Аргонодуговая сварка алюминия: пошаговая инструкция для начинающих, видео

Содержание

пошаговая инструкция для начинающих, видео

Наиболее эффективным способом создания неразъемного соединения деталей, выполненных из алюминия и сплавов на основе данного металла, как показывает практика, является сварка алюминия аргоном. Любая технология сварки, предполагающая использование защитного газа, подразумевает применение специального оборудования, а также наличие у сварщика соответствующих знаний, квалификации и опыта выполнения подобных работ. Кроме того, необходимо обладать хотя бы начальными знаниями в области металловедения, чтобы понимать, какие процессы протекают в сварочной ванне.

Процесс аргонодуговой сварки алюминия

Какие свойства алюминия следует учитывать при его сварке

Разбираться в нюансах процессов, протекающих в структуре алюминия при выполнении с ним сварочных работ, особенно важно для начинающих сварщиков. Чтобы хорошо разбираться в этом, необходимо познакомиться с химическими свойствами, которыми обладает данный металл, отличающийся небольшим удельным весом, высокой прочностью и исключительной химической активностью.

Наиболее значимой характеристикой алюминия, о которой должны знать не только опытные, но и начинающие сварщики, является его способность быстро вступать в реакцию с кислородом, что приводит к образованию на поверхности металла тугоплавкой оксидной пленки. Что характерно, сам алюминий может плавиться при температуре 650 градусов, а чтобы расплавить оксидную пленку, покрывающую его поверхность, потребуется температура нагрева, превышающая 2000 градусов. Нерасплавленная оксидная пленка при сварке на постоянном токе может погружаться в расплавленный металл, тем самым ухудшая его внутреннюю структуру.

Схема аргонодуговой сварки

Еще одной особенностью, которую следует учитывать при выполнении сварки данного металла, является то, что он не меняет своего цвета в процессе нагревания. Из-за этого визуально определить степень нагрева соединяемых деталей достаточно сложно, что часто приводит к прожогам и утечке расплавленного металла в процессе выполнения сварочных работ.

Свойством алюминия, которое следует учитывать, если вы соберетесь варить детали из данного металла, является значительный коэффициент его объемной усадки, что нередко приводит к возникновению напряжений и деформаций внутри сформированного сварного шва и, как следствие, к образованию в нем трещин. Чтобы избежать таких неприятных последствий, необходимо выполнять модификацию сварного шва либо компенсировать усадку металла за счет большего расхода сварочной проволоки. 

Любая инструкция по сварке алюминия, а также сплавов на его основе предусматривает, что выполняющий ее специалист осведомлен о характеристиках данного металла, к которым следует отнести:

  • высокую химическую активность;
  • невысокую температуру плавления самого металла;
  • значительную объемную усадку.

Учитывая все вышеперечисленное, можно утверждать, что именно благодаря сварке алюминия аргоном получают качественные, красивые и надежные соединения деталей.

А если использовать для выполнения такой сварки полуавтоматическое оборудование, то можно эффективно решить сразу две задачи: защитить зону сварки от вредного воздействия окружающей среды, а также компенсировать значительную усадку металла за счет постоянно подающейся сварочной проволоки.

Конечно, кроме данной технологии, существуют и другие методы соединения деталей из алюминия при помощи сварки, об особенностях использования которых должен знать каждый специалист.

Режимы аргонодуговой сварки алюминия и его сплавов

Способы сварки алюминия

Кроме сварки, предполагающей использование аргона в качестве защитного газа, варить детали из алюминия можно и при помощи других технологий. Наиболее распространенными являются:

Первая из вышеперечисленных технологий сварки алюминия предполагает использование присадочной проволоки, подаваемой в сварочную зону, а также специального флюса, состоящего из фтористых и хлористых солей. Флюс, который вместе с присадочным прутком нагревается  пламенем газовой горелки, разъедает оксидную пленку и открывает доступ пламени к основному металлу, плавящемуся при достаточно невысокой температуре. После окончания сварочных работ, выполняемых по данной технологии, необходимо сразу промыть поверхности соединяемых деталей, чтобы смыть с них остатки едкого флюса. Большим преимуществом данной технологии является то, что при ее использовании обеспечивается минимальный расход присадочного материала.

Оборудование для полуавтоматической сварки в среде аргона

Для соединения алюминиевых деталей также может применяться электродуговой сварочный аппарат, специальные электроды из алюминия или присадочная проволока, на поверхность которой нанесена обмазка из флюса. Сварка при использовании такого аппарата выполняется постоянным током, подключенным с обратной полярностью.

Однако, как уже отмечено выше, наиболее качественное соединение позволяет получить аргонодуговая сварка алюминия. Нагрев соединяемых деталей при использовании данной технологии обеспечивается за счет электрической дуги, горящей между неплавким вольфрамовым электродом и соединяемыми заготовками. Формирование сварного шва происходит за счет использования проволоки из алюминия, подаваемой в зону горения дуги вручную или механическим способом – при сварке полуавтоматом.

Оборудование для ручной аргонодуговой сварки

Высокая температура, создаваемая при горении электрической дуги, позволяет разрушить оксидную пленку на поверхности соединяемых деталей, а чтобы алюминий не успел перейти в жидкую фазу и вытечь из зоны формируемого соединения, сварочный электрод перемещают с достаточно высокой скоростью. Большим преимуществом данного метода сварки является то, что электрод, изготовленный из тугоплавкого вольфрама, служит на протяжении длительного времени, а это позволяет экономить на расходных материалах.

Чтобы сварной шов, выполняемый полуавтоматом с использованием присадочной проволоки, обладал высоким качеством и надежностью, необходимо максимальное соответствие химического состава такой проволоки составу соединяемых заготовок.

Для выполнения сварки по данной технологии сегодня используются аппараты, вырабатывающие постоянный или импульсный ток, а также есть устройства, сварка на которых осуществляется переменным током.

Технология сварки с помощью аргона

Сварка аргоном, которая попадает под определение сварки в среде защитного газа, предполагает четкое следование инструкции, в которой оговорена последовательность действий, выполняемых специалистом. От того, насколько правильно будут выполнены все эти действия, зависит как качество формируемого соединения, так и расход материалов, которые стоят недешево. Если вы никогда не выполняли таких сварочных работ, то вам необходимо не только изучить пошаговые инструкции, но и внимательно просмотреть видео уроки, в которых подробно отражен весь технологический процесс.

Чтобы варить алюминий и сплавы на основе данного металла в среде аргона, необходим не только сам сварочный аппарат, но и дополнительное оборудование, обеспечивающее хранение и подачу расходных материалов. Естественно, техническое состояние такого оборудования и качество всех используемых материалов напрямую влияют на надежность формируемого соединения.

Для выполнения сварки аргоном деталей из алюминия и сплавов на основе данного металла потребуется следующее оборудование:

  • источник электрического тока, к которому будет подключаться сварочный аппарат и все остальное оборудование;
  • баллон, в котором хранится защитный газ аргон;
  • механизм, отвечающий за подачу присадочной проволоки в зону выполнения сварки.

При выполнении сварки аргоном на крупных промышленных предприятиях защитный газ подается к сварочному аппарату по централизованной сети. Используемая на полуавтоматах сварочная проволока предварительно наматывается на специальные бобины, устанавливаемые на такой аппарат. Рабочие поверхности верстаков, на которых выполняются сварочные операции, согласно инструкции, должны быть изготовлены из нержавеющей стали.

Как подготовить к сварке соединяемые детали

На качество сварки аргоном алюминия оказывает влияние не только техническое состояние используемых полуавтоматов и других аппаратов, но и тщательность подготовки соединяемых заготовок.

Хорошо демонстрирует все этапы такой подготовки пошаговое видео ниже:

Для получения качественного соединения необходимо тщательно очистить соединяемые детали от грязи, жира и следов машинного масла. Для такой очистки лучше всего использовать любой растворитель. В случае, если толщина соединяемых листовых заготовок превышает 4 мм, необходимо выполнить разделку кромок, а саму сварку алюминия выполнять только встык. Чтобы удалить с поверхности заготовок тугоплавкую окисную пленку, место их соединения необходимо обработать при помощи напильника или щетки с металлическими ворсинками. Если место соединения имеет сложную конфигурацию, то такую зачистку можно выполнить при помощи шлифовальной машинки.

Некоторые особенности сварки аргоном

Сварка, выполняемая в среде аргона, имеет некоторые технологические особенности, о которых не всегда может рассказать обучающее видео. Как уже говорилось выше, для такой сварки, выполняемой полуавтоматом или с ручной подачей присадки, используются вольфрамовые электроды, диаметр которых выбирается в интервале 1,5–5,5 мм. Такой электрод, формирующий сварочную дугу, располагается под углом 80 градусов к поверхности соединяемых деталей. Если подача присадочной проволоки осуществляется не полуавтоматом, а вручную, то ее располагают под углом 90 градусов по отношению к электроду. Если вы внимательно посмотрите видео сварки алюминия аргоном, то обратите внимание, что присадочная проволока двигается впереди электрода.

Режимы сварки алюминия вольфрамовым электродом

Выполняя сварку аргоном, очень важно следить за тем, чтобы длина дуги находилась в пределах 3 мм. Характерной особенностью такой сварки является и то, что при ее выполнении присадочной проволокой не совершаются поперечные движения.

Сварка аргоном, если с ее помощью соединяются листы алюминия небольшой толщины, выполняется с подкладкой, в качестве которой можно использовать лист нержавеющей стали. Это позволяет улучшить отвод тепла из сварочной зоны, избежать прожогов и протеканий расплавленного металла. Применение подкладки, ко всему прочему, позволяет экономить энергию, так как такая сварка в среде аргона может выполняться с более высокой скоростью.

Плюсы и минусы сварки, выполняемой в среде аргона

Сварка аргоном деталей из алюминия и сплавов данного металла отличается рядом весомых преимуществ, если сравнивать ее с другими технологиями. При использовании этого метода соединяемые детали нагреваются очень незначительно, что особенно важно в тех случаях, когда необходимо варить заготовки сложной конфигурации. Соединение, получаемое при помощи сварки в среде аргона, отличается высокой прочностью и однородностью сварного шва, в котором отсутствуют поры, примеси и посторонние включения. Очень важно, что шов, получаемый при сварке аргоном, отличается однородной глубиной проплавления по всей своей длине.

Схема аргонной сварки с применением неплавящегося вольфрамового электрода

Естественно, имеет сварка алюминия аргоном и недостатки, о которых также следует знать. Основным из таких недостатков является использование сложного оборудования. Для обеспечения высокой эффективности сварочных операций и требуемого качества сварного шва необходимо, чтобы сам сварочный аппарат и все дополнительное оборудование были настроены правильно.

Одним из важнейших параметров, который следует правильно настраивать при выполнении сварки в среде аргона и других защитных газов,  является скорость, а также равномерность подачи присадочной проволоки. Если аппарат подачи будет настроен неправильно, то проволока в зону сварки будет поступать с перерывами, сварочная дуга будет прерываться, что в итоге приведет к повышенному расходу электроэнергии и аргона.

Сварка аргоном является достаточно непростым процессом, но, если соблюдать все инструкции и обладать соответствующей квалификацией, она позволит добиться хорошего результата.

Оценка статьи:

Загрузка...

Поделиться с друзьями:

как варить в среде углекислого газа и аргона? Настройка сварочного аппарата, важные моменты

Одна из особенностей алюминия во время сварки – он не меняет цвет, пока не разогревается выше точки плавления. Именно потому, что у него небольшая температура плавления, работы по сварке обладают некоторыми особенностями.

Особенности и сложности

При полуавтоматической пайке алюминия с помощью горелки используется флюс. Флюс будет плавиться по мере увеличения температуры основного материала.

Сварка алюминия полуавтоматом с оксиацетиленом или кислородом подразумевает, что поверхность основного метала сначала расплавится и примет характерный вид.

Алюминий обладает рядом свойств, которые отличают его сварочные работы от тех, что применяются при сваривании листов из стали. Среди них:

  • поверхностное покрытие из оксида алюминия;
  • высокая теплопроводность;
  • высокий коэффициент теплового расширения;
  • низкая температура плавления;
  • отсутствие изменения цвета по мере приближения к температуре плавления.

Алюминий – это активный металл, который взаимодействует с кислородом в воздухе, в результате получается твердая тонкая пленка оксида алюминия на поверхности. Температура плавления оксида алюминия составляет приблизительно 3600 F (1982 градуса), что почти в три раза выше температуры плавления чистого алюминия. Кроме того, эта пленка поглощает влагу из воздуха, в частности когда становится толще.

Влага, в свою очередь, является источником водорода, он вызывает пористость в алюминиевых сварных швах. Водород может также выступать из масла, краски и грязи в зоне сварки. Он выходит из окиси и чужеродных материалов на проводе электрода или заполнителя.

Водород отбрасывается в процессе затвердевания. С быстрым охлаждением свободный водород сохраняется внутри шва, что тоже приводит к пористости. Она, в свою очередь, уменьшает прочность.

При подготовке алюминия к сварке требуется соскребать пленку острым инструментом, проволочной щеткой, наждачной бумагой или аналогичными средствами. Использование инертных газов или нанесение флюса предотвращает образование оксидов в процессе образования сварного шва.

Химическое удаление может быть сделано двумя способами. Один из них – использование чистящих растворов. Время нахождения в растворе необходимо контролировать.

Химическая очистка включает использование сварочных флюсов. Они используются для газовой сварки. Всякий раз, когда используется такой метод, флюс впоследствии стоит полностью удалить из зоны сварки. Только так можно избежать образования коррозии в будущем.

Электрическая система удаления окиси предполагает использование катодной бомбардировки. Она позволяет полностью очистить поверхность, поэтому технология так востребована. После проведенной очистки сварной шов необходимо сделать в течение восьми часов. Чем больше проходит времени, тем меньше прочность соединения.

Методы

MIG – быстрый процесс с использованием обратной полярности и инертного газа. Это может быть работа в среде аргона, который создает необходимую защитную оболочку для формирования качественного шва. Метод подходит для того, чтобы сварить толстые алюминиевые пластины в любом положении.

Нередко работа проводится в среде углекислого газа. С углекислотой предпочитают работать профессионалы.

Для сварки алюминия используется аргон, гелий или смесь этих газов. Аргон производит более ровную и более стабилизированную дугу, чем гелий. При определенном токе и длине дуги гелий обеспечивает более глубокое проникновение и более горячую дугу, чем аргон.

Напряжение дуги с гелием выше, и данное изменение приводит к большему изменению напряжения. Смесь из приблизительно 75% гелия и 25% аргона дает преимущества обоих защитных газов без каких-либо нежелательных последствий.

В этом случае стабильность дуги сравнима с аргоном. Угол наклона пистолета или горелки более критичен при сварке алюминия с инертным защитным газом. Рекомендован ведущий угол перемещения в 30 градусов. Наконечник электродной проволоки должен быть небольшим для алюминия.

Алюминиевый сварной шов, выполненный с использованием GMAW, предполагает, что сварщик «закладывает шарик» из расплавленного металла, который потом и становится бесшлаковым сварным швом.

Электродная проволока должна быть чистой и выступать приблизительно на 12,7 мм. Часто используемый метод состоит в том, чтобы ударить по дуге примерно на расстоянии 25,4 мм, а затем быстро довести ее до начальной необходимой точки для сварки и изменить направление движения.

При завершении или прекращении сварки такая практика может допускать одновременное увеличение скорости наложения шва для сужения его ширины до разрыва дуги. Это помогает предотвратить образование кратеров и трещин.

Установив дугу, сварщик перемещает электрод вдоль стыка, сохраняя при этом угол наклона рабочей стороны от 70 до 85 градусов по отношению к заготовке. Обычно предпочтительна техника струнного бисера. Необходимо следить за тем, чтобы угол наклона передней части не менялся и не увеличивался по мере приближения конца шва. Скорость перемещения дуги контролирует размер шарика.

Оборудование подачи проволоки для сварки алюминия должно быть хорошо отрегулировано. Профессионалы советуют использовать вкладыши нейлонового типа. Гораздо сложнее проталкивать алюминиевую проволоку чрезвычайно малого диаметра.

Кромки могут быть подготовлены для сварки. Их требуется распилить и обработать.

Дуговая сварка вольфрамом используется для сваривания более тонких листов чистого алюминия и сплавов. Существует несколько мер предосторожности, которых следует придерживаться.

  1. Переменный ток рекомендуется применять для общецелевых работ. Сварка обычно с частотой коротковолнового диапазона активно применяется в ручных и автоматических установками. Особое внимание уделяется типу вольфрамового электрода, размеру сварочной насадки, типу и расходу газа. При ручной сварке длина дуги должна быть короткой и равной диаметру электрода. Вольфрамовый электрод не должен выступать слишком далеко за конец сопла и обязательно должен содержаться в чистоте.
  2. Обязательно должны использоваться сварочные установки, предназначенные для газовой вольфрамовой дуговой сварки. Новое современное оборудование предусматривает программирование, пре- и постпоток защитного газа, а также пульсирование.
  3. Очистка должна быть чрезвычайно эффективной. Если использовать отрицательный электрод постоянного тока, можно получить чрезвычайно глубокое проникновение и высокую скорость создания качественного шва.

Оборудование и материалы

Можно воспользоваться обычным агрегатом, а можно с импульсным режимом. Такой сварочный аппарат лучше, но и стоит он дороже на рынке. В ассортименте современных производителей имеются небольшие модели, которые способны генерировать ток различной мощности. Чтобы правильно выбрать сварочную установку, стоит обратить внимание на технические характеристики оборудования и его наконечник. Если изделие приобретается в мастерскую или автосервис, тогда желательно приобрести агрегат с TIG-функцией.

Встроенный импульсный режим позволяет избежать прожогов, поскольку в процессе работы формируется стабильная дуга. Качество сварочного шва у таких установок тоже выше.

Недорогие простые модели поддерживают MIG/MAG-функции. Можно подсоединить как углекислый газ, так и аргон. Если планируется соединять толстые алюминиевые пластины, тогда потребуется сварочный аппарат с мощностью не ниже 380 В. Бытовые модели можно подключать к стандартной сети.

Вольфрамовый электрод, который не плавится, используют для TIG-сварки. В качестве защитного газа лучше применять смесь аргона с гелием. При покупке посадочного материала потребуется принимать во внимание марку алюминия. Обязательно, чтобы проволока соответствовала габаритам заготовки. Для толстых заготовок идеальным решением станет диаметр присадочной проволоки 1,2-1,6 мм, для тонких можно использовать 0,8-1,2 мм.

Настройка сварочного аппарата

Даже сварщик не скажет, какие настройки можно считать универсальными для работы полуавтомата по алюминию. Каждый сварщик ориентируется главным образом на толщину заготовок.

Если это бытовые работы, то чаще используются алюминиевые детали толщиной 2 мм. Для этого потребуется напряжение установки в 15 В. Ток регулируют индивидуально, принимая во внимание легирующие добавки. Этот показатель может находиться в пределах 100–150 А.

А вот скорость наложения сварочного шва регулируется, опираясь на опыт мастера.

Технология

Если знать технологию сварки по алюминию, то можно заварить правильно изделие и в домашних условиях.

Подготовка

Сварка своими руками не представляет ничего сложного даже для начинающих. Можно начинать сваривать с тонкого металла. Настройки тока и полярности будут варьироваться в зависимости от типа электродов. Полярность должна быть определена пробой на небольших соединениях. Ее обязательно стоит сделать. В целом конструкция сварных соединений для алюминия вполне соответствует таковой для стальных. Однако из-за более высокой текучести алюминия под сварочной дугой имеются некоторые отличия.

Первостепенным действием является подготовка. Обязательно зачищают поверхность механическим или химическим методом. Делают подходящую кромку. Лучше использовать V-образную, которая должна быть довольно широкой, чтобы полностью вместить корневой канал. Такая конструкция требует добавления относительно большого количества присадочного сплава для заполнения канавки.

Процесс

Если работа выполняется в домашних условиях, то для сварки используют агрегаты-полуавтоматы с обратной полярностью. Каждый может сделать красивый шов, если станет действовать в определенном порядке.

  • Для установки подбирается правильно наконечник. Его диаметр должен быть чуть больше диаметра используемой проволоки.
  • Рабочую зону потребуется зачистить до металлического блеска. Иначе шов получится рыхлым.
  • Принимая во внимание толщину заготовки, подбирают режим.
  • До того как будет произведен розжиг, включается подача газа. Благодаря ему образуется защитное облако.
  • Дуга разжигается на расстоянии до 15 мм, но это расстояние не может быть менее сантиметра.
  • Скорость стоит регулировать постепенно в момент создания шва.
  • Получить желаемый результат можно, если вести дугу плавно.
  • Перед тем как закончить шов, дугу отводят в сторону и потом выключают аппарат.

Так можно варить любые алюминиевые детали.

Важные моменты

Алюминий и алюминиевые сплавы можно сварить углеродной сваркой или другим методом. Чистый материал можно легировать другими металлами для получения широкого спектра физико-механических свойств. Главным преимуществом использования полуавтоматической сварки является то, что с помощью дуги получается высококонцентрированная зона нагрева. По этой причине чрезмерное расширение и искажение металла исключены.

При сварке в горизонтальном положении наилучшие результаты достигаются при наведении установки немного вверх. При работе с толстыми пластинами полезно направлять дугу в сторону более тяжелого участка.

В следующем видео рассказывается о сварке алюминия полуавтоматом.

Сварка алюминия аргоном: технология проведения работ

Если нужно соединить заготовки из алюминия, следует учитывать особенности этого сплава. Сложность сваривания алюминиевых заготовок заключается в появлении оксидной плёнки, которая мешает созданию надёжного шва. Сварка алюминия аргоном позволяет создать хороший шов.

Сварка алюминия аргоном

Что необходимо учитывать при проведении работ?

Аргоновая сварка применяется для соединения многих однородных металлов, сплавов. Принцип действия этого оборудования заключается в образовании электрической дуги между вольфрамовым электродом и металлической поверхностью, которая позволяет создать сварочный шов. На обрабатываемую поверхность поступает поток инертного газа.

При проведении работ следует учитывать ряд особенностей:

  1. Образование оксидной плёнки. Плёнку можно расплавить при температуре 2000 градусов Цельсия. Одновременно с этим алюминий плавится при 500 градусах. Чтобы сделать качественный шов, нужно предварительно зачистить заготовку от оксидной плёнки. Сделать это можно щёткой или растворителем.
  2. Гигроскопичность. Алюминий активно впитывает влагу из окружающей среды. При разогреве заготовки с помощью сварочной дуги материал начинает выделять накопившую влагу. Чтобы шов получился более качественным, сварщики рекомендуют предварительно разогревать заготовку до 150 градусов.
  3. Зачистка обрабатываемой поверхности от воздуха. Чтобы это сделать, нужно выставить правильный поток аргона. Если газа недостаточно, материал будет вспениваться. Вольфрамовый стержень повредится. Когда газа поступает слишком много, он будет мешает формироваться шву. Увеличенный расход сделает процесс соединение заготовок более затратным.

При сварке аргоном возникают сложности в формировании шва. У новичков часто остаётся выемка (картер). Связано это с длительным нагревом поверхности. Чтобы избежать этой проблемы, нужно правильно выставить режим затухания дуги. При равномерном снижении температуры можно добиться качественного шва без образования кратера.

Способы алюминиевой сварки

Если нет возможности использовать аргон для защиты свариваемой поверхности от образования оксидной плёнки, можно использовать другие технологии сваривания:

  • аргонодуговую;
  • электродуговую;
  • с пользованием газовой горелки.

Третий вариант соединение алюминиевых заготовок подразумевает под собой использование флюса и присадочной проволоки. Расходный материал постепенно передаётся в рабочую зону. При нагревании проволока расплавляется и соединяет заготовки между собой. Флюс в это время разогревается и защищает поверхность от образования оксидной плёнки. Когда работа будет закончена, нужно очистить детали от флюса.

Электродуговая сварка подразумевает под собой использование алюминиевых электродов и постоянного тока с обратной полярностью. Вместо электродов может использоваться присадочная проволока. На поверхность расходного материала наносится слой флюса.

Лучшим вариантом является сваривание деталей с помощью аргона. При этом используются вольфрамовые электроды для алюминия. Между ними и обрабатываемой поверхностью образуется дуга, которая соединяет детали.

Аргонодуговая сварка алюминия

Преимущества и недостатки

Аргонная сварка алюминия имеет ряд сильных и слабых сторон.

Преимущества:

  1. Качественное соединение деталей.
  2. Защита поверхности с помощью газа.
  3. Отсутствие деформирования обрабатываемых деталей.
  4. Универсальная технология, которая подходит для соединение различных сплавов и однородных металлов. Подходит для использования материалов с высокой теплопроводностью.
  5. Повышение производительности.

Недостатки:

  1. Покупка сложного оборудования.
  2. Наличие опыта в проведении сварочных работ.

Оборудование

Перед началом работы следует подготовить необходимое оборудование для сварки. Особенности расходных материалов и аппаратов:

  1. Электроды, которые имеют основу из вольфрама. Это неплавящиеся элементы, в которые добавляются легирующие присадки.
  2. Аппарат, вырабатывающий сварочный ток. Желательно выбирать универсальное оборудование, которое подходит для выполнения разнообразных сварочных работ.
  3. Баллон с защитным газом. В этом плане эффективнее всего использовать аргон.

Для соединения оборудования используются специальные шланги и провода.

Технология

Технология сварки алюминия аргоном требует соблюдения определённой последовательности действий. При отклонении от заданного рабочего процесса соединения могут получиться некачественными. Сварщики выделяют 4 ключевых этапа аргоновой сварки.

Подготовка

Перед тем как включать оборудование, зажигать дугу следует подготовить рабочую поверхность. Для этого необходимо очистить ее от грязи, ржавчины, декоративного покрытия. Грубые слои счищаются болгаркой или наждачной бумагой. Поверхность обезжиривается растворителем. Оксидную плёнку можно убрать напильником.

Зачистка болгаркой

Как настроить оборудование?

До начала работы нужно настроить аппарат для сварки алюминия. Сначала необходимо подключить аппарат к баллону с защитным газом. Далее сварщику выставляет подачу аргона. Для этого используется вентиль и манометр, закреплённый на баллоне. Если работа проводится в помещении, устанавливается расход до 8 литров.

Поджог дуги

Чтобы дуга зажглась быстрее, следует заточить вольфрамовый стержень. Для его зажигания используется высокочастотный осциллятор. Нельзя касаться вольфрамовым электродом заготовки. Если используется присадочная проволока, она не должна соприкасаться с вольфрамом. Проведение работ следует начинать после зажигания дуги и выставления потока защитного газа.

Сварочная ванна

После того как дуга зажглась, нельзя сразу же начинать создавать шов. Нужно выждать определённый промежуток времени, в течение которого образуется сварочная ванна. Когда появились пятна расплавленного металла, можно начинать формирование шва. Металл нельзя перегревать. Важно учитывать толщину заготовки. Чем меньше этот показатель, тем меньше нужно выжидать времени при формировании сварочной ванны.

Сварка алюминия аргоном подразумевает использование определённого аппарата и газа. Он помогает защитить рабочую поверхность от образования оксидной плёнки. Если её не убрать, качество шва будет хуже. При серьёзных нагрузках соединение разрушится. Важно учитывать особенности сваривания сплава, соблюдать последовательность действий.

Аргонодуговая сварка металлов | Варить аргоном нержавейку, алюминий

Одна из разновидностей сварки металлов – аргонодуговая, в процессе которой используется газ аргон и электрическая дуга. Эта технология прекрасно подходит для работы с самыми капризными и устойчивыми металлами. Нет определенных ограничений по составу сплава, толщине изделия и его предназначения. Метод подходит для работы с металлом любой конфигурации.

Задача электрической дуги заключается в расплавлении кромки материала, которую необходимо сварить и соединение деталей в этом месте. Газ аргон в силу своих химически инертных свойств не взаимодействует с металлом, а наоборот защищает место сварки от воздействия атмосферы. Он вытесняет кислород и изолирует рабочий участок от ненужных примесей и газов. Это нужно преимущественно для защиты цветных металлов и легированных сталей от воздействия химически активных газов, в том числе кислорода. Они ухудшают качество шва, а некоторые металлы могут даже возгораться. Место сваривания в профессиональном жаргоне звучит как «сварочная ванна».

В отличие от гелия, при работе с которым требуется специальная защитная одежда или азота, который подходит не для всех сварочных работ, аргон более универсален и неприхотлив.

  • Он тяжелее воздуха на 38%, что позволяет вытеснить его из рабочей зоны, защищая ее от ненужных примесей.
  • Он не реагирует с рабочими поверхностями и с металлами в составе сплавов в силу своей химической инертности.

Аргоновая сварка металлов и сплавов

Существует несколько видов и особенностей аргонодуговой сварки в зависимости от уровня механизации сварочных работ:

  • Ручная сварка при участии неплавящихся вольфрамовых электродов. Процесс полностью управляется сварщиком.
  • Полуавтоматическая сварка или же механизированный тип предполагает подачу проволоки машиной, а аргоновую горелку держит мастер.
  • Полностью автоматизированная аргонодуговая сварка проводится без участия сварщика. Подача проволоки и перемещение горелки происходит при помощи роботизированного автомата, работа которого контролируется оператором дистанционно. Этот вид наиболее популярен в современной промышленности, как правило, с крупными элементами.

При работе с аргонодуговыми сварочными аппаратами стоит учитывать особенности и порядок действий:

  • Перед началом сварочных работ необходимо позаботиться об очистке рабочих деталей от масел и различного рода грязи. Для этого подойдут как механические, так и химические методы.
  • Подачу газа подключают предварительно, за 20-30 секунд до начала работы. В левой руке необходимо держать проволоку, а в правой горелку и поднести их как можно ближе к варочной поверхности. Когда происходит включение тока, между электродом и металлом возникает дуга.
  • Проводить горелку необходимо вдоль шва с подачей присадочной проволоки. Действие необходимо проводить постепенно, без поперечных движений и не торопиться, иначе можно разбрызгать металл.
  • Чем ближе к сварочной поверхности расположена горелка и проводник, тем короче получится дуга. Именно в таком случае удастся получить глубокий узкий и эстетичный на вид шов.
  • Для наибольшей прочности и защиты от примесей горелка и проволока должны находиться в зоне газовой защиты.
  • Подача газа прекращается через 15 секунд после окончания работы.

Качество шва при аргонодуговой сварке, удобство использования для тонкостенных элементов и регуляция длины дуги позволяет осуществлять работы с цветными металлами, сплавами различного состава и легированными сталями. Благодаря этому аргонодуговая сварка широко распространена в авиастроении и автомобильной промышленности.

Сварка алюминия аргоном

Чаще всего его используют для варки алюминия. Являясь одним из самых распространенных в быту и очень легким металлом, алюминий в то же время химически активен. Сложность сварки алюминия объясняется его молниеносной реакцией с кислородом воздуха. В результате образуется тончайшая, но весьма прочная оксидная пленка. Разрушить эту пленку можно только при высокой температуре, превышающей температуру плавления самого металла. Чтобы этого не произошло, сварку проводят в потоке аргона, который препятствует доступу кислорода, вытесняя его из рабочей ванны. Шов получается красивым и достаточно прочным.

Главное учитывать состояние подаваемого тока. При работе следует использовать только переменный ток. В случае с током обратной полярности температура в рабочей зоне значительно повышается, что может привести даже к плавлению вольфрама.

Использование постоянного тока при варке алюминия теоретически возможно и даже применяется в некоторых случаях, но только при использовании другого инертного газа – гелия. В этом случае стоимость варочных работ обходится в несколько раз дороже.

Еще несколько нюансов подготовки поверхности алюминия к сварке:

  • Обязательное обезжиривание металлической поверхности растворителями;
  • Удаление прочной оксидной пленки механическим путем или химическими реагентами;
  • Дождаться полного высыхания поверхности.

Сварка меди аргоном

Аргонодуговая сварка подходит для работы не только с алюминиевыми поверхностями (легкий цветной металл), но и для сварки тяжелых цветных металлов, в том числе и меди.

Медь обладает хорошей коррозионной устойчивостью, а также выдерживает воздействие различных агрессивных сред. Для наибольшего качества сварочного шва в случае с медными поверхностями стоит использовать смесь аргона с гелием при постоянном токе.

При этом образуется устойчивая дуга, которая помогает приварить присадочную проволоку из меди. Высокая теплопроводность меди обязывает разделывать медные детали, имеющие толщину более 10 мм и обрабатывать их с двух сторон.

Технология аргонодуговой сварки алюминия и его сплавов

Аргонодуговым способом сваривают различные типы соединений алюминия и сплавов на его основе. В зависимости от толщины свариваемых элементов применяют аргонодуговую сварку неплавящимся вольфрамовым (с присадкой и без нее), а также плавящимся электродами.

Аргонодуговая сварка неплавящимся вольфрамовым электродом — лучший способ соединения тонколистового алюминия, не уступает по производительности сварке по флюсу и аргонодуговой сварке плавящимся электродом толстолистового алюминия.

Качество швов при аргонодуговой сварке алюминия и сплавов на его основе зависит от чистоты аргона, поэтому он должен не иметь следов влаги и содержать не более 0,03% кислорода и не более 0,3% азота. Хорошие (плотные) швы получаются также при сварке в защитной смеси из 65% гелия и 35% аргона.

При сварке вольфрамовым электродом стыковых соединений металла толщиной до 3 мм кромки не скашиваются. В соединениях металла толщиной до 6 мм делают односторонний скос кромок с общим углом раскрытия 60—90° и притуплением в стыке до 1,5 мм, а при толщине металла до 9 мм — такой же скос кромок, но с притуплением до 2,5 мм.

Металл толщиной до 20 мм сваривают с двусторонним скосом кромок и углом раскрытия 60—90°, с притуплением 3 мм или односторонней рюмкообразной подготовкой кромок с углом раскрытия 40—60°, радиусом закругления у основания разделки 5 мм и притуплением в стыке 3 мм.

Металл толщиной до 6 мм сваривают односторонним швом на подкладке. При толщине металла более 6 мм после выполнения шва с одной стороны вырубают корень этого шва и стык затем сваривают с обратной стороны. В том случае, когда за один проход не удается заполнить разделку, сварку выполняют в два прохода, причем первый проход делают без присадки с полным проплавлением стыка, а второй — с присадкой для заполнения разделки и получения необходимого усиления шва.

При сварке алюминия и его сплавов в инертных газах раскисляющий флюс не применяется. Вместе с тем аргон даже самого высокого качества содержит некоторое количество кислорода, достаточное для образования пленок окислов жидкого металла.

Если в процессе сварки пленки окислов не разрушаются, то металл шва засоряется ими и в отдельных местах сварного соединения может образоваться несплавление кромок, а также несплавление присадочного металла с основным. Разрушить же эти пленки можно лишь в том случае, если сварочная ванна (изделие) будет катодом.

Тогда с поверхности жидкой ванны и соседних с ней зон менее нагретого металла происходит вырывание металлических частиц (катодное распыление металла). Вследствие катодного распыления пленки окислов, образующиеся в сварочной ванне, разрушаются, что обеспечивает хорошее сплавление кромок и формирование шва без применения флюса.

Изделие может быть катодом как при сварке постоянным током обратной полярности, так и при сварке переменным током. В последнем случае катодное распыление и, следовательно, очищение сварочной ванны от окислов происходит в полупериоды обратной полярности тока.

Поскольку ток обратной полярности (плюс на электроде) нельзя использовать из-за перегрева электрода, а прямой из-за необходимости очищения сварочной ванны от пленок окислов, аргонодуговую сварку алюминия вольфрамовым электродом выполняют переменным током.

Аргонодуговая сварка алюминия плавящимся электродом выполняется постоянным током обратной полярности. Переменный ток при такой сварке не применяется. Для питания дуги переменным током используют стандартные сварочные трансформаторы с осцилляторами и стабилизаторами, а для питания постоянным током — преобразователи с падающей, жесткой или возрастающей внешней характеристикой.

Для сварки разноименных алюминиевых сплавов, обеспечивающих сварным соединениям повышенную стойкость против горячих трещин, рекомендуется применять следующие марки проволок:

Марки свариваемых сплавов

Марки сварочной проволоки

АДО+АМц

СвА5

АДО+АМгЗ

СвАМг6

АДО+АМг5

СвАМг6

АДО+АМг6

СвАМг6

АДЦ+АМгЗ

СвАМг6

АДЦ+АМг5

СвАМг6

АДЦ+АМг6

СвАМг6

Марки свариваемых сплавов

Марки сварочной проволоки

АМг3+АМг5

СвАМг6

АМг3+АМг6

СвАМг6

АМг5+1915

СвАМг6, Св1557

АМг6+1915

Св1557

АД31+АМцС

СвАК5

АД31+АМгЗ

СвАМг6

АД31+АМг6

СвАМг6

АД51+АМг6

СвАМг6

Состав газообразного аргона должен быть следующим:

Марка аргона

Содержание, %

Аг

О2

Н1

Влага при давлении 760 мм рт. ст., г/м3

А

Не менее 99,99

Не более 0,003

0,01

0,03

Б

Не менее 99,96

Не более 0,005

0,04

0,03

Состав газообразного гелия, применяемого для сварки (%):

Содержание

Гелий высокой чистоты

Гелия (не менее)

99,985

Водорода (не более)

0,0025

Азота (не более)

0,005

Кислорода (не более)

0,002

Углеводородов (не более)

0,003

Неона (не более)

0,002

Точка росы (не выше)

-55°С

При автоматической аргонодуговой сварке вольфрамовым электтродом горелка (мундштук) обычно располагается вертикально, а присадка подается механизмом автомата со стороны, противоположной направлению сварки.

Сварка плавящимся электродом может выполняться автоматом и шланговым полуавтоматом. При полуавтоматической сварке горелку наклоняют под углом 60—80° к плоскости изделия и перемещают углом вперед или углом назад с небольшими плавными поперечными колебаниями или без колебаний. При автоматической сварке горелку располагают вертикально.

Сварка алюминия полуавтоматом в аргоне

Сварка алюминия – сложный технологический процесс. Здесь есть некоторые особенности не свойственные сварочному процессу других металлов.

Во-первых, на поверхности расплавленного алюминия образуется оксидная пленка не зависимо от наличия защитной среды. В качестве таковой для сварки алюминия используют только аргон. Сложность в том, что температура плавления алюминия 660°С, а оксид алюминия плавится при температуре 2050°С. При температуре 2518°С наступает порог кипения. Поэтому велика вероятность прожога металла.

Поскольку оксидная пленка служит барьером, и не дает возможности работать с металлом на малых температурах, возникает необходимость избавиться от этой пленки. За неимением нужных технологий, сварщики пытались делать это механически концом электрода. Современное оборудование позволяет с этим бороться. Секрет кроется в использовании переменного тока высокой частоты. Почему именно переменный ток? Поток электронов возвращаясь в обратном направлении, то есть от металла к электроду сильней прогревает поверхность жидкого металла и оксид алюминия расплавляется.

Во-вторых, алюминий обладает высокой теплопроводностью, как следствие, локально прогреть кромки свариваемых деталей практически невозможно, тепло очень быстро распространяется и улетучивается во внешнюю среду. Массивные детали предварительно прогревают. Для тонкого, листового алюминия большое количество тепла создается за счет мощности дуги. Также необходимо соизмерять это с низкой температурой плавления алюминия и высокой температурой плавления оксидной пленки. Процесс противоречивый, поэтому и применяется переменный ток. Из-за своего возвратного движения, электроны разрушают оксидную пленку.

В-третьих, алюминий очень быстро кристаллизуется и по окончании сварки в конце шва образуется не очень красивый кратер. Многие сварщики полагаются на свое мастерство, но все-таки лучше довериться сварочным аппаратам, которые оснащены функцией снижения сварочного тока в конце сварки. Это позволяет закончить сварочный шов без образования нежелательных кратеров.

Сварка алюминия полуавтоматом в аргоне

Сварка алюминия полуавтоматом в режиме MIG/MAG позволяет преодолеть сопротивление оксидной пленки. Название говорит само за себя MIG (metal, inert gas), то есть происходит присадка металла плавящегося электрода в сварочную ванну, в среде инертного газа. Смысл полуавтоматической сварки заключается в том, что плавящийся электрод или проволока подается толкающими роликами автоматически, а горелку сварщик ведет вручную.

Для сварки алюминия используется однородная проволока высокого качества. Скорость подачи проволоки сварщик регулирует полагаясь на свои способности и уровень мастерства. Профессионалы предпочитают делать это ножной педалью. Можно задавать нужное значение скорости подачи проволоки на самом аппарате. При сварке массивных изделий требуется более глубокий провар, и количество присадочной проволоки увеличивается.

Для достижения отличного результата используют сварочные полуавтоматы с режимом импульсной сварки. На основной сварочный ток накладывается дополнительный ток высокой амплитуды. Этот процесс происходит с заданной частотой (регулировка этого параметра также предусмотрена). Импульсы с легкостью пробивают оксидную пленку.

Основная задача импульсов – мелкокапельный перенос электродного металла и перемешивание его с основным металлом.

Второе происходит за счет ударного вторжения капли в сварочную ванну. Хорошо подобранная частота импульсов обеспечивает эстетически красивый шов.

Сварка алюминия аргонодуговой сваркой

Аргонодуговая сварка отличается тем, что процесс осуществляется неплавящимся электродом с использованием присадочной проволоки в среде защитных газов. Сварка осуществляется аппаратами инверторного типа в режиме TIG (tungsten, inert gas) на переменном токе. В качестве неплавящихся используют вольфрамовые либо графитовые электроды. Этот процесс происходит в три раза медленнее, нежели описанный выше, но результат его значительно лучше.

Предварительно зажигается дуга и острозаточенный вольфрамовый электрод формирует шарик на конце, с этого момента можно приступать к дальнейшей сварке. Дуга хорошо сохраняет свою стабильность. Переноса металла в дуге не происходит. Присадочная проволока подается вручную к цоколю сварочной ванны, к ее передней кромке, легкими прикосновениями, через одинаковые промежутки времени.

Для сварки алюминия подойдут универсальные вольфрамовые электроды, как для постоянного таки для переменного тока. Важно не задевать сварочный шов электродом, чтоб избежать вольфрамовых включений в металл шва. При сварке алюминия требуется устанавливать правильный сварочный ток, управлять скоростью сварки, контролировать формирование сварочной ванны.

Проволока для сварки алюминия

Для сварки алюминия может использоваться алюминиевая проволока, выпускаемая на катушках, либо алюминиевые прутки, продаются в упаковках. Присадочная проволока, также, как и прутки редко изготавливаются из чистого алюминия, в основном это сплав алюминия с кремнием, магнием.

Так

Аппарат для импульсной аргонно-дуговой сварки переменного и постоянного тока с высокочастотными колебаниями Малый антистатический сварочный аппарат для алюминия 220 В, 6 кВА 1 шт.

Аппарат для импульсной аргонно-дуговой сварки переменного и постоянного тока, высокочастотные колебания, небольшой антистатический аппарат для сварки алюминия, 220 В, 6 кВА, 1 шт.

Если вам нужно что-то еще, свяжитесь с нами, и мы внимательно вам ответим.

Дисплей продукта

Номер модели: WSME-200

Товар: FL2818

Напряжение: AC220V

Частота: 50/60 Гц

Номинальный пиковый ток на входе: 30А

Мощность: 6 кВА

Номинальный выходной ток ручной сварки: 160 А

Номинальный выходной ток аргонодуговой сварки: 200 А

Ток тяги: 40А

Напряжение холостого хода: 56 В

Выходная частота переменного тока: 20-250 Гц

Ширина очистки: 15-50%

Базовый ток: 5-200А

Метод зажигания дуги: высокочастотное колебание

КПД: 85%

Непрерывность нагрузки: 160А (ARC) - 30%; 200А (ТИЦ) - 25%

Коэффициент мощности: 0.7

Класс изоляции: B

Класс защиты корпуса: IP21S

Вес около: 13,7 кг

Размер около: 502 * 217 * 381 мм

Удовлетворенность клиентов:

Если вы выберете "способ доставки продавца" (368,42usd), мы поможем организовать отгрузку морским путем и доставку в ближайший к вам морской порт!

Если доставка осуществляется морем, после прибытия в морской порт назначения, покупатель должен оплатить портовые сборы (такие как сборы за погрузочно-разгрузочные работы, документы, хранение и т. Д.), Налог на таможенное оформление и получение товаров.

Если вы выберете DHL / ARAMEX / FEDEX, TNT, UPS, ECT, мы поможем вам организовать доставку международной экспресс-доставкой и напрямую по вашему адресу (ДВЕРЬ ДО ДВЕРИ)!

1) Чтобы защитить ваши товары и избежать повреждений в процессе доставки, при получении посылки покупатели должны внимательно осмотреть посылку / товары, прежде чем подписывать получение товара.

Если есть какие-либо повреждения, пожалуйста, свяжитесь с вашим местным ARAMEX / DHL / FedEx, чтобы задать претензии и претензии, ИЛИ свяжитесь с нами в течение 24 часов.Затем сделайте фотографии поврежденной машины и упаковки, немедленно отправьте нам сообщение, мы поможем вам решить проблемы.

2) Если у вас возникли проблемы с товаром или доставкой, пожалуйста, дайте нам возможность решить любую проблему. Мы понимаем, что у вас могут возникнуть проблемы и разочарования, и сделаем все возможное, чтобы решить эти проблемы.

3) И ваш отзыв чрезвычайно важен для нашего магазина. Если вы удовлетворены нашим продуктом и нашим сервером, после подтверждения этого заказа, пожалуйста, оставьте нам положительный отзыв и 5 звезд, мы также дадим вам «ИДЕАЛЬНЫЕ 5 ЗВЕЗД» ,

При оценке времени доставки учитывайте международный транзит.Ваше признание сделает нас более уверенными в развитии бизнеса и улучшит качество обслуживания.

Аппарат для импульсной аргонно-дуговой сварки переменного и постоянного тока 30A, высокочастотные колебания Небольшой антистатический аппарат для сварки алюминия 220В переменного тока |

Аппарат для импульсной аргонно-дуговой сварки переменным и постоянным током, высокочастотные колебания 30 А, Малый антистатический аппарат для сварки алюминия 220 В переменного тока

Если вам нужно что-то еще, свяжитесь с нами, и мы внимательно вам ответим.

Дисплей продукта

Номер модели: WSME-200

Изделие: FL2818

Напряжение: AC220V

Частота: 50/60 Гц

Номинальный пиковый ток на входе: 30A

Мощность: 6 кВА

Номинальный выходной ток ручной сварки: 160 А

Номинальный выходной ток аргонодуговой сварки: 200 А

Ток тяги: 40А

Напряжение холостого хода: 56 В

Выходная частота переменного тока: 20-250 Гц

Ширина очистки: 15-50%

Базовый ток: 5-200 А

Метод зажигания дуги: высокочастотные колебания

КПД: 85%

Непрерывность нагрузки: 160А (ARC) - 30%; 200А (ТИЦ) - 25%

Коэффициент мощности: 0.7

Класс изоляции: B

Класс защиты корпуса: IP21S

Вес около: 13,7 кг

Размер около: 502 * 217 * 381 мм

Удовлетворенность клиентов:

Если вы выберете «способ доставки продавца» (368,42usd), мы поможем вам организовать отгрузку морем и доставку в ближайший морской порт!

Если доставка осуществляется морем, после прибытия в морской порт назначения, покупатель должен оплатить сборы порта назначения (такие как сборы за погрузочно-разгрузочные работы, документы, хранение и т. Д.), Налог на таможенное оформление и получение товаров.

Если вы выберете DHL / ARAMEX / FEDEX, TNT, UPS, ECT, мы поможем вам организовать доставку международной экспресс-доставкой и напрямую по вашему адресу (ДВЕРЬ ДО ДВЕРИ)!

1) Чтобы защитить ваши товары и избежать повреждений в процессе доставки, когда вы получаете посылку, покупатели должны внимательно осмотреть посылку / товары, прежде чем подписывать получение товара.

Если есть какие-либо повреждения, свяжитесь с местным отделением ARAMEX / DHL / FedEx, чтобы задать претензии и претензии, ИЛИ свяжитесь с нами в течение 24 часов.Затем сделайте фотографии поврежденной машины и упаковки, немедленно отправьте нам сообщение, мы поможем вам решить проблемы.

2) Как известно, каждая страна имеет свою таможенную политику, как правило, после оплаты мы можем объявить более низкую цену в вашем счете, уменьшить вашу плату за таможенные пошлины, мы не несем ответственности за какие-либо таможенные пошлины или налог на импорт.

3) Если у вас возникли проблемы с товаром или доставкой, пожалуйста, дайте нам возможность решить любую проблему.Мы понимаем, что у вас могут возникнуть проблемы и разочарования, и сделаем все возможное, чтобы решить эти проблемы.

4) И ваш отзыв чрезвычайно важен для нашего магазина. Если вы удовлетворены нашим продуктом и нашим сервером, после подтверждения этого заказа, пожалуйста, оставьте нам положительный отзыв и 5 звезд, мы также дадим вам «ИДЕАЛЬНЫЕ 5 ЗВЕЗД. ",

При оценке времени доставки учитывайте международный транзит.Ваше признание сделает нас более уверенными в развитии бизнеса и улучшит качество обслуживания.

1PC Аппарат для импульсной аргонодуговой сварки переменным и постоянным током WSME 200 Антистатический сварочный аппарат для алюминия с высокочастотными колебаниями, 220 В |

Если вам нужно что-то еще, свяжитесь с нами, и мы внимательно вам ответим.

Дисплей продукта

Номер модели: WSME-200

Изделие: FL2818

Напряжение: AC220V

Частота: 50/60 Гц

Номинальный пиковый ток на входе: 30A

Мощность: 6 кВА

Номинальный выходной ток ручной сварки: 160 А

Номинальный выходной ток аргонодуговой сварки: 200 А

Ток тяги: 40А

Напряжение холостого хода: 56 В

Выходная частота переменного тока: 20-250 Гц

Ширина очистки: 15-50%

Базовый ток: 5-200 А

Метод зажигания дуги: высокочастотные колебания

КПД: 85%

Непрерывность нагрузки: 160А (ARC) - 30%; 200А (ТИЦ) - 25%

Коэффициент мощности: 0.7

Класс изоляции: B

Класс защиты корпуса: IP21S

Вес около: 13,7 кг

Размер около: 502 * 217 * 381 мм

Удовлетворенность клиентов:

Если вы выберете «способ доставки продавца» (368,42 долл.), Мы поможем организовать отгрузку морским путем и доставку в ближайший морской порт!

Если доставка осуществляется морем, после прибытия в морской порт назначения, покупатель должен оплатить сборы порта назначения (такие как сборы за погрузочно-разгрузочные работы, документы, хранение и т. Д.), Налог за таможенное оформление и получение товаров.

Если вы выберете DHL / ARAMEX / FEDEX, TNT, UPS, ECT, мы поможем вам организовать доставку международной экспресс-доставкой и напрямую по вашему адресу (ДВЕРЬ ДО ДВЕРИ)!

1) Чтобы защитить ваши товары и избежать повреждений в процессе доставки, при получении посылки покупатели должны внимательно осмотреть посылку / товары, прежде чем подписывать получение товара.

Если есть какие-либо повреждения, свяжитесь с местным отделением ARAMEX / DHL / FedEx, чтобы задать претензии и претензии, ИЛИ свяжитесь с нами в течение 24 часов.Затем сделайте фотографии поврежденной машины и упаковки, немедленно отправьте нам сообщение, мы поможем вам решить проблемы.

2) Если у вас возникли проблемы с товаром или доставкой, пожалуйста, дайте нам возможность решить любую проблему. Мы понимаем, что у вас могут возникнуть проблемы и разочарования, и сделаем все возможное, чтобы решить эти проблемы.

3) И ваши отзывы чрезвычайно важны для нашего магазина. Если вы удовлетворены нашим продуктом и нашим сервером, после подтверждения этого заказа, пожалуйста, оставьте нам положительный отзыв и 5 звезд, мы также дадим вам «ИДЕАЛЬНЫЕ 5 ЗВЕЗД. ",

При оценке времени доставки учитывайте международный транзит.Ваше признание сделает нас более уверенными в развитии бизнеса и улучшит качество обслуживания.

Аргонодуговая сварка трубопроводов

Совершенствование методов автоматической самокомпрессионной аргонодуговой сварки трубопроводов

Техническая область / область

  • MAN-MPS / Производство, планирование, обработка и контроль / Технология производства
  • MAN-MAT / Инженерные материалы / Производственные технологии
  • OTH-BIT / Строительные технологии / Другое

Статус
3 Утверждено без финансирования

Дата регистрации
27.06.2006

Ведущий институт
НИКИМТ (Институт монтажных технологий), Россия, Москва

Поддерживающие институты

  • НПО Техномаш, Россия, Москва

Сотрудники

  • AREVA Германия, Эрланген \ nOtto-von-Guericke-Universität Magdeburg, Германия, Магдебург

Краткое описание проекта

Развитие промышленности и строительство таких объектов, как атомные и тепловые электростанции, химические, нефтедобывающие и газовые предприятия, другие объекты требуют применения высокотемпературных процессов и оборудования для сварки труб.Строительство таких объектов требует колоссального объема работ по сварке труб. Например: при строительстве химических заводов необходимо сварить более 80 тыс. Стыков, для теплоснабжения: до 150 тыс. Стыков; КР типа ВВЭР: около 100 тыс. Стыков. Основной объем работ (до 80%) относится к стыкам трубопроводов НД 8-76 мм. В этом случае основным требованием к трубопроводам является обеспечение их эксплуатационной надежности и безопасности, которые в значительной степени зависят от качества сварных швов. Кроме того, по экономическим причинам требуется высокая производительность сварочных процессов, которую можно обеспечить за счет использования автоматизированного сварочного оборудования и оптимальных технологий.

Программы многих всемирно известных фирм: ESAB (Швеция), Arc Machines (США), Polysoude (Франция), RTA (Италия) и др. Предусматривают разработку технологий и производство оборудования для автоматизированной сварки. В России такие работы в настоящее время выполняют НИКИМТ, Техномаш, Ржевский Машзавод и др. Исследования и разработки в области сварки трубопроводов осуществляются путем автоматизации, разработки и выбора рациональных методов сварки. Имеющийся опыт показывает большие преимущества процесса сварки TIG без присадочной проволоки с точки зрения автоматизации, разработки трубосварочного оборудования и обеспечения качества сварных швов.Особенно подходит для труб с толщиной стенки 3,5 - 4 мм и диаметром от 8 до 76 мм.

Однако процесс сварки в один валик без присадочного материала не позволяет получить швы с усилением прочности из-за утонения их поперечного сечения, особенно при вертикальных орбитальных стыковых соединениях труб с толщиной стенки и диаметром, указанными выше. Доступные сварочные аппараты для подачи присадочной проволоки имеют большие размеры и пользуются меньшим спросом, особенно при монтажных процедурах.

Эти проблемы были успешно решены в России, где был разработан принципиально новый метод сварки с использованием самосжатия сварного шва.Метод отличается применением термопластических деформаций для формирования армированного шва. Такие деформации возникают в сварном шве из-за сжимающих напряжений в зоне сварки в результате неравномерного нагрева стыкового соединения сварочной дугой. В процессе дополнительных «сжимающих» проходов, выполняемых дугой с меньшим энерговложением, одновременно с поперечной деформацией стыка, происходит течение нагретого металла в радиальном направлении и формируется в результате двухстороннее усиление сварочного шва.

Кроме того, в начале 70-х годов была разработана новая версия самосжатия: сварка с проплавлением. Применение этого процесса позволило существенно упростить технологию без перепрограммирования и сброса режимов сварки при выполнении «сварочных» и «самосжатых» проходов. Также были разработаны некоторые другие аналоговые методы сварки, например: «антикомпрессионные» - процессы с несколькими валиками и применение стыковой обработки во избежание его поперечной деформации.

Однако до настоящего времени практически не изучены физические, материаловедческие и технологические особенности метода самокомпрессора, а также не разработаны оптимальные технологии сварки некоторых металлов и сплавов; недостаточно исследований проводилось для труб с толщиной стенки 4–5 мм, свойств и коррозионной стойкости сварных швов в зависимости от погонной энергии при сварке, последствий сварочных проходов, условий эксплуатации; Фактические области применения методов сварки не определены.Нет теоретических оснований для механизма формирования арматуры, повышения коррозионной стойкости и подавления трещинообразования за счет самосжатия сварки. Предлагается проект научно-исследовательских работ и разработки новых прогрессивных видов этого метода, чтобы обеспечить широкое применение в нескольких отраслях промышленности метода, который является экономичным, не требует сложного оборудования и высококвалифицированных операторов, обеспечивает стабильное качество сварных швов.

Исходя из этого, целью данного проекта является разработка технологических основ сварки труб самосжатым методом и их применение для автоматизированной сварки трубопроводов различного назначения.

Предлагаемый проект включает следующие этапы:

  1. Анализ существующих процессов автоматической сварки труб самосжатым методом.
  2. Разработка и испытание новых процессов сварки самосжатием труб из нескольких металлов и сплавов (коррозионностойкие, хромовые и перлитные стали, сплавы Fe-Ni, никель, медь и их сплавы, титан и его сплавы, алюминий и другие сплавы). его сплавы).
  3. Исследование свойств сварных швов:
  • Прочность, пластичность, ударная вязкость;
  • Стойкость к межкристаллитной коррозии и коррозии в растворах кислот;
  • Металлографический анализ сварных соединений;
  • Контроль качества сварных соединений;
  • Технологическая прочность.
При выполнении проекта будет применяться современный метод исследования:
  1. микрорентгеноструктурный анализ и металл-граф с использованием электронной и оптической микроскопии;
  2. испытание сварных соединений на межкристаллитную коррозию согласно стандарту ISO 3651-1998;
  3. Контроль качества сварных соединений методом рентгено- и капиллярной дефектоскопии.

Результаты исследований и широкое тестирование передовых процессов позволят оптимизировать процессы разработки и оформить необходимую конструкторскую документацию.По результатам исследований и испытаний будут выданы технологические рекомендации, которые позволят широко применять самокомпрессионный метод для автоматизированной сварки в нескольких строительно-монтажных отраслях.

Имеющийся опыт участников проекта гарантирует, что проект будет реализован в полном объеме, своевременно и на высоком научном уровне. Проект полностью отвечает целям МНТЦ по привлечению оружейников к решению вполне гражданских задач.

аргонодуговая сварка - англо-французский словарь

en В изобретении предлагается использовать в качестве средства защиты полосу из нержавеющей стали, приваренную непрерывным швом, например, посредством аргонно-дуговой сварки, к края деталей и / или элементов кузова автомобиля.

Patents-WIPO FR La Рисунок 1 donne un aperçu général de notre program de recherche.

ru Сжатый газ представляет собой воздух с давлением от 0,5 до 1.0 МПа и его расход от 5 до 10 л / мин, а сварной шов является одним из сварочных швов, образованных методами ручной электродуговой сварки, дуговой сварки под флюсом, сварки в газовой среде и аргонно-вольфрамовой дуговой сварки.

Patents-WIPO FR La рутина, n 'estce pas?

en Они были протравлены для удаления грязи и примесей, погружены в расплавленную бронзу, олово и алюминиево-кремниевый сплав, герметизированы с помощью гидравлических прессов и затем покрыты дуговой сваркой в ​​атмосфере аргона.

WikiMatrix fr D 'accord, je te предлагают que tu me donnes le rest de ton sandwich, et je suis partant

en Гелий и аргон обычно используются для защиты сварочной дуги и окружающего основного металла от атмосферы во время сварка и резка, а также в других металлургических процессах и производстве кремния для полупроводниковой промышленности.

WikiMatrix fr Это настоящий сеанс группы!

ru При сварке вольфрамовым инертным газом (TIG) или плазменной дуге вольфрамовый электрод используется для нагрева металла, а газ аргон защищает сварочную ванну от переносимых по воздуху загрязняющих веществ.

cordis fr des précisions related à la Quantité de Vacins contre l

en Газ согласно изобретению состоит из аргона, гелия и водорода и позволяет значительно улучшить стабильность электрической дуги, скорость сварки, окисление поверхности сварного шва и прилегающих к нему поверхностей. площадь, расход и внешний вид сварного шва.

Patents-wipo fr Le plan prévoit que la restructuration financière couvrira le remboursement de la dette à l'égard des banques (#, # миллионов злотых) согласование без согласия заключить avec ces créanciers, le remboursement d'autres #, # миллионы злотых) et le remboursement de dettes à l'égard de créanciers publics (#, # миллионы злотых

и ) Изобретение относится к тройной газовой смеси, образованной из аргона, гелия и кислорода, отличающейся тем, что она образована от 19.От 5 до 20,5% гелия, от 2,7 до 3,3% O2 ​​и аргона для остатка (объемные%), а также на их использование в качестве газовой защиты в способе электродуговой сварки по меньшей мере одной стальной детали с углеродом с использованием плавкая присадочная проволока.

патентов-wipo fr Tu es dingue?

en Изобретение относится к способу электродуговой сварки MIG / MAG, в котором используются расходуемая присадочная проволока и газовая защита, образованная тройной газовой смесью, содержащей от 19 до 21% гелия, 0,8: 1.2% CO2 и аргон для остатка (% от объема) для сварки одного или нескольких кусков нержавеющей стали.

патент-wipo от Farines, semoule et poudres de légumes à cosse secs

en Изобретение относится к способу электродуговой сварки без лазерного луча одной или нескольких металлических деталей, в частности из стали, в том числе покрытие поверхности алюминия, в частности покрытие, состоящее из алюминия и кремния, с использованием защитного газа, отличающееся тем, что защитный газ состоит из смеси аргона и / или гелия и, кроме того, азота, в частности менее 30 об.% азот, обычно от 2 до 10 об.% азота.

патентов-wipo от Celle-ci est calcée sur le traitement de base

Welding - SteelConstruction.info

Сварка - это основной вид деятельности на заводе-изготовителе, выполняемый опытными квалифицированными специалистами, работающими в системе управления качеством сварки в соответствии с контроль ответственного координатора сварки. Он используется для подготовки стыков к подключению в магазине и на месте, а также для крепления других приспособлений и фурнитуры. На заводе-изготовителе для различных видов деятельности используются разные методы сварки.

По сути, в процессе сварки используется электрическая дуга для выработки тепла для плавления основного материала в соединении. Отдельный присадочный материал, поставляемый в качестве расходуемого электрода, также плавится и соединяется с основным материалом, образуя расплавленную сварочную ванну. По мере того, как сварка продолжается вдоль соединения, сварочная ванна затвердевает, сплавляя основной металл и металл сварного шва. Для заполнения стыка или нарастания сварного шва до проектного размера может потребоваться несколько проходов или проходов.

 

Welding
(Изображение любезно предоставлено William Haley Engineering Ltd.)

[вверх] Принципы дуговой сварки металлом

 

Терминология области сварного шва

Сварка - это сложное взаимодействие физических и химических наук. Правильное определение металлургических требований и разумное практическое применение являются предпосылкой успешной сварки плавлением.

В процессе дуговой сварки металлическим электродом используется электрическая дуга для генерирования тепла для плавления основного материала в соединении.Отдельный присадочный материал, поставляемый в качестве расходуемого электрода, также плавится и соединяется с основным материалом, образуя расплавленную сварочную ванну. Сварочная ванна подвержена атмосферному загрязнению и, следовательно, нуждается в защите во время критической фазы замерзания жидкости и твердого тела. Защита достигается либо за счет использования защитного газа, путем покрытия бассейна инертным шлаком, либо за счет комбинации обоих действий.

В процессах с защитным газом из удаленного источника поступает газ, который подается в сварочную дугу через горелку или горелку.Газ окружает дугу и эффективно исключает атмосферу. Точный контроль необходим для поддержания подачи газа с подходящей скоростью потока, так как слишком большое количество может вызвать турбулентность и засасывать воздух, а может быть настолько же вредным, насколько и слишком маленьким.

В некоторых процессах используется флюс, который плавится в дуге для образования шлакового покрытия, которое, в свою очередь, покрывает сварочную ванну и защищает ее во время замерзания. Шлак также затвердевает и самораспускается или легко удаляется легким сколом. Действие плавления флюса также создает газовый экран для защиты.

По мере сварки вдоль стыка сварочная ванна затвердевает, сплавляя основной металл и металл шва. Для заполнения стыка или нарастания сварного шва до проектного размера может потребоваться несколько проходов или проходов.

Тепло от сварки вызывает металлургические изменения в основном материале, непосредственно примыкающем к границе или линии плавления. Эта область изменения известна как зона термического влияния (HAZ). Общая терминология, используемая в области сварного шва, показана справа вверху.

Сварочные операции требуют надлежащего технологического контроля со стороны компетентных сварщиков, чтобы гарантировать достижение проектных характеристик, минимизировать риск дефектных соединений, вызванных низким качеством сварки, и предотвратить образование склонных к образованию трещин микроструктур в ЗТВ.

[вверх] Типы сварных соединений

Большинство конструкционных сварных соединений выполняется на заводе-изготовителе и описывается как стыковые или угловые швы. Сварка на месте также возможна, и руководство по вопросам сварки на месте доступно в GN 7.01.

[вверху] Стыковые швы

 

Макрос клиновидного стыкового шва
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Стыковые сварные швы обычно представляют собой стыковые соединения в прокатных профилях или стыковые соединения листов на стенках и фланцах, чтобы приспособиться к изменению толщины или восполнить доступный материал по длине. Положения этих стыковых швов допускаются при проектировании, хотя ограничения доступности материалов или схема монтажа могут потребовать согласования различных или дополнительных сварных швов.Тройники, приваренные встык, могут потребоваться, если при поперечных соединениях возникают значительные нагрузки или усталость.

Стыковые швы - это сварные швы с полным или частичным проплавлением, выполняемые между материалами со скошенными или скошенными кромками. Стыковые швы с полным проплавлением предназначены для передачи всей прочности сечения. Как правило, эти соединения можно сваривать с одной стороны, но по мере увеличения толщины материала желательна сварка с обеих сторон, чтобы уравновесить эффекты деформации, с операцией обратной строжки и / или шлифования в процессе для обеспечения целостности корень шва.Односторонние стыковые сварные швы с подкладными полосами из керамической или прочной стали обычно используются для соединения больших площадей пластин (например, стальных пластин настила) и там, где есть закрытые коробчатые секции, трубы или элементы жесткости, доступ к которым для сварки возможен только с одного боковая сторона. Расчетная толщина горловины определяет глубину проплавления, необходимую для швов с частичным проплавлением. Обратите внимание, что соображения усталости могут ограничивать использование сварных швов с частичным проплавлением, особенно на мостах. Руководство по подготовке к сварке доступно в GN 5.01.

Следует приложить все усилия, чтобы избежать стыковой сварки приспособлений из-за затрат, связанных с подготовкой, временем сварки, более высоким уровнем квалификации сварщиков и более строгими и трудоемкими требованиями к испытаниям. Кроме того, стыковые швы имеют тенденцию иметь большие объемы наплавленного металла шва; это увеличивает эффект усадки сварного шва и приводит к более высокому уровню остаточного напряжения в соединении. Чтобы уравновесить усадку и распределить остаточное напряжение, минимизируя таким образом деформацию, необходима тщательная последовательность сварочных операций.

Иногда бывает необходимо обработать стыковые сварные швы заподлицо по причинам усталости, или для улучшения дренажа стальных балок, устойчивых к атмосферным воздействиям, или для улучшения режима испытаний. Следует избегать зачистки заподлицо только по эстетическим соображениям, потому что трудно обработать поверхность так, чтобы она соответствовала смежной поверхности после прокатки, и результат часто более визуально заметен, чем исходный сварной шов. Кроме того, шлифование представляет собой дополнительную опасность для здоровья и безопасности, которую следует избегать по возможности.Правка стыковых сварных швов до гладкой поверхности обычно не требуется для строительных металлоконструкций, поскольку обычно они не подвержены усталости.

  • Пример обработанного стыкового шва с гладкой поверхностью и сливными пластинами
  • (изображения любезно предоставлены Mabey Bridge Ltd.)

[вверху] Угловые швы

 

Макрос однопроходного углового сварного шва
(Изображение любезно предоставлено Mabey Bridge Ltd.)

В большинстве сварных соединений в зданиях и мостах используются угловые сварные швы, обычно в форме тройника. Обычно они включают в себя концевую пластину, ребро жесткости, подшипники и соединения распорок с катаными профилями или плоскими балками, а также соединения стенки с фланцами на самих пластинчатых балках. Их относительно просто подготовить, сварить и испытать в обычных конфигурациях, при этом главным соображением является сборка стыков.

В S275 полная прочность стали также развивается в угловых сварных швах и сварных швах с частичным проплавлением с вышележащими угловыми швами при условии, что такие сварные швы симметричны, выполнены с использованием правильных расходных материалов и сумма сварных швов равна толщине элемента, который сварные швы стыкуются.

Размеры сварных швов должны быть подробно описаны на чертежах проекта вместе с любыми специальными требованиями классификации усталости. BS EN ISO 22553 [1] предписывает правила использования символов для детализации сварных соединений на чертежах.

Обращается внимание на тот факт, что в традиционной практике Великобритании для определения размера углового сварного шва обычно используется длина ветви, но это не универсально: в европейской практике используется толщина горловины и BS EN 1993-1-8 [2] дает требования относительно размера горла, а не длины ноги.Проектировщик должен следить за тем, чтобы было ясно, какой размер указан, и что все стороны должны знать, что было указано.

[вверх] Процессы

Важными факторами, которые подрядчик по изготовлению металлоконструкций следует учитывать при выборе процесса сварки, являются способность выполнить проектные требования и, с точки зрения производительности, скорость наплавки, которая может быть достигнута, а также рабочий цикл или эффективность процесса. (Эффективность - это отношение фактического времени сварки или дуги к общему времени, в течение которого сварщик или оператор занят выполнением сварочного задания.Общее время включает настройку оборудования, чистку и проверку выполненного шва.)

Ниже описаны четыре основных процесса сварки, которые регулярно используются в производстве стальных конструкций в Великобритании. Номера процессов определены в BS EN ISO 4063 [3] . Разновидности этих процессов были разработаны с учетом практики и оборудования отдельных производителей, и другие процессы также имеют место для конкретных приложений, но выходят за рамки данной статьи.

[вверх] Металлоактивная газовая сварка (MAG), процесс 135

 

Сварка MAG
(Изображение любезно предоставлено Kiernan Structural Steel Ltd.)

MAG-сварка сплошным проволочным электродом - это наиболее широко используемый процесс с ручным управлением для заводских производственных работ; иногда это называют полуавтоматической сваркой или сваркой CO 2 . Сплошной проволочный электрод из сплошной проволоки пропускается через устройство подачи проволоки к «пистолету», который обычно удерживается и управляется оператором. Питание подается от источника выпрямителя или инвертора по соединительным кабелям к устройству подачи проволоки и кабелю горелки; электрическое подключение к проводу осуществляется через контактный наконечник на конце пистолета.Дуга защищена защитным газом, который направляется в зону сварного шва через кожух или сопло, окружающее контактный наконечник. Защитные газы обычно представляют собой смесь аргона, диоксида углерода и, возможно, кислорода или гелия.

Хорошая производительность наплавки и рабочий цикл можно ожидать от процесса, который также можно механизировать с помощью простых моторизованных кареток. Газовая защита может быть сдута сквозняками, что может вызвать пористость и возможные вредные металлургические изменения в металле шва.Таким образом, этот процесс лучше подходит для заводского производства, хотя он используется на месте, где могут быть предусмотрены эффективные укрытия. Он также более эффективен в плоском и горизонтальном положениях; Сварные швы в других положениях наплавляются с более низкими параметрами напряжения и силы тока и более подвержены дефектам плавления.

 

Металлоактивная газовая сварка (МАГ), процесс 135

Металлоактивная газовая сварка (MAG), процесс 135

MAG-сварка электродом с флюсовой сердцевиной, процесс 136 представляет собой разновидность, в которой используется то же оборудование, что и для MAG-сварки, за исключением того, что плавящийся проволочный электрод имеет форму трубки малого диаметра, заполненной флюсом.Преимущество использования этих проволок состоит в том, что можно использовать более высокие скорости наплавки, особенно при сварке в вертикальном положении (между двумя вертикальными поверхностями) или в верхнем положении. Наличие тонкого шлака помогает преодолевать силу тяжести и позволяет наносить сварные швы в местах с относительно высокими током и напряжением, тем самым снижая вероятность дефектов плавления. Добавки флюса также влияют на химию сварного шва и, таким образом, улучшают механические свойства соединения.

[вверху] Ручная дуговая сварка металлом (MMA), процесс 111

Этот процесс остается наиболее универсальным из всех сварочных процессов, но его использование в современной мастерской ограничено.Трансформаторы переменного тока, выпрямители постоянного тока или инверторы подают электроэнергию по кабелю на электрододержатель или клещи. Покрытый флюсом проволочный электрод (или «стержень») вставляется в держатель, и сварочная дуга возникает на конце электрода, когда он ударяется о заготовку. На острие электрода плавится, образуя ванну расплава, которая сплавляется с основным материалом, образуя сварной шов. Флюс также плавится, образуя защитный шлак и создавая газовую защиту, предотвращающую загрязнение сварочной ванны по мере ее затвердевания.Добавки флюса и сердечник электрода используются для влияния на химический состав и механические свойства сварного шва.

Обычно используются электроды с основным покрытием, контролируемым водородом. Эти электроды необходимо хранить и обращаться с ними в соответствии с рекомендациями производителя расходных материалов, чтобы сохранить их низкие водородные характеристики. Это достигается либо путем использования сушильных шкафов и подогреваемых колчанов для хранения и обработки продукта, либо путем приобретения электродов в герметичных упаковках, специально разработанных для поддержания низкого уровня водорода.

Недостатками процесса являются относительно низкая скорость наплавки и высокий уровень отходов, связанных с непригодными для использования концевыми штырями электродов. Тем не менее, он остается основным процессом для сварки на стройплощадке и для труднодоступных мест, где громоздкое оборудование не подходит.

 

Ручная дуговая сварка металлом (MMA), процесс 111

Ручная дуговая сварка металлом (MMA), процесс 111

[вверх] Дуговая сварка под флюсом (SAW), процесс 121

 

Оперативная сварка под флюсом
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Это, вероятно, наиболее широко используемый процесс для сварки угловых швов перемычки между стенкой и фланцем и стыковых стыковых швов толстых листов для получения отрезков фланца и стенки. В процессе процесса непрерывная проволока подается через контактный наконечник, где она обеспечивает электрический контакт с мощностью от выпрямителя, в зону сварки, где она изгибается и образует ванну расплава. Сварочная ванна заполняется флюсом, подаваемым из бункера. Флюс, непосредственно покрывающий расплавленную сварочную ванну, плавится, образуя шлак и защищая сварной шов во время затвердевания; избыточный флюс собирается и повторно используется.По мере охлаждения шва шлак замерзает и отслаивается, оставляя высококачественные профильные швы.

Этот процесс по своей природе более безопасен, чем другие процессы, так как дуга полностью покрывается во время сварки, отсюда и термин дуга под флюсом. Это также означает, что требования к личной защите меньше. Высокая производительность наплавки - особенность процесса, поскольку он обычно механизируется на портальных мостах, тракторах или другом специализированном оборудовании. Это позволяет контролировать параметры и дает рекомендации по точному размещению сварных швов.

 

Сварка под флюсом (SAW), процесс 121

Дуговая сварка под флюсом (SAW), процесс 121

[вверху] Приварка шпилек методом вытяжной дуги 783

Композитные мосты требуют приваривания соединителей со срезными шпильками к верхнему фланцу пластинчатых или коробчатых балок и в других местах, где требуется композитное воздействие стали на бетон, например.г. на интегральных абатментах. В зданиях композитные балки требуют приварки соединителей срезных шпилек к элементам либо непосредственно к верхнему фланцу, либо чаще через постоянный настил из оцинкованной стали на композитных полах, где верхний фланец балки остается неокрашенным.

  • Приварка шпильки к балке моста
    (Изображение любезно предоставлено Mabey Bridge Ltd.)

  • Приварка шпилек через настил
    (Изображение любезно предоставлено Structural Metal Decks Ltd.)


Метод приварки шпилек известен как процесс с натянутой дугой, поэтому требуется специальное оборудование в виде мощного выпрямителя и специального пистолета. Шпильки загружаются в пистолет, и при электрическом контакте с изделием концевые дуги сгибаются и плавятся. Продолжительность дуги рассчитывается таким образом, чтобы между концом шпильки и основным материалом установилось расплавленное состояние. В нужный момент пистолет погружает шпильку в сварочную ванну.Керамическая манжета окружает шпильку для защиты и поддержки сварочной ванны, стабилизации дуги и формовки смещенной сварочной ванны для формирования сварной манжеты. Когда сварной шов затвердевает, наконечник отслаивается. У удовлетворительных сварных швов обычно есть правильная, яркая и чистая втулка, полностью окружающая шпильку.

 

Приварка шпилек методом вытяжной дуги 783

[вверху] Спецификации процедуры сварки

Чертежи детализируют конструктивную форму, выбор материала и указывают сварные соединения.Подрядчик по изготовлению металлоконструкций выбирает методы сварки каждой конфигурации стыка, обеспечивающие требуемые характеристики. Прочность, вязкость разрушения, пластичность и усталость - важные металлургические и механические свойства, которые необходимо учитывать. Тип соединения, положение сварки, производительность и требования к ресурсам влияют на выбор подходящего процесса сварки.

Выбранный метод представлен в спецификации процедуры сварки (WPS), в которой подробно описана информация, необходимая для инструктирования и руководства сварщиками, чтобы обеспечить повторяемость характеристик для каждой конфигурации соединения.Пример формата WPS показан в Приложении A стандарта BS EN ISO 15609-1 [4] . Подрядчики по изготовлению металлоконструкций могут иметь свой собственный корпоративный шаблон, но все они включают важную информацию, позволяющую передать сварщику надлежащие инструкции.

Необходимо подкрепить WPS свидетельством удовлетворительных испытаний процедуры в форме протокола аттестации процедуры сварки (WPQR), подготовленного в соответствии с BS EN ISO 15614-1 [5] . Введение этого стандарта гласит, что испытания процедуры сварки, проведенные в соответствии с прежними национальными стандартами и спецификациями, не аннулируются при условии их технической эквивалентности; Для этого могут потребоваться дополнительные тесты.Основные подрядчики по изготовлению металлоконструкций в Великобритании прошли предварительную квалификацию сварочных работ, позволяющих производить удовлетворительные сварные швы в большинстве конфигураций стыков, которые могут встретиться в производстве стальных конструкций и мостов.

В случаях, когда данные предыдущих испытаний не актуальны, необходимо провести испытание процедуры сварки, чтобы установить и подтвердить пригодность предлагаемого WPS.

Руководство по стандартным спецификациям процедуры сварки для стальных конструкций доступно в публикации BCSA No.58/18.

[вверх] Процедура испытаний

BS EN ISO 15614-1 [5] описывает условия для проведения испытаний процедуры сварки и пределы действия в пределах квалификационных диапазонов, указанных в стандарте. Координатор сварки составляет предварительную спецификацию процедуры сварки (pWPS), которая является первоначальным предложением для проведения испытания процедуры. Для каждой конфигурации стыка, будь то стыковой или угловой шов, учитывается марка и толщина материала, а также ожидаемые допуски посадки, которые могут быть достигнуты на практике.Выбор процесса определяется методом сборки, положением сварки и тем, является ли механизация жизнеспособным предложением для повышения производительности и обеспечения постоянного качества сварки. Размеры подготовки швов зависят от выбора процесса, любых ограничений доступа и толщины материала.

Расходные материалы выбираются из соображений совместимости с марками материалов и достижения заданных механических свойств, в первую очередь с точки зрения прочности и ударной вязкости. Для сталей марок S355 и выше используются водородо-регулируемые изделия.

Риск водородного растрескивания, ламеллярного разрыва, растрескивания при затвердевании или любой другой потенциальной проблемы оценивается не только с целью проведения испытания, но и для предполагаемого применения процедуры сварки в проекте. Соответствующие меры, такие как предварительный или последующий нагрев, включены в pWPS.

Контроль искажений обеспечивается правильной последовательностью сварки. При необходимости вводятся обратная строжка и / или обратное шлифование для достижения целостности корневого шва.

Указаны диапазоны сварочного напряжения, тока и скорости для определения оптимальных условий сварки.

Допустимые диапазоны групп материалов, толщины и типа соединения в пределах спецификации тщательно рассматриваются, чтобы максимально использовать pWPS. Подготавливаются испытательные пластины достаточного размера для извлечения образцов для механических испытаний, включая образцы для любых дополнительных испытаний, указанных или необходимых для повышения применимости процедуры.

Пластины и pWPS передаются сварщику; испытание проводится в присутствии эксперта (обычно из независимого проверяющего органа), и ведется запись фактических параметров сварки вместе с любыми необходимыми изменениями процедуры.

Завершенные испытания передаются независимому эксперту для визуального осмотра и неразрушающего контроля в соответствии с таблицей 1 Стандарта. Затем удовлетворительные испытательные пластины отправляются на разрушающий контроль, опять же в соответствии с таблицей 1. Неразрушающие методы контроля обычно включают ультразвуковой контроль для объемного контроля и контроль магнитных частиц для выявления дефектов поверхности.

 

Пример испытательного образца процедуры сварки
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Существует ряд дополнительных стандартов, детализирующих подготовку, обработку и испытания всех типов образцов для разрушающих испытаний. Обычно специализированные лаборатории организуют подготовку образцов для испытаний и проводят фактические механические испытания и составление отчетов. Типичные образцы для стыкового сварного шва пластины включают испытания на поперечное растяжение, испытания на поперечный изгиб, испытания на удар и образец для макроэкспертизы, на котором проводится испытание на твердость.Для испытаний на удар минимальные требования к поглощению энергии и температура испытания обычно такие же, как и для основного материала в соединении. Целесообразно проверить все сварочные процедуры до предела возможного применения, чтобы избежать повторения подобных испытаний в будущем.

Завершенные результаты испытаний заносятся в протокол аттестации процедуры сварки (WPQR), утверждаемый экспертом. Типичный формат показан в Приложении A стандарта BS EN ISO 15614-1 [5] .

Существует дополнительное общее требование, касающееся испытаний процедуры сварки, согласно которому в случаях, когда грунтовки краски должны быть нанесены на работу до изготовления, они наносятся на образец материала, использованного для испытаний. На практике требуется тщательный контроль толщины краски, чтобы избежать дефектов сварки.

BS EN ISO 14555 [6] описывает метод испытаний для соединителей с резьбой, приваренных дуговой сваркой. Стандарт включает требования к испытаниям, необходимым для подтверждения целостности сварных швов шпилек, а также устанавливает требования к производственным испытаниям для контроля приваривания шпилек в процессе.Допускается также квалификация, основанная на предыдущем опыте, и большинство подрядчиков по производству стальных конструкций могут предоставить доказательства, подтверждающие это.

Дополнительное руководство по испытаниям процедуры сварки доступно в GN 4.02.

[вверх] Водородный крекинг

Растрескивание может привести к хрупкому разрушению соединения с потенциально катастрофическими результатами. Водородное (или холодное) растрескивание может происходить в области основного металла, прилегающей к границе плавления сварного шва, известной как зона термического влияния (HAZ).Разрушение металла сварного шва также может быть вызвано определенными условиями. Механизмы, вызывающие отказ, сложны и подробно описаны в специальных текстах.

Рекомендуемые методы предотвращения растрескивания водородом / HAZ описаны в BS EN 1011-2 [7] , приложение C. Эти методы определяют уровень предварительного нагрева для изменения скорости охлаждения, что дает время водороду для миграции на поверхность. и ускользнуть (особенно если поддерживается в виде пост-нагрева после завершения соединения) вместо того, чтобы оставаться в жестких, напряженных зонах.Предварительный нагрев не препятствует образованию микроструктур, подверженных образованию трещин; он просто снижает один из факторов, водород, так что растрескивания не происходит. Предварительный нагрев также снижает термический шок.

 

Подкладки предварительного нагрева
(Изображение предоставлено Mabey Bridge Ltd.)

Одним из параметров, необходимых для расчета предварительного нагрева, является подвод тепла. Заметным изменением в стандарте является отказ от термина «энергия дуги» в пользу тепловложения для описания энергии, вводимой в сварной шов на единицу длины прогона.Расчет подводимого тепла основан на сварочном напряжении, токе и скорости движения и включает коэффициент теплового КПД; формула подробно описана в BS EN 1011-1 [8] .

Высокая устойчивость и повышенные значения углеродного эквивалента, связанные с более толстыми листами и более высокими марками стали, могут потребовать более строгого контроля процедур. Опытные подрядчики по изготовлению металлоконструкций могут выполнить эту дополнительную операцию и соответственно учесть ее.

BS EN 1011-2 [7] подтверждает, что наиболее эффективной гарантией предотвращения водородного растрескивания является снижение поступления водорода в металл сварного шва из сварочных материалов.Процессы с изначально низким водородным потенциалом эффективны как часть стратегии, так же как и принятие строгих процедур хранения и обращения с водородными электродами. Данные и рекомендации поставщиков расходных материалов служат руководством для обеспечения минимально возможных уровней водорода для типа продукта, выбранного в процедуре.

Дополнительные информативные приложения к BS EN 1011-2 [7] описывают влияние условий сварки на ударную вязкость и твердость в ЗТВ и дают полезные советы по предотвращению растрескивания при затвердевании и разрыва пластин.

Дополнительное руководство по крекингу водородом / HAZ доступно в GN 6.04.

[вверх] Квалификация сварщика

 

Квалифицированный сварщик
(Изображение любезно предоставлено Mabey Bridge Ltd.)

BS EN 1090-2 [9] требует, чтобы сварщики имели квалификацию в соответствии с BS EN ISO 9606-1 [10] . Этот стандарт предписывает испытания для аттестации сварщиков в зависимости от процесса, расходных материалов, типа соединения, положения сварки и материала.Сварщики, успешно прошедшие испытания процедуры, получают автоматическое одобрение в пределах квалификационных диапазонов, установленных стандартом. Сварщики должны быть аттестованы в соответствии с BS EN ISO 14732 [11] , когда сварка полностью механизирована или автоматическая. В этом стандарте особое внимание уделяется проверке способности оператора настраивать и настраивать оборудование до и во время сварки.

Квалификация сварщика ограничена по времени и требует подтверждения действительности в зависимости от продолжительности работы, участия в работе соответствующего технического характера и удовлетворительной работы.Продление квалификации сварщика зависит от записанных подтверждающих свидетельств, демонстрирующих продолжающуюся удовлетворительную работу в пределах исходного диапазона испытаний, и доказательства должны включать либо объемные разрушающие испытания, либо разрушающие испытания. Успех всех сварочных операций зависит от персонала, имеющего соответствующее обучение и регулярного контроля компетентности посредством инспекций и испытаний.

[вверх] Инспекция и испытания

BS EN 1090-2 [9] устанавливает объем проверки до, во время и после сварки и дает критерии приемки, связанные с классом исполнения.Большинство испытаний неразрушающие; Разрушающие испытания проводятся только на отводных плитах.

[вверх] Неразрушающий контроль

 

Магнитный контроль частиц (MPI) сварного шва
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Неразрушающий контроль проводится в соответствии с принципами BS EN ISO 17635 [12] . Для стальных конструкций основными методами являются визуальный контроль после сварки (см. GN 6.06), магнитопорошковый контроль (обычно сокращенно MPI или MT) для поверхностного контроля сварных швов (см. GN 6.02) и ультразвуковой контроль (UT) для подповерхностного контроля сварных швов (см. GN 6.03). Радиографические испытания также упоминаются в BS EN 1090-2 [9] . Радиография требует строгого контроля здоровья и безопасности; это относительно медленно и требует специального оборудования. Использование этого метода в стальных конструкциях снизилось по сравнению с более безопасным и портативным оборудованием, используемым в UT.Безопасные запретные зоны необходимы на производстве и на месте во время рентгенографии. Однако рентгенографию можно использовать для уточнения природы, размеров или степени множественных внутренних дефектов, обнаруженных ультразвуком.

Технические специалисты с признанным обучением и квалификацией в соответствии с BS EN ISO 9712 [13] требуются для всех методов неразрушающего контроля.

BS EN 1090-2 [9] требует, чтобы все сварные швы подвергались визуальному контролю по всей их длине.С практической точки зрения сварные швы следует визуально осматривать сразу после сварки, чтобы гарантировать своевременное устранение очевидных дефектов поверхности.

Дальнейшие требования к неразрушающему контролю основаны на эксплуатационных методах и требуют более строгой проверки первых пяти соединений новых технических требований к процедуре сварки, чтобы установить, что эта процедура способна производить сварные швы соответствующего качества при внедрении в производство. Затем указываются дополнительные неразрушающие испытания, основанные на типах соединений, а не на конкретных критических соединениях.Цель состоит в том, чтобы опробовать различные сварные швы в зависимости от типа соединения, марки материала, сварочного оборудования и работы сварщиков и, таким образом, поддерживать общий контроль производительности.

Если указано частичное или процентное обследование, руководство по выбору продолжительности испытания дано в BS EN ISO 17635 [12] ; При обнаружении недопустимых разрывов площадь исследования соответственно увеличивается.

BS EN 1090-2 [9] также включает в таблицу минимальное время выдержки перед дополнительным неразрушающим контролем в зависимости от размера сварного шва, подводимой теплоты и марки материала.

Признавая, что там, где требования к усталостной прочности более обременительны и требуется более строгая проверка, BS EN 1090-2 [9] действительно предусматривает спецификацию выполнения проекта для определения конкретных соединений для более высокого уровня проверки вместе с объемом и метод тестирования.

Для класса EXC3 критерием приемлемости дефектов сварного шва является уровень качества B стандарта BS EN ISO 5817 [14] . Там, где необходимо достичь повышенного уровня качества для удовлетворения конкретных требований к усталостной прочности, BS EN 1090-2 [9] дает дополнительные критерии приемлемости с точки зрения категории деталей в BS EN 1993-1-9 [15] для расположения сварного шва.

Как правило, дополнительные критерии приемки практически не достижимы при обычном производстве. Стандартные испытания процедуры сварки и квалификационные испытания сварщиков не оцениваются по требованиям этого уровня. Если необходимо достичь такого уровня качества, требования должны быть сосредоточены на соответствующих деталях соединения, чтобы подрядчик имел возможность подготовить спецификации процедуры сварки, квалифицировать сварщиков и разработать соответствующие методы контроля и испытаний.

Неразрушающий контроль

[вверх] Разрушающий контроль

В стандарте BS EN 1090-2 [9] нет требований о проведении разрушающих испытаний поперечных соединений на растянутых фланцах. Тем не менее, объем для определения конкретных соединений для проверки позволит в спецификации проекта испытать, например, образцы от «стекающих» пластин, прикрепленных к встроенным стыковым сварным швам. Дополнительно производственные испытания могут быть указаны для: марок стали выше S460; угловые швы, в которых используются характеристики глубокого проплавления сварочного процесса; для мостовидных ортотропных настилов, где требуется макросъемка для проверки проплавления сварного шва; и на соединениях ребер жесткости с соединительными пластинами.

[вверх] Производственные испытания приварки шпилек

 

Испытание на изгиб приварной шпильки
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Сварные шпильки для соединителей, работающих на срез, исследуются и испытываются в соответствии с BS EN ISO 14555 [6] . В стандарте подчеркивается необходимость контроля процесса до, во время и после сварки. Предпроизводственные испытания используются для подтверждения процедуры сварки и, в зависимости от области применения, включают испытания на изгиб, испытания на растяжение, испытания на крутящий момент, макросъемку и радиографическое обследование.

Производственные испытания сварных швов также необходимы для приварки шпилек с дугой протяжки. Они должны выполняться производителем до начала сварочных работ на конструкции или группе аналогичных конструкций и / или после определенного количества сварных швов. Каждое испытание должно состоять как минимум из 10 сварных шпилек и быть испытано / оценено в соответствии с требованиями BS EN ISO 14555 [6] . Количество необходимых тестов должно быть указано в спецификации контракта.

[вверх] Качество сварки

Влияние дефектов на характеристики сварных соединений зависит от приложенной нагрузки и свойств материала.Эффект также может зависеть от точного расположения и ориентации дефекта, а также от таких факторов, как рабочая среда и температура. Основное влияние дефектов сварного шва на эксплуатационные характеристики стальных конструкций заключается в повышении риска разрушения из-за усталости или хрупкого разрушения.

Типы дефектов сварки можно разделить на одну из нескольких общих рубрик:

  • Трещины.
  • Плоские дефекты, кроме трещин, например непробиваемость, отсутствие плавления.
  • Включения шлака.
  • Пористость, поры.
  • Поднутрения или дефекты профиля.


Трещины или плоские дефекты, проникающие через поверхность, потенциально являются наиболее серьезными. Включения вкрапленного шлака и пористость вряд ли станут причиной разрушения, если только они не будут чрезмерными. Подрезание обычно не является серьезной проблемой, если не существуют значительные растягивающие напряжения поперек стыка.

При выборе класса исполнения в BS EN 1090-2 [9] устанавливаются критерии приемки, при превышении которых дефект считается дефектом.

Если дефекты обнаружены в результате осмотра и испытаний во время производства, вероятно, потребуется обработка после сварки (см. GN 5.02) или другие меры по исправлению положения, хотя во многих случаях конкретный дефект можно оценить по концепции « пригодность для цели ». Такое принятие зависит от фактических уровней напряжения и значимости усталости на месте. Это вопрос для быстрой консультации между подрядчиком по изготовлению металлоконструкций и проектировщиком, поскольку, если это приемлемо, можно избежать дорогостоящего ремонта (и возможности появления дополнительных дефектов или искажений).

Руководство по контролю качества сварных швов и контролю сварных швов доступно в BCSA № 54/12 и GN 6.01.

[вверх] Список литературы

  1. ↑ BS EN ISO 22553: 2013, Сварка и родственные процессы. Символическое изображение на чертежах. Сварные соединения. BSI.
  2. ↑ BS EN 1993-1-8: 2005, Еврокод 3. Проектирование стальных конструкций. Дизайн стыков, BSI
  3. ↑ BS EN ISO 4063: 2010, Сварка и родственные процессы. Номенклатура процессов и ссылочные номера, BSI
  4. ↑ BS EN ISO 15609-1: 2019, Технические требования и аттестация процедур сварки металлических материалов.Спецификация процедуры сварки. Дуговая сварка, BSI
  5. 5,0 5,1 5,2 BS EN ISO 15614-1: 2017, Технические требования и аттестация процедур сварки металлических материалов. Проверка процедуры сварки. Дуговая и газовая сварка сталей и дуговая сварка никеля и никелевых сплавов, BSI
  6. 6,0 6,1 6,2 BS EN ISO 14555: 2017, Сварка. Дуговая сварка металлических материалов, BSI
  7. 7,0 7.1 7.2 BS EN 1011-2: 2001, Сварка. Рекомендации по сварке металлических материалов. Дуговая сварка ферритных сталей, BSI
  8. ↑ BS EN 1011-1: 2009, Сварка. Рекомендации по сварке металлических материалов. Общее руководство по дуговой сварке, BSI
  9. 9,0 9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 BS EN 1090-2: 2018, Изготовление металлоконструкций и алюминиевых конструкций.Технические требования к стальным конструкциям, BSI
  10. ↑ BS EN ISO 9606-1: 2017 Квалификационные испытания сварщиков. Сварка плавлением. Стали, BSI
  11. ↑ BS EN ISO 14732: 2013. Сварочный персонал. Квалификационные испытания сварщиков и наладчиков механизированной и автоматической сварки металлических материалов BSI
  12. 12,0 12,1 BS EN ISO 17635: 2016, Неразрушающий контроль сварных швов. Общие правила для металлических материалов, BSI
  13. ↑ BS EN ISO 9712: 2012.Неразрушающий контроль. Квалификация и сертификация персонала по неразрушающему контролю, BSI
  14. ↑ BS EN ISO 5817: 2014, Сварка. Соединения, сваренные плавлением стали, никеля, титана и их сплавов (за исключением лучевой сварки). Уровни качества для выявления недостатков, BSI
  15. ↑ BS EN 1993-1-9: 2005, Еврокод 3. Проектирование стальных конструкций. Усталость, BSI

[вверх] Ресурсы

  • Стальные здания, 2003 г. (Публикация № 35/03), BCSA
  • Стальные мосты: практический подход к проектированию для эффективного изготовления и строительства, 2010 г. (Публикация №51/10), BCSA
  • Национальные технические условия на стальные конструкции (6-е издание), публикация № 57/17, BCSA 2017
  • Национальные технические условия на стальные конструкции (7-е издание), 2020 г. (Публикация № 62/20), BCSA
  • Технические условия на типовые процедуры сварки металлоконструкций - Второе издание, 2018 г. (Публикация № 58/18), BCSA
  • Высокопрочные стали для применения в конструкциях: Руководство по изготовлению и сварке, 2020 г. (Публикация № 62/20), BCSA
  • Руководство по контролю сварных швов металлоконструкций, 2012 г. (Публикация №54/12), BCSA
  • Hendy, C.R .; Айлс, округ Колумбия (2015) Steel Bridge Group: Рекомендации по передовой практике в строительстве стальных мостов (6-й выпуск). (P185). SCI

[вверху] Дополнительная литература

  • Руководство проектировщика металлоконструкций (7-е издание), 2011 г., глава 26 - Сварные швы и проектирование для сварки, Институт стальных конструкций.

[вверху] См. Также

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *