Блок питания как устроен: Устройство компьютерных блоков питания и методика их тестирования

Содержание

А вы знаете — как устроен блок питания компьютера?

Добрый день, друзья!

А вы хотели бы узнать, как устроен блок питания компьютера? Сейчас мы попытаемся разобраться в этом вопросе.

Для начала отметим, что компьютеру, как и любому электронному устройству, необходим источник электрической энергии. Вспомним, что бывают

Первичные и вторичные источники электропитания

Первичные — это, в частности, химические источники тока (элементы питания и аккумуляторы) и генераторы электрической энергии, находящиеся на электростанциях.

В компьютерах могут применяться:

  • литиевые элементы напряжением 3 В для питания КМОП микросхемы, в которой хранятся установки BIOS,
  • литий-ионные аккумуляторы (в ноутбуках).

Литиевые элементы 2032 питают микросхему структуру CMOS, хранящую настройки BIOS Setup компьютера.

Потребление тока при этом невелико (порядка единиц микроампер), поэтому энергии батареи хватает на

несколько лет.

После исчерпания энергии такие источник энергии восстановлению не подлежат.

В отличие от элементов литий-ионные аккумуляторы являются возобновляемыми источниками. Они периодически то запасают энергию, то отдают ее. Сразу отметим, что любые аккумуляторы имеют ограниченное количество циклов заряд-разряд.

Но большая часть стационарных компьютеров питается не от аккумуляторов, а от сети переменного напряжения.

В настоящее время в каждом доме имеются розетки с переменным напряжением 220 В (в некоторых странах 110 — 115 В) частотой 50 Герц (в некоторых странах – 60 Герц), которые можно считать первичными источниками.

Но основные компоненты компьютера не могут непосредственно использовать такое напряжение.

Его необходимо преобразовать. Выполняет эту работу источник вторичного электропитания (народное название — «блок питания») компьютера. В настоящее время почти все блоки питания (БП) — импульсные. Рассмотрим более подробно, как устроен импульсный блок питания.

Входной фильтр, высоковольтный выпрямитель и емкостный фильтр

На входе импульсного БП имеется входной фильтр. Он не пропускает помехи, которые всегда есть в электрической сети, в блок питания.

Помехи могут возникать при коммутации мощных потребителей энергии, сварке и т.п.

В то же время он задерживает помехи и самого блока, не пропуская их в сеть.

Если быть более точным, помехи в БП и из него проходят, но достаточно сильно ослабляются.

Входной фильтр представляет собой фильтр нижних частот (ФНЧ).

Он пропускает низкие частоты (в том числе сетевое напряжение, частота которого равна 50 Гц) и ослабляет высокие.

Отфильтрованное напряжение поступает на высоковольтный выпрямитель (ВВ). Как правило, ВВ выполнен по мостовой схеме из четырех полупроводниковых диодов.

Диоды могут быть как отдельными, так и смонтированными в одном корпусе. Существует и другое название такого выпрямителя — «

диодный мост».

Выпрямитель превращает переменное напряжение в пульсирующее, т. е. одной полярности.

Грубо говоря, диодный мост «заворачивает» отрицательную полуволну, превращая ее в положительную.

Пульсирующее напряжение представляет собой ряд полуволн положительной полярности. На выходе ВВ стоит емкостной фильтр — один или два последовательно включенных электролитических конденсатора.

Конденсатор — это буферный элемент, который может заряжаться, запасая энергию и разряжаться, отдавая ее.

Когда напряжение на выходе выпрямителя ниже некоей величины («провал»), конденсатор разряжается, поддерживая его на нагрузке. Если же оно выше, конденсатор заряжается, обрезая пики напряжения.

В курсе высшей математике доказывается, что пульсирующее напряжение представляет собой сумму постоянной составляющей и гармоник, частоты которых кратны основной частоте сети.

Таким образом, емкостный фильтр можно рассматривать здесь как фильтр нижних частот, выделяющий постоянную составляющую и ослабляющий гармоники. В том числе и основную гармонику сети — 50 Гц.

Источник дежурного напряжения

В компьютерном блоке питания имеется так называемый источник дежурного напряжения (+5 VSB).

Если вилка кабеля вставлена в питающую сеть, это напряжение присутствует на соответствующем контакте разъема блока питания. Мощность этого источника небольшая, он способен отдавать ток 1 — 2 А.

Именно этот маломощный источник и запускает гораздо более мощный инвертор. Если разъем блока питания вставлен в материнскую плату, то часть ее компонентов находится под напряжением + 5 VSB.

Сигнал на запуск инвертора подается с материнской платы. Причем для включения можно использовать маломощную кнопку.

В более старых моделях компьютеров устанавливались БП старого стандарта АТ. Они имели громоздкие выключатели с мощными контактами, что удорожало конструкцию. Использование нового стандарта АТХ позволяет «будить» компьютер одним движением или кликом «мышки». Или нажатием клавиши на клавиатуре. Это, конечно, удобно.

Но при этом надо помнить, что конденсаторы в источнике дежурного напряжения всегда находятся под напряжением. Электролит в них подсыхает, срок службы уменьшается.

Большинство пользователей традиционно включает компьютер кнопкой на корпусе, питая его через фильтр-удлинитель. Таким образом, можно рекомендовать после отключения компьютера исключать подачу напряжения на блок питания выключателем фильтра.

Выбор — удобство или надежность — за вами, уважаемый читатели.

Устройство источника дежурного напряжения

Источник дежурного напряжения (ИДН) содержит в себе маломощный инвертор.

Этот инвертор превращает высокое постоянное напряжение, полученное с высоковольтного фильтра, в переменное. Это напряжение понижается до необходимой величины маломощным трансформатором.

Инвертор работает на гораздо более высокой частоте, чем частота сети, поэтому размеры его трансформатора невелики. Напряжение со вторичной обмотки подается на выпрямитель и низковольтный фильтр (электролитические конденсаторы).

Напряжение ИДН должно находиться в пределах 4,75 — 5,25 В. Если оно будет меньше — основной мощный инвертор может не запуститься. Если оно будет больше, компьютер может «подвисать» и сбоить.

Для поддержания стабильного напряжения в ИДН часто используется регулируемый стабилитрон (иначе называемый источником опорного напряжения) и обратная связь. При этом часть выходного напряжения ИДН подается во входные высоковольтные цепи.

Заканчивая первую часть статьи, отметим, что для гальванической развязки входных и выходных цепей используется оптопара.

Оптопара содержит источник и приемник излучения. В блоках питания чаще всего используется оптопара, содержащая в себе светодиод и фототранзистор.

Инвертор в ИДН собран чаще всего на мощном высоковольтном полевом или биполярном транзисторе. Мощный транзистор отличается от маломощных тем, что рассеивает бОльшую мощность и имеет бОльшие габариты.

В этом месте сделаем паузу. Во второй части статьи мы рассмотрим основной инвертор и низковольтную часть компьютерного блока питания.

С вами был Виктор Геронда.

До встречи на блоге!

P.S. Фото кликабельны, кликайте, рассматривайте внимательно схемы и удивляйте знакомых своей эрудицией!


Анатомия.

Из чего состоит блок питания? — i2HARD

Он есть в каждом компьютере, ноутбуке и приставке. Он не влияет на вашу частоту кадров и майнинг биткоинов. У него нет миллиардов транзисторов, и в его производстве не используются новейшие полупроводниковые техпроцессы. Звучит скучно? Ничуть! Без этой штуки наши компьютеры абсолютно ничего бы не сделали.

БП, они же блоки питания (англ. PSU, Power Supply Units), не взрывают заголовки журналов как новейшие процессоры, но это интереснейшие технологии, заслуживающие нашего внимания. Так что надевайте белые халаты, маски, перчатки и приступим к вскрытию нашего скромного парнишки – блока питания, разберём его на части и рассмотрим, чем занимается каждый его орган.

И да, совсем недавно мы разбирались как правильно выбрать Блок питания. Рекомендуем к прочтению.

Что это и с чем это едят?

Многие компьютерные компоненты имеют названия, требующие чуточку технических знаний, чтобы понять, что это и зачем (например, твердотельный накопитель), но в случае блока питания всё довольно очевидно. Это блок, обеспечивающий питание.

Но мы же не можем на этом поставить точку, с гордостью заявив «статья готова». Наш цикл статей посвящен внутреннему строению, и на операционном столе у нас лежит подопытный – Cooler Master G650M. Это довольно типичный представитель, с характеристиками, подобными десяткам других моделей, но у него есть одна особенность, встречающаяся не во всех блоках питания.


Официальное фото блока питания Cooler Master.

Это блок питания стандартного размера, соответствующий форм-фактору ATX 12V v2.31, поэтому он подходит для многих компьютерных корпусов.

Есть и другие форм-факторы – например, для малых корпусов, либо вовсе уникальные по спецзаказу. Не каждый блок соответствует точным размерам, установленным стандартными форм-факторами – они могут быть одинаковой ширины и высоты, но отличаться по длине.


Этот блок питания от Cisco специально спроектирован для серверных стоек

В маркировке PSU обычно указывается их основной параметр – максимально обеспечиваемая мощность. В случае с нашим Cooler Master, это 650 Вт. Позже мы поговорим, что это на самом деле значит, а пока лишь заметим, что есть и менее мощные БП, поскольку не всем компьютерам требуется именно столько, а некоторым достаточно даже на порядок меньше. Но всё-ж большинство настольных компьютеров обеспечены питанием в диапазоне от 400 до 600 Вт.

Блоки питания вроде нашего собираются в прямоугольных, зачастую неокрашенных, металлических корпусах, отчего бывают достаточно увесистые. У ноутбуков блок питания практически всегда внешний, в пластиковом корпусе, но его внутренности очень схожи с тем, что мы увидим у рассматриваемого нами БП.


Источник фотографии nix.ru

Большинство типичных блоков питания оснащены сетевым выключателем и кулером для активной терморегуляции, хотя в ней не все БП нуждаются. И не у всех из них есть вентиляционная решётка – у серверных версий, в частности, это редкость.

Ну что-ж, как вы можете видеть на фото выше, мы уже вооружены отверткой и готовы приступить к вскрытию нашего экземпляра.

Немного теории

Но прежде чем мы начнем копаться во внутренностях, давайте зададимся вопросом, действительно ли блок питания настолько необходим? Почему нельзя подключить компьютер напрямую к розетке? Ответ заключается в том, что компьютерные комплектующие рассчитаны на совсем другое напряжение, нежели сетевое.

На графике ниже показано, каким должно быть электричество сети (в США = синяя и зеленая кривые; Великобритания = красная кривая). Ось X представляет время в миллисекундах, а ось Y – напряжение (voltage) в вольтах. Проще всего понять, что такое напряжение, глядя на разность энергий между двумя точками.

Если напряжение приложено к проводнику (например, к металлической проволоке), разница в энергии заставит электроны в материале проводника течь от более высокого энергетического уровня к более низкому. Электроны – составляющие атомов, из которых состоит проводник, и металлы имеют много электронов, которые могут свободно перемещаться. Этот поток электронов называется током (current) и измеряется в амперах.

Хорошую аналогию можно провести с садовым шлангом: напряжение сродни давлению, которое вы используете, а расход воды – это ток. Любые ограничения и препятствия в шланге – по сути как электрическое сопротивление.


Мы видим, что электричество в сети варьируется с течением времени, из-за чего оно называется напряжением переменного тока (AC, alternating current). В США сетевое напряжение меняется 60 раз в секунду, достигая пиковых значений 340 В или 170 В, в зависимости от местоположения и способа подключения. В Великобритании пиковые напряжения пониже, и частота этих колебаний также немного отличается. Большинство стран придерживаются схожих стандартов сетевого напряжения, и лишь в немногих странах пиковые напряжения более низкие или более высокие.

Потребность в блоке питания заключается в том, что компьютеры не работают с переменным током: им нужно постоянное напряжение, которое никогда не меняется, и кроме того – гораздо более низкое. На том же графике оно будет выглядеть примерно вот таким:


Но современному компьютеру требуется не одно постоянное напряжение, а четыре: +12 вольт, -12 вольт, +5 вольт и +3,3 вольта. И поскольку эти значения не меняются, такой ток называется постоянным (DC, direct current). Преобразование тока из переменного в постоянный (т.н. выпрямление) – одна из основных функций блока питания. Пришло время вскрыть его и посмотреть, как он это делает!

Преобразование тока из переменного в постоянный – одна из основных функций PSU. Пришло время посмотреть, как он это делает!

Здесь мы должны предупредить вас, что в блоке питания есть элементы, накапливающие электричество, в том числе смертельное. Поэтому разбирать PSU потенциально опасно.


Официальное фото блока питания Cooler Master.

Принцип работы этого блока питания аналогичен многим другим, и хоть маркировки на различных деталях внутри будут отличаться, принципиальных различий это не делает.

Разъём сетевого шнура находится в верхнем левом углу фотографии, и ток по сути идет по часовой стрелке, пока не достигнет выхода из блока питания (пучок цветных проводов, нижний левый угол).


Источник фото techspot.com

Если мы перевернем плату, мы увидим, что по сравнению с материнской платой, проводники и соединения на ней более широкие и массивные – это потому, что они рассчитаны на более высокие токи. Также, бросается в глаза широкая полоса в середине, будто текущая по равнине река.

Это снова говорит о том, что все блоки питания имеют два четко разделённых узла: первичный и вторичный. Первый – это настройка входного напряжения, чтобы его можно было эффективно понижать; второй – это все настройки уже выпрямленного и пониженного напряжения.

Фильтрация

Первое, что блок питания делает с сетевым электричеством, это не выпрямление и не понижение, а выравнивание входного напряжения. Поскольку в наших домах, офисах и на предприятиях имеется множество электрических устройств и приборов, постоянно включающихся-выключающихся, а также излучающих электромагнитные помехи, переменный ток в сети часто бывает «скомканный» и со случайными скачками и перепадами (частота также не постоянна). Это не только затрудняет блоку питания выполнять преобразования, но может вывести из строя некоторые элементы внутри него.

Наш БП имеет две ступени так называемых входных фильтров (transient filter), первая из которых построена сразу на входе с помощью трёх конденсаторов. Она выполняет роль, похожую на роль «лежачего полицейского» на дороге – только вместо скорости, этот фильтр гасит внезапные скачки входного напряжения.


Источник фото techspot.com

Вторая ступень фильтра более сложная, но в сущности делает то же самое.

Желтые кирпичики – это снова конденсаторы, а вот зеленые кольца, обмотанные медным проводом, это индуктивные катушки (хотя при таком использовании их обычно называют дросселями). Катушки накапливают электрическую энергию в магнитном поле, но энергия при этом не теряется, а за счет самоиндукции плавно возвращается обратно. Таким образом, внезапно появившийся высокий импульс (скачок) поглощается магнитным полем дросселя, чтобы на выходе дать ровное напряжение без всяких скачков.

Два маленьких синих диска – ещё одни представители многообразия конденсаторов, а чуть ниже них (зелёный, с длинными ножками, обтянутыми черными изоляторами) – металлооксидный варистор (MOV). Они также используются для защиты от скачков входного напряжения. Подробнее о различных типах входных фильтров можно прочитать здесь.


Источник фото techspot.com

По этому узлу блока питания часто можно определить, насколько производитель сэкономил, или к какому бюджетному классу принадлежит девайс. Более дешевые будут иметь упрощённую фильтрацию входа, а самые дешёвые и вовсе не иметь таковой (избегайте таких!).

Теперь, когда напряжение выровнено и причёсано, ему дозволяется идти дальше – собственно, к преобразованию.

Преобразование

Как мы уже сказали, блоку питания нужно изменить напряжение переменного тока, которое в американских розетках обычно в районе 120 вольт (технически, это среднеквадратичные 120 вольт, но мы не будем так язык выламывать), получив на выходе постоянное напряжение 12, 5 и 3,3 вольт.

Первым делом осуществляется преобразование переменного тока в постоянный, и наш блок использует для этого выпрямительный мост. На фото ниже это плоский черный элемент, приклеенный к радиатору.


Источник фото techspot.com

Это еще одно место, где производитель блоков питания может сократить расходы, поскольку более дешевые выпрямители хуже справляются со своей задачей (например, сильнее греются). Теперь, если пиковое входное напряжение составляет 170 В (что имеет место для сети 120 В), то пройдя через выпрямительной мост, оно станет 170 В, но уже постоянного тока.

В таком виде оно поступает на следующую стадию, и в нашем блоке это активный модуль коррекции коэффициента мощности (APFC или Active PFC, Active Power Factor Correction converter). Этот узел также стабилизирует напряжение, сглаживая «провалы» за счет накапливающих конденсаторов; кроме того, он защищает от скачков выходной мощности.

Пассивные корректоры (PPFC или Passive PFC) выполняют по сути ту же работу. Они менее эффективны, но хороши для маломощных блоков питания.


Источник фото techspot.com

APFC на фото выше представлен в виде пары больших цилиндров слева – это конденсаторы, которые накапливают выровненный ток, прежде чем отправить его дальше по цепочке процессов в нашем блоке питания.

За APFC находится ШИМ, широтно-импульсный модулятор (PWM, Pulse Width Modulator). Его предназначение заключается в том, чтобы с помощью нескольких быстро переключающихся полевых транзисторов преобразовать постоянный ток обратно в переменный. Это нужно сделать потому, что на следующем шаге нас ждёт понижающий трансформатор. Эти устройства, основанные на электромагнитной индукции, состоят из двух обмоток с разным количеством витков на металлическом сердечнике, необходимых для понижения напряжения, и работают трансформаторы только с переменным током.

Частота переменного тока (скорость, с которой он изменяется; в герцах, Гц) значительно влияет на эффективность трансформатора – чем выше, тем лучше, поэтому частота исходного питания 50/60 Гц увеличивается примерно в тысячу раз. А чем эффективнее трансформатор, тем меньше его размер. Такой тип устройств, который использует эти сверхбыстрые частоты постоянного тока, называется импульсным источником питания (Switched Mode Power Supply, SMPS).

На фото ниже вы можете видеть 3 трансформатора – самый большой имеет на единственном выходе 12 вольт, а тот, что поменьше – 5 вольт (чуть поговорим ещё о нём позже). В других БП вы можете встретить один большой трансформатор сразу на все напряжения, то есть с несколькими выходами. А самый маленький трансформатор предназначен для защиты транзисторов ШИМ и подавления его помех.

|
Источник фото techspot.com

Можно по-разному реализовать получение необходимых напряжений, защиту ШИМ, и так далее. Всё зависит от бюджетного сегмента и мощности устройства. Однако, всем одинаково необходимо снять напряжения с трансформаторов и снова выпрямить.

На фото ниже мы видим алюминиевый радиатор низковольтных диодов, выполняющих это выпрямление. А также, конкретно в этом PSU, мы видим небольшую дополнительную плату в центре фото – это узел модулей регулирования напряжения (VRM, Voltage Regulation Modules), обеспечивающий выходы 5 и 3,3 вольт.


Источник фото techspot.com

И тут нам стоит поговорить о том, что такое пульсация.

В идеальном мире, с идеальными блоками питания, переменный ток будет преобразован в абсолютно ровный, без малейших колебаний, постоянный ток. В действительности же, такой 100%-ой точности не достигается, и напряжение постоянного тока имеет хоть и незначительные, но колебания.

Этот эффект называется пульсирующим напряжением, и в наших блоках питания мы бы хотели, чтобы оно было как можно меньше. Cooler Master не предоставляет информации о величине пульсирующего напряжения в спецификации к нашему подопытному PSU, поэтому мы прибегли к сторонним результатам тестирования. Один из таких анализов был выполнен JonnyGuru.com, и они установили, что максимальное пульсирующее напряжение выхода +12 В – 0,042 В (42 милливольт).

График ниже демонстрирует отклонение фактически получаемого напряжения (синяя кривая; при этом её форма, конечно, не такая идеальная синусоида – ведь сама пульсация не постоянна) от требуемого ровного напряжения +12 В постоянного тока (красная прямая).


Это отклонение, по большей части, лежит на совести конденсаторов во всём PSU. Некачественные, дешёвые конденсаторы приводят к увеличению этой не нужной нам пульсации. Если она слишком большая, то некоторые электронные узлы компьютера, наиболее чувствительные к качеству питания, могут начать работать нестабильно. К счастью, в нашем примере 40 с лишним милливольт это нормально. Не супер, но и не плохо.

Но на получении приемлемых выходных напряжений дело ещё не заканчивается. Необходимо обеспечить управление выходами, чтобы питание на каждом из них было всегда полноценным и стабильным, независимо от мощности нагрузок на других выходах.


Источник фото techspot.com

Микросхема, которую вы видите на этом фото, называется супервизор (supervisor) и она следит за тем, чтобы на выводах не оказалось слишком высокого или низкого напряжения и тока. Работает бесхитростно – просто отключает блок питания при возникновении таких проблем.

Более дорогие PSU могут оснащаться ЦПОС, цифровым процессором обработки сигналов (DSP, Digital Signal Processor), который не только мониторит напряжения, но и может отрегулировать их при необходимости, а также отправлять подробные данные о состоянии БП на компьютер, его использующий. Для рядового пользователя эта функция достаточно спорная, но для серверов и рабочих станций – весьма желательная.

Выходы

Все блоки питания поставляются с длинными пучками проводов, торчащими сзади. Количество проводов и доступных разъёмов для запитывания устройств будут отличаться от модели к модели, но некоторые стандартные подключения должны обеспечивать все БП без исключения.

Так как напряжение – это величина разности потенциалов, то каждый выход подразумевает два провода: один для указанного напряжения (например, +12 В) и провод, относительно которого измеряется разность потенциалов. Этот провод называется заземлением, «землёй», «reference wire» или «общим» проводом, и два этих провода образуют петлю: от блока питания до устройства-потребителя, а затем обратно в БП.

Поскольку в некоторых таких замкнутых контурах токи небольшие, они могут использовать общие провода заземления.


Официальное фото блока питания Cooler Master.

Главным из обязательных разъёмов является 24-pin ATX12V v. 2.4, обеспечивающий основное питание с помощью нескольких выводов различных напряжений, а также имеющий ряд специальных выводов.


Из этих специальных отметим лишь вывод «+5 standby» – дежурное питание компьютера. Это напряжение подаётся на материнскую плату всегда, даже когда компьютер выключен, при условии, что он остаётся включен в розетку и его БП исправен. Дежурное питание нужно материнской плате для того, чтобы оставаться активной.

Большинство PSU также имеют дополнительный 8-pin разъём для материнской платы с двумя линиями +12 В, и по крайней мере один 6 или 8-pin разъём питания для PCI Express.

Со слота PCI Express видеокарты могут взять максимум 75 Вт, поэтому этот разъем обеспечивает дополнительную мощность для современных GPU.

Конкретно наш рассматриваемый блок питания по соображениям экономии фактически использует два разъема питания PCI Express на одной и той же линии. Поэтому, если у вас действительно мощная видеокарта, старайтесь выделить ей независимую линию питания, не делите её с другими устройствами.

Разница между 6 и 8-pin разъемами PCI Express – два дополнительных провода заземления. Это позволяет повысить силу тока, удовлетворяя потребности наиболее прожорливых видеокарт.

Последние несколько лет мы всё чаще стали замечать блоки питания с гордой припиской «модульный» (modular PSU). Это просто означает, что у них отстегивающиеся кабели, что позволяет использовать только необходимое количество кабелей и разъёмов, не подключая всё ненужное, освободив тем самым пространство внутри блока.


Источник фотографии nix.ru

Наш Cooler Master, как и большинство, использует довольно простую систему подключения модульных кабелей.


Каждый разъем имеет по одному проводу +12В, +5В и +3,3В, а также два провода заземления, и в зависимости от того, к какому устройству будет подключен кабель, разъем на другом конце будет использовать либо соответствующую, либо упрощённую распайку.

Представленный на фото выше разъем Serial ATA (SATA) используется для подключения питания жестких дисков, твердотельных накопителей и таких периферийных устройств, как DVD-приводы.

Этот всем знакомый разъём называется замысловато: «разъём питания AMP MATE-N-LOK 1-480424-0». Но все называют его просто Molex, невзирая на то, что это всего лишь название компании-разработчика этого разъёма. Он предоставляет по одному выводу +12В и +5В, и два провода заземления.

На выходных проводах производители тоже могут сэкономить или накрутить цену за счет более ярких или более мягких проводов. Сечение провода также играет важную роль, поскольку более толстые провода обладают меньшим сопротивлением, чем тонкие, поэтому меньше греются при прохождении тока по ним.

На что обращать внимание при выборе

В начале нашей статьи мы говорили, что большинство блоков питания имеют в названии значение своей максимальной мощности. Простым языком, электрическая мощность – это напряжение, умноженное на силу тока (например, 12 вольт x 20 ампер = 240 ватт). И хотя такое утверждение не совсем технически точное, для наших целей оно удовлетворительное.

Как и на большинстве моделей, на нашем блоке питания есть шильдик, содержащий основную информацию о том, сколько мощности может обеспечить каждая линия напряжения.


Источник фотографии nix.ru

Здесь мы видим, что суммарная максимальная мощность всех +12 В линий составляет 624 Вт. Приплюсовав все остальные мощности, мы в итоге получим 760 Вт, а не 650. Что тут не так? А дело просто в том, что линии +5 В (кроме дежурной) и +3,3 В создаются через VRM, используя одну из линий +12 В.

Ну и конечно, все выходные напряжения поступают из одного источника: сетевой розетки. Таким образом, мощность в 650 Вт – это максимум, который блок питания может обеспечить в целом по всем линиям. То есть, если у вас на линиях +12 В висит нагрузка в 600 Вт, то на все остальные линии у вас остается всего 50 Вт. К счастью, большинство оборудования в любом случае бо́льшую часть мощности берёт от линий 12 В, поэтому проблема неправильно подобранного БП встречается редко.

Правее от таблицы со спецификациями мощности на шильдике присутствует значок «80 Plus Bronze». Это рейтинг эффективности, используемый в отрасли в соответствии с требованиями к производителям блоков питания. Эффективность также отражает величину общей нагрузки, которую блок питания способен обслуживать.


20%, 50% и 100% – процент нагрузки по отношению к максимальной мощности для стандартных систем

Если наш Cooler Master нагрузить ровно на половину его максимальной мощности, то есть на 325 Вт, то его ожидаемый КПД будет в пределах 80-85% в зависимости от напряжения в сети (115/230 В).

Это означает фактическую нагрузку блока питания на сеть от 382 до 406 Вт. Более высокий рейтинг 80 PLUS не означает, что блок питания даст вам больше энергии, он просто более экономичный – меньше энергии теряет на всех этапах фильтрации, выпрямления и преобразования.

Также обратите внимание, что максимальная эффективность достигается в диапазоне между 50 и 100% нагрузки. Некоторые производители предоставляют графики, показывающие, какой КПД можно ожидать от их устройства при различных нагрузках и напряжениях в сети.


Официальное изображение Cooler Master.

График эффективности для блока питания Cooler Master V1300 Platinum. Вертикальная шкала – эффективность (КПД), горизонтальная – % нагрузки по отношению к максимальной мощности.

Иногда полезно обращать внимание на эту информацию, особенно если собираетесь раскошелиться на киловаттный блок питания. Если ваш компьютер будет потреблять близко к этому пределу мощности, то КПД блока питания будет несколько снижен.

Вы можете наткнуться на некие «одноканальные» и «многоканальные» (либо комбинированные – снабжённые переключателем) блоки питания. Термин «канал» в данном случае – просто другое слово для определенного напряжения, выдаваемого PSU. Наш Cooler Master имеет один канал 12 В и всевозможные разъёмы питания, обеспечивающие +12 В линии от этого канала. Многоканальный блок питания имеет две или более систем, обеспечивающих линии 12 вольт, однако существует большая разница в том, как это реализовано.

Многоканальные блоки питания широко применяются для серверов или дата-центров в целях отказоустойчивости – при выходе из строя одного из каналов, работоспособность системы не нарушится. Для обычных компьютеров тоже могут предлагаться многоканальные PSU, но скорее всего, вы столкнетесь с псевдо-многоканальностью, когда производитель просто разделит единственный канал на два или три якобы независимых канала. Например, наш подопытный выдает до 52 ампер по линии +12В, что эквивалентно 624 Вт электроэнергии. Дешевая «многоканальная» версия такого БП будет иметь в спецификации якобы два канала +12 В, но на самом деле это лишь два полуканала, каждый из которых будет обеспечивать только 26 А (или 312 Вт).

Хороший блок питания для настольного компьютера, использующий качественные компоненты, вовсе не требует многоканальности на +12 В, так что не беспокойтесь об этом!

Стоит ли переплачивать?

Блоки питания поставляются во всех ценовых диапазонах. Каталог на Amazon начинается с моделей от 15$ для стандартного блока 400 Вт, и доходит до полномодульных киловаттных PSU за 180-240$ от EVGA или Seasonic, и не заканчивается даже на этом. Что же вы получите за свои деньги? Что действительно стоит больше 200 долларов?

Очевидно, что чем мощнее, тем лучше, но вопрос ещё в том, как эта мощность реализована. Самые дешёвые 300 Вт модели выдают до 25 А на линиях +12В, в то время как киловаттная модель обеспечит втрое больше энергии. Современные процессоры и видеокарты практически все свои потребности удовлетворяют линиями +12 В. Уверены, что вам хватит 25 А?


Официальное фото блока питания Seasonic.

Учитывая, что актуальные аппетиты растут вместе с актуальным железом, то ваш новенький компьютер с 32-ядерным процессором в паре с 300-ваттной топовой видеокартой дешёвый блок питания явно не «затащит». С другой стороны, самые дорогие PSU легко справятся и будут иметь ещё приличный запас мощности. Ну а поскольку совокупная цена такого процессора и видеокарты может легко превысить 3500$, то стоит ли экономить ещё парой-другой сотен баксов сверху на обеспечение нормального питания для такого монстра.

Но на самом деле вы платите за качество компонентов в блоке питания. Взгляните на внутренности нашего Cooler Master в начале статьи. Вы не увидите там безумного количества всяких «шабашек», а поскольку каждый из тех немногочисленных элементов – критически важный компонент в работе устройства, нетрудно понять, почему не стоит гоняться за дешевизной.

На этом наше препарирование PSU закончено. Это очень интересное семейство устройств с на удивление сложным уровнем инженерии на всех этапах разработки и производства. Если у вас есть какие-либо вопросы о блоках питания в целом, или конкретно о вашем, смело спрашивайте в комментариях ниже. До новых встреч в нашем анатомическом кружке.

Блок питания компьютера из чего состоит и как устроен?

Опубликовано 29.10.2018 автор — 0 комментариев

Привет, друзья! Несмотря на совершенство современных комплектующих то, без чего невозможна их нормальная работа – блок питания компьютера, из чего состоит этот узел и как работает, я расскажу в сегодняшней публикации.

Назначение блока питания

Даже полный «чайник» знает, что БП подает ток. Однако такое утверждение фактически почти ничего не объясняет. Блок питания выполняет три основные функции:

  • Понижает напряжение в сети от 220 В (возможны и другие значения) до рабочего напряжения, необходимого для подачи к потребителям энергии – 3.3, 5 и 12 В, в том числе и с отрицательными значениями.
  • Выпрямляет переменный ток с частотой 50 Гц, делая его постоянным.
  • Стабилизирует рабочее напряжение.

Такие функции требуют соответствующей электрической схемы. БП для системного блока – вовсе не простая конструкция, как можно ошибочно подумать. Рассмотрим более детально его строение – какие логические блоки спрятаны там внутри, и как работает каждый из них.

Конструкционные компоненты

В состав блока питания включены три каскада – входной, выходной и преобразователь. Следует разобрать более детально, как устроен каждый и для чего он предназначен.

Входные цепи

Сюда входят такие блоки:

  • Входной фильтр, который отсекает импульсные помехи, не давая им распространяться далее. Также он снижает разряд конденсаторов, который возникает при включении устройства в сеть.
  • Корректор мощности снижает нагрузку на питающие цепи.
  • Переменное напряжение постоянно трансформирует выпрямительный мост.
  • Пульсации выпрямленного напряжения сглаживает конденсаторный фильтр.

  • БП небольшой мощности, который выдает +5 В для поддержки дежурного режима материнки и +12 В для микросхемы преобразователя.

Преобразователь

Состоит из следующих элементов:

  • Двух биполярных транзисторов, которые используются в качестве полумостового преобразователя.
  • Схемы защиты от изменения питающих напряжений. В этом качестве обычно выступает специфическая микросхема, например SG6105 или UC
  • Высокочастотного импульсного трансформатора, формирующий напряжения требуемого номинала.
  • Цепей обратной связи, поддерживающих стабильное напряжение на выходе БП.
  • Формирователя напряжения, реализованного на базе отдельного операционного усилителя.

Выходные цепи

Для их нормальной работы необходимы такие составляющие:

  • Выходные выпрямители, которые используются для подачи напряжения 5 В и 12 В с положительными и отрицательными значениями, с помощью одних и тех же обмоток трансформатора.
  • Дроссель групповой стабилизации. Сглаживает импульсы и перераспределяет энергию между остальными цепями.

  • Фильтрующие конденсаторы, интегрирующие импульсы, необходимые для получения номинальных напряжений.
  • Нагрузочные резисторы, обеспечивающие безопасную работу на холостом ходу.

Достоинства такой схемы

Такая логическая схема используется уже более десятилетия, что лишний раз подтверждает ее высокую эффективность. К неоспоримым достоинствам следует отнести:

  • Относительная простота конструкции снижает количество необходимых компонентов, что позволяет снизить себестоимость устройства. Также это упрощает ремонт, в случае его необходимости.
  • На выходе получается требуемый диапазон номинальных напряжений, с приемлемым качеством стабилизации, что требуется для нормальной работы комплектующих в составе системного блока.
  • Так как основные потери энергии приходятся на процессы преобразования, можно достичь высокого КПД такого блока питания, вплоть до 90%.
  • Небольшие габариты и масса, что позволяет собирать более компактные системные блоки.
  • При внесении соответствующих конструкционных корректировок, такие БП можно использовать в сетях с широким диапазоном напряжения – например, 115 В в США или 220 В на постсоветском пространстве.

Некоторые особенности разных моделей

Эффективность устройства зависит не только от принципиальной схемы – они в большинстве случаев унифицированы, а какие-то революционные нововведения внедряются редко.

Во многом на КПД и срок эксплуатации блока питания влияет качество комплектующих, которое может отличаться у разных производителей – от откровенного контрафакта у бюджетных моделей, сделанных в полукустарных условиях, до качественных микросхем, соответствующих всем принятым стандартам, которые используются в схемах вызывающих доверие брендов.

Естественно, при покупке нового БП, ни один продавец не даст сорвать пломбу и более тщательно покопаться во внутренностях устройства.

Здесь на помощь нам приходит видеохостинг YouTube – на соответствующих каналах, которые несложно найти, блоггеры выкладывают процесс разборки и результаты тестов различных комплектующих.

Однако при этом следует прислушиваться только к мнению создателя ролика, которому вы доверяете и чья компетентность не вызывает сомнений.

Для более детального углубления в тему, советую ознакомиться с моими публикациями «сертификаты блоков питания» и «основные характеристики блока питания».

А в качестве возможной покупки, могу порекомендовать блок питания Chieftec 550W Retail CPS-550S [FORCE] – надежное устройство с достаточной мощностью, не дорого и от хорошо зарекомендовавшего себя бренда.

Спасибо за внимание и до следующей встречи. Благодарю всех, кто делится моими статьями в социальных сетях.

С уважением, Андрей Андреев

инструкция по исправлению неисправностей своими руками

Несмотря на кажущуюся мощь, персональный компьютер — хрупкая вещь. Чтобы вывести из строя какую-нибудь деталь, достаточно просто неаккуратного обращения с ней. Например, не чистить системный блок и его компоненты. В результате на деталях образуется много пыли, которая негативно влияет на работы устройства в целом.

Один из важнейших компонентов ПК — блок питания. Именно он распределяет электричество по системному блоку и контролирует уровень напряжения. Поэтому поломку этого устройства можно отнести к одной из самых неприятных. Тем не менее заняться ремонтом и исправить проблему своими руками под силу каждому.

Признаки неработающего блока питания

Самая критичная ситуация — это когда компьютер не реагирует на кнопку включения. Это значит, что были пропущены важные моменты, которые могли указать на скорую поломку. Например, неестественный звук во время работы, долгое включение компьютера, самостоятельное отключение и т. д. А может подобные неисправности и были замечены, но было решено к ремонту не прибегать.

Кроме самых критичных моментов, существует несколько признаков, которые помогут выявить проблемы в работе компьютерного блока питания:

  • Возникновение различных ошибок при включении ПК.
  • Внезапные перезагрузки компьютера.
  • Повышение громкости работы кулеров (небольших вентиляторов).
  • Различные ошибки при включённом ПК.
  • Прекращение работы жёсткого диска или некоторых кулеров.
  • Громкое пищание из системного блока (говорит о перегреве).
  • Удары электрическим током при прикосновении к корпусу.

Подобные признаки указывают на необходимость скорого ремонта, который можно провести своими руками. Тем не менее существуют и более серьёзные проблемы, явно указывающие на серьёзную неисправность. Например:

  • «Экран смерти» (синий экран при включении или работе устройства).
  • Появление дыма.
  • Нет реакции на включение.

Большинство людей при возникновении подобных проблем обращаются к мастеру за ремонтом. Как правило, компьютерный специалист советует приобрести новый блок питания, а затем установить его вместо старого. Тем не менее с помощью ремонта, можно своими руками «реанимировать» неработающее устройство.

Главные причины неисправностей

Чтобы полностью решить проблему, необходимо понять, из-за чего она могла появиться. Чаще всего блок питания компьютера выходит из строя по трём причинам:

  • Перепады напряжения.
  • Низкое качество самого изделия.
  • Неэффективная работа вентиляционной системы, приводящая к перегреву.

В большинстве случаев подобные неисправности приводят к тому, что блок питания не включается или перестаёт работать после непродолжительной работы. Кроме того, вышеописанные проблемы могут негативно сказаться на материнской плате. Если это случилось, то ремонтом своими руками здесь не обойтись — необходимо будет менять деталь на новую.

Реже неисправности в БП компьютера возникают из-за следующих причин:

  • Некачественное ПО (плохая оптимизация ОС плохо сказывается на работе всех компонентов).
  • Отсутствие чистки компонентов (большой объём пыли заставляет кулеры работать быстрее).
  • Много лишних файлов и «мусора» в самой системе.

Как было сказано выше, блок питания — довольно хрупкая вещь. Тем не менее она очень важна для компьютера в целом, поэтому не стоит этот компонент обделять вниманием. Иначе ремонт неизбежен.

Устройство компьютерного блока питания

Блок питания в компьютере отвечает за распределение и преобразование электрического тока. Дело в том, что каждый элемент в ПК нужен свой уровень напряжения. Кроме того, в электросетях применяется ток переменного характера, а компоненты компьютера работают от постоянного. Поэтому устройство блока питания довольно специфично и для ремонта своими руками его нужно знать.

В каждом БП есть 9 важных компонентов:

  • Основная плата (большой и плоский компонент) — сюда крепятся многие детали (по аналогии с материнской платой).
  • Входной фильтр (устройство, закреплённое на крупных проводах) или силовые конденсаторы (изделия в форме цилиндра) — нужны для «сглаживания» напряжения.
  • Инвектор напряжения (катушка из крупной медной проволоки, установленная у одной из стенок) или диодный мост (пластиковое устройство, по форме напоминает сим-карту, имеющую 4 металлических диода) — отвечает за преобразование мощности.
  • Схема контроля напряжения (системная плата, установленная вертикально рядом с инвектором) — контролирует уровень тока.
  • Трансформатор (маленькое пластиковое устройство с цифрами и буквами) — создаёт необходимое напряжение в блоке питания.
  • Импульсный трансформатор (похож на предыдущий компонент, но большего размера) — получает от инвектора высокое напряжение, чтобы поменять его в низковольтное.
  • Радиатор (обычно это решётка серого цвета) — необходим для охлаждения.
  • Плата с разъёмами для проводов (присутствует не во всех моделях блоков питания) используется для отключения неиспользованных проводов.
  • Силовой дроссер (обычно это медная катушка с разноцветными проводами) — занимается групповой стабилизацией напряжения.
  • Контроллер оборотов кулера (небольшое пластмассовое устройство, иногда устанавливается не на основную, а на дочернюю плату) — отвечает за регулировку работы вентилятора в блоке питания.

Не имея хотя бы приблизительного представления об устройстве блока питания, невозможно в полной мере провести самостоятельный ремонт.

Меры предосторожности

Перед тем как приступить к решению проблемы в компьютере своими руками, необходимо подумать о собственной безопасности. Ремонт подобного устройства — опасное занятие. Поэтому в первую очередь нужно работать вдумчиво и без спешки.

Для большей безопасности следует помнить о нескольких важных правилах:

  • Работать только с выключенным блоком питания. Несмотря на банальность совета, это очень важный момент. Никто не застрахован от «синдрома дурака», поэтому лучше проверить лишний раз, что всё выключено, а лишь затем приниматься за ремонт.
  • Чтобы сохранить компоненты, а также избежать «фейерверка», рекомендуется вместо предохранителя установить лампочку на 100 ватт. Если при включении блока питания лампочка остаётся гореть, то сеть где-то замкнуло. Если же она загорается и сразу гаснет, то всё в порядке.
  • Особенно долго под напряжением находятся силовые конденсаторы. Поэтому даже после отключения БП от сети, не следует сразу приниматься за работу.
  • Проверять работу устройства лучше вдали от воспламеняющихся веществ, т. к. существует риск короткого замыкания и «фейерверка» искр.

Необходимые инструменты

Чтобы ремонт блока питания был простым, но эффективным, каждому домашнему мастеру потребуется определённый инструментарий для работы. Все эти изделия можно без труда найти у себя дома, попросить у соседей/друзей или приобрести в магазине. Благо, стоят они недорого.

Итак, для ремонта потребуются следующие инструменты:

  • Паяльная станция со встроенной регулировкой мощности или несколько паяльников, каждый из которых рассчитан на определённую мощность.
  • Припой и флюс для припайки компонентов.
  • Для удаления припоя — оплётка или отсос.
  • Несколько отвёрток с разными наконечниками.
  • Мультиметр.
  • Бокорезы (устройства для разрезания пластиковых «хомутов», которыми скрепляются провода).
  • Лампочка на 100 Вт.
  • Пинцет (для снятия маленьких компонентов).
  • Спирт или очищенный бензин.
  • Возможно, потребуется осциллограф (если причина неисправности не установлена).

Осмотр и диагностика

Вначале необходимо разобрать блок питания. Для этого понадобится только отвёртка и аккуратность. При выкручивании болтов не нужно трясти БП, чтобы поскорее установить проблему. Неаккуратное обращение с ним может привести к тому, что ремонт своими руками будет попросту бесполезен.

Для правильной постановки «диагноза» необходимо провести первичную диагностику, а также визуальный осмотр устройства. Поэтому в первую очередь необходимо обратить внимание на вентилятор блока питания. Если кулер не может свободно крутиться и застревает в определённом месте, то проблема явно заключается в этом.

Помимо вентилятора изделия, также следует осмотреть устройство в целом. После длительного срока службы в нём скапливается много пыли, которая оказывает негативный эффект и затрудняет нормальную работу БП. Поэтому следует в обязательном порядке почистить изделие от скопления пыли.

Также некоторые изделия выходят из строя из-за перепадов напряжения. Поэтому необходимо провести визуальный осмотр на предмет сгоревших деталей. Этот признак легко выявить по вздутию конденсаторов, потемнению текстолита, обугленности изоляции или оборванности проводов.

Инструкция по ремонту

Наконец, стоит перейти к самому главному моменту — ремонту БП своими руками. Для удобства весь процесс будет представлен в виде списка. Поэтому рекомендуется не «прыгать» с одного пункта на другой, а действовать в определённом порядке:

  1. Осмотр предохранителя. При обнаружении следов плавления, не нужно сразу заменять изделие. Обычно это является следствием проблем с другими компонентами. Поэтому рекомендуется проверить силовые транзисторы и диодный мост.
  2. Если повреждений на других компонентах не обнаружено, а сам предохранитель вздулся — следует выпаять его из платы. Затем прогреть металлические заглушки и убрать их со стеклянной трубки. Наконец, необходимо вставить проволоку нужного диаметра, запаять отверстия и установить предохранитель на место.
  3. Осмотреть термистор. Практически всегда этот элемент перестаёт работать из-за скачков напряжения. Поэтому если это устройство почернело и раскалывается при прикосновении, нужно заменить термистор, а затем предохранитель.
  4. Проверить состояние элементов первичной цепи (тех, которые установлены рядом с термистором и предохранителем).
  5. Осмотреть конденсаторы. Если внешних признаков повреждения не обнаружено, можно выпаять эти элементы и проверить мультиметром.
  6. Достать кулер, смазать машинным маслом его подшипники и затем установить вентилятор на место.
  7. Мультиметром измерить сопротивление каждого диода в мосту. Если сопротивление различается — требуется замена неисправного элемента. Неработающие компоненты заменяются на диоды Шоттки.
  8. Осмотреть печатную плату. При тщательном осмотре можно выявить небольшие кольцевые трещины, которые нарушают соединение контактов. Если подобная неисправность была обнаружена, необходимо использовать пайку для закрытия трещин.
  9. Осмотреть контакты резисторов, предохранителя, трансформатора, а также индуктора. Если были замечены проблемы в соединении с платой или кольцевые трещины, то нужно исправлять повреждения пайкой.

Проблем не замечено, но БП не работает

Случается так, что внешне всё в порядке: комплектующие не расплавлены, трещин и нарушений контактов нет. В чём тогда проблема? Лучше всего ещё раз внимательно осмотреть все детали. Вполне возможно, что по невнимательности была пропущена какая-либо неисправность. Если при вторичном осмотре проблем не выявлено, то в 90% случаев неисправность кроется в дежурном питании или в контроллере ШИМ, использующего широкую импульсную модуляцию.

Чтобы исправить проблему с дежурным напряжением, необходимо знать основы работы блока питания. Этот компонент ПК работает практически всегда. Даже когда сам компьютер выключен (в не отключен от сети), блок работает в дежурном режиме. Это значит, что БП отправляет на материнскую плату «дежурные сигналы» в 5 вольт, чтобы та при включении ПК могла запустить сам блок и другие компоненты.

При запуске системы материнская плата проверяет напряжение для всех элементов. Если всё в порядке, формируется ответный сигнал «Power good» и система запускается. Если же наблюдается недостаток или избыток напряжения, запуск системы отменяется.

Это значит, что в первую очередь на плате нужно проверить наличие 5 В на контактах PS_ON и +5VSB. При проверке обычно выявляется отсутствие напряжения или его отклонение от номинала. Если проблема наблюдается в PS_ON, причина в контроллере ШИМ. Если же неисправность с контактом +5VSB, то проблема кроется в устройстве преобразования электрического тока.

Также нелишним будет проверить сам ШИМ. Правда, для этого понадобится осциллограф. Для проверки нужно выпаять ШИМ и с помощью осциллографа провести прозвоном проверку контактов (OPP, VCC, V12, V5, V3.3). Для лучшего прозвона, проверку надо проводить относительно земли. Если сопротивление между землёй и каким-либо из контактов (порядка нескольких десятков Ом), то ШИМ необходимо заменить.

И в заключение

Самостоятельный ремонт блока питания — довольно сложный процесс, для которого потребуется необходимый инструментарий, начальные знания о работе БП, а также аккуратность и внимание к деталям. Тем не менее каждый человек при должном подходе может отремонтировать блок, несмотря на его сложное устройство. Поэтому следует помнить, что всё в ваших руках.

Как работает импульсный блок питания ⋆ diodov.net

Подробно рассмотрим, как работает импульсный блок питания (ИБП) любого типа. Сегодня такие компоненты являются основными источниками электрической энергии любой электронной аппаратуры. Аудио аппаратуру мы в счет не берем. Там по-прежнему доминируют линейные или трансформаторные блоки питания.

Концепция ИБП известна давно. Однако реализация ее стала возможной относительно недавно. Этому способствовало появление управляемых полупроводниковых ключей с требуемыми характеристиками. В первую очередь речь идет о полевых транзисторах MOSFET. Сегодня MOSFET вытеснили практически все другие управляемые полупроводниковые приборы в области преобразователей электрической энергии малой и средней мощности. В преобразователях большой мощности лидирующие позиции занимают IGBT транзисторы, а также некоторые виды тиристоров.

Главное и неоспоримое преимущество импульсных блоков питания по сравнению с линейными (трансформаторными) БП – это значительно меньший вес и габариты при равных мощностях. Для сравнения можно взять импульсный блок питания компьютера мощностью 500 Вт и только один трансформатор мощностью 500 ВА. Разница, особенно по массе, будет ощутима.

Существует много схем ИБП. Однако все они сводятся к тому, чтобы снизить в первую очередь массу и габариты трансформатора. Почему именно трансформатора? Потому что он является самым громоздким, тяжелым и дорогим элемент блока питания.

Чтобы хорошо представлять, как работает импульсный блок питания, сначала рассмотрим классическую схему линейного БП.

Схема линейного блока питания

Основные задачи любого промышленного БП заключаются в снижении переменного напряжения 220 В (230 В) до требуемой величины, затем его выпрямление, сглаживание и стабилизация.

Поэтому любая схема линейного бока питания обязательно содержат как минимум следующие элементы: трансформатор, выпрямитель, фильтр, узел стабилизации. Назначение каждого элемента было более полно рассказано здесь.

Теперь, глядя на составляющие функциональной схемы линейного БП, давайте рассуждать, какие элементы приводят к росту его массы и веса. В качестве выпрямителя чаще служит диодный мост. Снизить его размеров не даст особого эффекта. Да и реализовать этот будет затруднительно.

Узел стабилизации может быть реализован по-разному. Поэтому на нем мы тоже сэкономить мало что сможем. Остаются только два элемента: фильтр и трансформатор. Фильтр представляет собой электролитический конденсатор большой емкости. Но изменение его параметров, как мы увидим далее, не позволит получить сколь-нибудь ощутимый выигрыш. Остается исследовать возможности способы минимизации трансформатора.

Основная задача его заключается в передаче мощности со стороны источника высокого на сторону низкого напряжения. При этом необходимо обеспечить гальваническую развязку высоковольтных с низковольтными цепями. Гальваническая развязка необходима для преимущественного большинства устройств по условиям безопасности, как персонала, так и низковольтного оборудования. А трансформатор, как никакой другой элемент выполняет эти и другие условия. При этом он имеет максимальный коэффициент полезного действия, достигающий 99 %. По этой причине ему до сих пор не могут найти альтернативу, за что приходится расплачиваться повышенной массой и размерами в целом БП.

Безтранформаторные источники питания

Конечно, всегда возникал вопрос: а можно ли вообще обойтись без трансформатора? Здесь ответ неоднозначный. И можно и нельзя. Более того, существуют безтрансформаторные источники питания. Для снижения напряжения применяют конденсатор. Конденсатор характеризуется реактивным сопротивлением при работе в цепях переменного тока. Именно это свойство благополучно используется. Однако реактивное сопротивление конденсатора зависит обратно пропорционально от его емкости. Поэтому с увеличением нагрузки необходимо применять конденсатор большей емкости, что очень сказывается на его размерах. Кроме того возрастает его цена, поскольку он должен быть рассчитан на 400…450 В. Помимо всего прочего, использование реактивного сопротивления негативно влияет на качестве электроэнергии питающей сети. Снижается коэффициент мощности cosφ. Но самый главный недостаток заключается в отсутствии гальванической развязки. Это исключает применение подобных схем в преимущественном большинстве радиоэлектронной аппаратуре.

Как снизить массу и габариты трансформатора

Так вот, мощность любого узла ИБП определяется всего двумя параметрами: напряжением и током.

P = U∙I.

Полная мощность трансформатора (Т) также определяется произведением тока на напряжение. Поэтому давайте рассмотрим, как зависят габариты Т от величины приложенного U и протекающего I. Возможно, здесь у нас получится на что-то повлиять.

Напряжение или, точнее говоря, ЭДС данного электромагнитного устройства определяется частотой приложенного напряжения f, количеством витков w и магнитным потоком Φ.

E = 4,44∙f∙w∙Φ

Коэффициент 4,44 уберем для упрочения, поскольку он соответствует синусоидальной форме тока. В импульсных блоках питания, где форма сигнала имеет вид прямоугольника, это коэффициент имеет другое значение.

E ~ f∙w∙Φ

Магнитный поток представляет собой произведение магнитной индукции B на площадь поперечного сечения сердечника магнитопровода Sс.

E ~ f∙w∙B∙Sс

Давайте поразмыслим над этой формулой с интересующей нас позиции. Размеры Т определяются размерами его сердечника и обмотками. Упрощенно говоря, мы можем вполне обосновано сказать, что габариты сердечника зависят от площади поперечного сечения сердечника (магнитопровода) Sс. А габариты обмотки зависят от числа витков w.

Теперь становится очевидно, что для сохранения прежней величины электродвижущей силы E при снижении числа витков w и площади поперечного сечения Sс, а соответственно и габаритов трансформатора, необходимо повышать или частоту или индукцию или эти два параметра одновременно.

Преимущественное большинство сердечников промышленных трансформаторов выполняются из электротехнической стали. Такая сталь имеет индукцию насыщения порядка 1,7 Тл. Это довольно большое значение индукции. Выше только у чистого железа, обладающего максимально возможной индукцией из всех магнитных материалов, и составляет чуть более 2 Тл. К сожалению, чистое железо не пригодно к использованию в электромагнитных устройствах вследствие сильных потерь энергии при перемагничивании.

Альтернативные магнитные материалы

Также в ряде стран применяется пермаллой. Пермаллой имеет несколько меньшую индукцию, чем электротехническая стать, но обладает большим электрическим сопротивлением. Благодаря чему снижаются потери на вихревые токи, а соответственно и потери холостого хода.

Относительно недавно на рынке в доступной цене появились аморфные и нанокристаллические сплавы. Они обладают высоким электрическим сопротивлением, при этом индукция их приближается к электротехническим сплавам. Кроме того они обладают рядом положительных свойств, превосходящих другие магнитные материалы. Но на этом мы здесь останавливаться не будем.

Однако индукция известных на сегодняшний день магнитных материалов и сплавов не достигает величины, значительно превосходящей индукцию электротехнической стали, то есть более 1,7 Тл. Поэтому сейчас невозможно существенно снизить габариты электромагнитного устройства за счет применения новых магнитных материалов. Поэтому остается единственный способ, который даст ощутимое снижение массы и размеров – это повышение частоты f переменного тока.

Как работает импульсный блок питания электронных устройств

Мы знаем, что в сети 220 В или 230 В f равна 50 Гц, отсюда возникает вопрос: как ее повысить? А делается это следующим образом. Сначала переменное напряжение 220 В, 50 Гц выпрямляется с помощью обычного диодного моста. Затем оно сглаживается электролитическим конденсатором большей емкости. Далее сглаженное напряжение снова преобразуется в переменное, но уже значительно большей частоты. В современных импульсных блоках питания она составляет порядка единиц мегагерц. И уже это высокочастотное напряжение подается на обмотку трансформатора. Это позволяет значительно снизить его размеры при сохранении прежнего значения электродвижущей силы. Затем сниженное напряжение со вторичной обмотки снова выпрямляется, сглаживается, и стабилизируется.

Постоянное напряжение преобразуется в переменное с помощью инвертора. Транзисторы инвертора работают в ключевом режиме, что приводит к появлению значительных импульсов тока. Поэтому на входе первого выпрямителя обязательно устанавливают дроссель для снижения уровня пульсаций тока, вызванных работой инвертора. Кроме того, для борьбы и электромагнитными импульсами, ИБП полностью экранируют.

Именно по причине этих пульсаций ИБП не применяются в аудиотехнике. В первую очередь это относиться к усилителям звука. Они вместе с полезным аудиосигналом могут усилить и помехи или пульсации, создаваемые полупроводниковыми приборами, работающими в ключевом режиме. В конечном итоге это негативно отобразится на качестве звука.

Сечение провода тр-ра по-прежнему рассчитывается на аналогичный ток. Однако в качестве магнитопровода электротехническая сталь не применяется, поскольку на высоких частотах возникают сильных потери энергии, вызванные действием вихревых токов. Поэтому применяют магнитные материалы с максимально высоким электрическим сопротивлением. К ним относятся ферриты и различного рода магнитодиэлектрики.

ШИМ-контроллер

Работой полупроводниковых приборов инвертора управляет ШИМ-контроллер. ШИМ-контроллер может выполняться в виде отдельной микросхемы или в едином корпусе с полупроводниковыми ключами. Для поддержания заданного уровня напряжения на нагрузке в не зависимости от изменения ее параметров и других воздействующих факторов, необходимо изменять параметры широтно-импульсной модуляции. За это отвечает ШИМ-контроллер, который получает сигнал по обратной связи. В качестве элемента, образующего обратную связь применяется оптопара. Может применяться и другой радиоэлектронный элемент, как правило, способный осуществить гальваническую развязку.

Теперь должно быть понятно, как работает импульсный блок питания. Его схема состоит из входного фильтра, входного выпрямителя, сглаживающего входного фильтра, инвертора, импульсного трансформатора, выходного выпрямителя и выходного фильтра.

В качестве входного фильтра применяется дроссель. Сглаживающими фильтрами служат электролитические конденсаторы большей емкости.

Мощный импульсный блок питания?

Значительно повысить f удается только в относительно маломощных ИБП с точки зрения силовой электроники. В преобразователях электрической энергии большой мощности – десятки, сотни и тысячи киловатт, сколь существенно увеличить частоту не получится. Это вызвано отсутствием транзисторов или тиристоров, способных быстро переключать большую нагрузку, сохраняя при этом приемлемый уровень потерь энергии. Максимум удается повысить f до тысячи герц, 400 Гц, а то и вовсе ниже. К тому же возникают трудности с охлаждением таких преобразовательных установок.

Потери в полупроводниковых ключах зависят от приложенного к ним напряжения, протекающего I и частоты переключения. С ростом f потери энергии в полупроводниковых ключах сильно возрастают. Поэтому существенно снижается коэффициент полезного действия всей преобразовательной установки. Отсюда данный способ пока что не находит применения для мощных преобразователей и является малоэффективным.

Но и здесь был найден выход. Все усилия были направлены в сторону уменьшения размеров и веса обмоток. В преобразователях она может достигать нескольких тонн. Если получится существенно уменьшить ее размеры, тогда можно домотать некоторое количество витков и за счет этого снизить габариты магнитопровода при сохранении прежнего значения электродвижущей силы.

Масса меди обмоток mо зависит от суммарной длины одного витка lв, их числа w, площади поперечного сечения Sв и удельного веса меди γм.

mо = lвwSвγм.

Длина витка lв определяется его диаметром dв, поэтому можем переписать предыдущее выражение следующим образом:

mо = πdвwSвγм.

В свою очередь диаметр dв определяет индуктивность Т. Поэтому его мы уменьшить не можем, поскольку это в конечном итоге повлечет за собой уменьшение ЭДС, а это не допустимо.

Также нельзя снизить удельный вес меди. Остается снижать площадь поперечно сечения витка.

Она в свою очередь зависит от величины протекающего I и допустимой плотности тока j.

Sв = Ij.

Величину тока мы также снизить не можем, поскольку она определяет мощность трансформатора при заданном значении электродвижущей силы. Остается только один способ – увеличить допустимую плотность j.

Сверхпроводники

Эта величина для меди в среднем находится в пределах от 8 до 10 А/мм2. Для обмоток электрических машин она будет иметь меньшее, а для монтажных проводов или линий электропередач – большее значение.

Величина j показывает, какой максимальный ток можно пропустить через заданное сечение проводника. Для простоты примем допустимое значение j = 10 А/мм2. Это значит, что через медный провод сечением 1 мм2 можно пропустить I величиной 1 А. Если превысить эту величину, то он будет перегреваться, что недопустимо. Главная причина заключается в перегреве изоляции, которая для электрических машин обходится дороже стоимости самого провода. С ростом температуры эксплуатационный срок изоляции резко снижается. Отсюда преждевременная постановка на ремонт и затратная перемотка изоляции.

Если проводник принудительно охлаждать, то через ту же Sв можно пропустить больший I. Именно таким способом удается существенно уменьшить сечение Sв. Применяют так называемые сверхпроводящие обмотки. Они находятся в специальной герметичной емкости, заполненной жидким азотом. Точка кипения азота чуть более -195 °С. Жидкий азот хорош тем, что он не взрывоопасен и не ядовит.

Благодаря применению жидкого азота снижается сопротивление проводника. Это позволяет повысить j почти в 30 раз, не перегревая его. А соответственно снизить площадь поперечного сечения обмоточного провода, что в свою очередь приводит к снижению веса электромагнитного устройства.

Подытожим сказанное выше. Для снижения массы и габаритов ИБП малой и средней мощности повышают частоту подводимого напряжения к обмоткам трансформатора за счет специальных схемных решений. В силовых преобразователях такой способ пока что трудно реализуем по причине отсутствия полупроводниковых ключей с приемлемыми коммутационными характеристиками. Единственный рациональный способ заключается в использовании сверхпроводящих обмоток.

Теперь, я надеюсь, Вам стало понятно, как работает импульсный блок питания и почему он имеет такую структуру.

Еще статьи по данной теме

Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП
  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.
Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Блоки питания для ПК: принципы работы и основные узлы

Современные блоки питания для ПК являются довольно сложными устройствами. При покупке компьютера мало кто обращает внимание на марку предустановленного в системе БП. Впоследствии некачественное или недостаточное питание может вызвать ошибки в программной среде, стать причиной потери данных на носителях и даже привести к выходу из строя электроники ПК. Понимание хотя бы базовых основ и принципов функционирования блоков питания, а также умение определить качественное изделие позволит избежать различных проблем и поможет обеспечить долговременную и бесперебойную работу любого компьютера.

Структура типичного блока питания

Компьютерный блок питания состоит из нескольких основных узлов. Детальная схема устройства представлена на рисунке. При включении сетевое переменное напряжение подается на входной фильтр [1], в котором сглаживаются и подавляются пульсации и помехи. В дешевых блоках этот фильтр часто упрощен либо вообще отсутствует.

Далее напряжение попадает на инвертор сетевого напряжения [2]. В сети проходит переменный ток, который меняет потенциал 50 раз в секунду, т. е. с частотой 50 Гц. Инвертор же повышает эту частоту до десятков, а иногда и сотен килогерц, за счет чего габариты и масса основного преобразующего трансформатора сильно уменьшаются при сохранении полезной мощности. Для лучшего понимания данного решения представьте себе большое ведро, в котором за раз можно перенести 25 л воды, и маленькое ведерко емкостью 1 л, в котором можно перенести такой же объем за то же время, но воду придется носить в 25 раз быстрее.

Импульсный трансформатор [3] преобразовывает высоковольтное напряжение от инвертора в низковольтное. Благодаря высокой частоте преобразования мощность, которую можно передать через такой небольшой компонент, достигает 600–700 Вт. В дорогих БП встречаются два или даже три трансформатора.

Рядом с основным трансформатором обычно имеются один или два меньших, которые служат для создания дежурного напряжения, присутствующего внутри блока питания и на материнской плате всегда, когда к БП подключена сетевая вилка. Этот узел вместе со специальным контроллером отмечен на рисунке цифрой [4].

Пониженное напряжение поступает на быстрые выпрямительные диодные сборки, установленные на мощном радиаторе [5]. Диоды, конденсаторы и дроссели сглаживают и выпрямляют высокочастотные пульсации, позволяя получить на выходе почти постоянное напряжение, которое идет далее на разъемы питания материнской платы и периферийных устройств.

Типичная информационная наклейка БП. Основная задача – информирование пользователя о максимально допустимых токах по линиям питания, максимальных долговременной и кратковременной мощностях, итоговой комбинированной мощности, которую способен отдать БПКонструкция модульных разъемов блоков питания может быть самой разной. Их применение допускает отключение силовых кабелей, не востребованных в отдельно взятом системном блоке

В недорогих блоках применяется так называемая групповая стабилизация напряжений. Основной силовой дроссель [6] сглаживает только разницу между напряжениями +12 и +5 В. Подобным образом достигается экономия на количестве элементов в БП, но делается это за счет снижения качества стабилизации отдельных напряжений. Если возникает большая нагрузка на каком-то из каналов, напряжение на нем снижается. Схема коррекции в блоке питания, в свою очередь, повышает напряжение, стараясь компенсировать недостачу, но одновременно возрастает напряжение и на втором канале, который оказался малонагруженным. Налицо своеобразный эффект качелей. Отметим, что дорогие БП имеют выпрямительные цепи и силовые дроссели, полностью независимые для каждой из основных линий.

Кроме силовых узлов в блоке есть дополнительные – сигнальные. Это и контроллер регулировки оборотов вентиляторов, часто монтируемый на небольших дочерних платах [7], и схема контроля за напряжением и потребляемым током, выполненная на интегральной микросхеме [9]. Она же управляет работой системы защиты от коротких замыканий, перегрузки по мощности, перенапряжения или, наоборот, слишком низкого напряжения.

Кожух блока питания с установленным 120-миллиметровым вентилятором. Часто для формирования необходимого воздушного потока используются специальные вставки-направляющие

Зачастую мощные БП оснащены активным корректором коэффициента мощности. Старые модели таких блоков имели проблемы совместимости с недорогими источниками бесперебойного питания. В момент перехода подобного устройства на батареи напряжение на выходе снижалось, и корректор коэффициента мощности в БП интеллектуально переключался в режим питания от сети 110 В. Контроллер бесперебойного источника считал это перегрузкой по току и послушно выключался. Так вели себя многие модели недорогих ИБП мощностью до 1000 Вт. Современные блоки питания практически полностью лишены данной «особенности».

Многие БП предоставляют возможность отключать неиспользуемые разъемы, для этого на внутренней торцевой стенке монтируется плата с силовыми разъемами [8]. При правильном подходе к проектированию такой узел не влияет на электрические характеристики блока питания. Но бывает и наоборот, некачественные разъемы могут ухудшать контакт либо неверное подключение приводит к выходу комплектующих из строя.

Для подключения комплектующих к БП используется несколько стандартных типов штекеров: самый крупный из них – двухрядный – служит для питания материнской платы. Ранее устанавливались двадцатиконтактные разъемы, но современные системы имеют большую нагрузочную способность, и в результате штекер нового образца получил 24 проводника, причем часто добавочные 4 контакта отсоединяются от основного набора. Кроме силовых каналов нагрузки, на материнскую плату передаются сигналы управления (PS_ON#, PWR_OK), а также дополнительные линии (+5Vsb, -12V). Включение проводится только при наличии на проводе PS_ON# нулевого напряжения. Поэтому, чтобы запустить блок без материнской платы, нужно замкнуть контакт 16 (зеленый провод) на любой из черных проводов («земля»). Исправный БП должен заработать, и все напряжения сразу же установятся в соответствии с характеристиками стандарта ATX. Сигнал PWR_OK служит для сообщения материнской плате о нормальном функционировании схем стабилизации БП. Напряжение +5Vsb используется для питания USB-устройств и чипсета в дежурном режиме (Standby) работы ПК, а -12 – для последовательных портов RS-232 на плате.

На данном рисунке показана распиновка контактов блоков питания, традиционно используемых в современных ПК

Стабилизатор процессора на материнской плате подключается отдельно и использует четырех- либо восьмиконтактный кабель, подающий напряжение +12 В. Питание мощных видеокарт с интерфейсом PCI-Express осуществляется по одному 6-контактному либо по двум разъемам для старших моделей. Существует также 8-контактная модификация данного штекера. Жесткие диски и накопители с интерфейсом SATA используют собственный тип контактов с напряжениями +5, +12 и +3,3 В. Для старых устройств подобного рода и дополнительной периферии имеется 4-контактный разъем питания с напряжениями +5 и +12 В (так называемый molex).

Основное потребление мощности всех современных систем, начиная с Socket 775, 754, 939 и более новых, приходится на линию +12 В. Процессоры могут нагружать данный канал токами до 10–15 А, а видеокарты до 20–25 А (особенно при разгоне). В итоге мощные игровые конфигурации с четырехъядерными CPU и несколькими графическими адаптерами запросто «съедают» 500–700 Вт. Материнские платы со всеми распаянными на РСВ контроллерами потребляют сравнительно мало (до 50 Вт), оперативная память довольствуется мощностью до 15–25 Вт для одной планки. А вот винчестеры, хоть они и неэнергоемкие (до 15 Вт), но требуют качественного питания. Чувствительные схемы управления головками и шпинделем легко выходят из строя при превышении напряжения +12 В либо при сильных пульсациях.

Качественное тестирование современных блоков питания можно провести лишь на специализированных стендах. На фото показана электронная начинка одного из них. Для теплового рассеивания больших мощностей применяется массивный радиатор, обдуваемый скоростными вентиляторами

На наклейках блоков питания часто указывают наличие нескольких линий +12 В, обозначаемых как +12V1, +12V2, +12V3 и т. д. На самом деле в электрической и схемотехнической структуре блока они в абсолютном большинстве БП представляют собой один канал, разделенный на несколько виртуальных, с различным ограничением по току. Данный подход применен в угоду стандарту безопасности EN-60950, который запрещает подводить мощность свыше 240 ВА на контакты, доступные пользователю, поскольку при возникновении замыкания возможны возгорания и прочие неприятности. Простая математика: 240 ВА/12 В = 20 А. Поэтому современные блоки обычно имеют несколько виртуальных каналов с ограничением по току каждого в районе 18–20 А, однако общая нагрузочная способность линии +12 В не обязательно равна сумме мощностей +12V1, +12V2, +12V3 и определяется возможностями используемого в конструкции преобразователя. Все заявления производителей в рекламных буклетах, расписывающие огромные преимущества от множества каналов +12 В, – не более чем умелая маркетинговая уловка для непосвященных.

Многие новые блоки питания выполнены по эффективным схемам, поэтому выдают большую мощность при использовании маленьких радиаторов охлаждения. Примером может служить распространенная платформа FSP Epsilon (FSPxxx-80GLY/GLN), на базе которой построены БП нескольких производителей (OCZ GameXStream, FSP Optima/Everest/Epsilon).

Современные мощные видеокарты потребляют большое количество энергии, поэтому давно подключаются отдельными кабелями к БП независимо от материнской платы. Новейшие модели оснащаются шести- и восьмиконтактными штекерами. Часто последний имеет отстегивающуюся часть, для удобства подсоединения к меньшим разъемам питания видеокарт.

Надеемся, что после рассмотрения основных узлов блоков питания читателям уже понятно: за последние годы конструкция БП стала значительно сложнее, она подверглась модернизации и сейчас для полноценного всестороннего тестирования требует квалифицированного подхода и наличия специального оборудования. Невзирая на общее повышение качества доступных рядовому пользователю блоков, существуют и откровенно неудачные модели. Поэтому при выборе конкретного экземпляра БП для вашего компьютера нужно ориентироваться на подробные обзоры данных устройств и внимательно изучать каждую модель перед покупкой. Ведь от блока питания зависит сохранность информации, стабильность и долговечность работы компонентов ПК в целом.

Краткий словарь терминов

Суммарная мощность – долговременная мощность потребления нагрузкой, допустимая для блока питания без его перегрева и повреждений. Измеряется в ваттах (Вт, W).

Конденсатор, электролит – устройство для накопления энергии электрического поля. В БП используется для сглаживания пульсаций и подавления помех в схеме питания.

Дроссель – свернутый в спираль проводник, обладающий значительной индуктивностью при малой собственной емкости и небольшом активном сопротивлении. Данный элемент способен запасать магнитную энергию при протекании электрического тока и отдавать ее в цепь в моменты больших токовых перепадов.

Полупроводниковый диод – электронный прибор, обладающий разной проводимостью в зависимости от направления протекания тока. Применяется для формирования напряжения одной полярности из переменного. Быстрые типы диодов (диоды Шоттки) часто используются для защиты от перенапряжения.

Трансформатор – элемент из двух или более дросселей, намотанных на единое основание, служащий для преобразования системы переменного тока одного напряжения в систему тока другого напряжения без существенных потерь мощности.

ATX – международный стандарт, описывающий различные требования к электрическим, массогабаритным и другим характеристикам корпусов и блоков питания.

Пульсации – импульсы и короткие всплески напряжения на линии питания. Возникают из-за работы преобразователей напряжения.

Коэффициент мощности, КМ (PF) – соотношение активной потребляемой мощности от электросети и реактивной. Последняя присутствует всегда, когда ток нагрузки по фазе не совпадает с напряжением сети либо если нагрузка является нелинейной.

Активная схема коррекции КМ (APFC) – импульсный преобразователь, у которого мгновенный потребляемый ток прямо пропорционален мгновенному напряжению в сети, то есть имеет только линейный характер потребления. Этот узел изолирует нелинейный преобразователь самого БП от электросети.

Пассивная схема коррекции КМ (PPFC) – пассивный дроссель большой мощности, который благодаря индуктивности сглаживает импульсы тока, потребляемые блоком. На практике эффективность подобного решения довольно низкая.

Как работает источник питания - Kitronik Ltd

Внешние блоки питания, используемые с электронными устройствами

Аккумуляторные батареи

Устройство для удаления батарей или регулируемый источник питания - это устройство, которое можно использовать вместо батарей. Он принимает сетевое питание переменного тока и преобразует его в 3 В, 4,5 В, 6 В, 9 В или 12 В постоянного тока, позволяя подавать эквивалентное напряжение для различного количества батарей. Выбор напряжения обычно осуществляется поворотом небольшого регулятора на корпусе блока питания.Регулируемые блоки питания обычно продаются с рядом адаптеров, позволяющих подключать их к большинству электронного оборудования (при условии, что они имеют подключение к источнику питания).

Внешние блоки питания

Когда электронный продукт продается с источником питания, этот источник питания будет иметь одно напряжение и один разъем. Это сделает его немного дешевле, чем регулируемая альтернатива.

Маркировка

Когда вы посмотрите на источник питания, он расскажет вам, каковы входное напряжение и ток, а также выходное напряжение и ток, он также может указать, какой контакт на выходном разъеме является заземлением и питанием.Вы также увидите некоторые символы; Значение этих символов описано ниже:

Как работают блоки питания

Блок питания используется для снижения напряжения в сети при 240 вольт переменного тока до чего-то более полезного, например, 12 вольт постоянного тока. Есть два типа питания: линейный и импульсный. В линейном блоке питания используется трансформатор для снижения напряжения. Отношение первичных обмоток (подключенных к сети) к количеству вторичных обмоток (подключенных к выходу) даст отношение того, насколько снижается напряжение, в этом случае соотношение 20: 1 снижает входное напряжение переменного тока 240 вольт. до 12 В переменного тока на вторичных обмотках.Импульсный источник питания работает путем очень быстрого включения и выключения электросети для снижения напряжения. В этом случае снижение напряжения зависит от соотношения времени включения и времени выключения. Переключение происходит очень быстро, 10 000 раз в секунду или быстрее. Используя эту технику, можно заменить громоздкий трансформатор в линейном источнике питания на меньший. Ниже представлена ​​блок-схема импульсного источника питания. Сигнал переменного тока выпрямляется и регулируется для получения высокого постоянного напряжения. Затем он быстро включается и выключается полевым транзистором.Затем коммутируемый сигнал проходит через трансформатор, хотя это может снизить напряжение, он изолирует выход от электросети (по соображениям безопасности). Затем обратная связь выхода используется для управления отношением промежутка между метками переключения, чтобы выход оставался при требуемом напряжении. Трансформатор, используемый в импульсном источнике питания, намного меньше и дешевле, чем трансформатор, используемый в линейном источнике питания, но он должен выдерживать более высокие частоты переключения.

Трансформаторы

Мы уже упоминали, что существует два типа трансформаторов: те, которые используются на низких частотах (50 Гц) в линейных источниках питания, и высокоскоростные (> 10 кГц) версии, используемые в импульсных источниках питания.Трансформатор линейного источника питания обычно использует стальной сердечник. Поскольку вихревые токи могут возникать в твердом стальном сердечнике и снижать эффективность, сердечник сделан из изолированных стальных пластин, уложенных друг рядом с другом, с намотанными вокруг них обмотками.

Линейный и режим переключения

Поскольку для импульсного источника питания не нужен большой трансформатор, он меньше, легче и дешевле. Импульсный источник питания более эффективен, чем линейный, поэтому выделяет меньше тепла. Импульсные источники питания могут быть разработаны для работы с различными входными напряжениями (240 В или 115 В), поэтому их можно использовать по всему миру.Все вышеперечисленные причины означают, что импульсный источник питания гораздо более распространен, чем линейный источник питания. К сожалению, очень быстрое переключение импульсного источника питания вызывает электрические помехи или скачки напряжения в источнике каждый раз, когда оно переключается. Если необходима чистая подача, она должна быть линейной.
Ферритовые тороидальные (кольцевые) сердечники намного лучше работают с более высокими частотами и используются в импульсных источниках питания.

Регулируемые поставки

В блок-схеме импульсного источника питания заключительным этапом было сглаживание импульсов путем добавления конденсатора большой емкости.В зависимости от того, насколько точной должна быть поставка, этого решения может быть достаточно. В этой конструкции на выходе будет некоторая рябь; оно будет отличаться от требуемого напряжения на небольшую величину, может быть, на несколько процентов. В регулируемом источнике питания используется ИС, в которой ИС контролирует выходное напряжение относительно опорного напряжения и соответствующим образом регулирует выходное напряжение. Регуляторы имеют гораздо меньшую пульсацию и часто включают защиту от перегрузки по току и перегрева, в результате чего они автоматически отключаются, делая их и остальную часть источника питания неразрушаемыми.Деталь, показанная справа, представляет собой обычный регулятор на 5 вольт 7805.

Типы корпусов

Самый распространенный тип корпуса - пластиковый. Это связано с тем, что его можно легко изготовить с использованием процесса литья под давлением, а такие функции, как монтажные отверстия или зажимы для печатной платы, отверстия для ввода кабеля и т. Д., Могут быть включены в конструкцию практически без дополнительных затрат на детали. Более дорогая альтернатива - металлический корпус; однако они должны быть заземлены по соображениям безопасности. Скачать pdf-версию этой страницы здесь. Узнать больше об авторе подробнее »

© Kitronik Ltd - Вы можете распечатать эту страницу и добавить ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

Импульсный источник питания

: преимущества использования и принцип работы | Статья

.

ОБРАЗОВАТЕЛЬНАЯ СТАТЬЯ


Получайте ценные ресурсы прямо на свой почтовый ящик - рассылается раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания - это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, в значение напряжения, необходимое для питания нагрузки, такой как двигатель или электронное устройство.

Есть два основных исполнения источников питания: линейный источник питания и импульсный источник питания.

  • Линейный: В линейных источниках питания используется трансформатор для понижения входного напряжения. Затем напряжение выпрямляется и превращается в напряжение постоянного тока, которое затем фильтруется для улучшения качества формы сигнала. В линейных источниках питания используются линейные регуляторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают лишнюю энергию в виде тепла.
  • Коммутация: Импульсный источник питания - это новая методология, разработанная для решения многих проблем, связанных с конструкцией линейного источника питания, включая размер трансформатора и регулировку напряжения. В схемах импульсных источников питания входное напряжение больше не снижается; вместо этого он исправляется и фильтруется на входе. Затем напряжение проходит через прерыватель, который преобразует его в серию высокочастотных импульсов. Прежде чем напряжение достигнет выхода, оно снова фильтруется и выпрямляется.

Как работает импульсный источник питания?

На протяжении многих лет линейные источники питания переменного / постоянного тока преобразуют мощность переменного тока из энергосистемы в постоянное напряжение для работы бытовой техники или освещения. Потребность в источниках меньшего размера для приложений большой мощности означает, что линейные источники питания стали использоваться в конкретных промышленных и медицинских целях, где они все еще необходимы из-за низкого уровня шума. Но на смену им пришли импульсные источники питания, потому что они меньше, эффективнее и способны выдерживать большую мощность. На рисунке 1 показано общее преобразование переменного тока (AC) в постоянный ток (DC) в импульсном источнике питания.

Рисунок 1: Изолированный импульсный источник питания переменного / постоянного тока

Входное исправление

Выпрямление - это процесс преобразования переменного напряжения в постоянное. Выпрямление входного сигнала - это первый шаг в импульсных источниках питания переменного / постоянного тока.

Принято считать, что постоянное напряжение - это прямая, непоколебимая линия постоянного напряжения, подобная той, которая выходит из батареи.Однако то, что определяет постоянный ток (DC), - это однонаправленный поток электрического заряда. Это означает, что напряжение течет в одном и том же направлении, но не обязательно постоянным.

Синусоидальная волна представляет собой наиболее типичную форму волны переменного тока, которая является положительной для первого полупериода, но отрицательной для остальной части цикла. Если отрицательный полупериод реверсируется или устраняется, то ток перестает меняться и становится постоянным. Этого можно добиться с помощью процесса, называемого исправлением.

Выпрямление может быть достигнуто с помощью пассивного полумостового выпрямителя для устранения отрицательной половины синусоидальной волны с помощью диода (см. Рисунок 2) . Диод позволяет току течь через него во время положительной половины волны, но блокирует ток, когда он течет в противоположном направлении.

Рисунок 2: Полумостовой выпрямитель

После выпрямления результирующая синусоида будет иметь низкую среднюю мощность и не сможет эффективно обеспечивать питание устройств.Гораздо более эффективным методом было бы изменить полярность отрицательной полуволны и сделать ее положительной. Этот метод называется двухполупериодным выпрямлением, и для него требуется только четыре диода в конфигурации моста (см. Рисунок 3) . Такая конструкция поддерживает стабильное направление тока независимо от полярности входного напряжения.

Рисунок 3: Мостовой выпрямитель

Полностью выпрямленная волна имеет более высокое среднее выходное напряжение, чем напряжение, создаваемое полумостовым выпрямителем, но это все еще очень далеко от постоянной формы волны постоянного тока, необходимой для питания электронных устройств.Хотя это волна постоянного тока, ее использование для питания устройства было бы неэффективным из-за формы волны напряжения, которая очень быстро и очень часто меняет значение. Это периодическое изменение напряжения постоянного тока называется пульсацией - уменьшение или устранение пульсаций имеет решающее значение для эффективного источника питания.

Самым простым и наиболее часто используемым методом уменьшения пульсаций является использование большого конденсатора на выходе выпрямителя, называемого накопительным конденсатором или сглаживающим фильтром (см. Рисунок 4) .

Конденсатор накапливает напряжение во время пика волны, а затем снабжает нагрузку током до тех пор, пока его напряжение не станет меньше, чем сейчас нарастающая волна выпрямленного напряжения. Результирующая форма волны намного ближе к желаемой форме и может считаться постоянным напряжением без составляющей переменного тока. Этот окончательный сигнал напряжения теперь можно использовать для питания устройств постоянного тока.

Рисунок 4: Полномостовой выпрямитель со сглаживающим фильтром

Пассивное выпрямление использует полупроводниковые диоды в качестве неуправляемых переключателей и является самым простым методом выпрямления волны переменного тока, но не самым эффективным.

Диоды - относительно эффективные переключатели; они могут быстро включаться и выключаться с минимальными потерями энергии. Единственная проблема с полупроводниковыми диодами заключается в том, что они имеют падение напряжения прямого смещения от 0,5 В до 1 В, что снижает эффективность.

Активное выпрямление заменяет диоды управляемыми переключателями, такими как полевые МОП-транзисторы или биполярные транзисторы (см. Рисунок 5) . У этого есть два преимущества: во-первых, выпрямители на основе транзисторов устраняют фиксированное падение напряжения от 0,5 В до 1 В, связанное с полупроводниковыми диодами, поскольку их сопротивление можно сделать сколь угодно малым и, следовательно, иметь небольшое падение напряжения.Во-вторых, транзисторы представляют собой управляемые переключатели, что означает, что частоту переключения можно контролировать и, следовательно, оптимизировать.

Обратной стороной является то, что активные выпрямители требуют более сложных схем управления для достижения своей цели, что требует дополнительных компонентов и, следовательно, делает их более дорогими.

Рисунок 5.Мостовой активный выпрямитель

Коррекция коэффициента мощности (PFC)

Второй этап в разработке импульсного источника питания - это коррекция коэффициента мощности (PFC).

Цепи

PFC имеют мало общего с фактическим преобразованием мощности переменного тока в мощность постоянного тока, но являются важным компонентом большинства коммерческих источников питания.

Рисунок 6: Осциллограммы напряжения и тока на выходе выпрямителя

Если вы понаблюдаете за формой волны тока накопительного конденсатора выпрямителя (см. Рисунок 6) , вы увидите, что зарядный ток течет через конденсатор в течение очень короткого промежутка времени, особенно с точки, где напряжение на входе конденсатор больше, чем заряд конденсатора до пика выпрямленного сигнала.Это вызывает серию коротких всплесков тока в конденсаторе, что создает значительную проблему не только для источника питания, но и для всей электросети из-за большого количества гармоник, которые эти всплески тока вводят в сеть. Гармоники могут создавать искажения, которые могут повлиять на другие источники питания и устройства, подключенные к сети.

В конструкции импульсного источника питания цель схемы коррекции коэффициента мощности - минимизировать эти гармоники путем их фильтрации.Для этого есть два варианта: активная и пассивная коррекция коэффициента мощности.

  • Пассивные схемы коррекции коэффициента мощности состоят из пассивных фильтров нижних частот, которые пытаются устранить высокочастотные гармоники. Однако источники питания, особенно в приложениях с большой мощностью, не могут соответствовать международным нормам по гармоническому шуму с использованием только пассивной коррекции коэффициента мощности. Вместо этого они должны применять коррекцию активной мощности.
  • Активная коррекция коэффициента мощности изменяет форму кривой тока и заставляет ее следовать за напряжением.Гармоники перемещаются на гораздо более высокие частоты, что упрощает их фильтрацию. Наиболее широко используемой схемой для этих случаев является повышающий преобразователь, также называемый повышающим преобразователем.

Изоляция: изолированные и неизолированные импульсные источники питания

Независимо от того, присутствует ли схема PFC или нет, последний этап преобразования мощности - это понижение выпрямленного постоянного напряжения до нужной величины для предполагаемого применения.

Поскольку форма входного сигнала переменного тока была выпрямлена на входе, выходное напряжение постоянного тока будет высоким: если нет PFC, выходное напряжение постоянного тока от выпрямителя будет около 320 В.Если есть активная схема PFC, на выходе повышающего преобразователя будет постоянное постоянное напряжение 400 В или более.

Оба сценария чрезвычайно опасны и бесполезны для большинства приложений, которые обычно требуют значительно более низких напряжений. В таблице 1 показаны некоторые аспекты преобразователя и приложения, которые следует учитывать при выборе правильной топологии изоляции.

Изолированные источники питания переменного / постоянного тока Неизолированные источники питания переменного / постоянного тока
Топология Обратный преобразователь Понижающий преобразователь
Безопасность Гальваническая развязка обеспечивает повышенную безопасность пользователя Возможные утечки тока могут причинить значительный вред пользователям или нагрузкам
Размер и эффективность Трансформаторы увеличивают размер и вес Требуется только один индуктор, схема гораздо меньшего размера
КПД Потери в железе и меди трансформатора влияют на КПД Один индуктор намного эффективнее, чем целый трансформатор
Сложность Схема управления необходима как для

Таблица 1: Изолированный vs.Неизолированные источники питания переменного / постоянного тока

Основная проблема при выборе метода понижения - безопасность.

Источник питания подключен к сети переменного тока на входе, что означает, что в случае утечки тока на выходе электрический ток такой степени может серьезно повредить или вызвать смерть, а также повредить любое устройство, подключенное к выходу.

Безопасность может быть достигнута за счет магнитной изоляции входных и выходных цепей источника переменного / постоянного тока, подключенного к сети.Наиболее широко используемые цепи в изолированных источниках питания переменного / постоянного тока - это обратноходовые преобразователи и резонансные LLC-преобразователи, поскольку они включают гальваническую или магнитную изоляцию (см. Рисунок 7) .

Рисунок 7: Обратный преобразователь (слева) и LLC-резонансный преобразователь (справа)

Использование трансформатора означает, что сигнал не может быть плоским постоянным напряжением. Вместо этого должно быть изменение напряжения и, следовательно, изменяющийся ток, чтобы передавать энергию от одной стороны трансформатора к другой через индуктивную связь.Следовательно, как обратный преобразователь, так и LLC-преобразователи «прерывают» входное постоянное напряжение в виде прямоугольной волны, которая может быть понижена с помощью трансформатора. Затем выходная волна должна быть снова выпрямлена перед выходом.

Обратные преобразователи в основном используются для приложений с низким энергопотреблением. Обратный преобразователь представляет собой изолированный повышающий-понижающий преобразователь, что означает, что выходное напряжение может быть как выше, так и ниже входного напряжения, в зависимости от соотношения витков трансформатора между первичной и вторичной обмотками.

Обратный преобразователь работает аналогично повышающему преобразователю.

Когда переключатель замкнут, первичная катушка заряжается вводом, создавая магнитное поле. Когда переключатель разомкнут, заряд в первичной катушке индуктивности передается на вторичную обмотку, которая вводит ток в цепь, питающую нагрузку.

Обратные преобразователи

относительно просты в проектировании и требуют меньшего количества компонентов, чем другие преобразователи, но не очень эффективны из-за значительных потерь из-за жесткого переключения при принудительном включении и выключении транзистора произвольно (см. Рисунок 8).Это очень вредно для жизненного цикла транзистора и приводит к значительным потерям мощности, особенно в приложениях с высокой мощностью, поэтому обратноходовые преобразователи лучше подходят для приложений с низким энергопотреблением, обычно до 100 Вт.

Резонансные LLC-преобразователи чаще используются в приложениях с высокой мощностью. Эти цепи также имеют магнитную изоляцию через трансформатор. Преобразователи LLC основаны на явлении резонанса, которое представляет собой усиление определенной частоты, когда она совпадает с собственной частотой фильтра.В этом случае резонансная частота LLC-преобразователя определяется последовательно включенными катушкой индуктивности и конденсатором (LC-фильтр) с дополнительным эффектом первичной катушки индуктивности трансформатора (L), отсюда и название LLC-преобразователь.

Резонансные преобразователи

LLC предпочтительны для приложений большой мощности, поскольку они могут производить переключение при нулевом токе, также известное как мягкое переключение (см. Рисунок 8) . Этот метод переключения включает и выключает переключатель, когда ток в цепи приближается к нулю, сводя к минимуму потери переключения транзистора, что, в свою очередь, снижает электромагнитные помехи и повышает эффективность.К сожалению, за такое улучшение характеристик приходится платить: сложно разработать LLC-резонансный преобразователь, который может обеспечить плавное переключение для широкого диапазона нагрузок. С этой целью компания MPS разработала специальный инструмент для проектирования LLC, который помогает убедиться, что преобразователь работает точно в правильном резонансном состоянии для оптимальной эффективности переключения.

Рисунок 8: Жесткое переключение (слева) в сравнении с потерями при мягком переключении (справа)

Ранее в этой статье мы обсуждали, почему одним из ограничений источников питания переменного / постоянного тока являются размер и вес входного трансформатора, который из-за низкой рабочей частоты (50 Гц) требует больших катушек индуктивности и магнитных сердечников, чтобы избежать насыщения. .

В импульсных источниках питания частота колебаний напряжения значительно выше (как минимум выше 20 кГц). Это означает, что понижающий трансформатор может быть меньше, потому что высокочастотные сигналы генерируют меньше магнитных потерь в линейных трансформаторах. Уменьшение размеров входных трансформаторов позволяет миниатюризировать систему до такой степени, что весь блок питания помещается в корпус размером с зарядные устройства для мобильных телефонов, которые мы используем сегодня.

Существуют устройства постоянного тока, которым не требуется изоляция трансформатора.Это обычно наблюдается в устройствах, к которым не нужно напрямую прикасаться пользователю, таких как освещение, датчики, IoT и т. Д., Потому что любые манипуляции с параметрами устройства выполняются с отдельного устройства, такого как мобильный телефон, планшет или компьютер.

Это дает большие преимущества с точки зрения веса, размера и производительности. Эти преобразователи снижают уровни выходного напряжения с помощью понижающего преобразователя высокого напряжения, также называемого понижающим преобразователем. Эту схему можно описать как инверсию повышающего преобразователя, описанного ранее.В этом случае, когда транзисторный ключ закрыт, ток, протекающий через катушку индуктивности, создает напряжение на катушке индуктивности, которое противодействует напряжению от источника питания, уменьшая напряжение на выходе. Когда переключатель размыкается, катушка индуктивности высвобождает ток, который течет через нагрузку, поддерживая значение напряжения на нагрузке, в то время как цепь отключена от источника питания.

В импульсных источниках питания переменного / постоянного тока используется высоковольтный понижающий преобразователь, поскольку полевой МОП-транзистор, который действует как переключатель, должен выдерживать большие изменения напряжения (см. Рисунок 9) .Когда переключатель замкнут, напряжение на полевом МОП-транзисторе близко к 0 В; но когда он открывается, это напряжение возрастает до 400 В для однофазных приложений или до 800 В для трехфазных преобразователей. Эти большие резкие изменения напряжения могут легко повредить нормальный транзистор, поэтому используются специальные высоковольтные полевые МОП-транзисторы.

Рисунок 9: Неизолированный импульсный источник питания переменного / постоянного тока с активным PFC

Понижающие преобразователи

могут быть намного проще интегрированы, чем трансформаторы, потому что требуется только один индуктор.Они также намного более эффективны при понижении напряжения с нормальным КПД выше 95%. Такой уровень эффективности возможен, потому что транзисторы и диоды почти не имеют потерь мощности при переключении, поэтому единственные потери происходят от катушки индуктивности.

Одним из примеров неизолированного выходного стабилизатора переменного / постоянного тока является семейство MPS MP17xA. Это семейство может управлять многими различными топологиями преобразователя, такими как понижающий, повышающий, понижающий-повышающий или обратноходовой. Его можно использовать для напряжений до 700 В, то есть он предназначен для однофазных источников питания.У него также есть опция зеленого режима, в котором частота переключения и пиковый ток уменьшаются пропорционально нагрузке, повышая общую эффективность источника питания. На рисунке 10 показана типовая схема применения MP173A, в которой он регулирует понижающий преобразователь, состоящий из катушки индуктивности (L1), диода (D1) и конденсатора (C4). Резисторы (R1 и R2) образуют делитель напряжения, который обеспечивает напряжение обратной связи (вывод FB), замыкая контур управления.

Рисунок 10: Типовая прикладная схема MP173A

Импульсные блоки питания переменного / постоянного тока обеспечивают повышенную производительность при небольшом размере, что и сделало их такими популярными.Обратной стороной является то, что их схемы значительно сложнее, и они требуют более точных схем управления и фильтров шумоподавления. Несмотря на дополнительную сложность, MPS предлагает простые и эффективные решения, облегчающие разработку вашего источника питания переменного / постоянного тока.

Сводка

Импульсные источники питания переменного / постоянного тока

в настоящее время являются наиболее эффективным способом преобразования мощности переменного тока в мощность постоянного тока. Преобразование мощности происходит в три этапа:

  1. Входное выпрямление: в этом процессе напряжение сети переменного тока преобразуется в выпрямленную волну постоянного тока с помощью диодного моста.На выходе моста добавлен конденсатор для уменьшения напряжения пульсаций.
  2. Коррекция коэффициента мощности (PFC): из-за нелинейного тока в выпрямителе гармоническая составляющая тока довольно велика. Есть два способа решить эту проблему. Первый - это пассивная коррекция коэффициента мощности, использующая фильтр для ослабления влияния гармоник, но он не очень эффективен. Второй вариант, называемый активным PFC, использует импульсный повышающий преобразователь, чтобы форма волны тока соответствовала форме входного напряжения.Активная коррекция коэффициента мощности - единственный метод проектирования преобразователя мощности, отвечающий современным стандартам размера и эффективности.
  3. Изоляция: импульсные источники питания могут быть изолированными или неизолированными. Устройство изолируется, когда вход и выход источника питания физически не соединены. Изоляция осуществляется с помощью трансформаторов, которые гальванически изолируют две половины цепи. Однако трансформаторы могут передавать электроэнергию только при изменении тока, поэтому выпрямленное постоянное напряжение преобразуется в высокочастотную прямоугольную волну, которая затем передается во вторичную цепь, где снова выпрямляется и, наконец, передается на выход.

При проектировании импульсного источника питания необходимо учитывать множество различных аспектов, особенно связанных с безопасностью, производительностью, размером, весом и т. Д. Цепи управления для импульсных источников питания также более сложны, чем в линейных источниках питания, поэтому многие Разработчики считают полезным использование интегрированных модулей в своих источниках питания.

MPS предлагает широкий спектр модулей, которые могут упростить проектирование импульсных источников питания, таких как преобразователи мощности, контроллеры, выпрямители и т. Д.

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик - рассылайте их раз в месяц!

Как работает блок питания ПК

Каждый компьютер имеет один блок питания (БП). Настольные компьютеры, рабочие станции, игровые установки, ноутбуки и серверы включают в себя блок питания. Основное назначение блока питания ПК - преобразование сетевого питания переменного тока в напряжение постоянного тока, необходимое для работы различных компонентов внутри компьютера (материнской платы, процессора, видеокарты, памяти, дисководов и т. Д.).). И источник питания должен быть спроектирован и изготовлен таким образом, чтобы обеспечить совместимость, стабильность и управляемость.

Вы когда-нибудь задумывались, что происходит внутри блока питания? Мы часто используем такие фразы, как « - современная топология с полумостовым LLC-резонансным преобразователем, синхронное выпрямление с регуляторами постоянного напряжения ». Что это значит и что такое топология? Мы рады, что вы спросили - читайте дальше, и мы объясним!

Примечание: одна из проблем, с которыми мы сталкиваемся при публикации статьи «общей теории», - это найти правильный баланс между техническими деталями и пустяками.За прошедшие годы мы получили много отзывов об обзорах источников питания PCPerspective. Некоторые читатели хотят получить более подробную техническую информацию, в то время как другие жалуются, что их слишком много. Мы стараемся найти правильный баланс, чтобы оставаться информативным и полезным, не утомляя обычного энтузиаста ПК техническими мелочами.

Форм-фактор

Форм-фактор - это спецификация, которая определяет как физические, так и электрические требования, которым должен соответствовать блок питания ПК, чтобы обеспечить совместимость на разных рынках.Это позволяет многочисленным производителям блоков питания послепродажного обслуживания конкурировать за деньги на сборку и обновление. Приобретая блок питания для ПК, вы можете быть уверены, что он будет совместим (физически и электрически) с вашим ПК.

Например, одним из последних руководств по проектированию блоков питания для форм-факторов настольных платформ (созданного Intel) является Руководство по проектированию блоков питания ATX12V, v2.4, в котором описаны спецификации для форм-фактора ATX.

(форм-факторы SFX, SFX-L и ATX)

(физические размеры ATX)

(серверные блоки питания 1U и 2U)

Помимо ATX, два других популярных форм-фактора, используемых в настольных ПК, включают форм-факторы SFX и SFX-L (расширенный или удлиненный).Форм-факторы 1U и 2U чаще всего используются в серверах. С другой стороны, блоки питания в типичном портативном компьютере являются собственностью конкретного производителя (встроены в основную плату с внешним блоком питания или без него) и не являются взаимозаменяемыми.

На схеме выше показаны основные электрические характеристики типичного блока питания ПК. Питание от сети переменного тока; пять отдельных выходных напряжений постоянного тока. Обратите внимание, что секция + 5VSB - это небольшой автономный преобразователь питания внутри более крупного блока питания.Его выход остается включенным каждый раз, когда блок питания подключен к сети переменного тока при включенном главном выключателе питания, даже когда основной блок питания находится в режиме ожидания, а компьютер выключен.

Продолжайте читать нашу статью о том, как работает блок питания для ПК!

Базовое управление

Чтобы источник питания был полезным, его нужно контролировать. Возможность включения и выключения источника питания - основное требование. В большинстве блоков питания ПК используется ручной выключатель для управления питанием переменного тока, поступающим в блок питания.После включения блок питания и компьютер (материнская плата) работают вместе, чтобы включить блок питания и компьютер и выключить их по запросу пользователя.

Когда вы нажимаете основную кнопку включения питания на передней панели компьютера, он отправляет сигнал на материнскую плату, которая затем отправляет сигнал через контакт № 16 (зеленый провод) 24-контактного разъема ATX на источник питания. Когда на контакте №16 появляется низкий уровень (земля), блок питания запускается, выполняет некоторые быстрые внутренние самотестирование, а затем отправляет сигнал обратно на материнскую плату через контакт №8 (серый провод), чтобы сообщить «Power is Good».Пока контакт № 16 находится в низком состоянии, блок питания должен оставаться включенным. В конце процедуры выключения ПК контакт № 16 больше не будет опускаться на низкий уровень и ему будет разрешено удерживать высокий уровень, что приведет к отключению блока питания.

Блоки питания ПК

также включают ряд внутренних схем безопасности, которые контролируют работу блоков питания: защита от перегрузки по току (OCP), защита от перенапряжения (OVP), защита от пониженного напряжения (UVP), защита от перенапряжения (OPP), защита от перегрева. (OTP) и защита от короткого замыкания (SCP).Если какой-либо из этих параметров превышает запрограммированные уставки, срабатывает сигнал неисправности для отключения блока питания.

Основы коммутации

Линейный источник питания

Еще до того, как транзисторы получили широкое распространение, источники питания были основаны на линейной конструкции. Линейные источники питания использовались в ранних радиоприемниках и телевизорах наряду со всеми видами электрических устройств. Они все еще используются сегодня и часто бывают большими, тяжелыми и относительно дорогими, не говоря уже о неэффективности (60 ~ 70%).

Например, линейный источник питания на фотографии выше обеспечивает выход 12 В постоянного тока с мощностью 6 А (72 Вт), весит около двенадцати фунтов и продается за 250 долларов США. Подумайте только, каким будет блок питания мощностью 600 Вт или более!

Конструкция и конструкция линейного источника питания относительно просты. Электропитание переменного тока проходит через большой трансформатор, где оно понижается до необходимого уровня постоянного напряжения. Для каждого напряжения необходимы отдельные обмотки / отводы.В действительности можно использовать несколько трансформаторов для обеспечения пяти различных выходов постоянного тока. Пониженное напряжение по-прежнему остается переменным, поэтому теперь его нужно выпрямить - превратить в пульсирующий постоянный ток. Последний шаг - отфильтровать выходной сигнал и сгладить оставшиеся пульсации переменного тока и шум. Большинство современных конструкций теперь включают в себя регулятор, помогающий контролировать напряжение постоянного тока. Основным ограничивающим фактором линейного источника питания является то, что он работает от частоты сети переменного тока; 50-60 Гц в зависимости от вашего местоположения. Трансформаторы, конденсаторы и катушки индуктивности должны быть очень большими, чтобы работать в этом диапазоне частот.

Обратите внимание на то, что на схеме выше показаны две разные конструкции выпрямительного каскада: полумост и полный мост. Эта топология также применима к импульсным источникам питания, хотя вместо диодов используются полевые МОП-транзисторы.

Импульсный источник питания (SMPS)

Современные блоки питания для ПК основаны на конструкции импульсных блоков питания и обычно называются импульсными блоками питания. Основным преимуществом импульсного источника питания является то, что он предназначен для работы на гораздо более высоких частотах (50 кГц - 1 МГц).А поскольку размер трансформатора, конденсаторов и катушек индуктивности обратно пропорционален рабочей частоте; эти компоненты могут быть значительно меньше, легче и дешевле.

(Предоставлено be quiet!)

Импульсный блок питания для ПК выполняет эту задачу в несколько этапов. Сначала поступающее сетевое питание переменного тока фильтруется (№1) для удаления остаточных электромагнитных помех (EMI). Затем коэффициент мощности (PF) активно регулируется, чтобы поддерживать коэффициент мощности, близкий к 1.00; форма волны тока поддерживается в тесной синхронизации с формой волны напряжения (# 2). Затем входящая мощность преобразуется в постоянный ток (№3). Мощные и высокоэффективные силовые транзисторы (MOSFET) используются для преобразования постоянного тока обратно в переменный (№ 4) путем «включения» и выключения питания постоянного тока на высокой частоте (~ 400 кГц). Эти переключающие транзисторы управляются с помощью сигнала обратной связи (IC) с широтно-импульсной модуляцией (ШИМ) с выхода для регулирования конечного напряжения. Произведенная высокочастотная прямоугольная волна затем понижается до требуемого напряжения трансформатором (№5), затем выпрямляется, преобразуется в постоянный ток (№6) и фильтруется для вывода (№7).Это очень упрощенный обзор работы SMPS. Теперь давайте посмотрим, как это выглядит внутри современного блока питания ПК.

Под капотом

Часть процесса проверки на PCPerspective включает вскрытие корпуса блока питания (да, это аннулирует гарантию производителя) и предоставление читателю возможности увидеть, как он выглядит изнутри. Беглый взгляд под капотом может многое рассказать о блоке питания (конструкция, компоненты, расположение, пайка и т. Д.).

(Предоставлено be quiet!)

На этих двух диаграммах показаны некоторые компоненты и их функции внутри 850W be quiet! Недавно мы рассмотрели блок питания Straight Power 11 (показан на фото выше).

(Предоставлено be quiet!)

(Предоставлено be quiet!)

Мы часто включаем словоблудие, описывающее топологию (то, как схема спроектирована и собрана), например: « производитель использует современный полумостовой LLC Resonant Converter, Zero Switching (ZS), Synchronous Rectification (SR). с преобразователями постоянного тока, расположенными на дочерней плате, для обеспечения хорошего регулирования напряжения и высокого КПД ”. Теперь давайте копнем немного глубже и посмотрим, что это на самом деле означает.

Полумост LLC Резонансный преобразователь

(Предоставлено be quiet!)

Начальное утверждение состоит из двух частей: полумоста и LLC Resonant Converter. Обратите внимание на сходство с базовой схемой полумостового выпрямителя, показанной ранее в разделе линейного источника питания. (Четыре полевых МОП-транзистора могут попеременно использоваться для создания схемы полного мостового выпрямителя.)

В полумостовой конфигурации используются два полевых МОП-транзистора для создания высокочастотного переменного тока прямоугольной формы, который затем сглаживается схемой LLC для получения почти идеальной синусоидальной волны, прежде чем она попадет в главный трансформатор.Термин LLC происходит от (LLC = L1 + L2 + C1) катушки индуктивности, катушки индуктивности, конденсатора (L - катушка индуктивности, а C - конденсатор).

Это называется LLC Resonant Converter. Конфигурация катушек индуктивности и конденсатора в секции LLC формирует контур резервуара, который имеет резонансную частоту . Резонансный преобразователь LLC в ИИП с ПК обычно работает на более высокой частоте, чем резонансная частота резервуара.

Некоторые усовершенствованные конструкции LLC не только используют широтно-импульсную модуляцию (PWM) для управления переключающими транзисторами MOSFET, но также используют частотную модуляцию (FM) для регулировки преобразования мощности.Начиная с нагрузки от 10 до 15 процентов, высокопроизводительная схема LLC изменяет частоту, обеспечивая более высокий КПД, при этом оптимальные результаты достигаются при более высоких частотах при низких нагрузках и более низких частотах при высоких нагрузках.

Нулевое переключение

(Предоставлено be quiet!)

Многие современные высокопроизводительные конструкции включают переключение при нулевом напряжении (ZVS) и переключение при нулевом токе (ZCS) для повышения эффективности работы. Для этого фактическая точка переключения происходит при нулевом напряжении и нулевом токе (зеленые кружки на диаграмме выше).Традиционные топологии не могут точно контролировать точку переключения, что приводит к потерям переключения (красные кружки). Переключение с ZVS / ZCS происходит без потерь и приводит к повышению эффективности.

Синхронное выпрямление (SR)

(Предоставлено be quiet!)

После основного трансформатора переменный ток выпрямляется и становится постоянным током, необходимым для компонентов ПК. Это достигается за счет использования двух или более (в зависимости от мощности) полевых МОП-транзисторов , синхронизированных , с использованием специальной ИС.

Преобразователи постоянного тока в постоянный

(Предоставлено be quiet!)

В большинстве современных блоков питания для ПК используются преобразователи постоянного тока в постоянный для вывода +3,3 В постоянного тока и +5 В постоянного тока. Вместо генерации трех основных напряжений (3,3 В, 5 В и 12 В) из переменного тока на первичной стороне, выходы 3,3 и 5 В генерируются из 12 В постоянного тока после главного трансформатора. Это помогает повысить общую эффективность источника питания.

+ 12В Конфигурация с одной или несколькими рейками

Еще в 2003 году одним из первых источников питания, которые я рассмотрел, был Seasonic мощностью 350 Вт.Он имел один выход +12 В, который мог выдавать ток до 19 А (228 Вт).

Блок питания, показанный выше, включает одну шину +12 В, обеспечивающую питание всех выходных кабелей / разъемов. Комбинированная уставка OCP составляет 80 А. Не имеет значения, какой кабель / разъемы используются для питания компонентов. Полный 80А доступен любому из них.

С годами, когда потребность ПК в электроэнергии увеличилась, выходная мощность блоков питания ПК также увеличилась, особенно на выходе +12 В.Однако возникли опасения, что слишком большая мощность может быть опасной (вспышка дуги, огненный шар, выброс расплавленного металла) в случае короткого замыкания или другой неисправности. Было предложено ограничить любую выходную мощность до 240 Вт. При подключении к шине +12 В получается 20 А (12 В x 20 А = 240 Вт). Производители начали выпускать блоки питания с несколькими выходами +12 В, чтобы соответствовать требованиям. Обратите внимание, что это было руководство, а не закон.

Однако не прошло много времени, как многие конечные пользователи начали сталкиваться с проблемами, связанными с отключением источников питания и, по всей видимости, их неработоспособностью.Во многих случаях проблема заключалась в том, что один конкретный выход +12 В был перегружен, хотя общая мощность +12 В. не использовалась.

В этом примере блок питания оснащен несколькими шинами +12 В, каждая из которых защищена собственным ограничителем тока. Ни один выход не может потреблять более 20 А или 30 А, в то время как комбинированная уставка OCP по-прежнему ограничена 80 А.

Большая часть проблемы с конфигурациями с несколькими рельсами заключалась в том, что производителям приходилось решать, как будет распределяться общая мощность +12 В.Для многорельсового источника питания они должны были решить, какие выходы +12 В будут снабжать все конкретные кабели и разъемы, предназначенные для компонентов питания (ЦП, графические адаптеры, приводы и т. Это в конечном итоге определило, сколько мощности было доступно для каждого компонента. Если конфигурация конечного пользователя не соответствует нормативам производителя, могут возникнуть проблемы.

Со временем большинство производителей вернулись к одинарным выходам +12 В. Например, блок питания Corsair AX1600i может обеспечить до 133 штук.3А (1600Вт) на одиночном выходе + 12В. (Примечание: AX1600i дает пользователям возможность при желании устанавливать ограничения тока на шинах +12 В.)

Сегодня схемы защиты в большинстве современных блоков питания для энтузиастов достаточно быстры, они могут обнаружить неисправность (SCP или OCP) и отключить источник питания до того, как будет доставлено достаточно энергии, чтобы вызвать опасную проблему. Например, когда я тестирую цепи защиты от короткого замыкания в источнике питания, они обычно реагируют так быстро, что я едва получаю искру при возникновении прямого короткого замыкания (но я все еще ношу защитные очки).

A Блок питания « Good »

И последний, но не менее важный вопрос, который нам часто задают: «Что делает хороший блок питания и хорошим?» Вот несколько вещей, которые следует учитывать при покупке блока питания.

Требования:
• Совместимость: ATX12V v2.4, соответствие EPS 2.92
• Максимальная рабочая температура: предпочтительнее 50 ° C
• Регулировка напряжения: в пределах ± 2% от рекомендуемых нормативов
• Пульсации переменного тока и подавление шума: менее 50% от рекомендованных норм
• Эффективность: минимум 80 Plus Gold (92%)
• Шум: не менее 120 мм вентилятор с хорошими подшипниками (FDB или Ball)
• Все конденсаторы японского производства, рассчитанные на 105 ° C
• Гарантия: минимум 5 лет
• Цена: прикиньте, что лучше всего подходит для вашего бюджета

Дополнительно:
• Безвентиляторный режим (от низкой до средней мощности)
• Полумодульные или полностью модульные кабели
• Размер: оставайтесь с ATX, если вам не нужен меньший блок

Примечание. Лично я предпочитаю, чтобы охлаждающий вентилятор блока питания постоянно вращался, чтобы воздух не двигался.Что касается кабелей, я предпочитаю полумодульный с фиксированным 24-контактным ATX, 4 + 4-контактным процессором и парой фиксированных PCI-E. Все остальное может быть модульным.

В заключение мы надеемся, что вы нашли эту статью интересной и информативной. И еще раз благодарим be quiet! за то, что позволили нам использовать некоторые из их графики. Включить!

Как работают блоки питания для ПК

Взгляните на мельчайшие детали того, что дает вашей установке мощь

Блок питания (PSU) - один из компонентов ПК, который мы склонны принимать как должное.Он сидит в футляре, из него торчит куча проводов, и, может быть, время от времени мы вдыхаем в него немного воздуха, чтобы избавиться от пылевых кроликов. Но это, пожалуй, самая важная часть аппаратного обеспечения ПК, потому что она выполняет одну задачу: снабжает остальную часть машины необходимой ей электроэнергией.

К сожалению, электричество из розетки не подходит. Электронные устройства рассчитаны на использование электричества постоянного тока, а то, что выходит из стены, является переменным током. К тому же электричество от стены слишком мощное.Это означает, что основная роль блока питания - преобразование электроэнергии переменного тока в электричество постоянного тока на безопасном уровне.

Мы рассмотрим, как это делает блок питания, и собственное оборудование внутри него, которое делает это возможным. В качестве наглядного пособия мы будем вскрывать одну из них, чтобы обнажить ее внутренности.

Quick Primer: типы источников питания

Источники питания бывают двух основных типов: линейные и переключаемые.

Линейные источники питания проще, требуя всего нескольких шагов, чтобы преобразовать электричество переменного тока в электричество постоянного тока.Они постоянно расходуют энергию и обычно сбрасывают избыточную энергию в виде тепла, и для обеспечения высокой мощности потребуются компоненты большего размера. Это ограничивает их в основном приложениями с меньшей мощностью. Что действительно хорошо, так это то, что на их выходе мало шума, и настольные принадлежности лабораторного уровня часто бывают линейными по этой причине.

Импульсный источник питания, с другой стороны, имеет внутренний переключатель, который контролирует поток электричества, поступающего в остальную часть источника питания.Хотя это добавляет сложности, у него есть несколько преимуществ. Во-первых, источник питания потребляет меньше электроэнергии, чем линейный источник питания. Во-вторых, при переключении генерируется высокочастотный переменный ток, что, в свою очередь, позволяет уменьшить размеры некоторых компонентов, таких как катушки индуктивности и трансформаторы. Обратной стороной является то, что переключение создает много шума, который необходимо отфильтровать на выходе и, возможно, экранировать, чтобы предотвратить утечку.

Из переменного тока в постоянный: этапы процесса источника питания

Как уже упоминалось, основная задача источника питания заключается в преобразовании переменного тока в постоянный.Как только электричество постоянного тока вырабатывается, оно преобразует его в соответствующие напряжения для использования компонентами. Это становится немного сложнее, если принять во внимание другие особенности, поэтому вот блок-схема с разбивкой:

Блок-схема блока питания ПК. Красные линии - это переменный ток, зеленые линии - постоянный ток.

Вот изображение блока питания, который мы изучаем, с выделенными частями, которые выполняют все эти шаги. Если вас интересует белая липкая пленка и пластиковые листы, она призвана свести к минимуму вибрации, а пластиковые листы должны изолировать компоненты от соприкосновения друг с другом или с шасси, к которому подключен заземляющий провод.

Шаг 1 - Фильтрация входа переменного тока

Электроэнергия, выходящая из стены, очень шумная по ряду причин. Первый шаг - отфильтровать как можно больше шума, используя комбинацию конденсаторов (известных как конденсаторы X и Y) и катушек индуктивности. Кроме того, может быть некоторая схема защиты, аналогичная той, что используется в устройствах защиты от перенапряжения, для защиты от внезапных скачков тока.

Если источник питания имеет физический переключатель напряжения, вход либо переходит в цепь удвоителя напряжения, либо продолжает работать.Удвоитель напряжения используется, когда на входе 115 В, так что остальной блок питания должен работать только с 230 В независимо от фактического входа. Если есть активная коррекция коэффициента мощности, то она позаботится об этом шаге. Таким образом, если источник питания потребляет 115–230 В без физического переключателя, есть большая вероятность, что он имеет активную коррекцию коэффициента мощности.

На этом рисунке показана основная часть фильтрации переменного тока и части выпрямления переменного тока, описанные в шаге 2. Винты в середине радиатора прикрепляют диод для коррекции коэффициента мощности (описанный в шаге 3) и пару переключающие полевые МОП-транзисторы (отвечающие за переключение, описанное в шаге 4).

Шаг 2 - Выпрямление и фильтрация

Электричество, идущее от стены, попеременно то положительное, то отрицательное. Это заставляет ток течь вперед и назад по проводам, не производя никакой реальной работы с течением времени. Выпрямители преобразуют переменный ток в чисто положительный, как показано на рисунке ниже:

Вход переменного тока в двухполупериодный выпрямленный выход (из Falstad's Circuit Simulator ).

Накопительный конденсатор используется для улавливания энергии из все еще переменного потока, чтобы превратить его в более плоский и стабильный.

Обратите внимание, что на выходе есть что-то вроде пилообразного рисунка. Это связано с тем, что конденсатор может быть заряжен только тогда, когда напряжение выпрямленного выхода достигает определенной точки до пикового напряжения. В противном случае он разряжается. Самая низкая и самая высокая точки на зубчатой ​​части образуют так называемую рябь. Количество пульсаций зависит от качества, емкости и типа конденсатора. Качественные блоки питания сведут к минимуму пульсации.

Кроме того, спецификация ATX требует не более пяти процентов пульсации на 3.Линии 3В, 5В, 5В_SB и 12В.

Шаг 3 - Коррекция коэффициента мощности (PFC)

Коэффициент мощности - это явление, которое происходит в цепях переменного тока. В цепях переменного тока есть два типа мощности: активная и реактивная. Активная мощность - это мощность, которая используется на резистивных нагрузках, например при вращении двигателя. Реактивная мощность - это мощность, которая воздействует на такие компоненты, как конденсаторы и катушки индуктивности, чтобы заряжать их, без какой-либо работы с реальной нагрузкой.

Коэффициент мощности - это соотношение между суммой активной и реактивной мощности (называемой полной мощностью) и самой активной мощностью, которое всегда меньше 1.Коррекция коэффициента мощности направлена ​​на то, чтобы это отношение было как можно ближе к 1. Хотя это звучит похоже на эффективность, эффективность - это унаследованный компонент электроники, который не может использовать все электричество для выполнения полезной работы и сбрасывает то, что не может использовать в качестве тепла.

Существует два типа коррекции коэффициента мощности: пассивная и активная. Пассивный PFC использует индукторы, пассивный электрический компонент . Активный PFC использует схему управления и транзисторы, или активных электрических компонентов.

Шаг 4 - Переключение

Коммутация объединяет несколько действий для достижения того же эффекта: пропускание электричества к остальной части источника питания. Другие функции переключения включают:

  • Схема защиты, такая как защита от перенапряжения, перегрузки по току, перегрузки и короткого замыкания.
  • Обеспечивает базовую обратную связь с компьютером, наиболее важным из которых является сигнал о хорошем питании, который сообщает материнской плате о том, что блок питания готов к работе.
  • Создайте высокочастотный (в диапазоне десятков килогерц) выход переменного тока.Причина в том, что это позволяет трансформаторам, используемым на следующем этапе, быть небольшими.

Переключение требует обратной связи от выхода для правильной работы. Это делается путем измерения выходного напряжения, подаваемого на компьютер.

Это схема управления для управления переключением.

Шаг 5 - Преобразование

Трансформаторы используются для понижения напряжения до первичной линии 12 В и вторичной линии 5 В. Затем основная линия 12 В понижается с помощью преобразователей постоянного тока до 5 В и 3.3V для использования ПК. Вторичная линия 5 В используется для питания схемы резервного питания 5 В, так что компьютер может включаться с помощью переключателя питания на передней панели.

Шаг 6 - Выпрямить выход и фильтр

После преобразования входа в выход с безопасным уровнем напряжения пора еще раз выпрямить и отфильтровать, потому что то, что выходит из трансформатора, - это электричество переменного тока. По сути, это повторение шага 2.

На рисунке справа показан выпрямитель, который для данной модели является полуволновым.Это означает, что используется только половина волны переменного тока. Скорее всего, это экономическая мера, позволяющая избежать необходимости в более сложном трансформаторе. Слева от выпрямителя находятся конденсаторы, используемые для фильтрации.

Выход снова подключается к схеме переключения. По соображениям безопасности выходные цепи не подключены напрямую к входным цепям. То есть на плате нет проводов или проводов, соединяющих их. Чтобы обойти это, в этом источнике питания используется изолирующий трансформатор. В других источниках питания они могут использовать так называемые оптопары.( https://en.wikipedia.org/wiki/Opto-isolator )

Шаг 7. Преобразование и регулировка

Поскольку от главного трансформатора создается только 12 В, преобразователи постоянного тока используются для создания 5 В и 3,3 В. Регуляторы помогают поддерживать напряжение как можно более стабильным. Следующие изображения показывают вывод этих строк. Выходные провода очень толстые, потому что они должны выдерживать большой ток.

Сюда выходят линии 12 В и 3,3 В.

Отсюда выходит линия 5В.

Все эти провода входят в главную плату распределителя. Ничего особенного здесь не происходит.

Вы могли заметить, что из выхода выходят две линии 12 В (отмечены меткой «12 В 2» на печатной плате). Это будет означать, что этот конкретный источник питания имеет две шины 12 В, которые, скорее всего, распределены между основным 24-контактным разъемом и разъемом EPS12V для одной шины с периферийными устройствами, включая разъем PCI Express, для другой.

Собираем все вместе: для преобразования электроэнергии требуется много времени

Для кажущейся простой задачи преобразования электроэнергии блок питания выполняет несколько шагов, чтобы обеспечить безопасные и правильные электрические розетки в ваших компонентах.Несмотря на то, что эта статья поверхностно описывает его внутреннюю работу, мы надеемся, что эта информация дает лучшее представление о том, что часто упускается из виду.

Источник питания

- обзор

4.1 Первичный источник питания

Хотя источник питания может означать трансформатор, аккумулятор или выпрямительный фильтр со схемой зарядки или без нее, которая преобразует переменный ток (AC) в постоянный (DC), инженеры по аварийной сигнализации обычно применяют этот термин к компонентам как группе. В большинстве резервных источников питания в качестве вторичного источника питания используются аккумуляторные батареи.

Источник питания начинается с понижающего трансформатора, который преобразует его 240 В переменного тока в напряжение 12–18 В переменного тока, используемое в большинстве систем охранной сигнализации. Трансформатор - это устройство, использующее электромагнитную индукцию для передачи электрической энергии от одной цепи к другой, то есть без прямого соединения между ними. В своей простейшей форме трансформатор состоит из отдельных первичной и вторичной обмоток на общем сердечнике из ферромагнитного материала, такого как железо. Когда переменный ток протекает через первичную обмотку, результирующий магнитный поток в сердечнике индуцирует переменное напряжение на вторичной обмотке; индуцированное напряжение, вызывающее протекание тока во внешней цепи.В случае понижающего трансформатора вторичная сторона будет иметь меньшее количество обмоток. От этого трансформатора питание по двухпроводному кабелю поступает в схему выпрямителя и фильтра, где переменный ток преобразуется в постоянный. Цепь зарядки будет содержаться в блоке питания, так что резервная батарея может постоянно заряжаться, пока присутствует переменный ток.

Источник питания всегда должен быть с регулируемым напряжением и иметь возможность поддерживать фиксированное выходное напряжение в диапазоне нагрузок и зарядных токов.Компоненты микропроцессора, особенно интегральные схемы, предназначены для работы при определенных напряжениях и не особенно устойчивы к колебаниям. Низкое напряжение заставляет компоненты пытаться потреблять избыточную мощность, что еще больше снижает их допуск, в то время как более высокое напряжение может их разрушить. По этим причинам напряжение следует измерять на источнике и еще раз на входных клеммах точки оборудования.

Решающим фактором при выборе источника питания является определение нагрузки, которую он должен поддерживать.Первым делом необходимо установить, сколько мощности потребуют все энергопотребляющие устройства, подключенные к источнику питания. Затем рассчитывается промежуток времени, в течение которого резервный источник питания должен обеспечивать систему в случае потери основного питания.

Основным источником электроэнергии является подача электроэнергии в здание, которая будет поддерживать систему в течение большей части времени. Вторичный источник питания - это система поддержки в случае отказа основного источника питания, то есть батарей. Системы, в которых мы заинтересованы, будут, как правило, питаться от трансформаторной / выпрямленной сети и перезаряжаемых вторичных ячеек через блок питания или источник бесперебойного питания (ИБП).Другие системы электропитания могут включать трансформатор / выпрямленный источник питания плюс неперезаряжаемые (первичные) элементы или только первичные элементы, но эти два типа менее широко используются. Отсюда следует, что сигнализация вторжения в значительной степени зависит от электросети, которая должна быть источником, который:

не будет легко отключен;

никогда не изолирован;

от некоммутируемого ответвления с предохранителем;

без скачков напряжения или тока;

подается непосредственно на панель управления, а не через выключатель, вилку и розетку или удаленный ответвитель, который может выйти из строя или отключиться.

Трансформатор должен быть установлен в закрытом положении и вентилироваться, и его нельзя ставить на легковоспламеняющиеся поверхности. Трансформаторы находятся внутри самой панели управления или на конечной станции, если в системе используются независимые удаленные клавиатуры. В тех же пределах находятся выпрямитель и зарядное устройство. В системе будет либо зарядное устройство (BCU), либо ИБП.

ИБП обладает большей способностью подавлять помехи и скачки напряжения в электросети, и он, как правило, широко используется в компьютерных источниках питания с резервными системами.Основными требованиями к зарядному устройству являются следующие:

оно может полностью зарядить все батареи в течение 24 часов при сохранении нагрузки на систему;

он имеет внутренние предохранители, первичный и вторичный;

он свободно плавающий и включает звуковые и видимые признаки неисправности.

включает триггер напряжения для активации дистанционной сигнализации отказа;

предусмотрена тамперная защита крышки;

имеет защиту от короткого замыкания с заземленным минусом на вторичной обмотке постоянного тока.

Как указывалось ранее, ИБП имеет лучшую защиту от помех с усилением записи и мониторинга. Он также должен иметь безопасный изолирующий трансформатор и иметь указанную мощность плюс требования к перезарядке при любой комбинации номинального напряжения питания и частоты питания при температурах от –10 до 40 ° C.

ИБП будет дополнительно иметь полностью выпрямленный трансформатор с низкой тепловой мощностью, твердотельный регулятор напряжения, линейный регулятор тока и высокотемпературный выключатель с непрерывным мониторингом цепи аварийной сигнализации низкого напряжения.Сетевые фильтры подавления используются для устранения кратковременных скачков высокого напряжения. BS 4737 требует следующих ИБП:

, чтобы они имели достаточную мощность и скорость перезарядки, чтобы справиться с любой длительной сетевой изоляцией основного источника питания, связанной с работами, выполняемыми для пожарной безопасности, нормальной изоляцией или нормальной работой на электрические услуги;

, что они расположены там, где обслуживание может быть легко выполнено;

, чтобы была обеспечена достаточная вентиляция, чтобы предотвратить накопление газа на вентилируемой батарее, которое может вызвать повреждение или травму;

, чтобы они не подвергались воздействию коррозионных условий и чтобы элементы были полностью закреплены, чтобы предотвратить их падение или разливание;

, что на агрегатах должна быть указана дата установки.

Прежде чем рассматривать типы вторичного источника питания, используемые в зоне охранной сигнализации, учащийся может пожелать уделить некоторое внимание проверке сетевого питания и испытаниям, которые должны быть выполнены, чтобы подтвердить его приемлемость. Эти испытания варьируются от визуальных проверок повреждений кабеля до требований к электрической проверке и рассматриваются в главе 8.

Как работает источник бесперебойного питания (ИБП)?

Источник бесперебойного питания (ИБП), также известный как резервная батарея, обеспечивает резервное питание при выходе из строя обычного источника питания или падении напряжения до недопустимого уровня.ИБП обеспечивает безопасное и упорядоченное выключение компьютера и подключенного оборудования. Размер и конструкция ИБП определяют, как долго он будет обеспечивать питание.

Топологии ИБП

Различные топологии ИБП обеспечивают определенные уровни защиты электропитания. ИБП CyberPower будет принадлежать к одной из этих трех топологий: резервной, линейно-интерактивной и с двойным преобразованием.

Резервный - это самая простая топология ИБП. Резервный ИБП использует резервное питание от батареи в случае общих проблем с питанием, таких как отключение электроэнергии, падение напряжения или скачок напряжения.Когда входящая мощность в электросети падает ниже или превышает безопасные уровни напряжения, ИБП переключается на питание от батареи постоянного тока, а затем инвертирует его в питание переменного тока для работы подключенного оборудования. Эти модели предназначены для бытовой электроники, компьютеров начального уровня, POS-систем, систем безопасности и другого базового электронного оборудования.

В ИБП line interactive используется технология, позволяющая корректировать незначительные колебания напряжения (повышенное и пониженное напряжение) без переключения на батарею.В этом типе ИБП есть автотрансформатор, который регулирует низкие напряжения (например, отключения) и перенапряжения (например, выбросы) без необходимости переключения на батарею. Модели линейно-интерактивных ИБП обычно используются для бытовой электроники, ПК, игровых систем, электроники для домашних кинотеатров, сетевого оборудования и серверов начального и среднего уровня. Они обеспечивают питание во время таких событий, как отключение электроэнергии, падение напряжения, скачок напряжения или перенапряжение.

ИБП с двойным преобразованием (онлайн) обеспечивает стабильное, чистое и почти идеальное питание независимо от состояния входящего питания.Этот ИБП преобразует входящую мощность переменного тока в постоянный, а затем обратно в переменный. Системы ИБП с этой технологией работают от изолированного источника постоянного тока 100 процентов времени и имеют нулевое время переключения, поскольку им никогда не нужно переключаться на питание постоянного тока. Системы ИБП с двойным преобразованием предназначены для защиты критически важного ИТ-оборудования, центров обработки данных, высокопроизводительных серверов, крупных телекоммуникационных установок и приложений хранения, а также современного сетевого оборудования от повреждений, вызванных отключением питания, провалом напряжения, скачком напряжения и т. Д. напряжение, скачок напряжения, частотный шум, изменение частоты или гармонические искажения.

Формы выходных сигналов ИБП
Системы ИБП

CyberPower имеют выходной сигнал синусоидальной или имитированной синусоидальной волны, в зависимости от модели.

Выходной синусоидальный сигнал: Выходной сигнал высочайшего качества - это синусоидальный сигнал, который представляет собой плавные повторяющиеся колебания мощности переменного тока. Системы ИБП корпоративного уровня вырабатывают синусоидальную энергию для работы чувствительного электронного оборудования. Выходной сигнал синусоиды гарантирует, что оборудование, использующее блоки питания Active PFC, не отключится при переключении с электросети на питание от батареи.

Имитация выходной синусоидальной волны: Приблизительная форма выходной синусоидальной волны. Он использует модуляцию импульсной волны для генерации ступенчатой ​​приближенной синусоидальной волны для обеспечения более экономичного резервного питания от батареи для оборудования, которое не требует выхода синусоидальной волны. Технология, используемая для производства такого типа выходной мощности, дешевле в производстве и распространена в резервных и линейных интерактивных системах ИБП.

Где можно узнать больше?

CyberPower предлагает ИБП с резервным, линейно-интерактивным и двойным преобразованием.Здесь вы найдете информацию о наших системах ИБП.

Что такое блок питания ПК и как он работает?

SMPS стойка для импульсного источника питания . В основном это электронный блок питания, используемый в настольных компьютерных системах. Основная цель использования SMPS - передавать мощность от источника переменного тока к устройствам постоянного тока при преобразовании напряжения и тока. Он в основном используется в бытовых продуктах, таких как персональные компьютеры.Импульсные источники питания могут выдерживать широкий диапазон частот и напряжений питания, поэтому их область применения возрастает. Из-за большого объема SMPS они теперь также используются в зарядных устройствах для мобильных телефонов, а стоимость мобильных зарядных устройств также была снижена.


Импульсные источники питания используются для преобразования постоянного тока в постоянный , а также , и из-за этой функции SMPS, тяжелых транспортных средств, в промышленных установках, таких как телекоммуникационные стойки, силовые агрегаты и отдельные элементы оборудования, также используют постоянный ток / постоянный ток. импульсные преобразователи для получения питания любого необходимого напряжения.

SMPS

также использует импульсный стабилизатор для эффективного преобразования электроэнергии. Блок питания компьютера изменяет A.C. (переменный ток) на низкое напряжение D.C. (постоянный ток) для работы периферийных устройств. В настоящее время компьютер использует SMPS в качестве основного источника питания. Компьютерный блок питания обычно меньше и легче по сравнению с линейным блоком питания из-за меньшего размера и веса трансформатора.

В основном, элементы переключателей SMPS включают катушки индуктивности, конденсаторы, трансформатор и всевозможные электрические компоненты для регулирования выходного напряжения и тока.


Давайте рассмотрим процесс работы блока питания компьютера

Фактическая работа блока питания ПК разделена на четыре различных части, и каждая из них имеет свою важную задачу для поддержания идеальной производительности электроэнергии. Вот список всех тех разделов, о которых я говорю:

  1. Входной выпрямитель: Первый шаг - преобразовать AC в DC с помощью процесса, называемого Rectification .Выпрямитель представляет собой модуль двухполупериодного диодного моста или , который используется для создания неконтролируемого постоянного напряжения на сглаживающем конденсаторе. Ток, потребляемый из сети этой схемой выпрямителя , возникает короткими импульсами вокруг пиков переменного напряжения. Эти импульсы обладают значительной высокочастотной энергией, что снижает коэффициент мощности.
  2. Инвертор: На этом этапе DC преобразуется в AC через генератор мощности. Выходной трансформатор силового генератора очень низкий с частотой обмоток от десятков до сотен килогерц.Эти частоты превышают 20 кГц и не слышны для человека. Переключение осуществляется усилителем MOSFET . Этот усилитель имеет низкое сопротивление и высокую пропускную способность по току.
  3. Преобразователь напряжения : Если выходное напряжение выше 10 вольт , то используются кремниевые диоды . Если выходное напряжение на ниже 10 вольт , то в качестве выпрямителя используются диоды Шоттки . У них более быстрое время восстановления, чем у кремниевых диодов, а при проводимости падение напряжения невелико.
  4. Регулятор выхода : Фильтр, состоящий из катушек индуктивности и конденсаторов, используется для сглаживания выхода выпрямителя . Контур управления с обратной связью используется для регулирования выходного напряжения путем изменения рабочего цикла для компенсации изменений входного напряжения.

Так выглядит задняя панель блока питания:
  • Вентилятор: Вентилятор находится на задней панели. Он используется для удаления воздуха внутри БП.
  • Порт источника питания: Эта часть потребляет электроэнергию от домашней розетки и подает ее на блок питания.
  • Выключатель питания: Выключатель питания используется для включения или ВЫКЛЮЧЕНИЯ блока питания.
  • Переключатель напряжения: Эта часть используется для переключения напряжения с 110/115 В на 220/230 В или наоборот. Если в вашем блоке питания нет этой детали, вполне возможно, что разъем питания вашего блока питания универсальный или он предназначен только для определенного региона.

Вот как выглядят разъемы блока питания:

При установке блока питания в компьютер нам необходимо подключить все жизненно важные аппаратные кабели и разъем для передачи питания на различные компоненты компьютера.Их общие спецификации для различных настольных систем определены в руководствах Intel по проектированию, которые периодически пересматриваются.

  • Основной кабель питания ПК: Этот кабель подключается к задней панели блока питания и используется для питания блока питания. Это видно с внешней стороны БП.
  • Кабель питания SATA / MOLEX: Этот кабель соединяет блок питания с жестким диском. SATA означает Serial ATA или Serial Advanced Technology Attachment. SATA лучше, чем PATA , так как его скорость отправки данных намного выше.
  • 24-контактный ATX, основной кабель питания MOBO: Этот кабель является стандартным кабелем материнской платы, который используется в материнской плате каждого компьютера, и в основном этот кабель соединяет блок питания с материнской платой и обеспечивает все необходимое для материнской платы питание. Этот кабель доступен в виде 2 кабеля или может быть соединен с одним кабелем .
  • 6-контактный или 6 + 2-контактный кабель питания PCI Express: 6-контактный кабель используется для обеспечения дополнительного питания 12 В для плат расширения PCI Express .Слоты материнской платы PCI Express генерируют максимум 75 Вт . В основном он создан для видеокарты. Кабель 6 + 2 Pin аналогичен кабелю питания 6 pin PCI Express , но с на 2 контакта больше . Преимущество этого кабеля в том, что он обеспечивает максимальную мощность 150 Вт.
  • 8-контактный кабель питания процессора: Этот кабель используется для подачи питания на процессор.

# Наконец, все особо важные виды вещей

Номинальная мощность - Общие требования к мощности для высокопроизводительного компьютера с несколькими видеокартами могут варьироваться от 650 Вт, до более чем 1000 Вт, , где обычным персональным компьютерам обычно требуется от от 300 до 500 Вт. Рассчитано энергопотребление и сделано около на 40% больше, чем у блоков питания. Это сделано для защиты системы от перегрузки и снижения производительности. Общая потребляемая мощность системы - это сумма всех номинальных мощностей всех компонентов, которые получают питание от источника питания. Источник питания, сертифицированный производителем самостоятельно, будет требовать номинальных выходных характеристик, которые могут быть вдвое или больше, чем фактически предоставленные.

КПД - Тест, проведенный в 2005 , показал, что блоки питания компьютеров КПД 70-80% .Высококачественные блоки питания могут иметь КПД более 80%. В результате они энергоэффективны, тратят меньше энергии на тепло и требуют меньшего воздушного потока для охлаждения. В 2012 году БП стали более эффективными. Их КПД может достигать 90% при оптимальных уровнях нагрузки. КПД обычно достигает пика примерно при нагрузке 50–75%. Сейчас начаты различные действия по повышению эффективности компьютерных блоков питания. Эффективные блоки питания экономят деньги, поскольку они тратят меньше энергии, а затем сэкономленное электричество будет использоваться для обеспечения питания того же компьютера.

Преимущества и недостатки - Одним из основных преимуществ SMPS является то, что он более эффективен, чем линейные регуляторы, поскольку переключающий транзистор рассеивает мало энергии, работая в качестве переключателя. Некоторые другие преимущества SMPS включают меньшего размера и более легкий , поскольку в SMPS исключаются тяжелые линейные трансформаторы частоты и тепловыделение.

Большая сложность, генерация высокой амплитуды, высокой частоты являются недостатками.Дешевый SMPS может создавать помехи для оборудования A / V , подключенного к той же фазе, из-за обратной связи с электрическими коммутационными шумами на линии электропитания.

Меры предосторожности - После того, как шнур питания был отсоединен от стены, конденсатор основного фильтра может сохранять до 325 вольт. В некоторых ИИП отсутствует конденсатор утечки, который используется для медленной разрядки конденсатора. Любой контакт с этим конденсатором может привести к сильному поражению электрическим током. Конденсатор иногда подключают к первичной и вторичной обмоткам трансформатора, чтобы уменьшить EMI (электромагнитная индукция). Если трансформатор один, то это может привести к поражению электрическим током.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *