общего количества светильников на две одинаковые половины, подсоединение к разным трансформаторам. В вышеописанном примере 4 лампы по 40 Вт, мощность 2-х — 80 Вт. Следственно следует использовать трансформатор 105 Вт. Рекомендуется отдельный понижающий прибор питать своими проводами. Когда последние соединить в распределительном боксе, то это существенно облегчит возможный в будущем ремонт. При подключении допустимо применить 1-клавишный или 2-клавишный выключатель. После выполнения всех работ лампочки возможно запитать раздельно. Когда один трансформатор выйдет из рабочего состояния, это позволит сберечь денежные средства и оставить систему работающей.

Важная информация! Трансформаторы во время обычного функционирования нагреваются. Поэтому их нужно устанавливать на поверхностях из материалов, которые устойчивы к воспламенению, не плавятся.

Эксплуатационный ресурс, надёжность галогенных и светодиодных ламп перекроют издержки на монтаж трансформаторного устройства. А защитные свойства последнего обеспечат более продолжительную службу таких источников света, чем обычных лампочек накаливания.

Трансформатор для галогенных ламп — назнаяение виды и правила подключения

Трансформатор для галогенных ламп — назнаяение виды и правила подключения

Для контроля работы всех приборов в доме, в том числе, источников света, необходимы специальные устройства. Предлагаем рассмотреть, что такое электронный трансформатор для галогенных ламп 12В, его принцип работы, характеристики и видео, как самостоятельно подключить прибор.

Виды и устройство трансформаторов

Понижающие трансформаторы для люстры предназначены, в первую очередь, для защиты источников света от резких скачков энергии. Используются они в основном для маленьких лампочек, рассчитанных на напряжение от 6 до 24 вольт. На сегодняшний день выпускается два типа:

  • Тороидальный (электромагнитный).
  • Импульсный (электронный).

Электронные девайсы обладают большим количеством положительных качеств, что способствует более широкому распространению. По сути, их единственным недостатком является сравнительно высокая стоимость. В то же время наличие у некоторых моделей дополнительного функционала, например, встроенной защиты от короткого замыкания, способствует увеличению срока эксплуатации.

Именно импульсные девайсы используются в ситуациях, когда лампы необходимо разместить в стенах или мебели. В отличие от тороидальных устройств, импульсные трансформируют энергию благодаря полупроводниковым радиодеталям. Использовать электронный трансформатор для галогенных ламп необязательно, но желательно. Это связано с увеличением срока работы осветительных элементов.

Установка трансформатора

Чтобы подключить понижающий трансформатор для нескольких галогенных ламп, можно использовать два метода:

  1. Через одноклавишный выключатель;
  2. При помощи создания отдельных групп электрических светильников.

При этом нужно провода синего и оранжевого цвета (в зависимости от страны-производителя устройства они могут немного варьироваться по оттенкам), необходимо подключить к первичным клеммам L и N входа трансформатора или «Input».

На противоположной стороне трансформатора галогенные осветительные устройства нужно подключить к вторичным клеммам понижающего прибора Output.

Это действие нужно осуществлять только медными проводниками небольшого сечения, которые обеспечивают минимальную потерю энергии.

Главный совет: чтобы свет галогенных ламп был одинаков, нужно подбирать полностью идентичные друг другу проводники и соединять их только параллельно, сечение должно быть не меньше, чем полтора квадратных миллиметра.

Также бывают случаи, кода у трансформатора недостаточное количество клемм, их не хватает для подключения всех нужных ламп.

Чтобы решить эту проблему нужно купить специальные дополнительные клеммы, их продажа осуществляется в любом электрическом магазине.

Также нужно подобрать правильную длину проводов, в идеале она находится в пределах полутора трех метров, это оптимальное расстояние для передачи данных без образования помех и энергопотерь в проводниках.

Кроме того, если сделать провод длиннее, то он начнет нагреваться при работе, что является плохим фактором для галогенных лампочек, они будут по разному гореть, в одинаковых лампах одной группы будет отличаться яркость. В том случае, если нет никакой возможности укоротить длину провода, нужно увеличить его сечение.

К примеру от 3 метров до 4 необходимо применять провод с сечением до 2,5 мм2. Схема подключения питания имеет следующий вид:

Рассмотрим еще один вариант подключения трансформаторов галогенных ламп.

Российский форум электриков считает, что этот метод более практичен и прост в использовании.

Необходимо все светильники, которые находятся в одной комнате (или здании, при надобности), разделить на несколько групп. Допустим, всего есть семь лампочек, получится две группы по 3 и 4 лампы на каждую. В таком случае для каждой группы нужно покупать трансформатор, как для разных приборов отдельные автоматы.

Это очень удобно, т.к. при прекращении работы какого-либо трансформатора, оставшийся будет функционировать без изменений.

Исходя из предыдущих расчетов, их общая мощность 210 Вт, получится, что на одну группу приходится 120 Вт (следует купить прибор на 150w), а на вторую 90 (каждая лампочка по 30 Вт).

Подбираем трансформаторы, подходящие под эти требования (не забываем суммировать количество запасной мощности – 10-15 %).

Раз в полгода проверяйте работоспособность трансформаторов. При необходимости проводите плановый ремонт в Москве, Санкт-Петербурге и прочих городах есть специальные учреждения, которые предоставляют такие услуги.

Расчет и выбор устройства

При этом рассчитать требуемую мощность на практике очень просто. Если предположить, что в помещении установлено шесть ламп по 30 Вт при напряжении в 12 В, то общая мощность всех осветительных элементов составит 180 Вт.

Любое электронное устройство следует выбирать с небольшим запасом, составляющим от 10 до 15 процентов. В результате для решения поставленной задачи предстоит приобрести трансформатор для галогенных ламп мощностью около 207 Вт.

Видео о подключении трансформатора для галогенных ламп

Подключение трансформатора

Если необходимо установить устройство для контроля работы нескольких галогенных ламп, то можно использовать один из двух способов:

  • Применить одноклавишный выключатель.
  • Создать отдельные группы светильников.

Каждый из этих методов стоит рассмотреть подробно.

Использование одного выключателя

Также необходимо учесть еще один нюанс — проводники должны быть идентичны и подключены параллельно. В противном случае интенсивность светового потока каждой отдельной лампы может отличаться. При необходимости в любом магазине электротоваров можно приобрести дополнительные клеммы, если не хватает входящих в комплект.

Второй важный нюанс подключения лампочек к трансформатору через один выключатель является необходимость подбора правильной длины проводов. Этот показатель должен составлять от 1,5 до 3 метров. В противном случае возможны потери электроэнергии и перегрев проводников.

Разделение ламп на группы

Именно этот способ многие профессиональные электрики считают наиболее эффективным. Он не только прост в реализации, но и практичен. Если предположить, что требуется подключить 6 ламп, то необходимо создать две группы по 3 осветительных элемента. При этом для каждой из них следует приобрести отдельный трансформатор.

На практике это удобно, ведь при выходе из строя одного устройства, второе продолжит работать. При необходимости управления каждой группой осветительных элементов необходимо установить двухклавишный выключатель.

Трансформатор для галогенных ламп: для чего нужен, расчет и выбор

В виду существенного преимущества галогенных лампочек перед лампами накаливания в части срока службы и эффективности, они  все больше вытесняют устаревшие модели осветительного оборудования.

Однако большинство обывателей сталкивается с проблемой электромонтажных  работ, связанных с галогенными светильниками в виду особенностей их эксплуатации. Так как подключение галогенных приборов должно выполняться через специальный преобразователь.

Именно таким устройством выступает  трансформатор для галогенных ламп, у которого имеется особое назначение в схеме питания.

Для чего галогенке трансформатор?

В стремлении повысить эксплуатационные характеристики тех или иных электрических приборов происходит постоянное усовершенствование, как процессов производства, так и принципов работы.

Эмпирическим путем было определено, что галогеновые лампы будут служить значительно дольше, если их электроснабжение будет производиться от пониженного напряжения.

Оптимальным номиналом считается 6 В,12 В и 24 В которые от бытовой сети напрямую получить нельзя.

Из всех способов преобразования переменного напряжения на практике прижился именно понижающий трансформатор. В нем реализован принцип взаимодействия электромагнитного поля обмотки высокого напряжения с витками на низкой стороне.

В результате чего напряжение одной величины преобразуется в пониженное напряжение на выходной обмотке.

Преимуществом этого метода является гальваническая развязка, обеспечивающая безопасность при эксплуатации галогенных осветительных устройств.

Расчет и выбор

Чтобы подобрать конкретную  модель понижающего трансформатора для галогенных ламп вам необходимо учитывать два основных параметра: мощность и напряжение на выходе, входное напряжение принимается за константу. Их можно проверить в паспорте или на корпусе, как показано на рисунке:

Рис. 1. Определение параметров трансформатора

Кроме этого нужно учитывать особенности двух принципиально отличающихся типов устройств – электромагнитные и электронные преобразователи. Для определения перспективы использования каждого из них в вашем случае, для начала, разберемся в преимуществах обоих.

Электромагнитные

К преимуществам электромагнитных электрических машин следует отнести:

  • Относительно более низкую себестоимость;
  • Простую конструкцию;
  • Высокую степень надежности такого устройства.

Но наряду с этими плюсами, они также имеют и недостатки в сравнении с электронными понижающими приспособлениями – наличие шума во время работы и довольно крупные габариты, что ограничивает сферу применения. Также замечена чувствительность к скачкам и переходным процессам в сети.

Электронные

Электронные трансформаторы отличаются принципом работы, так как в них происходит полупроводниковое преобразование электрической энергии. Помимо этого они комплектуются устройством плавного пуска, контроля рабочих температур, перегрузки и прочими защитами.

Также к их преимуществам следует отнести:

  • Относительно малую шумовую нагрузку, производимую во время работы;
  • Компактность – габарит этого трансформатора для галогенных ламп значительно меньше;
  • Адаптация к работе на холостом ходу.

За счет внедрения разнообразных технологий импульсные преобразователи обеспечивают более долгосрочную службу галогеновых лампочек, чем обмоточные трансформаторы. Однако имеют и некоторые недостатки: относительно большая стоимость, меньшая надежность и ограничение по минимальной мощности.

Выбор физических параметров трансформатора

Определившись с типом трансформатора для галогенных ламп, необходимо выбрать нужную разность потенциалов и номинал. Напряжение на входе каждого из них составляет 220В, однако для подключения галогенных осветительных приборов номинал может варьироваться на 6, 12 или 24 Вольта. Поэтому напряжение нужно подбирать исходя из характеристик ламп, которые вы будете использовать.

Величина мощности выбирается по принципу, не менее требуемой для питания электроламп. При выборе номинала трансформатора выходную мощность преднамеренно увеличивают для запаса электрической прочности. В противном случае может произойти перегрев, полное отключение или даже выход со строя.

Для расчета вам необходимо учитывать следующие параметры:

  • Мощность одной лампы;
  • Число подключаемых к трансформатору ламп;
  • Схема подключения.

Для примера рассмотрим вариант подключения девяти электрических ламп с мощностью в 10 Вт. Исходя из этого, вам понадобиться 9 × 10 = 90 Вт, а с учетом запаса прочности 90 + 9 = 99 Вт, соответственно, необходимо выбирать электромагнитные или электронные устройства не менее 100 Вт. После этого составляется схема освещения на галогенных светильниках.

Варианты и схемы подключения

Следует сразу оговориться, что будет практичнее, если в схемах подключения вы будете использовать  параллельное соединение ламп, чтобы к каждому прибору освещения подводилось напряжение от низковольтного импульсного источника. Первый вариант питания галогенных светильников будет предусматривать одинаково параллельное включение к одному трансформатору всех приборов освещения.

Рис. 2. Схема параллельного включения

Как видите на схеме,  питание от внешней сети подводится к входу трансформатора, который обозначается как Input, а с выходных клемм (Output)  снимается пониженное напряжение 12В.

Далее вывод каждой из клемм подводится к точкам A и B на схеме, от которых они соединяются с контактами ламп, как показано на рисунке.

 В этом случае каждая лампа имеет независимое питание и при перегорании любой из них остальные продолжат светиться, но все они будут зависеть от исправности источника.

Также существует схема включения нескольких групп от разных импульсных блоков. В качестве примера мы рассмотрим схему из двух устройств и четырех низковольтных галогенных ламп для каждого из них.

Рис. 3. Схема включения на несколько групп

Как видите на рисунке, здесь применяется два трансформатора, между которыми разделяется потребляемая мощность от ламп. Преимуществом этой схемы является возможность независимого включения каждой группы осветительных приборов.

Выключатель рассчитан на две клавиши, отдельно для каждого преобразователя, но можно использовать один сразу для обеих групп.

Такой метод позволяет взять трансформатор для галогенных ламп вдвое меньшей мощности для каждой группы, но и требует больших затрат на реализацию схемы.

Рекомендации и советы

При монтаже трансформатора для галогенных ламп необходимо учитывать ряд нюансов, которые помогут вам избежать неприятных ошибок и их последствий:

  • подключая высокую и низкую сторону, не перепутайте выводы, иначе агрегат придется выбросить – Input ввод для высокой стороны 220В, Output – вывод с низкой, могут иметь сокращение In и Out или PRI и SEC соответственно;

Рис. 4. Пример обозначения входа и выхода на трансформаторе

  • трансформаторы в процессе эксплуатации сильно греются, поэтому галогенные лампы должны располагаться не менее чем в 200мм от них;
  • если трансформатор будет располагаться в нише, то объем пространства для одного устройства должен быть не менее 12л, иначе он будет перегреваться при номинальных нагрузках;
  • во избежание возгорания трансформатор обязательно устанавливается на пластину из негорючего материала;
  • диммер плохо совмещается с импульсным током, поэтому для регулировки яркости светового потока выбирайте специальные модели трансформаторов, на которых указана возможность диммирования, пример такого обозначения приведен на рисунке:

Рис. 5. Диммируемый трансформатор

Использованная литература

  • Вугман С.М., Волков В.И. «Галогенные лампы накаливания» 1980
  • Мироненков В.В., Петрова Н.Л. «Газосветные установки» 1979
  • Оболенцев Ю.Б., Гиндин Э.Л. «Электрическое освещение общепромышленных помещений» 1990
  • И.И. Байнева «Моделирование галогенных ламп накаливания» 2012

Блок питания галогеновых ламп

Часто самые различные электроприборы и осветительная техника не предназначена для подключения к существующей сети В или В. В таком случае требуется установка блока питания, преобразующего напряжение, или трансформатора, как в случае с галогеновыми лампами. Некоторые типы галогеновых ламп требуют установки преобразующих трансформаторов в схему подключения. Такие трансформаторы не только конвертируют напряжение питания, но и выступают защитным устройством, обеспечивающим безопасный розжиг, горение.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Блок питания 220 на 12 вольт или как я лоханулся. Распаковка. Тест. Посылка из Китая. Алиэкспресс.

Используем электронный трансформатор для эффективной работы галогенных ламп


Применение электронного трансформатора Для того чтобы улучшить условия электробезопасности систем освещения в некоторых случаях рекомендуется использование ламп не на напряжение В, а значительно ниже. Как правило, такое освещение устраивается во влажных помещениях: подвалах, погребах, ванных комнатах. Блок питания для галогеновых ламп, работающих от напряжения 12 вольт, необходим.

Блоки питания. Аккумуляторами на 12 Вольт. Группы галогенных ламп. Для этих целей в настоящее время применяются в основном галогенные лампы с рабочим напряжением 12В. Питание таких ламп осуществляется через электронные трансформаторы, о внутреннем устройстве которых будет рассказано несколько позже. А пока несколько слов о штатном использовании этих устройств.

Все достаточно просто и понятно. Электронные трансформаторы допускают регулирование яркости с помощью диммеров тиристорных регуляторов конечно же со стороны входного напряжения.

К одному диммеру допускается подключение сразу нескольких электронных трансформаторов. Естественно, возможно и включение без регуляторов. Типовая схема включения электронного трансформатора показана на рисунке 1. Типовая схема включения электронного трансформатора. К достоинствам электронных трансформаторов, прежде всего, следует отнести их малые габариты и вес, что позволяет устанавливать их практически где угодно.

Некоторые модели современных осветительных приборов, рассчитанные на работу с галогенными лампами, содержат встроенные электронные трансформаторы, иногда даже по несколько штук. Такая схема применяется, например, в люстрах. Известны варианты, когда электронные трансформаторы устанавливаются в мебели для устройства внутренней подсветки полок и вешалок.

Для устройства освещения помещений трансформаторы могут устанавливаться за подвесным потолком или за гипсокартонными плитами стенных покрытий в непосредственной близости от галогенных ламп. При этом длина соединительных проводов между трансформатором и лампой не более 0,5 — 1 метра, что обусловлено большими токами при напряжении 12В и мощности 60Вт ток в нагрузке не менее 5А , а также высокочастотной составляющей выходного напряжения электронного трансформатора.

Индуктивное сопротивление провода увеличивается с увеличением частоты, а также его длины. В основном длина и определяет индуктивность провода. При этом общая мощность подключенных ламп, не должна превышать указанную на этикетке электронного трансформатора.

Электронный трансформатор для галогенных ламп фирмы OSRAM Вот, пожалуй, и все, что можно сказать о типовом использовании этого устройства. Есть одно условие, о котором не следует забывать: электронные трансформаторы не запускаются без нагрузки.

Поэтому лампочка должна быть подключена постоянно, а включение освещения производится выключателем, установленным в первичной сети. Но на этом область применения электронных трансформаторов не ограничивается: несложные доработки, часто не требующие даже вскрытия корпуса, позволяют на базе электронного трансформатора создавать импульсные блоки питания ИБП. Но прежде, чем говорить об этом, следует познакомиться с устройством собственно трансформатора поближе.

В следующей статье мы более подробно познакомимся с одним из электронных трансформаторов фирмы Taschibra, а также проведем небольшое исследование работы трансформатора. Как устроен электронный трансформатор? Внешне электронный трансформатор представляет собой небольшой металлический, как правило, алюминиевый корпус, половинки которого скреплены всего двумя заклепками. Впрочем, некоторые фирмы выпускают подобные устройства и в пластиковых корпусах.

Чтобы посмотреть, что же там внутри, эти заклепки можно просто высверлить. Такую же операцию предстоит проделать, если намечается переделка или ремонт самого устройства. Хотя при его низкой цене куда проще пойти и купить другое, чем ремонтировать старое. И все же нашлось немало энтузиастов, которые не только сумели разобраться в устройстве прибора, но и разработать на его основе несколько импульсных блоков питания.

Принципиальная схема к устройству не прилагается, как и ко всем нынешним электронным устройствам. Но схема достаточно проста, содержит малое количество деталей и поэтому принципиальную схему электронного трансформатора можно срисовать с печатной платы.

На рисунке 1 показана снятая подобным образом схема трансформатора фирмы Taschibra. Очень похожую схему имеют преобразователи, выпускаемые фирмой Feron. Отличие лишь в конструкции печатных плат и типах используемых деталей, в основном трансформаторов: в преобразователях Feron выходной трансформатор выполнен на кольце, в то время как в преобразователях Taschibra на Ш-образном сердечнике.

В обоих случаях сердечники выполнены из феррита. Следует сразу отметить, что кольцеобразные трансформаторы при различных доработках прибора лучше поддаются перемотке, чем Ш — образные.

Поэтому, если электронный трансформатор приобретается для опытов и переделок, лучше купить прибор фирмы Feron. При использовании электронного трансформатора лишь для питания галогенных ламп название фирмы — изготовителя значения не имеет. Единственное, на что следует обратить внимание, это на мощность: электронные трансформаторы выпускаются мощностью 60 — Вт. Схема электронного трансформатора фирмы Taschibra Краткое описание схемы электронного трансформатора, ее достоинства и недостатки Как видно из рисунка, устройство представляет собой двухтактный автогенератор, выполненный по полумостовой схеме.

Два плеча моста выполнены на транзисторах Q1 и Q2, а два других плеча содержат конденсаторы C1 и C2, поэтому такой мост называется полумостом. В одну из его диагоналей подается сетевое напряжение, выпрямленное диодным мостом, а в другую включена нагрузка. В данном случае это первичная обмотка выходного трансформатора. По очень похожей схеме выполнены электронные балласты для энергосберегающих ламп, но в них вместо трансформатора включен дроссель, конденсаторы и нити накала люминесцентных ламп.

Для управления работой транзисторов в их базовые цепи включены обмотки I и II трансформатора обратной связи Т1. Обмотка III это обратная связь по току, через нее подключена первичная обмотка выходного трансформатора. Управляющий трансформатор Т1 намотан на ферритовом кольце с внешним диаметром 8 мм. Базовые обмотки I и II содержат по 3. Все три обмотки выполнены проводами в разноцветной пластиковой изоляции, что немаловажно при экспериментах с устройством.

На элементах R2, R3, C4, D5, D6 собрана цепь запуска автогенератора в момент включения всего устройства в сеть.

Выпрямленное входным диодным мостом напряжение сети через резистор R2 заряжает конденсатор C4. Когда напряжение на нем превысит порог срабатывания динистора D6, последний открывается и на базе транзистора Q2 формируется импульс тока, который запускает преобразователь.

Дальнейшая работа осуществляется без участия цепи запуска. Следует заметить, что динистор D6 двухсторонний, может работать в цепях переменного тока, в случае постоянного тока полярность включения значения не имеет.

Сетевой выпрямитель выполнен на четырех диодах типа 1N, резистор R1 с сопротивлением 1Ом и мощностью 0, Вт используется в качестве предохранителя. После выпрямительного моста не предусмотрено даже просто конденсатора для сглаживания пульсаций выпрямленного сетевого напряжения.

Выходное напряжение прямо с выходной обмотки трансформатора также безо всяких фильтров подается прямо на нагрузку. Отсутствуют цепи стабилизации выходного напряжения и защиты, поэтому при коротком замыкании в цепи нагрузки сгорают сразу несколько элементов, как правило, это транзисторы Q1, Q2, резисторы R4, R5, R1. Ну, может и не все сразу, но хотя бы один транзистор точно.

И несмотря на такое, казалось бы, несовершенство схема себя вполне оправдывает при использовании его в штатном режиме, то есть Для питания галогенных ламп. Простота схемы обуславливает ее дешевизну и широкую распространенность устройства в целом.

Исследование работы электронных трансформаторов Если к электронному трансформатору подключить нагрузку, например, галогенную лампу 12В х 50Вт, а к этой нагрузке подключить осциллограф, то на его экране можно будет увидеть картинку, показанную на рисунке 2.

В точности такая же картинка будет получена для преобразователей другой мощности или другой фирмы, ведь схемы практически не отличаются друг от друга. Если к выходу выпрямительного моста подключить электролитический конденсатор C4 47uFхV, как показано пунктирной линией на рисунке 4, то напряжение на нагрузке примет вид, показанный на рисунке 4. Напряжение на выходе преобразователя после подключения конденсатора C5 Однако, не следует забывать о том, что ток зарядки дополнительно подключенного конденсатора C4 приведет к перегоранию, причем достаточно шумному, резистора R1, который используется в качестве предохранителя.

Поэтому этот резистор следует заменить более мощным резистором с номиналами 22Омх2Вт, назначение которого просто ограничить ток зарядки конденсатора С4.

В качестве же предохранителя следует использовать обычный плавкий предохранитель на 0,5А. Нетрудно заметить, что модуляция с частотой Гц прекратилась, остались лишь высокочастотные колебания с частотой около 40КГц. Даже если при этом исследовании и нет возможности воспользоваться осциллографом, то этот неоспоримый факт можно заметить по некоторому увеличению яркости лампочки.

Это говорит о том, что электронный трансформатор вполне пригоден для создания несложных импульсных блоков питания. Тут возможно несколько вариантов: использование преобразователя без разборки, только за счет добавления наружных элементов и с небольшими изменениями схемы, совсем небольшими, но придающими преобразователю совсем иные свойства.

Но об этом более подробно мы поговорим в следующей статье. Как сделать блок питания из электронного трансформатора? После всего сказанного в предыдущей статье смотрите Как устроен электронный трансформатор? Однако это не совсем так. Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло.

Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи. Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора Схема такого блока питания показана на рисунке 1. Двухполярный блок питания для усилителя Блок питания изготовлен на основе электронного трансформатора мощностью Вт.

Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, выпрямительный мост VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом.

Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода — жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой. Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1.

Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.


Блоки питания для светодиодного оборудования

Электронный трансформатор ЭТ — импульсный сетевой блок питания, основное предназначение которого — питание галогенных ламп с напряжением 12 вольт. Такие трансформаторы вошли в моду совсем недавно. Китайские производители предлагают огромный выбор таких блоков питания. Мощность блоков от 40 до ватт в некоторых случаях и больше.

Блоки питания для галогенных ламп. Продажа, поиск, поставщики и магазины, цены в России.

Простой ИБП на основе электронного трансформатора

Подключение галогенных ламп в жилых помещениях, в магазинах и офисах принято выполнять при помощи понижающего трансформатора. Большинство таких ламп имеют рабочее напряжение 6, 12 или 24в, что позволяет использовать низковольтные электрические цепи. Проводка подобного типа имеет повышенный класс безопасности, особенно это касается влажных помещений, также все клеммы и разъемы находятся под низким напряжением, это предупреждает удары током при случайном касании оголенных выводов. Для осуществления монтажа схемы проводки, учитывающей галогенные источники света, используют трансформаторы обмоточного или электронного типа. Трансформатор с любым принципом действия используется для понижения напряжения до заданных значений, указанных на галогеновых лампах для дома. Существует два типа понижающих устройств:. Электромагнитные устройства в современных схемах электропроводки в частном доме или квартире используются редко. Это связано с тем, что трансформаторы такого типа имеют большую массу и размеры по сравнению с электронными понижающими приборами, из-за этого их проблематично размещать в различных нишах, например, потолочных. Недостатки : масса, габариты, может издавать слабый гул, при перепадах входящего напряжения пропорционально изменяет его параметры на выходных клеммах, то есть не удастся убрать пульсацию света. Автоматическая работа инфракрасного обогревателя зависит от специального устройства — терморегулятора, об особенностях разных схем установки которых можно прочитать здесь.

Трансформаторы для галогенновых ламп

Одними из популярных моделей осветительных приборов являются галогенные лампы, которые работают от напряжения 12В. Но для подключения таких решение к обычной электрической сети В нужны специальные преобразователи — электрические или электронные трансформаторы. Устаревшие модели — электрические решения, состоящие из двух медных обмоток. Современные модели — электронные варианты, которые могут работать в режиме мягкого пуска, имеют встроенную защиту от перегрузок и токов КЗ короткого замыкания.

Обратный звонок. Понижающие трансформаторы для галогенных ламп — это своего рода электромагнитные преобразователи тока исходного напряжения, в какой-либо другой.

С67. Трансформаторы для галогенных ламп. Блоки защиты ламп

Почему не подойдут трансформаторы для галогенных ламп? Выбирая оборудование светодиодного освещения или подсветки при обустройстве в своем доме, перед многими возникает проблема правильного выбора блока питания для обустраиваемой осветительной системы. Специалисты настоятельно советуют подключать к светодиодным приборам освещения только специализированные блоки питания. Ведь на первый взгляд они обладают меньшими размерами, они меньше стоят, а мощность и выходное напряжение у них такое же, как и у специализированных блоков питания, подключаемых к светодиодным системам освещения. Для начала немного теории. Тем же читателям, которым не интересны теоретические выкладки, мы рекомендуем переходить сразу к выводам по статье.

Электронный трансформатор (ознакомление)

Низковольтные источники света на сегодняшний день приобрели достаточно широкую популярность. Встраиваемые осветительные приборы с галогенными лампами часто встречаются в офисных помещениях, строениях частного сектора, в квартирах многоэтажек, в подсветке витрин магазинов и многих других местах, где требуется освещение. Главным достоинством такого осветительного прибора является длительный эксплуатационный ресурс и безопасность при использовании светильника, которая обусловлена низким уровнем напряжения. Но для подключения галогенных ламп на 12 вольт обязательно наличие правильно выбранного трансформатора. Низковольтный галогенный светильник может работать от сети переменного тока только через специальный адаптер питания — понижающий трансформатор. На сегодняшний день самыми популярными считаются электромагнитный и электронный трансформаторы для галогенных источников света. Электромагнитное адаптирующее устройство отличается большими габаритами и весом из-за чего ограничивается его сфера применения.

Плата электронного трансформатора для галогенных ламп Дроссель был выпаян из блока питания DVD проигрывателя, состоит из двух идентичных.

Трансформатор для галогенных ламп

By Maxim , November 6, in Импульсные источники питания, инверторы. Приветствую всех. Имею в арсенале несколько блоков питания от галогенных ламп. Так же имею желание заставить эти блоки питания работать при относительно небольших токах.

Трансформаторы для галогенновых ламп

ВИДЕО ПО ТЕМЕ: Схема электронного трансформатора

Далее, Вы связываетесь по тел. Если по какой-либо причине Вам не подошел осветительный прибор, Вы имеете право его вернуть в течение 14 дней. Для этого Вам надо сохранить упаковку и товарный вид изделия и связаться с менеджером магазина по телефону, чтобы уточнить варианты возврата. В этом случае менеджер сообщит данные, необходимые для отправки, и уточнит, как вернуть Вам деньги на банковскую карточку, либо переводом. Деньги возвращаются после получения и проверки товара. Доставку товара в оба конца при этом оплачивает покупатель.

Недавно в магазине на глаза попался электронный трансформатор для галогенных ламп. Блок был куплен для опытов.

Все большую популярность получает комплексное освещение помещений с точечными светильниками. При создании гармоничного дизайна часто используются галогенные лампы, которые обладают отличной цветопередачей и имеют постоянную яркость светового потока весь срок своей службы. Также они одинаково подходят для бытового и промышленного освещения за счет щадящего режима свечения, не вредящего зрению. Низковольтные лампы предпочтительнее, поскольку предоставляют дополнительную безопасность. Они нередко используются в места с повышенной влажностью, таких как ванные комнаты, погреба, подвальные помещения и т.

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео.


Блок питания для галогенных ламп — классификация, расчет и подключение_

Галогеновые лампы с каждым днем все активнее применяются в украшении различных торговых комплексов и витрин. Яркая цветовая гамма, насыщенность в передаче изображения придают им все большую популярность. Срок их службы намного больше, чем у обычных ламп. При этом они могут длительно работать без выключения. В галогенках используются нити накала, но процесс свечения, в сравнении с лампами накаливания, у них отличается благодаря наполнению баллона особым составом. Такие лампочки используются в различных светильниках, люстрах, кухонной мебели и бывают 220 и 12 вольтовые. Блок питания для галогенок напряжением 12 вольт необходим, потому что при прямом их включении в электрическую сеть произойдет короткое замыкание.

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает.

Классификация

Трансформаторы бывают электромагнитными и электронными (импульсными). Электромагнитные доступны по цене, надежны, их можно сделать при желании своими руками. У них есть и свои минусы – приличный вес, большие габаритные размеры, повышение температуры при длительной работе. А перепады напряжения значительно сокращают срок работы галогеновых ламп.

Электронные трансформаторы весят намного меньше, у них стабильное напряжение на выходе, они сильно не нагреваются, могут иметь защиту от КЗ и плавный пуск, увеличивающий срок эксплуатации лампы.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов,
  • RC цепь с динистором, чтобы запустился генератор,
  • генератор, собранный на полумостовой схеме,
  • трансформатор, понижающий входное напряжение,
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Переделка блока питания своими руками

Для работы галогенных ламп начали применяться импульсные источники тока с высокочастотным преобразованием напряжения. При домашнем изготовлении и налаживании довольно часто сгорают дорогостоящие транзисторы. Так как питающее напряжение в первичных цепях достигает 300 вольт, то к изоляции предъявляются очень высокие требования. Все эти трудности вполне можно обойти, если приспособить готовый электронный трансформатор. Он применяется для питания 12-вольтовых галогенок в подсветке (в магазинах), которые запитываются от стандартной электросети.

Существует определенное мнение, что получить самодельный импульсный блок питания – дело нехитрое. Можно лишь добавить выпрямительный мост, сглаживающий конденсатор и стабилизатор напряжения. На самом деле все обстоит куда сложнее. Если к выпрямителю подключить светодиод, то при включении можно зафиксировать только одно зажигание. Если выключить и включить преобразователь в сеть снова, повторится еще одна вспышка. Чтобы появилось постоянное свечение, необходимо к выпрямителю подвести дополнительную нагрузку, которая, отбирая полезную мощность, превращала бы ее в тепло.

Один из вариантов самостоятельного изготовления импульсного блока питания

Описываемый блок питания вполне можно изготовить из электронного трансформатора мощностью 105 Вт. Практически этот трансформатор напоминает компактный импульсный преобразователь напряжения. Для сборки дополнительно понадобится согласующий трансформатор Т1, сетевой фильтр, выпрямительный мост VD1-VD4, выходной дроссель L2.

Схема двухполярного блока питания

Такой аппарат стабильно функционирует длительное время с усилителем низкой частоты мощностью 2х20 ватт. При 220 В и силе тока 0,1 А выходное напряжение будет 25 В, при увеличении силы тока до 2 ампер напряжение падает до 20 вольт, что считается нормальной работой.

Ток, минуя выключатель и предохранители FU1 и FU2, следует на фильтр, защищающий цепь от помех импульсного преобразователя. Середину конденсаторов С1 и С2 соединяют с экранирующим кожухом блока питания. Потом ток поступает на вход U1, откуда с выходных клемм пониженное напряжение подается на согласующий трансформатор Т1. Переменное напряжение с другой (вторичной обмотки) выпрямляет диодный мост и сглаживает фильтр L2C4C5.

Самостоятельная сборка

Трансформатор Т1 изготавливается самостоятельно. Число витков на вторичной обмотке влияет на выходное напряжение. Сам трансформатор выполнен на кольцевом магнитопроводе К30х18х7 из феррита марки М2000НМ. Первичная обмотка состоит из провода ПЭВ-2 диаметром 0,8 мм, сложенного вдвое. Вторичная обмотка состоит из 22 витков провода ПЭВ-2, сложенного вдвое. При соединении конца первой полуобмотки с началом второй получаем среднюю точку вторичной обмотки. Дроссель также изготавливаем самостоятельно. Его наматывают на таком же ферритовом кольце, обе обмотки содержат по 20 витков.

Выпрямительные диоды располагаются на радиаторе площадью не менее 50 кв.см. Обратите внимание, что диоды, у которых аноды соединены с минусовым выходом, изолируются от теплоотвода слюдяными прокладками.

Сглаживающие конденсаторы С4 и С5 состоят из трех параллельно включенных К50-46 емкостью по 2200 мкФ каждый. Такой способ применяется, чтобы снизить общую индуктивность электролитических конденсаторов.

На входе блока питания лучше будет установить сетевой фильтр, но возможна работа и без него. Для дросселя сетевого фильтра можно использовать ДФ 50 Гц.

Все детали блока питания располагаются навесным монтажом на плате из изоляционного материала. Полученная конструкция помещается в экранирующий кожух из тонкой листовой латуни или луженой жести. В нем не забудьте просверлить отверстия для вентиляции воздуха.

Правильно собранный блок питания не нуждается в налаживании и начинает сразу же работать. Но на всякий случай можно проверить его работоспособность с помощью подключения на выход резистора сопротивлением 240 Ом, мощностью рассеяния 3 Вт.

Рекомендации по использованию трансформатора

Понижающие трансформаторы для галогенных ламп во время работы выделяют очень большое количество тепла. Поэтому необходимо соблюдать несколько требований:

  1. Запрещается подключение блока питания без нагрузки.
  2. Размещайте блок на негорючей поверхности.
  3. Расстояние от блока до лампочки не менее 20 сантиметров.
  4. Для лучшей вентиляции установите трансформатор в нише объемом не менее 15 литров.

Блок питания необходим для галогеновых ламп, работающих от напряжения 12 вольт. Он является своеобразным трансформатором, понижающим входные 220 В до нужных значений.

Трансформатор, блок питания для галогенных ламп | Festima.Ru

Полный асcортимeнт Зaпчастей и комплeктующих для pемoнтa и обслуживания Baшeгo гaзoвoгo котла. Всeгда наличиe нa складe в Кaзaни! Без выxодных! Доcтавка пo Kaзaни бесплaтно! При заказe зaпчастeй по этому oбъявлeнию, скидкa на дoгoвоp техничeскoго oбcлуживaния 500 pуб! Гарантия нa зaпчаcти 6 месяцев! СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ПРОФЕССИОНАЛОВ! о АF,АR,АV Вентиляторы дымоудаления и запчасти о АР Прессостаты воздуха о ВЕ Битермические теплообменники о СВ Платы управления о ЕМ Теплообменники основные о ЕS Теплообменники вторичные ГВС о ЕТ Расширительные баки о ЕV Сбросные предохранительные клапана о FF Краны подпитки о FS Датчики протока воды (два провода) о FSЕ Датчики расхода воды (три провода) о FSR Накладные датчики холла (датчики расхода воды без турбинки) о FSТ Турбинки датчиков расхода о GGТ Гидроузлы трехходового клапана о GМ Моторы трехходового клапана о GVР Запчасти для газовых клапанов о GV Газовые клапана о IВ Блоки розжига о IЕ Электроды розжига, ионизации о IТ Трансформаторы розжига о LТ Термостаты перегрева о МА,МТ Манометры, термоманометры о РА Воздухоотводчики о РМ Циркуляционные насосы в сборе о РН Двигатели циркуляционных насосов о РР Запчасти циркуляционных насосов о РS Датчики давления воды о РSЕ Датчики давления воды электронные о SА,SВ,SС,SF,SМ,SS,SТ Запчасти для напольных газовых котлов о ТК,ТН,ТN,ТR Трехходовые клапана, картриджи и запчасти о ТSН Датчики температуры накладные о ТS Датчики температуры погружные о ZС Клипсы, хомуты о ZК Инструмент о ZL Кабели, провода о ZР,ZR Прокладки и уплотнительные кольца о ZZ Прочее о ZТ Комнатные термостаты • Котельное оборудование • Газовые колонки • Комнатные термостаты • Стабилизаторы напряжения АLРЕNНОFF, АLРНАТНЕRМ, АRDЕRIА, АRISТОN, АТТАСК, ВАLТGАZ, ВАLТUR, ВАХI, ВЕRЕТТА, ВIАSI, ВОSСН, ВUDЕRUS, СЕLТIС, СНАFFОТЕАUХ, DАЕWОО, DЕ DIЕТRIСН, Е.С.А., ЕLЕСТRОLUХ, ЕLSОТНЕRМ, FЕDЕRIСА ВUGGАТI, FЕRRОLI, FОNDIТАL, GАZЕСО, GАZLUХ, НАIЕR, НЕС, НI-ТНЕRМ, НYDRОSТА, IММЕRGАS, IТАLТНЕRМ, JUNКЕRS ВОSСН, КЕNТАТSU, КIТURАМI, КОRЕАSТАR, LАМВОRGНINI, LЕМАХ, МАSТЕR GАS, МIZUDО, МОNLАN, МОRА ТОР, NАVIЕN, NЕVАLUХ, NЕVА ТRАNZIТ, NОVА FLОRIDА, ОАSIS, РОLYКRАFТ, РRОТНЕRМ, RINNАI, RОС, RОСТЕRМ, RОDА, RОYАL ТНЕRМО, SАМSUNG ВОILЕR, SАUNIЕR DUVАL, SF, ТЕRМЕТ, ТIВЕRIS, ТНЕRМЕХ, VАILLАNТ, VIЕSSМАNN, WЕLLЕR, WЕSТЕN, WЕSТЕR, WОLF, UNIСАL

Ремонт и строительство

Трансформатор для галогенных ламп 12 вольт: выбор, сборка

Что такое трансформатор для ламп

Производится два вида понижающих приборов:

электромагнитные (типичные) — функционируют в соответствии с принципом электромагнитной индукции;

Электромагнитный трансформатор

электронные — вид трансформаторов, изменяющих напряжение с помощью транзисторных схем.

Электронное преобразовательное устройство

Первые только изредка применяются в частных домах или квартирах, поскольку отличаются немалой массой и габаритами в сравнении с электронными аналогами.

В электронных трансформаторах для функционирования галогенных ламп предусмотрены полупроводниковые элементы (участвуют в понижении напряжения к нужному уровню). К тому же подобные приборы позволяют получить выходящее постоянное напряжение даже в случае значительных колебаний входящего.

Схема электронного преобразователя

Понижающие трансформаторы известных производителей обладают системой защиты от перегрузок, а также коротких замыканий. Тепловыделение подобных устройств существенно ниже, если сравнивать с электромагнитными аналогами. Некоторые модели снабжены конструкцией равномерной подачи напряжения. Последнее повышает продолжительность работы лампочек.

Сборка по схеме своими руками

Каждый электронный трансформатор содержит инструкцию, в которой указаны правила подключения. Основным является то, что между лампочкой и пробором должен быть кабель не более 1,5 метра в длину, 1 кв.мм сечением. Если не выполнить данное условие, яркость будет потеряна, будет происходить перегрев провода.

При подсоединении от двух галогенных ламп используется схема-звезда. Она подразумевает подключение отдельного кабеля к каждой лампочке, при этом его длина одинаковая. При расстоянии более 1,5 метра следует увеличивать сечение кабеля. Предусматривается тот факт, что расстояние до лампочки не должно быть меньше 20 см.

Оптимальный вариант для выключателя с одной или двумя клавишами – деление лампочек на две идентичные части. Подключение проводится к двум преобразователям 12В. Каждый из приборов проводится через отдельную проводку. Такое соединение в коробке распределения облегчит ремонт (при необходимости).

На рисунке приведена схема подключения точечных галогенных светильников 12В.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие

Трансформаторы с регулятором

Трансформатор 220-12 В с регулятором устроен довольно просто. Реле в данном случае стандартно используется проводного типа. Непосредственно регулятор устанавливается с модулятором. Для решения проблем с обратной полярностью имеется кенотрон. Использоваться он может с обкладкой или без нее.

Триггер в данном случае подсоединяется через проводники. Указанные элементы способны работать только с импульсными расширителями. В среднем параметр проводимости у трансформаторов данного типа не превышает 12 мк

Также важно отметить, что показатель отрицательного сопротивления зависит от чувствительности модулятора. Как правило, он не превышает 45 Ом

Подключение устройства в схему электроснабжения галогенных светильников

В случае подсоединения трансформаторов рекомендуется придерживаться схематического расположения отдельных источников света, когда их количество более двух. К тому же требуется выбрать подходящее место для установки преобразователя.

Основные требования к подключению

Инструкции любых трансформаторов непременно содержат главные правила, ими запрещается пренебрегать при выполнении монтажных работ:

  • Понижающий прибор и лампу требуется соединять с кабелем, длина которого не превышает 1,5 м, а сечение от 1 мм2. В ином случае яркость лампы будет недостаточной, свет — неравномерным, есть риск нагревания провода.
  • Если подключается два и больше светильников, требуется непременно применить схему «звезда»: к каждой лампе подсоединяется отдельный кабель. Последние должны быть одинаковые.
  • Если предполагается длина кабеля больше 1,5 м, то его сечение увеличивается в пропорциональном соотношении.
  • Расстояние до светильника не меньше 0,2 м.
  • Корректно высчитать мощность ламп, соответствие последних понижающему электроприбору.

Внимание! Категорически запрещается включать трансформаторы без нагрузки

Требования по установке

Допустимо использование нескольких схем подключения галогенных ламп через трансформатор:

Одна из самых простых: применяется один выключатель (с 1-ой клавишей) и трансформатор. Проводники крепятся на клеммы «входа» L и N. Для присоединения ламп на «выходе» предпочитают провода из меди (минимальное сечение 1,2 мм2). Подключение галогенных ламп 12В — параллельное.

Простая схема подключения понижающего прибора

Разделение общего количества светильников на две одинаковые половины, подсоединение к разным трансформаторам. В вышеописанном примере 4 лампы по 40 Вт, мощность 2-х — 80 Вт. Следственно, следует использовать трансформатор 105 Вт. Рекомендуется отдельный понижающий прибор питать своими проводами. Когда последние соединятся в распределительном боксе, это существенно облегчит возможный в будущем ремонт. При подключении допустимо применить 1-клавишный или 2-клавишный выключатель. После выполнения всех работ лампочки возможно запитать раздельно. Когда один трансформатор выйдет из рабочего состояния, это позволит сберечь денежные средства и оставить систему работающей.

Схема подключения двух галогенных лампочек (и более)

Важная информация! Трансформаторы во время работы нагреваются. Поэтому их нужно устанавливать на поверхностях из материалов, которые устойчивы к воспламенению, не плавятся.

Эксплуатационный ресурс, надёжность галогенных и светодиодных ламп перекроют издержки на монтаж трансформаторного устройства. А защитные свойства последнего обеспечат более продолжительную службу таких источников света, чем обычных лампочек накаливания.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, – так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает.

Как выбрать трансформатор для галогенных ламп?

Выбор трансформатора следует начинать с определения его типа. Для создания системы освещения рекомендуется использовать более современные электронные устройства, так как они имеют компактные размеры, большую надежность и идеально подходят для использования в домашних условиях.

Следующий шаг – выбор мощности трансформатора. В данном случае главное – правильно рассчитать будущую нагрузку, которую будут создавать подключенные к нему электроприборы. Слишком большая мощность будет нецелесообразной, а низкая мощность может привести к постоянным перегревам и повышению шанса на возникновение короткого замыкания.

Трансформатор для галогенных ламп

Для определения оптимальной мощности трансформатора следует просуммировать мощности ламп, которые будут к нему подключены. К примеру, вы планируете создать систему освещения в ванной, которая должна состоять из четырех галогенных ламп (мощностью 35 Вт каждая). Суммарная мощность в данном случае будет составлять 140 Вт. Не рекомендуется брать трансформатор с мощностью «впритык» к требуемой, лучше оставить некоторый запас на тот случай, если потребуется подключение дополнительного освещения или нужно будет установить дополнительную лампу. В данном случае принимаем коэффициент запаса 0.15, что означает добавление минимум 15% к мощности трансформатора. В результате получаем показатель 161 Вт. Так как стандартные мощности выпускаемых устройств составляют 50, 60, 70, 105, 150, 200, 250, 300 и 400 Вт, оптимальное значение для нас – 200 Вт.

Для проверки общей надежности системы часто используют трансформатор нагрузочный НТ-12, позволяющий определить максимальную нагрузку на систему, при которой срабатывает автоматическая защита от короткого замыкания. Но для приборов небольшой мощности (с правильно подобранными параметрами трансформатора) угроза короткого замыкания очень незначительна.

Немного о трансформаторах

Рис.1: Трансформатор.

Прежде, чем приступить к основной части, сделаю небольшое напоминание о том, что же такое электронный трансформатор и для чего он предназначен. Трансформатор используется для преобразования одной переменной напряжения в другую (например, 220 вольт в 12 вольт). Это свойство электронного трансформатора очень широко используется в радиоэлектронике. Существуют однофазные (ток течёт по двум проводам – фаза и «0») и трёхфазные (ток течёт по четырём проводам – три фазы и «0») трансформаторы. Основным значимым моментом при использовании электронного трансформатора является то, что при понижении напряжения сила тока в трансформаторе увеличивается.

У трансформатора имеется как минимум одна первичная и одна вторичная обмотка. Питающее напряжение подключается на первичную обмотку,  ко вторичной обмотке подключается нагрузка, либо снимается выходное напряжение. В понижающих трансформаторах провод первичной обмотки всегда имеет меньшее сечение, чем провод вторичной. Это позволяет увеличить количество витков первичной обмотки и как следствие её сопротивление. То есть при проверке мультиметром первичная обмотка показывает сопротивление в разы большее, чем вторичная. Если же по какой-то причине диаметр провода вторичной обмотки будет небольшим, то по закону Джоуля-Лэнса вторичная обмотка перегреется и спалит весь трансформатор. Неисправность трансформатора может заключаться в обрыве и или КЗ (коротком замыкании) обмоток. При обрыве мультиметр показывает единицу на сопротивлении.

Расчет и выбор трансформаторов

Перед тем, как начинать работать с устройством, нужно рассчитать потребную мощность трансформатора

В данный момент в любом электротехническом магазине можно купить приборы с разной мощностью, поэтому очень важно подобрать трансформатор именно по своим параметрам. Нужно быть максимально точным, т.к

покупать мощное устройство не рационально, а слишком слабый прибор может не справляться с поставленной задачей.

Предлагаем рассмотреть, как правильно выбрать трансформатор для галогенных ламп:

Допустим, что у Вас в спальне установлено 7 точечных галогенных лампочек, с мощностью 30 Вт и напряжением 12 вольт. Сумма мощности всех осветительных приборов будет 210 Ватт, для подстраховки добавляем к этому значению 10-15 процентов погрешности или запаса мощности – получится 241 Ватт. Получается, что нужно купить понижающий трансформатор для защиты галогенных ламп не меньше, чем с мощностью 240 Ватт, характеристиками 12v (такие устройства есть марки OSRAM, Feron, Philips). Под эти характеристики подходит круглый электромагнитный трансформатор с мощностью в 250 Ватт (250w), напряжение 220/12.

Фото – Трансформатор для галогенных ламп

Всегда выбирайте ближайшее большее значение, от этого зависит безопасность Вашей семьи и долговечность ламп.

Блок питания

Под блоком питания подразумевается довольно обширный спектр электронных приборов, предназначенных для передачи пониженного выпрямленного напряжения от внешней сети к слаботочным потребителям. Как правило, блок питания состоит из понижающего трансформатора, который снижает привычные 220 В до нужного номинала. Затем передается на выпрямительный блок, преобразующий переменное напряжение в постоянное.

Пример работы блока питания приведен на рисунке ниже:

Рис. 1. Принцип работы блока питания

Современные модели содержат дополнительные блоки, повышающие эффективность агрегата, их применяют для питания:

  1. всех составляющих компьютерных блоков от сетевого фильтра;
  2. подзарядки устройств от сети блоком питания;
  3. организации безопасного электроснабжения через блок питания в помещениях, где  недопустимо использование 220В по соображениям безопасности;
  4. подключения ленты со светодиодами от блока;
  5. для питания бытовых и промышленных приборов.

Теоретически блок питания это универсальное устройство, которое может подходить сразу для нескольких целей. Однако на практике существует и узкая специализация, к примеру, компьютерные БП оснащаются системой принудительного охлаждения, поэтому блоки питания без куллера не подойдут для этих целей. 

В каждом конкретном случае блок питания подбирается не только по назначению, но и должен учитывать номинал питающего напряжения  и мощность запитываемой нагрузки. Напряжение блока питания должно точно соответствовать номиналу питаемого устройства, а мощность должна быть не меньше, желательно даже иметь определенный запас.

Классический блок питания обладает целым рядом преимуществ:

  • простота конструкции;
  • высокая надежность агрегата;
  • низкая себестоимость.

Однако вместе с тем блоки питания имеют большие габариты и вес, что усложняет их эксплуатацию в определенных местах, и относительно низкий КПД, так как значительная часть электрической энергии тратится на потери в стали.

Расчет и выбор устройства

Перед началом работы с трансформатором необходимо правильно рассчитать его мощность. Так как сейчас на рынке присутствует большое количество устройств этого типа, обладающих различными характеристиками, ошибиться в выборе довольно легко. Дело в том, что при недостаточной мощности прибор не сможет решить поставленную задачу, а при высоком показателе увеличится расход энергии.

При этом рассчитать требуемую мощность на практике очень просто. Если предположить, что в помещении установлено шесть ламп по 30 Вт при напряжении в 12 В, то общая мощность всех осветительных элементов составит 180 Вт.

Расчет и выбор трансформаторов

В продаже преобразователи различной мощности. Перед покупкой, надо осуществить вычисление, какой мощности нужен преобразователь. Надо определиться, какое количество лампочек будет задействовано в освещении и какой энергии, а также схему освещения. Зная нужное количество лампочек, определяется общая мощность.

В продаже 12В преобразователи имеются с мощностями: 60, 70, 105, 150, 210, 250, 400.

Для примера возьмем комнату, которой установлено 11 галогенных лампочек по 12В с мощностью в 20 Вт. Если будут установлены на одну люстру с одним трансформатором, то надо 11*20+10%=242 Вт. То есть, покупать надо адаптер на 250 Вт. Если же лампочки поделены на две группы (5 и 6), то для группы в 5 лампочек нужен прибор 5*20+10%=110 Вт, для 6 лампочек 6*20+10%=132 Вт. То есть, для двух случаев целесообразно купить адаптер на 150 Вт. Такое округление из-за того, что мощность прибора не должна быть меньше вычисления.

При выборе из двух видов надо учесть, что электронные более легкие и малогабаритные, нешумные, содержат защиту от замыканий, перегрузок, более стабильны. Все эти преимущества способствуют увеличению работоспособности галогенных ламп.

Выбирая прибор надо учесть выходное напряжение (рабочее напряжение подключаемых ламп) и номинальную мощность (сумма мощностей всех ламп).

Большую роль играет и длина провода, соединяющего прибор с лампами. Она не должна быть длиннее, чем 3 метра. Чем больше длина, тем больше теряется мощности при передаче тока.

Виды и устройство трансформаторов

Понижающие трансформаторы для люстры предназначены, в первую очередь, для защиты источников света от резких скачков энергии. Используются они в основном для маленьких лампочек, рассчитанных на напряжение от 6 до 24 вольт. На сегодняшний день выпускается два типа:

  • Тороидальный (электромагнитный).
  • Импульсный (электронный).

Первый тип отличается простой конструкцией и обладает неплохими показателями мощности. Однако следует помнить и о довольно серьезных недостатках — большие масса и габариты. Не стоит забывать также о нагреве обмоток трансформатора, что негативно влияет на срок службы галогенных ламп. В результате устройства тороидального типа крайне редко используются в жилых помещениях.

https://youtube.com/watch?v=OU0utxh-BYo

Электронные девайсы обладают большим количеством положительных качеств, что способствует более широкому распространению. По сути, их единственным недостатком является сравнительно высокая стоимость. В то же время наличие у некоторых моделей дополнительного функционала, например, встроенной защиты от короткого замыкания, способствует увеличению срока эксплуатации.

Именно импульсные девайсы используются в ситуациях, когда лампы необходимо разместить в стенах или мебели. В отличие от тороидальных устройств, импульсные трансформируют энергию благодаря полупроводниковым радиодеталям. Использовать электронный трансформатор для галогенных ламп необязательно, но желательно. Это связано с увеличением срока работы осветительных элементов.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Базовый принцип работы

Электронное преобразовательное устройство предусмотрено для снижения мощности обычного электротока с 220-ти до 12 В. По сути, оно является двухтактным автогенератором (импульсным блоком питания) с довольно простым устройством. Функционирует по полумостовой обычной схеме, имеет форму коробочки с 4-мя выходящими кабелями: 2-мя на вход (220 В) и столько же на выход (12 В). Корпусная поверхность, как правило, производится из поликарбоната, алюминия, закреплена несколькими болтами.

Преобразовательное устройство в разобранном виде

Внутри такого изделия сердечник из феррита (в виде буквы «ш» или кольца с 2-мя обмотками). Вид конструкции определяется производителем. Второй тип с кольцевым сердечником легче адаптировать под какие-то свои требования (делают питающие блоки для иных электронных приборов). Обычно силовой частью изделия являются биполярные транзисторы. Их частота в противофазе — 30-35 кГц.

Что такое трансформатор для ламп

Чтобы обеспечить защиту от скачков напряжения, применяется трансформатор для нормализации напряжения. Производится устройство в двух видах:

  • Обмоточный. Прост в применении (подключить может каждый, даже без навыков в этой области), доступен. Содержит катушки, между которыми образуется связь, обеспечивая тем самым принцип работы прибора. Недостатки: большая масса, крупногабаритный, неудобство использования в домашних условиях, сильное нагревание при постоянной работе.
  • Электронный. Обширная зона применения, так как имеет малый вес, размер, не нагревается при постоянном использовании. Единственный недостаток – стоимость. Производятся некоторые электронные трансформаторы для галогенных ламп с защитой от перепадов напряжения.

Данные защитные приборы не являются обязательной мерой применения. Но с ними обеспечена долговечность галогенным лампам.

Переделка блока питания своими руками

Для работы галогенных ламп начали применяться импульсные источники тока с высокочастотным преобразованием напряжения. При домашнем изготовлении и налаживании довольно часто сгорают дорогостоящие транзисторы. Так как питающее напряжение в первичных цепях достигает 300 вольт, то к изоляции предъявляются очень высокие требования. Все эти трудности вполне можно обойти, если приспособить готовый электронный трансформатор. Он применяется для питания 12-вольтовых галогенок в подсветке (в магазинах), которые запитываются от стандартной электросети.

Существует определенное мнение, что получить самодельный импульсный блок питания – дело нехитрое. Можно лишь добавить выпрямительный мост, сглаживающий конденсатор и стабилизатор напряжения. На самом деле все обстоит куда сложнее. Если к выпрямителю подключить светодиод, то при включении можно зафиксировать только одно зажигание. Если выключить и включить преобразователь в сеть снова, повторится еще одна вспышка. Чтобы появилось постоянное свечение, необходимо к выпрямителю подвести дополнительную нагрузку, которая, отбирая полезную мощность, превращала бы ее в тепло.

Один из вариантов самостоятельного изготовления импульсного блока питания

Описываемый блок питания вполне можно изготовить из электронного трансформатора мощностью 105 Вт. Практически этот трансформатор напоминает компактный импульсный преобразователь напряжения. Для сборки дополнительно понадобится согласующий трансформатор Т1, сетевой фильтр, выпрямительный мост VD1-VD4, выходной дроссель L2.

Схема двухполярного блока питания

Такой аппарат стабильно функционирует длительное время с усилителем низкой частоты мощностью 2х20 ватт. При 220 В и силе тока 0,1 А выходное напряжение будет 25 В, при увеличении силы тока до 2 ампер напряжение падает до 20 вольт, что считается нормальной работой.

Ток, минуя выключатель и предохранители FU1 и FU2, следует на фильтр, защищающий цепь от помех импульсного преобразователя. Середину конденсаторов С1 и С2 соединяют с экранирующим кожухом блока питания. Потом ток поступает на вход U1, откуда с выходных клемм пониженное напряжение подается на согласующий трансформатор Т1. Переменное напряжение с другой (вторичной обмотки) выпрямляет диодный мост и сглаживает фильтр L2C4C5.

Самостоятельная сборка

Трансформатор Т1 изготавливается самостоятельно. Число витков на вторичной обмотке влияет на выходное напряжение. Сам трансформатор выполнен на кольцевом магнитопроводе К30х18х7 из феррита марки М2000НМ. Первичная обмотка состоит из провода ПЭВ-2 диаметром 0,8 мм, сложенного вдвое. Вторичная обмотка состоит из 22 витков провода ПЭВ-2, сложенного вдвое. При соединении конца первой полуобмотки с началом второй получаем среднюю точку вторичной обмотки. Дроссель также изготавливаем самостоятельно. Его наматывают на таком же ферритовом кольце, обе обмотки содержат по 20 витков.

Выпрямительные диоды располагаются на радиаторе площадью не менее 50 кв.см

Обратите внимание, что диоды, у которых аноды соединены с минусовым выходом, изолируются от теплоотвода слюдяными прокладками

Сглаживающие конденсаторы С4 и С5 состоят из трех параллельно включенных К50-46 емкостью по 2200 мкФ каждый. Такой способ применяется, чтобы снизить общую индуктивность электролитических конденсаторов.

На входе блока питания лучше будет установить сетевой фильтр, но возможна работа и без него. Для дросселя сетевого фильтра можно использовать ДФ 50 Гц.

Все детали блока питания располагаются навесным монтажом на плате из изоляционного материала. Полученная конструкция помещается в экранирующий кожух из тонкой листовой латуни или луженой жести. В нем не забудьте просверлить отверстия для вентиляции воздуха.

Правильно собранный блок питания не нуждается в налаживании и начинает сразу же работать. Но на всякий случай можно проверить его работоспособность с помощью подключения на выход резистора сопротивлением 240 Ом, мощностью рассеяния 3 Вт.

Установка трансформатора

Чтобы подключить понижающий трансформатор для нескольких галогенных ламп, можно использовать два метода:

  1. Через одноклавишный выключатель;
  2. При помощи создания отдельных групп электрических светильников.

При этом нужно провода синего и оранжевого цвета (в зависимости от страны-производителя устройства они могут немного варьироваться по оттенкам), необходимо подключить к первичным клеммам L и N входа трансформатора или «Input». На противоположной стороне трансформатора галогенные осветительные устройства нужно подключить к вторичным клеммам понижающего прибора Output. Это действие нужно осуществлять только медными проводниками небольшого сечения, которые обеспечивают минимальную потерю энергии.

Фото – Электронный трансформатор Feron

Главный совет: чтобы свет галогенных ламп был одинаков, нужно подбирать полностью идентичные друг другу проводники и соединять их только параллельно, сечение должно быть не меньше, чем полтора квадратных миллиметра. Также бывают случаи, кода у трансформатора недостаточное количество клемм, их не хватает для подключения всех нужных ламп. Чтобы решить эту проблему нужно купить специальные дополнительные клеммы, их продажа осуществляется в любом электрическом магазине.

Также нужно подобрать правильную длину проводов, в идеале она находится в пределах полутора трех метров, это оптимальное расстояние для передачи данных без образования помех и энергопотерь в проводниках. Кроме того, если сделать провод длиннее, то он начнет нагреваться при работе, что является плохим фактором для галогенных лампочек, они будут по разному гореть, в одинаковых лампах одной группы будет отличаться яркость. В том случае, если нет никакой возможности укоротить длину провода, нужно увеличить его сечение. К примеру от 3 метров до 4 необходимо применять провод с сечением до 2,5 мм2. Схема подключения питания имеет следующий вид:

Фото – подключение трансформатора к выключателю

Рассмотрим еще один вариант подключения трансформаторов галогенных ламп.

Российский форум электриков считает, что этот метод более практичен и прост в использовании.

Необходимо все светильники, которые находятся в одной комнате (или здании, при надобности), разделить на несколько групп. Допустим, всего есть семь лампочек, получится две группы по 3 и 4 лампы на каждую. В таком случае для каждой группы нужно покупать трансформатор, как для разных приборов отдельные автоматы.

Фото – подключение трансформатора для галогенных ламп

Это очень удобно, т.к. при прекращении работы какого-либо трансформатора, оставшийся будет функционировать без изменений. Исходя из предыдущих расчетов, их общая мощность 210 Вт, получится, что на одну группу приходится 120 Вт (следует купить прибор на 150w), а на вторую 90 (каждая лампочка по 30 Вт). Подбираем трансформаторы, подходящие под эти требования (не забываем суммировать количество запасной мощности – 10-15 %).

Раз в полгода проверяйте работоспособность трансформаторов. При необходимости проводите плановый ремонт в Москве, Санкт-Петербурге и прочих городах есть специальные учреждения, которые предоставляют такие услуги.

Блок защиты

Галогенная лампочка имеет один значительный минус – способность перегорать при включении. Это происходит из-за того, что на остывшую нить накаливания подается ток с большой мощностью.

Для устранения неприятного момента служит блок защиты галогенных ламп. Принцип работы блока: при последовательном подключении к лампе, он сдерживает наплыв тока на короткий промежуток (до 2 секунд). При этом свет наберет яркость тоже через две секунды.

Места установки блока:

  • В потолке, рядом с расположенной лампой.
  • В коробке под выключателем (при наличии свободного пространства, мощность не более 300 Вт).

Если применяется электронный трансформатор, то устанавливается специальный блок, обычный с двумя выводами непригоден. Специальный блок содержит в себе четыре вывода.

При покупке блока учитывается суммарная мощность галогенных лампочек с добавление запаса до 40 процентов.

Подключение через два регулятора

Через два регулятор разрешается подсоединять только низкочастотный электронный трансформатор. Схема подключения состоит из тетродов открытого типа. В данном случае показатель предельной проводимости элемента равняется 55 мк. Непосредственно регуляторы устанавливаются за реле. Усилители встречаются как оперативного, так и тороидального типа.

Для нормальной работы расширителя используется два коннектора. Емкость триггера обязана составлять не мене 2 пФ

Также важно обращать внимание на выходное напряжение на обмотке. В среднем оно составляет не более 40 В. Однако при высоком уровне отрицательного сопротивления указанный параметр может резко увеличиваться

Если рассматривать схему для блока питания, то тиристор подбирается дипольного типа. В этом случае параметр приводимости тока у элемента составляет не более 45 мк. Входное напряжение максимум может равняться 20 В. Для подключения конденсаторов используются контакторы

Однако при высоком уровне отрицательного сопротивления указанный параметр может резко увеличиваться. Если рассматривать схему для блока питания, то тиристор подбирается дипольного типа. В этом случае параметр приводимости тока у элемента составляет не более 45 мк. Входное напряжение максимум может равняться 20 В. Для подключения конденсаторов используются контакторы.

Оцените статью:

Блок питания для освещения | Мощность светодиодных и галогенных ламп

Блок питания для светодиодного и галогенного освещения . Apex Lighting предлагает полный блок питания для вашего индивидуального освещения. Apex Lighting предлагает необходимый вам блок питания для освещения . Добавление высококачественного светодиодного освещения к вашей лодке, грузовику или дому оживит тусклое пространство ярким чистым светом. Использование надлежащего источника питания гарантирует, что ваши новые осветительные приборы будут работать с полной эффективностью и действенностью.В интернет-магазине вы найдете лучший выбор высококачественных аксессуаров для источников питания .

  • Трансформаторы люка

    Галогенный трансформатор 80 Вт

    Галогенный трансформатор 80 Вт Особенности продукта: Низкие гармонические искажения Коэффициент высокой мощности Излучает №

  • Подлый колодец

    Драйвер светодиода 20 Вт

    20 Вт светодиодный драйвер постоянного напряжения Особенности продукта: Защита от короткого замыкания и перегрузки Более

  • Подлый колодец

    Драйвер светодиода 60 Вт

    60 Вт светодиодный драйвер постоянного напряжения Особенности продукта: Защита от короткого замыкания и перегрузки

  • Трансформаторы люка

    Галогенный трансформатор 300 Вт

    Галогенный трансформатор 300 Вт Особенности продукта: Низкие гармонические искажения Коэффициент высокой мощности Выдает N

  • Подлый колодец

    Светодиодный драйвер мощностью 150 Вт

    150 Вт светодиодный драйвер постоянного напряжения Особенности продукта: Защита от короткого замыкания и перегрузки Более

  • Подлый колодец

    Драйвер светодиода 240 Вт

    Mean Well 240 Вт 24 В постоянного тока / 12 В постоянного тока светодиодный драйвер Драйвер светодиода 240 Вт Входное напряжение: 120–277 В переменного тока, универсальное Оу

  • Подлый колодец

    Светодиодный драйвер 320 Вт

    Mean Well 320 Вт 24 В постоянного тока / 12 В постоянного тока светодиодный драйвер Светодиодный драйвер 320 Вт Входное напряжение: 120–277 В переменного тока, универсальное Оу

  • Подлый колодец

    Драйвер светодиода 600 Вт 24 В

    Драйвер для светодиодов Mean Well 600 Вт, 24 В постоянного тока Светодиодный драйвер мощностью 600 Вт Входное напряжение: 120–277 В переменного тока, универсальное Выход

Энергоэффективное освещение постоянного тока – ABS Alaskan, Inc.

Освещение — очень популярное использование альтернативных источников энергии. Удобство электроосвещения в удаленной каюте можно получить при сравнительно небольшой мощности системы. Существует множество вариантов проектирования системы освещения на альтернативных источниках энергии, но выбор наилучшей системы для конкретных нужд довольно прост.

AC VS. Lighting DC
Типы DC Lighting
Лампа накаливания
Halogen Lighting
Флуоресцентное освещение
Система освещения
против.Освещение постоянного тока

Почти все сетевые электрические системы используют освещение переменного тока на 120 вольт. Светильники переменного тока широко доступны в хозяйственных магазинах и даже во многих универмагах и продуктовых магазинах. Удобство выбора освещения переменного тока заключается в том, что аксессуары легко приобрести по относительно низким ценам. Кроме того, при установке новой системы электропроводки мощность переменного тока может работать с проводами гораздо меньшего сечения, что снижает затраты на материалы.

Использование переменного тока в системе альтернативной энергии имеет два основных недостатка.Во-первых, для подачи переменного тока напряжением 120 вольт от аккумуляторной батареи в электрическую систему необходимо установить инвертор для преобразования энергии постоянного тока батареи в переменный ток. Это может значительно увеличить общую стоимость системы. Второй недостаток заключается в том, что освещение переменного тока гораздо менее энергоэффективно, чем система постоянного тока, а это означает, что генераторы возобновляемой энергии должны быть способны производить больше энергии для работы того же количества осветительных приборов.

Интернет-магазин:
Низковольтное освещение* Освещение

постоянного тока имеет то преимущество, что оно очень энергоэффективно.Для работы системы освещения постоянного тока можно использовать меньшую солнечную панель или ветряной генератор, чем для системы переменного тока. Кроме того, поскольку освещение постоянного тока может питаться непосредственно от аккумуляторной батареи, нет необходимости в дополнительных расходах на установку инвертора. Хотя осветительные приборы постоянного тока найти труднее, стандартные лампы накаливания и галогенные светильники можно легко подключить к источнику постоянного тока 12 В.

Основным недостатком питания постоянного тока является проводка. Для постоянного тока требуется проводка большего сечения, чем для переменного тока, что значительно увеличивает материальные затраты.По сути, если длина проводки между осветительным прибором и блоком батарей должна составлять 35 футов или более, или если в здании уже используется инвертор по другим причинам, следует рассмотреть возможность освещения переменным током, чтобы сэкономить на проводке и затратах на арматуру.

Типы освещения постоянного тока

Поскольку осветительное оборудование переменного тока легко приобрести и оно более знакомо среднему потребителю, мы сосредоточимся на доступных вариантах освещения постоянного тока, а также на их различных преимуществах и недостатках.(Одно замечание по поводу освещения переменного тока: многие эффективные люминесцентные лампы переменного тока не всегда будут надежно работать от инвертора, особенно от модифицированного синусоидального тока.) Для внутреннего освещения можно использовать лампы накаливания, галогенные и люминесцентные лампы.

Лампы накаливания являются наименее дорогими из трех типов освещения, но и наименее эффективными. Тем не менее, лампы накаливания постоянного тока по-прежнему примерно на 30% более эффективны, чем эквивалентные лампы переменного тока. Для систем постоянного тока легко доступны мощности от 5 до 100 Вт.Что касается осветительных приборов, то лампы накаливания постоянного и переменного тока подходят к одним и тем же светильникам. Любой осветительный прибор стандартного размера может быть использован в любом типе системы. Для системы постоянного тока прибор будет подключен к источнику питания постоянного тока и снабжен лампой постоянного тока. Для системы переменного тока она будет подключена к сети переменного тока, и будет использоваться лампа переменного тока.

Галогенное освещение , как правило, дороже, чем лампы накаливания, но примерно на 30% эффективнее, чем лампы накаливания постоянного тока той же мощности.Также можно использовать галогенную лампу меньшей мощности для получения такого же количества света. Галогенные лампы излучают свет полного спектра, который выглядит ярче, чем лампы накаливания с ограниченным спектром, и меньше утомляет глаза. Галогенные лампы на 12 В постоянного тока можно использовать в тех же осветительных приборах, что и лампы накаливания постоянного тока, либо напрямую, либо с адаптерами, а обычные светильники просто необходимо подключить к источнику питания 12 В постоянного тока вместо источника 120 В переменного тока.

Флуоресцентное освещение обычно в три-четыре раза эффективнее галогенных ламп или ламп накаливания в 12-вольтовой системе, но имеет гораздо более ограниченный выбор доступных светильников.В то время как галогенные лампы и лампы накаливания могут использовать те же светильники, что и обычные лампы на 120 В переменного тока, люминесцентные светильники должны содержать специальные балласты на 12 В постоянного тока. Люди, склонные к электричеству, могут приобрести обычный люминесцентный светильник на 120 В и заменить оригинальные балласты на 120 В переменного тока балластами на 12 В постоянного тока, но в целом, вероятно, лучше приобрести специальный светильник постоянного тока.

С другой стороны, хотя для галогенных ламп и ламп накаливания необходимо приобретать определенные 12-вольтовые лампы, все люминесцентные лампы по существу одинаковы.После покупки люминесцентного светильника на 12 вольт в нем можно использовать любую обычную люминесцентную лампу. Исключением являются компактные люминесцентные лампы, предназначенные для установки в обычные светильники. В этих лампах балласт прикреплен к самой лампе, и для системы освещения постоянного тока необходимо приобрести специальную компактную люминесцентную лампу постоянного тока.

Предложения по системе освещения

Для небольшой удаленной кабины система освещения постоянного тока является отличным первым шагом к использованию альтернативных источников энергии.Удобство электрического освещения без шума питающего его генератора является существенным преимуществом при относительно невысокой цене.
Для больших домов, если основные жилые помещения расположены недалеко от удобного места для хранения аккумуляторов (например, пристроенного гаража), комбинированная система освещения переменного/постоянного тока является относительно простым способом сокращения ежемесячных счетов за электроэнергию или максимального повышения эффективности существующей альтернативной энергетической системы. . Освещение постоянного тока можно использовать в жилых помещениях, а освещение переменного тока — в менее используемых и более удаленных спальных зонах.

Существует множество вариантов интеграции низковольтного освещения постоянного тока практически в любую электрическую систему. Консультация с опытным дилером электротоваров постоянного тока может помочь в разработке оптимальной системы освещения для любых нужд.

Онлайн-кампус микроскопии ZEISS | Вольфрамово-галогенные лампы

Введение

Источники света накаливания, в том числе более старые версии с вольфрамовыми и угольными нитями, а также более новые, более совершенные вольфрамово-галогенные лампы, успешно применялись в качестве высоконадежного источника света в оптической микроскопии на протяжении многих десятилетий и продолжают оставаться одним из самых предпочтительные механизмы освещения для различных модальностей визуализации.Старые лампы, оснащенные нитью накаливания из вольфрамовой проволоки и заполненные инертным газом аргоном, часто используются в студенческих микроскопах для получения светлопольных и фазово-контрастных изображений, и эти источники могут быть достаточно яркими для некоторых приложений, требующих поляризованного света. Вольфрамовые лампы относительно недороги (по сравнению со многими другими источниками света), их легко заменить, и они обеспечивают достаточное освещение при соединении с диффузионным фильтром из матового стекла. Эти особенности в первую очередь ответственны за широкую популярность источников света накаливания во всех видах оптической микроскопии.Вольфрамово-галогенные лампы, самая передовая конструкция в этом классе, генерируют непрерывное распределение света в видимом спектре, хотя большая часть энергии, излучаемой этими лампами, рассеивается в виде тепла в инфракрасном диапазоне (см. рис. 1). Из-за их относительно слабого излучения в ультрафиолетовой части спектра вольфрамово-галогенные лампы не так полезны, как дуговые лампы и лазеры, для исследования образцов, которые необходимо освещать с длинами волн ниже 400 нанометров.

Несколько разновидностей вольфрамово-галогенных ламп в настоящее время являются источниками света накаливания по умолчанию (и предоставляются производителем) для большинства учебных и исследовательских микроскопов, продаваемых по всему миру.Они отлично подходят для исследований в светлом поле, микрофотографии и цифровых изображений окрашенных клеток и срезов тканей, а также для многочисленных применений в отраженном свете для промышленного производства и разработки. Микроскопы с поляризованным светом, используемые для идентификации частиц, анализа волокон и измерения двойного лучепреломления, а также для обычных петрографических геологических исследований, обычно используют мощные вольфрамово-галогенные лампы для обеспечения необходимой интенсивности света через скрещенные поляризаторы.Стереомикроскопы также используют этот вездесущий источник света как в начальных, так и в продвинутых моделях. Для визуализации живых клеток с помощью методов усиления контраста (в основном, дифференциального интерференционного контраста ( DIC ) и фазового контраста) в составных микроскопах проходящего света наиболее распространенным источником света, используемым в настоящее время, является 12-вольтовая 100-ваттная вольфрамово-галогенная лампа. . В долгосрочных экспериментах (как правило, требующих от сотен до тысяч снимков) эта лампа особенно стабильна и подвержена лишь незначительным уровням временных и пространственных флуктуаций выходного сигнала при нормальных условиях эксплуатации.

Первые коммерческие лампы накаливания с вольфрамовыми нитями накаливания были представлены в начале 1900-х годов. Эти передовые нити, которые можно было скручивать, скручивать и использовать при очень высоких температурах, оказались гораздо более универсальными, чем их предшественники на основе углерода и осмия. Углеродные лампы страдают от быстрого испарения нити накала при температурах выше 2500°С и поэтому должны работать при более низких напряжениях для получения света с относительно низкой цветовой температурой (желтоватый).Напротив, вольфрам имеет температуру плавления приблизительно 3380°C и может быть нагрет почти до этой температуры в стеклянной оболочке для генерации света с более высокой цветовой температурой и сроком службы, чем любой из ранее использовавшихся материалов для нитей накала ламп. Основная проблема с вольфрамовыми лампами заключается в том, что при нормальной работе нить накала постоянно испаряется с образованием газообразного вольфрама, который медленно уменьшает диаметр нити накала и в конечном итоге затвердевает на внутренней стороне стеклянной оболочки в виде почерневшего сажистого осадка.Со временем выходная мощность лампы уменьшается, так как остатки вольфрама, осажденного на стенках внутренней оболочки, становятся толще и поглощают все большее количество более коротких волн видимого света. Точно так же потеря вольфрама из нити накала уменьшает диаметр, делая ее настолько тонкой, что в конечном итоге она выходит из строя.

Вольфрамово-галогенные лампы были впервые разработаны в начале 1960-х годов путем замены традиционной стеклянной колбы на кварцевую колбу с более высокими характеристиками, которая больше не была сферической, а имела трубчатую форму.Кроме того, внутри конверта было запечатано небольшое количество паров йода. Замена легкоплавкого стекла на кварц была необходима, поскольку цикл регенерации галогена лампы (подробно обсуждаемый ниже) требует поддержания оболочки при высокой температуре (выше допустимой для обычного стекла) для предотвращения образования соединений галогенов вольфрама. от затвердевания на внутренней поверхности. Из-за новых компонентов эти усовершенствованные лампы первоначально обозначались термином: кварцево-йодидный .Хотя лампы, содержащие галогены, представляли собой значительное улучшение по сравнению с обычными вольфрамовыми лампами, которые они заменили, новые лампы имели легкий розоватый оттенок, характерный для паров йода. Кроме того, кварц легко подвергается воздействию мягких щелочей, образующихся в процессе эксплуатации, что приводит к преждевременному выходу из строя самой оболочки. В последующие годы соединения брома заменили йод, а корпус был изготовлен из более новых сплавов боросиликатного стекла для производства вольфрамово-галогенных ламп с еще более длительным сроком службы и более высокой мощностью излучения.

Как обсуждалось ранее, в традиционных лампах накаливания испаряющийся газообразный вольфрам из нити накала переносится через паровую фазу и непрерывно осаждается на внутренних стенках стеклянной колбы. Этот артефакт служит для чернения внутренних стенок колбы и постепенно снижает светоотдачу. Чтобы поддерживать потери света на минимально возможном уровне, нити накала обычных вольфрамовых ламп помещают в большие колбы, имеющие достаточную площадь поверхности, чтобы свести к минимуму толщину осажденного вольфрама, который накапливается в течение срока службы лампы.Напротив, трубчатая оболочка вольфрамово-галогенных ламп заполнена инертным газом (азот, аргон, криптон или ксенон), который при сборке смешивается с небольшим количеством галогенного соединения (обычно бромистого водорода; HBr ). и следовые уровни молекулярного кислорода. Соединение галогена служит для инициирования обратимой химической реакции с вольфрамом, испаряющимся из нити накала, с образованием газообразных молекул оксигалогенида вольфрама в паровой фазе. Термические градиенты, образующиеся в результате перепада температур между горячей нитью накала и более холодной оболочкой, способствуют перехвату и повторному использованию вольфрама в нити накала лампы посредством явления, известного как цикл регенерации галогена (показан на рисунке 2).Таким образом, испаренный вольфрам реагирует с бромистым водородом с образованием газообразных галогенидов, которые впоследствии повторно осаждаются на более холодных участках нити, а не медленно накапливаются на внутренних стенках оболочки.

Цикл регенерации галогена можно разделить на три критических этапа, которые показаны на рис. 2. В начале работы оболочка лампы, газ-наполнитель, газообразный галоген и нить накала изначально находятся в равновесии при комнатной температуре. Когда на лампу подается питание, температура нити накала быстро поднимается до рабочей температуры (около 2500–3000°С), что приводит к нагреву заполняющего газа и оболочки.В итоге оболочка достигает стабильной рабочей температуры, которая колеблется от 400 до 1000°С в зависимости от параметров лампы. Разница температур между нитью накала и оболочкой создает температурные градиенты и конвекционные потоки в заполняющем газе. Как только оболочка достигает температуры примерно от 200 до 250°С (в зависимости от природы и количества паров галогена), начинается цикл регенерации галогена. Атомы вольфрама, испарившиеся с нити накала (см. рис. 2(а)) реагируют с парами газообразного галогена и следовыми уровнями молекулярного кислорода с образованием оксигалогенидов вольфрама (рис. 2(б)).Вместо того, чтобы конденсироваться на горячих внутренних стенках оболочки, оксигалогенидные соединения циркулируют конвекционными потоками обратно в область, окружающую нить накала, где они разлагаются, оставляя элементарный вольфрам повторно отлагающимся на более холодных участках нити (рис. 2(c). ). После освобождения от связанного вольфрама кислород и галогенидные соединения диффундируют обратно в пар, чтобы повторить регенеративный цикл. Непрерывная рециркуляция металлического вольфрама между паровой фазой и нитью накала поддерживает более однородную толщину проволоки, чем это было бы возможно в противном случае.

Преимущества регенеративного цикла галогенных ламп включают возможность использования меньших по размеру колб, которые поддерживаются в чистом состоянии без отложений в течение всего срока службы лампы. Поскольку оболочка меньше, чем у обычных вольфрамовых ламп, дорогой кварц и родственные стеклянные сплавы могут быть более экономично использованы при изготовлении. Более прочные кварцевые оболочки позволяют использовать более высокое внутреннее давление газа для подавления испарения нити накала, что позволяет повысить температуру нити накала, что дает больший световой поток и смещает профили излучения, чтобы иметь большую долю более желательных видимых длин волн.В результате вольфрамово-галогенные лампы сохраняют свою первоначальную яркость на протяжении всего срока службы, а также более эффективно преобразуют электрический ток в свет, чем их предшественники. С другой стороны, вольфрам, испаренный и повторно осажденный в ходе регенеративного цикла галогена, не возвращается в исходное положение, а скорее наматывается на самые холодные участки нити накала, что приводит к неравномерной толщине. В конце концов лампы выходят из строя из-за уменьшения толщины нити накала в самых горячих областях. В противном случае вольфрамово-галогенные лампы могут иметь почти бесконечный срок службы.

Ранние исследования показали, что добавление фтористых солей к парам, герметизированным внутри вольфрамово-галогенных ламп, дает выходной сигнал с самым высоким уровнем видимых длин волн, а также осаждает переработанный вольфрам на участках нити накала с более высокими температурами. Это открытие вселило надежду на то, что вольфрамовые нити накаливания можно будет поддерживать более одинаковой толщины на протяжении всего значительного увеличения срока службы этих ламп. Кроме того, крайне желательным было смещение выходного профиля излучения лампы для включения большего количества видимых длин волн по сравнению с более низкими цветовыми температурами, обеспечиваемыми аналогичными лампами, имеющими альтернативные соединения галогенов (йодид, хлорид и бромид).К сожалению, было обнаружено, что соединения фтора агрессивно воздействуют на стекло (обратите внимание, что плавиковая кислота обычно используется для травления стекла), что приводит к преждевременному разрушению оболочки. Таким образом, соединения фтора непригодны для промышленных ламп. Как следствие, рассмотренные выше бромидные соединения по-прежнему являются предпочтительным реагентом для производства вольфрамово-галогенных ламп, но производители ламп продолжают исследовать применение новых газовых наполнителей и смесей галогенов для этих очень полезных источников света.

Вольфрамово-галогенные лампы накаливания работают как тепловые излучатели, что означает, что свет генерируется путем нагревания твердого тела (нити накала) до очень высокой температуры. Таким образом, чем выше рабочая температура, тем ярче будет свет. Все лампы на основе вольфрама имеют спектральные профили излучения, напоминающие профили излучения черного тела, а спектральный профиль выходного излучения вольфрамово-галогенных ламп качественно подобен профилю ламп накаливания с вольфрамовой и угольной нитью.Большая часть излучаемой энергии (до 85 процентов) приходится на инфракрасную и ближнюю инфракрасную области спектра, при этом 15-20 процентов приходится на видимую (от 400 до 700 нанометров) и меньше и 1 процент приходится на ультрафиолетовые длины волн. (ниже 400 нм). Мягкая стеклянная оболочка обычных ламп накаливания поглощает большую часть ультрафиолетового излучения, создаваемого вольфрамовой нитью накаливания, но оболочка из плавленого кварца в вольфрамово-галогенных лампах поглощает очень мало излучаемого ультрафиолетового света с длиной волны выше 200 нанометров.

Значительная часть электроэнергии, потребляемой раскаленными вольфрамовыми нитями накаливания, выводится в виде электромагнитного излучения, охватывающего диапазон длин волн от 200 до 3000 нанометров. Математически общее излучение увеличивается как четвертая степень температуры проволоки, что сдвигает спектральное распределение в сторону все более коротких (видимых) длин волн в колоколообразном профиле по мере повышения температуры (см. рис. 1 и 3). Несмотря на то, что пиковые длины волн имеют тенденцию к перераспределению от ближней инфракрасной области ближе к видимой области с более высокими температурами нити накала, температура плавления вольфрама не позволяет большей части выходного излучения смещаться в видимую область спектра.При самых высоких практических рабочих температурах пиковое излучение приходится примерно на 850 нанометров, при этом около 20 процентов от общего выхода приходится на видимый свет. Инфракрасные волны, которые составляют большую часть выходного сигнала, должны рассеиваться в виде нежелательного тепла. В результате по сравнению со спектром дневного света (5000+ К), излучаемого ртутными, ксеноновыми и металлогалогенными дуговыми лампами, в вольфрамово-галогенных лампах всегда преобладают красные участки спектра.

В случае идеального излучателя черного тела воспринимаемая цветовая температура равна истинной (измеренной) температуре материала излучателя.На практике, однако, общее излучение обычных источников излучения (таких как лампы накаливания) меньше, чем можно было бы ожидать от абсолютно черного тела. Цветовая температура выражается в градусах Кельвина ( K ), в то время как фактическая измеренная температура более практично выражается в градусах Цельсия ( C ). Эти два числа отличаются на 273,15 линейных единиц градусов, при этом значение Кельвина равно градусам Цельсия плюс 273,15. Более высокие цветовые температуры соответствуют более белому свету, который больше напоминает солнечный свет, тогда как более низкие цветовые температуры имеют тенденцию смещать цвета в сторону желтых и красноватых оттенков.Вольфрам не является истинным черным телом в том смысле, что общее излучаемое излучение меньше, чем наблюдалось бы в идеальном случае, однако вольфрам является лучшим излучателем (и больше приближается к настоящему черному телу) в более короткой видимой области длин волн, чем в более длинные волны. Для значительной части видимого диапазона длин волн цветовая температура вольфрама выше, чем эквивалентная истинная температура в градусах Цельсия. Таким образом, при измеренной температуре нити накала 3000 C цветовая температура составляет приблизительно 3080 K.Предел цветовой температуры вольфрама определяется температурой плавления, которая составляет чуть более 3350 С или примерно 3550 К.

Таким образом, вольфрамово-галогенные лампы в качестве излучателей накаливания генерируют непрерывный спектр света, который простирается от центрального ультрафиолетового до видимого и до инфракрасного диапазонов длин волн (см. рис. 1 и 3). По сравнению со спектром излучения солнечного света и теоретическим излучателем черного тела с температурой 5800 К (как показано на рис. 3(а)), в вольфрамово-галогенных лампах всегда преобладают области с большей длиной волны.Однако по мере увеличения температуры нити накала в вольфрамово-галогенной лампе профиль излучения света смещается в сторону более коротких длин волн, так что по мере приближения температуры к предельной температуре плавления вольфрама доля видимых длин волн, излучаемых лампой, существенно увеличивается. Этот эффект проиллюстрирован на рис. 3(b) нормированием выходного распределения излучения лампы при цветовых температурах 2800 K и 3300 K к одному и тому же световому потоку. В дополнение к тому, что доля излучения в инфракрасном диапазоне значительно меньше, кривая 3300 K демонстрирует гораздо больший выход в видимом диапазоне длин волн.

Фотометрические характеристики для оценки характеристик источников света несколько необычны, поскольку существуют две системы единиц измерения, которые используются параллельно для определения важных переменных, связанных с яркостью и спектральным выходом. Физическая фотометрическая система рассматривает свет исключительно как электромагнитное излучение с точки зрения яркости (излучения), связанной с единицами длины и угла и измеряемой в ваттах. Физиологическая фотометрическая система учитывает способ, которым гипотетический человеческий глаз оценивает источник света.Поскольку каждый человеческий глаз несколько по-разному реагирует на спектр видимого света, стандартные глаза были определены международной конвенцией. Основной характеристикой этого стандарта является чувствительность к различным цветам света, основанная на максимальной реакции на 550-нанометровый (зелено-желтый) свет, измеренная в единицах люмен , а не в ваттах. Физиологическая система адекватна, если детектором света является человеческий глаз, цифровая камера, фотопленка или какой-либо другой тип устройства, реагирующий аналогичным образом.Однако эта система выйдет из строя, если анализируемый свет попадет в невидимую человеческому глазу ультрафиолетовую или инфракрасную области. В этом случае для измерений и анализа необходимо использовать физическую фотометрическую систему.

Технические характеристики вольфрамово-галогенной лампы для микроскопии

Номинальная
Мощность
(Вт)
Номинальное
Напряжение
(В)
Светящийся
Поток
(лм)
Нить накаливания
Размер
Ш x В (мм)
Средний
Срок службы
(часы)
10 6 150 1.5 х 0,7 300
20 6 480 2,3 х 0,8 100
30 6 765 1,5 х 1,5 100
30 12 750 2.6 х 1,3 50
50 12 1000 3,0 x 3,0 1100
100 12 3600 4,2 x 2,3 2000
Таблица 1

В таблице 1 представлены электрические характеристики, размеры нити накала, типичный срок службы и фотометрический выход для нескольких наиболее популярных вольфрамово-галогенных ламп, используемых в настоящее время в оптической микроскопии.Одним из наиболее важных терминов, используемых для сравнения этих ламп, является световой поток , который представляет собой общий излучаемый свет, измеренный в люменах . Световой поток увеличивается пропорционально его физическому фотометрическому эквиваленту в ваттах. Другой важной величиной, известной как сила света , является та часть светового потока, которая измеряется телесным углом в одном направлении. Сила света, имеющая единицы измерения кандел , используется для оценки работы лампы в оптической системе.Лампы также оцениваются с точки зрения светоотдачи с использованием люменов на ватт электрической мощности (относительно физических и физиологических систем) для определения эффективности преобразования электрической энергии в видимое излучение. Теоретический максимум световой отдачи составляет 683 люмен на ватт, но на практике вольфрамово-галогенные лампы обычно достигают предела в 37 люмен на ватт. Чтобы более четко понять электрические характеристики вольфрамово-галогенных ламп, обычно можно применить следующие обобщения: на каждые 5 процентов изменения напряжения, приложенного к лампе, срок службы либо удваивается, либо уменьшается вдвое, в зависимости от того, является ли напряжение уменьшилось или увеличилось.Кроме того, каждое 5-процентное изменение напряжения сопровождается 15-процентным изменением светового потока, 8-процентным изменением мощности, 3-процентным изменением тока и 2-процентным изменением цветовой температуры.

Большое разнообразие конструкций вольфрамово-галогенных ламп включает в себя встроенные отражатели, которые служат для эффективного сбора волновых фронтов света, излучаемых лампой, и организованного направления их в систему освещения. Эти предварительно собранные блоки, получившие название рефлекторных ламп (см. рис. 4), нашли широкое применение в качестве внешних осветительных приборов для стереомикроскопии.Свет от осветителя можно направить на любую область образца с помощью гибкого оптоволоконного световода. Лампы с отражателем сильно различаются по конструкции в отношении характеристик и геометрии отражателя, а также расположения лампы внутри отражателя. Однако все рефлекторные лампы содержат одноцокольные лампы, которые устанавливаются в центре оптической оси рефлектора с основанием, вклеенным в вершину рефлектора. Конфигурация нити обычно определяется характеристиками луча, требуемыми конкретной оптической системой, для которой предназначена лампа.В рефлекторных лампах используются все конструкции нитей накала, в том числе поперечные, осевые и с плоским сердечником.

Лампы-рефлекторы

обычно подсоединяются к патронам с молибденовыми штифтами, выступающими наружу из задней части отражателя, и устанавливаются с керамическими крышками. В некоторых случаях используются специальные кабельные соединения для пространственного отделения электрического контакта от источника тепла (лампы). Поскольку рефлекторные лампы обычно входят в состав точно выровненной оптической системы, электрическое соединение лишь иногда используется как часть крепления.Существует несколько способов крепления отражателей, включая установку держателя на переднем крае отражателя, давление на заднюю часть крышки отражателя, центрирование края отражателя в конусе и регулировку края отражателя на угловом упоре. В большинстве случаев конструкция основания рефлектора и механизм крепления используются для обозначения конкретного класса рефлекторной лампы. Внешний диаметр переднего отверстия рефлектора является определяющим критерием для рефлекторных ламп, и производители установили два основных размера.Они обозначены как MR 11 и MR 16 , где буквы обозначают металлический отражатель , а цифры обозначают диаметр отражателя в восьмых долях дюйма. Таким образом, рефлекторная лампа MR 16 имеет диаметр приблизительно 50 миллиметров, тогда как диаметр ламп MR 11 составляет почти 35 миллиметров.

Вольфрамово-галогенные отражатели

предназначены либо для фокусировки, либо для коллимации света, излучаемого лампой, как показано на рисунке 4.Фокусирующие отражатели концентрируют свет в небольшом пятне (точке фокуса) на центральной оптической оси на определенном расстоянии от отражателя (см. рис. 4(b)). Этот тип рефлектора разработан с эллиптической геометрией, которая требует, чтобы нить накала лампы была помещена в первую фокальную точку эллипсоида, чтобы проецируемое световое пятно было сосредоточено во второй фокальной точке. При проектировании фонарей для фокусировки отражателей важнейшим критерием является установка лампы на нужном расстоянии от входного отверстия оптической системы.Коллимирующие отражатели имеют параболическую геометрию для создания параллельного пучка света с характеристиками луча, которые определяются параметрами лампы и размером отражателя (см. рис. 4(c)). Угол выходящего луча определяется в первую очередь размером нити накала лампы и свободной апертурой рефлектора. Осевая нить с круглым сердечником в большинстве случаев обеспечивает вращательно-симметричный пучок.

Рефлекторы

обычно изготавливаются из стекла, но некоторые также изготавливаются из алюминия.Их внутренние стенки могут быть как гладкими, так и структурированными с гранями для управления распределением света. Внутренняя структура варьируется от мелких, едва заметных зерен до крупных черепичных граней (см. рис. 4(а)). В стеклянных отражателях внутренняя поверхность куполообразного отражателя покрыта (обычно методом осаждения из паровой фазы) для получения требуемых отражающих свойств. Стабильность размеров стеклянных отражателей выше, чем у металлических отражателей, а возможность выбора конкретных материалов покрытия, в том числе тех, которые могут изменять спектральный характер отраженного света, делает эти отражатели гораздо более универсальными.Металлические отражатели намного проще и дешевле в изготовлении, но они ограничены в управлении спектральным выходом и более подвержены колебаниям геометрических допусков во время работы.

Если требуется полный спектр излучения лампы или в случаях, когда полезно инфракрасное излучение, оптимальным выбором являются металлические отражатели или стеклянные отражатели с тонким золотым покрытием. Однако там, где для выбора длин волн посредством интерференции необходимо использовать определенные свойства отражения, оптимальными являются дихроичные тонкопленочные покрытия на стеклянных отражателях.Эти покрытия состоят примерно из 40-60 очень тонких слоев, каждый толщиной всего в четверть длины волны света, и состоят из чередующихся материалов с высоким и низким показателем преломления. Точная настройка толщины и количества слоев позволяет разработчикам создавать широкий спектр спектральных выходных характеристик. Среди ламп с дихроичным отражателем наиболее полезным для микроскопии является рефлектор холодного света , поскольку в оптическую систему направляется только видимый свет в диапазоне длин волн от 400 до 700 нанометров (рис. 4(d)).Инфракрасные волны излучаются через заднюю часть отражателя и откачиваются от фонаря электрическим вентилятором. Применение подходящих отражателей холодного света снижает общую тепловую нагрузку на систему освещения и дает свет, который можно записывать пленочными и цифровыми камерами.

Принципиальная конструкция одноцокольной вольфрамово-галогенной лампы, обычно используемой для освещения в оптической микроскопии, показана на рисунке 5. Общая длина измеряется от конца штифта основания до точки герметичной выхлопной трубы.Важным критерием для позиционирования лампы по отношению к системе линз коллектора является длина светового центра (рис. 5(а)), которая определяет положение центра нити накала в определенной опорной плоскости в цоколе лампы. Другими важными параметрами являются диаметр колбы (самая толстая часть оболочки), ширина защемления основания (обычно немного больше диаметра колбы) и размеры поля накала (высота и ширина). Эффективный размер источника освещения, используемого при проектировании выходной оптической системы, определяется высотой и шириной нити (полем нити).Допуски и положение поля накала являются критическими и не должны отклоняться более чем на 1 миллиметр от оси симметрии лампы (определяемой плоскостью штифтов основания и осевой линией лампы). Допуски поля нити предназначены для конкретной архитектуры нити и должны быть измерены, когда нить накала горячая.

Чрезмерно высокие рабочие температуры вольфрамово-галогенных ламп требуют значительно более прочных и толстых прозрачных оболочек, чем обычные вольфрамовые и угольные лампы.Кварцевое стекло из плавленого кварца является стандартным материалом, используемым при изготовлении вольфрамово-галогенных ламп, поскольку этот материал может выдерживать температуру оболочки до 900°C и рабочее давление до 50 атмосфер. В целом оптическое качество оболочек кварцевых ламп значительно ниже, чем у колб из выдувного стекла, используемых для изготовления обычных ламп накаливания. Этот артефакт связан с тем, что кварц сложнее обрабатывать (в первую очередь из-за более высокой температуры плавления).Кварц, предназначенный для оболочек ламп, представляет собой цилиндрическую трубку, которую сначала обрезают до нужной длины, а затем прикрепляют выхлопную трубу меньшего размера. Позже в производственном процессе, после того, как нить накала и свинцовые штифты вставлены и зажаты, оболочка заполняется соответствующим газом и галогенным соединением, прежде чем выхлопная труба будет удалена и герметизирована в процессе, называемом . видимое пятно на конверте. Вольфрамово-галогенные лампы, используемые в микроскопии, обычно имеют пятно на кончике, расположенное в верхней части колбы в области, которая не влияет на оптическое качество света, излучаемого лампой (рис. 5(а)).Предварительно изготовленные элементы внутренней конструкции лампы (нить накала, фольговый разъем и штыри) вставляются в трубчатый кварц до того, как свинцовые штыри герметично запаиваются в оболочку путем защемления. Внешняя поверхность зажима имеет форму, обеспечивающую максимальную механическую прочность.

После пережатия штыревых выводов (этот процесс проводится при продувке оболочки инертным газом во избежание окисления) колба через выхлопную трубу наполняется соответствующим газом, содержащим 0.от 1 до 1,0 процента соединения галогена. Инертным газом-наполнителем может быть ксенон, криптон, аргон или азот, а также смесь этих газов, имеющая самый высокий средний атомный вес, соответствующий желаемому сопротивлению дуги. Галоген, используемый для вольфрамово-галогенных ламп, используемых в микроскопии, обычно представляет собой HBr, CH 3 Br или CH 2 Br 2 . Высокое внутреннее давление лампы достигается за счет заполнения оболочки до желаемого давления и погружения лампы в жидкий азот для конденсации заполняющего газа.После герметизации выхлопной трубы на выходе заполняющий газ расширяется по мере нагревания до температуры окружающей среды. В высокоэффективных вольфрамово-галогенных лампах производства Osram (Sylvania, США) используется технология Xenophot , в которой газ криптон заменяется ксеноном, который имеет более высокую атомную массу, чем криптон и другие газы-наполнители. Ксенон обеспечивает лучшее подавление испарения вольфрама, обеспечивает более высокие температуры нити накала и увеличивает световую отдачу примерно на 10 процентов (что соответствует увеличению цветовой температуры примерно на 100 К).Лампы Xenophot продаются под аббревиатурой HLX , которая происходит от терминов H alogen, L low-voltage и X enon. Большинство вольфрамово-галогенных ламп, используемых в исследовательских микроскопах, оснащены лампами Osram/Sylvania HLX или их аналогами.

Вольфрам всегда используется для изготовления нитей накала в современных лампах накаливания. Чтобы быть подходящей для вольфрамово-галогенных ламп, необработанная вольфрамовая проволока должна пройти сложный процесс легирования и термообработки, чтобы придать пластичность, необходимую для обработки, и гарантировать, что нить накала не деформируется в течение длительных периодов высокой температуры во время работы лампы.Провод также должен быть тщательно очищен, чтобы предотвратить выделение вредных газов после герметизации лампы. Длина провода накала определяется рабочим напряжением, при более высоких напряжениях требуется большая длина. Диаметр определяется уровнем мощности лампы и желаемым сроком службы. Для высоких уровней мощности требуются более толстые нити накала, которые также механически прочнее. Геометрия нити накала во многом определяет фотометрические свойства вольфрамово-галогенных ламп. Лампы, используемые в микроскопии, обычно имеют геометрию нити накала с плоским сердечником, в которой проволока сначала наматывается в форме прямоугольного стержня, а затем защемляется по длинной оси.Вместо диаметра и длины нити с плоским сердечником измеряются по длине и ширине плоской стороны нити и толщине прямоугольной формы. Характеристики светового излучения ламп накаливания с плоским сердечником значительно отличаются от характеристик других геометрий. Наиболее существенная часть излучаемого света излучается перпендикулярно плоской поверхности нити накала, которая совмещена с собирающей оптикой для максимальной пропускной способности. В некоторых конструкциях ламп используется специальная нить накала с плоским сердечником, в которой светоизлучающая поверхность имеет квадратную форму.Эти лампы являются предпочтительными источниками освещения в микроскопии в проходящем свете.

Одним из важнейших факторов при производстве вольфрамово-галогенных ламп является герметизация внутренних элементов для их изоляции от внешней атмосферы. Вводные провода (молибденовые штифты; рис. 5(b)) выступают из цоколя лампы через уплотнение, чтобы установить и закрепить лампу в гнезде, подключенном к источнику питания. Наиболее важным аспектом создания уплотнения является разница в коэффициентах теплового расширения между кварцевыми и вольфрамовыми нитями.Кварц имеет очень низкий коэффициент расширения, тогда как у вольфрама он намного выше. Без надлежащего уплотнения вводные провода быстро расширились бы, когда лампа нагрелась, и разбилось бы окружающее стекло. В современных вольфрамово-галогенных лампах очень тонкая молибденовая фольга (шириной от 2 до 4 миллиметров и толщиной от 10 до 20 микрометров; рис. 5(b)) заделана в кварц, и каждый конец фольги приварен к коротким молибденовым соединительным проводам, которые в свою очередь приварены к нити накала и подводящим штыревым проводам.Молибден используется в уплотнении, потому что острые как бритва края позволяют безопасно внедрять его в кварц во время операции защемления. Лампы, используемые для микроскопии, имеют одноцокольное основание, имеющее либо молибденовые штифты, выступающие из зажима, либо вольфрамовые штыри, которые внутри соединены с молибденовой фольгой, как описано выше. Расстояние между штифтами стандартизировано, типичные значения составляют 4 и 6,35 миллиметра (обозначаются как G4 и G6,35; G для стекла). Диаметры штифтов варьируются от 0.от 7 до 1 миллиметра.

Поскольку технология изготовления вольфрамово-галогенных ламп на данный момент настолько развита, срок службы типичной лампы заканчивается внезапно, обычно при включении холодной нити накала лампы. В течение среднего срока службы усовершенствованные вольфрамово-галогенные лампы не чернеют и претерпевают лишь незначительные изменения выходных фотометрических характеристик. Как и у других ламп накаливания, срок службы вольфрамово-галогенных ламп определяется скоростью испарения вольфрама из нити накала.Если нить накала не имеет постоянной температуры по всей длине провода, а вместо этого имеет области гораздо более высокой температуры, вызванные неравномерной толщиной или внутренними структурными изменениями, то нить обычно выходит из строя из-за преждевременного разрыва в этих областях. Несмотря на то, что испаренный вольфрам возвращается в нить накала в ходе регенеративного цикла галогена (обсуждавшегося выше), материал, к сожалению, осаждается на более холодных участках нити накала, а не в тех критических горячих точках, где обычно происходит истончение.В результате практически невозможно предсказать, когда какая-либо конкретная нить накала выйдет из строя в непрерывно работающих лампах. В тех лампах, которые часто включаются и выключаются, можно с уверенностью предположить, что они выйдут из строя в какой-то момент при включении.

Вольфрамово-галогенные лампы

могут работать от источников питания как постоянного, так и переменного тока, но в большинстве приложений исследовательской микроскопии используются источники питания постоянного тока ( DC ). В самых современных источниках питания для вольфрамово-галогенных ламп используется специализированная схема, обеспечивающая стабилизацию тока и подавление пульсаций.Критической фазой для вольфрамово-галогенной лампы является момент, когда напряжение впервые подается на холодную нить накала, период, когда сопротивление нити накала примерно в 20 раз ниже, чем при полной рабочей температуре. Таким образом, когда напряжение питания мгновенно подается на лампу путем ее включения, протекает очень высокий начальный ток (до 10 раз превышающий установившийся; называемый пусковым током ), который медленно падает по мере изменения температуры нити накала и электрического сопротивления. увеличивать. Пиковый уровень тока достигается в течение нескольких миллисекунд после запуска, но обычно заканчивается примерно через полсекунды.К сожалению, высокий пусковой ток, возникающий при холодном пуске, отрицательно сказывается на сроке службы лампы. Специализированная схема источника питания (часто называемая схемой плавного пуска ) используется для компенсации высоких пусковых токов в наиболее передовых приложениях (включая микроскопию), в которых для проведения логометрических измерений используются вольфрамово-галогенные лампы.

На рис. 6 показана типичная 100-ваттная вольфрамово-галогенная лампа, используемая в микроскопии проходящего света.Лампа оборудована охлаждающими вентиляционными отверстиями, которые позволяют конвекционным потокам омывать лампу более холодным воздухом во время работы. Металлический рефлектор, выстилающий внутреннюю часть корпуса лампы, помогает сферическому рефлектору направлять максимально возможный уровень светового потока в систему собирающих линз для доставки в оптическую систему микроскопа. Этот усовершенствованный фонарь содержит запасной держатель лампы и пластиковый сменный инструмент, который оператор может использовать для захвата корпуса лампы во время переключения лампы.Регулировку положения лампы относительно оптической оси сферического рефлектора и коллектора можно выполнить с помощью винтов с внутренним шестигранником, которые перемещают опорное крепление. Корпус лампы крепится к осветителю микроскопа с помощью запатентованного монтажного фланца, который соединяет корпус лампы с прямым или инвертированным микроскопом (хотя большинство ламповых корпусов не взаимозаменяемы для микроскопов одной марки на другую). Инфракрасный (тепловой) фильтр перед системой собирающих линз поглощает значительное количество нежелательного излучения, и дополнительные фильтры обычно могут быть вставлены в световой путь (используя прорези для держателей фильтров в осветителе микроскопа) для поглощения выбранных диапазонов видимых длин волн, регулировки цветовую температуру или добавить нейтральную плотность (уменьшив амплитуду света).Большинство ламп для микроскопии не оснащены диффузионным фильтром, но он часто требуется для достижения равномерного освещения по всему полю зрения и обычно помещается производителем в осветитель микроскопа.

DLh5 — Комплект для четырех фонарей

Это набор из 4 ламп накаливания DLh5s tungsten Classic со встроенным блоком питания с ручным диммером DT24 или встроенным блоком питания DT24-DMX с функциями ручного управления DMX и .

Classic DLh5 — одно из самых известных осветительных устройств, когда-либо созданных. Имея 40-летнюю историю в индустрии профессионального освещения, этот светильник снова и снова доказывает, насколько далеко вы можете зайти в точном освещении, используя асферическую оптику. Это также является источником гордости для многих осветителей, которые берут свои личные «дедосы» на каждую съемку, независимо от того, что находится в списке кадров. До сих пор нет другой системы, которая могла бы сравниться с ее производительностью в своем классе. Оптика обеспечивает полностью однородный чистый луч с минимальным спадом на его краях.Там, где вы хотите, есть свет, а за пределами луча есть тень, где вы этого хотите.

В зависимости от вашей лампы и источника питания, DLh5 может работать от сети 12 В, 24 В или переменного тока. В Dedolight California мы предлагаем множество решений по мощности и диммеру для управления вашим DLh5. Блоки питания 12 В, такие как DT12-4, позволяют использовать галогенные лампы мощностью 20 Вт, 50 Вт, 75 Вт или 100 Вт. Блок питания 24В, как и DT24-U со встроенным диммером, позволяет использовать лампы 24В 150Вт или 24В 100Вт. DT24-DMX обеспечивает управление DMX в дополнение к ручному режиму.Блок питания переменного тока в постоянный 24 В мощностью 150 Вт (0CAPS24-150) обеспечивает работу DLh5 на полной мощности до 150 Вт. Добавьте функцию затемнения к этому источнику питания или к существующим батареям 12 В или 24 В с помощью встроенного DLDIM-BAT. Использование низковольтной системы увеличивает срок службы и производительность ваших ламп. Использование фонарей dedolight может увеличить срок службы вашей лампы на 400 %.

Прожектор практически не поддается разрушению, прост в обслуживании и имеет целую армию замечательных аксессуаров, позволяющих переосмыслить его функции от одной задачи к другой.Независимо от того, нужен ли вам компактный фонарь с потрясающим световым потоком или пятно в виде булавочной головки на этикетке, Dedo Classics обеспечит все это. Если вам еще не посчастливилось познакомиться с одним из этих светильников, не позволяйте прозвищу «Классика» одурачить вас. Теперь их можно использовать с балластами DMX и усилителями Lightstream. Есть слишком много причин, чтобы отметить, почему это все еще один из наиболее часто используемых источников света на любой съемочной площадке.

КОМПЛЕКТ ИЗ 4 СВЕТИЛЬНИКОВ ВКЛЮЧАЕТ:
  • 4x — 150 Вт DLh5 Dedolight Световые головки
  • 4x — выберите « Non-DMX » для балласта DT24 или « DMX » для вариантов балласта DT24-DMX выше
  • .
  • 4x — DBD8 — Дверь амбара
  • 4x — DPLS — Световое защитное кольцо
  • 4x — DPOW3 — удлинительный кабель для головы
  • 4x — Световые стойки DST
  • 12x — галогенные лампы DL150 — 150 Вт
  • 1x — DSC2 — Мягкий кейс
[ТАБЫ]
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ 
Цветовая температура 3400K и ниже в зависимости от настройки лампы и диммера.
Максимальная мощность 100 Вт (12 В) — 150 Вт (24 В)
Управление фокусом 4,5°–48° (удивительный коэффициент фокусировки света 1:25. Использование с дополнительной оптической широкоугольной насадкой DLWAR увеличивает угол заливки от 50°– 85°; коэффициент освещенности 1:50)
Охлаждение Пассивное бесшумное охлаждение
Крепление Двойные 5/8-дюймовые (16 мм) вертикальные или горизонтальные розетки
Рабочее положение Любая позиция
Управление наклоном Постоянное трение
Вес 1.2 фунта
Кабель
встроенный разъем XLR3 1 дюйм для подключения к различным кабелям блока питания
Розетка GY6.35
Управление фокусировкой Фиксирующая ручка и ручной ползун
БЛОКИ ПИТАНИЯ

ДОПОЛНИТЕЛЬНЫЕ ИСТОЧНИКИ ПИТАНИЯ:

  • DT24-U — отдельный блок питания, 24 В, линейный диммер без DMX со встроенным сетевым кабелем и головным кабелем
Затемнение Непрерывный — 0 — 100%
Максимальная мощность 150 Вт
Блок питания Встроенный кабель питания переменного тока США
Входное напряжение

120 В переменного тока

Размер

9.2″ x 2,8″ x 1,8″

Вес

1,5 фунта

Кабели Осветительная головка и кабель питания США встроены (XLR3)
  • DT24-DMX — Встроенный DMX/ручной диммер со встроенным сетевым кабелем
Затемнение Непрерывный — 0 — 100%
Максимальная мощность 150 Вт
Блок питания Встроенный кабель питания переменного тока США
Входное напряжение

24 В, 120 В переменного тока

Размер

7.5″ х 2,5″ х 2″

Вес

1,25 фунта

Кабели 5-дюймовый встроенный кабель осветительной головки XLR3 и 9-футовый кабель питания/сетевой кабель США
DMX 5-контактный разъем XLR, вход и выход с автоматическим терминированием — 512 каналов


КАБЕЛИ:

0CA-XLR3M/F — Dedolight California может изготовить нестандартные головные кабели по запросу.См. страницу продукта 0CA-XLR3M/F, чтобы узнать длину стандартных 10-футовых удлинительных кабелей XLR3.

ФОТОМЕТРИЧЕСКАЯ ИНФОРМАЦИЯ

ПРИНАДЛЕЖНОСТИ
  • DDCF — Дихроичный фильтр преобразования дневного света
  • DP1.2 — видеопроектор с объективом 85 мм (ранее DP1.1)
  • DP2.2 — специальный затворный проектор с объективом 85 мм (ранее DP2.1)
  • DPBA-710 — Усилитель параллельного луча (увеличение мощности до 150% в точке)
  • DPBA-714 — Параллельный усилитель луча (увеличение мощности до 300% в точке)
  • DWAFX — Направленный рассеиватель луча
  • DLWAR — адаптер для широкоугольного объектива с вращающимися шторками (выдерживает поток от 48° до 90°+)
  • DSCK — Набор решеток
  • 0CA-XLR3M/F — Удлинительный кабель (10-футовый балластный кабель к голове)

Ищите все аксессуары размера M для сборки DLh5!

[/ТАБС]

AC220V до AC12V 20W-50W G4 Галогенная лампа Блок питания Светодиодный драйвер Электронный Trans Продажа

Способы доставки

Общее расчетное время, необходимое для получения вашего заказа, показано ниже:

  • Вы размещаете заказ
  • (время обработки)
  • Мы отправляем ваш заказ
  • (время доставки)
  • Доставка!

Общее расчетное время доставки

Общее время доставки рассчитывается с момента размещения вашего заказа до момента его доставки вам.Общее время доставки делится на время обработки и время доставки.

Время обработки: Время, необходимое для подготовки ваших товаров к отправке с нашего склада. Это включает в себя подготовку ваших товаров, проверку качества и упаковку для отправки.

Время доставки: Время, необходимое для доставки вашего товара с нашего склада до места назначения.

Рекомендуемые способы доставки для вашей страны/региона показаны ниже:

Адрес доставки: Корабль из

Этот склад не может доставлять товары к вам.

Способы доставки Время доставки Информация об отслеживании

Примечание:

(1) Упомянутое выше время доставки относится к расчетному времени в рабочих днях, которое займет доставка после отправки заказа.

(2) Рабочие дни не включают субботу/воскресенье и праздничные дни.

(3) Эти оценки основаны на обычных обстоятельствах и не являются гарантией сроков доставки.

(4) Мы не несем ответственности за сбои или задержки в доставке в результате каких-либо форс-мажорных обстоятельств, таких как стихийное бедствие, плохая погода, война, таможенные проблемы и любые другие события, находящиеся вне нашего непосредственного контроля.

(5) Ускоренная доставка не может быть использована для адресов абонентских ящиков

Предполагаемые налоги: Может применяться налог на товары и услуги (GST).

Способы оплаты

Мы поддерживаем следующие способы оплаты.Нажмите для получения дополнительной информации, если вы не знаете, как платить.

* В настоящее время мы предлагаем оплату наложенным платежом для Саудовской Аравии, Объединенных Арабских Эмиратов, Кувейта, Омана, Бахрейна, Катара, Таиланда, Сингапура, Малайзии, Филиппин, Индонезии, Вьетнама, Индии. Мы отправим код подтверждения на ваш мобильный телефон, чтобы убедиться, что ваши контактные данные верны. Пожалуйста, убедитесь, что вы следуете всем инструкциям, содержащимся в сообщении.

* Оплата в рассрочку (кредитной картой) или Boleto Bancário доступна только для заказов с адресами доставки в Бразилии.

12V 20W-50W G4 Галогенная лампа Источник питания Светодиодный драйвер Электронный трансформатор

Описание продукта

Спецификация:
Входное напряжение: 220 В переменного тока, 50/60 Гц
Выходное напряжение: 12 В переменного тока
Мощность: 20-50 Вт
Лампа нагрузки: 2 шт. G4 20 Вт
Размер: 540*235*235 мм

Характеристики:
Защита от перегрузки
Защита от перенапряжения
Защита от короткого замыкания
Светодиодный трансформатор Treiber 20–50 Вт
Низковольтный галогенный трансформатор 220–12 В 20–50 Вт лампы
Электронный трансформатор для низковольтной галогенной лампы
Соединения провода для входа (красная линия) и выхода (белая линия)

В пакет включено:
1 * светодиодный драйвер

Подробнее Фото:



Дополнительная информация

При заказе у Alexnld.com, вы получите подтверждение по электронной почте. Как только ваш заказ будет отправлен, вам будет отправлена ​​электронная почта с информацией об отслеживании доставки вашего заказа. Вы можете выбрать предпочтительный способ доставки на странице информации о заказе в процессе оформления заказа. Alexnld.com предлагает 3 различных способа международной доставки: Авиапочта, Заказная Авиапочта и Служба ускоренной доставки. Ниже указаны сроки доставки:

.
Авиапочта и зарегистрированная авиапочта Район Время
США, Канада 10-25 рабочих дней
Австралия, Новая Зеландия, Сингапур 10-25 рабочих дней
Великобритания, Франция, Испания, Германия, Нидерланды, Япония, Бельгия, Дания, Финляндия, Ирландия, Норвегия, Португалия, Швеция, Швейцария 10-25 рабочих дней
Италия, Бразилия, Россия 10-45 рабочих дней
Другие страны 10-35 рабочих дней
Ускоренная доставка 7-15 рабочих дней по всему миру

Мы принимаем оплату через PayPal,и с помощью кредитной карты.

Оплата с помощью PayPal / кредитной карты —

ПРИМЕЧАНИЕ. Ваш заказ будет отправлен на ваш адрес PayPal. Убедитесь, что вы выбрали или ввели правильный адрес доставки.

1) Войдите в свою учетную запись или используйте кредитную карту Express.

2) Введите данные своей карты, заказ будет отправлен на ваш адрес PayPal. и нажмите Отправить.

3) Ваш платеж будет обработан, и квитанция будет отправлена ​​на ваш почтовый ящик.

Отказ от ответственности: это отзывы пользователей.Результаты могут варьироваться от человека к человеку.

Запчасти и ремонт ламп | Lamp Doctor: Электронные диммируемые трансформаторы для галогенных ламп

Галогенные лампы появились на рынке не так давно. Они предлагают яркий свет в компактных единицах. Большая часть галогенного освещения предназначена для специальных целей: освещение на гусеницах, освещение под шкафами и охранное освещение. Поскольку их нет в большинстве распространенных приложений, кажется, что с ними немного сложнее устранять неполадки.

В этом посте мы обсудим диммируемые трансформаторы, используемые в галогенном освещении.Они в основном встречаются в приложениях под шкафом. Трансформатор используется для преобразования 110-вольтового переменного тока (питание большинства домашних проводов в Северной Америке) в 12-вольтовый постоянный ток. 12-вольтовые приложения несут меньше ампер и позволяют использовать меньшие провода от лампочки к лампочке. Этими меньшими проводами легче управлять и прятать в ограниченном пространстве.

48468 — Электронный диммируемый трансформатор для галогенной лампы

Чтобы подключить трансформатор к домашнему электроснабжению, соедините черный и белый провода с проводами дома.Большинство домашних проводов также черно-белые. Черный провод — горячий, белый — нейтральный. Если вы планируете включить этот трансформатор в розетку и подключить его к комплекту шнура (с вилкой), вам нужно будет соединить черный провод с гладким шнуром, который втыкается в тонкий штырек розетки.
От трансформатора тоже идет пара красных проводов. Они будут нести 12 вольт для питания галогенных ламп. В то время как 12-вольтовый постоянный ток имеет положительную и отрицательную стороны, галогенные лампы не нужно привязывать к определенной стороне.(ПРИМЕЧАНИЕ. Если вы используете этот трансформатор для питания 12-вольтовых светодиодных ламп, вам нужно будет обеспечить согласованность положительных и отрицательных сторон.) Кроме того, помните, что галогенные лампы должны быть рассчитаны на 12-вольтовую цепь.
В большинстве этих приложений на трансформаторе будет более одной лампочки, поэтому вам нужно будет организовать схему так, чтобы + был на одной стороне, а — на другой.

Трансформатор -/+ лампа -/+ лампа -/+ лампа -/+ лампа -/+ лампа

Не: Трансформатор -/+ лампа -/+ лампа +/- лампа -/+ лампа -/+ лампа Со всеми проводами и подключенным трансформатором вы готовы подключить цепь и проверить лампы.Если вы хотите добавить диммер, он должен быть подключен к настенному выключателю или встроенному выключателю на стороне 110 вольт трансформатора.

Добавить комментарий

Ваш адрес email не будет опубликован.