Блок питания из эпра: Импульсный блок питания из ЭПРА

Содержание

Блок питания из ЭПРА

Блок питания из ЭПРА — полезное и очень важное устройство в радиолюбительской практике. Сейчас можно приобрести блок питания любой мощности (в пределах разумного), размера и цены, но иногда они значительным образом уступают самодельным блокам питания. В этой статье мы рассмотрим вариант изготовления самодельного блока питания из ЭПРА (балласта для энергосберегательной лампы). 

Существует немало конструкций с применением ЭПРА. Конструкция такого блока достаточно проста, цена не превышает 2-2,5 американских долларов. Это импульсный блок питания, предназначенный для повышения сетевых 220 Вольт до более высокого номинала, который питает энергосберегающую лампочку. Схема балласта достаточно проста, из себя представляет повышающий преобразователь (чаще всего двухтактный).

Блок питания из ЭПРА — схема

В качестве силовых ключей используются импортные транзисторы MJE13003, MJE13007, в редких случаях MJE13009 и их аналоги. Транзисторы можно сказать,что создавались специально для работы в сетевых ИБП. Аналогичные транзисторы используются и в компьютерных блоках питания. Итак, для начала хочу представить основные достоинства такого блока питания.

  1. Компактные размеры и легкий вес
  2. Малые затраты и низкая стоимость
  3. Надежность работы

Это лишь основные достоинства нашего самодельного блока, но у него есть и другие (скрытые) достоинства. Некоторые ИБП работают только под определенной нагрузкой, иными словами блок питания не сможет работать в холостую или с маломощной нагрузкой. Таким свойством обладают достаточно популярные ЭТ (электронные трансформаторы), которые предназначены для питания галогенных ламп с мощностью 12 вольт. Наш блок питания включается при подачи сетевого напряжения, способен питать нагрузки с мощностью от долей ватта (светодиоды и т.п.) до 40-50 ватт. Такой блок может использоваться в качестве лабораторного блока питания для начинающего радиолюбителя.

Блок питания не боится коротких замыканий на выходе (взамен электронный трансформатор выходит из строя после секундного КЗ), обладает высокой стабильностью работы и может работать в течении очень долгого времени без выключения. Суть переделки балласта заключается в ее доработке. Нам нужно мотать импульсный трансформатор, который обеспечивает гальваническую развязку от сети 220 вольт и понижает напряжение до нужного нам уровня.

Трансформатор можно мотать практически на любом ферритовом сердечнике (кольца, броневые чашки или Ш-образный сердечник). Сетевая обмотка содержит 130 витков провода 0,3-0,6 мм, понижающая должна содержать 8-9 витков, что соответствует выходному напряжению 12 Вольт.

Напряжение от балласта подается на обмотку трансформатора через конденсатор ( напряжение конденсатора подобрать в пределах 1000-3000 вольт, емкость 3300-6600 пкФ). Вторичную обмотку трансформатора желательно мотать несколькими жилами тонкого провода (4 жилы провода 0,5мм), на выходе получается порядка 3,5-4 Ампер. Возможно также применение готовых трансформаторов из ЭТ с мощностью 50-150 ватт.

Для выпрямления напряжения следует использовать мощные импульсные диоды или диодные сборки от компьютерных блоков питания. Из отечественного интерьера можно использовать КД213. При подборе диодов для блока питания из ЭПРА следите, чтобы максимально допустимый ток диода был в районе 8-12 Ампер, сам диод должен работать на частотах 100-150 кГц.

Как сделать блок питания из энергосберегающей лампы своими руками

Энергосберегающие лампочки нашли широкое применение, как в бытовых, так и в производственных целях. Со временем любая лампа приходит в неисправное состояние. Однако при желании светильник можно реанимировать, если собрать блок питания из энергосберегающей лампы. При этом в качестве составляющих блока используется начинка вышедшей из строя лампочки.

Импульсный блок и его назначение

На обоих концах трубки люминесцентной лампы имеются электроды, анод и катод. В результате подачи электропитания компоненты лампы разогреваются. После нагрева происходит выделение электронов, которые сталкиваются со ртутными молекулами. Следствием происходящего становится ультрафиолетовое излучение.

За счет наличия в трубке люминофора осуществляется конвертация люминофора в видимое свечение лампочки. Свет появляется не сразу, а спустя определенный промежуток времени после подключения к электросети. Чем более выработан светильник, тем длительнее интервал.

Работа импульсного блока питания основывается на следующих принципах:

  1. Преобразование переменного тока из электросети в постоянный. При этом напряжение не меняется (то есть остается 220 В).
  2. Трансформация постоянного напряжения в прямоугольные импульсы за счет работы широтного импульсного преобразователя. Частота импульсов составляет от 20 до 40 кГц.
  3. Подача напряжения на светильник посредством дросселя.

Далее представлена схема функционирования балласта люминесцентной лампочки.

Источник бесперебойного питания (ИБП) состоит из целого ряда компонентов, каждый из которых в схеме имеет свою маркировку:

  1. R0 — выполняет ограничивающую и предохраняющую роль в блоке питания. Устройство предотвращает и стабилизирует чрезмерный ток, идущий по диодам в момент подключения.
  2. VD1, VD2, VD3, VD4 — выступают в качестве мостов-выпрямителей.
  3. L0, C0 — являются фильтрами передачи электрического тока и защищают от перепадов напряжения.
  4. R1, C1, VD8 и VD2 — представляют собой цепь преобразователей, использующихся при запуске. В качестве зарядки конденсатора C1 используется первый резистор (R1). Как только конденсатор пробивает динистор (VD2), он и транзистор раскрываются, в результате чего начинается автоколебание в схеме. Далее прямоугольный импульс посылается на диодный катод (VD8). Возникает минусовой показатель, перекрывающий второй динистор.
  5. R2, C11, C8 — облегчают начало работы преобразователей.
  6. R7, R8 — оптимизируют закрытие транзисторов.
  7. R6, R5 — образуют границы для электротока на транзисторах.
  8. R4, R3 — используются в качестве предохранителей при скачках напряжения в транзисторах.
  9. VD7 VD6 — защищают транзисторы БП от возвратного тока.
  10. TV1 — является обратным коммуникативным трансформатором.
  11. L5 — балластный дроссель.
  12. C4, C6 — выступают как разделительные конденсаторы. Делят все напряжение на две части.
  13. TV2 — трансформатор импульсного типа.
  14. VD14, VD15 — импульсные диоды.
  15. C9, C10 — фильтры-конденсаторы.

Обратите внимание! На схеме ниже красным цветом отмечены компоненты, которые нужно удалить при переделывании блока. Точки А-А объединяют перемычкой.

Только продуманный подбор отдельных элементов и правильная их установка позволит создать эффективно и надежно работающий блок питания.

к содержанию ↑

Отличия лампы от импульсного блока

Схема лампы-экономки во многом напоминает строение импульсного блока питания. Именно поэтому изготовить импульсный БП несложно. Чтобы переделать устройство, понадобятся перемычка и дополнительный трансформатор, который станет выдавать импульсы. Трансформатор должен иметь выпрямитель.

Чтобы сделать БП более легким, удаляется стеклянная люминесцентная лампочка. Параметр мощности ограничивается наибольшей пропускной способностью транзисторов и размерами охлаждающих элементов. Для повышения мощности необходимо намотать дополнительную обмотку на дроссель.

к содержанию ↑

Переделка блока

Прежде чем начинать переделку БП, необходимо выбрать выходную мощность тока. От этого показателя зависит степень модернизации системы. Если мощность будет находиться в пределах 20-30 Вт, не понадобятся глубокие изменения в схеме. Если же запланирована мощность свыше 50 Вт, модернизация нужна более системная.

Обратите внимание! На выходе из БП будет постоянное напряжение. Получение переменного напряжения на частоте 50 Гц не представляется возможным.

к содержанию ↑

Определение мощности

Вычисление мощности осуществляется согласно формуле:

В качестве примера рассмотрим ситуацию с блоком питания, имеющим следующие характеристики:

  • напряжение — 12 В;
  • сила тока — 2 А.

Вычисляем мощность:

P = 2 × 12 = 24 Вт.

Конечный параметр мощности будет больше — примерно 26 Вт, что позволяет учесть возможные перегрузки. Таким образом, для создания блока питания потребуется достаточно незначительное вмешательство в схему стандартной эконом-лампы на 25 Вт.

к содержанию ↑

Новые компоненты

На схеме, представленной далее, показан порядок добавления новых деталей. Все они обозначены красным цветом.

В число новых электронных компонентов входят:

  • диодный мост VD14-VD17;
  • 2 конденсатора C9 и C10;
  • обмотка на балластном дросселе (L5), количество витков которой определяется эмпирически.

Дополнительная обмотка выполняет еще одну важную функцию — является разделяющим трансформатором и защищает от проникновения напряжения на выходы ИБП.

Чтобы вычислить нужное количество витков в дополнительной обмотке, выполняются такие действия:

  1. Временно наносим обмотку на дроссель (приблизительно 10 витков провода).
  2. Стыкуем обмотку с сопротивлением нагрузки (мощность от 30 Вт и сопротивление 5-6 Ом).
  3. Подключаемся к сети и делаем замер напряжения при нагрузочном сопротивлении.
  4. Полученный результат делим на число витков и узнаем, сколько вольт приходится на каждый виток.
  5. Выясняем нужное количество витков для постоянной обмотки.

Более подробно порядок расчета показан ниже.

Для вычисления нужного количества витков планируемое напряжение для блока делим на напряжение одного витка. В результате получаем число витков. К итоговому результату рекомендуется прибавить 5-10 %, что позволит иметь определенный запас.

Не стоит забывать, что оригинальная дроссельная обмотка находится под сетевым напряжением. Если нужно намотать на нее новый слой обмотки, позаботьтесь о межобмоточном изоляционном слое. Особенно важно соблюдать данное правило, когда наносится провод типа ПЭЛ в эмалевой изоляции. В качестве межобмоточного изоляционного слоя подойдет политетрафторэтиленовая лента (толщина 0,2 миллиметра), которая позволит повысить плотность резьбовых соединений. Такую ленту используют сантехники.

Обратите внимание! Мощность в блоке ограничивается габаритной мощностью задействованного трансформатора, а также максимально возможным током транзисторов.

к содержанию ↑

Самостоятельное изготовление блока питания

ИБП можно изготовить своими руками. Для этого понадобятся небольшие изменения в перемычке электронного дросселя. Далее выполняется подключение к импульсному трансформатору и выпрямителю. Отдельные элементы схемы удаляются ввиду их ненужности.

Если блок питания не слишком высокомощный (до 20 Вт), трансформатор устанавливать необязательно. Хватит нескольких витков проводника, намотанных на магнитопровод, расположенный на балласте лампочки. Однако осуществить эту операцию можно только при наличии достаточного места под обмотку. Для нее подходит, к примеру, проводник типа МГТФ с фторопластовым изоляционным слоем.

Провода обычно нужно не так много, поскольку практически весь просвет магнитопровода отдается изоляции. Именно этот фактор ограничивает мощность таких блоков. Для увеличения мощности потребуется трансформатор импульсного типа.

к содержанию ↑

Импульсный трансформатор

Отличительной характеристикой такой разновидности ИИП (импульсного источника питания) считается возможность его подстраивания под характеристики трансформатора. Кроме того, в системе нет цепи обратной связи. Схема подключения такова, что в особенно точных подсчетах параметров трансформатора нет необходимости. Даже если будет допущена грубая ошибка при расчетах, источник бесперебойного питания скорее всего будет функционировать.

Импульсный трансформатор создается на основе дросселя, на который накладывается вторичная обмотка. В качестве таковой используется лакированный медный провод.

Межобмоточный изоляционный слой чаще всего выполнен из бумаги. В некоторых случаях на обмотку нанесена синтетическая пленка. Однако даже в этом случае следует дополнительно обезопаситься и намотать 3-4 слоя специального электрозащитного картона. В крайнем случае используется бумага толщиной от 0,1 миллиметра. Медный провод накладывается только после того, как предусмотрена данная мера безопасности.

Что касается диаметра проводника, он должен быть максимально возможным. Количество витков во вторичной обмотке невелико, поэтому подходящий диаметр обычно выбирают методом проб и ошибок.

к содержанию ↑

Выпрямитель

Чтобы не допустить насыщения магнитопровода в источнике бесперебойного питания, используют исключительно двухполупериодные выходные выпрямители. Для импульсного трансформатора, работающего на уменьшение напряжения, оптимальной считается схема с нулевой отметкой. Однако для нее нужно изготовить две абсолютно симметричные вторичные обмотки.

Для импульсного источника бесперебойного питания не подойдет обычный выпрямитель, функционирующий согласно схеме диодного моста (на кремниевых диодах). Дело в том, что на каждые 100 Вт транспортируемой мощности потери составят не менее 32 Вт. Если же изготавливать выпрямитель из мощных импульсных диодов, затраты будут велики.

к содержанию ↑

Наладка источника бесперебойного питания

Когда собран блок питания, остается присоединить его к наибольшей нагрузке, чтобы проверить — не перегреваются ли транзисторы и трансформатор. Температурный максимум для трансформатора — 65 градусов, а для транзисторов — 40 градусов. Если трансформатор чересчур нагревается, нужно взять проводник с большим сечением или же увеличить габаритную мощность магнитопровода.

Перечисленные действия можно выполнить одновременно. Для трансформаторов из дроссельных балансов нарастить сечение проводника вероятнее всего не удастся. В этом случае единственный вариант — сокращение нагрузки.

к содержанию ↑

ИБП высокой мощности

В некоторых случаях стандартной мощности балласта не хватает. В качестве примера приведем такую ситуацию: есть лампа мощностью 24 Вт и необходим ИБП для зарядки с характеристиками 12 B/8 A.

Для реализации схемы понадобится неиспользуемый компьютерный БП. Из блока достаем силовой трансформатор вместе с цепью R4C8. Данная цепочка защищает силовые транзисторы от чрезмерного напряжения. Силовой трансформатор соединяем с электронным балластом. В этой ситуации трансформатор заменяет дроссель. Ниже изображена схема сборки источника бесперебойного питания, основанная на лампочке-экономке.

Из практики известно, что данная разновидность блоков дает возможность получать до 45 Вт мощности. Нагревание транзисторов находится в рамках нормы, не превышая 50 градусов. Чтобы полностью исключить перегревание, рекомендуется вмонтировать в транзисторные базы трансформатор с большим сечением сердечника. Транзисторы ставят непосредственно на радиатор.

к содержанию ↑

Потенциальные ошибки

Не рекомендуется использовать как выходной выпрямитель стандартный диодный мост на низких частотах. Особенно нежелательно это делать, если источник бесперебойного питания отличается высокой мощностью.

Нет смысла упрощать схему, накладывая базовые обмотки непосредственно на силовой трансформатор. В случае отсутствия нагрузки возникнут немалые потери, поскольку в транзисторные базы станет поступать ток большой величины.

Если используется трансформатор с возрастанием тока нагрузки, повысится и ток в транзисторных базах. Эмпирически установлено, что после того, как показатель нагрузки доходит до 75 Вт, в магнитопроводе наступает насыщение. Результатом этого является снижение качества транзисторов и их чрезмерный нагрев. Чтобы не допустить такого развития событий, рекомендуется самостоятельно обмотать трансформатор, используя большее сечение сердечника. Также допускается складывание вместе двух колец. Еще один вариант состоит в использовании большего диаметра проводника.

Базовый трансформатор, выступающий в качестве промежуточного звена, можно удалить из схемы. С этой целью токовый трансформатор присоединяют к выделенной обмотке силового трансформатора. Делается это с использованием высокомощного резистора на основе схемы обратной коммуникации. Минусом такого подхода является постоянное функционирование трансформатора тока в условиях насыщения.

Недопустимо подключение трансформатора вместе с дросселем (находится в преобразователе балласта). В противном случае из-за снижения общей индуктивности возрастет частота ИБП. Следствием этого станут потери в трансформаторе и чрезмерный нагрев транзистора выпрямителя на выходе.

Нельзя забывать о высокой отзывчивости диодов к повышенным показателям обратного напряжения и тока. К примеру, если поставить в схему на 12 вольт 6-вольтовый диод, данный элемент быстро придет в негодность.

Не следует менять транзисторы и диоды на низкокачественные электронные компоненты. Рабочие характеристики элементной базы российского производства оставляют желать лучшего, и результатом замены станет снижение функциональности источника бесперебойного питания.

Как сделать блок питания из энергосберегающей лампы своими руками

Импульсный блок питания из энергосберегающей лампы

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт

Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Блок питания мощностью 100 Ватт

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Каково назначение элементов схемы импульсного блока питания?

Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Импульсный блок питания из энергосберегающей лампы

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт

Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Блок питания мощностью 100 Ватт

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Каково назначение элементов схемы импульсного блока питания?

Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Как сделать блок питания из эконом лампы

Привет, друзья. В эпоху светодиодных технологий многие все еще предпочитают для освещения использовать люминесцентные лампы (они же экономки). Это разновидность газоразрядных ламп, которые многие считают, мягко скажем, не очень безопасным видом освещения.

Но, вопреки всем сомнениям, они успешно висели в наших домах не одно десятилетие, поэтому у многих сохранились нерабочие эконом-лампы.

Как мы знаем, для работы многих газоразрядных ламп требуется высокое напряжение, порой в разы выше, чем напряжение в сети и обычная экономка тоже не исключение.

В такие лампы встроены импульсные преобразователи, или балласты. Как правило, в бюджетных вариантах применяется полумостовой автогенераторный преобразователь по очень популярной схематике.  Схема такого блока питания работает довольно надежно, несмотря на полное отсутствие каких-либо защит, помимо предохранителя. Тут нет даже нормального задающего генератора. Цепь запуска построена на базе симметричного диака.

Схема та же, что и у электронного трансформатора, только вместо понижающего трансформатора оттуда использован накопительный дроссель. Я намерен быстро и понятно показать вам, как можно такие блоки питания превратить в полноценный импульсный источник питания понижающего типа, плюс обеспечить гальваническую развязку от сети для безопасной эксплуатации.

Для начала хочу сказать, что переделанный блок может быть использован в качестве основы для зарядных устройств, блоков питания для усилителей. В общем, можно внедрить там, где есть нужда в источнике питания.

Нужно лишь доработать выход диодным выпрямителем и сглаживающей емкостью.

Подойдет для переделки любая экономка любой мощностью. В моем случае -это полностью рабочая лампа на 125 Ватт. Лампу сначала нужно вскрыть, достать блок питания, а колба нам больше не нужна. Даже не вздумайте ее разбивать, поскольку там содержатся очень токсичные пары ртути, которые смертельно опасны для живых организмов.

Первым делом смотрим на схему балласта.

Они все одинаковые, но могут отличаться количеством дополнительных компонентов. На плате сразу бросается в глаза довольно массивный дроссель. Разогреваем паяльник и выпаиваем его.

Дальше находим убитый блок питания от компьютера. Нам нужен только силовой импульсный трансформатор.

На плате у нас имеется также маленькое колечко.

Это трансформатор обратной связи потоку и он состоит из трех обмоток, две из которых являются задающими,

а третья является обмоткой обратной связи потоку и содержит всего один виток.

А теперь нам нужно подключить трансформатор от компьютерного блока питания так, как показано по схеме.

То есть один из выводов сетевой обмотки подключается к обмотке обратной связи.

Второй вывод подключается к точке соединения двух конденсаторов полумоста.

Да, друзья, на этом процесс завершен. Видите, насколько все просто.

Теперь я нагружу выходную обмотку трансформатора, чтобы убедиться в наличии напряжения.

Не забываем, начальный запуск балласта делается страховочной лампочкой. Если блок питания нужен на малую мощность, можно обойтись вообще без всякого трансформатора, и вторичную обмотку обмотать на непосредственно сам дроссель.

Не помешало бы установить силовые транзисторы на радиаторы. В ходе работы под нагрузкой их нагрев – это естественное явление.

Вторичную обмотку трансформатора можно сделать на любое напряжение.

Для этого нужно его перемотать, но если блок нужен, например, для зарядного устройства автомобильного аккумулятора, то можно обойтись без всяких перемоток. Для выпрямителя стоит использовать импульсные диоды, опять же, оптимальное решение – это наше КД213 с любой буквой.

В конце хочу сказать, что это только один из вариантов переделки таких блоков. Естественно, существует множество иных способов. На этом, друзья, все. Ну а с вами, как всегда, был KASYAN AKA. До новых встреч. Пока!

Автор: Ака Касьян


 

Импульсный блок питания из энергосберегающей лампы

 

Несмотря на обещания производителей экономных ламп об их надёжности и долговечности, они быстро выходят из строя. Учитывая существенные скачки напряжения, которые отнюдь не редкость в отечественных электросетях, энергосберегающие модели портятся раньше времени. Если Вы обладаете минимальными навыками работы с электросхемами, рекомендуем не выбрасывать их сразу — подсоберите хоть несколько штук одного типа. Считается, что сгоревшие лампы ремонту не подлежат, однако из их запчастей вполне можно собрать рабочий светильник. Новые лампочки стоят недёшево, поэтому стоит попробовать восстановить хоть что-то. В любом случае Вы ничего не теряете, разве что — кроме своего времени.
Современные лампы это не просто колба с вольфрамовой нитью и газами внутри. В цоколе каждой скрывается сложная плата, управляющая её работой и трансформирующая энергию в свет. Поэтому если испортились только нити накаливания или лопнула колба, и заменить их нечем — из плат ламп (или так называемого балласта) можно сделать импульсный блок питания, без которого не обходится ни одно электронное устройство.

Выбросить нельзя, переделать!

Окружающие нас повсюду гаджеты не могут работать без высокочастотного (импульсного) источника энергии. Обычно для этого используется специальный блок питания. Но согласитесь, не всегда удобно таскать его с собой на работу, в поездки, на встречи и назад. К тому же для каждого устройства нужна своя зарядка – в итоге приходится носить целый клубок проводов. Да и портятся они быстро. А ведь можно попытаться сделать из подручных материалов самодельную зарядку для дома. Так зачем же переплачивать и тратить время на поиск нужной модели, если можно использовать за основу блок любой нерабочей энергосберегающей лампы? Наверняка в доме найдётся хотя бы парочка таких ламп. Главное, чтобы причина выхода их из строя крылась не в схеме. Почему бы не попробовать?
По большому счёту схема люминесцентных ламп практически не отличается от начинки импульсного блока питания заводского производства. Она представляет собой высоковольтный преобразователь, способный трансформировать привычные 220 вольт из сети в 800-1000 вольт, которые и запускают искру, разжигающую газ в колбе ламп. При желании, чтобы получить необходимую мощность, достаточно дополнить плату из лампочки распределительным трансформатором и выпрямителем.
Конечно, массивная конструкция и непрезентабельный вид такой зарядки значительно ограничивает возможности её использования. Такую «махину» не потаскаешь с собой, т.е. мобильность любой самоделки будет крайне низкая. Зато как дополнительный «зарядник» для дома — она подойдёт в самый раз. К тому же такая рабочая заготовка сможет продлить жизнь другой лампе, запитать светодиоды, зарядить аккумуляторы и т.д. Вариантов применения – масса, так что собираем лампочки, товарищи.
Поскольку цифры выходящего напряжения в таких платах очень высоки – любая неосторожность представляет угрозу для жизни – обязательно соблюдайте правила безопасности при работе с электрикой!

Разбираем?

Как уже упоминалось, простой импульсный преобразователь можно сделать своими руками — из вышедшей из строя энергосберегающей лампы. Радует то, что для этого практически не придётся дополнительно тратиться – всё, что нужно уже наверняка имеется у вас в наличии. Да и всю работу, зная базовый алгоритм, можно выполнить за пару часов.
Самое главное — аккуратно разобрать корпус лампы — донора. Возьмите отвёртку и пройдитесь по месту стыка колбы с цоколем, постепенно отжимая внутренние защёлки под ободком. Можно немного прогреть пластик, чтобы легче было отсоединить плотно подогнанные комплектующие (иногда производители прокладывают тонкую полоску клея – для герметичности).
Старайтесь не прикладывать слишком больших усилий, чтобы не раздавить тонкие стенки стеклянных колб у ламп. В результате их содержимое: газы — пары ртути, люминофоры — могут высвободиться, а они являются токсичными, хоть доза вредных веществ и невелика.
После успешного разъединения половинок перед вами предстанет следующая картина. Конструкция ламп разных производителей может отличаться. Но обычно схема блока выглядит так.

Устройство лампы

Отделяя стеклянную колбу — не дёргайте резко, чтобы не повредить внутренний блок. Затем нужно отсоединить четыре вывода нитей накаливания. Это провода в изоляции белого цвета, идущие внутрь стеклянной колбы. Их можно как отпаять, так и просто откусить – всё равно эта часть лампочки нам уже не понадобится.
Теперь нужно тщательно осмотреть добытую плату на наличие повреждений. На ней не должно быть никакой копоти — как со стороны радиодеталей, так и со стороны дорожек. Обследуйте хорошенько и сами детали на наличие бугров, гари и раздутий.

Устройство лампы

Проверьте прочность соединения в местах пайки. Если видимых повреждений не обнаружено, для верности — «прозвоните» тестером все составляющие блока печатной платы. Возможно причина того, что отгорели нити накаливания, кроется в электронных компонентах. Если это так – придётся брать балласт из других ламп.

Приведём в качестве примера типовую схему 25 ваттной «экономки» Vitoone. Изделия других производителей, если и отличаются от неё, то незначительно. Выделенный красным лампочный узел нам больше не понадобится, его можно удалить. На образовавшемся отрезке между точками А и А´ нужно будет установить перемычку.

Схема лампы Vitoone 25W

Для облегчения чтения схемы приводим перечень условных обозначений используемых радиодеталей, их назначение и функции:

бозначений используемых радиодеталей

Переделка

Чтобы сделать маломощный блок питания, достаточно снабдить навивкой из медной проволоки уже имеющийся в схеме лампы дроссель. Для удобства – придётся на время выпаять его из платы. Перед началом работ по «улучшению» дросселя — обязательно снимите с него заводское покрытие (плёнку, клей, картон и т.д.).

 

Подключенный трансформатор

Проложите новую изоляцию между первичной заводской намоткой и будущей. Это может быть как кусочек специального электрокартона, так и обычная бумага (изолента). Толщина изоляционного прослойки должна составлять не менее 0,1 мм. Теперь можно приступать к намотке.
Диаметр проволоки желательно подбирать такой же, какой был использован на самом дросселе. Слишком тонкий – будет перегреваться, и может быстро вывести весь блок из строя, а толстую проволоку – просто негде будет разместить в ограниченном пространстве рамки. Количество витков зависит от того, какой мощности блок питания вам нужен. Для маломощного блока достаточно десяти витков, для больших нагрузок – мотайте, пока не закончится свободное место на катушке дросселя. Зачастую места в окне магнитопровода очень мало, поэтому много витков наложить и не удастся.
Ниже приведена схема и рядом, для наглядности, доработанная плата, где дроссель уже снабжён дополнительной обмоткой.

Подключение блока питания

Теперь нам нужно замкнуть два крайних порта (они помаркованы на плате как P1 и P4) из четырёх, которыми раньше нити накаливания, расположенные в колбе, подсоединялась к плате. На картинке выше данное соединение выполнено проводом в белой толстой изоляции.
Благодаря этим нехитрым манипуляциям схема бывшей лампы будет генерировать переменный ток с высокой частотой. Выдаваемое такой системой напряжение будет примерно таким же, какое заявлено производителем на корпусе лампочки.
Вот в принципе и всё, заготовка импульсного блока питания готова. Снабжайте плату нужным портом и эксплуатируйте дальше на своё усмотрение. Такое приспособление успешно может использоваться, например, как блок питания зарядного устройства электронных часов или мобильного телефона. Также можно, удлинив провода питания, прикрепить к ним вилку — чтобы включать в розетку, а к портам, ответственным за освещение, подсоединить обычную лампу дневного света (без стартера). Они имеют тот же принцип работы, что и «экономки» и прекрасно заменят вышедшую из строя спиралевидную колбу. Стоимость таких ламп гораздо ниже, чем энергосберегающие в сборе, а светят они ничуть не хуже (и так же экономно).

Расширяем возможности

Если вам нужен более мощный блок питания, вам опять-таки может пригодиться данная схема. Однако чтобы добиться необходимых мощностей, не обойтись без некоторых конструкционных изменений. Так нужно будет дополнить лампочный блок распределительным трансформатором да парой выпрямителей.
Многие радиолюбители знают, что найти подходящий трансформатор – дело не простое. В данном случае можно подобрать подходящий компонент в разборках старых компьютеров или телевизоров.
Можно конечно попытаться намотать импульсный трансформатор своими руками. Для этого на основу из ферритового магнитопровода в виде кольца — нужно навить определённое количество витков толстого медного провода. По опыту – для получения зарядки на 50 Вт нужно брать кольцо, диаметром порядка 28 мм. Для указанной мощности идеально подойдёт провод, диаметром 0,35 мм.
Главная сложность – подобрать нужно количество витков в трансформаторе. Это можно сделать как опытным путём – поочерёдно выполняя навивку и тестируя показатели, добиваясь нужных результатов по мощности. Также для упрощения просчётов есть масса программных средств, у каждого свои преимущества и недостатки. Тут кому что удобнее.
Для нашего примера расчётным нормативом — является 108 витков, по факту же помещается чуть больше 110. Располагайте витки равномерно по всему кольцу, чтобы получить максимальную мощность. Не забудьте сделать прокладку между ферритовым кольцом и проводом, чтобы исключить возможность пробоя.

Витки в трансформаторе

Данная работа – монотонная, кропотливая и длительная, и далеко не каждый захочет потратить вечер на намотку. Так что лучше всё-таки заранее запастись необходимой комплектующей серийного производства.
На фото ниже приведены готовые трансформаторы, в сравнении с самодельным «бубликом». О надёжности и пределах прочности моделей, произведённых заводским способом, и говорить не приходится. Поэтому, если есть возможность, используйте именно их, особенно если делаете зарядку для сложных электроприборов.

Трансформаторы

Полученный трансформатор нужно подсоединить к плате, добытой из лампочки. Один из вариантов подключения представлен на схеме ниже.

Подробная схема ИБП

Дополнительно придётся установить пару импульсных диодов (VD14 и VD15). На входной мостовой выпрямитель не лишним будет поставить диоды VD1-VD4 большей мощности. Входной дроссель также желательно перемотать проводом большего диаметра (на схеме он означен как L0). Если транзистор выдаёт недостаточное усиление токов – замените резисторы R5 и R6 на модели с меньшим номинальным сопротивлением. Возможно, нужно будет также нарастить мощности резисторов эмиттерной и базовой цепях.
Рекомендуем на всех этапах сборки делать измерения токов, напряжения, частоты и температуры. По мере выявления проблем с тем или иным узлом, нужно вносить соответствующие дополнения, обеспечивающие бесперебойную работу схемы. Универсальных рецептов нет, так как прагматичные китайцы, в целях экономии нередко заменяют дорогостоящие радиодетали дешёвыми аналогами, и как ни бейся – сборка не работает. Так что этот способ использования лампочного содержимого скорее подходит для более продвинутых радиолюбителей.

Конечно, если Вы новичок и не можете точно просчитать всё: количество витков в дросселе или трансформаторе, и предотвратить возможные скачки напряжения – не советуем использовать такие самодельные блоки питания из ламп для зарядки устройств с «тонкой» сложной электроникой, типа смартфонов. Из-за скачков напряжения или неподходящей частоты — они могут быстро прийти в негодность.
Такой импульсный источник больше подойдет для использования вкупе со светодиодными лентами или лампами дневного света, у которых нет блока управления, либо с простыми электроприборами. Он также сможет служить источником энергии для любых других ваших радиоэлектронных самоделок. Даже если первый опыт подключения окажется неудачным –будет не так мучительно больно и обидно. Начните лучше с самых простых вариантов. Пробуйте, но не забывайте – безопасность в этом деле – превыше всего!

 

Artesyn Embedded Power | Блок питания сервера CRPS

Блоки распределенного питания переменного и постоянного тока CRPS серии CSU

  • Промышленный стандартный форм-фактор CRPS
  • Лучшая на рынке плотность мощности
  • 550 - 2400 Вт
  • Полное цифровое управление
  • Опции для нескольких входов

Модули внешнего интерфейса CSU от Artesyn предназначены для обеспечения гибкого решения по преобразованию энергии для вычислительного, хранилища и сетевого оборудования в форм-факторе общего резервного источника питания (CRPS).

Эта серия продуктов AC-DC выполнена в стандартном форм-факторе CRPS 1U x 73,5 мм x 185 мм. Блоки питания с индивидуальной номинальной мощностью от 550 Вт до 2400 Вт подходят для чувствительных к стоимости систем начального уровня или для энергоемких приложений с ограниченным пространством. Разработанная для обеспечения максимальной мощности при минимальном форм-факторе, серия предлагает лучшую в своем классе удельную мощность 75 Вт / дюйм3. Единая форма, подгонка и функции для всех продуктов этого семейства обеспечивают гибкость в отношении мощности, обеспечивая перспективу проектирования вашей системы.

Многие модели в этом семействе продуктов доступны с различными вариантами входа и направления воздушного потока, что позволяет развертывать их в средах от предприятий до традиционных центров обработки данных, центров обработки данных -48 В постоянного тока и центральных офисов телекоммуникаций. Опцию ввода постоянного тока можно также использовать для питания оборудования от резервного аккумулятора.

В настоящее время для серии Artesyn CSU предусмотрены варианты использования кабеля питания переменного тока IEC C13 или C19 мощностью 2000 Вт, при этом разработчики системы могут выбрать подходящую мощность при 200 В переменного тока.CSU2400AP работает с шнуром питания переменного тока IEC C19, чтобы полностью потреблять 2400 Вт при 200 В переменного тока.

Активное распределение тока помогает максимизировать экономическую эффективность, устраняя необходимость в дополнительных компонентах при параллельном подключении нескольких источников питания для приложений с очень сильным током. Эти блоки питания с возможностью горячей замены поддерживают архитектуры с резервированием N + 1 или N + N, режим холодного резервирования и регулирование мощности системы.

Все модели этого семейства с входом переменного тока сертифицированы на уровень КПД 80 PLUS ® Platinum с пиковым значением 94% и предлагают низкие общие гармонические искажения тока (EN61000-3-2).

Цифровое управление с использованием протокола PMBus ® и встроенного последовательного интерфейса I 2 C упрощает удаленную настройку, мониторинг и управление с помощью универсального графического интерфейса пользователя PMBus от Artesyn Embedded Power. Такая гибкость программирования позволяет пользователям реализовывать сложные схемы управления питанием с минимальным количеством дополнительных компонентов.

Все модели обеспечивают защиту от перегрузки по току, перенапряжения, пониженного напряжения, перегрева и отказа вентилятора.

Основные характеристики:

  • Платиновый сертификат эффективности
  • 12.2 В основной выход
  • 12,0 В 42 Вт в режиме ожидания
  • До 1400 Вт при низком входном напряжении
  • Лучшая производительность iTHD
  • Рабочая температура до 55 ° C

CRPS Брошюра

Примеры применения:

Сервер

  • Высокая производительность (HPC)
  • Открытые вычисления (OCP)
  • Облако и гипермасштабирование
  • Универсальная стойка
  • Суперкомпьютер
  • Многоузловой
  • Блейд-сервер
  • Устройство
  • Сервер приложений

Хранилище

  • База данных
  • Холодильник
  • Hadoop
  • JBOD
  • JBOF
  • Открытое хранилище OCP
  • Облачный хостинг
  • SAN
  • Архивирование

Сеть

  • Переключатель позвоночный
  • Коммутатор в верхней части стойки (ToR)
  • Коммутатор SDN
  • Коммутатор накопителя
  • Коммутатор центра обработки данных
  • Коммутатор сети Campus
  • Коммутатор Ethernet операторского класса
  • Мультиплексор
  • Устройство безопасности

Получите качественный источник питания постоянного тока для всех электронных устройств

E-STAR POWER DEVELOPMENT CO., ООО &
E-SHIN POWER INTERNATIONAL CO., LTD.
Дата основания в 2003 году - специалист по импульсному питанию, переключателю питания адаптер питания, включая источник питания переменного / постоянного тока: ноутбук / настольный компьютер импульсный блок питания, настенное крепление / подключаемое переключение адаптер питания режима, закрытый импульсный блок питания, Источник питания с открытой рамой, режим переключения на DIN-рейку источник питания, медицинский импульсный источник питания, питание постоянного / постоянного тока преобразователи питания, инвертор питания постоянного / переменного тока, зарядное устройство, Источник питания светодиодного драйвера, линейный источник питания.

E-STAR полностью способен обеспечить качественное переключение режимов блок питания, импульсный адаптер питания для приложения промышленного применения, сетей, телекоммуникаций и медицинские приложения. «Полная гарантия качества и заказчик Удовлетворение »- главные цели нашей компании. уверены, что наш продукт - это продукт, в котором надежность в долгосрочной перспективе использование, функциональность и стоимость имеют большое значение, но что именно надежность отличает действительно превосходные продукт.

Все продукция разработана в соответствии с мировыми стандартами безопасности. Контроль качества и технологического процесса обеспечивается с помощью различных методы статистической выборки и анализа производственный цикл. Кроме того, все товары должны пройти тщательная приработка и полностью автоматизированный финальный тест перед отгрузкой.

В Кроме того, E-STAR также предлагает дизайн обслуживание для удовлетворения особых требований клиентов.Если вы не можете найти подходящую модель в нашем каталоге, наш талантливый Команда R&D может разработать индивидуальный источник питания для удовлетворения ваши требования. Обладая более чем 20-летним опытом разработки в области исследований и разработок в сфере электроснабжения мы предлагаем комплексное решение и хотел бы возможность стать вашей долгосрочной силой партнер.

Блок питания для персонального компьютера | FSP TECHNOLOGY INC.

Блок питания для персонального компьютера | FSP TECHNOLOGY INC. FSP

Полный ассортимент продукции с различными форм-факторами. Продукция отличалась высоким КПД и высокой удельной мощностью.

нет

  • Рекомендации по проектированию блоков питания Intel V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

87% 90% 87% ATX100Vac ~ 240Vac62368750W

  • Рекомендации Intel по проектированию источников питания V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

82% 85% 82% ATX100Vac ~ 240Vac62368750W

  • Рекомендации по проектированию блоков питания Intel V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

85% 88% 85% Только ATX 230Vac 62368650W

  • Рекомендации Intel по проектированию источников питания V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

87% 90% 87% ATX100Vac ~ 240Vac62368650W

  • Рекомендации по проектированию блоков питания Intel V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

82% 85% 82% ATX100Vac ~ 240Vac62368650W

  • Рекомендации Intel по проектированию источников питания V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

82% 85% 82% ATX100Vac ~ 240Vac62368600W

  • Рекомендации по проектированию блоков питания Intel V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

85% 88% 85% Только ATX 230Vac 62368550W

  • Рекомендации Intel по проектированию источников питания V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

87% 90% 87% ATX100Vac ~ 240Vac62368550W

  • Рекомендации по проектированию блоков питания Intel V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

82% 85% 82% ATX100Vac ~ 240Vac62368550W

  • Рекомендации Intel по проектированию источников питания V1.4x
  • Подходит для стандартного корпуса Tower
  • 12-сантиметровый вентилятор для бесшумной работы пользователя

82% 85% 82% ATX100Vac ~ 240Vac62368500Вт

привет, все кончено свяжитесь с нами
товар выбран

TTi | Лабораторные блоки питания, настольные блоки питания и блоки питания с шинным программированием

Aim-TTi - один из крупнейших мировых производителей лабораторные стенды и системные блоки питания с почти тридцатилетним опытом.Ежедневно используются сотни тысяч источников питания постоянного тока Aim-TTi. по всему миру. Главный сайт Aim-TTi теперь www.aimtti.com, где есть полная информация о другое контрольно-измерительное оборудование Aim-TTi. Этот сайт (www.tti-power.co.uk) исторически содержал подробную информацию только по источникам питания Thurlby и TTi и является сейчас минимально обслуживается. Ссылки на этом сайте могут быть на www.aimtti.com или www.ttid.co.uk (TTid - это подразделение TTi по продаже инструментов в Великобритании).

Помимо стандартных настольных источников питания, Aim-TTi также предлагает программируемое питание по шине. поставляет с интерфейсами GPIB (IEEE-488), RS-232, USB и LAN (LXI). Также доступны комплекты стоек для большинства моделей. Вы можете найти подробную информацию о полном ассортименте продукции Aim-TTi, включая их спецификации, руководства и т. Д., На сайте www.aimtti.com.

Информацию о технических аспектах см. В следующих разделах: Энергетические технологии, Измерение и контроль, Дистанционное зондирование, Интерфейсы и Безопасность

Aim-TTi также производит и продает другие инструменты для испытаний и измерений. инструменты.Для получения полной информации см. Следующее: Сайт отдела продаж TTi UK, Главный международный сайт TTi, Сайт Aim-TTi в США, Блоки питания Ametek System в Великобритании.

Информация о наших источниках питания разделена на линейно регулируемый, смешанный режим регулируемый, и регулируемые модели PowerFlex. Также доступен табличный список.

Лабораторные источники питания с линейным регулированием

  • 8 моделей - от 30 Вт до 130 Вт;
  • одиночные, двойные или тройные выходы
  • Модели с одним выходом мощностью 30, 60 или 90 Вт: до 56 В
  • Работа с постоянным напряжением или постоянным током
  • Независимые 4-разрядные измерители напряжения и тока
  • Переключаемое дистанционное или местное зондирование
  • выходных переключателей постоянного тока; индикация автоматического режима
  • Модели 6 + 6, от 48 Вт до 228 Вт, одиночный, двойной, тройной выходы
  • Истинное аналоговое управление с расширенными цифровыми функциями
  • Настройки можно заблокировать одним нажатием кнопки (S-Lock)
  • Высокая точность; очень низкий уровень шума; удаленный датчик
  • Сверхкомпактная конструкция (¼ стойка 3U) - занимает меньше места
  • PL-P имеет интерфейсы шины RS232, USB, LAN (LXI) или GPIB
  • Модели 3 + 3, от 105 Вт до 242 Вт, одинарные или тройные выходы
  • Управление с цифровой клавиатуры или вращающегося колеса; установка магазинов
  • Высокое разрешение настройки 1 мВ при напряжении до 56 В
  • Высокая точность; очень низкий уровень шума; удаленный датчик
  • Несколько диапазонов для повышения гибкости по току
  • QL-P имеет интерфейсы RS-232, USB, GPIB и LAN (LXI)
  • Модели 2 + 2, 90 Вт, один выход, 120 В или 250 В
  • Истинное аналоговое управление с расширенными цифровыми функциями
  • Настройки можно заблокировать одним нажатием кнопки (S-Lock)
  • Диапазон низкого тока дает разрешение до 0.01 мА
  • Сверхкомпактная конструкция (¼ стойка 3U) - занимает меньше места
  • PLH-P имеет интерфейсы RS232, USB, LAN (LXI) или GPIB

Смешанный регулируемый лабораторный источник питания

    Модели
  • - от 175 Вт до 420 Вт; одиночный, двойной или тройной выход
  • Напряжение до 42В; ток до 20А
  • Работа с постоянным напряжением или постоянным током
  • Независимые 4-разрядные измерители напряжения и тока
  • Переключаемое дистанционное или местное зондирование
  • выходных переключателей постоянного тока; индикация автоматического режима
  • Тройные полнофункциональные выходы, каждый 35 В / 3 А
  • Переключение диапазонов дает до 70 вольт или до 6 ампер
  • Графический ЖК-дисплей с подсветкой функциональных клавиш
  • 200 ячеек памяти для отдельных или нескольких выходов
  • MX-P имеет интерфейсы RS-232, USB, GPIB и LAN (LXI)
  • Модели 35V-10A и 18V-20A (один выход)
  • Монтаж на столе или в стойке, передние и задние клеммы
  • Очень низкий уровень шума, отличная переходная характеристика
  • Аналоговое управление (TSX), цифровое управление (TSX-P)
  • TSX-P имеет интерфейсы RS-232 и GPIB

Регулируемые лабораторные источники питания PowerFlex и PowerFlex +

CPX серии

Серия блоков питания ручного управления
  • 3 модели - один или два выхода, от 360 Вт до 840 Вт
  • Конструкция PowerFlex позволяет сочетать переменное напряжение и ток в максимальном диапазоне мощности
  • Компактная пол / четверть стойки 3U занимает минимум места
  • Работа с постоянным напряжением или постоянным током
  • Прецизионное управление и измерение с дистанционным управлением
  • выходных переключателей постоянного тока; индикация автоматического режима
  • 4 модели - с одним или двумя выходами, от 360 Вт до 840 Вт
  • Конструкция PowerFlex позволяет сочетать переменное напряжение и ток в максимальном диапазоне мощности
  • Интеллектуальное аналоговое управление, включая S-Lock
  • Изолированное отслеживание напряжения на сдвоенных (до 120 В или 40 А)
  • Изолированная версия с аналоговым интерфейсом (CPX400SA)
  • Интерфейсы LAN, соответствующие GPIB, RS232, USB и LXI
  • QPX1200S / SP - 1.БП
  • с одним выходом и автоматическим переключением диапазона 2 кВт
  • До 60 вольт и максимум до 50 ампер
  • Конструкция PowerFlex позволяет сочетать переменное напряжение и ток в максимальном диапазоне мощности
  • Настройка прямым вводом цифр или колесом прокрутки
  • Монтаж на столе или в стойке с передними и задними клеммами
  • Аналоговые интерфейсы, RS232, USB, GPIB и LAN (LXI)
  • QPX1200D / DP - 1.Блок питания
  • с двойным выходом и автоматическим переключением диапазонов мощностью 2 кВт
  • До 80 В и до 50 А максимум
  • Конструкция
  • PowerFlex + дает очень широкие комбинации переменного напряжения и тока в максимальном диапазоне мощности
  • Настройка прямым вводом цифр или колесом прокрутки
  • Интеллектуальные функции отслеживания для последовательного / параллельного использования
  • Аналоговые интерфейсы, RS232, USB, GPIB и LAN (LXI)

Ремонт блока питания с регулируемым коэффициентом мощности

Этот ремонт посвящен более новым и сложным моделям P.F.C. управляемые блоки PS. Как недавние очень полезные статьи из Парижа. (Особенно посты после его недавней статьи были очень информативными!). Я уже ремонтировал простые блоки питания с более легким контроллером TL494 в нем раньше (например, блок питания ATX на 400 Вт с плохой крышкой). Но блок питания, о котором идет речь в этой статье, потребовал гораздо больше времени, чтобы найти виновника.

P.F.C. Контролируемым источником был настольный блок HP DPS-300AB-49A мощностью 300 Вт. Вероятно, также известен под другими названиями, такими как Delta.Я не мог заставить его работать и думал, что действительно проверил все компоненты (по крайней мере, все полупроводники). Одна из ИС представляла собой контроллер (F) AN4800 с переключателем резервного питания TNY277. Поскольку я проверил, что все полупроводники в порядке, я решил заменить обе микросхемы. Но это тоже не помогло. Потому что после замены AN4800 и TNY277 ничего не изменилось.

Найти схему этого устройства было невозможно, но я нашел много разных схем с TNY277 в ней. Однако найти схему с контроллером (F) AN4800 в ней (или с контроллером CM6800, совместимым по выводам) тоже казалось невозможным.Поэтому я решил сам нарисовать схему из имеющегося под рукой устройства.

Схема выше была нарисована мной. Это не выглядит законченным, но мне было достаточно, чтобы найти проблему и исправить модуль. И эта информация сейчас также поможет мне в следующий раз проанализировать и быстрее найти проблему.

На фото вверху показан вид этого устройства изнутри. Справа первичная горячая сторона (ОПАСНО! Не прикасайтесь!) С выпрямленным переменным током 400-450 В на конденсаторе ниже.Диодный мост Greatz находится вверху справа под вентилятором с прикрепленным к нему кулером. Посередине между двумя вертикальными пластинами алюминиевого охладителя находятся 3 оптопары, все три трансформатора и (F) AN4800 плюс микросхемы TNY277. В верхней средней части находится сетевой фильтр с 2 четырехполюсными катушками и 3 конденсаторами линейного фильтра.

Предохранитель слева от предыдущего сетевого фильтра остался цел. А также измеренный конденсатор резервуара 450 В работает нормально после подключения к линии питания 230 В переменного тока.Я мог измерить выпрямленное высоковольтное постоянное напряжение на его полюсах.

Затем я покажу все фотографии, которые я сделал, чтобы объяснить проверенные мной тесты компонентов. И поскольку я не смог найти дефектных полупроводников на пластинах кулера, ни первичных, ни вторичных, я припаял их обратно на плату. И, как выяснилось, также этот источник питания был исправлен путем простой замены очень дешевого компонента, который не позволял этому неповрежденному устройству работать.

И с помощью схемы, которую я сделал, легче увидеть, как работают эти устройства.И почему они выходят из строя, не будучи поврежденными на самом деле! На следующем фото показана внутренняя часть после снятия первичной охлаждающей пластины с четырьмя полупроводниками на ней. И на фото после этого показаны эти полупроводники.

Выше более пристальный вид на микросхему (F) AN4800 и TNY277, а также 3 оптопара на первичной стороне после удаления первичной пластины охладителя полупроводников.

На виде сверху показана пластина первичного охладителя с 4-мя полупроводниками крупным планом.Слева 2 мосфета 10N60C. На диоде справа от них непросто прочитать «С бортом 40СТВУ ЧН 031?» а полупроводник справа выглядит как GEF 035 плюс некоторый также нечитаемый текст. Но это не имело значения, потому что все выписались нормально!

И еще была небольшая плата, размещенная вертикально на вторичной стороне этого источника питания, с, если я не ошибаюсь, схемой LM339 на ней. И это, наверное, просто плата измерения температуры и контроля скорости вентилятора. Поэтому я не думал, что Правление имеет какое-либо отношение к проблеме снабжения.И я не проверял ни одну из частей этой доски. (См. Первое фото после этого текста).

Чтобы завершить этот успешный ремонт, следуйте фотографиям, которые объясняют причину проблемы, по которой устройство не работало. Который также был слабым звеном в этой цепи блока питания.

Другой источник питания, починенный совершенно бесплатно !!

Благодаря недавней схеме резервного питания 5 В из Парижа из Греции, многие современные устройства P.F.C. контролируемые расходные материалы, вероятно, легко исправить.Проверка (F) AN4800 или таблицы данных контроллера CM6800 не помогла, но проверка объяснения TNY277 потребовала дальнейшего изучения.

Нажмите на схему, чтобы увеличить ее

И чтобы дать некоторую техническую информацию об этом ремонте, я добавляю схему выше со схемой TNY277 в ней.

Удачи с ремонтом тех новых P.F.C. (улучшенная функция энергосбережения Cos Phi) Поставки SMP!

Альберт ван Беммелен, Верт, Нидерланды.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о посте приветствуется. Пожалуйста, оставьте это в комментариях.

P.S- Если вам понравилось это читать, нажмите здесь , чтобы подписаться на мой блог (бесплатная подписка).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *