Анод это плюс или минус: что это такое, где плюс и где минус на диоде

Содержание

что это такое, где плюс и где минус на диоде

На чтение 6 мин Просмотров 1.2к. Опубликовано Обновлено

Классические термины из физики и химии часто встречаются в инструкциях к использованию современных приборов. Необходимо точно знать, что такое определение под собой подразумевает и как его применять к тем или иным конструкциям и явлениям.

Что такое анод и катод

Потребитель сталкивается с понятиями анод и катод при зарядке и разрядке аккумулятора, зарядке и обслуживании батареи.

Понять разницу между катодом, анодом, положительным и отрицательным зарядом проще всего, вспомнив некоторые положения из электрохимии.

  • Гальванические элементы – электрический ток производится благодаря текущей химической реакции. Именно на этом принципе работают батарейки и аккумуляторы. Поэтому их называют химическими источниками тока.
  • Электролиз – химическая реакция, которая протекает за счет включения в систему источника электроэнергии.

В обоих случаях один из электродов несет более высокий потенциал. Этот электрод считается положительным. Электрод с более низким потенциалом и необязательно отрицательным, будет носить название отрицательный. Ток, соответственно, течет от носителя более высокого потенциала к носителю более низкого потенциала.

Очень редко

32.35%

Не припоминаю

17.65%

Проголосовало: 34

Анод

По определению анодом выступает электрод, на котором протекает окислительная реакция. Это означает, что электрод служит источником электронов. В химии его же нередко именуют восстановителем.

Катод

Под катодом подразумевают электрод, на котором протекает реакция восстановления. Здесь электрод забирает электроны и называется окислителем.

Принимая, что ток является движением положительно заряженных частиц, а не отрицательных, получается, что ток в растворе идет от катода к аноду. В цепи, соединяющей элементы гальванической пары, электроны идут от минуса к плюсу и с этой точки зрения катод является плюсом, а анод – минусом.

Противоречие кажущееся, ведь направление тока определяется движением положительных частиц, хотя фактически в металлической цепи его обеспечивает движение электронов.

Как определить анод и катод

Если с батарейкой все довольно просто (полюс и минус не меняются местами), то с зарядкой аккумулятора дело обстоит сложнее.

Во время зарядки разность между большим и меньшим потенциалом увеличивается, то есть потенциал положительного электрода становится выше, чем его же потенциал в покое – накапливается заряд, а потенциал отрицательного электрода становится меньше, чем он же в состоянии покоя. Отсюда вытекает, что положительный электрод выступает анодом, а отрицательный – катодом.

При использовании устройства потенциал положительного электрода (анода) всегда остается больше, чем потенциал отрицательного (катода). Но во время цикла разрядки/зарядки роль электрода меняется: при разрядке положительным становится катод, отрицательным – анод. Во время зарядки положительным выступает анод, отрицательным – катод.

Если речь идет о растворах и электрофизических реакциях в них, проще запомнить, что катионы – всегда частицы с положительным зарядом, а значит двигаются к минусу. Анионы – частицы всегда с отрицательным зарядом и двигаются к плюсу.

Валера

Голос строительного гуру

Задать вопрос

Чтобы запомнить, где плюс, где минус, используют мнемоническое правило. В словах «катод» и «минус», а также в словах «анод» и «плюс» одинаковое количество букв. В нормальном режиме работы любого электрического прибора ток вытекает из катода и втекает в анод. Даже если речь о металлической жиле, поскольку здесь направление тока определяют не смещении электронов, а смещение дырок.

Сфера применения

В промышленности используют не только собственно гальванические элементы (для получения электрического тока), но и электрохимические реакции, которые протекают под действием тока. Самый известный – получение тонкопослойного защитного покрытия стали – из цинка, алюминия, цинкового-алюминиевых сплавов.

Электрохимия

Электролиз по своему значению противоположен работе гальванического элемента: реакция проходит под действием тока. При этом плюс источника питания все же именуется катодом, а минус анодом, что как бы противоречит вышесказанному. Происходит это потому, что ток от плюсового вывода источника питания уходит на плюсовой вывод аккумулятора и в этом случае последний уже никак не может быть катодом. В результате электроды аккумулятора при зарядке меняются местами, потому что реакция идет в обратном направлении.

Гальванотехника

Посеребрение, золочение, хромирование, оцинковка – наиболее известные способы использования процесса осаждения вещества. Принцип действия таких установок одинаков: изделие погружают в электролитическую ванную, в которой оно выступает катодом. На его поверхности осаждаются ионы металла – катионы. Чтобы изделие стало катодом, к нему подключают плюсовой вывод источника питания.

Вакуумные и полупроводниковые электроприборы

Понятие катода и анода, а точнее плюса и минуса в вакуумных и полупроводниковых приборах связано с возможностью протекания тока только в одном направлении или в двух. Полупроводник допускает только прямое течение тока, а при наложении напряжения обратного типа ток здесь течет, но крайне незначительно. Для резистора же вопрос не принципиален: он пропускает ток в обоих направлениях.

Катодом и анодом называют выводы диода – ножки. К плюсу батареи подключается анод. Называется он так, потому что у диода в ток любом случае втекает в анод. Светодиод и даже вакуумный подключается точно так же: анод к плюсу, а катод к минусу.

У пассивных потребителей катод и анод (плюс и минус) не меняются. У активных, способных пропускать ток в обоих направлениях, разряжаться и заряжаться – плюсы и минус могут меняться. В аккумуляторе катод положительный во время разрядки и отрицательный при зарядке. Для правильного использования приборов и элементов важно помнить одно: у всех потребителей энергии – электронных деталей, электролизеров, гальванических батарей − вывод, подключаемый к плюсу, называется анодом.

где плюс и минус на светодиоде (анод и катод)

Светодиоды довольно часто используют в электротехнике, например, в качестве индикаторов. Для того чтобы диод работал и излучал свет, необходимо его правильно включить в электрическую цепь. А для этого нужно определить полярность светодиода. Рассмотрим способы, которые помогут это сделать.

Использование технической документации. Обозначение светодиода на схеме.

При покупке крупной партии LED устройств стоит запросить у продавца техническую документацию. Это поможет точно узнать многие характеристики изделия, не исключая полярность. На небольшое количество светодиодов паспорт обычно не дают. Но по точному названию марки элемента найти в интернете технические характеристики не составит труда.

На электрической схеме светодиоды изображают двумя способами.

Треугольником обозначают анод, вертикальной чертой – катод. Две стрелочки символизируют свечение.

Визуальное определение.

Если техническая документация недоступна, то для начала элемент стоит внимательно рассмотреть. Часто это помогает понять, где плюс у светодиода. У наиболее распространенного типа LED устройств – цилиндрического диода размером не менее 3,5 мм – один контакт длиннее. Такое конструктивное решение придумано для индикации полярности. Длинный вывод  является положительным анодом.

Распознать плюс и минус можно, если удастся рассмотреть, что у светодиода внутри. Сквозь прозрачную оболочку заметно, что площадь анода (положительного контакта) меньше, чем у катода (отрицательного).

Если на корпусе светодиода имеется скос, то это признак катода. 

Чем выше типоразмер и мощность LED изделия, тем больше шансы определить полярность «на глаз».

Находим анод и катод у LED элементов мощностью свыше 1Вт.

Мощные светодиоды используются в электротехнике. Как быстро определить их полярность? Довольно просто. Достаточно внимательно рассмотреть диод. При изготовлении контакты элементов мощностью свыше 0,5 Вт маркируют. Анод помечается знаком «+».

Распознаем полярность у светодиода в корпусе SMD.

Если светодиод выполнен в корпусе SMD, то рассмотреть, что же у него внутри невозможно. Как правило, производители заботятся об электротехниках и делают определенные пометки. Полярность можно распознать по срезу на корпусе, теплоотводу или пиктограмме. Первые два способа больше подходят для больших типоразмеров.

На корпусе таких диодов можно найти конструктивный срез. Именно он указывает на отрицательный контакт (катод). С противоположной стороны, соответственно, будет расположен положительный анод.

Теплоотвод с обратной стороны корпуса также подсказывает полярность. Он смещен к аноду.

На небольшие SMD диоды (например, типоразмер 1206) в качестве подсказки наносят специальные пиктограммы.  Они имеют форму треугольника, буквы П или Т. Выступ обозначает катод.

Распознавание с помощью мультиметра.

Самый надежный способ распознания полярности − использование специальных приборов. При помощи обычного мультиметра можно обозначить контакты у диодов с высокой степенью точности. Попутно обнаружится исправность элемента и цвет свечения. Воспользоваться тестером можно 3-мя путями.

Во-первых, проверить LED устройство на режиме «проверка сопротивления – 2 кОм». При этом следует прикоснуться щупами мультиметра к контактам светодиода. Если красный положительный щуп тестера коснется анода диода, а черный отрицательный – катода, то экран покажет значение 1600-1800 Ом. В противоположном случае тестер выдаст единицу. Значит, щупы нужно поменять местами. Если и это не помогло, значит, элемент неисправен. Узнать цвет свечения таким методом не получится.

Во-вторых, можно установить мультиметр в режим «прозвонка, проверка диода». Если красный провод дотронется до анода, а черный – до катода, то элемент будет светиться. Экран покажет число от 500 до 1200 мВ.

В-третьих, многие тестеры позволяют проводить измерения вовсе без щупов. Мультиметр должен обладать специальным отделом для проверки PNP и NPN транзисторов. В них есть разъемы, обозначенные буквами «Е» и «С». При проверке элемента в PNP-зоне, если катод вставить в гнездо «С», а анод − в «Е», то светодиод начнет излучать свет. Следовательно, полярность определена верно. При работе в NPN-отсеке свечение появится при противоположном размещении контактов: катод в «Е», а анод в «С». Пожалуй, это самый скорый способ определения распиновки. Кстати, если у изучаемого светодиода нет длинных выводов, то можно в разъемы поместить иголки, и LED элемент аккуратно присоединять к ним.

Распознавание полярности источником питания.

Следующим наглядным методом для распознания катода и анода будет присоединение к источнику питания. Данный способ, как и предыдущий, позволяет узнать еще и исправность LED элемента.

Естественно, что для опыта необходим источник напряжения. Отлично подойдет блок питания с плавной регулировкой. Светодиод следует присоединить и постепенно увеличивать напряжение. Если при подаче 3-4 В элемент еще не светится, значит, с полярностью не угадали.

Если такого блока питания под рукой нет, то можно применить батарейку или аккумулятор от мобильного телефона. Поскольку напряжение на них может достигать 12 В, то напрямую светодиод присоединять нельзя. Для предупреждения поломки следует включить в цепь резистор. Выбрать подходящее по величине сопротивление вам поможет статья «Расчет резистора (сопротивления) для светодиода».

Резистор стоит подпаять к одному из контактов LED элемента. Полученной конструкцией коснуться выводов источника питания. Если полярность предположена верно, то диод начнет излучать свет. В ином случае, надо поменять контакты местами.

Если под рукой есть плоская севшая батарейка от часов или с материнской платы (тип CR2032), то можно обойтись без резистора. Напряжением таких источников питания не превышает 6 В, что безопасно для светодиода. Батарейку зажимают между выводами диода и по свечению или его отсутствию определяют полярность.

Итоги.

Описанные методы имеют свои сильные и слабые стороны. По технической документации и визуально невозможно проверить работоспособность светодиода. Проверка с помощью подачи напряжения требует особенной осторожности. А мощный светодиод не всегда удастся прозвонить мультиметром. Для успешной работы электротехнику стоит освоить все методы и применять их по необходимости.


 

Катод и Анод : Помогите решить / разобраться (Ф)

Э не-е-е-е, ГОСТами пользоваться надо когда они не противоречат учебникам и словарям — вот честно, доверия физической энциклопедии в разы больше чем левому ГОСТу, который к тому же утратил силу в РФ, правда в действующем ГОСТ Р МЭК 60050-482-2011 ничего и не поменялось.
Ну а БСЭ тоже не верите?

Большая советская энциклопедия. — М.: Советская энциклопедия 1969—1978 писал(а):

Анод (от греч. ánodos — подъём, восхождение, от aná — вверх и hodós — путь, движение)
1) положительный электрод источника электрического тока, например положительного полюс гальванического элемента или электрического аккумулятора (см. Химические источники тока).
2) Электрод электронного прибора (См. Электронные приборы) (ионного прибора (См. Ионные приборы)), соединяемый с положительным полюсом источника электрического тока.
3) Положительный полюс электролитной ванны (см. Электролиз).
4) Положительный электрод электрический дуги (см. Дуговой разряд).
Материалом А. в зависимости от назначения служат металлы (тантал, молибден, никель, медь, железо, вольфрам и др.) и графит.

Энциклопедия «Техника». — М.: Росмэн 2006 писал(а):

ано́д
положительный электрод источника электрического тока, напр. положительный полюс гальванического элемента или электрического аккумулятора; электрод электронного прибора (ионного прибора), соединяемый с положительным полюсом источника электрического тока; положительный полюс электролитической ванны; положительный электрод электрической дуги. В электролитической ванне и электронных приборах анод соединяется с положительным полюсом источника электрического тока.

В общем, ГОСТ дело такое, специфическое, может он имеет хождение лишь в узкой области? Или подвержен мании всё менять и переименовывать …
Предлагаю для источников тока (батареи, аккумуляторы в режиме разряда, блоки питания) не заморачиваться с терминами анод/катод, а пользоваться обозначениями плюс и минус. Раз уж такой разброд и шатание.

— 16.03.2017, 00:28 —

Также где катод и анод у светодиода и какие знаки имеют?

У светодиода на анод надо подавать плюс внешнего напряжения, на катод — минус внешнего напряжения. Тут никаких разногласий нет. Знаков они не имеют.

Диоды: описание, подключение, схема, характеристики

Содержание

  • Принцип работы
  • Разновидности, назначения и примеры использования
  • Вывод
  • FAQ

Принцип работы

Диод — один из элементарных “кирпичиков”, который несмотря на свою принципиальную простоту, настолько разнообразен в исполнении и широте применения, что без него не обходится ни одно из электронных устройств, даже радикально отличающихся друг от друга. А профессия у него самая понятная: пропускать ток в одном направлении и не пропускать в обратном, на этом все. Широкими мазками устройство диода можно объяснить и изобразить так:

Внутри корпуса находятся два электрода из разных материалов, один из них имеет недостаток электронов (так называемый P-тип), другой избыток (P-тип). Между ними имеется граница (P-N переход). Граница эта становится либо проводником, когда плюс напряжения подается на анод диода, либо диэлектриком, когда плюс подается, соответственно, на катод. Вот и все что нам нужно пока знать, если не хотим вдаваться в подробности конструкции и химического состава электродов.

Разновидности и назначения

Простота принципа работы вовсе не значит, что диод — узкоспециализированное устройство, годное лишь показать пару трюков. Вот не самая полная таблица разновидностей диодов по конструктивному типу.

Кратко рассмотрим лишь некоторые из них, которые чаще всего используются в DIY-изделиях.

Диод универсальный. Он же диод выпрямительный. Исполняет титульные диодные обязанности: пропускает сквозь себя ток только в одном направлении. В современном виде для маломощной электроники выглядит как одноцветный (чаще — черный) цилиндр с поперечной полосой со стороны катода.

В SMD исполнении они еще компактнее. Полоска присутствует тоже со стороны катода.

Силовые же диоды, рассчитанные на большие токи, особенно советского производства, выглядят намного суровее и запросто могут быть использованы в качестве холодного оружия. Анод, в данном случае, расположен со стороны “хвоста”.

Одно из частых применений: “выпрямление” тока, то есть его преобразование из переменного в постоянный. Для этого четыре диода собираются в несложную схему, называемую в народе “диодный мост”.

Диоды отправляют на плюс только положительные фазы напряжения каждого из входящих электродов, на выходе получается постоянный ток, остается лишь его немного сгладить и привести к нужному вольтажу.

Защитная функция. Тут все понятно, не допускает случайной переполюсовки, то есть при подключении питания “наоборот” дальнейшая схема не пострадает.

Защита от индуктивности. Многие потребители тока грешат наличием так называемой индуктивности, то есть в случае отключения питания некоторое время “тормозят”, продолжая по инерции вырабатывать ток самостоятельно, причем в обратном направлении. Ярким примером считается электромотор, будучи раскрученным и отключенным, он превращается в генератор, и пока ротор вращается, в сеть отправляется вполне ощутимый ток. Индуктивностью обладают очень многие устройства и элементы, даже не имеющие механически подвижных частей. Если не принять мер, индуктивный ток способен навредить элементам электрической схемы, особенно таким чувствительным, как, например, транзисторы. В роли защитника проще всего использовать наш диод, подключая его параллельно индуктивной нагрузке, но в обратном направлении.

Таким образом он пропускает только “правильный” ток, но отсекает вредный индуктивный. На заметку: диод обязателен к использованию с любыми индуктивными элементами в вашей схеме.

Диодный детектор. В симбиозе с конденсатором способен выделить сигналы определенной частоты из общей массы, что позволяет принимать амплитудно-модулированные данные. Нашел широкое применение в аналоговых радиоприемниках и телевизорах.

Одним из побочных свойств диода является падение напряжения при его использовании. Для универсального типа оно составляет порядка 0,7-0,8 В, что очень важно учитывать при проектировании. Кроме очевидных минусов, в этом можно заметить и некоторые возможности. Часть особо капризных электронных модулей требует нестандартное питание, к примеру широко известный SIMM800L, способный превратить Ардуино в сотовый телефон. Согласно даташиту напряжение на входе должно составлять от 3,4 до 4,4 В, при меньшем его работа будет нестабильна, при большем начнет перегреваться и, в конечном итоге, сгорит. Проще всего, хоть и не лучше, уменьшить вольтаж добавлением в цепь питания диода или двух, что обеспечит безопасное напряжение. То же самое рекомендуется сделать с сигнальным входом RX.

Стабилитрон. Он же диод Зенера, по фамилии изобретателя.

В отличие от универсального диода способен пропускать обратный ток, если тот превышает некоторое заранее установленное в стабилитроне значение. Будучи умышленно подключеным в обратном направлении, выполняет таким образом функцию “перепускного клапана”, сбрасывая “излишки” напряжения на минус.

В результате — при напряжении на входе выше заданного — на выходе получаем стабильное напряжение с номиналом, который установлен в стабилитроне. Это один из самых простых способов понизить напряжение до заданного, при правильном расчете мощности стабилитрона и токоограничивающего резистора. Кроме того, схема является одной из самых точных, часто используется для калибровки измерительных приборов. В продаже имеется широкий ряд диодов Зенера, отличающихся по рабочему напряжению и мощности, можно подобрать практически под любую задачу. Но необходимо помнить, что стабилитрон только ограничивает напряжение, то есть отсекает лишнее, поднять его до номинала он, конечно же, не сможет.

Для приведенного выше примера с SIMM800L данный способ добывания правильного вольтажа предпочтительней, так как напряжение будет гораздо стабильнее и точнее.

Диод Шоттки. Еще одна авторская разновидность, известная также как диод сигнальный. Внешне от универсального ничем не отличается, а на схемах изображается с характерными завитками.

В отличие от обычного универсального полупроводникового диода, Шоттке имеет два преимущества: очень высокое быстродействие и малое падение напряжения, всего 0,2-0,3 В. К недостаткам, относительно универсального, можно отнести малый максимальный вольтаж и неспособность самовосстанавливаться после пробоя.

Благодаря своим свойствам диоды Шоттке успешно используются в блоках питания, импульсных стабилизаторах напряжения, в передатчиках и приемниках цифровых сигналов, и прочих устройствах, где важна скорость и нежелательна большая потеря вольтажа.

Светодиод. Очень популярный электронный компонент. Применяется как источник света (в том числе в невидимых диапазонах), так и для индикации чего угодно. Может похвастаться очень большим количеством разновидностей по форме, размеру, мощности, яркости, цвету и так далее.

Не следует использовать светодиод для ограничения направления тока, как обычный диод, в неправильной полярности он способен молча, но быстро выйти из строя. Кроме того, он имеет очень малое внутреннее сопротивление и при прямом подключении к источнику питания даже в правильной полярности сгорит тоже быстро, правда уже со спецэффектом. Для подключения в цепь обязательно добавляется токоограничивающий резистор, номинал которого следует рассчитать в зависимости от типа светодиода и вольтажа питания. Например так.

Популярный трехцветный светодиод, это три обычных светодиода, заточенных в один корпус. И для каждого из них обязательно нужен свой резистор.

Пример подключения трехцветного светодиода с общим катодом.

Знаменитый же за последние годы адресный светодиод отличается от многоцветного лишь встроенным в него собственным микроконтроллером (ШИМ-драйвером) и пресловутыми обязательными резисторами. Все в одном микроскопическом корпусе.

Фотодиод. Как светодиод, только наоборот. Работает в двух режимах: как генератор тока и как детектор освещенности.

В первом случае, как правило, преобразует солнечный свет в электричество, правда, с небольшим КПД, в районе 20%. Во втором случае подключается в обратной полярности и способен улавливать даже очень слабые отблески света, что в ряде случае может быть полезнее, чем использование для этой цели фоторезистора.


Вывод

Диод — многоликий и многофункциональный элемент электроники, решающий ряд разнообразных задач — от защиты электронных схем до генерации тока из солнечного света. Здесь мы рассмотрели лишь малую часть разновидностей диодов и их назначений. Знание возможностей и различий этих простых, но важных устройств и умение применять их в реальных электронных схемах незаменимо для каждого DIY-мастера.

FAQ

Вопрос: можно ли использовать стабилитрон в качестве обычного диода?
Можно, если напряжение заведомо не превышает установленного в этом стабилитроне, но лучше использовать его по назначению.

Вопрос: если светодиод может сгореть при неправильной полярности, как можно заранее определить где у него плюс, где минус?
У нового светодиода ножки разной длины, длинная — это плюс (анод). Если же кто-то заранее откусил ножки, можно определить полярность по внешнему виду внутренних электродов, анод намного меньше катода. Также, по слухам, корпус светодиода со стороны анода имеет более выступающую “юбочку”, но это не точно.

Вопрос: Как проверить работоспособность универсального диода?
С помощью любого мультиметра. Включаем его в режиме омметра, соединяем красный щуп с анодом, черный с катодом, прибор должен показывать ноль. Если перекинуть щупы наоборот, прибор покажет разрыв цепи (OL в цифровых мультиметрах). Если покажет как-то иначе, значит диод испорчен.

Вопрос: какова скорость “включения” и “выключения” светодиодов?
Зависит от типа светодиода. Для обычных, которые чаще всего используются в DIY-проектах, это время составляет сотню-другую наносекунд, то есть довольно быстро, может использоваться, к примеру, для анимации и передачи данных.

Как запомнить полярность диода в символе? (Самообеспечение ответил)

Две мнемонические техники я упомяну. Обе техники я выучил у кого-то еще много лет назад.

  1. Мы можем легко вспомнить, что анод сокращенно обозначен как А, а катод — как К. Это стандартно и легко запомнить.

Теперь напишите K

Теперь просто заполните пробелы, чтобы сделать его диодным.

Теперь сторона диода, на которой нарисован K , — это катод (K).

По умолчанию противоположной стороной является анод (A).

Теперь, если однажды мы научимся распознавать K , если диод будет ориентироваться в другом направлении на диаграмме, мы можем легко идентифицировать анод и катод.

————————————————— —————

  1. Треугольник внутри диода, делает знак стрелки . Это говорит о направлении разрешенного направления тока.

Из второго метода мы легко запоминаем направление тока.

И вл. Выбранный участок схемы (интересующий участок) (здесь диодный) катод — это электрод, из которого вырывается положительный заряд;

и анод интересующей части схемы (здесь диод) является электродом, который всасывает положительный заряд.

Таблица выше: анод-катод против плюс-минус

Это применимо не только для диодов. Это применимо для любых компонентов, таких как электрохимическая (батарея) -элемент, электролитическая ячейка, катодно-лучевая трубка ( ЭЛТ ) и т. Д.

Анод, представляющий интерес для цепи (здесь диод), должен быть присоединен с катодом цепи (здесь батарея).

И катод, представляющий интерес для схемы (здесь диод), который должен быть присоединен к аноду аналога цепи (здесь аккумулятор).

В интересующей части схемы (здесь это диод) ток течет в направлении от анода к катоду.

В аналоге этой выбранной части или внешней части пути ток течет от анода (выбранной части, здесь диода) к катоду (выбранной части, здесь диода).

Чем отличаются минусовая и плюсовая клеммы аккумулятора?

Клеммы аккумулятора — важная часть всей конструкции аккумулятора. При неисправности или окислении клемм заряд может проходить не так интенсивно и не в полном объеме, что может привести как к проблемам с запуском двигателя, так и с более быстрой потерей акб своего ресурса.

Многие владельцы автомобилей знают, что у аккумулятора существует плюсовая и минусовая клемма. Плюсовая обычно отмечается красным кожухом. А минусовая клемма может быть бесцветной либо черной.

В чем же отличие между плюсовой и минусовой клеммой? И что может произойти, если их перепутать местами?

Пластины внутри аккумулятора чередуют между собой плюсовой и минусовой заряд. Плюс — это анод из диоксида свинца, а минус — это свинцовый катод. При подключении нагрузки электроны катодов перенаправляются на анод. Это позволяет создавать выходное электричество. Плюсовая клемма при включенном двигателе — это масса на кузове автомобиля. Поэтому при соприкосновении с другими деталями может произойти короткое замыкание и другие неприятности. Соприкосновение плюсовой клеммы с электроникой грозит тем, что система может просто сгореть, а устранение проблемы будет стоить владельцу автомобиля немалых финансовых затрат. Именно поэтому плюсовая клемма аккумулятора обычно помещается в кожух.

При прикуривании также необходимо не допустить, чтобы плюсовой провод соприкасался с кузовом автомобиля. Это также может спровоцировать короткое замыкание или другие проблемы с электроникой.

Расположение плюсовой и минусовой клеммы могут быть различные. Именно от расположения клемм и зависит полярность батареи. При прямой полярности слева расположен “плюс”, а справа — “минус”. При обратной полярности всё происходит наоборот: слева располагается минусовая клемма, справа — плюсовая. Некоторые аккумуляторы бывают только с одной полярностью, например, аккумулятор Тюмень Премиум. А некоторые производители выпускают одну и ту же модель с разными типами полярности — например, аккумулятор 777 Green.

Купить аккумулятор для машины или любой другой техники вы сможете в сети специализированных магазинов “Центр-АКБ”.

Адреса магазинов:

  • Нижний Новгород, ул. Березовская, д. 96А
  • Нижний Новгород, ул. Деловая, д. 7к5
  • Нижний Новгород, проспект Кирова, 12
  • Нижний Новгород, ул. Русская улица, 5
  • Нижний Новгород, ул. Цветочная, 12
  • Нижний Новгород, проспект Гагарина, 119в
  • Кстово, ул. Магистральная, 53

простейшие способы определить плюс и минус. Что такое диод и как его проверить

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    Малые размеры
    Компактное устройство световой сигнализации
    Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.

Подробно о полярностях светодиодных ламп

Несоблюдение полярности и неправильное включение может привести к поломке светодиода

Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «-»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

Способы выявления полярности

Определение полярности светодиода по внешнему виду

Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.

Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.

Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.

Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.

Использование мультиметра

Определение полярности светодиода при помощи мультиметра

Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:

  • На аппарате устанавливают режим измерения сопротивления.
  • Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
  • Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.

Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.

Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:

  • Выставляют нужный режим.
  • Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.

Если минус светодиода подключен к коллектору, лампочка даст свет.

Метод подачи напряжения

Определение полярности светодиода методом подачи напряжения

Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.

Действуют таким образом:

  • ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
  • Если полярности элемента соблюдены правильно, светодиод даст колер.
  • Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.

При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.

Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.

Определение полярности с помощью техдокументации

Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:

  • масса;
  • цоколевка светодиодов;
  • габариты;
  • электрические параметры:
  • иногда распиновка (схема подключения).

При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.

Когда требуется определение полярностей LED-лампочек

Применение светодиодов в декорировании улицы

Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:

  • уличное освещение: рекламные вывески, парковые подсветки;
  • бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
  • индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
  • детские игрушки;
  • пульты ДУ и многое другое.

При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.

На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:

  • Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
  • Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.

Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.

Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.

Светодиоды отличаются тем, что способны пропускать ток только в одном направлении. Это накладывает определенные особенности на подключение устройств при составлении разных схем. Если полярность не учитывать, то возможно неправильное размещение, что не позволит светодиоду зажечься.

На схеме полярность светодиода определяется легко. Он изображается треугольником, в вершине которого нанесен отрезок, параллельный основанию. Последнее на схеме является «плюсом» прибора, вершина треугольника с отрезком – «минусом».

В реальности расположение анода и катода у светодиода определяют несколькими методами. Это можно сделать, например, визуально. У новых приборов ножки разной длины: более длинная – это анод («плюс»), короткая – катод («минус»).

Если разность длин ножек не выражена сильно, то нужно посмотреть на кристаллик в прозрачном корпусе. Можно заметить, что он расположен на подставке, похожей на небольшую чашечку. Вывод, который идет от этой подставки является «минусом» прибора или катодом. Со стороны, откуда выходит катод, у корпуса светодиода присутствует небольшой срез.

Кроме перечисленных особенностей, по которым можно определить катод и анод в приборе, есть и особые метки на них. Правда, не на всех. Некоторые из производителей светодиодов наносят на корпус значки «-» и «+» у соответствующих выходов. Есть приборы, у которых катод помечен точкой, линией зеленого цвета.

Если же все описанное не позволило определиться с выходами светодиода, то переходят к его электрическому тестированию. Самый эффективный способ – подсоединить прибор к батарее, у которой напряжение не превышает допустимое для него.

Для реализации способа подходит самодельный тестер, в котором есть обыкновенная батарейка и резистор. Последний необходим из-за того, что если светодиод будет подсоединен обратно, то он может перегореть, а может изменить характеристики, в частности, сможет работать гораздо меньше времени.

Определиться с полярностью светодиода можно с помощью прибора-мультиметра. В нем нужно установить режим измерения сопротивления, после чего прикоснуться щупами к выходам светодиода. Касание должно быть непродолжительным.

Процедура занимает по времени секунды. Если плюс совмещен с плюсом, а минус с минусом, то на шкале прибора появится значение примерно 1,7 кОм. При обратном подключении значение сопротивления будет нулевым.

Если мультиметр включить в режим проверки диода, то прямое подключение будет сопровождаться свечением светодиода. Правда этот режим можно использовать только для приборов, которые горят красным или зеленым светом. Синий светодиод, работа которого обеспечивается напряжением, превышающим 3 В, может не загораться в обоих положениях.

Область использования светодиодов обширна. Любой элемент в своей конструкции имеет 2 выхода – катод и анод. Подключать его следует правильно, поэтому необходимо знать полярность светодиода.

Чтобы диод светился, ток должен в нем двигаться по прямой, а это невозможно, если прибор будет установлен без учета катода и анода. Светодиод относится к полупроводниковым оптическим приборам, пропускающим ток только в прямом направлении.

Как определить, где плюс и минус

Практически невозможно выявить полярность диода визуально. Если ошибиться, то схема не будет работать. Расположение полюсов у диода может определяться такими способами:

  • визуально;
  • с помощью мультиметра;
  • по технической документации;
  • путем монтажа по простой схеме.

Посмотреть эту публикацию в Instagram

Определяем зрительно

Чтобы точно отличать катод от анода, производитель диодных лампочек стал делать катодный контакт короче анодного. Также возле катода имеется маленькая буква «к». Но понять, где что, по длине проволочек возможно только в новых диодах, в старых, уже использованных, деталях проволочки могут быть обломаны. Некоторые производители возле катода ставят точку. Если пустить ток обратно, произойдет пробой и аппарат придется выбросить.

У диодов в корпусе SMD также можно определить расположение катода и анода. У них имеется скос угла, значит, расположенный выход является минусовым.

Удобно определять полярность у диодов цилиндрической формы. Это можно сделать по таким признакам. В корпусе имеются электроды с разной площадью. У катода величина электрода намного больше, чем у анода. Выход с большим электродом минусовой.

Легче всего полярность определяется у мощных диодов. Они большие и на их корпус легко можно нанести плюс и минус.

Используем мультиметр

Более надежный способ – провести тест с помощью мультиметра. В приборе выбирается режим работы «омметр». Теперь мультиметр может измерять уровень сопротивления. Прибор имеет 2 ножки, их необходимо поднести к плюсу и минусу. Черный соприкасается с минусом, красный – с плюсом.

Если контакты диода определены правильно, то прибор покажет 1,7 кОм. При ошибке прибор выдаст показатель намного выше. Если сопротивление будет меньше, чем 1,7, то диод испорчен и его необходимо заменить. В некоторых таксировщиках есть специальный режим, позволяющий проверять светодиоды. Данный способ проверки срабатывает только с красными и зелеными диодами.

Синие и белые отреагируют, только если подать на них напряжение в 3 вольта. Тестировать эти лампочки можно только с помощью специальных мультиметров типа DT830 .

Интересное видео по теме:

Путем подачи питания

В тех случаях, когда у вас отсутствует мультиметр, плюс и минус у светодиода выявляют простым, но не менее действенным способом. Для теста нужны батарейка и резистор. Батарейку можно заменить аккумулятором. Резистор в данном случае будет защищать элемент от пробоя. Некоторые умельцы используют специальную панельку, ее предназначение состоит в том, чтобы проверять исправность транзисторов.

В ситуации, когда ни на глаз, ни мультиметром нельзя определить анод и катод диода, прибегают к еще одному методу. Диод подключают кратковременно в электрическую схему. Затем все просто. Если лампочка загорелась, то выходы определены правильно, если нет – все останется без изменений.

По технической документации

На многих схемах рисуют как кружок с треугольником внутри, причем катод отображается как минус, анод обозначают плюсом. В схемах обязательно обозначаются все выводы для того, чтобы тот, кто будет собирать данную схему, знал, как диод подключать к цепи.

Определение полярности светодиода по техническим документам всегда просто, но не всегда на руках они есть. Особенно когда данные изделия приобретаются пользователями через магазины. Но есть еще один способ, для этого необходимо знать номер светодиода. В интернете много информации не только по устройству диодов. Там имеются подробные схемы и чертежи с обозначением всех параметров. В этих схемах будет обязательно указано расположение диодов.

Что еще важно знать

Некоторые диодные лампочки подвержены влиянию статического электричества. Все они нуждаются в защите. Тестирование изделия должно происходить быстро, при касании мультиметром выходов в течение продолжительного времени произойдет пробой.

Если все правильно делать и соблюдать правила обращения со светодиодом, можно продлить время службы детали.

В заключение

Каждый из методов тестирования светодиодов имеет свои достоинства и недостатки. Тот, кто решил заниматься радиодеталями, должен уметь определять полярность всеми способами. На практике выбор того или иного способа тестирования зависит от условий и возможностей радиолюбителя. Главное – быть осторожным.

Светодиод — это разновидность диода, поэтому при подключении он требует не только ограничения тока, но и соблюдения полярности. Но в явном виде она на корпусе детали нигде не указана, и её придётся определять по косвенным признакам. Автор Instructables под ником Nikus знает целых пять таких признаков. Теперь их узнаете и вы.

Как и электроды обычного диода, электроды светодиода называются анодом и катодом. Первый из них соответствует плюсу, второй — минусу. При прямой полярности светодиод действует как стабистор: открывается при небольшом напряжении, зависящем от цвета (чем меньше длина волны, тем оно больше). Только в отличие от стабистора, он при этом светится. При обратной же полярности он ведёт себя как стабилитрон, открываясь при значительно большем напряжении. Но этот режим для светодиода — нештатный: производитель не гарантирует, что изделие не выйдет из строя, даже если ток ограничить, да и света вы никакого не получите.

Если светодиод вами ниоткуда не выпаян, а куплен новым, один вывод у него длиннее другого. Думаете, это результат не очень аккуратного изготовления? Nikus другого мнения. Тот вывод, который длиннее, соответствует плюсу, т.е., аноду. Вот и весь секрет!

Но самодельщики не очень часто используют новые светодиоды. Что ж, есть и такой признак, который при впайке, укорачивании выводов и последующей выпайке детали не исчезает. Непосвящённым и он кажется небольшим производственным дефектом. Нет, он тоже неспроста: небольшой плоский участок на цилиндническом корпусе, как будто надфилем случайно сточили. Оказывается, не случайно. Эта метка расположена рядом с отрицательным выводом — катодом.

Также Nikus советует заглянуть внутрь светодиода. Сломать? Вовсе нет. Матовые светодиоды практически исчезли с рынка, остались прозрачные, позволяющие разглядеть сбоку внутреннюю структуру. С выводами соединены две плоские пластины, и они тоже разных размеров. Большая держит чашечку с кристаллом, маленькая — волосок, соединённый с кристаллом сверху. Чашечка — минус, волосок — плюс.

Редкий самодельщик обходится без приборов-помощников, вот и Nikus купил себе недорогой мультиметр.

Среди прочих режимов, у него есть режим проверки диодов.

При подключении обычного диода в правильной полярности прибор показывает в этом режиме прямое падение напряжения. У светодиода это падение всегда больше одного вольта, поэтому даже при правильном подключении показания дисплея не изменятся. Зато светодиод слегка засветится. Если щупы подключены к мультиметру правильно, то есть, чёрный — в гнездо COM, а красный — в гнездо VΩmA, красному щупу будет соответствовать плюс.

Со стрелочными тестерами сложнее. Те из них, которые питаются от одной 1,5-вольтовой батарейки, для проверки светодиодов не годятся. Те же, у которых напряжение питания составляет от 3 до 12 В, подходят, но у них в режиме омметра полярность напряжения на щупах часто обратная. Проверить её можно другим прибором, работающим в режиме вольтметра. Только и на том и на другом подключите щупы правильно!

Nikus пишет, что носит с собой мультиметр повсюду, кроме бассейна. Вы же, скорее всего, так не делаете, а необходимость узнать полярность светодиода может возникнуть внезапно. На помощь придёт распространённая трёхвольтовая батарейка типоразмера 2016, 2025 или 2032. У новой батарейки напряжение без нагрузки может достигать 3,7 В, поэтому лучше взять слегка разряженную, примерно для 2,8 В, так лучше для светодиода.

В чем разница между катодом и анодом?

Если вам исполнилось сегодня лет, когда вы понимаете, в чем разница между катодом и анодом, то вы не одиноки. Большинство из нас редко имеют дело с этими терминами, если только мы не ремонтируем водонагреватели или не устанавливаем собственные автомобильные или лодочные аккумуляторы. Так что, если вы ищете статью, объясняющую различия на простом английском языке, не ищите дальше. Здесь мы обсудим, что такое анод, что такое катод, как все они работают и для чего используются.

Прежде чем мы поймем разницу между катодом и анодом, нам нужно понять, что такое электрод. Согласно общему определению, электрод — это вещество, помогающее проводить электричество, в котором ток входит или выходит из неметаллической среды, такой как электролитическая ячейка.

Говоря простым языком, электрод — это проводник, который помогает установить электрический контакт с неметаллическими частями цепи. Электрод состоит из двух основных точек, называемых катодом и анодом, которые в основном описывают направление протекания тока.

Аноды и катоды в батареях: обзор

Пытаться понять, как работает батарея, все равно, что учить другой язык, особенно если вы плохо помните школьную химию. Ниже мы проанализируем компоненты, необходимые для зарядки и разрядки аккумулятора (в кратких и понятных формах).

Анод

Анод представляет собой отрицательный электрод и является одним из важных компонентов батареи. Обычно он сделан из металла и может окисляться и посылать электроны на катод (положительный электрод).Это электрохимическая реакция, в результате которой образуются электроны (то есть электричество).

Как работает анод?

Анод представляет собой оксид металла, такой как цинк или литий, что означает, что он теряет электроны. Он существует в растворителе электролита и медленно разрушается по мере движения электронов по проводнику к катоду.

Проводник (будь то металлическая проволока или металлическая трубка) — это то, как мы получаем электричество, вырабатываемое анодом, и как батарея питает наше оборудование.Как только анод полностью проржавеет, батарея умрет (или потеряет заряд).

Подходящие материалы для анода

Анод может быть изготовлен из нескольких различных материалов. К ним относятся цинк, литий, графит или платина. Хороший анод должен быть эффективным восстановителем, с хорошей проводимостью, стабильностью и высоким кулоновским выходом (электрическим выходом).

Катод

Как и анод, катод является одним из электродов в батарее. Однако катод называется положительным электродом, потому что он не теряет электроны, а приобретает их.Следовательно, анод окисляется (теряет электроны), а катод восстанавливается (приобретает электроны).

Как работает катод?

По сути, катод получает электроны от анода. И анод, и катод погружены в раствор электролита, и ток течет от отрицательного электрода батареи к положительному через проводник. Короче говоря, так батареи генерируют электричество.

Подходящие материалы для катода

Катод может быть любым материалом при условии, что он является эффективным окислителем, стабильным при контакте с электролитом.Оксиды металлов являются отличными катодными материалами, поскольку они также обладают полезными рабочими напряжениями. К ним относятся оксид меди, оксид лития и узорчатые оксиды.

Как отличить анод от катода?

На самом деле это очень просто. Большинство жилых автофургонов, автомобилей и даже бытовых аккумуляторов имеют знаки «плюс» (+) и «минус» (-) на каждом конце. Поскольку анод является отрицательным электродом (и, следовательно, теряет электроны), отрицательный знак относится к аноду. С другой стороны, знак плюс относится к катоду, поскольку он является положительным электродом (и, следовательно, получает электроны).

Почему важно понимать разницу между катодом и анодом?

Важно понимать разницу между катодом и анодом, потому что вы можете точно понять, как работает батарея, независимо от того, находитесь ли вы на лодке, водите транспортное средство для отдыха или просто заменяете батарею в пульте дистанционного управления. Независимо от того, устанавливаете ли вы солнечное оборудование самостоятельно или заменяете батарею, вы будете уверены в своей способности правильно установить источник питания оборудования.

Это также полезно, когда вы быстро заводите машину. Вы когда-нибудь пытались выяснить, где вам нужно подключить зажим кабеля усилителя в пустом месте? Теперь вы знаете, что один находится на отрицательной стороне (анод), а другой на положительной стороне (катод).

Кроме того, вы можете разговаривать с друзьями, что звучит умно!

Другие места, в которых анод и катод играют роль

Анод и катод также играют роль в других местах за пределами батареи. Например, на кораблях есть «жертвенные аноды» в качестве катодных защитных средств, а катод — это основной материал, необходимый для предотвращения коррозии.

Аноды также можно найти в бытовых сетях. Водонагреватель имеет расходуемый анодный стержень, который может продлить срок службы водонагревателя. По сути, анодный стержень будет притягивать минералы в воде и подвергаться коррозии, а не сам резервуар для воды. Отсюда и название «жертвоприношение».

Аноды также могут помочь защитить емкости для жидкости и трубы от коррозии — всегда защищайте катод (важный материал, который производитель хочет защитить).

Заключение

Большинство из нас не знает, что такое анод или катод, просто потому, что мы не имеем дело с этими терминами в повседневной жизни.Однако, если у вас есть автомобиль, транспортное средство для отдыха или лодка, любите ремонтировать или просто хотите знать, как все работает, полезно знать разницу между катодом и анодом.

В конце концов, они существуют в вашей батарее, водонагревателе и многих других местах вашей повседневной жизни!

Что такое катодный ток? (с изображением)

Существует два типа электронных или электрических устройств: те, которые подают питание, и те, которые потребляют энергию. В устройстве, подающем питание, катод — это положительный вывод, а анод — отрицательный.Для устройств, потребляющих энергию, катод является отрицательным выводом, а анод — положительным выводом. Положительный катодный ток представляет собой ток, который течет от катода, а отрицательный катодный ток течет к катоду.

Для устройств, потребляющих энергию, катод является отрицательным выводом, а анод — положительным выводом.

Электроны имеют отрицательный заряд и притягиваются к положительным зарядам. Это поток электронов через проводящий материал, который составляет электрический ток, а электроны всегда текут от отрицательного к положительному. Следовательно, электроны имеют тенденцию течь из катода, который является отрицательным выводом, и в анод, который является положительным выводом. Это несколько усложняет понимание катодного тока некоторых устройств, таких как диоды и батареи.

Батареи маркируются положительными и отрицательными клеммами, часто с использованием знака плюс (+) или знак минус (-).Эти ярлыки могут ввести в заблуждение. Ток, протекающий от батареи, представляет собой положительный ток, т. е. прямой ток, который выходит из положительной клеммы батареи, течет по цепи и возвращается к отрицательной клемме батареи. Положительная клемма аккумулятора на самом деле имеет отрицательный заряд и является катодом устройства. Катодный ток течет от положительной клеммы аккумулятора.

Электронные устройства, называемые диодами, имеют поляризованные клеммы.Катод диода состоит из отрицательного материала, что означает, что в нем больше электронов, чем протонов. Он сопротивляется потоку электронов через него, потому что материал уже имеет избыток электронов. Анод находится напротив, и ему не хватает электронов, что облегчает поток электронов в него. Когда количество электронов в положительном материале анода достигает определенного уровня, они преодолевают сопротивление отрицательного материала, и прямой или положительный катодный ток вытекает из катодного вывода диода.

Диод начнет проводить в обратном направлении, если напряжение станет достаточно высоким. На стандартном диоде этот обратный ток быстро приводит к необратимому повреждению диода. Диоды специального назначения, такие как диоды Зенера и туннельные диоды, предназначены для проведения после того, как обратное напряжение достигает определенного порога.Обратный или отрицательный катодный ток течет в диод через катод и из анода.

Вакуумные лампы несколько отличаются принципом работы. Электроны текут к катоду устройства и собираются на электроде в вакууме трубки.По мере роста отрицательного заряда на электроде электроны покидают электрод и перетекают к более положительно заряженному аноду. Это вызывает положительный ток, протекающий от анодного вывода трубки. В этом случае катодный ток является отрицательным током и течет в прибор, а не из него.

Вопрос Видео: Ионное уравнение электролиза расплавленной соли бария на отрицательном электроде

Стенограмма видео

металлический барий можно получить путем электролиза его расплавленной соли.Какое из следующих уравнений показывает реакцию, происходящую на отрицательном электроде? (A) Барий плюс два электрона производит барий два плюс. (B) Барий производит два бария плюс ион плюс два электрона. (C) Барий два плюс ион плюс два электроны производят барий. (D) Барий два плюс ион плюс два электронов образует два атома бария. Или (E) ион бария два плюс дает барий и два электрона.

Этот вопрос касается электролиз расплавленной соли. Этот процесс происходит, когда мы опускаем два электроды, подключенные к батарее, в жидкую форму соли. Жидкая соль состоит из свободно плавающие положительные и отрицательные ионы. В этом вопросе положительные ионы или катионы будут ионами бария. Идентичность отрицательных ионов не имеет значения для ответа на вопрос, так что давайте просто используем хлорид в качестве пример.Когда цепь включена, ионы будут притягиваться к электродам противоположного заряда. Когда ионы достигают каждого электрода, произойдет реакция.

Этот вопрос спрашивает, что происходит с ионами бария на поверхности электрода, показанного здесь на слева? Каждый выбор по существу одинаков три части информации переставлены. Чтобы ответить на этот вопрос, нам нужно спросить, когда присутствуют ионы бария? Когда присутствуют атомы бария? Электроны поглощаются или освобождается в ходе этого процесса?

Давайте посмотрим на формулировку вопрос для некоторых подсказок о том, что происходит.Как мы только что объяснили, расплавленный соль включает ионы. И электролиз расплавленного соль начинается с ионов. Точно так же, если мы пытаемся получить металлический барий, это должно означать, что атомарная форма бария является продуктом Реакция. Это означает, что мы можем исключить выбор (A) и (B) из рассмотрения. Мы хотим, чтобы ион был слева часть уравнения в качестве реагента, а атом должен быть в правой части уравнения. уравнение как произведение.Мы знаем, что металлический барий образует как продукт реакции. Это будет сделано путем нанесения покрытия на электрод.

Наш следующий вопрос: что происходит с электронами, чтобы это произошло? При электролизе электроны текут от анода к катоду. Они берутся из ионов на анода и отдается ионам на катоде. В нашем примере электроны на катоде отдаются два плюсовых иона бария.Два плюс заряд бария ион и объединенный два отрицательных заряда двух электронов уравновешиваются. В результате атомы бария форма. Мы можем упростить этот процесс, говоря, что ион бария получил электроны, чтобы сформировать атом. Вариант (E), где электроны являются продукт реакции, это обратная ситуация, когда электроны высвобождаются от иона. Мы хотим, чтобы электроны объединились с ионом, чтобы сформировать атом, как они делают в выборе (C) и (D).

Последнее, что нам нужно учитывать будет ли комбинация иона бария и двух электронов производить один атом бария или два атома бария. Проще говоря, правильный ответ выбор (С). Один ион соединяется с электронами, образуют один атом. Эта реакция описывает то, что происходит на отрицательном электроде, когда мы подвергаем электролизу расплавленную соль, содержащую барий. Ион бария получит два электроны с образованием атома бария.Когда атом или ион получает электронов, мы называем это восстановлением.

Электролиз — один из способов выделения чистые металлы. На самом деле, барий был впервые выделен британским химиком сэром Хамфри Дэви в 1808 году, когда он электролизовал расплавленный барий. окись. Итак, когда мы получаем металлический барий путем электролиза его расплавленной соли уравнение, показывающее реакцию происходящее на отрицательном электроде — это выбор (C), ион бария плюс два электрона дает атом бария.

гальванических элементов и уравнение Нернста

Учебное пособие по электрохимии: гальванические элементы и уравнение Нернста >> Этап 2. Электрохимический элемент

Шаг 2: Электрохимическая ячейка

В ролике на предыдущей странице при помещении полоски цинка в раствор с ионами Cu 2+ происходит следующая спонтанная окислительно-восстановительная реакция:

Zn (т) + Cu 2+ (водн.) —> Zn 2+ (водн.) + Cu (т) 1 окислительно-восстановительная реакция 1

В этой окислительно-восстановительной реакции электроны переходят от Zn к Cu 2+ .Ранее мы написали полуреакции, иллюстрирующие природу этого потока электронов:

Zn (S) -> ZN 2+ (AQ) + 2 E Окислительный окисление
CU 2+
. —> Cu (s) Сокращение

Электрохимическая ячейка заставляет электроны течь по проводу, когда они идут от Zn к ионам Cu 2+ .

Электрохимическая ячейка состоит из двух «полуячеек», соответствующих каждой из указанных выше реакций полуячейки. Для полуклетки, соответствующей реакции окисления полоску металлического Zn помещают в раствор ионов Zn 2+ . Для полуэлемента восстановления полоска металлической меди помещается в раствор ионов Cu 2+ . Затем мы соединяем эти клетки вместе (используя провод и солевой мостик), чтобы создать электрическую цепь. Следующее видео объясняет эту установку и детализирует процесс на молекулярном уровне:

После просмотра видео заполните приведенную ниже схему, чтобы определить основные компоненты гальванического элемента:

Имейте в виду, что в электрохимической ячейке в растворе перемещаются только ионы.Электроны перемещаются между электродами по проводу и никогда не попадают в раствор. Поток электричества в цепи поддерживается электронами, движущимися по проводам, и ионами, движущимися по раствору.


В нашей лаборатории мы будем использовать ячейку Карроу, которая обеспечивает более удобное средство для проведения экспериментов с электрохимическими ячейками. Ячейка Карроу имеет количество лунок, служащих вышеуказанными стаканами. Каждый из внешних колодцев содержит полуклетку. Соляной мост, соединяющий два из этих внешних колодцев, проходит через центр хорошо.Это делается путем заполнения центральной лунки раствором соли и использования бумаги для соединения каждой из внешних лунок с центральной лункой. Бумага смачивается раствором соли, чтобы ионы могли проходить через бумагу. (Пожалуйста, смотрите изображение справа).

Изображения справа показывают, как выглядит клетка Карру в лаборатории, и как мы изображаем ее схематически. На схеме показана установка ячейки для спонтанной реакции между металлическим Zn и ионами Pb 2+ :

90 107 Zn (ы) + Pb 2+ (водно) -> Zn 2+ (водно) + Pb (ы) Полного окислительно-восстановительная реакция

Мы можем понять направление потока электронов, разбив его на полуреакции:

Окисления
Zn (ы) -> Zn 2+ (водно) +-е
Pb 2+ (водно) +-е —> Pb (с) Редукция

Электроны покидают полуэлемент Zn и направляются к полуэлементу Pb.Удобная сокращенная запись для этого:

.

      Zn (s) | Zn 2+ (водн.) || Pb 2+ (водн.) | Пб (с)

В этом обозначении анод, или полуэлемент окисления, находится слева, а катод, или полуэлемент восстановления, находится справа. Двойная вертикальная линия || представляет собой солевой мостик, а одинарная вертикальная линия представляет собой фазовую границу между твердым металлом и раствором его соли.

Вольтметр используется для измерения потенциала или напряжения гальванического элемента.Вольтметры имеют положительную и отрицательную клемму, и по соглашению красный провод подключается к положительной клемме, а черный провод подключается к отрицательной клемме. Знак показания вольтметра говорит нам о спонтанном направлении потока электронов. В ячейке: Zn (s) | Zn 2+ (водн.) || Pb 2+ (водн.) | Pb (s) , спонтанная окислительно-восстановительная реакция соответствует потоку электронов от Zn к полуэлементу Pb. Если черный провод соединить с Zn-электродом, а красный провод с Pb-электродом, то вольтметр покажет положительное значение.Если мы изменим это, подключив черный провод к электроду Pb, а красный провод к электроду Zn, то вольтметр покажет отрицательное значение. Помните: если вольтметр показывает положительное значение, то самопроизвольное направление потока электронов — от черного провода к красному проводу. Обычно используемый язык в электрохимии — это анод и катод. Электроны текут от анода (поставщика электронов или источника электронов) к катоду (приемнику или стоку электронов). Если показания вольтметра положительные, черный провод находится на аноде, а красный — на катоде.

Electronics Components: Диоды — макеты

Диод представляет собой электронный компонент, изготовленный из комбинации полупроводниковых материалов P-типа и N-типа, известный как p-n переход, с выводами, прикрепленными к двум концам. Эти выводы позволяют легко включать диод в электронные схемы.

Вывод, присоединенный к полупроводнику n-типа, называется катодом . Таким образом, катод является отрицательной стороной диода. Положительная сторона диода, то есть вывод, присоединенный к полупроводнику р-типа, называется анодом .

Когда источник напряжения подключается к диоду таким образом, что положительная сторона источника напряжения находится на аноде, а отрицательная сторона на катоде, диод становится проводником и пропускает ток. Напряжение, подаваемое на диод в этом направлении, называется прямым смещением .

Но если вы измените направление напряжения, приложив положительную сторону к катоду, а отрицательную сторону к аноду, ток не будет течь. Фактически диод становится изолятором.Напряжение, подаваемое на диод в этом направлении, называется обратным смещением .

Прямое смещение позволяет току течь через диод. Обратное смещение не позволяет току течь. (Во всяком случае, до определенного предела. Как вы обнаружите через несколько мгновений, существуют ограничения на то, сколько напряжения обратного смещения может удерживать диод.)

Это условное обозначение диода:

Анод слева, катод справа. Вот два полезных приема для запоминания того, какая сторона символа является анодом, а какая катодом:

  • Думайте об анодной стороне символа как о стрелке, указывающей направление обычного тока — от положительного к отрицательному.Таким образом, диод позволяет току течь в направлении стрелки.

  • Думайте о вертикальной линии на стороне катода как о гигантском знаке минус, указывающем, какая сторона диода является отрицательной для прямого смещения.

Прямое и обратное смещение можно проиллюстрировать двумя очень простыми схемами, которые соединяют лампу с батареей с диодами. В схеме слева диод смещен в прямом направлении, поэтому по цепи протекает ток и лампа загорается.В схеме справа диод смещен в обратном направлении, поэтому ток не течет, и лампа остается темной.

Обратите внимание, что в типичном диоде требуется определенное прямое напряжение, прежде чем потечет какой-либо ток. Эта сумма обычно очень мала. В большинстве диодов это напряжение составляет около половины вольта. До этого напряжения ток не течет. Однако, как только прямое напряжение достигнуто, ток легко протекает через диод.

Этот минимальный порог напряжения в прямом направлении называется прямым падением напряжения на диоде .Это потому, что схема теряет это напряжение на диоде. Например, если бы вы поместили вольтметр между выводами диода в цепи с прямым смещением, вы бы прочитали прямое падение напряжения на диоде.

Тогда, если вы поместите вольтметр на клеммы лампы, напряжение будет представлять собой разницу между напряжением батареи (9 В) и прямым падением напряжения на диоде.

Например, если прямое падение напряжения на диоде составляет 0,7 В, а напряжение батареи равно 9 В, напряжение на лампе будет равно 8.3 В.

Диоды

также имеют максимальное обратное напряжение, которое они могут выдержать, прежде чем они сломаются и позволят току течь в обратном направлении через диод. Это обратное напряжение (иногда называемое PIV , пиковое обратное напряжение или PRV для пикового обратного напряжения ) является важной характеристикой для диодов, которые вы используете в своих схемах, поскольку вам необходимо убедиться, что ваши диоды не будут работать. не подвергаться воздействию большего, чем их рейтинг PIV.

Помимо прямого падения напряжения и пикового обратного напряжения, диоды также рассчитаны на максимальный номинальный ток.Превысьте этот ток, и диод будет поврежден без возможности восстановления.

Анализ электролиза расплавленных соединений

Анализ электролиза расплавленных соединений
  1. Электролиз представляет собой процесс, при котором соединение разлагается на составные элементы при прохождении электрического тока через электролит.
  2. Майкл Фарадей был пионером в области электролиза. Он ввел термин «электролиз» в 1834 году. Суффикс «лизис» — это греческое слово, означающее «расщепление».
  3. Электролитическая ячейка состоит из батареи, электролита, содержащего катионы (положительные ионы) и анионы (отрицательные ионы), и двух электродов.
  4. Классификация электродов и их определения приведены в табл. Электрод Активный электрод Электрод, который принимает участие в химических реакциях во время электролиза.
    Примеры: металлические электроды, такие как медь, серебро и ртуть. Инертный электрод Электрод, который не принимает участия в химических реакциях при электролизе.
    Примеры: угольные (графитовые) и платиновые электроды. Анод Электрод, который подключается к положительной клемме источника электричества в электролизере . Катод Электрод, который подключается к отрицательной клемме источника электричества в электролизере.

Люди также спрашивают

Процесс электролиза состоит из двух стадий.
(a) Стадия 1: Движение ионов к электродам

  • Катионы (положительные ионы) движутся к катоду, отрицательно заряженному электроду.
  • Анионы (отрицательные ионы) движутся к аноду, положительно заряженному электроду.

(b) Стадия 2: Разрядка ионов

  • Катионы разряжаются на катоде, принимая электроны от катода, который имеет избыток электронов.
  • Анионы разряжаются на аноде, отдавая электроны аноду, которому не хватает электронов.
  • Электроны перетекают от анода к катоду через соединительный провод во внешней цепи.
  • Когда ионы разряжаются на электродах, они образуют атомы или молекулы.

На рисунке показан механизм электролиза расплавленного бромида свинца(II).

Электролиз расплавленного оксида магния:

  • Расплавленный оксид магния MgO содержит ионы магния Mg 2+ и оксид-ионы O 2 , которые свободно перемещаются.
  • Ионы Mg 2+ движутся к катоду, а ионы O 2- – к аноду.
  • На катоде: Каждый ион Mg 2+ разряжается, принимая два электрона, образуя атом магния Mg.
    Полууравнение: Mg 2+ (l) + 2e  → Mg(s)
    Таким образом, на катоде образуется металлический магний.
  • На аноде: Ионы O 2- разряжаются, отдавая электроны, с образованием нейтральных молекул кислорода, O 2 .
    Полууравнение: 2O 2- (ж) → O 2 (ж) + 4e
    Таким образом, на аноде выделяется газообразный кислород.
  • Общее уравнение:
    2mg 2+ (L) + 2o 2- (L) → 2mg (S) + O 2 (G)

Электролиз лидерного брендового бренда 9033 3333333999333222222332 Электролиз молутенового бренда. Цель: Исследовать электролиз расплавленного бромида свинца(II).
Материал: Твердый бромид свинца(II).
Прибор: Батарейки, переключатель, угольные электроды с держателями, соединительные провода с зажимами типа «крокодил», амперметр, тигель, подставка для штатива, глиняный треугольник, горелка Бунзена, 250 см 3 химический стакан и щипцы.
Процедура:

  1. Тигель наполняют твердым бромидом свинца(II), PbBr 2 до половины.
  2. Твердый бромид свинца(II) нагревают до полного расплавления.
  3. Устройство установлено, как показано на рисунке.
  4. Переключатель включен, чтобы позволить электричеству проходить через расплавленный бромид свинца (II) в течение примерно 20 минут.
  5. После этого переключатель выключается и оба электрода вынимаются из электролита. Расплавленный бромид свинца (II) осторожно переливают в химический стакан с помощью щипцов.
  6. Все наблюдения записываются.

Наблюдения:

Электрод Наблюдение
ANODE
ANODE
ANODE
ANDODE
.
Катод На дне тигля находится блестящая серая глобула.

Стрелка амперметра отклонена.

Обсуждение:

  1. Расплавленный бромид свинца(II) содержит свободно движущиеся ионы свинца(II) Pb 2+ и ионы брома Br.
  2. Ионы Pb 2+ движутся к катоду, а ионы Br – к аноду.
  3. На катоде: Каждый ион Pb 2+ разряжается, принимая два электрона, образуя атом свинца, Pb.
    Полууравнение: Pb 2+ (l) + 2e  → Pb(s)
    Таким образом, на катоде образуется металлический свинец.
  4. На аноде: Ионы Br разряжаются, отдавая электроны, с образованием нейтральных молекул брома, Br 2 .
    Полууравнение: 2Br (ж) → Br 2 (ж) + 2e
    Таким образом, на аноде выделяется газообразный бром.
    Общее уравнение: Pb 2+ (ж) + 2Br (ж) → Pb(s) + Br 2 (г)
    Это показывает, что расплавленный бромид свинца(II) можно разложить на свинец и газообразный бром электролизом.

Добавить комментарий

Ваш адрес email не будет опубликован.