Автономное питание – Автономное питание. Виды и работа. Источники и применение

Содержание

Автономное питание. Виды и работа. Источники и применение

Строительство в редко заселенной местности сопровождается рядом трудностей. С одной стороны проживание на окраине является залогом тишины, покоя и положительной экологической ситуации. В то же время в таких местах имеются проблемы с инфраструктурой и коммуникациями. Отсутствие электричества является основной проблемой, которую нужно решать в первую очередь. Прокладка электрической линии от центральной сети стоит дорого, поэтому экономически выгодным решением будет автономное питание участка.

Преимущества и недостатки внедрения автономного питания
Неоспоримым достоинствам перехода на собственную электросеть являются:
  • Полная независимость от централизованного электроснабжения.
  • Меньшая себестоимость 1 кВт электричества при использовании альтернативных источников энергии.
  • Стабильность электроснабжения.
  • Возможность продажи избыточно сгенерированного электричества в сеть.

Имея в своем распоряжении систему автономного питания дома можно бесперебойно получать электричество даже в те моменты, когда окружающие его временно лишены по причине выполнения ремонтных работ на ЛЭП.

Автономные системы имеют и недостатки. К ним можно отнести:
  • Дороговизна оборудования.
  • Потеря полезного пространства, требуемого на размещение оборудования.
Альтернативные источники энергии для питания дома
Сейчас развитие технологий позволяет использовать в качестве источника электроэнергии следующие системы:

Все эти виды оборудования имеют разную стоимость, а также рентабельность. Кроме этого для их установки требуется соблюдение определенных условий, что не всегда возможно в отдельных случаях. Это в первую очередь зависит от местонахождения участка и прочих факторов.

Бензиновые и дизельные генераторы

Такие генераторные установки являются самыми безотказными, при этом они стоят дешевле прочих систем. К сожалению, сама себестоимость получения 1 кВт энергии у них очень высокая. Такое оборудование представляет собой двигатель внутреннего сгорания, который подключается к генерирующей электричество катушке. Мотор раскручивает ее, а она в свою очередь создает электрический ток.

Самыми компактными являются бензиновые генераторы. Они бывают очень легкими, но в таком исполнении по мощности способны обеспечить энергией только несколько слабых бытовых приборов, таких как телевизор, вентилятор и освещение. Более серьезные генераторы выдают достаточно энергии для полноценного пользования всем имеющимся бытовым оборудованием в доме. И они довольно производительны чтобы запитать серьезные потребители, такие как духовой шкаф, микроволновая печь или водонагревательный бойлер.

Самыми громоздкими, но и выгодными в плане соотношения затрат на топливо и получаемую энергию являются дизельные генераторы. Но они, как и бензиновое оборудование, редко используются как полноценное автономное питание. Дороговизна получения энергии вынуждает их применять только в качестве резервного источника на момент перебоев с центральной электросетью.

Расход дизельного генератора для получения 1 кВт в час составляет 250 г горючего. Таким образом, даже при использовании генератора для питания только телевизора, холодильника и светильника, за час будет сжигаться примерно литр дизельного топлива. Постоянно платить такую цену за столь малый объем электричества абсолютно невыгодно.

Кроме высокой себестоимости такое оборудование не лишено и прочих недостатков:
  • Шумность в работе.
  • Необходимость в ручной периодической дозаправке бака.
  • Невозможность круглосуточной непрерывной работы, поскольку оборудование нуждается в охлаждении.
  • Сложности с запуском в холодное время года, особенно дизельных генераторных машин.

Поскольку такое автономное питание применяется как временное при перебоях в центральной электросети, то оно зачастую подключается к нему параллельно. Кроме самого генератора, со встроенным в него инвертором для преобразования электроэнергии из постоянного тока в переменный, применяется еще система автоматического пуска. Она берет на себя обязанность запуска электрогенератора при отключении питания в центральной сети. Оборудование может настраиваться под различные параметры. К примеру, генератор запускается через 2 или 3 минуты после пропажи электричества. Таким образом, отпадает необходимость в обычном ручном запуске. Как только напряжение в центральной сети снова начнет поступать, оборудование самостоятельно отключиться и двигатель генератора остановится.

Автономное питание на солнечных батареях

Такое автономное питание является намного предпочтительнее, чем топливные генераторы на двигателях внутреннего сгорания. Самым главным достоинством подобных систем является очень низкая себестоимость получения 1 кВт энергии. Для работы солнечной батареи требуется только солнечный свет, который достается даром. Принцип таких систем заключается в преобразовании световых фотонов в свободные носители электрического заряда.

Чтобы такая система выдавала действительно достаточную мощность для работы бытовых приборов в доме, требуется, чтобы она имела большую площадь. Один квадратный метр поверхности солнечной батареи обеспечивает мощность около 100 Вт, при напряжении до 25 В. Это очень мало, и достаточно только для медленной зарядки аккумуляторной батареи или питания лампочек освещения.

Чтобы солнечная батарея могла давать электрический ток требуемых параметров, требуется установка дополнительного оборудования:

Инвертор преобразует постоянное напряжение в переменное, доводя его под идентичные параметры с электричеством на 220В с центральной сети. В отдельных случаях солнечную батарею можно подсоединять к оборудованию нечувствительному к параметрам напряжения. Это может быть нагревательный ТЭН подогревающий воду для хозяйственных нужд или в системе отопления.

Чтобы получить все преимущества использования электростанции требуется накопление избыточной энергии для ее применения в последующем. Такой источник энергии позволяет генерировать электричество только днем при достаточно ярком солнечном свете. Ночью батареи полностью бесполезны. Для решения данной проблемы применяется контроллер заряда, который осуществляет подзарядку аккумулятора. Накопленное на нем электричество полностью или частично расходуется вечером и ночью, а с утра заряд снова восполняется от солнечных панелей.

На первый взгляд солнечные панели это абсолютно идеальное решение, когда требуется экономически выгодное автономное питание дома.

Однако такие системы не лишены и недостатков:
  • Высокая стоимость солнечных панелей и прочего оборудования.
  • Необходимость в периодической чистке поверхности батарей от слоя пыли, снижающего их эффективность.
  • Батареи занимают много места, и требуют размещения на солнечной стороне участка.

Многие недостатки электростанций на солнечных батареях вполне решаемы. Зачастую проблемы с размещением такого оборудования решаются его установкой на крыше, тем самым не занимается полезное пространство. Это сразу же решает и проблему с затенением, поскольку мелкие фруктовые деревья и хозяйственные постройки не создают мешающей тени. Что касается высокой стоимости оборудования, то современные солнечные панели имеют большой ресурс, поэтому они успевают окупиться намного раньше, чем выйдут из строя. Однако стоит учитывать, что такой источник энергии подразумевает постоянную зарядку и разрядку аккумулятора. От этого его ресурс быстро сокращается. Чтобы иметь достаточный запас энергии ночью, АКБ придется периодически менять.

Автономное питание от ветра

В этом случае источником энергии выступает ветрогенератор. Это тоже довольно дорогостоящее оборудование, но отличающееся большей компактностью, чем солнечная электросистема. Можно сказать, что ветряки сочетают в себе конструктивные особенности генераторов на двигателях внутреннего сгорания и солнечных батарей. Ветряки и генераторы на горючем похожи, но первые получают крутящий момент в результате отталкивания лопастей ветром, что естественно бесплатно, а машины на дизельном топливе или бензине извлекают его от двигателя. Схожесть ветряков с солнечными панелями заключается в необходимости применения аналогичных вспомогательных элементов – инвертора, контроллера и аккумуляторных батарей.

Содержать ветровой генератор намного дешевле, чем оборудование работающее на горючем. Объективно такие системы почти во всем уступают солнечным панелям, хотя в отдельных случаях и превосходят.

К положительным сторонам ветряков можно отнести:
  • Очень низкая себестоимость получения 1 кВт энергии.
  • Необходимость небольшой площади для установки.
  • Ремонтопригодность системы.
Что касается недостатков, то их много:
  • Сильный шум при работе.
  • Нестабильность получения энергии при отсутствии ветра достаточной силы.
  • Сложность обслуживания по причине расположения ветрогенератора на возвышении.
  • Создание помех влияющих на работу средств связи.
  • Необходимость расположения на удалении в радиусе 20 м от построек и высоких деревьев.

Гул от работы ветряка зачастую невыносим, особенно если он давно не обслуживался. Его создают не только подшипники, но и ветер, контактирующий с лопастями. Как следствие такое автономное питание не подойдет в том случае, когда ветрогенератор нужно ставить близко к дому.

Похожие темы:

tehpribory.ru

Автономные системы электроснабжения

Содержание:
  1. Автономные системы электроснабжения частного дома
  2. Генераторы и мини-электростанции
  3. Аккумуляторы и источники бесперебойного питания
  4. Электроснабжение частного дома солнечными батареями
  5. Ветрогенераторные установки

Довольно часто возникает ситуация, когда место для строительства частного дома во всех отношениях просто идеальное, но в то же время отсутствует возможность подключения к централизованным инженерным сетям. Особенную остроту приобретает вопрос обеспечения электричеством, без которого невозможно нормальное функционирование современных объектов. Поэтому наилучшим выходом из такого положения будут автономные системы электроснабжения, обеспечивающие полную независимость от центральных электрических сетей, без какого-либо ущерба для экологии.

Использование автономных систем обойдется значительно дешевле, чем прокладка новой линии электропередачи, требующая значительных материальных затрат. Автономный источник питания находится в полной собственности хозяина дома. При регулярном техническом обслуживании он сможет эксплуатироваться в течение длительного времени.


Автономные системы электроснабжения частного дома

Автономные инженерные сети широко используются в частных домах. Собственное водоснабжение, канализация и система отопления дают полную независимость от местных коммунальных служб. Гораздо сложнее решается вопрос обеспечения электричеством, однако при правильном подходе с использованием альтернативных источников питания, эта проблема сравнительно легко преодолевается. Существует несколько вариантов автономного электроснабжения, каждый из которых является наиболее подходящим для конкретных условий эксплуатации, в том числе и солнечные системы электроснабжения.

Все автономные системы имеют единый принцип работы, но отличаются первоначальными источниками электроэнергии. При их выборе учитываются различные факторы, в том числе и расходы на эксплуатацию. Например, бензиновые или дизельные генераторы постоянно требуют топливо. Другие же, условно относящиеся к так называемым вечным двигателям, не нуждаются в энергоносителях, а, наоборот, сами способны вырабатывать электричество за счет преобразования энергии солнца и ветра.

Все автономные источники электроснабжения по большому счету похожи друг на друга своим общим устройством и принципом действия. В состав каждой из них входят три основные узла:

  • Преобразователь энергии. Представлен солнечными панелями или ветровым генератором, где энергия солнца и ветра преобразуется в электрический ток. Их эффективность во многом зависит от природных условий и погоды в данной местности – от солнечной активности, силы и направления ветра.
  • Аккумуляторы. Представляют собой электрические емкости, накапливающие электричество, активно вырабатываемое при оптимальной погоде. Чем больше имеется аккумуляторов, тем дольше сможет расходоваться запасенная энергия. Для расчетов используется среднесуточное потребление электричества.
  • Контроллер. Выполняет управляющую функцию по распределению потоков выработанной энергии. В основном эти устройства контролируют состояние аккумуляторных батарей. Когда они полностью заряжены, вся энергия уходит напрямую потребителям. Если же контроллер обнаруживает разрядку батареи, то энергия перераспределяется: она частично уходит потребителю, а другая часть затрачивается на зарядку батареи.
  • Инвертор. Устройство для преобразования постоянного тока 12 или 24 вольта в стандартное напряжение 220 В. Инверторы имеют различную мощность, для расчета которой берется суммарная мощность одновременно работающих потребителей. При расчетах необходимо давать определенный запас, поскольку работа оборудования на пределе возможностей приводит к его быстрому выходу из строя.

Существует различное автономное электроснабжение загородного дома, готовые решения которого дополняются различными элементами в виде соединительных кабелей, балластов для сброса лишнего электричества и прочими составными частями. Для правильного выбора агрегата следует более подробно ознакомиться с каждым типом альтернативных источников питания.


Генераторы и мини-электростанции

Генераторные установки и мини-электростанции широко используются и обеспечивают автономное электроснабжение дома, особенно там, где совсем нет централизованных электрических сетей. При условии правильного выбора агрегата, на выходе получается напряжение, способное полностью обеспечить объект электроэнергией. Основным фактором нормальной работы оборудования, является его соответствие электрическим параметрам подключаемых потребителей.

Как правило автономные электростанции выполняют две основные функции. Они служат источником резервного питания на период отключения электроэнергии или снабжают объект электричеством на постоянной основе. Во многих случаях эти устройства обеспечивают подачу напряжения более высокого качества, чем в центральной сети. Это очень важно при использовании высокочувствительной техники, например, газовых отопительных котлов, медицинского оборудования и другой аппаратуры.

Большое значение имеет мощность генераторов, их производительность и возможность продолжительной работы без отключения. Техника с малой мощностью относится к категории электрогенераторов, а более сложные и мощные конструкции считаются уже мини-электростанциями. К устройствам малой мощности относятся генераторы способные выдерживать нагрузку, не превышающую 10 кВт.

Существуют различные типы генераторов, в зависимости от применяемого топлива.

  1. Бензиновые. Чаще всего используются в качестве резервного источника питания в связи с высокой стоимостью топлива и сравнительно дорогим техническим обслуживанием. Стоимость бензиновых агрегатов значительно ниже других аналогов, что делает их экономически выгодными именно в качестве резервного источника на период отключения основной электроэнергии.
  2. Дизельные. Обладают значительным моторесурсом, гораздо выше, чем у бензиновых аналогов. Такое оборудование может работать дольше, даже при больших нагрузках. Несмотря на их высокую стоимость, дизельные генераторы пользуются повышенным спросом из-за дешевого топлива и недорогого технического обслуживания.
  3. Газовые. Надежность и эффективность этих агрегатов вполне может сравниться с бензиновыми и дизельными генераторами. Основным достоинством является их низкая цена и экологическая чистота в процессе эксплуатации.

Каждый агрегат состоит из двигателя и самого генератора. Для более удобной работы все устройства оборудуются замком зажигания, стартером и аккумулятором, розетками для подключения потребителей, измерительными приборами, топливным баком, воздушным фильтром и другими элементами.


Аккумуляторы и источники бесперебойного питания

Одним из вариантов на период отключения электричества в загородном доме являются источники бесперебойного питания. Их применение позволяет решить множество проблем, особенно при кратковременных отключениях электроэнергии. Регулировка питания осуществляется с помощью инвертора и стабилизатора. Использование бесперебойников позволяет сохранить важную информацию на компьютере, которая может быть уничтожена при неожиданном отключении электроэнергии.

В состав ИБП входит схема управления и инвертор, являющийся по сути, зарядным устройством. От его мощности зависит время переключения и обеспечение бесперебойного поступления электроэнергии к потребителю. За счет этого обеспечивается автономное электроснабжение загородного дома.

Особая роль отводится стабилизатору, основная функция которого заключается в увеличении или снижении подачи тока, поступающего из основной сети. Поэтому при выборе источника бесперебойного питания следует обязательно учитывать технические характеристики инвертора и стабилизатора. Стандартные устройства оборудуются стабилизатором, способным лишь понижать напряжение.

К положительным качествам ИБП можно отнести их сравнительно невысокую стоимость. Они работают бесшумно и не подвержены нагреву за счет высокого КПД, составляющего 99%. Основным недостатком считается продолжительное переключение на собственное питание. Отсутствует возможность ручной настройки величины напряжения и частоты подачи энергии. Во время работы аккумулятора выход напряжения будет иметь несинусоидальную форму.

Источники бесперебойного питания хорошо зарекомендовали себя совместно с компьютерами и локальными сетями, эффективно поддерживая их работоспособность. Они оказались наиболее оптимальным вариантом для использования именно в этой области.


Электроснабжение частного дома солнечными батареями

В частных и загородных домах все более широкое распространение получают солнечные батареи, используемые в качестве основных или резервных источников питания. Основной функцией этих устройств является преобразование солнечной энергии в электрическую.

Существуют различные способы применения постоянного тока, вырабатываемого солнечными батареями. Он может использоваться напрямую, сразу же после выработки или накапливаться в аккумуляторных батареях и расходоваться по мере необходимости в темное время суток. Кроме того, постоянный ток с помощью инвертора может быть преобразован в переменный ток, напряжением 110, 220 и 380 вольт и применяться для различных групп и типов потребителей.

Вся автономная система электроснабжения на солнечных батареях функционирует по определенной схеме. На протяжении светового дня они производят электроэнергию, которая затем подается к контроллеру заряда. Основной функцией контроллера является управление зарядом аккумуляторов. Если их емкость заполнена на 100%, то подача заряда от солнечных батарей прекращается. Инвертор преобразует постоянный ток в переменный с заданными параметрами. При включении потребителей, этот прибор забирает энергию из аккумуляторов, преобразует ее и направляет в сеть к потребителям.

Солнечная энергия, в зависимости от времен года, не бывает постоянной и не всегда рассматривается в качестве основного источника. Кроме того, объем электроэнергии, потребляемой ежесуточно, тоже изменяется в разные стороны. Поэтому при наступлении полного разряда аккумуляторов, происходит автоматическое переключение системы домашнего электроснабжения с солнечных батарей на другие резервные источники питания или на центральную электрическую сеть.

Солнечные батареи делают хозяев дома абсолютно независимыми от центрального электроснабжения. В этом случае не требуется подводка электрических сетей, исключаются дополнительные траты на оформление разрешительных документов и оплату электроэнергии. Данная система не зависит от перебоев централизованной подачи электричества, на нее не влияет рост тарифов, отсутствуют ограничения в подключении дополнительных мощностей.

Солнечные батареи могут эксплуатироваться в течение длительного периода времени, составляющего 20-50 лет. Серьезные финансовые вложения делаются только один раз, после чего система будет работать и постепенно окупать себя. Вся работа батарей осуществляется на полном автомате. Существенным плюсом является полная безопасность солнечной энергии для человека и окружающей среды. Для получения нужного экономического результата следует правильно выбирать оборудование, монтировать и вводить его в эксплуатацию.


Ветрогенераторные установки

Энергия ветра используется с давних пор. Наглядным примером являются парусные корабли и ветряные мельницы, оставшиеся далеко в прошлом. В настоящее время ветровая энергия стала вновь использоваться для совершения полезной работы.

Типичным представителем этих устройств считается ветрогенератор. Принцип работы агрегата основа на вращении воздушным потоком лопастей ротора, закрепленного на валу генератора. В результате вращения в обмотках генератора создается переменный ток. Он может расходоваться напрямую или накапливаться в аккумуляторах и использоваться в дальнейшем по мере необходимости. Таким образом, обеспечивается автономное электроснабжение объекта.

Кроме генератора, в рабочей цепи имеется контроллер, выполняющий функцию преобразования трехфазного переменного тока в постоянный. Преобразованный ток направляется на зарядку аккумуляторов. Бытовые приборы не могут работать от постоянного тока, поэтому для его дальнейшего преобразования используется инвертор. С его помощью происходит обратное превращение постоянного тока в переменный бытовой ток на 220 вольт. В результате всех преобразований расходуется примерно 15-20% от первоначально выработанной электроэнергии.

Совместно с ветровыми установками могут использоваться солнечные батареи, а также бензиновые или дизельные генераторы. В этих случаях в схему дополнительно включается автоматический ввод резерва (АВР), который производит активацию резервного источника тока, если основной отключается.

Для того чтобы получить максимальную мощность, расположение ветряного генератора должно быть вдоль по направлению ветрового потока. Наиболее простые системы оборудуются специальными флюгерами, закрепляемыми на противоположном конце генератора. Флюгер представляет собой вертикальную лопасть, которая разворачивает все устройство навстречу ветру. В более сложных и мощных установках эта функция выполняется поворотным электромотором, под управлением датчика направления.

electric-220.ru

Как в 4 раза увеличить время работы устройств с автономным питанием / Habr

История о том, как мы оптимизировали схему питания автономных датчиков сбора, обработки и передачи информации. Добились снижения себестоимости электроники, веса датчика и незначительно увеличили его габаритные размеры.


В статье описана эволюция схемы питания автономных датчиков сбора и обработки информации. Я постараюсь кратко рассказать о всех этапах усовершенствования схемы. Начну рассказ с разработки прототипа, соответствующего всем требованиям, кроме главного. Расскажу о попытке привести работу схемы к требованиям с минимальными усилиями, просто увеличив количество элементов питания. Опишу поиск и анализ причин несоответствия параметров схемы. В заключительной части приведу оптимизированную схему и сравнение до и после.

Надеюсь, мой опыт пригодится вам при разработке устройств с автономным питанием.

Я работаю в компании Uniscan Research. Мы делаем наукоёмкие приборы серийные продуктом. Эта статья — описание процесса оптимизации системы питания автономных устройств, разрабатываемых в рамках одного из наших проектов.

Для одного из крупных проектов нам нужно было разработать систему сбора и обработки информации, состоящую из небольших датчиков с автономным питанием, передающим собранные данные на пульт оператора по радиоканалу.

Ключевые требования к разрабатываемой системе — минимальный вес, минимальные размеры элементов, простая и быстрая установка на местности, высокая скорость и надежность доставки данных, доступные элементы питания и возможность их замены.


Исходные требования к системе питания

Одно из основных требований — время автономной работы в районе 240 часов, чтобы как можно реже возникала необходимость в замене элементов питания.

Приблизительная оценка потребляемой мощности была проведена на основании данных о потреблении других автономных устройств. Устройство, работающее от одного элемента питания АА на протяжении 240 часов, казалось вполне реализуемым.

Первоначальную оценку я провел так:


  1. Оценим емкость коммерческих «батареек». Используем данные добросовестных исследователей. На графиках показаны эффективные емкости элементов питания при разряде разными токами. Синие колонки – емкость элементов питания при разряде минимальным, в проведенных испытаниях, током 200 мА. Емкость средней «батарейки» оценивается как 2500 мА*ч, для тока разряда 200 мА.
  2. Оцениваем потребляемую мощность похожего устройства. Есть устройство, которое потребляет около 1 мА от 12В, что составляет 12мВт.
  3. Рассчитываем время автономной работы устройства. Емкость «батарейки» оценили как 2500 мА*ч, номинальное напряжение 1.5В, таким образом, время работы при потреблении 12 мВт можно рассчитать:

Ток потребления = (Потребляемая мощность)/(номинальное напряжение)=12мВт/1.5В = 8 мА

Время автономной работы = (Емкость, мА*ч)/(ток потребления мА) = 2500 мА/ 8мА = 312 часов.

Не менее 300 часов. Вот так.

Специфика применения системы такова, что коммерческие щелочные элементы питания типоразмера АА, «пальчиковые батарейки», лучше всего подходили на роль основного элемента питания.Одна из основных причин выбора — такую батарейку можно купить в любом магазине мира.


Разработка прототипа схемы питания датчика

Осуществлять питание схемы датчика непосредственно от батарейки невозможно. Необходима разработка схемы питания для формирования нужных для электроники напряжений.

Для этого нам нужно определиться с входными и выходными напряжениями схемы и требуемой мощностью (током потребления).

Определить выходные напряжения просто:


  • Для питания контроллера и всей периферии датчика требуется напряжение 3.3В.
  • Для питания ВЧ усилителя радиомодема — 3.6В.

Ожидаемый ток потребления мы тоже можем предварительно оценить:


  • Для общей шины питания 3.3В, в дежурном режиме, около 4-6 мА.

Определить напряжение на входе схемы тоже не сложно. Основной элемент питания – щелочная «пальчиковая батарейка»:


  • Входное напряжение от 1 до 1.5В.

Вроде бы все получилось, но есть нюансы:


  • Ток потребления радиомодема при передаче высокий. Подразряженая “батарейка” не способна мгновенно отдать значительную мощность. Напряжение на ней «просядет», из-за большого внутреннего сопротивления, устройство выключится. Нужен накопитель, который медленно запасает энергию, пока не происходит передачи по радиоканалу. А во время передачи обеспечивает необходимую мощность.
  • Типоразмер элементов питания АА используется не только для щелочных «батареек». В таком же типоразмере выпускаются никель-металлгидридные аккумуляторы, литий-тионил-хлоридные элементы питания Saft. И даже Li-Ion аккумуляторы типоразмера 14500, что соответствует размеру АА. Такое разнообразие увеличивает диапазон входных напряжений. Полностью заряженный Li-Ion аккумулятор имеет выходное напряжение до 4.2В.

Чтобы система питания была совсем универсальна, она должна сохранять работоспособность в диапазоне входных напряжений от 1 до 4.2В.

Небольшой нюанс приносит серьезные усложнения в схему. Входное напряжение может оказаться как ниже выходного, так и выше, схема должна уметь и повышать напряжение и понижать. Отыскать подходящую микросхему, которая одновременно могла бы понижать и повышать напряжение, мне не удалось, из-за очень низкого входного напряжения в 1 В. Я разработал схему, которая повышала входное напряжение до промежуточного уровня 5В, а потом понижала до требуемого напряжения 3.3В.


Напряжение питания 3.3В питает все элементы схемы и специализированный преобразователь, заряжающий суперконденсатор до напряжения 4В. Конденсатор обеспечивает накопление энергии и обеспечивает питание радиопередатчика, при помощи buck-boost преобразователя.

С такой схемой питания были собраны прототипы датчиков. Программист разработал ПО для датчиков. После длительной отладки и ряда усовершенствований получились первые образцы устройств. Начались испытания.

Время непрерывной работы устройства от одного элемента питания АА «DuraCell TurboMAX» составило 33 часа. От «супер батарейки», литиевой «Energizer Ultimate Lithium» — 55 часов. Для обычного щелочного элемента питания время жизни оказалось в 10 раз меньше требуемого.


Переход на два элемента питания АА

Время непрерывной автономной работы необходимо было увеличивать. Самый простой путь – увеличить количество элементов питания. Требования к весу и габаритам были выдвинуты жесткие, поэтому увеличить количество элементов удалось только до 2 шт.

Увеличение количества элементов питания изменило требования к схеме питания. Элементы питания соединяются последовательно, а значит, входное напряжение удваивается. Было 1В — 4.2В, стало 2В – 8.4В.

Максимальное допустимое напряжение на входе разработанной схемы питания определяется входным преобразователем и составляет 5.5В. А значит, что схема питания не подходит для датчика или необходимо ограничить круг применимых элементов питания. Мы пошли по второму пути — отказались от Li-Ion аккумуляторов и литий-тионил-хлоридных элементов питания Saft. Быстро переработать схему питания не представлялось возможным.

Измерение времени работы датчиков от двух элементов питания без изменения схемы питания показали следующие результаты:


  • От 2 элементов питания «Energizer Ultimate Lithium» те же устройства проработали около 120 часов.
  • От 2 элементов питания АА «DuraCell TurboMAX» время работы составило около 70 часов.

Время непрерывной работы увеличилось в 2 раза, но все еще было неудовлетворительным.

Следующим шагом к увеличению времени автономной работы была оптимизация КПД схемы питания.


Измерение КПД преобразователей и общего КПД схемы питания

В рамках работ по оптимизации схемы питания я провел ряд исследований преобразователей, на которых построена схема.


Входной повышающий преобразователь

Повышающий преобразователь построен на микросхеме LTC3422EDD Linear, в изначальной версии преобразователь формировал на выходе напряжение 5В:


Для преобразователя на базе LTC3422EDD я измерил зависимости КПД от тока нагрузки преобразователя при напряжении питания преобразователя 1.5В и 3.0В, для выходных напряжений 3.3В и 5В:


Зависимость КПД преобразователя от входного напряжения при постоянной нагрузке, P=50мВт, характерной для рабочего режима датчика, при выходном напряжении преобразователя 3.3В и 5В:


Исследование КПД повышающего преобразователя показывает, что использование двух элементов питания и снижение выходного напряжения преобразователя до 3.3В приводит к повышению КПД преобразователя на величину до 20% для характерной мощности потребления 50 мВт. При использовании 1 элемента питания и выходном напряжении 5В КПД составляет около 70% (красный график на рис. 1., выходной ток от 5 до 14 мА). При использовании 2 элементов питания и снижения выходного напряжения до 3.3В КПД достигает 89 % (синий график на рис. 2., выходной ток от 5 до 19 мА).

Также можно ожидать улучшения КПД во всем диапазоне работы элементов питания. Для одного элемента питания диапазон рабочего напряжения 0.9-1.5В. Наилучший КПД для свежего элемента питания, по графику рис. 3, составляет 69%. Тогда как худшее значение КПД, при использовании двух разряженных элементов питания с остаточным напряжением 1.1В+1.1В=2.2В, составит по графику рис. 3 около 79%. Для комплекта свежих элементов питания ожидаемый КПД до 84%.

Возрастает и нагрузочная способность преобразователя при использовании 2х элементов питания. Для одного элемента питания КПД значительно падает при потребляемом токе более 20 мА, тогда как при использовании 2х элементов питания преобразователь сохраняет высокое значение КПД при токе нагрузке более 100 мА.

Снижение выходного напряжения повышающего преобразователя до 3.3В увеличивает время непрерывной работы на 20%, за счет увеличения КПД преобразователя.

Снижение выходного напряжения также повышает нагрузочную способность преобразователя.

Так же, я оценил зависимость КПД от тока нагрузки преобразователя при снижении выходного напряжения до 3.3В:


При использовании 2 элементов питания и снижении выходного напряжения до 3.3В, достигается не только повышение КПД, но и повышение нагрузочной способности преобразователя более чем в 2 раза.


Понижающий преобразователь на 3.3В

Понижающий преобразователь построен на микросхеме LTC3406 Linear. В начальной версии преобразователь формировал на выходе напряжение 3.3В из промежуточного напряжения 5В:


Для преобразователя на базе LTC3406 я измерил зависимость КПД от тока нагрузки
при входном напряжении 5В.


Оценка КПД преобразователя, формирующего напряжение питания 3.3В, показала значение около 70 % при характерных для основного режима работы тока потребления 50 мВт.


Оценка общего КПД схемы питания

Для первоначального исполнения схемы питания оценку КПД получаем путем умножения КПД повышающего преобразователя и КПД преобразователя 3.3В.


Если использовать 2 элемента питания, снизить выходное напряжение повышающего преобразователя до 3.3В и исключить преобразователь, который формировал 3.3В до этого, КПД схемы питания будет равен КПД повышающего преобразователя:


**Получаем необходимые для оптимизации схемы действия:


  • Использовать 2 элемента питания.
  • Повышающий преобразователь перенастроить на выходное напряжение 3.3В.
  • Исключить понижающий преобразователь.**

Оптимизированная схема питания

По результатам исследований я разработал упрощенную, но более оптимальную схему питания датчиков:


Два элемента питания, включенные последовательно, подключаются к повышающему преобразователю, который формирует напряжение питания 3,3В для питания всей электроники устройства. Специализированный преобразователь заряжает суперконденсатор, от которого питается ВЧ усилитель во время передачи по радиоканалу через преобразователя buck-boost.

Время непрерывной работы устройства увеличилось более чем в 2.5 раза и достигло приемлемого времени автономной работы 120 часов от обычных «пальчиковых батареек». При использовании литиевых элементов питания «Energizer Ultimate Lithium» время автономной работы достигло 200 часов.


Результаты оптимизации


По моему опыту, схема питания автономно работающих устройств — это всегда компромисс между требуемой функциональностью и временем автономной работы. Мне удалось в 4 раза увеличить время автономной работы через отказ от универсальности. Мы исключили дорогие и редкие элементы питания. При этом мы сохранили требование, которое считали важным — применяются элементы питания “из магазина”. Для получения большего времени автономной работы можно использовать более редкие и дорогие, но все равно легко доступные, коммерческие элементы питания.

Разработка уникальных устройств — это всегда оценка многих вариантов реализации. Найти компромисс между полнотой функционала, стоимостью, надежностью и сложностью технической реализации — главная задача инженера.

habr.com

автономное питание - это... Что такое автономное питание?


автономное питание

 

автономное питание

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

Тематики

  • электротехника, основные понятия

EN

  • self-contained supply
  • self-contained power supply

Справочник технического переводчика. – Интент. 2009-2013.

  • автономное печатающее устройство
  • автономное радиооборудование

Смотреть что такое "автономное питание" в других словарях:

  • Питание - получить на Академике актуальный промокод на скидку GRACY или выгодно питание купить с дисконтом на распродаже в GRACY

  • автономное питание — savarankiškasis maitinimas statusas T sritis radioelektronika atitikmenys: angl. self contained supply vok. Einzelspeisung, f; unabhängige Stromversorgung, f rus. автономное питание, n pranc. alimentation individuelle, f …   Radioelektronikos terminų žodynas

  • ПИТАНИЕ — обеспечение электронных устройств и электроаппаратуры электроэнергией для их бесперебойного нормального и длительного функционирования. Различают энергоснабжение потребителей от централизованной энергетической системы и автономное, при этом (см.… …   Большая политехническая энциклопедия

  • Устройство заземления автоцистерн — Проверить нейтральность. На странице обсуждения должны быть подробности. Устройства заземления автоцистерн (аббревиатура УЗА) предназначены для снятия зарядов статического электричества при любых технологических о …   Википедия

  • Дозиметри́я ионизи́рующих излуче́ний — раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и …   Медицинская энциклопедия

  • ДТС — (Digital Theatre System, DTS), многоканальная система воспроизведения цифрового звука в кинематографе. К 2001 году DTS стала одним из мировых стандартов качества кинозвука, точно воспроизводя в кинозале звукозапись, сделанную на студии. Качество… …   Энциклопедия кино

  • ТЯГОВЫЙ АГРЕГАТ — сцепленные секции локомотивов (электровозов управления) и вагонов самосвалов (думпкаров), оборудованных тяговыми электродвигателями, однотипными с двигателями электровозов, что позволяет увеличить в 2 3 раза сцепной вес и включить в состав… …   Большой энциклопедический политехнический словарь

  • ЭЛЕКТРОКАРДИОСТИМУЛЯТОР — (от электро..., греч. kardia сердце и лат. stimulo подгоняю, возбуждаю) электронный аппарат для восполнения нервно энергетич. ф ций сердечной мышцы. Э. генерирует импульсы амплитудой 5 6 В, длительностью 1 1,2 мс с частотой 60 70 импульсов в 1… …   Большой энциклопедический политехнический словарь

  • Выход в открытый космос — Космонавт Олег Котов в открытом космосе во время космического полёта МКС 22. Выход в открытый космос  работа космонавта в …   Википедия

  • Встраиваемая система — (встроенная система, англ. embedded system)  специализированная микропроцессорная система управления, концепция разработки которой заключается в том, что такая система будет работать, будучи встроенной непосредственно в устройство,… …   Википедия

  • Безэховая камера — Акустическая безэховая камера …   Википедия

technical_translator_dictionary.academic.ru

Что значит автономное питание. Автономные системы электроснабжения

Резервное электроснабжение загородного дома остаётся актуальным вопросом в любое время. Многие владельцы частных загородных домов сталкиваются с ситуациями, когда внезапно исчезает электричество. Правильное решение данной проблемы – обеспечение электричеством дома за счёт организации резервного питания.

Устройство системы резервного питания дома

Автономная система электрического питания может обеспечить бесперебойную работу всего оборудования дома. В случае сбоя стационарной электросети резервное электроснабжение сможет обеспечить необходимую для работы приборов мощность. Источники питания, обеспечивающие независимое от основной сети электроснабжение дома, различны между собой и представлены в большом разнообразии.

Для обеспечения электричеством частного загородного дома при незапланированном отключении энергии часто применяют:

Основная функция современных источников резервного электроснабжения дома — осуществление бесперебойного снабжения дома электричеством.

Резервные источники бесперебойного питания выполняют следующие функции:

  • Контроль за электросетью
  • Фильтрацию скачков напряжения
  • Зарядку аккумуляторных батарей

Когда значения питающей системы имеют критические параметры или электроэнергия совсем отсутствует, автоматика подключает инвертор, который берет ток от аккумуляторной батареи.

Выбор оборудования для автономного электропитания дома

От правильности выбранного оборудования для системы резервного электроснабжения дома зависит продолжительность и качество работы устройств. Подходить к выбору резервного источника электрического питания следует ответственно.

Для частного дома обычно выбирают следующие устройства:

  • Инверторы. Данные устройства отличаются и имеют свои особенности. Нужно знать, что инвертор с синусоидой на выходе даёт более качественное электричество и сможет питать все электроприборы
  • Аккумуляторы . Следует знать, что чем больше ёмкость аккумулятора, тем дольше можно будет использовать накопленную энергию

Система современного резервного электроснабжения

Современное резервное бесперебойное электроснабжение частного дома возможно при помощи солнечных батарей. Система батарей является экологичным способом получения электрической энергии для питания сети. Элементы солнечной батареи состоят из фотоэлектрических модулей, которые покрывают стеклом. Данное стекло имеет определённую текстуру и позволяет поглощать много солнечного света.

Ветрогенератор можно применять в качестве источника получения электроэнергии только на территории, где есть ветер. Сейчас данный источник энергии редко используется в качестве резервного электроснабжения загородного дома по причине неблагоприятных для работы условий.

Газогенераторные электростанции для снабжения электроэнергией

Газогенераторные электростанции могут работать на природном и сжиженном газе. Они подключаются к газовой системе. Стоимость работы данных источников электропитания обычно значительно ниже, чем у других генераторов.

Газогенераторные электростанции имеют:

  • Синхронный, асинхронный аккумулятор
  • Встроенну

brbel.ru

Автономное питание | Электротехнический журнал

В этой статье пойдет речь о том, как правильно организовать автономное питание какого либо объекта, без лишних усилий, опираясь на продукцию нынешнего рынка электротоваров и устройств.

И так, предположим, что у нас нет никакого другого выхода, кроме как запитать объект от автономного источника. К этому могут быть масса предпосылок, например удалённость объекта от линий электропередач, неспособность линий электропередач нести необходимую нагрузку (что кстати актуально в условиях дачных посёлков).

Разделим типы потребления на несколько категорий:
1. Питание маломощных потребителей (радио, энергосберегающие осветительные приборы и т.д.)
2. Питание мощных потребителей (электроинструмент, станки и прочее)
3. Комбинированное питание.

Теперь подробнее:

1. Рассмотрим первый тип потребления.

Так бывает, что дачный участок не подключен к системам жизнеобеспечения, к которым мы привыкли в квартире, разве что к техническому водопроводу. Естественно без нынешних благ цивилизации приходиться туго. Тоже радио, телевидение, да просто при свете собраться если вдруг завозился до темноты, и то не доступная роскошь. Тогда на помощь придёт автономный источник питания. В плане удобства в таких случаях хорошо подходят системы в основе которых лежит преобразование энергии автомобильного аккумулятора в привычный для нас стандарт 220В/50Гц.

Можно конечно обратиться к различным схемам инверторов, набрать все необходимые радиодетали в магазине, и заняться созданием инвертора, но я предлагаю его просто купить в магазине. Благо на данный момент рынок изобилует подобного рода устройствами. Затраты на готовый преобразователь до 500Вт окажутся соизмеримыми с ценой микроэлектронных компонентов для самостоятельной сборки его же. А что говорить о затраченном времени, кто его нам компенсирует? А нервы? Поэтому сразу перейдём к описанию основных функций таких устройств и методам их применения.

Посчитав всю суммарную нагрузку (допустим это телевизор (250Вт), 4 лампы освещения (4х25Вт), радио (20Вт.), зарядное для телефона (5Вт.) прочее) приходим к выводу, что нам нужен преобразователь на 400Вт. Кстати говоря скажу от себя: на самом деле количество устройств в доме может быть намного большим, важным является тот факт, что мощность каждого устройства не должна превышать 75% от установленной мощности преобразователя, и дожна быть внедрена в схему электросети блокировка от возможного группового включения всех устройств сразу. Как самый эффективный метод защиты - одна розетка и отсутствие тройников. Возможны и более интересные методы защиты, например многоконтактный переключатель, который в определённом положении будет задействовать только определённую группу проводок. Но это в том случае, если это действительно необходимо. На практике достаточно пользоваться первым методом 🙂

Для того, чтобы информация была актуальна, я не стану писать сюда цены на устройства, их модели и названия. Рынок постоянно меняется. На смену старым устройствам приходят новые, более совершенные. Тем более в данном сегменте рынка. Гугл в помощь.

2. Питание мощных потребителей.

А вот тут уже не обойтись без генератора. Потому как устройства, основанные на принципе преобразования низких постоянных напряжений, предназначенные для питания мощных устройств будут уже совсем не бюджетными, и вряд ли устроят вас по цене. Для выполнения различных работ по хозяйству вполне подойдёт генератор мощностью 3кВт. В принципе, как показала практика, существующие на рынке бензиновые генераторы практически одного качества. Выделить тут можно пожалуй марку HUTER. Мной используется FIRMAN SPG3000, который не раз уже выручал меня по хозяйству. Надо понимать, что нет вечных механизмов, всё изнашивается, поэтому на стадии покупки необходимо выяснить возможность последующего ремонта устройства. Обязательно до запуска нужно ознакомиться с инструкцией по эксплуатации, выполнить все необходимые мероприятия по подготовке к первому пуску, первый запуск должен пройти в режиме обкатки. Не нужно подключать генератор сразу к нагрузке. Кстати не во всех инструкциях пишут о том, что масло после обката и пробного подключения на нагрузку нужно слить и заменить новым.

Безопасность! Корпус генератора нужно заземлить. Для этого на месте установки генератора необходимо обустроить заземлитель. Читайте соответствующий раздел ПУЭ.

Кстати говоря, если генератор планируется установить в специально подготовленное закрытое строение, рекомендуется подумать об устройстве автоматического пуска. Если генератор находится в специально отведённой под него нише, не всегда удобно пользоваться ручным стартером.

3. Комбинированное питание.

Рассмотрим тип комбинированного питания: Аккумуляторно-инверторный с зарядкой от бензинового генератора.

Смысл - экономия топлива при необходимости питания маломощных потребителей. Сеть объекта необходимо устроить таким образом, чтобы обеспечивался постоянный заряд аккумулятора при работе бензиновой электростанции (практически на всех моделях есть 12 вольтовые вывода). При отключенном генераторе предотвратить разряд аккумулятора через малый обратный ток выпрямителя. Предотвратить одновременное включение в сеть выводов инвертора и генератора из-за возможности выхода устройств из строя. Они не расчитаны на синхронную работу.

Просмотров всего: 39, Просмотров за день: 1

Share

www.el-info.ru

Автономное питание - The virtual drink — LiveJournal

fig00

Когда я был маленький, мне запрещали иметь дело с сетью 220 В.

Из-за этого запрета я был вынужден пользоваться химическими источниками тока. А конкретно, вот такими батарейками:

fig01

Поначалу я занимался механикой и электротехникой, делал различные механизмы с электродвигателями, но питать их было нечем. Электродвигатели были примерно такие (с большим трудом нашел в Интернет фотографию двигателя):

fig02

Играться с механизмами, сделанными своими руками, было очень интересно. Но через короткое время заряд заканчивался, ведь батарейки были совсем не такие, как современные «Duracell», двигатели тоже не блистали КПД, да и конструкция, сделанная ребенком, была далека от экономичности. Выпросить у взрослых новые батарейки было непросто. Они, может, и хотели бы мне их купить, но продавались батарейки только в райцентре, ехать туда 25 км, не каждый месяц там кто-то бывал. Вот и сидел я на голодном пайке, перебирая по которому кругу использованные батарейки, стуча по ним молотком и защемляя во входной двери, чтобы хоть как-то продлить их работу.

Акумуляторы в то время я видел двух видов: что-то типа 6СТ-55, которые устанавливались в автомобили, да дисковые аккумуляторы Д-025, которые стояли в модном фонарике, заряжавшемся от сети. В нашей семье такого фонарика не было. Я знал о них лишь по той причине, что соседи отдали мне на запчасти несколько таких фонариков, в которых аккумуляторы потеряли емкость. А происходило это, по их словам, довольно быстро. В этом фонарике, кстати, был очень необычный выпрямительный элемент. Другие типы аккумуляторов видел только на картинках в книгах. Поэтому к аккумуляторам доверия не было, да и они были некой экзотикой. Оставались батарейки. Глотая слюну, я смотрел на механизмы, работающие от сети. Какое счастье, они могли работать вечно! С тех пор выработалось негативное отношение к автономному питанию.

Когда я пошел в школу, мне разрешили работать с сетью. Первое, что я сделал, это сетевой лабораторный блок питания.

fig03

fig04

Трансформатор мотал сам, и первичку, и вторичку. Железо взял от сгоревшего силового трансформатора ламповой радиолы. Выходное напряжение у меня регулировалось переключением отводов вторичной обмотки. Как вспомню, с какими трудами удавалось найти хоть что-то из материалов - ужас. Весь листовой алюминий, которым я владел большую часть детства, это была крышка от выброшенной стиральной машины "Рига". Впрочем, сейчас с материалами не сильно лучше. Трансформатор БП был закреплен полосками жести, которые прикручены к деревянному основанию гвоздями с нарезанной на них резьбой М4. Счастье, что метчики и плашки были у меня с раннего детства. Галетник – и тот наполовину самодельный. Я уже не помню, по какой причине его пришлось переделывать. Для передней панели нашел кусок синего пластика. В детстве такого пластика были большие листы, они применялись где-то в строительстве. Но обрабатывался этот пластик очень плохо, он был похож по свойствам на полиэтилен. Зато у меня был кусок фольгированного стеклотекстолита! Я вырезал на нем дорожки и установил мост на Д226 и конденсатор. Можно сказать, БП был сделан на печатной плате! Этот блок питания прослужил мне все школьные годы и по факту является самой полезной моей конструкцией в жизни. Хотя в старших классах я сделал новый БП, более мощный, но все равно пользовался в основном старым.

fig05

Был у меня еще и БП для питания ламповых конструкций (+300 В анодного и ~6.3 В накала), но это промышленная конструкция. В некоторых ламповых радиолах БП выполнялся на отдельном шасси, вот оттуда я его и взял. Был у него и корпус с панелью из той же синей пластмассы, но, увы, фото корпуса нет. Вообще, все эти фотографии делались недавно, до этого приборы десятилетия валялись в пыли чердака.

fig06

В последующие годы я делал конструкции только с сетевым питанием. Автономные приборы – это что-то неполноценное. Например, портативный магнитофон всегда хуже стационарного, а переносной приемник хуже радиолы. И хорошо еще, если магнитофон имеет сетевой блок питания. Иначе предстоят вечные мучения с батарейками, которых когда надо нет под рукой. Так же и другие приборы, например, измерительные. Признаком высокого класса является сетевое питание.

Очередной раз я столкнулся с автономным питанием в 1998 году, когда решил сделать себе щедрый подарок на 30-летие и купил на рынке портативный проигрыватель компакт-дисков Panasonic SL-S200.

fig07

В то время у меня уже был стационарный компакт-проигрыватель, сделанный из обломков автомобильного проигрывателя Sony. Корпус самодельный, блок питания и аналоговая часть самодельная, дополнительный процессор AT89C2051 для реализации ИК ДУ.

fig08

Вместе с Panasonic SL-S200 продавцы решили реализовать мне аккумуляторы GP и зарядное устройство для них. Сам Panasonic имел сетевой блок питания, но на 110 В. К нему добрые продавцы дали маленький автотрансформатор, «рыжик», как его назвали за коричневый цвет пластин. Я, конечно, пользоваться им не стал, а переделал сетевой блок питания, заменив в нем трансформатор. Корпус взял от какого-то другого адаптера, родной был слишком маленький. Только шильдик аккуратно выпилил и вклеил в свой корпус.

fig09

Еще пришлось сразу отказаться от наушников, которые шли в комплекте. Но у меня были Sony MDR-14, купленные в магазине за 16$. Вообще, интересное тогда было время – в магазине на центральном проспекте столицы официально торговали за доллары. Я дал двадцатку (а это были тогда большие деньги), из кассы мне достали сдачу – 4 единички. Аккумуляторы GP не шли ни в какое сравнение с батарейками. Тем более, заряжать их было негде – купленное зарядное устройсво при первом включении испустило дым. Так я в очередной раз разочаровался в аккумуляторах. Плейер слушал в основном дома, питая его от сети. Мобильность понадобилась только в пределах квартиры. С собой куда-то пробовал брать, но вне дома слушать музыку не хочется. Так он и провел уже более 16 лет, почти не выходя из дома.

Следующий раз, когда меня жизнь снова столкнула с автономным питанием, это покупка первой цифровой фотокамеры Nikon 2100. В комплекте шли аккумуляторы, маркированные как Nikon. Я, конечно, по привычке решил запитаться от батареек. Но был расстроен тем, как быстро они заканчиваются. На удивление, аккумуляторы работали намного дольше. Тем более, в комплекте шло быстрое зарядное устройство тоже от Nikon. Первый раз в жизни увидел что-то хорошее в аккумуляторах. Очень захотелось купить такие же аккумуляторы в качестве второго комплекта. Вряд ли Nikon делает аккумуляторы сам, скорее всего, берет у кого-то другого. Я начал пристально рассматривать продающиеся аккумуляторы. Точь-в-точь были похожими аккумуляторы Sanyo, даже буквы HR на донышке были так же выштампованы. Только на них значилась емкость 2300, а на тех, с этикеткой Nikon, 2100.

fig10

Напуганный плохими аккумуляторами GP, долго не решался купить эти Sanyo, ведь аккумуляторы – вещи не дешевые. Но все-таки купил. В жизни радость случается редко, но тут именно тот случай. Купленные аккумуляторы работали так же долго, как и родные.

Когда пришло время менять фотоаппарат, встал вопрос о зарядке 4-х аккумуляторов AA. Была сделана попытка сделать свое зарядное устройство не хуже покупного. Но эта попытка провалилась. Я не понимаю, как в таком малом габарите умещается сетевой импульсник, да еще и схема контроля зарядки индивидуально для каждого из 4-х аккумуляторов. В результате долгих размышлений была написана статья и куплено зарядное устройство Duracell за большие деньги – целых 40$.

fig11

Для фотоаппарата я купил комплект тех же аккумуляторов Sanyo, потом еще один – работали они прекрасно. Один из комплектов был очень старый, пора было менять. Но в очередной раз купленные аккумуляторы оказались совсем слабенькими – примерно раза в 3 меньше емкостью. А на вид они никак не отличались. Огорчение было огромным, ведь деньги потрачены немалые. Но что делать, аккумуляторы нужны, решил еще раз рискнуть – купил комплект Sony. И опять провал. Снова разозлился в адрес автономного питания, но фотоаппарат является тем редким исключением, когда его эксплуатация возле розетки является практически невозможной. Прочитал на форумах, что сейчас продаются сплошные подделки, невозможно купить нормальные аккумуляторы. Вычитал, что Ansmann, вроде, пока не подделывают. Купил комплект со скромной емкостью 2100 и остался доволен. Снова на уровне старых добрых Sanyo.

В зеркальной фотокамере литиевый аккумулятор. Сначала переживал по этому поводу – невозможно купить в ближайшем киоске батарейки в случае чего. Но камера настолько экономична, что вообще забыл проблему аккумулятров. Зато накамерная вспышка питается от 4-х аккумуляторов AA. Тоже нужно было что-то покупать. Проанализировал отзывы и купил снова Sanyo, но теперь новую линейку Eneloop. Оказались отличными аккумуляторами.

Еще одно устройство, где без аккумулятора никак, это мобильный телефон. Сам по себе, конечно, телефон не так уж нужен, если не работаешь диспетчером или развозчиком пиццы, но раз есть, так нужно поддерживать в рабочем состоянии. Вот и приходится регулярно покупать новые аккумуляторы. Тоже попадаются разного качества, ничего тут не поделать.

По долгу службы делал много различных электронных устройств. Но почти никогда не делал автономных. Разве что термометр, который питается от 2-х батареек AA или от сети, в связи с чем там применен SEPIC-преобразователь, который может как повышать напряжение батареек до 3.3 В, так и понижать напряжение сетевого адаптера.

fig12

К чему я клоню? В последнее время сплошь и рядом радиолюбители пытаются делать приборы с автономным питанием. Я этого не понимаю. Там же возникает куча проблем. Мало обеспечить характеристики, нужно еще обеспечить низкое потребление. Зачем себя зажимать в такие рамки? Ну а если кто-то считает, что будет использовать прибор в поле, то он автоматически ставит себя на низшую ступеньку иерархии работников отрасли: жизнь в командировках вместо работы в уютном офисе за своим собственным столом в удобном кресле.

P.S. Забыл об одном устройстве, где автономномное питание оправдано. Это часы. В результате того, что потребление маленькое, менять батарейки приходится редко (раз в несколько лет), это можно терпеть. Но есть и обратная сторона низкого энергопотребления - на таких часах в темноте ничего не видно.

leoniv.livejournal.com

Отправить ответ

avatar
  Подписаться  
Уведомление о