Преимущества и недостатки асинхронного двигателя
Подавляющее большинство электродвигателей, используемых в промышленности – асинхронные двигатели с короткозамкнутым ротором. В новом оборудовании их доля составляет более 95%, остальное – серводвигатели, шаговые двигатели, щеточные двигатели постоянного тока и некоторые другие специфические виды приводов.
Преимущества асинхронного двигателя
Конструкция. По сравнению с другими типами электродвигателей асинхронный двигатель имеет наиболее простую конструкцию. С одной стороны это объясняется использованием стандартной трехфазной системы электроснабжения, с другой – принципом действия агрегата. Данная особенность обуславливает еще одно важное преимущество — невысокую цену асинхронных приводов. Среди двигателей разных типов одинаковой мощности асинхронный будет самым дешевым.
Подключение. Благодаря тому, что в стандартной трехфазной системе питания фазы сдвинуты на 120°, для формирования вращающегося поля не нужны дополнительные элементы и преобразования.
Эксплуатация. Затраты на эксплуатацию асинхронного электродвигателя крайне малы, а обслуживание не представляет никаких сложностей. Нужно лишь время от время проводить чистку от пыли и по необходимости протягивать контакты подключения. При правильной установке и эксплуатации двигателя замена подшипников производится раз в 15-20 лет.
Недостатки асинхронных двигателей
Скорость вращения ротора. Скорость вращения вала двигателя зависит от частоты питающей сети (стандартные значения в промышленности – 50 и 60 Гц) и от количества полюсов обмоток статора.
Это можно считать недостатком в том случае, когда необходимо в процессе работы менять скорость вращения. Для решения данной проблемы были разработаны многоскоростные асинхронные двигатели, у которых имеется возможность переключения обмоток.
Кроме того, в современном оборудовании управление скоростью реализуется за счет преобразователей частоты.
Скольжение. Эффект скольжения проявляется в том, что частота вращения ротора всегда будет меньше частоты вращения поля внутри статора. Это заложено в принцип работы асинхронного двигателя и отражено в его названии. Скольжение также зависит от механической нагрузки на валу.
При необходимости скольжение можно скомпенсировать, а скорость вращения сделать независимой от нагрузки при помощи преобразователя частоты.
Величина напряжения питания. В сырых и влажных помещениях, где действуют повышенные требования к электробезопасности, применение асинхронного электродвигателя может быть невозможным. Дело в том, что из-за конструктивных особенностей такие двигатели практически не производятся на напряжение питания менее 220 В. В таких случаях применяют приводы постоянного тока, рассчитанные на напряжение 48 В и менее, либо используют гидравлические или пневматические приводы.
Чувствительность к напряжению питания. При отклонении напряжения питания более чем на 5% параметры двигателя могут отличаться от номинальных, а сам агрегат может перегреваться. Кроме того, при понижении напряжения падает момент электродвигателя, который квадратически зависит от напряжения.
При использовании преобразователя частоты скорость вращения меняется путем изменения величины и частоты питающего напряжения. Принципиально, что отношение напряжения к частоте должно быть константой.
Пусковой ток. Большой пусковой ток – проблема асинхронных двигателей мощностью более 10 кВт. При пуске ток может превышать номинальный в 5-8 раз и длиться несколько секунд. Из-за этого негативного эффекта мощные двигатели нежелательно подключать напрямую.
Чаще всего для понижения пускового тока применяют схему «Звезда-Треугольник», устройства плавного пуска и преобразователи частоты. Также можно использовать асинхронные двигатели с фазным ротором.
Пусковой момент. В силу электрических и механических переходных процессов в момент пуска двигатель обладает крайне низким КПД и большой реактивностью. Из-за низкого пускового момента привод может не справиться с началом вращения тяжелых механизмов. Этот же недостаток приводит к нагреву двигателя при пуске. Отсюда возникает другая проблема – ограничение количества пусков в единицу времени.
При использовании частотного преобразователя момент при пуске и на низких частотах может быть увеличен за счет повышения напряжения.
Вывод
Плюсы асинхронных двигателей значительно перевешивают минусы. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска.
Другие полезные материалы:
Способы защиты электродвигателей
Когда не нужен плавный пуск
Когда нецелесообразно ремонтировать двигатель
Достоинства электродвигателей асинхронных трехфазных, технические характеристики, виды, особенности
Электродвигатель, работающий на переменном токе, использующий вращающееся магнитное поле, которое создается статором, называют асинхронным, если частота поля отличается от той, с которой вращается ротор.
{ ArticleToC: enabled=yes }
Асинхронные электродвигатели и их виды
При этом, как видно из графика, на промежутке от нуля до максимального значения, с увеличением нагрузки снижение частоты незначительно. О таком электродвигателе асинхронном говорят, что его механическая характеристика жесткая.
Электродвигатели асинхронные в изготовлении несложные и надежные, поэтому применяется широко.
Выделяют 3 вида асинхронных электродвигателей с короткозамкнутым ротором:
одно-, двух и трехфазные, а кроме них – асинхронные с фазным ротором.
Однофазные
У первого типа на статоре есть единственная обмотка, на которую поступает переменный ток. Для запуска двигателя асинхронного пользуются обмоткой статора дополнительной, подключаемой на короткое время к сети через емкость или индуктивность, или же замыкаемой накоротко, чтобы добиться начального сдвига фаз, нужного для того, чтобы привести ротор во вращение.
Без этого его не могло бы сдвинуть магнитное поле статора. У такого мотора, как у каждого асинхронного, ротор делают в виде цилиндрического сердечника с алюминиевыми залитыми пазами и лопастями для вентиляции. Подобный ротор, называемый «беличьей клеткой», называется короткозамкнутым.
Электродвигатели асинхронные устанавливают в приборах не требующих большой мощности, типа небольших насосов и вентиляторов.
Двухфазные
Второй тип, т.е. двухфазные – намного эффективнее. На статоре у них две обмотки, которые находятся перпендикулярно друг к другу. При этом на одну из них подают переменный ток, другую соединяют с фазосдвигающим конденсатором, благодаря которому создается магнитное вращающееся поле.
У них также есть короткозамкнутый ротор. Их область использования намного шире, в сравнении с первыми. Двухфазные машины, питающиеся от однофазной сети, называются конденсаторными, поскольку в них обязательно должен стоять фазосдвигающий конденсатор.
Трехфазные
У трехфазный имеется три обмотки на статоре, сдвиг между которыми составляет 120 градусов, поэтому и поля их смещаются на такую же величину при включении. Включив в переменную трехфазную сеть такой электродвигатель, замкнутый накоротко, вращение ротора происходит благодаря появляющемуся магнитному полю.
Обмотки соединяют по одной из схем — «треугольник» или «звезда». Но, у второго соединения напряжение выше, а указано оно на корпусе двумя величинами – 127/220 или же 220/380. Эти моторы незаменимы для работы лебедок, разнообразных станков, кранов подъемных, циркулярок.
Идентичный статор имеется у моторов с фазным ротором. Магнитный провод (шихтовый) уложен у них в пазы вместе с тремя обмотками.
1 — кожух и жалюзи;
2 – щетки;
3 – держатели щеток со щеточной траверсой;
4 — крепящий траверсу палец;
5 — выводы со щеток;
6 – колодка;
7 – изолирующая втулка;
8 и 26 – контактные кольца;
9 и 23- крышки наружная подшипника и внутренняя;
10 – шпилька, крепящая крышку подшипника к коробке;
11 – щит задний подшипника;
12 и 15- обмотки ротора;
13 – держатель обмотки;
14 — роторный сердечник;
16 и 17 — щит передний подшипника и его наружная крышка;
18 – отверстия для вентиляции;
19 – станина;
20 — статорный сердечник;
21 — шпильки наружной крышки подшипника;
22 – бандаж;
21 – подшипник;
25 – вал;
27 — выводы роторной обмотки
Подключить мотор можно напрямую или через реостат, подав посредством щеток переменное напряжение (трехфазное) на кольца.
Как работает электродвигатель?
Распространены эти электродвигатели достаточно широко на производстве и в быту, поскольку по эффективности они превосходят моторы, работающие от двухфазной сети.
Если у электродвигателя присутствует статор – неподвижный узел, и подвижный ротор, разделенные прослойкой воздуха, т.е. механически не взаимодействующие, а частоты вращения ротора и магнитного поля не одинаковы, его называют асинхронным электродвигателем. Устройство и принцип работы описан ниже.
На статоре находятся три обмотки с магнитопроводом внутри. Сам статор набирается из пластин, изготовленных из электротехнической стали. Расположены они под углом 120 градусов по отношению друг к другу и закреплены в пазах неподвижного статора.
Видео: Электродвигатель
Из-за того, что между частотой, с которой вращается ротор и магнитное поле, существует задержка, т.е. первый как бы догоняет поле, но сделать этого не может из-за меньшей частоты вращения, его называют асинхронным электродвигателем. Принцип работы заключается в индуцировании токов ротором, создающим свое поле, которое, в свою очередь, взаимодействует со статорным магнитным полем, заставляя двигаться ротор.
Скорость вращения вала можно изменять, используя регулятор скорости вращения асинхронного электродвигателя, т.е. метод изменения ее регулирования с помощью изменения фазного напряжения или с использованием широтно-импульсной модуляции.
В качестве регулятора скорости вращения электродвигателя использовать можно инвертор (регулятор-стабилизатор напряжения), который играть будет роль источника питания.
Могут электродвигатели быть многоскоростными, т.е. предназначенные для механизмов, которым необходимо ступенчатое регулирование частоты вращения. В их маркировке присутствуют символы: АОЛ, АО2, 4А и др. Схема подключения есть в паспорте или приведена на клеммной коробке.
Важной особенностью двухскоростных является возможность функционирования в двух режимах. Они маркируются (отечественные): АМХ, АД, АИР, 5АМ, АИРХМ. Чтобы подобрать импортный двигатель двухскоростной, нужно точно указать данные таблицы, имеющейся на корпусе.
Преимущества
Главным достоинством является:
- Простая конструкция электродвигателя, отсутствие изнашиваемых быстро деталей (нет коллекторной группы) и дополнительного трения (та же причина).
- Не нужны дополнительные преобразования для питания, поскольку оно осуществляется напрямую от сети трехфазной промышленной.
- Малое число деталей делает мотор весьма надежным.
- Срок службы у него внушительный.
- Он прост для обслуживания и ремонта.
Недостатки, конечно, тоже имеются.
К ним относятся:
- небольшой пусковой момент, из-за которого ограничена область его применения;
- значительные потребляемые токи запуска, порой превышающие в системе электроснабжения допустимые значения;
- большая потребляемая мощность реактивная, снижающая механическую мощность.
Схемы подключения
Есть два варианта подключения, обеспечивающие работу асинхронного электродвигателя — схема подключения «звезда» и «треугольник».
Звезда
Ее применяют для трехфазной цепи, у которой величина линейного напряжения составляет 380 вольт. Особенностью соединения звездой является то, что концы обмоток должны соединяться в одной точке: С4, С5 и С6 (U2, V2 и W2). Начала же обмоток: С1, С2 и С3 (U1, V1 и W1), подключаются к проводникам A, B и C (L1, L2 и L3) через коммутационную аппаратуру.
Напряжение между началами соответствует 380 вольтам, а в местах, где соединяются с обмотками фазные проводники – 220в.
Подключение асинхронного электродвигателя на 220 обозначается Y. Для защиты от перегрузок электродвигателя в точке соединения обмоток подключают нейтраль.
Подобное соединение, двигателю электрическому, который приспособлен к работе от 380 вольт, не позволяет достигать полной мощности, поскольку напряжение обмоток всего 220в. Но зато оно защищает от перегрузок по току, благодаря чему старт является плавным.
Взглянув в коробку с клеммами легко понять, по какой схеме выполнено подключение. Если присутствует перемычка, соединяющая 3 вывода, то используется «звезда».
Треугольник
Если концы обмоток соединены с началом предыдущих, значит это «треугольник».
По старой маркировке С4 соединяют с выводом С2, далее — С5 с С3, а С6 с С1. В новом варианте маркировки это выглядит так: соединяют U2 и V1, V2 и W1, W2 и U1. Величина напряжения между обмотками равно 380 в. Но, не требуется при этом соединение с нейтралью, или «рабочим нулем». Особенностью этого подключения являются большие значения пусковых токов, опасных для проводки.
В практике порой используют подключение комбинированное, т.е. во время запуска и разгона применяют «звезду», а «треугольник» используют в дальнейшем, т.е. рабочем режиме.
Определить, что для подключения применили схему «треугольник» поможет клеммная коробка, точнее три перемычки между клеммами.
О преобразовании энергии
Энергия, которую подают на статорные обмотки преобразуется асинхронным электродвигателем в энергию вращения ротора, т.е. механическую. Но величина мощности на выходе и входе – разные, поскольку часть ее теряется на вихревые токи и гистерезис, на трение и нагрев.
Она рассеивается в виде выделяемого тепла, поэтому и для охлаждения и нужен вентилятор. Тем не менее, кпд асинхронных электродвигателей в широком диапазоне нагрузок высок и достигает 90% и 96% для очень мощных.
Достоинства трехфазной системы
Основным достоинством трехфазных, если сравнивать с одно- и двухфазными моторами, считается экономичность. В этом случае, для передачи энергии имеется три провода, а относительный сдвиг токов в них равен 120 градусов. Значение амплитуд и частот с синусоидальным ЭДС одинаково на разных фазах.
Важно: при любом соединении, зависящем от напряжения, соединяться концы обмоток могут внутри мотора (три выходящих из него провода) или выводиться наружу (6 проводов).
Какие есть варианты исполнения электродвигателей?
Присутствие в маркировке буквы «У» говорит о том, что назначение электродвигателя – работа в умеренном климате, где годичные температуры находятся в диапазоне + 40 градусов – 40 градусов. Для тропического климата должна присутствовать в маркировке «Т».
Значит, работает мотор нормально в интервале температур от +50 до -10. Для морского климата в обозначении есть «ОМ», для всех районов, кроме очень холодных – «О» (+35 – 10 градусов).
Наконец, для районов с очень холодным климатом – «УХЛ», что означает нормальное функционирование при температуре от плюс 40 до минус шестидесяти градусов.
Делятся электродвигатели и по вариантам специального исполнения. Если вы видите букву «С», означает это, что двигатель с повышенным скольжением. Если «Р» — с высоким пусковым моментом, «К» — с фазным ротором, с «Е» — электромагнитным встроенным тормозом.
Помимо этого, они бывают:
- на крепежных лапах, находящихся на основании кожуха и отверстиями, предназначенными для крепления. Подобные двигатели стоят в станках деревообрабатывающих и компрессорах, в электромашинах с ременной передачей и пр.;
- во фланцевом исполнении, т.е. на корпусе фланцы имеют отверстия для крепежа к редуктору. Используются часто в электронасосах, бетономешалках и прочих устройствах;
- комбинированными, т.е. имеющими фланцы и лапы. Их называют универсальными, поскольку крепиться они могут к любому оборудованию.
Синхронные и асинхронные электродвигатели, или о различиях между ними
Помимо моторов асинхронных, существуют синхронные, отличающиеся от первых тем, что частота вращающегося ротора, соответствует той, которую имеет магнитное поле. Его главными элементами являются индуктор, находящийся на роторе, и якорь, располагающийся на статоре. Их разделяет, как и у асинхронных, воздушная прослойка. Функционируют они как электродвигатель или генератор.
В первом варианте устройство функционирует благодаря взаимодействию магнитного поля, создаваемого на якоре, с полем на полюсах индуктора. Функционирование в режиме генератора обеспечивает электромагнитная индукция, вызванная вращающимся якорем в магнитном поле, сформированном в обмотке.
Поле, взаимодействует с фазами обмотки статора по очереди, образуя электродвижущую силу. По конструкции синхронные моторы более сложные, чем асинхронные.
Вывод: у синхронных электродвигателей частота вращения ротора одинакова с частотой магнитного поля, а у асинхронного они разные.
Эти особенности определяют использование первых там, где нужна мощность 100 кВт и больше, вторых – в случаях до 100 кВт.
Видео: Асинхронный двигатель.Модель и принцип работы.
Асинхронный двигатель - технические характеристики и принцип работы
Среди разнообразия выпускаемых на сегодняшний день типов электрических моторов большое распространение получили асинхронные двигатели. Их мощность и эффективность обеспечивает использование в деревообрабатывающей и металлообрабатывающей промышленности, в насосных агрегатах, на фабриках, в станках и ручном электрическом инструменте.
асинхронный трехфазный двигатель
Содержание:
- Асинхронный двигатель: что это такое
- Трехфазный асинхронный двигатель. Принцип работы
- Однофазный асинхронный двигатель
- Двухфазный асинхронный двигатель
- Схемы подключения
- Функциональные и эксплуатационные особенности
- Как производятся расчеты
Асинхронный двигатель: что это
Асинхронный двигатель – это асинхронная электрическая машина, применяемая для преобразования электрической энергии в механическую. Асинхронный дословно означает неодновременный – здесь имеется в виду, что у асинхронного двигателя магнитное поле всегда имеет большую частоту вращения, чем ротор, который словно пытается его догнать. Работают эти машины от сетей с переменным током.
Любой асинхронный двигатель состоит из двух ключевых составляющих: ротора и статора. Эти части не контактируют между собой и отделены друг от друга воздушным зазором, в котором формируется подвижное магнитное поле.
Статор асинхронной машины состоит из следующих частей:
- Корпус. Служит для скрепления всех деталей мотора. Для двигателей небольшого размера, как правило, используют цельные литые корпусы из чугуна, стальных и алюминиевых сплавов.
- Сердечник или магнитопроводник. Собирается из пластин, для изготовления которых применяют специальную электрическую сталь. Запрессовывается в корпус и улучшает магнитно-индукционные качества машины. Каждая пластина сердечника покрывается особым лаком, позволяющим уменьшить потери при возникновении вихревых токов.
В некоторых случаях устройство асинхронного двигателя предусматривает установку корпуса-сердечника, совмещающего в себе обе функции.
- Обмотки. Устанавливаются в пазы сердечника. Представляет собой три катушки из меднопроволочных секций, расположенные под углом в 120˚ относительно друг друга. Называется первичной, потому что подключается к сети напрямую.
Конструкция ротора состоит из основного блока с вентиляционной крыльчаткой, опирающегося на подшипники. Связь ротора с приводимым в движение механизмом обеспечивается с помощью прямого подключения, редукторов или других способов передачи механической энергии. В асинхронных двигателях используются два вида роторов:
- Массивный ротор – единая схема из прочного ферромагнитного соединения. Внутри неё индуцируются токи, и она же выполняет в конструкции роль магнитопровода.
- Короткозамкнутый ротор (изобретён великим русским инженером Михаилом Осиповичем Доливо-Добровольским, как и весь трёхфазный ток) – система соединенных с помощью колец проводников, похожая по внешнему виду на беличье колесо.
Внутри него индуцируются токи, чье электромагнитное поле вступает во взаимодействие с магнитным полем статора, в результате чего ротор приводится в движение.
беличье колесо
Рекомендуем посмотреть это видео. Оно хоть и старое, но интересное и познавательное. Позволит закрыть непонятные моменты.
Трехфазный асинхронный двигатель. Принцип работы
Принцип действия асинхронного двигателя заключается во взаимном расположении обмоток и трехфазном напряжении, что приводит к возникновению вращающегося магнитного поля, которое и выступает движущей силой.
Подробнее говоря, при подаче питания на первичную обмотку, на фазах образуются три магнитных потока, изменяющихся в зависимости от частоты входного напряжения. Они смещены между собой не только в пространстве, но и во времени, благодаря чему и появляется вращающийся магнитный поток.
Во время вращения результирующий поток создает ЭДС в роторных проводниках. По причине того, что обмотка ротора представляет собой замкнутую цепь, в ней создается ток, создающий пусковой момент в направлении вращения магнитного поля статора. Это приводит к вращению ротора после превышения пусковым моментом его тормозного момента. Наблюдаемое в этот момент явление называется скольжением — величиной, показывающей в виде процентов соотношение частоты вращения магнитного поля к частоте вращения ротора.
(n1 – частота магнитного поля статора; n2 – частота вращения ротора)
Скольжение является очень важным параметром. На старте его величина всегда равна 1 и, естественно, становится меньше по мере увеличения разности между n1 и n2, что сопровождается также уменьшением электродвижущей силы и вращающего момента. Во время работы на холостом ходу скольжение минимально и растет по мере увеличения статического момента. Достигнув критического скольжения (обозначается как sкр), может спровоцировать опрокидывание двигателя. После уравновешивания тормозного и электромагнитного момента изменения величин прекращаются.
Таким образом, принцип действия асинхронного двигателя основывается на взаимодействии магнитного поля ротора, находящегося во вращении, и токов, наведенных в роторе этим же полем. При этом обязательным условием возникновения вращающего момента является разница частот вращения полей.
Однофазный асинхронный двигатель
Фактически, любой асинхронный электродвигатель является трехфазным и предусматривает подключение к трехфазной сети с напряжением 380 В. Однофазным или двухфазным его называют при подключении к однофазной электросети с напряжением 200 В, когда питание подается лишь на две обмотки. В такой схеме на основную рабочую обмотку подается чистая фаза от сети, а на другую питание идет через фазосдвигающий элемент, как правило, конденсатор. Такая схема позволяет создать необходимую индукцию для смещения ротора и запустить асинхронный двигатель от однофазной сети. Для дальнейшей его работы даже необязательно, чтобы пусковая обмотка (которую подключают через конденсатор) оставалась под напряжением.
Дело в том, что трехфазный асинхронный двигатель продолжает функционировать (под малой нагрузкой) даже если во время работы от него отключить подачу энергии по одному из питающих проводов, сымитировав таким образом работу от однофазной сети. Это обусловлено тем, что результирующее магнитное поле сохраняет вращение.
Двухфазный асинхронный двигатель
Создать вращающееся магнитное поле можно и при использовании двухфазных обмоток. Для обеспечения работоспособности схемы фазы обмоток необходимо расположить с 90˚ смещением друг от друга. При их питании токами, которые смещены по фазе на 90˚, возникает вращающееся магнитное поле, как и в трехфазной машине.
Асинхронный двухфазный электродвигатель приводится в движение за счет токов, образуемых при взаимодействии результирующего поля с роторными стержнями. Он ускоряется до того момента, пока не будет достигнута предельная скорость его вращения. Для питания такого двигателя от электросети однофазного тока необходимо создать сдвиг по фазе на одной из обмоток. Для этого применяются конденсаторы необходимой ёмкости.
На сегодняшний день все большее применение находят двухфазные асинхронных двигатели с полым алюминиевым ротором. Вращение ему придают вихревые токи, образованные внутри цилиндра, при взаимодействии с вращающимся магнитным полем.
Инерционный момент ротора наделяет двигатель хорошими характеристиками для использования в некоторых специализированных отраслях, как, например, системы, регулирующие работу мостовых и компенсационных схем. Одна из обмоток в них подключается к питающей сети через конденсатор, а через вторую проходит управляющее напряжение.
Схемы подключения
Для того чтобы подключить трехфазный асинхронный двигатель используют несколько различных схем, но чаще всего применяются «треугольник» и «звезда».
Треугольник
Преимущество данной схемы заключается в том, что при подключении согласно ей трехфазный двигатель может развивать наибольшую номинальную мощность. Для этого обмотки соединяются по принципу конец-начало, что на схематичном изображении похоже на треугольник, однако в виде треугольника понять что к чему, не всегда удобно. По этому предлагаем для анализа схему снизу, а затем фотографию уже в сборе (еще ниже).
схема подключения «треугольник»
В трехфазных электрических сетях величина линейного напряжения между выводами обмоток составляет 380 В. При этом нет необходимости создания рабочего нуля. Важно отметить, что в такой схеме может возникнуть большой пусковой ток, значительно перегружающий проводку.
Звезда
Этот способ подключения является наиболее используемым в сетях с трехфазным током 380 В. Название схемы связано с тем, что концы обмоток соединяются в одной точке, словно звездные лучи. Начала обмоток подключаются посредством аппаратуры коммутации к фазным проводникам. В такой конструкции линейной напряжение между начал составляет 380 В, а между местом соединения и подключения проводника – 200 В. Ниже представлена схема, а еще ниже уже фотография в собранном виде.
схема подключения «звезда»
Трехфазный двигатель для 380 В сетей, подключенный таким образом, не способен развить максимальную силу из-за того, что напряжение на каждой обмотке составляет 220 В. В свою очередь, такая схема предотвращает возникновение перегрузок по току, чем обеспечивается плавный пуск.
Возможность подключения двигателя тем или иным способом, как правило, указывается на его табличке. Значок Y означает «звезду», а ∆ — «треугольник». Определить схему на уже подключенной машине можно по виду обмоток – одна двойная перемычка между ними говорит, что использована «звезда» (первое фото снизу), а если между клеммами обмоток видно три перемычки – «треугольник» (первое фото сверху).
Асинхронный двигатель, треугольник в сборе.
Асинхронный двигатель, звезда в сборе
В случае, когда необходимо запустить трехфазный асинхронный электродвигатель в обратном направлении вращения, следует поменять два питающих провода от трехфазного источника местами.
Функциональные и эксплуатационные особенности
Характерные преимущества асинхронных двигателей:
- В их конструкции нет коллекторных групп, которые увеличивают износ других видов двигателей за счет дополнительного трения.
- Питание асинхронных электрических машин не требует использования преобразователей и может осуществляться промышленной трехфазной сети.
- Из-за меньшего количества деталей и конструктивных элементов они относительно легко обслуживаются и имеют большой срок службы.
Среди недостатков можно отметить:
- Сфера применения асинхронных двигателей несколько ограничена из-за малого пускового момента.
- Высокая реактивная мощность, которую они потребляют во время работы, не оказывает влияние на механическую мощность.
- Большие пусковые токи, потребляемые на пуске этих двигателей, могут превышать допустимые значения некоторых систем.
Как производятся расчеты
Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:
И выразить из нее скорость вращения ротора:
В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.
При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:
Таким образом, величина скольжения электродвигателя составляет:
И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.
Что такое трехфазный двигатель и как он работает?
Трехфазные двигатели (также численно обозначаемые как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы. Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает на принципах электромагнитной индукции. Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленных приложениях, но широко используются в домашних условиях, таких как пылесосы, компрессоры холодильников и кондиционеры, благодаря использованию однофазных двигателей. фаза переменного тока в домах и офисах.В этой статье мы обсудим, что такое трехфазный двигатель, и опишем, как он работает. Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, посвященным двигателям переменного тока, двигателям постоянного тока, асинхронным двигателям, или к более общей статье о типах двигателей. Полный список статей о моторах можно найти в разделе статей по теме.
Что такое трехфазное питание?
Чтобы понять трехфазные двигатели, полезно сначала понять трехфазную мощность.
При производстве электроэнергии переменный ток (AC), создаваемый генератором, имеет характеристику, состоящую в том, что его амплитуда и направление меняются со временем.Если графически отображать амплитуду по оси Y и время по оси X, соотношение между напряжением или током в зависимости от времени будет напоминать синусоидальную волну, как показано ниже:
Рисунок 1 - Однофазный переменный ток
Изображение предоставлено: Фуад А. Саад / Shutterstock.com
Электроэнергия, подаваемая в дома, является однофазной, что означает, что имеется один токоведущий провод плюс нейтраль и заземление. В трехфазном питании, которое используется в промышленных и коммерческих условиях для работы более крупного оборудования, которое требует большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o 2π / 3. радианы друг от друга.Если рассматривать графически, каждая фаза будет выглядеть как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:
Рисунок 2 - Трехфазное электрическое питание со сдвигом фаз 120 o между каждой фазой
Изображение предоставлено: teerawat chitprung / Shutterstock.com
Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для выработки механической энергии в виде вращающегося вала двигателя.
Что такое трехфазный двигатель?
Трехфазные двигатели - это тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть асинхронными двигателями (также называемыми асинхронными двигателями) или синхронными двигателями. Двигатели состоят из трех основных компонентов - статора, ротора и корпуса.
Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образуя индукционные катушки, по одной катушке на каждую фазу источника электроэнергии.Катушки статора питаются от трехфазного источника питания.
Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и представляет собой компонент двигателя, который вращается для выработки механической энергии на выходе двигателя.
Кожух двигателя удерживает ротор с валом двигателя на комплекте подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, которые удерживают опоры подшипников и вмещают вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя.Вращающийся вентилятор втягивает окружающий воздух снаружи корпуса и заставляет воздух проходить через статор и ротор, чтобы охладить компоненты двигателя и рассеять тепло, которое генерируется в различных катушках от сопротивления катушки. Кожух также обычно имеет выступающие механические ребра снаружи, которые служат для дальнейшего отвода тепла в наружный воздух. Торцевая крышка также обеспечит место для электрических подключений для трехфазного питания двигателя.
Как работает трехфазный двигатель?
Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году.Фарадей заметил, что когда проводник, такой как катушка или проволочная петля, помещается в изменяющееся магнитное поле, в проводнике возникает индуцированная электродвижущая сила или ЭДС. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле, и что магнитное поле будет изменяться, когда ток в проводе изменяется по величине или направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения во времени магнитного потока:
Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.
На рисунке 3 ниже показан закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, которое приводит к изменению магнитного поля.
Рисунок 3 - Принцип электромагнитной индукции
Изображение предоставлено: Фуад А. Саад / Shutterstock.com
Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка генерирует магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток колеблется в течение полного цикла.Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120 o , магнитная полярность трех катушек не все идентичны в один и тот же момент времени. Это состояние приводит к тому, что статор производит так называемое RMF или вращающееся магнитное поле. Когда ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к возникновению противоположного магнитного поля, создаваемого ротором. Поле ротора стремится выровнять свою полярность относительно поля статора, в результате чего на вал двигателя прикладывается чистый крутящий момент, и он начинает вращаться, пытаясь выровнять свое поле.Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.
В трехфазных асинхронных двигателях ротор стремится поддерживать соосность с RMF статора, но никогда не достигает этого, поэтому асинхронные двигатели также называют асинхронными. Явление, которое заставляет скорость ротора отставать от скорости RMF, известно как скольжение, что выражается как:
, где N r - скорость ротора, а N s - синхронная скорость вращающегося поля (RMF) статора.
Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставляет ротор вращаться с точно такой же скоростью вращения (в синхронизация - значит скольжение равно 0). Для получения дополнительной информации о том, как это делается, обратитесь к статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных, не нуждаются в питании от сети переменного тока.
Контроллеры двигателей для 3-фазных двигателей
Скорость, создаваемая трехфазным двигателем переменного тока, является функцией частоты источника переменного тока, поскольку она является источником RMF в обмотках статора. Поэтому некоторые контроллеры двигателей переменного тока работают, используя вход переменного тока для генерации модулированной или управляемой частоты на входе двигателя, тем самым управляя скоростью двигателя. Другой подход, который можно использовать для управления скоростью двигателя, - это изменение скольжения (описано ранее).Если скольжение увеличивается, скорость двигателя (т.е. скорость ротора) уменьшается.
Чтобы узнать больше о подходах к управлению двигателями, просмотрите нашу статью о контроллерах двигателей переменного тока.
Сводка
В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах ознакомьтесь с нашими дополнительными руководствами или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.
Источники:
- https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
- https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
- http://www.oddparts.com/oddparts/acsi/defines/poles.htm
- http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
- https://www.elprocus.com/induction-motor-types-advantages/
- https: // www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
- https://www.worldwideelectric.net/resource/construction-ac-motors/
Прочие изделия для двигателей
Больше от Machinery, Tools & Supplies
Трехфазный синхронный двигатель
Работа типичного трехфазного синхронного двигателя можно резюмировать следующим образом:
- На обмотки статора подается трехфазное переменное напряжение и создается вращающееся магнитное поле.
- На обмотку ротора подается постоянное напряжение, и создается второе магнитное поле.
- Затем ротор действует как магнит и притягивается вращающимся полем статора.
- Это притяжение создает крутящий момент на роторе и заставляет его вращаться с синхронной скоростью вращающегося поля статора.
- Ротор не требует магнитной индукции от поля статора для своего возбуждения. В результате двигатель имеет нулевое скольжение по сравнению с асинхронным двигателем, которому требуется скольжение для создания крутящего момента.
Отстающий коэффициент мощности электрической системы можно скорректировать путем перевозбуждения ротора синхронного двигателя, работающего в той же системе.Это создаст опережающий коэффициент мощности, нейтрализуя отстающий коэффициент мощности индуктивных нагрузок. Недовозбужденное поле постоянного тока создает запаздывающий коэффициент мощности и по этой причине редко используется. Когда поле нормально возбуждено, синхронный двигатель будет работать с единичным коэффициентом мощности. Трехфазные синхронные двигатели могут использоваться для коррекции коэффициента мощности, в то же время выполняя важную функцию, такую как работа компрессора. Однако, если выходная механическая мощность не требуется или может быть обеспечена другими экономически эффективными способами, синхронная машина остается полезной в качестве «немоторного» средства управления коэффициентом мощности.Он выполняет ту же работу, что и батарея статических конденсаторов. Такая машина называется синхронным конденсатором или конденсатором.
ИС драйвера трехфазного двигателя BLDC
Трехфазный двигатель BLDC / PMSM . 3-фазный двигатель BLDC / PMSM . Вентилятор для бытовой техники . Маленький насос Примечание: * = Этот продукт в настоящее время находится в разработке. Скачать 9013 , Q13FN , Q13FN
|