Блок питания импульсный это: Страница не найдена — Электрознаток

Содержание

Импульсный блок питания-это стабильная работа ноутбука и техники!

     Общие проблемы питания любой сети: перепады и скачки напряжения, помехи. Поэтому в настоящее время импульсные блоки питания становятся очень популярны. Производители постоянно совершенствуют товар, улучшают характеристики, уменьшают размер и адаптируют под условия работы российских электросетей. Таким образом, высокая эффективность преобразования входящего напряжения является важным преимуществом импульсного блока питания перед универсальным адаптером.

     Также, импульсный блок питания отличает:

     — высокое КПД (98%)

     — незначительный нагрев

     — маленький вес и габариты

     — защита от перепадов напряжения, перегрузок и замыканий

     — большой допустимый диапазон сетевого напряжения

     — высокая надежность

     Импульсный блок питания фирм Robiton, Rexant Вы можете выбрать в любом из магазинов компании «Гавань» .

Импульсный адаптер (EN) предназначен для питания от источника переменного тока с напряжением  220 Вольт в постоянное от 12 до 24 Вольт. Широкая линейка моделей на 300, 600, 1000, 1500, 2500, 3000, 5000, 6000 mA.

Опытные специалисты нашей компании помогут выбрать подходящий импульсный блок питания для ноутбука.

Также, очень полезны окажутся автомобильные блоки питания для ноутбуков.

   В нашей компании Вам помогут подобрать необходимый блок питания по основным параметрам: входное напряжение, выходное напряжение, тип выходного напряжения, мощность, тип разъема и полярность.

Большой выбор импульсных блоков питания по доступным ценам в  магазинах компании «Гавань» (более 15 городов РФ) Сочи, Краснодар, Туапсе, Геленджик, Новороссийск, Анапа, Крым.Также можно выбрать блоки питания в нашем интернет-магазине Электрика-юг.рф

Приходите к нам, мы находимся по адресу:

г.Сочи ул. Роз, 73А магазин «ГАВАНЬ»

г.Туапсе ул. Карла-Маркса, 12 магазин «ГАВАНЬ»

Все новости

Выбираем импульсный блок питания! — Кабели, питание, стойки…

Импульсные блоки питания делимся впечатлениями!

Достоинства импульсных блоков питания.

1. Меньший вес. Также достигается использованием (мы уже упоминали выше) малогабаритных трансформаторов, при той же передаваемой мощности. Использованием конденсаторов меньшей ёмкости, что тоже уменьшает габариты выходного фильтра напряжения. Повышенная частота преобразования этому как раз способствует. Потом, конструктивно его можно выполнить по более простой однополупериодной схеме и при этом не переживать, что увеличатся пульсации выходного напряжения.

2. Более высокий КПД (до 98%).

Ответ прост — малые потери. Обусловлено это наличием в схемотехнике высокочастотного элемента вместо сетевого трансформатора, и ключевого элемента вместо стабилизатора. А так как основную часть времени ключевые элементы находятся в стабильном состоянии, т.е. либо включены, либо выключены, то потери, происходящие в основном при переходных процессах, сведены к минимуму.

3. Меньшая цена. И это при сопоставимой передаваемой мощности и надёжности альтернативных устройств. Дешевле стоит силовая часть устройства, за счёт унификации элементной базы, разработке ключевых транзисторов высокой мощности и ещё из-за того, что в трансформаторные БП входят дорогостоящие металлы и в больших объёмах.

4. Широкий диапазон питающего напряжения и частоты. Просто не сопоставимый с линейным трансформатором в той же ценовой категории! На деле это даёт большую универсальность в применении в разных местах, где есть большие отличия по напряжению и частоте в стандартных розетках.

5. Надёжность. Её обеспечивают встроенные цепи защиты от различных «вредных» ситуаций. Это и перегрузки, и короткое замыкание, и различные скачки напряжения. Также если произошла переполюсовка выходных цепей. Потом, импульсные БП меньше греются, что уменьшает вероятность перегревания прибора.

Как работает импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения.

Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств.

Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В.

Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме.

Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию.

Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм.

Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц.

Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток.

Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя.

Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств;
    Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Источник: https://www.asutpp.ru/impulsnyj-blok-pitaniya.html

Ремонт импульсных блоков питания своими руками

instrument.guru > Электроника > Ремонт импульсных блоков питания своими руками

Оглавление:

  • Общие принципы работы импульсных блоков питания
  • Рабочий инструмент для проверки импульсных блоков питания
  • Основные неисправности и методы проверки импульсных блоков питания
  • Самостоятельная и качественная пайка
  • Основные этапы ремонта импульсных блоков питания
  • Неисправности импульсных блоков питания на 12 вольт

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально.

Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта.

Но если вы стали обладателем разборного импульсного блока питания, то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания

Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания.

Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы.

Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения, которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы.

Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок.

А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания

Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр, который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме.

В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения.

Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам, который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента, нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних.

В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта.

К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник.

Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы.

Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

  1. Для этого закоротите контакт любого электролита, а лучше пройдитесь по всей плате изолированным щупом (с номинальным сопротивлением несколько кОм и мощностью больше 0,5 Вт), который другим концом будет подсоединён к заземлению. Старайтесь заземлять только точечные контакты, не прикасаясь одновременно к двум, иначе можете испортить радиодетали. Иногда таким способом вы сможете убрать «коротыш». Это короткое замыкание в схеме, которое может возникнуть при выходе из строя некоторых элементов блока питания.
  2. Как уже говорилось выше все вздувшиеся и чёрные радиоэлементы нужно сразу заменить на подобные, но не спешите после этого сразу опробовать весь блок. Прозвоните соседние детали и при необходимости замените их.
  3. Прозвонить силовые и выпрямительные мосты (при необходимости выпаять), обычно они выполнены на диодах, которые проверяются омметром и имеют односторонний переход. Для проверки подключите щупы мультиметра ко входу и выходу диода (сначала чёрный щуп к одному контакту, а красный к другому, а затем меняя местами), вы должны убедиться, что он не пробит. То есть, вы должны увидеть определённое числовое показание мультиметра, когда подключите щупы в правильном направлении плюс и минус. Единица будет означать исправность перехода в обратном направлении (т. е. непробитый переход). Таким способом нужно проверить все сомнительные детали с диодными переходами.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

  1. Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
  2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

  1. Несмотря на то что практически все импульсные блоки питания работают почти по одному принципу, схематические схемы для разных моделей электроприборов могут существенно различаться. Поэтому прежде чем приступить к ремонту постарайтесь найти электрическую принципиальную схему именно на тот объект, который собираетесь ремонтировать. Это поможет и для замеров конкретных рабочих напряжений в определённых точках, чтобы быстрее понять и найти неисправный элемент в цепи.
  2. Как бы теоретически вы ни были подкованы в этой области, без практических навыков вам не обойтись. Элементарные знания и практическое использование мультиметра или осциллографа, а также практические навыки по замене радиоэлементов с помощью паяльника и припоя вам просто необходимы в процессе ремонта.
  3. Если первые два этапа выполнены и вы готовы начать – разберите и почистите устройство с помощью пылесоса и произведите визуальную проверку блока (обратите внимание на вздутые конденсаторы, гарь и прочие механические дефекты).
  4. Проверьте электроприборами соответствие рабочих напряжений согласно схеме или просто подозрительные радиоэлементы. Осциллографом определите соответствие необходимых пульсаций в контрольных точках. После этого делайте выводы и производите необходимые замены.

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

  • Если нет свечения светодиода дежурного режима телевизора, прозвоните сетевой шнур и предохранитель блока питания. Когда они в порядке проверьте дальше выпрямительный мост, транзисторы, стабилитроны и выходные напряжения микросхемы. Не забудьте устранить возможные «коротыши». А также можете пойти от обратного. Для этого замерьте выходные напряжения, которые должны подаваться на остальные блоки и если найдёте несоответствие – проверяйте всю цепочку в обратном порядке. Включайте при этом не только измерительные приборы, но и свою логику. Для этого, конечно, нужны теоретические знания работы тока в конкретном блоке. Но если вы имеете представление хотя бы о простых законах Ома – сделать это будет несложно.
  • Для ремонта компьютерного блока питания можно начать с обычных первоначальных проверок любого электроблока. Маленькое отступление и совет: убедитесь в точности своей диагностики. Если вы неуверены в правильности своих выводов по поводу неисправности того или иного блока – просто замените его на заведомо исправный. Если замена устранила дефект или сделала работоспособной систему, значит, вы не ошиблись и можете смело приступать к ремонту заменяемого блока. Для этого проверяются все предохранители и диодные переходы. Проверка обмоток трансформатора тоже будет не лишней. Запомните одно, и это, главное. Даже если вы не имеете понятия о процессах, происходящих, в радиоэлементах под воздействием разного тока, научитесь просто читать электрическую схему и по ней измерять и сравнивать нужные напряжения и делать логические выводы. Это как разгадывание кроссворда – занимательно и интересно.

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

  • Если полностью пропало выходное напряжение нужно вскрыть корпус и проверить электролитический конденсатор со средней ёмкостью до 70 мкФ. При выходе его из строя он обычно вспучивается, хотя дополнительно можно проверить и мультиметром.
  • Также проверяется предохранитель и выпрямительный мост, который часто выходит из строя при сетевых перегрузках.
  • После замены неисправных радиодеталей проверьте соседние, которые могли пострадать от большого выхода энергии сгоревших деталей.

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

Источник: https://instrument.guru/elektronika/remont-impulsnyh-blokov-pitaniya-svoimi-rukami.html

Что такое импульсный блок питания и где применяется

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

Что это такое?

Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора.

Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока.

То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты.

Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием.

Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

Напряжение со вторичной обмотки силового трансформатора (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

  • высокая рабочая частота;
  • сниженная емкость p-n перехода;
  • малое падение напряжения.

Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами.

При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения.

А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям.

Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров.

Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

Источник: https://odinelectric.ru/equipment/chto-takoe-impulsnyj-blok-pitaniya-i-gde-primenyaetsya

Импульсный блок питания

Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре. Основная причина перехода на такой тип преобразователей напряжения — это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров. На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

Принцип действия ИИП и его устройство

Импульсный источник питания — это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты.

В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением.

Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц.

Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.

При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

  1. выпрямителя сетевого напряжения;
  2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
  3. преобразователя постоянного стабилизированного напряжения.

После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания.

Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

A — входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
B — входные с довольно большой емкостью сглаживающие конденсаторы.

Правее установлен радиатор высоковольтных транзисторов;
C — импульсный трансформатор.

Правее смонтирован радиатор низковольтных диодов;
D — катушка выходного фильтра, то есть дроссель групповой стабилизации;
E — конденсаторы выходного фильтра.

Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

Обратноходовой импульсный источник питания

Блок питания из энергосберегающих ламп

Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей.

Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.

Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

  1. Накопление электрической энергии от сети или от другого источника;
  2. Вывод накопленной энергии на вторичные цепи полумоста.

Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

Управление ШИМ-контроллером

Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью.

Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы.

В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства.

Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д.

Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

Преимущество импульсных источников питания перед линейными

Блок питания для шуруповерта 12в своими руками

В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

  1. Значительное снижение габаритов и массы устройств;
  2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
  3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
  4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
  5. Высокие показатели КПД.

Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

  1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
  2. Нежелательная работа их без нагрузки;
  3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники.

Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться.

ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

Видео о работе импульсного источника питания

Источник: https://amperof.ru/elektropribory/impulsnyj-blok-pitaniya.html

Импульсные блоки питания

ПРИНЦИП РАБОТЫ ПРИМЕНЕНИЕ

Блок питания — это устройство, преобразующее сетевое напряжения до уровня, необходимого для работы электрических схем различных приборов. Вторичные источники электропитания часто используются для бытовой техники и промышленных установок, содержащих электронику.

Изначально источники вторичного напряжения строились по схеме, которую принято называть трансформаторной. Принцип её работы состоит в трансформации сетевого напряжения до необходимого уровня с последующим его выпрямлением и стабилизацией.

Типовая схема традиционного источника электропитания состоит из следующих элементов:

  • силовой понижающий трансформатор, содержащий одну или несколько вторичных обмоток, в зависимости от потребностей питаемой схемы; выпрямительный блок, как правило, выполняется по схеме диодного моста;
  • конденсатор фильтра, включенный между положительным и отрицательным выводами моста и необходимый для сглаживания пульсаций выпрямленного напряжения, иногда для улучшения параметров фильтра, в схему добавляется дроссель;
  • стабилизатор выходного напряжения, построенный на основе специализированной микросхемы или содержащий ключевой транзистор и небольшую схему управления.

Эти схемы надёжны в работе, не создают высокочастотных помех, обеспечивают гальваническую развязку между первичными и вторичными цепями. Тем не менее есть ряд причин по которым они уступают блокам питания импульсного типа.

Трансформаторы, преобразующие напряжение с частотой 50 герц, отличаются относительно большими габаритами и весом. Это свойство трансформаторных источников электропитания вступило в противоречие с общими принципами миниатюризации бытовых и промышленных электроприборов.

Проблему удалось решить путём создания импульсных или инверторных блоков. Такие параметры трансформатора, как сечение магнитопровода, количество витков обмотки и сечение провода, существенно уменьшаются с увеличением частоты преобразуемого напряжения.

Это также относится к ёмкости, следовательно, и к габаритам фильтрующих конденсаторов. Этот базовый принцип электротехники был послужил основой при создании вторичных источников питания нового типа.

Как работает импульсный блок питания

Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:

  • выпрямление входного напряжения;
  • инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
  • трансформация высокочастотных импульсов до требуемого уровня;
  • выпрямление и фильтрация полученного напряжения.

Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).

Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.

Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.

Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.

Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.

Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.

Раньше, компонентов, отвечающих этим требованиям, просто не существовало.

Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET. Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.

Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.

Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.

Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера. Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.

Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.

Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:

  • малые габариты и вес по сравнению с трансформаторными источниками питания;
  • схемотехническая простота, обусловленная применением интегральных электронных компонентов;
  • возможность работы в широком диапазоне изменения значений входного напряжения.

Применение импульсных блоков

Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:

  • все виды компьютерной техники;
  • телевизионная и звуковоспроизводящая аппаратура;
  • пылесосы, стиральные машины, кухонная техника;
  • источники бесперебойного электроснабжения различного назначения;
  • системы видеонаблюдения, комплексы охранной сигнализации.

Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.

Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.

  *  *  *

© 2014-2019 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Источник: https://video-praktik.ru/blok_pitanija_impulsnyj.html

Как устроен импульсный блок питания

Практически в каждом электронном приборе есть блок питания – важный элемент монтажной схемы. Блоки применяются в устройствах, требующих пониженного питания. Базовой задачей блока питания считается уменьшение сетевого напряжения. Первые импульсные блоки питания сконструированы после изобретения катушки, которая работала с переменным током.

Применение трансформаторов дало толчок развития блоков питания. После выпрямителя тока осуществляется выравнивание напряжения. В блоках с преобразователем частоты этот процесс проходит по-другому.

В импульсном блоке основу составляет инверторная система. После выпрямления напряжения образуются прямоугольные импульсы с высокой частотой, подаются на фильтр выхода низкой частоты. Импульсные блоки питания преобразовывают напряжение, отдают мощность на нагрузку.

Рассеивание энергии от импульсного блока не происходит. От линейного источника идет рассеивание на полупроводниках (транзисторах). Его компактность и малый вес также дает превосходство над трансформаторными блоками при одинаковой мощности, поэтому часто линейные блоки заменяют импульсными.

Принцип действия

Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

После выпрямления напряжения сети в действие вступает инвертор, который преобразовывает ток. Пройдя через коммутатор, имеющий большую энергию выхода, из постоянного получается переменный ток. С обмоткой трансформатора в несколько десятков витков и частотой сотни герц блок питания работает в качестве усилителя низкой частоты, она получается больше 20 кГц, она не доступна слуху человека. Коммутатор изготовлен на транзисторах с многоступенчатым сигналом. Такие транзисторы имеют низкое сопротивление, высокую возможность прохода токов.

Схема работы ИБП

В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:
  • Быстрое восстановление, что дает возможность иметь малые потери.
  • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.

Далее напряжение сглаживается фильтром, в него входят конденсатор, дроссель. Для частот коммутации выше требуются составляющие с малой индуктивностью и емкостью.

Схема импульсного блока минимального размера

В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

Некоторые виды ИБП
  • Простой ИБП на IR2153, распространен в России.
  • Импульсные блоки питания на TL494.
  • Импульсные блоки питания на UC3842.
  • Гибридного типа, из энергосберегающей лампы.
  • Для усилителя с повышенными данными.
  • Из электронного балласта.
  • Регулируемый ИБП, механическое устройство.
  • Для УМЗЧ, узкоспециализированный блок питания.
  • Мощный ИБП, имеет высокие характеристики.
  • На 200 В – на напряжение не более 220 вольт.
  • Сетевой ИБП на 150 ватт, только для сети.
  • Для 12 В – нормально работает при 12 вольтах.
  • Для 24 В – работает только на 24 вольта.
  • Мостовой – применена мостовая схема.
  • Для усилителя на лампах – характеристики для ламп.
  • Для светодиодов – высокая чувствительность.
  • Двухполярный ИБП, отличается качеством.
  • Обратноходовый, имеет повышенные напряжение и мощность.
Особенности

Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

Особенности лабораторных блоков

Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

Применение импульсных блоков

Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

Достоинства и недостатки
ИБП имеет следующие преимущества и достоинства:
  • Небольшой вес.
  • Увеличенный КПД.
  • Небольшая стоимость.
  • Интервал напряжения питания шире.
  • Встроенные защитные блокировки.

Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

Недостатки

Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

Импульсные блоки питания не рекомендуется подключать как с низкой нагрузкой, так и с высокой. Если на выходе резко упадет ток ниже установленного предела, то запуск может оказаться невозможным, а питание будет с искажениями данных, которые не подходят к диапазону работ.

Мы имеем множество различных устройств, подключая которые к сети мы даже не задумываемся о том, какое питание им необходимо. Значительная часть бытовой техники имеет импульсный блок питания. Даже светодиодные или люминесцентные цокольные лампы имеют встроенный источник импульсного питания (ИИП).

Что делает импульсный блок питания (ИБП)

В сети напряжение имеет синусоидальную форму. Для некоторых устройств это то что нужно, другим надо постоянное или импульсное напряжение. Вот этим и занимаются источники питания — преобразуют синусоидальную форму в нужную и, чаще всего, это постоянное напряжение. Независимо от формы выходного напряжения блок питания называют импульсным, потому что одна из стадий преобразования — формирование импульсов, которые затем выпрямляются.

Примеры импульсных блоков питания:

  • Зарядное устройство для телефона или смартфона;
  • Внешний блок питания ноутбука;
  • Блок питания компьютера;
  • Блок питания для светодиодной ленты.

Импульсный блок питания Robiton EN5000S. Предназначен для питания от источника переменного тока 100-240В приборов с напряжением 6,0 / 7,5 / 9,0 / 12,0 / 13,5 / 15 / 16В и максимальным входным током 5000 мА

Есть импульсные источники питания выдающие постоянное напряжение одного номинала. Наиболее распространенные на — 5 В, 12 В или 24 В. Есть устройства, выдающие сразу несколько уровней. Такие, например, стоят в компьютерах. На выходе они формируют сразу 5 В и 12 В. Есть — регулируемые ИИП, при помощи переключателей в них можно задавать выходные параметры (в определенных рамках). Импульсный блок питания может быть в виде отдельного устройства или являться частью какого-то более сложного прибора.

Путь преобразования синусоиды в постоянное напряжение при помощи источника импульсного питания

Если говорить об отдельных ИБП, то самыми распространенными, пожалуй, являются зарядные устройства для телефонов, ноутбуков. Они имеют компактные размеры, так как требуется небольшая мощность. Встроенный импульсный блок питания есть в телевизорах, компьютерах и другой сложной электронике, в некоторых бытовых приборах. Блоки питания бывают линейные (трансформаторные) или импульсные (инверторные).

Инвертор — устройство для преобразования постоянного тока в переменный с изменением величины напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала.

Оба типа блоков питания преобразуют синусоиду в постоянный ток, но вот путь преобразования разный, да и результаты несколько отличаются. Импульсный блок питания отличается высокой стабильностью работы. Тем не менее трансформаторные источники еще в ходу. Почему? Стоит разобраться.

Чем отличается от трансформаторного блока питания

И трансформаторный (линейный) и импульсный (инверторный) БП выдают на выходе постоянное напряжение. Причем вторые имеют меньшие габариты, более стабильны в работе, часто ниже по цене, да еще и напряжение дают более «качественное» и независящее от параметров исходной синусоиды (а она далеко не идеальная в наших сетях). Так почему же используют и трансформаторные блоки, и импульсные? Чтобы понять, надо знать в чем отличие трансформаторного блока питания от импульсного. А для этого придется разбираться в устройстве и принципах работы. На основании этого можно уяснить основные свойства.

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Схемы импульсных блоков питания

Чтобы понимать, как работает импульсный блок питания, надо разобраться в том, что происходит в каждой его части. Сделать это проще по схемам. Мы приведем только некоторые, так как вариантов и вариаций — море. Схема импульсного блока питания содержит пять обязательных блоков плюс обратная связь. Вот о каждом элементе и поговорим отдельно, Попутно приведем полные схемы ИБП с использованием различной элементной базы.

Вариант импульсного источника питания с выходным напряжением 5 В и 12 В и разной полярности

Входной фильтр

Как мы уже говорили, входной фильтр стоит для того, чтобы в сеть не попали высокочастотные помехи, генерируемые источником питания. В самом простейшем варианте это устройство представляет собой дроссель, который подавляет электромагнитные помехи и два конденсатора, включенных параллельно входу и нагрузке.

Схема простейшего входного фильтра

Конденсаторы используются специальные — X-типа. Икс-конденсаторы были разработаны специально для этих целей. Они выдерживают мгновенные киловольтные всплески напряжения (до 2,5 кВ), гася тем самым помехи между фазой и нейтралью (противофазные помехи). Дроссель — это ферритовый сердечник с намотанными лакированными медными проводами. В нем наводятся токи, нейтрализующие токи помех.

Приведенная выше схема входного фильтра для импульсного источника питания не устраняет помехи, которые возникают между фазой и землей (корпусом) или между нейтралью и корпусом. Для их нейтрализации в схему добавляют два конденсатора Y-типа (которые выдерживают скачки напряжения до 5 кВ). Специальная конструкция Y-конденсатора гарантирует обрыв цепи, а не короткое замыкание, в случае выхода его из строя.

Оба типа конденсаторов (X и Y), который ставят во входных фильтрах, выполняют из специальных негорючих материалов, так как они могут греться до очень высоких температур и могут стать причиной пожара. Именно в этом, да еще в конструктивных особенностях кроется причина их высокой стоимости (по сравнению с обычными).

Схема для компенсации всех типов помех

Но для корректной работы этой схемы необходимо рабочее заземление. Его надо подключить к корпусу блока питания. Без заземления, корпус блока питания будет находиться под напряжением около 110 В. Ток будет очень маленьким, но прикосновения будут ощутимы.

Сетевой выпрямитель и сглаживающий фильтр

Как уже сказано выше, выпрямитель проводит предварительное выпрямление синусоиды. Если установлен один диод, он отсекает нижние (отрицательные) полуволны.

Сравнение однополупериодного и двухполупериодного выпрямителя. При использовании одного диода низкий КПД и большая пульсация выпрямленного напряжения. По этим причинам предпочтительней мостовая схема на четырех диодах

В самом простом случае выпрямитель — диод Шоттки, но может использоваться и диодный мост с параллельно подключенным конденсатором. Для диодных мостов часто применяют обычные диоды типа 1N4007, но лучше все-таки устанавливать все те же диоды Шоттки. Они «быстрее», так что можно получить лучше результаты на выходе.

Несколько схем фильтров разной степени сложности

Один диод ставят в блоках питания к недорогой технике. На его выходе напряжение имеет вид идущих с некоторыми промежутками положительных полуволн. На выходе диодного моста пульсации намного ниже, так что такой выпрямитель ставят для более требовательных к питанию приборов. Пульсирующее напряжение с выхода диода/диодного моста подается на конденсатор (он должен быть рассчитан на напряжение 270-400 В), который из полуволн делает «зубчики». Тут уже получаем более-менее стабильное постоянное напряжение.

Инвертор или блок ключей

На следующем блоке выпрямленное напряжение преобразуется в импульсы. Частота импульсов высокая — от 10 до 50 кГц. Есть два способа реализации этих блоков: при помощи микросхем, на основе автогенератора (блокинг-генератора).

Еще одна блок-схема ИИП

Во втором случае используется пара транзисторов, которые включаются попеременно, формируя на выходе последовательность импульсов. Частота переключений задается генератором. Такие схемы встречаются и сейчас, но большинство реализуется на микросхемах.

Пример схемы инвертора на транзисторах

Если есть микросхема, зачем городить огород из нескольких десятков деталей. Тем более, что требуемый тип микросхем широко распространен и стоит немного. Это так называемые ШИМ-контроллеры ( TL494, UC384х, Dh421, TL431, IR2151, IR2153 и др). К этим микросхемам надо добавить всего-лишь пару полевых транзисторов и несколько мелких деталей и получим требуемый инвертор.

Схема ИИП с ШИМ контроллером для обратноходового и полумостового преобразователей

ШИМ-контроллер отлично встраивается в любой тип схем. Он совместим с обратноходовыми, полумостовыми и мостовыми схемами выпрямителей. Естественно, отличается количество элементов, но все они простые и доступные.В обратноходовых схемах транзисторы должны быть рассчитаны на более высокое напряжение, чем подается на вход.

Устройство импульсного источника напряжения с ШИМ контроллером и двухтактным и мостовым выпрямителем

По полумостовым схемам построены импульсные блоки питания в осветительных приборах, в энергосберегающих и светодиодных лампах, электронный балласт для люминисцентных ламп (ЭПРА). Мостовые схемы применяют в более мощных блоках. Например, в сварочных инверторах.

Есть и более «серьезные» контроллеры, которые параллельно с работой, проверяют параметры входного и выходного напряжения и, при неисправностях, просто блокируют свою работу. Так как в импульсном блоке питания этот компонент, обычно, самый дорогой, это очень неплохо. Заменив неисправные детали (обычно резисторы или конденсаторы), получаем рабочий агрегат.

Силовой трансформатор

Узел трансформатора на блоке питания является одним из самых стабильных. В этом блоке, кроме самого трансформатора, содержится небольшая группа элементов которая нейтрализует выброс тока, который возникает на обмотках трансформатора при смене полярностей. Эта группа называется «снаббер».

Рассматриваемый блок обведен красным, а снаббер — зеленым

Трансформатор — один из самых надежных элементов. В нем очень редко возникают проблемы. Он может повредиться при пробое инвертора. В этом случае через обмотку течет слишком высокий ток, который и выводит из строя трансформатор.

Схема блока силового трансформатора для ИИП

Работает все это следующим образом:

  • На первом такте работы импульсного источника питания открыт ключ ВТ1 (полевой транзистор с индуцированным каналом n-типа). Ток течет через первичную обмотку трансформатора, заряд накапливается в сердечнике.
  • На втором такте ключ закрывается, ток течет во вторичной обмотке через диод VD2.
  • При переключении на первичной обмотке возникает выброс, который вызван неидеальностью деталей. Тут в работу вступает снаббер. Его задача поглотить этот выброс, так как напряжение может быть достаточно большим и может повредить ключевой транзистор, что приведет к неработоспособности схемы. Ток выброса течет через первичную обмотку трансформатора, диод VD1, через сопротивление R1 и емкость C2.
  • Далее полярность снова меняется, вступает в работу ключ ВТ1.

Номиналы выбираются исходя из параметров трансформатора. Подбор сложный, так что описывать его не имеет смысла. И еще: не во всех схемах есть снаббер, но его наличие увеличивает надежность и стабильность работы импульсного источника питания.

Несколько слов о диодах, которые используют в снабберах. Это может быть обычный диод, подобранный по параметрам, но более надежны схемы со стабилитроном. Еще может быть вариант без резистора и емкости, но с включенным навстречу супрессором (на схеме ниже).

Еще один вариант блока силового трансформатора с использованием супрессора (защитного диода) D1

Супрессор — это защитный диод, принцип работы похож на стабилитрон, вот только выравнивается импульсный ток и рассеиваемая мощность. Может быть несимметричный и симметричным.

Выходной выпрямитель и фильтр, стабилизатор

На этом, можно считать со схемой импульсного блока питания разобрались, так как выходные выпрямитель и фильтр устроены по тому же принципу. Элементы могут быть другие, а схемы те же. Единственное, что еще стоит рассмотреть — стабилизация выходных параметров. Это опционная часть, но такой импульсный блок питания более надежен.

Наиболее простой и дешевый способ стабилизации используется в дешевых блоках питания — обратная связь на пассивных элементах. На схеме ниже, это два резистора R6 и R7, подключенные к вспомогательной обмотке силового трансформатора. Не слишком надежно, потому что есть влияние между обмотками, но просто и недорого.

Простой способ стабилизации

Второй вариант стабилизатора выходного напряжения сделан на стабилизаторе VD9 и оптроне HL1. Выходное напряжение складывается из падения на стабилитроне и напряжения на оптроне. Это чуть более надежная схема для ИИП средней мощности.

Стабилизация выхода ИИП при помощи стабилитрона и оптрона

Наиболее стабильные выходные показатели имеют схемы ИИП со стабилизатором TL431.

TL431 — интегральная схема трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.

ИБП с использованием микросхемы TL431 более сложные, но надежные. В таких схемах может быть подстроечный переменный резистор, который позволяет изменять выходное напряжение в небольших пределах. Обычно подстройка составляет не более 20%, так как в противном случае схема может быть нестабильной.

Схема со стабильным напряжением на выходе

Если подстройка выходного напряжения не нужна, лучше подстроечный резистор заменить обычным, так как переменные менее надежны.

Пару слов о резисторе R20 (см. схему выше), который стоит на выходе. Это так называемый, нагрузочный резистор. Как известно ИИП не будет работать без нагрузки. Поэтому на выходе и ставят сопротивление, которое обеспечивает минимальную рабочую нагрузку. Но это решение неидеально, так как резистор греется и порой очень сильно. Располагать рядом конденсаторы крайне нежелательно, иначе подогреваются и они. А в качестве выходного сопротивления должны стоять высокоточные резисторы, так как они при нагреве мало меняют свои параметры (блок выдает стабильное напряжение даже при длительной работе).

Принцип работы импульсного блока питания

Один из самых важных блоков персонального компьютера – это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

Узел управления. Является «мозгом» блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

Выходные выпрямители. С помощью выпрямителя происходит выпрямление – преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: «No comment «.

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 («230/115»). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110. 127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220. 230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180. 220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов «моста» (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Как полвека назад Стив Джобс произвел революцию в компьютерных блоках питания


Рентгеновский снимок блока питания компьютера Apple II.

Блоки питания не пользуются большим уважением у обычных пользователей. Многие знают, какой процессор находится в их компьютере и сколько в нем физической памяти, но, скорее всего, они ничего не скажут вам о блоке питания в нем. В этом нет ничего удивительного — даже производители зачастую думают об источнике питания в последнюю очередь. 

И это позор, потому что потребовалось немало усилий для создания блоков питания, которые вы сейчас можете найти в персональных компьютерах, и они представляют собой значительное улучшение по сравнению со схемами, которые питали бытовую электронику вплоть до конца 1970-х годов. Этот прорыв стал результатом серьезных успехов, достигнутых в области полупроводниковых технологий полвека назад. И все же эта революция практически незнакома широкой публике.

И вы, наверное, удивитесь, но одним из ярых «революционеров» был Стив Джобс. По словам его биографа, Уолтера Айзексона, Джобс имел серьезные требования к блоку питания компьютера Apple II, которые смог воплотить в жизнь конструктор Род Холт:

Вместо обычного линейного источника питания Холт построил такой, который используется в осциллографах. Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему хранить энергию гораздо меньшее время и, следовательно, выделять меньше тепла. «Этот импульсный источник питания был таким же революционным, как и логическая плата Apple II», — сказал позже Джобс. «Род не попал за это в учебники истории, хотя должен был. Каждый компьютер теперь использует импульсный источник питания, и все они сдирают дизайн Рода Холта».
Однако версия событий, описанная основателем Apple, была, в общем и целом, в корне неверной. Революция произошла между концом 1960-х и серединой 1970-х годов, когда импульсные блоки питания пришли на смену простым, но неэффективным линейным источникам питания. Apple II, представленный в 1977 году, выиграл от этой революции, но отнюдь не спровоцировал ее.

Это исправление к версии событий Джобса — далеко не мелочь. Сегодня импульсные источники питания используются повсеместно, с их помощью мы заряжаем наши смартфоны, планшеты, ноутбуки, фотоаппараты и даже некоторые автомобили. Они питают часы, радио, домашние аудиоусилители и другие мелкие приборы. Инженеры, которые действительно вызвали эту революцию, заслуживают уважения. И это довольно интересная история.

Блок питания настольного компьютера, такого как Apple II, преобразует переменное напряжение из сети в постоянное, обеспечивая высокостабильное питание всей системы. Блоки питания могут работать по различным схемам, но наиболее распространенными являются линейные и импульсные конструкции.

Типичный линейный источник питания использует громоздкий трансформатор для понижения относительного высокого переменного напряжения из сети, которое затем преобразуется в низковольтное постоянное напряжение с использованием четырех диодов, подключенных по классической мостовой конфигурации. Большие электролитические конденсаторы используются для сглаживания выходного сигнала диодного моста. В компьютерных источниках питания используется схема, называемая линейным регулятором, которая снижает постоянное напряжение до требуемого уровня и удерживает его, даже если нагрузка меняется.

Линейные источники питания максимально просты для проектирования и сборки. И они используют недорогие низковольтные полупроводниковые элементы. Но у них есть два основных недостатка. Первый — это большие конденсаторы и здоровенный трансформатор, которые нереально упаковать во что-то столь же маленькое, легкое и удобное, как зарядное устройство, которое мы используем со своим смартфоном и планшетом. 

Второй — это линейный регулятор, основанный на транзисторах, который превращает все, что выше назначенного выходного напряжения, в тепло. Таким образом, такие источники питания обычно выделяют более половины потребляемой ими энергии в виде тепла. И они часто требуют больших металлических радиаторов или вентиляторов, чтобы избавиться от него.



В прошлом в небольших электронных устройствах обычно использовались громоздкие настенные трансформаторы, которые пренебрежительно называли «настенными бородавками». В начале XXI века технологические усовершенствования сделали возможными компактные импульсные источники питания для небольших устройств. А после того, как упала цена на AC/DC-преобразователи, они быстро заменили собой громоздкие настенные трансформаторы в большинстве бытовых устройств.

Apple превратила блок питания в высококлассный девайс, представив элегантное зарядное устройство для iPod в 2001 году с компактным IC-контроллером внутри [слева]. Зарядные USB-устройства вскоре стали повсеместными, а ультракомпактный зарядник для iPhone, выпущенный в 2008 году, стал одним из самых популярных во всем мире [справа].

Последняя тенденция в высокопроизводительных зарядных устройствах этого типа заключается в использовании полупроводников на основе нитрида галлия (GaN), которые способны переключаться быстрее, чем кремниевые транзисторы, и, таким образом, более эффективны. Также популяризация технологии производства импульсных БП серьезно снизила цены, и теперь самые дешевые USB-зарядники продаются менее чем за доллар, хотя и за счет плохого качества питания и отсутствующих функций безопасности.



Импульсный источник питания работает по другому принципу: в нем переменное напряжение выпрямляется при помощи диодного моста и сглаживается с помощью емкого конденсатора. Далее напряжение снова преобразуется в переменное высокочастотное (сотни килогерц) с помощью инвертора и подается на первичную обмотку трансформатора, после чего, уже пониженное, снимается со вторичной, снова выпрямляется и подается на выходы блока питания. Высокие частоты позволяют использовать намного меньшие и более легкие трансформаторы и конденсаторы. Поскольку такие БП не нуждаются в линейных регуляторах, они расходуют мало энергии: обычно их КПД составляет 80-90%, из-за чего они выделяют очень мало тепла.

Однако импульсный источник питания устроен значительно сложнее, чем линейный, и, следовательно, его сложнее проектировать. Кроме того, он намного более требователен к компонентам и нуждается в высоковольтных силовых транзисторах, которые могут эффективно включаться и выключаться на высокой скорости.

К слову, некоторые компьютеры использовали источники питания, которые не являются ни линейными, ни импульсными. Грубым, но эффективным методом было использование обычного электродвигателя, который соединялся с валом электрогенератора — последний и создавал желаемое выходное напряжение. Мотор-генераторы использовались в течение десятилетий, по крайней мере, начиная с эпохи перфокарт в вычислительных машинах IBM 30-х годов и вплоть до 1970-х годов в суперкомпьютерах Cray.

Принципы, лежащие в основе импульсного источника питания, были известны инженерам-электрикам еще с 1930-х годов, но эта техника нашла лишь ограниченное применение в эпоху вакуумных ламп. В некоторых источниках питания того времени использовались специальные ртутьсодержащие трубки, называемые тиратронами, которые можно было считать примитивными низкочастотными импульсными регуляторами. 

В качестве примеров можно привести блок питания телетайпа REC-30 1940-х годов и блок питания, использовавшийся в компьютере IBM 704 с 1954 года. Однако с появлением силовых транзисторов в 1950-х годах импульсные источники питания быстро улучшились. Pioneer Magnetics начала использовать их в 1958 году, а General Electric опубликовал ранний проект транзисторного импульсного источника питания в 1959 году.


Источник питания компьютера IBM 704.

На протяжении 1960-х годов НАСА и аэрокосмическая отрасль обеспечивали основную движущую силу по разработке импульсных источников питания, поскольку для аэрокосмических применений преимущества небольшого размера и высокой эффективности превосходили немалую их стоимость. Например, в 1962 году Telstar (первый в мире спутник для передачи телевизионных изображений) и ракета Minuteman оба использовали импульсные источники питания. Шли годы, стоимость снижалась, а доступность для простых людей, наоборот, росла. Например, в 1966 году компания Tektronix использовала импульсный блок питания в портативном осциллографе, который позволял ему работать как от сети, так и от батарей.

Эта тенденция ускорилась, поскольку производители блоков питания начали продавать свои импульсные решения другим компаниям. В 1967 году RO Associates представила первый 20-килогерцовый импульсный источник питания, который, по их утверждениям, стал первым коммерчески успешным блоком питания такого типа. Компания Nippon Electronic Memory Industry Co. начала разработку стандартизированных импульсных источников питания в Японии в 1970 году. К 1972 году большинство производителей блоков питания уже имели в ассортименте такие устройства.

Примерно в это же время компьютерная индустрия начала использовать импульсные источники питания. Первыми стали миникомпьютеры Digital Equipment PDP-11/20 в 1969 году и Hewlett-Packard 2100A в 1971. К середине 70-ых они использовались в компьютерах таких компаний, как HP, IBM, Univac, DEC, RCA и многих других, и даже добрались до цветных телевизоров.

Импульсные источники питания широко освещались в компьютерных журналах той эпохи, как в рекламе, так и в статьях. Еще в 1964 году компания Electronic Design рекомендовала использовать импульсные блоки питания для повышения энергоэффективности. В октябре 1971 года на обложке журнала «Мир электроники» были показаны 500-ваттные импульсные источники питания, а к середине 70-ых публикаций на эту тему был уже не один десяток. 

Одним из ключевых разработчиков был Роберт Бошерт, который в 1970 году уволился с работы и начал проектировать импульсные источники питания буквально на своем кухонном столе. Он сосредоточился на упрощении их конструкции, чтобы сделать их конкурентоспособными по стоимости с линейными блоками питания, и к 1974 году он массово производил недорогие блоки питания для принтеров, за которыми последовал дешевый импульсный блок питания мощностью 80 Вт в 1976 году. К 1977 году в Boschert Inc. работало уже 650 человек. Он делал источники питания для спутников и истребителей Grumman F-14, а затем стал производить компьютерные блоки питания для таких компаний, как HP и Sun.

Массовое производство дешевых высоковольтных высокоскоростных транзисторов в конце 1960-х и начале 1970-х годов такими компаниями, как Solid State Products Inc., Siemens Edison Swan и Motorola, также помогло популяризировать импульсные блоки питания. Чем выше скорость переключения транзистора, тем выше его эффективность, потому что тепло в нем рассеивается в основном во время его переключения между состояниями включения и выключения, и чем быстрее он может выполнить этот переход, тем меньше энергии он преобразует в тепло.

Скорости переключения транзисторов тогда росли как на дрожжах. Транзисторные технологии развивалась настолько быстро, что в 1971 году редакторы журнала «Мир электроники» заявили, что блок питания мощностью 500 Вт, показанный на его обложке, просто не мог быть построен с использованием транзисторов, доступных всего лишь 18 месяцами ранее.

Еще один заметный прогресс произошел в 1976 году, когда Роберт Маммано, один из основателей Silicon General Semiconductors, представил первую интегральную схему для управления импульсным источником питания, разработанную для электронного телетайпа. Его контроллер SG1524 значительно упростил конструкцию и снизил расходы, что привело к росту продаж.

В итоге к плюс-минус 1974 году всем, кто хоть немного разбирался в электронной промышленности, было ясно, что происходит настоящая революция в разработке источников питания.


Блок питания компьютера Apple II.

Персональный компьютер Apple II был представлен в 1977 году. Одной из его особенностей стал компактный безвентиляторный импульсный источник питания, выдающий суммарно 38 Вт по линиям 5, 12, –5 и –12 вольт. Он использовал простую конструкцию Холта, известную как топологию автономного преобразователя с обратной связью. Джобс утверждал, что теперь каждый компьютер использует революционную технологию Холта. Но был ли этот дизайн действительно революционным в 1977 году? И был ли он скопирован другими производителями компьютеров?

Нет и нет. Подобные автономные преобразователи с обратной связью продавались в то время Boschert и другими компаниями. Холт получил патент на несколько специфических особенностей своего блока питания, но они так и не получили широкого распространения. А построение схемы управления из дискретных компонентов, как это было сделано в Apple II, вообще оказалось технологическим тупиком. Будущее импульсных источников питания принадлежало специализированным IC-контроллерам.

Если и есть компьютер, который оказал серьезное влияние на конструкцию блоков питания, то это был IBM PC, выпущенный в 1981 году. К тому времени, всего через четыре года после выхода Apple II, технологии создания блоков питания серьезно изменились. Хотя оба этих ранних персональных компьютера использовали блоки питания с автономным преобразователем с обратной связью, это почти все, что у них было общего. 

К примеру, в блоке питания IBM PC использовался IC-контроллер, который содержал примерно в два раза больше компонентов, чем аналогичный в блоке питания Apple II. Эти дополнительные компоненты обеспечивали дополнительное регулирование на выходе и сигнал «исправная мощность», когда все четыре напряжения были правильными.

В 1984 году IBM выпустила значительно обновленную версию своего персонального компьютера под названием IBM Personal Computer AT. В его источнике питания использовалось множество новых схем и произошел полный отказ от более ранней топологии обратной связи. Он быстро стал стандартом де-факто и оставался таковым до 1995 года, когда Intel представила спецификации форм-фактора ATX, определившие, помимо прочего, основные характеристики источника питания ATX, который до сих пор остается стандартом.

Несмотря на появление стандарта ATX, компьютерные системы электропитания стали более сложными в том же 1995 году с появлением процессора Pentium Pro, который требовал более низкого напряжения при более высоком токе, чем мог дать источник питания ATX напрямую. Чтобы обеспечить требуемое питание, Intel представила модуль регулятора напряжения (VRM) — импульсный стабилизатор постоянного тока, устанавливаемый рядом с процессором. Он уменьшал 5 В от источника питания до 3 В, используемых CPU. Видеокарты также содержат VRM для питания высокопроизводительных графических чипов, которым требуется порядка 1 В вместо входящих 12.


Типичный ATX-блок питания внутри.

В наши дни быстрые домашние процессоры могут требовать до 150 Вт от VRM — значительно больше, чем лишь половина ватта мощности, используемая процессором MOS Technology 6502 в Apple II. Действительно, один только современный процессор может потреблять в три раза больше энергии, чем весь компьютер Apple II.

Растущее энергопотребление компьютеров стало причиной озабоченности по поводу окружающей среды, что привело к инициативам и нормативным актам, направленным на повышение эффективности источников питания. В Соединенных Штатах правительственная компания Energy Star и отраслевые сертификаты 80 Plus подтолкнули производителей к производству более «зеленых» источников питания. 

Они смогли сделать это, используя различные методы: более эффективные компоненты и схемы запуска, резонансные схемы, которые уменьшают потерю мощности при переключении транзисторов, а также схемы APFC (компенсации реактивной мощности), улучшающие КПД и позволяющие блоку питания работать более стабильно. Появление MOSFET и высоковольтных выпрямителей в последнее десятилетие также привело к повышению эффективности, которая у лучших источников питания на данный момент составляет 95%.

Технологии проектирования импульсных источников питания продолжают развиваться и в других направлениях. Сегодня вместо аналоговых схем используются цифровые микросхемы и программные алгоритмы для управления выходным напряжением. Проектирование контроллеров источника питания стало такой же задачей программирования, как и разработка аппаратного обеспечения. Цифровое управление питанием позволяет БП обмениваться данными с остальной системой для повышения эффективности и учета потраченной энергии. И хотя эти цифровые технологии в основном заточены под сервера, они уже начинают использоваться в источниках питания для настольных компьютеров.

Трудно сопоставить эту историю с утверждением Джобса о том, что Холт должен был «попасть в учебники истории». Даже самые лучшие разработчики источников питания редко становятся известным за пределами этого крошечного сообщества. Так, в 2009 году редакторы Electronic Design ввели Бошерта в свой Зал инженерной славы. Роберт Маммано получил награду за свои достижения в 2005 году от редакторов Power Electronics Technology. При этом ни один из этих светил в разработке блоков питания не известен даже Википедии.

Часто повторяемое утверждение Джобса о том, что Холта упустили из виду, привело к тому, что работа последнего была описана в десятках популярных статей и книг об Apple, даже в самой продаваемой биографии основателя Apple, написанной Айзексоном в 2011 году. Так что Род Холт, вероятно, стал самым известным разработчиком блоков питания, хотя не сделал ничего революционного.

Блог АйДи | Особенности блоков питания — что нужно знать?

Импульсный блок питания — это что?

Обычный блок питания заметно больше и тяжелее чем импульсный. Размеры отличаются из-за разной частоты преобразования энергии. Обычный блок питания преобразует энергию с частотой сети — 50 Гц , тогда как импульсный с частотой примерно 30 000 Гц. Количество порций энергии, которая преобразовывается каждую секунду, больше, поэтому размеры основного компонента — трансформатора уменьшаются.

Функционально импульсный блок питания отличается защитой от короткого замыкания и перегрузки, стабилизацией выходного напряжения. Эти функции могут присутствовать и в обычном блоке питания, но в импульсном они достаются почти даром, т.к. все их может взять на себя одна и та же микросхема, которую и без того нужно устанавливать для контроля процесса преобразования.


Преимущества импульсного блока питания
— широкий диапазон входного напряжения
— нечувствителен к качеству входного напряжения
— меньше габариты и масса

Недостатки
— импульсные помехи при работе, которые свойственны для дешевых блоков питания
— меньше надежность недорогих блоков питания, что обусловлено сложностью конструкции

 

Основные характеристики

Входное напряжение
Напряжение сети, к которой подключают блок питания. В электрошкафах наиболее популярны промышленные блоки питания с входным напряжением 220 В, 50 Гц. Импульсные блоки питания работают нормально как при повышенном, так и пониженном напряжении, поэтому входное напряжение указывают диапазоном, например 85…265 В, 50…60 Гц. Некоторые модели могут работать как от переменного, так и от постоянного напряжения.

Выходное напряжение
Напряжение на выходе блока питания. Применительно к электрошкафам распространены блоки питания с выходом 24 В постоянного тока — напряжение питания промышленной автоматики и цепей управления.

Выходной ток
Ток, при котором обеспечивается нормальная работа блока питания. Потребляемый нагрузкой ток должен быть равен или меньше выходного тока блока питания. Если же потребляемый ток нагрузки больше выходного тока блока питания, то это приведет к срабатыванию защиты или просадкам напряжения. Если выходной ток неизвестен, но известна мощность, то значения можно пересчитать.

Мощность
Отражает количество и мощность нагрузок, которые блок питания может обеспечить энергией. Суммарная мощность подключенных нагрузок должна быть меньше или равной мощности блока питания.

Для выбора необязательно знать и ток, и мощность, т.к. они взаимосвязаны. При необходимости их можно пересчитать:


где:
Pнагр — мощность нагрузки, Вт;
Uвых — выходное напряжение блока питания, в нашем случае 24 В. 

Если к блоку питания нет дополнительных требований, то знания этих характеристик достаточно.

 

Дополнительные функции

Регулятор напряжения
Подстроечный резистор на панели блока питания корректирует напряжение на выходе. У БП на 24 В пределы регулировки обычно составляют 22…28 В. Применяется для питания нагрузок с нестандартным рабочим напряжением и компенсации падения напряжения на длинных линиях.

Контакт DC OK
Нормально разомкнутый контакт срабатывает, если выходное напряжение стабилизировано, т.е. в нормальном режиме работы. Контакт используется для удаленного контроля работы БП, а также для управления нагрузкой, чувствительной к перепадам напряжения.

Кратковременная перегрузка
Иногда пишут Dynamic Boost, намеренно «забывая» перевести. Например, в ассортименте нашего магазина есть блоки питания Phoenix Contact серии КВНТ, которые допускают перегрузку 50 % в течении 5 секунд, а блоки QUINT допускают 100 % перегрузку в течениие тех же 5 секунд.

Постоянная перегрузка по мощности
Она же Static Boost. Производитель намеренно занижает номинальную мощность блока, чтобы обеспечить резерв. Например, блоки питания Phoenix Contact серии QUINT допускают постоянную перегрузку в 25%.

Функция селективного отключения
Блок питания, обладая значительным кратковременным запасом мощности, позволяет обеспечить срабатывание подключенных к нему автоматических выключателей. Таким образом, отключается только неисправная нагрузка, а остальные остаются в работе.

Например, блоки питания QUINT с одноимённой функцией «Selective Fuse Breaking» (SFB). Довольно редкая функция, но встречается не только у Phoenix Contact, например, у блоков питания PROtop производства Weidmuller с функцией «DCL».

Weidmuller эту функцию описывают так: «Технология DCL гарантирует надежное срабатывание автоматов, благодаря повышению выходного тока по крайней мере на 600 % в течении 20 мс. Кроме того, повышенная перегрузочная способность обеспечивает запуск мощного двигателя». Функция реализуется только при подключении нагрузки через автоматический выключатель или плавкий предохранитель.

На примере Phoenix Contact, мы сделали сводную таблицу характеристик чтобы понять разницу в стоимости, отражающих функционал и надёжность.

Сравнение блоков питания Phoenix Contact, мощностью 240 Вт

Серия

ESSENTIAL

UNO

КВНТ

QUINT

Артикул

2910587

2904372

1032386

2904601

Цена в магазине

8 411 ₽

9 653 ₽

12 283 ₽

14 207 ₽

Входное напряжение, АС

85… 264 В

85… 264 В

85…264 В

85…264 В

Входное напряжение, DC

99…275 В

90…350 В

Точность стабилизации выходного напряжения

±2 %

±2 %

±1 %

±1 %

КПД

88%

90%

90%

93%

Среднее время наработки на отказ

700 000 ч

641 000 ч

1 000 000 ч

783 000 ч

Регулятор напряжения

Параллельная работа

Контакт DC OK

Кратковременная перегрузка

1,5 х Iном в течении 5с

2 х Iном в течении 5с

Постоянная перегрузка по мощности

1,25 х Iном

Функция селективного отключения


 

Аксессуары

Модули резервирования —
Резервный модуль позволяет добиться бесперебойной подачи питания на нагрузку от двух независимых блоков. Контролирует распределение мощности и формирует сигнал аварии в случае отказа одного из блоков питания. В обычном режиме он равномерно распределяет нагрузку между блоками питания по 50% на каждый. В случае поломки одного из блоков питания, вся нагрузка ложится на исправный, загружая его на все 100%.

Автоматические выключатели и плавкие вставки —
Защищают блок питания от перегрузки и короткого замыкания. В случае короткого замыкания в нагрузке автоматический выключатель отключит её, а блок питания не «уйдёт в защиту» и продолжить питать исправные нагрузки.

Наиболее интересны многоканальные электронные автоматические выключатели. Они содержат в одном корпусе несколько автоматических выключателей, уставка срабатывания каждого выключателя или канала регулируется, а на входе встроена защита от повышенного и пониженного напряжения.

Например, выключатель СВМ производства Phoenix Contact подключатся к выходу блока питания, а уже к выходным клеммам автомата подключают нагрузку согласно схеме:


Схема подключения автомата CBM

В зависимости от исполнения, CBM рассчитаны на подключение 4 или 8 нагрузок. Уставки по току перегрузки регулируются в пределах 0,5…10 А отдельно для каждой нагрузки. Защитное отключение одной нагрузки не влияет на работу остальных. Кроме защиты от токов, CBM контролирует уровень напряжения. Если напряжение выходит за пределы, то автомат отключает все подключенные устройства. Кроме электронного выключателя CBM, для защиты нагрузок применяются автоматические выключатели постоянного тока или плавкие предохранители, подобранные в соответствии с номинальными токами нагрузки.

 

Что дальше?

Конечно, это не всё, но достаточно, чтобы определиться с выбором. По мере знакомства с блоками питания вы узнаете еще больше характеристик и функций: защита от кратковременных перенапряжений, фильтры помех, дополнительные релейные выходы и другое. Главное — не терять любопытство!

Блоки питания в нашем каталоге
https://shop.idelectro.ru/catalog/bloki_pitaniya_i_transformatory/

Методика тестирования блоков питания — Статьи

Введение


Вот уже продолжительное время наша лаборатория занимается тестированиями блоков питания стандарта ATX. Методика тестирования все это время непрерывно развивалась и совершенствовалась, преследуя сразу две цели – не только получить возможность объективно сравнивать различные блоки питания, но и делать это достаточно наглядно.

К сожалению, один из основных тестов нашей методики – измерение стабильности напряжений – никак не мог похвастаться наглядностью, ибо в нем практически для каждого блока использовались собственные паттерны нагрузок, что делало невозможным обсуждение и сравнение результатов разных блоков питания без постоянных ссылок на особенности примененных к ним паттернов. Иначе говоря, результаты каждого из блоков тащили за собой ворох условностей и оговорок – разумеется, сравнение в итоге было возможно, иначе бы вообще не было смысла проводить тестирование, однако прямое сравнение цифр или графиков, увы, этими оговорками весьма затруднялось.

Этой статьей я представляю Вам новую методику тестирования блоков питания, пришедшую на смену старому способу измерения стабильности напряжений и дающую крайне наглядный и при этом весьма точный и объективный результат, одинаково хорошо пригодный для сравнения разных блоков питания, как в конкретных цифрах, так и просто «на глаз», по внешнему виду получаемых графиков. За основу взята методика построения так называемых кросс-нагрузочных характеристик блоков питания, разработанная и примененная нашими коллегами из издания ITC Online, однако она была существенно доработана с целью еще большего повышения как информативности, так и наглядности.

Также в статье я более или менее подробно опишу различные аспекты работы компьютерных блоков питания, чтобы читателям, не разбирающимся в схемотехнике импульсных блоков питания, стало понятно, что означают и откуда берутся те или иные измеряемые в ходе тестирования параметры блоков питания. Те же из Вас, кто достаточно хорошо знаком с устройством и работой импульсных источников питания, могут сразу пролистать первые два раздела статьи до описания собственно используемого нами тестового оборудования и методики тестирования.

Линейные и импульсные источники питания


Как известно, электронный источник питания – это устройство, тем или иным способом решающее задачи изменения, управления или стабилизации поступающей в нагрузку электрической мощности.

Наиболее простым и до сих пор крайне широко применяющимся методом управления является поглощение избыточной мощности в управляющем устройстве, то есть банальное рассеивание ее в виде тепла. Источники питания, действующие по такому принципу, называются линейными.


Выше представлена схема подобного источника – линейного стабилизатора напряжения. Напряжение бытовой сети 220В понижается трансформатором T1 до необходимого уровня, после чего выпрямляется диодным мостом D1. Очевидно, что выпрямленное напряжение должно быть в любых условиях выше выходного напряжения стабилизатора – иначе говоря, необходима избыточная мощность; это следует из самого принципа работы линейного стабилизатора. В данном случае эта мощность выделяется в виде тепла на транзисторе Q1, который управляется некоторой схемой U1 так, чтобы выходное напряжение Uout находилось на требуемом уровне.

Такая схема имеет два существенных недостатка. Во-первых, низкая частота переменного тока в питающей сети (50 или 60Гц, в зависимости от страны) обуславливает большие габаритные размеры и массу понижающего трансформатора – трансформатор мощностью 200-300Вт будет весить несколько килограмм (не говоря уж о том, что в линейных стабилизаторах приходится применять трансформаторы на мощность вдвое большую, чем максимальная мощность нагрузки, ибо КПД линейного стабилизатора составляет около 50%, а трансформатор должен быть рассчитан на полную мощность, включая ту, что уйдет в тепло на самом стабилизаторе). Во-вторых, напряжение на выходе трансформатора должно во всех случаях превышать сумму выходного напряжения стабилизатора и минимального падения напряжения на регулирующем транзисторе; это означает, что в общем случае транзистору придется рассеивать весьма заметную избыточную мощность, что отрицательно скажется на КПД всего устройства.

Для преодоления этих недостатков были разработаны так называемые импульсные стабилизаторы напряжения, в которых управление мощностью происходит без рассеивания мощности в самом устройстве управления. В самом простейшем виде такое устройство можно представить как обычный ключ (роль которого может играть и транзистор), включенный последовательно с нагрузкой. В такой схеме средний протекающий через нагрузку ток зависит не только от сопротивления нагрузки и напряжения питания, но и от частоты переключению ключа – чем она больше, тем выше ток. Таким образом, меняя частоту переключения, мы можем регулировать средний ток через нагрузку, причем в идеале на самом ключе мощность не будет рассеиваться вообще – так как он пребывает только в двух состояниях: либо полностью открытом, либо полностью закрытым. В первом случае падение напряжения на нем равно нулю, во втором случае – нулю равен протекающий через него ток, а потом выделяемая на нем мощность, равная произведению тока на напряжение, также всегда равна нулю. В реальности, конечно, все немного иначе – в случае использования в качестве ключа транзисторов, во-первых, даже в открытом состоянии на них падает небольшое напряжение, во-вторых, процесс переключения происходит не мгновенно. Однако эти потери – следствие побочных явлений, и они намного меньше, чем выделяемая на устройстве управления линейного стабилизатора избыточная мощность.

Если сравнивать цифры, то КПД типичного линейного стабилизатора составляет 25…50%, в то время как КПД импульсного может превышать 90%.

Кроме того, если в импульсном стабилизаторе поставить ключ до понижающего трансформатора (очевидно, что, в общем-то, все равно, регулировать входное или выходное напряжение трансформатора – они неразрывно связаны друг с другом), то мы получаем возможность определять частоту работы трансформатора вне зависимости от частоты питающей сети. А так как габариты трансформатора уменьшаются с увеличением его рабочей частоты, то это позволяет использовать в импульсных стабилизаторах понижающие трансформаторы буквально игрушечных размеров по сравнению с их линейными аналогами, что дает колоссальный выигрыш в размерах готового устройства. Для примера, трансформатор на частоту 50Гц и мощность 100Вт весит чуть более двух килограмм, в то время как трансформатор на ту же мощность, но на частоту 35кГц весит всего лишь около 35 грамм. Это, разумеется, радикально влияет на габариты и массу всего источника питания — если посчитать отношение выходной мощности источника к его объему, то для импульсного источника питания, работающего на частоте в несколько десятков килогерц, оно составит примерно 4-5 Вт/куб. дюйм, в то время как для линейного стабилизатора этот показатель составляет всего лишь 0,3…1 Вт/куб. дюйм. Более того, с повышением частоты плотность мощности импульсного источника питания может доходить до 75 Вт/куб. дюйм, что совершенно недостижимо для линейных источников даже при водяном охлаждении (цифры даны по книге Ирвинга М. Готтлиба «Источники питания. Инверторы, конверторы, линейные и импульсные стабилизаторы»).

Кроме того, при таком исполнении импульсный стабилизатор значительно меньше зависит от величины входного напряжения – ведь чувствителен к этому в первую очередь понижающий трансформатор, а при включении ключа до него мы можем управлять напряжением и частотой его работы так, как надо нам. Соответственно, импульсные стабилизаторы абсолютно без особых проблем переносят уход напряжения питающей сети вплоть до 20% от номинала, в то время как у линейных добиться работы при пониженном напряжении сети можно лишь за счет дальнейшего снижения и без того невысокого КПД.

Помимо трансформатора, использование высокой частоты позволяет сильно (в десятки раз) уменьшить емкость и, соответственно, габариты сглаживающих конденсаторов (C1 и C2 на вышеприведенной схеме). Правда, это палка о двух концах – во-первых, далеко не все электролитические конденсаторы способны нормально работать на такой частоте, во-вторых, несмотря ни на что, в импульсном источнике питания технически весьма затруднительно получить размах пульсаций на выходе ниже 20 мВ, в то время как в линейных при необходимости без особых затрат уровень пульсаций может быть снижен до 5 мВ, и даже ниже.

Очевидно, что работающий на частоте в несколько десятков килогерц преобразователь является источником помех не только в собственную нагрузку, но и в питающую сеть, а также просто в радиоэфир. Поэтому, при проектировании импульсных источников питания необходимо уделять внимание как фильтру на его входе (вопреки распространенному мнению, он не столько защищает блок питания от внешних помех, сколько защищает другие устройства от помех, создаваемых этим блоком питания), так и электромагнитной экранировке самого блока питания, что в случае мощных блоков означает использование стального корпуса. Линейные блоки питания, как я отмечал выше, хоть и более чувствительны к внешним помехам, но сами никаких помех не создают, а потому не требуют никаких особых мер по защите окружающего оборудования.

Кроме того, импульсные источники питания требуют существенно более сложной (и, соответственно, дорогой) электроники, нежели их линейные собратья. Ценовое преимущество импульсных блоков очевидно для достаточно мощных изделий, где цена в первую очередь определяется стоимостью силового трансформатора и необходимого теплоотвода, а потому линейные источники с их большими габаритами и низким КПД оказываются в заведомом проигрыше; однако по мере удешевления компонентов импульсных блоков питания они все больше и больше теснят и маломощные линейные источники – так, уже не являются редкостью импульсные блоки питания мощностью в единицы ватт (например, зарядные устройства мобильных телефонов), хотя еще несколько лет назад на таких мощностях преимущества линейных источников были очевидны.

Если же говорить о задачах, в которых определяющим параметром являются габариты, то тут импульсные источники питания находятся вне конкуренции – при всех конструкторских ухищрениях, получить от линейного источника ту же плотность мощности, что и от импульсного, просто невозможно.

Блоки питания компьютеров


В настоящее время все используемые в компьютерах источники питания – импульсные. Обусловлено это тем, что для обеспечения разумных габаритов и тепловыделения необходимы плотность мощности и КПД, принципиально недостижимые для линейных блоков питания такой мощности – так, плотность мощности обычного ATX блока питания составляет 2…5 Вт/куб. дюйм (в зависимости от его выходной мощности), а КПД – не менее 68% при работе с максимальной нагрузкой.


Выше на рисунке приведена несколько упрощенная блок-схема типичного компьютерного блока питания. Ниже на примере блока Macropower MP-300AR показано типичное расположение компонентов в реальном блоке питания (в большинстве блоков других моделей никаких существенных отличий не будет):


Питающее напряжение 220В проходит через двух- или трехзвенный фильтр, защищающий другие включенные в сеть устройства от создаваемых блоком питания помех. После фильтра напряжение поступает на выпрямитель D1, а с него – на необязательную (но все чаще встречающуюся в новых блоках) схему коррекции фактора мощности (PFC – Power Factor Correction). Подробнее о том, что такое PFC, и зачем он нужен, будет сказано ниже, сейчас мне хотелось бы подробнее остановиться на фильтре, ибо с ним связана пара вопросов, часто задаваемых пользователями.


Выше представлена схема классического двухзвенного фильтра, используемого в большинстве блоков питания. Как известно, помехи бывают двух видов – дифференциальные, когда ток помехи в проводах питания течет в разные стороны, и синфазные, когда ток помехи в проводах течет в одну сторону. Также можно сказать, что дифференциальная помеха – это помеха между двумя проводами питания, а синфазная – между проводами питания и землей.

Дифференциальные помехи в этой схеме достаточно легко подавляются дросселями Ld и конденсатором Cx – при прохождении высокочастотной помехи сопротивление первых для нее велико, а второго – наоборот, мало. Хуже дело обстоит с синфазными помехами – отчасти их гасит дроссель Lc, обмотки которого намотаны так, что дроссель образует большое сопротивление для синфазных помех, однако этого недостаточно, и для действительно эффективного подавления синфазных помех устанавливаются два конденсатора Cy, точка соединения которых подключается к корпусу блока питания – и к заземлению, если таковое присутствует.

Именно с этими конденсаторами и связаны основные вопросы пользователей. Очевидно, если корпус компьютера не заземлен, то благодаря конденсаторам на нем будет присутствовать половина сетевого напряжения, то есть 110В. Взявшись одной рукой за любой заземленный предмет (например, за батарею отопления), а другой – за корпус компьютера, можно почувствовать легкое щекотание током. Впрочем, емкость этих конденсаторов весьма мала, а потому максимальный протекающий ток ничтожен – и не представляет для человека ровным счетом никакой опасности. Некоторую опасность он представляет для различной периферии – если при подключении, скажем, LPT-принтера к незаземленному компьютеру последний не выключен из розетки, то может оказаться так, что на сигнальных контактах LPT-разъема принтера окажутся те самые 110В, а это уже может привести к выходу LPT-порта принтера или компьютера из строя. Впрочем, для борьбы с этим необязательно все заземлять – достаточно будет того, чтобы были надежно электрически соединены корпуса всех устройств, а это достигается, например, включением их в один удлинитель с трехконтактными розетками – именно через «земляной» контакт розеток они и окажутся соединены, а тогда портам ничто не грозит. Также ничто не угрожает и портам, рассчитанным на «горячее» подключение (например, FireWire и USB) – конструкция их разъемов такова, что «земляные» контакты в них всегда замыкаются первыми, обеспечивая надежное соединение корпусов устройств.

Другой вопрос связан с возможностью пробоя одного из этих конденсаторов – ведь в таком случае на корпусе компьютера появится полное напряжение 220В. Тут я также могу полностью успокоить читателей – в подобных схемах используются специальные высоковольтные конденсаторы Y-класса, напряжение пробоя которых составляет не менее 5 кВ (в случае класса Y2, применяемого в бытовой технике) – как Вы понимаете, вероятность пробоя такого конденсатора в обычной сети 220В нулевая.

Единственный случай, когда заземление действительно оказывается необходимым – это когда Ваш компьютер создает помехи, действующие на окружающее оборудование (например, на радиоприемник, телевизор или подключенный к тому же компьютеру модем), ибо, как я уже говорил, полностью избавиться от синфазных помех без заземления практически невозможно. Не помогут в этом случае и внешние сетевые фильтры – их схема совершенно аналогична приведенной выше, а потому без заземления не работают и они. В случае, если у Вас в квартире трехпроводная электропроводка с земляным проводом, для организации заземления достаточно использовать соответствующие шнуры питания; если же у Вас старая двухпроводная проводка, то я настоятельно советую обратиться за помощью к квалифицированным электрикам – самостоятельное обустройство заземления не только небезопасно (например, иногда встречается грубейшая ошибка – подключение «земли» компьютера к нулевому проводу в розетке: это абсолютно недопустимо), но и может не дать ожидаемого эффекта, ибо для эффективного подавления помех заземление должно обладать как можно более низким сопротивлением.

Также в районе сетевого фильтра в блоке питания обычно располагается плавкий предохранитель и включенные параллельно конденсаторам входного выпрямителя варисторы (нелинейные резисторы, сопротивление которых резко уменьшается при превышении порогового напряжения). С предохранителем связано часто встречающееся заблуждение, заключающееся в том, что он предохраняет блок питания от выхода из строя. Это совершенно не так, на самом деле предохранитель импульсного блока питания сгорает только после того, как вышли из строя ключевые транзисторы этого блока, то есть на самом деле он защищает не блок от выхода из строя, а электрическую сеть – от последствий этого сгорания. Влияние же его на процессы внутри блока заключается разве что в том, что он не дает короткому замыканию перейти в полноценный пожар – но сам факт короткого замыкания предотвратить никак не может. С варисторами же связано не менее распространенное заблуждение, что они способны защитить блок в случае сильного превышения напряжения сети над номиналом – это опять же не так, на самом деле варисторы способны поглотить только достаточно кратковременные всплески напряжения, возникающие, например, в результате близкого удара молнии или подобных факторов. Если же Вам нужна защита именно от долговременного превышения напряжения, могущего возникнуть при замыканиях проводов воздушной проводки (что достаточно характерно для сельской местности) или же в результате ошибки электриков (что крайне редко, но все же случается), то стоит обратить внимание на специализированные устройства, для которых такая защита явно заявлена производителем, например, на стабилизаторы APC Line-R и подобные. Никакой встроенной защиты от долговременного превышения сетевого напряжения, я напомню, в блоке питания нет – без внешнего защитного устройства в такой ситуации он просто выйдет из строя.

Однако давайте вернемся к функционированию самого блока. После схемы коррекции фактора мощности (или, в случае отсутствия таковой, напрямую с диодного моста) выпрямленное напряжение поступает на сглаживающие конденсаторы C1 и C2, а с них – на ключ (обычно он представляет собой два транзистора), управляющий силовым трансформатором T1. Типичная частота работы ключа в компьютерном блоке питания – 30-35 кГц.

Так как блок питания имеет до шести выходных напряжений (+12В, +5В, +3,3В, -5В, -12В и +5В дежурного режима), то в идеале необходимо реализовать шесть стабилизаторов. На практике же расположить в ограниченном объеме блока питания даже два раздельных мощных стабилизатора (скажем, для +5В и +3,3В), при этом, не подняв его стоимость в область астрономических величин, практически невозможно. Поэтому во всех современных блоках используется лишь один импульсный стабилизатор (на самом деле, вообще говоря, два – источник +5В дежурного режима представляет из себя совершенно независимый маломощный стабилизатор, но благодаря малой мощности (всего 10 Вт), его реализация особой сложности не представляет).

Итак, все выходные напряжения, кроме +5В дежурного режима, снимаются с одного и того же трансформатора T1 (на блок-схеме для простоты показаны только два напряжения). Отмечу, что во всех современных блоках при управлении ключами используется не частотная модуляция (когда, как я мимоходом говорил выше, меняется частота переключения ключей), а широтно-импульсная, когда при неизменной частоте следования импульсов меняется их ширина. Чем больше ширина импульса, тем больше энергии закачивается в трансформатор за каждый период, и тем больше напряжение на его выходе.

Однако, если просто снимать сигнал обратной связи с одного из выходных напряжений, то блок будет стабилизировать только его. Например, пусть это будет +5В. Тогда при росте нагрузки на +5В напряжение на этом выходе начнет проседать, ШИМ-контроллер увеличит ширину импульсов, вытягивая его обратно на заданный уровень… и все остальные напряжения также пойдут вверх. Для борьбы с этим эффектом используется сразу несколько решений.

Во-первых, сигнал обратной связи снимается сразу с двух наиболее нагруженных выходных линий – с +12В и +5В, через резисторный делитель. Таким образом, качество стабилизации каждого из напряжений по отдельности ухудшается, однако стабилизатор блока питания реагирует на изменение нагрузки не по одному, а сразу по двум напряжениям – и в результате блок питания нормально работает при различных распределениях нагрузки между этими двумя шинами.

Во-вторых, третья сильноточная шина, +3,3В, в большинстве блоков питания имеет собственный вспомогательный стабилизатор – так называемую схему на насыщаемом дросселе (также встречаются названия «магнитный стабилизатор» и «магнитный усилитель»). Стабилизаторы на насыщаемом дросселе отличаются достаточно высоким КПД и при этом сравнительно неплохим коэффициентом стабилизации, являясь разновидностью импульсных. Напряжение +3,3В получается с тех же обмоток трансформатора, что и +5В. Впрочем, встречаются и блоки питания, в которых производитель пожелал сэкономить на вспомогательном стабилизаторе, намотав на силовом трансформаторе отдельную обмотку под напряжение 3,3В. Так как обратная связь на стабилизатор с этого напряжения не заводится, то его стабильность в таких блоках оставляет желать лучшего.

В-третьих, слаботочные шины, то есть -12В и -5В, иногда снабжают обычными линейными стабилизаторами – благодаря маленьким токам нагрузки по этим шинам невысокий КПД таких стабилизаторов в общий КПД блока питания вклада почти не вносит. Впрочем, так чаще стабилизируется только -5В – ради экономии на обмотках трансформатора оно получается из -12В с помощью линейного стабилизатора, а так как в современных блоках питания это напряжение уже не требуется, то и линейные стабилизаторы из блоков исчезли совсем.

И, наконец, в четвертых, все выходные напряжения проходят через разные обмотки так называемого дросселя групповой стабилизации L1. Допустим, увеличилось потребление по +5В, ШИМ-стабилизатор отреагировал на это увеличением ширины импульсов, напряжение +5В вернулось в норму, но остальные напряжения, нагрузка по которым не увеличилась, слегка подросли – хоть для них и применяются описанные выше дополнительные меры по стабилизации, все же основное внимание уделяется напряжению +5В. Однако дроссель групповой стабилизации сконструирован так, что при увеличении тока через одну из обмоток напряжение, наведенное этим током в остальных обмотках, вычитается из соответствующих выходных напряжений. Поэтому в рассматриваемом случае за счет увеличившегося тока через обмотку, соответствующую +5В, в обмотках, соответствующих +12В и +3,3В, возникнут отрицательные напряжения – и эти напряжения увеличатся не так сильно, как увеличились бы в отсутствие дросселя групповой стабилизации.

Все эти меры приводят к тому, что блок обеспечивает не столь идеальную, как было бы в случае раздельных стабилизаторов на каждое напряжение, но в общем и целом приемлемую для работы в широком диапазоне нагрузок стабилизацию всех выходных напряжений. Однако назвать ее более чем «приемлемой» не удается, и отсюда проистекает одна из распространенных проблем блоков питания – проблема перекоса выходных напряжений. Если нагрузка блока питания распределяется по его шинам менее равномерно, чем предполагали его разработчики (например, система потребляет большой ток по +5В и маленький по +12В, что характерно для многих систем на старших процессорах Athlon XP), то стабилизатору не удается удержать все напряжения в заданных рамках – и более нагруженные шины изрядно проседают, в то время как на слабо нагруженных напряжения наоборот оказываются завышенными. Отсюда же проистекает и невозможность раздельной регулировки выходных напряжений блока питания – их соотношение жестко задано параметрами силового трансформатора и дросселя групповой стабилизации, а регулировками ШИМ можно лишь поднять или опустить их все одновременно.

В последнее время в дорогих блоках питания – например, производства OCZ или Antec – стал встречаться интересный вариант решения этой проблемы: вспомогательные стабилизаторы на насыщаемых дросселях устанавливаются не только на шину +3,3В, но также и на +12В и +5В. Это позволяет не только достичь очень хорошего (по меркам компьютерных блоков питания) коэффициента стабилизации всех выходных напряжений, но и при необходимости регулировать каждое из напряжений независимо от остальных, меняя параметры его собственного вспомогательного стабилизатора. Впрочем, я вынужден еще раз отметить, что такая конструкция – пока что прерогатива лишь наиболее дорогих блоков питания, а для блоков средней ценовой категории зависимость всех выходных напряжений от нагрузки на каждую из шин является неотъемлемой чертой.

После дросселя групповой стабилизации на выходе блока питания стоят электролитические конденсаторы большой емкости (C3…C6 по приведенной выше схеме) и фильтрующие дроссели – и те, и другие призваны сглаживать пульсации выходного напряжения на частоте работы ШИМ-стабилизатора и, соответственно, силового трансформатора. Несмотря на наличие дросселя групповой стабилизации, раздельные дроссели все же необходимы – благодаря маленьким габаритам и, соответственно, маленькой паразитной емкости они хорошо подавляют высокочастотные помехи, которые дроссель групповой стабилизации, имеющий довольно паразитную емкость, пропускает.

Таким образом, двумя неотъемлемыми проблемами любого компьютерного блока питания являются зависимость каждого из выходных напряжений от нагрузки не только на соответствующую ему шину, но и на все остальные шины, а также наличие на выходе блока пульсаций с удвоенной частотой работы ШИМ-стабилизатора, то есть, обычно, около 60 кГц.

К этому, разумеется, производители блоков питания – как правило, нижней ценовой категории – добавляют свои собственные «особенности», перечислять которые можно долго. В первую очередь страдают номиналы деталей – так, в качестве диодных сборок на выходе силового трансформатора могут устанавливаться не только сборки, рассчитанные на ток меньше указанного на этикетке блока, но даже дискретные слаботочные диоды, максимальный ток через которые составляет всего 3…5А. Это зачастую приводит к тому, что при работе под полной нагрузкой блок питания просто выходит из строя в течение нескольких минут, тем более что обычно производитель заодно экономит и на размере радиаторов, на которые эти диоды устанавливаются.

Точно так же страдают и номиналы конденсаторов, и это тоже сказывается на работе блока питания при большой нагрузке – уменьшение емкостей входных конденсаторов приводит к ухудшению реакции блока на небольшие провалы входного напряжения, уменьшение емкости выходных – к увеличению размаха пульсаций на выходе блока питания.

Одновременно с уменьшением номиналов деталей внутри блока проявляются и внешние признаки удешевления – уменьшается количество выходных разъемов блока, а провода, на которых они расположены, уменьшаются в сечении с положенных 18 AWG до 20 AWG (чем больше цифра в системе маркировки AWG – тем меньше сечение провода). Последнее приводит к увеличению падения напряжения на проводах – и, следовательно, увеличению пульсаций напряжения непосредственно на разъемах питания потребителей, а также, в случае большой нагрузки, даже к заметному нагреву проводов.

До последнего держатся фильтрующие дроссели – уменьшение их размеров не дает серьезной экономии в цене, поэтому до тех пор, пока производитель не посчитает их вообще лишними, дроссели в блоке присутствуют. Замена же их на перемычки приводит к увеличению уровня пульсаций на выходе блока питания (если это были выходные дроссели) или же к увеличению уровня помех, выдаваемых блоком питания в сеть 220В (если это были дроссели входного фильтра).

Одним же из наиболее запомнившихся пользователям методов удешевления блоков питания нижнего ценового диапазона, вне всякого сомнения, стало исполнение источника дежурного питания +5В в виде блокинг-генератора с электролитическим конденсатором в цепи обратной связи. В такой схеме, представляющей собой импульсный источник питания на базе блокинг-генератора, выходное напряжение определяется частотой импульсов, а она, в свою очередь, обратно пропорциональна емкости конденсатора в цепи обратной связи. Использование же дешевых конденсаторов, рассчитанных на работу при температуре до 85 градусов, плюс очень тяжелый температурный режим работы «дежурки» (она работает непрерывно, в то время как охлаждающий блок питания вентилятор – только когда компьютер включен), характерный для наиболее дешевых блоков питания, приводили к тому, что примерно через полтора года эксплуатации БП конденсатор начинал высыхать, а емкость его – соответственно, уменьшаться. Одновременно с уменьшением емкости начинало расти выходное напряжение дежурного источника, а так как от него запитывается основной стабилизатор блока питания, то в один прекрасный момент это приводило к выходу основного стабилизатора из строя в момент включения компьютера, причем выход этот сопровождался выдачей по всем шинам питания завышенных в два-три раза напряжений. Разумеется, компьютер после такого фактически полностью выгорал, вплоть до визуально обнаруживаемого прогорания микросхем на материнской плате, в винчестере и так далее… Некоторые шансы сохранялись разве что у процессора и памяти – если выдерживали их собственные стабилизаторы, расположенные на материнской плате.

Конечно, со временем производители одумались и стали устанавливать в «дежурку» практически вечные пленочные конденсаторы вместо электролитических, благо емкость там требовалась небольшая – однако к этому моменту было выпущено уже достаточное количество таких «бомб замедленного действия», чтобы служить очень серьезным аргументом в пользу покупки более дорогих и качественных блоков питания, в которых столь сомнительные схемотехнические решения не применялись.

Коррекция фактора мощности


В цепях переменного тока принято различать четыре вида мощности. Во-первых, это мгновенная мощность – произведение тока на напряжение в данный момент времени. Во-вторых, это так называемая активная мощность – мощность, выделяющаяся на чисто резистивной нагрузке, измеряется она в ваттах — Вт. Активная мощность целиком идет на полезную работу (нагрев, механическое движение), и обычно именно ее понимают под потребляемой мощностью.

Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная, измеряемая в вольт-амперах реактивных – ВАР. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, лишь зря нагружая питающие провода. Таким образом, реактивная мощность совершенно бесполезна, и с ней по возможности борются, применяя различные корректирующие устройства.

Фактором, или коэффициентом мощности называется отношение активной мощности к полной, то есть к векторной сумме активной и реактивной мощностей.

Импульсный блок питания без каких-либо дополнительных цепей коррекции представляет собой мощную емкостную нагрузку – ведь, как видно из приведенной ранее схемы, сразу после диодного моста D1 расположены два конденсатора, причем сравнительно большой емкости, с которых уже снимается напряжение питания импульсного стабилизатора. При включении блока питания в сеть первой четвертьволной сетевого напряжения конденсаторы заряжаются до трехсот с небольшим вольт, потом сетевое напряжение начинает быстро спадать (вторая четвертьволна), в то время как конденсаторы значительно медленнее разряжаются в нагрузку (то есть в импульсный стабилизатор) – в результате в момент начала роста сетевого напряжения (третья четвертьволна) напряжение на не успевших до конца разрядиться конденсаторах будет порядка 250В, и пока напряжение в сети меньше – ток заряда будет равен нулю (диоды выпрямителя заперты приложенным к ним обратным напряжением, равным разности напряжений на конденсаторах и в сети). На последней трети четвертьволны (разумеется, все численные оценки я даю весьма приблизительно – в реальности они зависят от величины нагрузки и емкости конденсаторов) напряжение в сети превысит напряжение на конденсаторах – и потечет ток заряда. Заряд прекратится, как только напряжение в сети снова станет меньше, чем на конденсаторах – это произойдет в первой половине четвертой четвертьволны. В результате блок питания потребляет мощность от сети питания короткими импульсами, приблизительно совпадающими с пиками синусоиды сетевого напряжения:


Блок питания без PFC
На приведенной выше осциллограмме зеленый «луч» – сетевое напряжение, а желтый – потребляемый блоком питания от сети ток. При такой картине фактор мощности получается равен приблизительно 0,7 – то есть почти треть мощности лишь бестолку нагревает провода, не производя никакой полезной работы. И если для частных пользователей эта цифра не имеет большого значения, ибо квартирные электросчетчики учитывают лишь активную мощность, то для крупных офисов и вообще любых помещений, где одновременно работает множество компьютеров, низкий коэффициент мощности представляет собой заметную проблему, ибо вся электропроводка и сопутствующее оборудование должно рассчитываться исходя именно из полной мощности – иначе говоря, при коэффициенте мощности 0,7 оно должно быть на треть мощнее, чем могло бы быть, не потребляй блок питания реактивную мощность. Также сказывается низкий коэффициент мощности и при выборе источников бесперебойного питания – для них ограничением является опять же полная, а не активная мощность.

Соответственно, в последнее время все большую популярность приобретают устройства коррекции коэффициента мощности (PFC). Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.


Блок питания с пассивным PFC
Как видно из этой осциллограммы, пассивный PFC несколько сглаживает импульсы тока, растягивая их во времени – однако индуктивности дросселя, габариты которого позволяют установить его внутри компьютерного блока питания, для серьезного влияния на коэффициент мощности явно недостаточно, и коэффициент мощности блоков с пассивным PFC составляет всего лишь около 0,75.

Увеличить индуктивность дросселя не позволяют не только габариты, но и влияние этого дросселя на работу блока питания – включенная последовательно с блоком питания большая индуктивность увеличивает выходное сопротивление высоковольтного выпрямителя.

Отчасти дроссель PFC может служить для подавления различных помех, однако и в этом польза от него невелика – из-за большой паразитной емкости он эффективно давит только низкочастотные помехи, свободно пропуская высокочастотные.

Таким образом, роль пассивного PFC в общем неоднозначна – коэффициент мощности он увеличивает крайне мало, да при этом еще увеличивает выходное сопротивление выпрямителя, что ухудшает реакцию блока питания на стабильно пониженное напряжение сети или на его кратковременные провалы. Поэтому, если Вы стоите перед выбором между двумя блоками питания – с пассивным PFC и без оного – то рассматривать наличие PFC как однозначное преимущество не стоит, и лучше будет делать свой выбор на основе других параметров блоков.

В отличие от пассивного, активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение. Активный PFC включается между сетью 220В и основным стабилизатором, обеспечивая на входе последнего постоянное напряжение порядка 380…400В. В отличие от основного импульсного стабилизатора, активный PFC сконструирован так, что ему на входе не требуется сглаженное напряжение, следовательно, не требуются и конденсаторы – а потому импульсный источник питания активного PFC не создает емкостной нагрузки на сеть и, соответственно, имеет близкий к единице коэффициент мощности.


Блок питания с активным PFC
Как Вы видите, форма тока, потребляемого блоком питания с активным PFC, очень мало отличается от потребления обычной резистивной нагрузки – результирующий коэффициент мощности такого блока может достигать 0,95…0,98 при работе с полной нагрузкой. Правда, по мере снижения нагрузки коэффициент мощности уменьшается, в минимуме опускаясь примерно до 0,7…0,75 – то есть до уровня блоков с пассивным PFC. Впрочем, надо заметить, что пиковые значения тока потребления у блоков с активным PFC все равно даже на малой мощности оказываются заметно меньше, чем у всех прочих блоков.

Ниже на графике приведены результат экспериментального измерения зависимости коэффициента мощности от нагрузки на блок питания для трех блоков – без PFC вообще, с пассивным PFC и, наконец, с активным PFC.


Мало того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания. Во-первых, он дополнительно стабилизирует входное напряжение основного стабилизатора блока – мало того, что блок становится заметно менее чувствительным к пониженному сетевому напряжению, так еще и при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110…230В, не требующие ручного переключения напряжения сети. Во-вторых, использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя C1 и C2, а эта энергия пропорциональна квадрату напряжения на них; как я отмечал выше, при использовании активного PFC это напряжение достигает 400В против обычных 310В – следовательно, эффективность использования конденсаторов увеличивается более чем в два раза (из-за того, что запасенная в конденсаторах энергия вычерпывается далеко неполностью, эффективность растет еще быстрее, чем квадрат напряжения на конденсаторах).

Фактически, у активного PFC только два недостатка – во-первых, как и вообще любое усложнение конструкции, он снижает надежность блока питания, во-вторых, он также имеет КПД, отличный от 100%, а потому требует охлаждения (впрочем, с другой стороны, активный PFC несколько снижает потери во входном фильтре и в самом инверторе, так что общего падения КПД блока не происходит). Тем не менее, преимущества от использования активного PFC в абсолютном большинстве случаев перевешивают эти недостатки.

Итак, если Вы нуждаетесь в блоке с коррекцией фактора мощности, то обращать внимание надо в первую очередь на модели с активным PFC – только они обеспечивают действительно хороший коэффициент мощности, при этом еще и заметно улучшая прочие характеристики блока питания. С точки зрения домашних пользователей блоки с активным PFC окажутся полезными для владельцев маломощных UPS’ов: допустим, у Вас уже стоит UPS мощностью 500 ВА, из которых 50 ВА потребляет ЖК-монитор, а 450 ВА остаются на системный блок, и Вы собираетесь проапгрейдить последний до современного уровня – а достаточно серьезная современная конфигурация вполне может потреблять от блока питания при максимальной загрузке до 300 Вт. В таком случае, на блоке питания с коэффициентом мощности 0,7 и КПД 80% (это достаточно типичная цифра для хорошего блока) мы получим полную потребляемую от сети мощность 300/(0,75*0,8) = 500 ВА, а на таком же блоке с коэффициентом мощности 0,95 – соответственно, 300/(0,95*0,8) = 395 ВА. Как видите, в случае с блоком питания без PFC замена UPS’а на более мощный неминуема, иначе в случае отключения электричества в неподходящий момент нынешний просто не справится с нагрузкой, а в случае с блоком с активным PFC даже еще остается небольшой запас в 55 ВА. По-хорошему, конечно, в этом расчете надо учитывать еще и то, что на выходе недорогих UPS напряжение имеет не синусоидальную, а трапециевидную форму – однако при этом изменятся лишь абсолютные полученные цифры, преимущество же блока питания с активным PFC сохранится.

И в заключение этого раздела хотелось бы развеять один миф, связанный с PFC: многие пользователи путают коэффициент мощности и коэффициент полезного действия, в то время как это совершенно различные величины. КПД по определению равен отношению выходной мощности блока питания к потребляемой им от сети активной мощности, в то время как коэффициент мощности – отношению потребляемой от сети активной мощности к потребляемой от сети полной. Установка в блок питания схемы PFC влияет на потребляемую им активную мощность лишь опосредованно – за счет того, что сам PFC потребляет некоторую мощность, плюс изменяется входное напряжение основного стабилизатора; основной задачей PFC является уменьшение потребляемой блоком реактивной мощности, которая в расчете КПД никак не учитывается. Поэтому непосредственной связи между КПД и коэффициентом мощности – нет.

Стенд для тестирования блоков питания


Основной стенда для тестирования блоков питания в нашей лаборатории является полуавтоматическая установка, позволяющая устанавливать требуемую нагрузку на шины +5В, +12В, +3,3В и +5В дежурного режима испытуемого блока, одновременно измеряя соответствующие выходные напряжения.


Аппаратная часть установки базируется на 4-канальном ЦАП Maxim MX7226, к выходам которого подключены источники тока. Последние выполнены на операционных усилителях LM324D и мощных полевых транзисторах IRFP064N, установленных на радиаторы с принудительным воздушным охлаждением.


Каждый из транзисторов имеет предельную рассеиваемую мощность 200 Вт, а так как в каждом из наиболее мощных каналов нагрузки (+5В и +12В) используется по три таких транзистора, то установка позволяет тестировать любые существующие на данный момент ATX блоки питания, вплоть до самых мощных – даже с учетом снижения допустимой мощности рассеяния транзисторов по мере роста их температуры допустимая мощность нагрузки по каждому из каналов составляет не менее 400 Вт.

Для измерения установленных токов нагрузки и выходных напряжений тестируемого блока в установке используются два 4-канальных АЦП Maxim MX7824 – один АЦП отвечает за токи, другой – за напряжения.

Все управление установкой, начиная от включения тестируемого блока питания и заканчивая проведением всех возможных тестов, а также регистрация и обработка их результатов, осуществляется с компьютера по порту LPT. Специально для этих целей была написана программа, позволяющая как вручную устанавливать ток нагрузки независимо по каждой из шин, так и выполнять некоторые стандартные тесты блоков питания (например, построение кросс-нагрузочной характеристики, о чем будет сказано ниже) в полностью автоматическом режиме.


Помимо основной установки, для тестирования блоков также используются два вспомогательных приспособления. Во-первых, это генератор прямоугольных импульсов с частотой, дискретно изменяемой от 60 Гц до 40 кГц:


Генератор подключается к тестируемому блоку питания в виде нагрузки – с помощью переключателя можно выбирать, будет ли он подключен к шине +12В или же к +5В, в обоих случаях пиковый ток создаваемой им нагрузки составляет около 1,3 А. Это позволяет оценить, насколько хорошо тестируемый блок питания реагирует на сравнительно мощные импульсы нагрузки прямоугольной формы, следующие с частотами от десятков герц до десятков килогерц.

Во-вторых, для снятия осциллограмм потребляемого блоком питания тока и, одновременно, питающего сетевого напряжения используется обычный шунт на мощных проволочных резисторах суммарным сопротивлением около 0,61 Ом:


К этой плате при тестировании блока питания подключаются щупы цифрового двухканального осциллографа – один его канал фиксирует осциллограмму сетевого напряжения, а другой – осциллограмму потребляемого блоком питания тока. Далее полученные осциллограммы обрабатываются специально написанной для этого небольшой программой, сразу рассчитывающей все интересующие нас параметры – потребляемую им активную, реактивную и полную мощности и, соответственно, коэффициент мощности и КПД блока питания.


Для снятия осциллограмм используется цифровой двухканальный «виртуальный» осциллограф (виртуальность в данном случае означает, что этот осциллограф представляет собой устанавливаемую в компьютер плату и без компьютера, в отличие от обычных осциллографов, работать не может, ибо не обладает собственными аппаратными средствами управления и отображения информации) M221 производства словацкой компании ETC. Осциллограф имеет полосу пропускания аналоговой части 100 МГц, максимальную скорость оцифровки произвольного сигнала 20 млн. сэмплов в секунду и чувствительность от 50 мВ/дел до 10 В/дел. Помимо измерений КПД и коэффициента мощности тестируемых блоков питания, осциллограф используется для оценки размаха, формы и частотного состава пульсаций выходных напряжений блоков питания.


Для быстрой оценки токов и напряжений в процессе тестирования, а также для периодической проверки другого измерительного оборудования, в нашей лаборатории используется мультиметр Uni-Trend UT70D, позволяющий с очень хорошей точностью измерять токи и напряжения, в том числе и несинусоидальной формы, что очень важно при тестировании блоков питания без коррекции фактора мощности – многие измерительные приборы, не имеющие пометки «TrueRMS», не способны адекватно измерять переменные токи и напряжения, чья форма отличается от синусоиды.


Для измерения температуры внутри блока питания нами используется цифровой термометр Fluke 54 Series II с термопарами 80PK-1 и 80PK-3A (наименования всех моделей даны по каталогу Fluke). К сожалению, имеющийся у нас бесконтактный инфракрасный цифровой термометр показал неудовлетворительную точность измерений на блестящих металлических поверхностях (например, на алюминиевых радиаторах блоков питания), что и вынудило нас перейти на использование термопарного термометра.


Для измерения скоростей вентиляторов блоков питания используется оптический тахометр Velleman DTO2234. Он позволяет без малейших проблем проводить измерения скорости вентилятора в закрытом блоке питания, то есть без нарушения его естественного теплового режима – достаточно лишь наклеить на одну из лопастей вентилятора тоненькую полоску отражающего материала.


И, наконец, для обеспечения всех блоков питания одинаковым сетевым напряжением, вне зависимости от его суточных колебаний, а также для обеспечения возможности тестирования блоков при повышенном или пониженном напряжении питания они подключаются к сети через лабораторный автотрансформатор Wusley TDGC2-2000 с допустимой мощностью нагрузки до 2 кВт и пределами регулировки напряжения от 0 до 250В.

Методика тестирования блоков питания


Первым и наиболее важным тестом для любого блока питания является построение так называемой кросс-нагрузочной характеристики. Как я уже говорил в теоретической части статьи, каждое выходное напряжение блока питания зависит от нагрузки не только на соответствующую ему шину, но и от нагрузок на все остальные шины.

Стандартом ATX предусмотрены максимальные допустимые отклонения выходных напряжений от номинала – это 5% для всех положительных выходных напряжений (+12В, +5В и +3,3В) и 10% для отрицательных выходных напряжений (-5В и -12В, из которых, впрочем, в современных блоках осталось только последнее). Кросс-нагрузочной же характеристикой (КНХ) блока называется та область сочетаний нагрузок, при которой ни одно из выходных напряжений не выходит за допустимые рамки.

Строится КНХ в виде области на плоскости, где по горизонтальной оси координат отложена нагрузка на шину +12В, а по вертикальной – суммарная нагрузка на шину +5В и +3,3В. При построении КНХ установка для тестирования блоков питания в полностью автоматическом режиме меняет нагрузку на эти шины с шагом в 5 Вт и, если все выходные напряжения блока на данном шаге уложились в заданные рамки, ставит на плоскости точку, цвет которой – от зеленого до красного – соответствует отклонению каждого из напряжений в данной точке от номинала. Так как используемая нами установка контролирует три основных выходных напряжения, то для каждого блока питания получаются, соответственно, три графика (для каждого из напряжений), на которых одна и та же область будет закрашена разными цветами. Форма области на всех трех одинакова, так как она определяется не для каждого из напряжений в отдельности, а для всех вместе, и выход за допустимые границы любого из напряжений означает, что соответствующей точки не будет на графиках для всех напряжений; закраска же области различна потому, что строится индивидуально для каждого из напряжений. Ниже приведен пример КНХ для блока Macropower MP-360AR Ver. 2, раскрашенная в соответствии с отклонениями напряжения +12В (в статьях я буду приводить анимированные картинки, в которых по очереди будут показываться все три напряжения, текущее напряжение указывается в верхнем правом углу графика, над цветовой шкалой):


На этом графике каждая точка строго соответствует одному шагу измерений, причем для удобства в процессе измерений точки, в которых напряжения вышли за допустимые рамки, обозначаются серым цветом и меньшим размером – это необходимо для удобства экспериментатора, наблюдающего за ходом измерений в реальном времени. После окончания измерений полученные данные обрабатываются с помощью билинейной интерполяции – так вместо отдельных точек получается более удобная для восприятия закрашенная область с четкими краями:


Итак, что мы видим на этом графике? Протестированный блок питания замечательно справляется с нагрузкой по шине +12В – он способен выдавать положенные напряжения при максимальной нагрузке по этой шине и всего лишь 5Вт по шине +5В (5Вт – это типичное начальное значение при наших измерениях; для мощных блоков, нестабильно работающих при столь незначительных нагрузках, оно увеличивается до 15 Вт или 25 Вт).

Ровная вертикальная граница в правой нижней части графика означает, что здесь блок дошел до предела мощности шины +12В (для данного блока она составляет 300Вт), и установка не стала увеличивать ток нагрузки дальше во избежание выхода блока питания из строя. Выше вертикальная граница переходит в наклонную (правый верхний угол графика) – это область, где установка дошла до предельной мощности блока питания (в данном случае она составляет 340Вт), а потому по мере увеличения нагрузки на +5В вынуждена была снижать нагрузку на +12В, чтобы опять же предотвратить выход блока питания из строя или срабатывание его защиты.

Продолжаем обходить контур против часовой стрелки. В верхней части графика наклонная линия переходит в ровную горизонтальную – это область, где установка достигла предельно допустимой нагрузки по +5В, а потом не стала более увеличивать мощность по этой шине, хотя блок питания выдавал напряжения в пределах нормы.

И, наконец, в левой верхней части графика мы видим неровную наклонную линию, которая явно не объясняется пределом по мощности – ведь нагрузка по +12В в этой области слишком мала. Зато эта линия прекрасно объясняется красным цветом графика – при большой нагрузке по +5В и малой по +12В напряжение по шине +12В достигло 5% отклонения, тем самым обозначив границу КНХ.

Таким образом, по этому графику можно сказать, что данный блок питания хорошо держит уровень выходных напряжений и позволяет без проблем получить от него заявленную мощность, но будет предпочтителен для наиболее современных систем с питанием как процессора, так и видеокарты от +12В, ибо перекос нагрузки в сторону этой шины воспринимает лучше, нежели перекос в сторону шины +5В.

Для сравнения давайте посмотрим на КНХ существенно более дешевого блока питания – L&C LC-B300ATX с заявленной мощностью 300Вт. График в данном случае опять же построен только для напряжения +12В:


Отличия от MP-360AR сразу же бросаются в глаза. Во-первых, нижняя линия контура уже не горизонтальная – в правой части она начинает уходить вверх, причем по красному цвету видно, что это было вызвано не только выходом за пределы напряжения +5В (что бывает достаточно часто при большой нагрузке по +12В), но и проседанием напряжения +12В. Во-вторых, на контуре нет верхней горизонтальной «полки», верхняя точка графика соответствует нагрузке по +5В около 150Вт – а это означает, что обещанные производителем по этой шине максимальные 180Вт на практике получить невозможно в принципе, ни при каких комбинациях нагрузок. В-третьих, несмотря на более высокую заявленную мощность по шинам +5В и +3,3В по сравнению с MP-360AR (180Вт против 130Вт), хорошо видно, что наклонная линия в левой верхней части графика у MP-360AR начиналась на мощности нагрузки по +5В более 80 Вт, в то время как у LC-B300 – всего лишь около 50 Вт. Это означает, что, несмотря на формально заявленную большую мощность по шине +5В у LC-B300 по сравнению с MP-360AR, на практике во многих случаях получить большую реальную мощность по этой шине удастся как раз от блока производства Macropower.

Думаю, внимательные читатели уже заметили, что, если построить оба графика в одинаковом масштабе, КНХ блока от Macropower окажется по сравнению с КНХ блока от L&C сильно вытянута вдоль оси +12В. Объясняется это тем, что эти два блока относятся к разным версиям стандарта ATX/ATX12V Power Supply, в которых предпочтительным считалось разное распределение нагрузки между шинами блока питания. Для сравнения ниже на рисунке нанесены КНХ, которыми, по мнению Intel (как составителя всего семейства стандартов ATX) в разные годы должны были обладать блоки питания:


Как видите, изначально стандарт ATX предполагал потребление в основном от шин +5В и +3,3В – и действительно, практически вся начинка компьютера питалась от этих напряжений, на +12В заметную нагрузку создавала разве что механика винчестеров и оптических приводов.

Однако со временем ситуация стала меняться – процессоры становились все мощнее, и питание их от +5В создавало целый ряд проблем для разработчиков материнских плат. Во-первых, на тот момент уже было ясно, что рост энергопотребления процессоров продолжится и дальше, что приведет к большому потребляемому току по +5В, а потому возникнет проблема с подведением таких токов к материнской плате – стандартный разъем может просто не справиться. Во-вторых, разъем питания материнской платы придется либо втискивать рядом с VRM процессора, либо же тащить от него через всю плату к VRM шину, рассчитанную на большие токи, что опять же затруднительно…

В связи с этим Intel предложил стандарт ATX12V, согласно которому процессор должен питаться от шины +12В – очевидно, что при той же мощности потребления это означает в 2,4 раза меньший ток. Однако, так как в основном разъеме ATX всего один провод +12В, пришлось ввести дополнительный 4-контактный разъем ATX12V… впрочем, этим Intel убил сразу двух зайцев – не только заранее решил проблему обгорания контактов разъема из-за слишком больших токов нагрузки, но и упростил для производителей материнских плат дизайн PCB, ибо расположить маленький 4-контактный разъем непосредственно рядом с VRM намного проще, чем больше 20-контактный.

К сожалению, компания AMD не поддержала инициативу Intel, а потому многие владельцы материнских плат под Socket A, из которых даже среди имеющихся в продаже в данный момент 20-25% все еще не имеют разъема ATX12V, в полном объеме испытали проблемы, о которых Intel говорил еще четыре года назад – с появлением мощных процессоров под эту платформу появились и первые сообщения и об обгорающих контактах блока питания, и о сильном перекосе его выходных напряжений (как Вы видите из приведенных выше КНХ, даже дешевые блоки лучше справляются с нагрузкой по +12В)…

Фактически единственный технический минус от внедрения ATX12V – некоторое уменьшение КПД VRM, ибо КПД любого импульсного преобразователя с увеличением разницы между входным и выходным напряжениями уменьшается. Впрочем, это с лихвой компенсировалось увеличением КПД собственно блока питания – как и для разработчиков материнских плат, для разработчиков блоков питания решение ориентироваться на основное потребление по шине +12В сильно упростило дизайн блоков.

Как Вы видите из графиков, версии ATX12V до 1.2 включительно отличались от обычного ATX лишь увеличенным допустимым потреблением по шине +12В. Более серьезные изменения произошли в версии 1.3 – в ней впервые за все время развития компьютерных блоков питания требуемая допустимая нагрузка по шине +5В уменьшилась, при этом нагрузка по шине +12В увеличилась еще больше – фактически началась адаптация блоков питания к наиболее современным системам, в которых все меньше потребителей остается на шине +5В (процессоры давно уже питаются от +12В, а сейчас за ними последовали и видеокарты). В отличие от предыдущих моделей, ATX12V 1.3 блок питания уже не обязан поддерживать стабильные напряжения при большой нагрузке на +5В и малой – на +12В.

И, наконец, последней версией на сегодняшний день является ATX12V 2.0. Как нетрудно заметить, в ней мощность блока питания по шине +5В уменьшилась еще сильнее – теперь она составляет всего 130Вт; зато сильно выросла допустимая мощность нагрузки по +12В. Кроме этого, блоки ATX12V 2.0 приобрели 24-контактный разъем питания материнской платы вместо старого 20-контактного – если четыре года назад старого разъема перестало хватать для питания процессора, в связи с чем был придуман ATX12V, то теперь допустимого тока разъема не хватает уже для питания PCI Express карт. Также в блоках ATX12V появилось два источника +12В, но на самом деле внутри блока они являются одним источником, раздельные лишь ограничения тока срабатывания защиты – согласно требованиям безопасности по стандарту IEC-60950, на шине +12В не допустимы токи более 20А, поэтому и приходится разбивать эту шину на две части. Впрочем, производители в случаях, когда соответствие этому стандарту не требуется, могут просто не устанавливать соответствующую схему – тогда ATX12V 2.0 блок питания с токами по шинам +12В, скажем, 10А и 15А, можно спокойно рассматривать как блок питания с одной шиной +12В с током 25А.

Итак, если возвращаться к рассмотренным выше блокам, то можно сказать, что MP-360AR Ver. 2 соответствует стандарту ATX12V 2.0, а LC-B300 – стандарту ATX12V 1.2, отсюда и такая разница в их КНХ. Впрочем, причина, конечно, не только в формальном соответствии разным версиям стандарта – вспомните, как я сетовал на то, что от LC-B300 на практике невозможно получить заявленную мощность по +5В… а теперь давайте наложим на его график рекомендуемую Intel КНХ для 300-ваттных ATX12V 1.2 блоков:


Как Вы видите, блок попросту не вписывается в требования стандарта для 300-ваттных моделей по допустимой нагрузке на +5В, поэтому рассматривать его как 300-ваттный можно разве что с оговоркой, что ватты эти не слишком честные. Для сравнения можно посмотреть на график того же MP-360AR, но уже с рекомендуемой КНХ для 350-ваттных ATX12V 2.0 блоков:


Как Вы видите, соответствие практически идеальное. Думаю, комментарии относительно сравнительного качества этих двух блоков излишни.

Вообще говоря, соответствовать весьма жестким требованиям Intel к КНХ достаточно непросто – есть не столь много блоков, которые могут этим похвастаться, однако и столь грубое нарушение рекомендаций, как в случае с LC-B300, встречается нечасто.

Относительно же расцветки КНХ можно сказать, что идеалом, конечно, является равномерный зеленый цвет… впрочем, идеал, как известно, обычно недостижим. Достаточно нормальна ситуация, когда каждое напряжение, кроме достаточно стабильного +3,3В, проходит весь диапазон от зеленого или желто-зеленого цвета у одного края графика до красного у другого, бывает также, что зеленого цвета на КНХ нет вообще – это означает, что напряжение было изначально завышено. Самое же плохой является ситуация, когда какое-либо напряжение проходит весь диапазон цветов дважды – от красного у одного края через зеленый в середине до красного у другого края КНХ. Такая ситуация, например, видна у рассмотренного выше LC-B300 и означает, что на одном краю КНХ напряжение сильно просело (очевидно, что при маленькой нагрузке на +5В и большой на +12В последнее может только просесть), а на другом краю – наоборот, сильно выросло; иначе говоря, его стабильность очень сильно оставляет желать лучшего…

И, под завершение описания КНХ, приведу пример идеального блока питания. Выше я уже мимоходом упоминал о блоках питания Antec и OCZ с раздельными вспомогательными стабилизаторами на каждой из основных шин, ниже я предлагаю Вашему вниманию экспериментально измеренную КНХ блока OCZ Technology PowerStream OCZ-470ADJ (это уже полноценная картинка со всеми тремя напряжениями, период смены кадров – 5 сек.):


Как Вы видите, мало того, что весь контур КНХ определяется только допустимой максимальной нагрузкой блока питания, так ни одно напряжение даже не приблизилось к 5-процентному отклонению. К сожалению, пока что такие блоки питания сравнительно дороги…

Разумеется, построением КНХ испытания блоков питания не заканчиваются. Во-первых, все блоки проверяются на стабильность работы при постоянной нагрузке от нуля до максимальной с шагом 75 Вт. Таким образом выясняется, способен ли блок вообще выдержать полную нагрузку.
Во-вторых, по мере увеличения нагрузки измеряется температура диодных сборок блока и скорость вращения вентилятора, которая практически во всех современных блоках питания так или иначе зависит от температуры.

К результатам измерений температуры, впрочем, стоит относиться с некоторым скепсисом – у большинства блоков питания разные конструкции радиаторов и расположение диодных сборок на них, а потому измерения температуры имеют довольно большую погрешность. Тем не менее, в критических случаях, когда блок питания оказывается на грани смерти от перегрева (а такое иногда случается в наиболее дешевых моделях), показания термометра могут оказаться интересными – так, в моей практике были блоки, в которых под полной нагрузкой радиаторы разогревались выше сотни градусов.

Более интересны измерения скорости вращения вентиляторов – несмотря на то, что все производители заявляют их температурную регулировку, практическая реализация может очень сильно отличаться. Как правило, для блоков нижнего ценового диапазона начальная скорость вентилятора уже составляет порядка 2000…2200 об./мин. и по мере прогрева меняется лишь на 10…15%, в то время как для качественных блоков начальная скорость может составлять всего лишь 1000…1400 об./мин., при прогреве на полной мощности увеличиваясь в два раза. Очевидно, что если в первом случае блок питания будет шумным всегда, то во втором пользователи не слишком мощных систем, слабо нагружающих блок питания, могут рассчитывать на тишину.

Также при работе блока питания на полной мощности проводятся измерения размаха пульсаций его выходных напряжений. Напомню, что, согласно стандарту, размах пульсаций в диапазоне до 10 МГц не должен превышать 50 мВ для шины +5В и 120 мВ для шины +12В. На практике на выходе блока могут присутствовать заметные пульсации двух частот – около 60 кГц и 100 Гц. Первая является результатом работы ШИМ-стабилизатора блока (обычно его частота около 60 кГц) и присутствует в той или иной мере на всех блоках питания. Ниже приведена осциллограмма достаточно типичных пульсаций на частоте работы ШИМ, зеленым цветом – шина +5В, желтым – +12В:


Как Вы видите, здесь именно тот случай, когда пульсации на шине +5В вышли за допустимые пределы в 50 мВ. На осциллограмме видна именно классическая форма таких пульсаций – треугольная, хотя в более дорогих блоках питания моменты переключения обычно сглаживаются стоящими на выходе дросселями.

Вторая же частота – это удвоенная частота питающей сети (50 Гц), проникающая на выход обычно из-за недостаточной емкости конденсаторов высоковольтного выпрямителя, ошибок в схемотехнике или же неудачного дизайна силового трансформатора или печатной платы блока. Как правило, эти колебания (в статьях они приводятся с временной разверткой 4 мс/дел) наблюдаются у многих блоков нижнего ценового диапазона и достаточно редко встречаются у моделей среднего класса. Размах этих пульсаций растет пропорционально нагрузке на блок питания и в максимуме также иногда может выходить за допустимые рамки.

Также к блоку питания при нагрузке 150 Вт подключается уже упоминавшийся выше в предыдущем разделе статьи генератор прямоугольных импульсов, после чего с помощью осциллографа измеряется амплитуда импульсов на другом проводе блока питания, то есть не на том, к которому подключен генератор. Таким образом проверяется общая реакция блока на подобную импульсную нагрузку, и, в частности, то, насколько хорошо он будет подавлять помехи от каждого из подключенных к нему устройств. Впрочем, из-за наличия резких всплесков напряжения в моменты переключения генератора точность измерения не слишком высока, однако иногда и из этих измерений можно сделать интересные выводы.

И, наконец, измерения КПД и коэффициента мощности блоков. Пожалуй, это наименее важный и интересный раздел – как показал опыт, эти параметры достаточно близки для различных блоков, а так как для абсолютного большинства пользователей они не имеют никакого значения, так как небольшие их колебания не оказывают никакого влияния на работу компьютера (а больших колебаний среди разных моделей однотипных блоков не наблюдается), то измерения проводятся только в достаточно редких случаях. Так, коэффициент мощности измеряется для блоков, для которых заявлена его коррекция, а КПД – либо заодно с коэффициентом мощности (фактически значение КПД получается автоматически, для этого не требуется дополнительных измерений), либо если по той или иной причине возникают подозрения, что у данного блока он выходит за допустимые рамки, что бывает крайне редко.

Хотелось бы также под конец сказать о том, что я не измеряю и измерять не буду, несмотря на наличие потенциальной возможности. Я весьма негативно отношусь к тестам, в которых измеряется абсолютно максимальная выдаваемая блоком питания мощность – когда в ходе теста нагрузка на блок повышается до момента срабатывания защиты или же просто сгорания блока. Такие тесты дают слишком сильный разброс результатов не только в зависимости от конкретного экземпляра блока, но и в зависимости от того, как именно экспериментатор его нагружает – то есть как распределяется нагрузка по шинам блока. Кроме того, для нормального функционирования компьютера нужна не некая номинальная способность блока питания держать такую-то мощность, а способность выдавать напряжения и пульсации в пределах установленного стандартом допуска, на что в таких тестах, к сожалению, внимание обычно не обращается. Поэтому получаемые в подобных тестах цифры хоть и весьма красивы, но, увы, имеют не слишком много отношения к реальности.

Итак, разработанная нами на данный момент методика тестирования блоков питания позволяет не только весьма детально исследовать поведение блока питания, но и наглядно сравнить различные блоки питания – и особенно наглядным это стало благодаря построению кросс-нагрузочных характеристик, по которым можно весьма объективно и без дополнительных оговорок сказать, что из себя представляет тот или иной блок.

Что такое импульсный источник питания?

Что такое импульсный источник питания?

Импульсный источник питания — это преобразователь мощности, в котором используются переключающие устройства, такие как полевые МОП-транзисторы, которые постоянно включаются и выключаются с высокой частотой; и устройства накопления энергии, такие как конденсаторы и катушки индуктивности, для подачи энергии во время непроводящего состояния переключающего устройства.

Расходные материалы имеют более высокий КПД (до 90%), небольшие по размеру и широко используются в компьютерах и другом чувствительном электронном оборудовании.

Базовые импульсные источники питания (SMPS) подразделяются на категории в зависимости от входного и выходного напряжения источника питания. Основные четыре группы:

  1. AC to DC — Автономный источник питания постоянного тока
  2. DC to DC — Преобразователь
  3. DC в AC — инвертор
  4. AC to AC — Циклоконвертер преобразователя частоты

Топологии SMPS

Конфигурация схемы, называемая топологией, определяет, как мощность передается от входа к выходу.

Большинство топологий состоит из силового трансформатора для обеспечения масштабирования напряжения в зависимости от отношения витков, нескольких выходов в зависимости от количества обмоток и изоляции. Такие топологии, как понижающий и повышающий, не используют трансформатор и, следовательно, не изолированы. Их преобразование мощности достигается только за счет индуктивной передачи энергии.

Неизолированные топологии имеют ограниченное применение и обычно используются в регуляторах постоянного-постоянного тока. Обычно они производят один выходной сигнал, диапазон которого снова ограничен рабочим циклом и входным напряжением.

Выбор используемой топологии зависит от стоимости, эффективности, размера и других требований.

  • Buck — это наиболее распространенный, самый простой и дешевый вариант для неизолированной топологии в качестве приложений с понижением напряжения постоянного тока в постоянный.
  • Boost — повышающий неизолированный
  • Понижающий и повышающий, повышающий и понижающий, неизолированный
  • Обратный ход — изолированное повышение и понижение
  • Передняя изолированная понижающая ступень
  • Двухтактный прямой преобразователь с двумя первичными обмотками
  • Полумост
  • Полный мост

Принцип работы импульсного источника питания (изолированный)

Основными компонентами ИИП являются:

• Входной выпрямитель и фильтр

• Инвертор, состоящий из высокочастотного сигнала и коммутационных устройств

• Трансформатор силовой

• Выходной выпрямитель

• Система обратной связи и управление цепями

Нерегулируемый входной постоянный ток от источника постоянного тока, такого как выпрямитель или батарея, подается в секцию инвертора, состоящую из быстрых переключаемых электронных устройств, таких как полевые МОП-транзисторы и биполярные транзисторы, которые включаются и выключаются.Это приводит к появлению входного напряжения на первичной обмотке в виде импульсов с частотой переключения от 20 до 200 кГц.

Затем выходной сигнал трансформатора выпрямляется и сглаживается для получения требуемых напряжений постоянного тока. Частота, выходящая за пределы слышимого диапазона, обычно является фиксированной, в то время как рабочий цикл может быть изменен, чтобы обеспечить необходимый уровень напряжения.

Преимущества SMPS

  • Конструкции SMPS более компактны и используют трансформаторы меньшего размера. Возможность сокращения расходных материалов является преимуществом и важным требованием для большинства электронных устройств с ограниченным пространством
  • Высокая эффективность от 68% до 90%
  • Гибкая техника
  • Изолированные от трансформатора источники питания имеют стабильные выходы независимо от входного напряжения питания
  • Высокая удельная мощность

Недостатки импульсного блока питания

    • Дополнительные внешние компоненты, которые также требуют больше места
    • Генерация электромагнитных помех и электрических шумов
    • Комплексное проектирование
    • Дорого из-за дополнительных компонентов

Импульсные источники питания используются во множестве приложений, начиная от компьютеров, серверов и сопутствующего оборудования, для домашнего электронного оборудования, безопасности и большей части оборудования с батарейным питанием, где требуются высокая эффективность и небольшие размеры.

Импульсные источники питания

Импульсный блок питания переменного / постоянного тока с двумя изолированными выходами, 65 Вт, 81,6 Вт, 48 В, 1,7 А, с одним выходом, импульсный источник питания IP65, номинальный, 80 Вт, с одним выходом, импульсный источник питания

Какой коэффициент мощности у высоковольтных источников питания?

Источники питания высокого напряжения и информация по технике безопасности

Что такое коэффициент мощности? Каков коэффициент мощности импульсного источника питания?

Коэффициент мощности — это отношение реальной мощности к полной используемой мощности.Обычно она выражается десятичным числом меньше 1. Реальная мощность выражается в ваттах, а полная мощность выражается в ВА (вольт-амперах). Коэффициент мощности импульсного источника питания зависит от того, какой тип входа переменного тока используется: однофазный, трехфазный или с поправкой на активный коэффициент мощности.

Однофазные импульсные источники питания без коррекции обычно имеют довольно низкий коэффициент мощности, например 0,65. Это связано с тем, что в большинстве устройств используется «входной каскад» выпрямителя / конденсатора для создания напряжения на шине постоянного тока.Эта конфигурация потребляет ток только на пике каждого линейного цикла, создавая узкие, сильные импульсы тока, что приводит к низкому коэффициенту мощности.

Трехфазные импульсные источники питания без коррекции имеют более высокий коэффициент мощности, например 0,85. Это связано с тем, что даже несмотря на то, что выпрямитель / конденсатор используется для создания напряжения на шине постоянного тока, есть три фазы, которые аддитивно улучшают общий коэффициент мощности.

Блоки со схемой активной коррекции коэффициента мощности могут иметь очень хороший коэффициент мощности, например 0.98. По сути, преобразователь внешнего интерфейса используется в повышающем режиме, чтобы потребляемый линейный ток имитировал линейное напряжение, резко увеличивая коэффициент мощности.

Почему важен коэффициент мощности? Неисправленные блоки, как правило, ограничивают мощность, которую вы можете получить от конкретной электрической сети. Все сетевые шнуры, автоматические выключатели, соединители и электрические устройства должны быть рассчитаны на максимальный потребляемый ток. С неисправными источниками питания это имеет тенденцию ограничивать фактическую мощность, которая может быть предоставлена ​​конкретной службой.Когда используется источник питания с коррекцией активного коэффициента мощности, максимальные линейные токи намного ниже, что позволяет использовать больший ток для источника питания, а более высокая выходная мощность источника питания может быть обеспечена той же электрической службой.

Кроме того, может быть меньше гармонический шум, создаваемый источником питания в линии переменного тока. Еще одно преимущество заключается в том, что активная коррекция коэффициента мощности может обеспечить универсальное входное напряжение, позволяя источникам питания работать по всему миру в широком диапазоне входных напряжений, например от 88 В до 264 В переменного тока.Блоки с коррекцией коэффициента мощности, безусловно, имеют некоторые преимущества.

Источники питания AC-DC (Импульсные) | Технология Micromax

Micromax Technology предлагает широкий спектр источников питания AC-DC (импульсных), включая открытые и закрытые конфигурации с различными выходными конфигурациями и функциями, наши блоки питания разработаны для удовлетворения потребностей приложений в различных отраслях промышленности.

Преобразователи переменного тока в постоянный используют импульсный стабилизатор для управления преобразованием электроэнергии наиболее эффективным способом.Хотя существует два основных типа регулируемых источников питания, переключение источников питания переменного тока в постоянный относительно надежнее и эффективнее, чем линейные преобразователи переменного тока в постоянный.

Обеспечивая соответствие нашей конструкции международным стандартам, мы предоставляем решения для приложений с низким, средним и высоким энергопотреблением от проверенных мировых брендов.

Нужен нестандартный блок питания?

Если наши блоки питания AC-DC (импульсные) не являются лучшим решением для вашего приложения, поговорите с нами о блоке питания нестандартной конструкции, отвечающем потребностям вашего бизнеса.

Купить

Посетите наших партнеров s-POWER.com.au, чтобы купить блоки питания переменного тока в постоянный (импульсные) в Интернете.

ВИДЕО: Линейные и импульсные источники питания — в чем разница?

Ключевые особенности нашей линейки импульсных блоков питания AC-DC по марке

Adel System

Система Adel предлагает действительно полный спектр промышленных блоков питания для целого ряда различных приложений.Широкий диапазон входных напряжений позволяет им работать в любой части мира. Сертифицированы UL и CSA, их конструкция основана на многолетнем опыте работы с более чем 240 моделями, они монтируются на DIN-рейку, просты и безопасны, а также обеспечивают защиту IP20. В ассортимент входят блоки питания FLEX, PSM и PST.

Statronics

Statronics имеет давний и впечатляющий портфель высококачественных источников питания переменного тока в постоянный (импульсный). Они имеют как открытые, так и закрытые конфигурации с множеством функций и соответствуют международным стандартам.

Преимущества коммутационных устройств постоянного и переменного тока Statronics:

  • Достигните КПД до 91%
  • Компактный размер
  • Гарантия 3-5 лет
  • Широкий диапазон входного напряжения (от 90 до 264 В переменного тока)
  • Монтаж на DIN-рейку доступен для большинства продуктов.

КПД

Statronics посвящены вопросам энергоэффективности и уделяют этому большое внимание в процессе проектирования. Контроль рабочего цикла позволяет регулировать выходное напряжение, когда МОП-транзисторы переключаются между полностью включенными или полностью выключенными.В результате минимальные потери между входом и нагрузкой приводят к КПД до 91%.

Блок питания для DIN-рейки

Statronics предлагает широкий ассортимент источников питания на DIN-рейку для промышленного применения, которые подходят для ограниченного пространства в шкафах. Для больших требований к мощности у нас есть блоки, которые можно подключать параллельно для достижения высоких требований к мощности.

Что такое переключатель напряжения источника питания?

Переключатель напряжения источника питания, иногда называемый переключателем напряжения , представляет собой небольшой переключатель, расположенный на задней панели большинства блоков питания (БП) настольных компьютеров.

Этот переключатель используется для установки входного напряжения источника питания на 110/115 или 220/230 В.Другими словами, он сообщает источнику питания, сколько энергии поступает от источника питания.

Блок питания Sentey 725 Вт. Sentey, inc.

Какое правильное напряжение источника питания?

Нет однозначного ответа на вопрос, какую настройку напряжения следует использовать, потому что она определяется страной, в которой будет использоваться блок питания.

Для получения дополнительной информации о том, на какое напряжение установить переключатель напряжения источника питания, обратитесь к Руководству по розеткам для других стран, предоставленному компанией Voltage Valet.

Например, если вы живете в США, переключатель напряжения питания на блоке питания вашего компьютера должен быть установлен на 120 В. Однако, если, скажем, во Франции, вам следует использовать настройку 230 В.

Важные факты о напряжении источника питания

Блок питания может использовать только то, что предоставляется источником питания. Таким образом, если розетка передает напряжение 220 В, а блок питания установлен на 110 В, будет думать, что напряжение ниже, чем оно есть на самом деле, что может привести к повреждению компонентов компьютера.

Однако верно и обратное — если источник питания установлен на 220 В, даже если входящая мощность составляет всего 110 В, система может даже не запуститься, потому что ожидает большей мощности.

Опять же, просто используйте ссылку Voltage Valet выше, чтобы узнать, какое напряжение источника питания необходимо установить.

Если переключатель напряжения установлен неправильно, выключите компьютер, а затем выключите кнопку питания на задней панели блока питания. Полностью отсоедините кабель питания, подождите минуту или две, а затем переведите переключатель напряжения в правильное положение, прежде чем снова включить источник питания и снова подсоединить кабель питания.

Учитывая, что вы читаете об изменении напряжения источника питания, вполне вероятно, что вы используете свой компьютер в другой стране. Поскольку вы не можете использовать блок питания без кабеля питания, помните, что, вероятно, вам понадобится переходник для вилки, чтобы соответствовать вилке источника питания.

Например, показанный ниже кабель питания NEMA 5-15 IEC 320 C13 подключается к обычной североамериканской розетке с плоскими штырями, но не может подключаться к европейской розетке с отверстиями.

Для такого преобразования вы можете использовать адаптер для розетки.

Почему в моем источнике питания нет переключателя напряжения?

Некоторые блоки питания не имеют ручного переключателя напряжения питания. Эти блоки питания либо автоматически определяют входное напряжение и устанавливают его сами, либо могут работать только в определенном диапазоне напряжений (который обычно указывается на этикетке на блоке питания).

Не думайте, что, поскольку вы не видите переключатель напряжения источника питания, устройство может автоматически настраиваться.Вполне возможно, что ваш предназначен только для использования с определенным напряжением. Однако эти типы блоков питания обычно встречаются только в Европе.

Подробнее о переключателях напряжения питания

Вы можете установить блок питания, открыв корпус компьютера. Однако некоторые его части, включая переключатель напряжения и переключатель питания, доступны через заднюю часть корпуса компьютера.

Большинство переключателей напряжения источника питания имеют красный цвет, как в примере на этой странице.Он может быть расположен между кнопкой включения / выключения и кабелем питания, но если нет, то где-то в этом месте.

Если переключить напряжение источника питания пальцами слишком сложно, используйте что-нибудь твердое, например ручку, чтобы изменить направление.

FAQ

  • Опасно ли устанавливать неправильное напряжение на переключателе напряжения?

    Да. Вы рискуете повредить или поджарить свои компоненты, но взрыв или пожар маловероятны, учитывая меры безопасности, встроенные в большинство современных блоков питания.

  • Есть ли практическое правило выбора напряжения?

    115 В является стандартным в США, а в Европе и других странах — 230 В. Вы можете обратиться к руководству по напряжению для каждой страны, чтобы узнать, что вам следует использовать в вашей конкретной ситуации.

Спасибо, что сообщили нам!

Расскажите, почему!

Другой Недостаточно подробностей Сложно понять

Как тестировать и использовать в приложениях

Два основных типа источников питания, линейный и импульсный (SMPS), работают по совершенно разным принципам и имеют отличительные характеристики.Работа по проектированию и обслуживанию каждого из них требует совершенно разных взглядов.

Внутри ИИП.

В настоящее время ИИП широко используется из-за его большей эффективности, более низкой стоимости и лучших весовых и тепловых характеристик. Есть некоторые недостатки, которые, однако, можно устранить путем тщательного планирования на этапе проектирования.

Сначала мы вернемся к старому линейному источнику питания. Это была привычная часть аналоговых телевизоров с ЭЛТ, что привело к значительному весу из-за тяжелого силового трансформатора.Однако это было плюсом, потому что несколько вторичных ответвлений обеспечивали любое количество напряжений, необходимое для смещения, накала, отклонения кинескопа и т. Д.

В линейных источниках питания активные устройства работают на линейной части своих кривых отклика. Это отличается от SMPS, где сначала входная мощность преобразуется в прямоугольные волны с изменяющимся рабочим циклом. Активные компоненты работают в нелинейных режимах. Когда компоненты работают в линейных частях своих кривых отклика, они эффективно действуют как переменные резисторы, рассеивающие мощность (из-за I 2 R).Вот почему значительная часть входной мощности рассеивается в виде тепла, и это ситуация с линейным источником питания.

Линейный источник питания состоит из ряда ступеней. Линия переменного тока, часто начинающаяся со штепсельной вилки для приема однофазного сетевого питания 120 В, проходит через отверстие с втулкой в ​​шкафу, где на входе всегда есть предохранитель и выключатель с дополнительным индикатором питания. Он питает первичную обмотку силового трансформатора, который может иметь любое количество вторичных обмоток.Помимо возможности подачи нескольких напряжений, этот тип трансформатора не имеет электрического соединения между первичной и вторичной обмотками, поэтому он известен как изолирующий трансформатор. (Заземление не проходит через трансформатор, если это не автотрансформатор, где первичная и вторичная обмотки представляют собой одну обмотку, ответвленную в разных точках.)

Что хорошо в линейном блоке питания, так это то, что за потоком мощности легко следить. Он поступает от выпрямителя, состоящего из одного или нескольких диодов, к конденсаторам электролитической фильтрации, подключенным параллельно для устранения пульсаций переменного тока, и иногда к более дорогим последовательно соединенным индукторам для дополнительной очистки постоянного тока.Затем идет линейный регулятор и конечный выход постоянного тока. Все это легко проектировать и диагностировать. Чаще всего причиной неисправностей являются электролитические конденсаторы, которые можно визуально осмотреть и проверить с помощью мультиметра.

Как упоминалось ранее, полупроводники в линейном источнике питания могут эффективно образовывать большое сопротивление, которое рассеивает тепло, а линейные источники питания включают в себя громоздкие компоненты (например, трансформатор), которые делают источник питания физически большим. Для небольших бытовых приборов нагрев может не быть проблемой, но большие размеры и вес компонентов могут быть проблемой.Сотовые телефоны и ноутбуки в том виде, в каком мы их знаем, были бы невозможны с линейными источниками питания.

Напротив, SMPS включает транзистор, который работает как цифровой переключатель. Выключатель либо выключен, практически не проводя тока, либо полностью включен с небольшим сопротивлением. Единственный раз, когда тепло генерируется и должно рассеиваться, — это во время переключения включения / выключения. Чрезвычайно быстрое время нарастания и спада прямоугольной волны делает эти переходы исчезающе короткими. Этим фактором объясняется высокий КПД ИИП.Кроме того, как мы увидим, изолирующий трансформатор работает на частоте переключения, поэтому он может быть меньше по сравнению с трансформатором линии электропередачи 60 Гц, который является важной частью линейного источника питания.

Небольшой размер компонентов, большая эффективность и низкая стоимость привели к широкому использованию SMPS почти во всем электронном оборудовании. Последние инновации позволили использовать его в приложениях с высокой мощностью. Но реализация SMPS не обошлась без проблем.Одним из них является генерация электронного шума, который, если его не уменьшить, может появиться как на входе, так и на выходе SMPS. Кроме того, электронный шум, создаваемый в процессе переключения, может распространяться как излучение от устройства. Это связано с тем, что прямоугольная волна с ее почти мгновенным временем нарастания и спада напоминает высокочастотный источник энергии, богатый разрушающими гармониками.

При включении SMPS выдает пусковой ток, который может повлиять на близлежащее чувствительное оборудование через систему распределения питания.Еще одна потенциальная проблема, вызванная гармониками, — это нагрев нейтрального проводника в источнике питания. Решение состоит в том, чтобы увеличить размер этого провода. Вообще говоря, даже там, где требуются доработки, общие преимущества SMPS значительны независимо от масштабирования.

Регулировка напряжения является неотъемлемой частью ИИП. Он работает, изменяя соотношение между временем работы и временем отключения. Этот метод является решающим шагом вперед по сравнению с линейным источником питания, в котором выходное напряжение должно рассеиваться в полупроводнике.

Выход SMPS является функцией его входа, но не зависит от соотношения первичных и вторичных витков в силовом трансформаторе, как в линейном источнике питания. Напротив, одна конфигурация, которая типична для SMPS, состоит в том, чтобы иметь постоянное напряжение, последовательно включенное с катушкой индуктивности и переключателем, управляемое прямоугольной волной. Измеренное на переключателе размах напряжения может превышать напряжение постоянного тока, измеренное на входе. Это одна из причин, по которой SMPS работают не для слабонервных.

Более высокое напряжение возникает из-за того, что катушка индуктивности создает индуцированное напряжение в ответ на изменения тока.Это напряжение добавляется к напряжению источника постоянного тока в течение периода времени, когда переключатель разомкнут. Еще одна доработка — это добавление к переключателю диода и конденсатора. Пиковое напряжение будет храниться в конденсаторе в виде электрического заряда. В этот момент конденсатор становится источником постоянного тока, а общее выходное напряжение становится больше, чем напряжение постоянного тока на входе. Это повышающий преобразователь, работающий от постоянного, а не переменного тока. Это режим переключения, эквивалентный повышающему трансформатору в линейном источнике питания.

Еще одна разновидность режима переключения — это повышающий-понижающий преобразователь, который изменяет полярность выхода по отношению к входу. Другой вариант реализации — это понижающая схема, которая увеличивает средний выходной ток, причем платой за это является более низкое выходное напряжение.

Конфигурация SMPS зависит от многих факторов. Выходной ток всегда зависит от входной мощности. Но с многочисленными топологиями схем и различными методами управления переключателем, такими как широтно-импульсная модуляция, есть бесконечные комбинации.Таким образом, кривая обучения намного круче по сравнению с линейным источником питания.

Основная трудность при проведении измерений SMPS заключается в том, что часто представляющая интерес форма волны представляет собой пульсацию милливольтного уровня, лежащую на вершине сигнала в диапазоне 100 В. Точно так же компоненты источника питания могут работать при напряжении около 100 В в одном состоянии и при милливольтах в другом. Такой большой динамический диапазон может стать проблемой для восьмиразрядных оцифровывающих осциллографов, обычно используемых в электронных лабораториях.

Например, одним из распространенных измерений SMPS является определение потерь при переключении и средних потерь мощности в коммутационном устройстве.Первым шагом является определение напряжения на коммутационном устройстве во время выключения и включения. Напряжение на коммутационном устройстве имеет широкий динамический диапазон. Напряжение на переключающем устройстве во включенном состоянии зависит от типа переключающего устройства. Напряжение в закрытом состоянии зависит от рабочего входного напряжения и топологии питания. При максимальном входном напряжении для SMPS со входом 120 В напряжение в выключенном состоянии на переключающем устройстве может достигать 750 В. Во включенном состоянии
напряжение на тех же клеммах может варьироваться от нескольких милливольт до около одного вольт.

Для захвата таких сигналов вертикальный диапазон осциллографа должен быть установлен на 100 В / дел. При этой настройке многие осциллографы принимают напряжение до 1 кВ. Проблема с использованием этого параметра заключается в том, что минимальная амплитуда сигнала, которую может разрешить восьмибитный осциллограф, составляет 1000/256, или около 4 В.

Некоторые современные осциллографы предлагают прикладное программное обеспечение питания, которое решает эту проблему, позволяя пользователю вводить значения R DSON или V CEsat для главного полупроводникового переключателя из таблицы данных устройства, вместо того, чтобы пытаться измерить их напрямую.В качестве альтернативы, если измеренное напряжение находится в пределах чувствительности осциллографа, прикладное программное обеспечение может использовать полученные данные для своих расчетов, а не значения, введенные вручную.

Вот как Tektronix описывает влияние задержки распространения на измерения напряжения и тока SMPS. Tek — один из производителей прицелов, которые предоставляют пакеты для устранения перекосов и подобных проблем, которые решат проблему на его оборудовании.

Другая проблема, возникающая при измерениях SMPS, касается использования пробников напряжения и тока.Необходимо измерить напряжение и ток через переключающее устройство, будь то полевой МОП-транзистор или биполярный транзистор (обычно IGBT). Для этой задачи требуются два отдельных датчика: высоковольтный дифференциальный пробник и токовый пробник. Каждый из этих пробников имеет различную задержку распространения. Разница в этих двух задержках, известная как
как перекос, вызывает неточные временные измерения и искажения отображаемых форм сигналов мощности.

Задержки распространения сигнала пробника могут повлиять на измерения максимальной пиковой мощности просто потому, что мощность является произведением напряжения и тока.Если две перемноженные переменные не идеально выровнены по времени, результат будет неверным.

К счастью, есть способы выровнять показания датчика, чтобы не пострадали точность измерений, например потери переключения. Некоторое программное обеспечение для измерения мощности автоматически устраняет перекос зондов. Здесь программное обеспечение берет на себя управление осциллографом и регулирует задержку между каналами напряжения и тока с использованием сигналов тока и напряжения под напряжением.

Также доступна функция статической компенсации перекоса.Эта функция использует тот факт, что определенные пробники напряжения и тока имеют постоянные и повторяемые задержки распространения. Встроенная таблица времени распространения для выбранных пробников позволяет функции статической компенсации перекоса автоматически регулировать задержку между выбранными каналами напряжения и тока.

Дифференциальные и токовые пробники могут иметь небольшие смещения, которые следует удалить перед выполнением измерений. Некоторые датчики имеют встроенный автоматический метод удаления смещения. Для других датчиков требуется удаление смещения вручную.Большинство пробников дифференциального напряжения имеют встроенные регуляторы смещения постоянного тока, что делает удаление смещения относительно простым.

Точно так же датчики тока нуждаются в настройке перед выполнением измерений. Дифференциальные и токовые пробники являются активными устройствами, и всегда будет присутствовать некоторый низкий уровень шума, даже в состоянии покоя. Этот шум может ухудшить измерения, основанные на данных формы сигнала как напряжения, так и тока. Следовательно, некоторые программы измерения мощности включают в себя функции преобразования сигнала, которые сводят к минимуму влияние собственных шумов датчика.

Наконец, все дело в коэффициенте мощности, который является заботой как менеджера объекта, так и коммунального предприятия. Линейный источник питания обычно имеет низкий коэффициент мощности. SMPS без коррекции коэффициента мощности потребляет большой ток, совпадающий с пиками формы волны переменного тока. Эту проблему можно решить с помощью хорошо продуманной коррекции коэффициента мощности. Точно так же сильный пусковой ток в SMPS может быть уменьшен с помощью оборудования плавного пуска.

Подводя итог, по сравнению с линейным источником питания, SMPS является эффективным и недорогим.Однако его гораздо большая сложность требует опыта, выходящего за рамки простой электроники.

Как работает импульсный источник питания

Как работает импульсный источник питания

В этом разделе мы дадим очень краткое объяснение того, что происходит внутри импульсного источника питания. Опять же, мы настоятельно рекомендуем вам прочитать нашу статью о PSU 101, если вы хотите получить более подробный анализ.

Что внутри и как оно работает?

Импульсный источник питания состоит из нескольких ступеней.Фильтр сетевого питания находится сразу за входом, отфильтровывая скачки, гармоники и различные другие нежелательные явления, обнаруживаемые в электросети. Он также предотвращает воздействие электромагнитных помех, создаваемых блоком питания, на расположенные рядом устройства. На втором этапе поток мощности переменного тока выпрямляется и экранируется одним или несколькими мостовыми выпрямителями. На данный момент мы имеем дело с напряжением около 325 В (при входном напряжении 230 В), которое подается на преобразователь APFC. Полевые транзисторы APFC (обычно два) разделяют промежуточное напряжение постоянного тока на постоянные последовательности импульсов.Эти импульсы сглаживаются конденсатором (-ами) большой емкости и подаются на главные переключатели. Последний прерывает сигнал постоянного тока, поступающий от сглаживающего конденсатора, на импульсы, амплитуда которых является величиной входного напряжения, а рабочий цикл регулируется контроллером импульсного регулятора. Таким образом, сигнал постоянного тока преобразуется в прямоугольный сигнал переменного тока, который подается на главный трансформатор. Чем выше частота переключения первичных переключателей, тем меньше размер основного трансформатора, и мы также получаем выигрыш в отношении шума EMI, подавления пульсаций и переходной характеристики.С другой стороны, более низкие скорости переключения повышают эффективность, хотя требуется трансформатор большего размера и увеличивается шум электромагнитных помех, снижается подавление пульсаций и переходная характеристика становится медленнее.

Внутреннее устройство Corsair AX1500i. Это, наверное, самый продвинутый коммерческий блок питания на сегодняшний день.

В конце концов, потребуются разные напряжения: 3,3, 5 и 12 В, а это означает, что простые импульсные блоки питания ПК имеют либо одну выходную шину с разными ответвлениями для каждого напряжения, либо отдельные шины для каждого напряжения.Верхние блоки питания даже имеют отдельные катушки для напряжений (если они не используют резонансный преобразователь LLC, поскольку блоки питания с ними не нуждаются в катушках; даже если они существуют, они просто играют роль в процессе фильтрации), что затем корректируются и сглаживаются второй раз после преобразования. Самое главное, чтобы эти напряжения оставались постоянными. Независимо от того, находится ли компьютер в режиме ожидания или при полной нагрузке, напряжения не могут отклоняться от своих характеристик более чем на пять процентов в соответствии со спецификацией ATX.Схема регулятора гарантирует, что это так.

Это подводит нас к следующей теме: эффективность. Если вы ищете новую машину, вы спросите своего местного дилера: «Итак, сколько миль на галлон у этой машины?» БП могут не сжигать бензин, но вам все равно нужно следить за их эффективностью. Действительно, это одна из областей, где большинство строителей неосознанно тратят больше энергии, увеличивая стоимость ПК в течение срока его службы. Хотите убедиться, что вы не совершили этой ошибки? Взгляните на следующую страницу!

Импульсные источники питания | Lovato Electric

Выберите вашу страну…Global сайт —————- CanadaChinaCroatiaCzech RepublicGermanyFranceItalyPolandRomaniaRussian FederationSpainSwitzerlandTurkeyUnited Арабские EmiratesUnited KingdomUnited Штаты —————- AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua И BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia И HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика TheCook IslandsCosta RicaCote D’ivoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland (Мальвинские) острова Фарерские IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Territor iesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-bissauGuyanaHaitiHeard остров и МакДональда IslandsHoly See (Vatican City State) HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Исламская Республика OfIraqIrelandIsraelItalyJamaicaJapanJordanKazakstanKenyaKiribatiKorea, Корейская Народно-Демократическая Республика OfKorea, Республика OfKosovoKuwaitKyrgyzstanLao Народная Демократическая RepublicLatviaLebanonLesothoLiberiaLibyan Арабская JamahiriyaLiechtensteinLithuaniaLuxembourgMacauMacedonia, бывшая югославская Республика OfMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные Штаты OfMoldova, Республика OfMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Марианские островаНорвегияОманПакистанПалауПалестинская территория, оккупированнаяПанамаПапуа-Новая ГвинеяПарагвайПеруФилиппиныПиткэрнP olandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Киттс И NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Фолиант И PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Джорджия и Южные Сандвичевы IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, провинция ChinaTajikistanTanzania, Объединенная Республика OfThailandTogoTokelauTongaTrinidad И TobagoTunisiaTurkeyTurkmenistanTurks И Кайкос IslandsTuvaluUgandaUkraineUnited Араб ЭмиратыВеликобританияСоединенные ШтатыМалые отдаленные острова СШАУругвайУзбекистан ВануатуВенесуэлаВьетнамВиргинские острова, Британские Виргинские острова, СШАs.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *