Ветрогенератор самодельный: Ветрогенератор своими руками

Содержание

Самодельные ветрогенераторы из авто-генераторов

>

Ветряк из авто-генератора с двойным статором

Ветрогенератор от "Мото26", сделан из автомобильного генератора с двойным статором. Ветряк сделан для работы на акб 24 вольт, мощность в итоге 300ватт при ветре 9м/с. Подробности и фото в статье. >

Ветрогенератор своими руками

Практически полностью самодельный ветрогенератор, генератор которого изначально должен был быть из автомобильного генератора, но после того как корпус был сломан от генератора остался только статор, а корпус пришлось делать новый. >

Ветрогенератор из авто-генератора от Бычка

Генератор этого ветряка сделан из автомобильного генератора от гзузовика Бычек. Статор перемотан проводом 0,6 мм. Ротор полностью новый, был выточен у токоря по нужным размерам под купленные магниты 30*10*5мм. >

Простая передлка автомобильного генератора

Самая простая переделка автомобильного генератора на постоянные магниты. Генератор для этого ветряка делался из автогенератора, статор которого не подвергался изменениям, а вот ротор был оснащен неодимовыми магнитами. >

Генератор для ветряка из авто-генератора

Как просто и без особых усилий переделать автогенератор для самодельного ветрогенератора. Для переделки не-надо ни перематывать статор, не точить роторе под магниты. Вся переделка сводится к переключению фаз генератора, и оснащению ротора маленькими магнитиками для самовозбуждения ротора. >

Однолопастной винт для ветрогенератора

В продолжении усовершенствования ветрогенератора на этот раз было решено попробовать изготовить однолопастной винт и посмотреть какие приимущества он дает и какие недостатки присущи однолопастным винтам. Лопасть с противовесом имеет не жесткое крепление и может откланяться от оси вращения до 15 градусов. >

Ветрогенератор из тракторного генератора Г700

В этом ветрогенераторе в качестве генератора использован тракторный генератор с электровозбуждением. Генератор подвергся существенным изменениям, был перемотан статор более тонким проводом, а так-же домотала катушка ротора. Для этого ветряка винт был сделан из дюралюминия. Винт двухлопастной размахом 1,3м. >

Самодельный ветрогенератор для яхты

Самодельный ветрогенератор, генератор которого сделан из генератора мотоцикла ИЖ юпитер, Этот ветрогенератор специально создавался для эксплуатации на небольшой яхте, где должен был обеспечивать питанием навигационные приборы и мелкую электронику. >

Новый-второй ветрогенератор для яхты

В новом ветрогенераторе использовался статор от автомобильного генератора . Мощность нового ветряка теперь больше, диаметр винта также увеличился. Теперь ветрогенератор имеет новую защиту от сильного ветра , теперь винт не уходит в сторону, а опрокидывается, и хвост теперь не складывается, в общем подробности в статье. >

Ветряки цветы из велосипедных динамок

Иньтересные и красивые ветряки, генераторы которых это велосипедные динамо втулки. Сделаны они в виде всяких цветов, подсолнухов, ромашек, и окрашены в соответствующие цвета, красиво смотрятся как элемент дизайна.

Как сделать ветрогенератор своими руками для частного дома? | Альтернатива24

Ветрогенератор своими руками

В сфере альтернативной энергетики особое место занимает тема изготовления ветрогенератора для дома своими руками. Этому есть несколько причин. Во-первых, самодельный ветряк обходится заметно дешевле, чем солнечная электростанция такой же мощности. Во-вторых, в отличие от солнечной, энергия ветра может работать на вас и ночью, и в пасмурную погоду, и в снегопад. В-третьих, для установки ветряка не нужно много места.

Возможно ли сделать ветряк своими руками?

На этот вопрос получить наглядный ответ очень просто. Достаточно всего нескольких минут времени, чтобы своими глазами увидеть в Сети сотни, или даже тысячи, вполне работоспособных ветрогенераторов, сконструированных умельцами буквально из подручных материалов. Большинство из них успешно преобразовывают энергию ветра в электрическую, которая используется для самых разных бытовых нужд.

Эффективность, мощность, надежность и сложность реализованных конструкций – это уже другой вопрос. Далеко не все изготовленные своими руками ветрогенераторы вырабатывают достаточно электричества, чтобы покрыть все бытовые нужды. Некоторые из них слишком маломощные. Другие – не очень надежные. Попадаются и слишком мудреные, которые своими руками с наскоку сможет сделать далеко не каждый.

Сделать самому или купить?

В качестве альтернативы, дабы не делать ветрогенератор для частного дома своими руками, его можно купить в готовом к эксплуатации виде. Однако здесь есть одно препятствие, которое многих и останавливает на пути к получению «бесплатной» энергии. Это, конечно же, цена готовых предложений.

Так, в среднем, добротного качества ветрогенератор с потенциальной мощностью около 500 Вт стоит порядка 1000 долларов. И в комплекте будет только ветряк с флюгером и генератором на борту. Остальные же компоненты полноценной электростанции (полный перечень описан ниже), функционирующей за счет энергии ветра, производитель за такие деньги вам не продаст.

Если изготовить домашний ветрогенератор своими руками, то обойдется он не на порядок, а в разы дешевле. Да, он будет не такой красивый, как заводской. Да, возможно, не удастся достичь такого же КПД. Но главной цели – преобразование энергии ветра в электроэнергию для бытовых нужд – достичь с его помощью можно легко.

Более того, самодельный ветрогенератор имеет в разы больше шансов сполна окупиться уже в ближайшее время эксплуатации. Тогда как покупной заводской вариант, как правило, быстрее изнашивается, чем успевает вернуть в кошелек потраченные доллары за счет «халявного» электричества.

Устройство простейшей домашней ветряной электростанции

Перед тем, как сделать ветрогенератор своими руками, следует понимать, что для полноценного использования энергии ветра в своих целях одного этого устройства недостаточно. Ключевой в данном вопросе является проблема, связанная с непостоянством и нестабильностью ветра. Сейчас он дует, что называется, со всей силы, через час – притих, еще позже – установился абсолютный штиль. По этой причине генератор будет вырабатывать, соответственно, чрезмерно высокое напряжение, потом заниженное, а при затишье – вообще ничего генерировать не будет.

А теперь представьте, как будет работать, например, телевизор, если его напрямую подключить к такому ветряку. Он либо сгорит от перенапряжения, либо не будет работать из-за его недостатка. Именно поэтому, для работы полноценной ветряной электростанции, пусть даже и в упрощенных домашних условиях, понадобятся четыре базовых компонента:

1. Ветряк – состоит из лопастей, флюгера и генератора, вырабатывает электроэнергию с постоянно меняющимися параметрами.

2. Аккумулятор – нужен для накопления выработанного электричества, когда ветряк генерирует его в избытке, и для питания потребителей.

3. Контроллер – «выравнивает» поступающее с ветряка напряжение, управляет процессами заряда и разряда АКБ.

4. Инвертор – преобразует 12 вольт аккумулятора в необходимые для бытовых приборов 220 вольт.

В таком исполнении система будет работать по следующему принципу. Когда есть ветер, ветряк преобразует его энергию в электрическую, она стабилизируется контроллером и накапливается в АКБ. Когда включаются потребители (освещение, телевизор, холодильник) аккумулятор отдает накопленную энергию, которая за счет инвертора приобретает нужные параметры, и поступает на их питание.

В некоторых системах последний компонент не используется. Без инвертора вполне реально обойтись, если подключать к аккумулятору 12-вольтовые приборы. Сегодня есть практически все бытовые приборы – от освещения до холодильников – работающие от 12 вольт.

Конфигурация ветряка

Хотя бы вкратце стоит затронуть тему конфигурации самодельного ветряка. Здесь есть два основных конкурента:

1. Горизонтальный ветряк.

2. Вертикальный ветряк.

Горизонтальный ветряк – состоит из расположенной горизонтально оси, на которой устанавливаются лопасти, генератор и флюгер. Такая конфигурация имеет ряд преимуществ. Особенно это касается эффективности и мощности. По этим параметрам горизонтальный ветряк значительно превосходит вертикальные.

Вертикальный ветряк – состоит из вертикальной оси, на которой смонтирована турбина и генератор. По сравнению с классикой вертикальный ветрогенератор своими руками изготовить на порядок проще. Во-первых, ему не нужен флюгер, так как турбина будет вращаться независимо от направления ветра. Во-вторых, не нужен токосъемник, поскольку генератор всегда находится в одном и том же положении. Лопастные же ветряки постоянно вращаются вокруг своей оси из-за переменчивого направления ветра, что делает невозможным передачу выработанной электроэнергии через обычные провода.

Виды генераторов

Генератор – это основной узел любого ветряка. Он, собственно, и преобразует энергию ветра в электрическую. Видов этого устройства бывает несколько. Рассмотрим только основные различия и особенности.

В первую очередь, генераторы могут выдавать постоянный ток, и переменный. Постоянный ток выгоден тем, что его не надо выпрямлять перед подачей на аккумулятор. Переменный же ток придется не только стабилизировать, но и преобразовывать в постоянный. Какой вариант лучше выбрать? Очень просто. Генераторы постоянного тока упрощают использование выработанного электричества, а модели переменного тока – на порядок эффективнее.

Далее генераторы различаются по выдаваемому напряжению. От этого параметра зависит конфигурация оборудования, которое будет стабилизировать подаваемое на АКБ напряжение.

Следующий важный параметр – мощность. Чем мощнее генератор, тем больше потребителей он сможет обеспечить энергией. Одновременно с мощностью генератора увеличиваются размеры ветряка, в частности, его лопастей.

Какие нужны комплектующие?

Для изготовления простейшего ветрогенератора своими руками в домашних условиях достаточно будет следующих комплектующих:

1. Канализационная труба диаметром 150-200 мм для изготовления лопастей.

2. Генератор – проще всего взять готовый автомобильный с регулятором-выпрямителем и реле, что позволит напрямую заряжать с его помощью обычный 12-вольтовый аккумулятор (или несколько сразу, соединенных параллельно).

3. Токосъемник – можно купить готовый или изготовить самостоятельно.

4. Флюгер – нужен для ориентации лопастей по ветру.

5. Мачта – используется для подъема ветряка на необходимую высоту.

6. Основание – к нему крепится мачта.

Рассмотрим основные этапы сборки ветрогенератора своими руками из перечисленных комплектующих.

Сборка

Самостоятельную сборку лучше всего начинать с расчетов. Здесь проще всего отталкиваться от имеющегося генератора, точнее, от его мощности. В зависимости от этого высчитываются размеры лопастей. Все эти расчеты несложно провести в специальных программах, либо определить требуемые размеры по таблицам.

Лопасти

Простейшие лопасти для самодельного ветряка можно изготовить из канализационной трубы диаметром 150-200 мм. Рекомендуется для этих целей приобретать трубу оранжевого цвета. Такие изделия изготовлены из более прочного пластика, нежели бытовые серые.

Для домашнего ветрогенератора достаточно будет всего три лопасти. Как правило, все они изготавливаются из одной вышеописанной трубы. Для этого труба разрезается вдоль на три равных сегмента. После этого каждой заготовке по шаблону придается форма лопасти. На этом этапе важно зашлифовать (лучше – скруглить) все кромки лопастей, что положительно скажется на аэродинамических характеристиках, а также на прочности узла.

Готовые лопасти крепятся на ступице. Простейший ее вариант можно изготовить из куска фанеры толщиной около 10 мм. На такой ступице все лопасти следует закрепить при помощи болтов. Чтобы соединения не раскрутились от вибраций, используются специальные шайбы-гроверы.

Флюгер

Основная роль флюгера заключается в ориентации лопастей в зависимости от направления ветра. Одновременно эта часть ветряка является несущей. Помимо направляющей пластины на флюгере крепится генератор и лопастной узел.

Для изготовления флюгера маломощного ветрогенератора можно использовать древесину. Для больших ветряков лучше применить алюминиевые трубки, уголки или профили. Они прочнее и легче древесины. Вполне подойдет и стальной прокат.

На флюгере также крепится токосъемный механизм, через который независимо от вращения ветряка вокруг своей оси будет передаваться выработанная генератором электроэнергия.

Основание и мачта

Мачта служит для установки ветряка на необходимой высоте. Как правило, для бытовых нужд вполне достаточно поднять ветрогенератор на высоту около 5 метров. Для изготовления мачты понадобится прочная стальная труба диаметром, как минимум 40 мм. При высоте больше 5 метров следует также позаботиться о дополнительном креплении мачты. Как правило, для этого используются либо растяжки, либо точки крепления к фронтону постройки.

Основание служит для установки мачты с ветряком. Может быть стационарным и шарнирным. Последний вариант выгоден тем, что позволяет в любой момент без особых усилий «уложить» ветряк на землю. Такая возможность особенно пригождается в период бури, либо во время сервисного обслуживания и ремонта ветряка.

Этапы установки ветрогенератора

Монтаж ветрогенератора своими руками, как правило, выполняется в следующей последовательности:

1. Определите наилучшее месторасположение для ветрогенератора.

2. Закрепите на флюгере генератор и токосъемник.

3. Установите и закрепите на оси генератора лопастной узел.

4. Закрепите ветряк на мачте.

5. Подсоедините кабель к токосъемнику и закрепите его на мачте.

6. Установите мачту на основании.

7. Закрепите ветрогенератор при помощи растяжек или дополнительных точек опоры.

После установки ветрогенератора можно приступать к его подключению к системе, устройство которой описано выше.

Советы и рекомендации

При изготовлении и установке ветрогенератора своими руками рекомендуется учесть следующие моменты:

· Не устанавливайте ветряк в оврагах и впадинах.

· Генератор и токосъемный узел обязательно защитите от попадания влаги.

· Не используйте ветрогенератор во время штормовой погоды.

· Для временной остановки ветряка можно использовать шарнирное основание, механизм автоматического складывания флюгера, либо же блокировку генератора нагрузкой (последнее используется в заводских изделиях).

· Не подключайте самодельный ветрогенератор к потребителям напрямую.

· Регулярно проводите технический осмотр механической и электрической частей ветрогенератора.

· Если ветряк устанавливается возле постройки, то его следует поднять на высоту не менее трех метров от вершины крыши.

· Не рекомендуется жестко крепить ветрогенератор к конструкциям жилого дома, так как шум и вибрация может создавать определенный дискомфорт.

· По возможности используйте для накопления сгенерированной ветряком электроэнергии больше аккумуляторов.

· По максимуму используйте накопленную энергию без преобразований, чтобы уменьшить потери на инверторе.

Как видно из вышеописанного, простейший ветряк для дома своими руками изготовить не так уж и сложно. Однако даже маломощная ветряная электростанция позволит заметно уменьшить счета за электроэнергию, либо выйти из ситуации, когда участок вообще нет возможности запитать от общей сети.

Источник: https://eco-energetics.com/vetroenergetica/


Полезные видео

Ветрогенератор своими руками. Самодельный ветрогенератор для дома. Чертежи ветрогенератора.

В ветрогенераторах промышленного производства обычно используют винтовые пропеллерные двигатели. В отличие от роторных, они имеют весомое преимущество – более высокий КПД. Но винтовые двигатели значительно сложнее изготовить, поэтому если вы хотите сделать ветрогенератор своими руками, а попросту – самодельный ветрогенератор, рекомендуют применять именно роторные двигатели.

Рис. 1. Схема роторной ветроэлектроустановки:
1 — лопасти, 2 — крестовина, 3 —вал, 4 —подшипники с корпусами, 5 — соединительная муфта, 6 — силовая стойка (швеллер № 20), 7 — коробка передач, 8 — генератор, 9 — растяжки (4 шт.), 10 — ступени лестницы.


Важная деталь: ротор необходимо поднять достаточно высоко – на 3-4 метра над уровнем земли. Тогда ротор окажется в зоне свободного ветра, а зона завихрений от обтекаемых ветром строений останется ниже его. ВЭУ, высоко поднятая над землей к тому же будет выполнять функцию молниеотвода, а это для сельской местности немаловажно.

Рис. 2. Крепление лопастей ротора на крестовине:
1 — лопасти, 2 — крестовина, 3 — вал, 4 — болты крепления (М12—М14).


В конструкции, предложенной В. Самойловым, ротор имеет 4 лопасти, что обеспечивает ему более равномерное вращение. Ротор – важнейшая часть ветряка. Его форма и размеры лопастей играют особую роль – от них зависит мощность, а также скорость вращения вала ветрового двигателя. Чем больше будет общая поверхность лопастей, которые образуют ометаемую поверхность, тем меньшим будет число оборотов ротора.

Рис. 3. Двухъярусное роторное колесо:
1 — подшипник, 2 — корпус подшипника, 3 — дополнительное крепление вала четырьмя растяжками, 4 — вал.


Ротор вращается благодаря аэродинамической несимметричности. Поток ветра, набегающий поперек оси ротора, соскальзывает с округлой стороны лопасти и затем попадает на ее противоположный карман. Разность давлений на округлую и вогнутую поверхности создает тягу, которая, раскручивая ротор, приводит его в движение. Такой ротор имеет большой крутящий момент. Мощность ротора диаметром 1 м соответствует пропеллеру с тремя лопастями диаметром 2,5 м.
При резких колебаниях ветра роторные ветродвигатели обеспечивают более стабильную работу, чем винтовые. К тому же, роторы имеют тихий ход, работают при любом направлении ветра, но при этом могут развивать лишь от 200 до 500 об/мин. При сильных порывах ветра роторные ветроколеса в разнос не идут. Повышение количества оборотов асинхронного генератора не дает рост напряжения на выходе. Поэтому мы не рассматриваем автоматическое изменение угла лопастей ротора при разных скоростях ветра.
Существуют разные виды роторных ветрогенераторов на вертикальном валу. Вот некоторые из них:
1. Четырехлопастое роторное ветряное колесо тихоходное, имеет КПД до 15%.
2. Двухъярусное роторное колесо немного проще, и имеет более высокое КПД (до 19%), а также развивает большее по сравнению с четырехлопастным, число оборотов. Но, чтобы сохранить прочность и жесткость установки, целесообразно увеличивать диаметр вала.
3. Ротор Савониуса развивает меньшее количество оборотов по сравнению с двухлопастным. Коэффициент применения ветровой энергии не выше 12%. В основном используется для привода поршневых насосов.
4. Карусельное ветряное колесо — простейшая конструкция. Колесо развивает малые обороты, а также, имея низкую удельную мощность, обладает КПД — до 10%
Ниже рассмотрим самодельный ветрогенератор, разработанный на основе четырехлопастного ветроколеса.
Лопасти ротора можно сделать из железной бочки на 100, 200 или 500 литров. Бочку нужно разрезать шлифмашиной, а вот резать сваркой в этом случае недопустимо, т.к. металл покоробится от высокой температуры. Усилить борта вырезанной лопасти можно, приварив к ним прутья арматуры или катанки диаметром от 6 до 8 мм.
Лопасти первого ротора нужно прикрепить к 2 крестовинам 2 болтами М12…М14. Верхняя крестовина вырезается и листа стали толщиной 6…8 мм. Между бортами лопастей и валом ротора необходим зазор 150 мм. Нижняя крестовина должна быть более прочной, ведь на нее приходится общий вес лопастей. Чтобы ее изготовить, нужно взять швеллер длиной не меньше 1 м ( что будет зависеть от применяемой бочки), и с высотой стенки 50-60 мм

Строительная часть и главный вал.


В рассматриваемой ВЭУ рама из уголков для закрепления генератора приварена к стойке, изготовленной из швеллера. Нижний конец стойки соединен с угольником, забитым в землю. Вал 3 ротора целесообразней сделать из двух частей, тогда будет удобней растачивать его концы под подшипники. Подшипники в корпусах (буксах), соответствующих по размерам валу, закрепляются на стенке швеллера болтами. Части вала ротора сваривают между собой или соединяют на шпонке. Диаметр вала составляет 35—50 мм.
К одной из полок швеллера рассматриваемого ВЭУ приварены куски труб длиной 500 мм м диаметром 20 мм, выполняющие роль лестницы. Стойка погружена в землю не менее, чем на 1200 мм в глубину, а также для предотвращения качки и дополнительной устойчивости закреплена 4-мя растяжками. Для защиты от ржавчины ветровую энергоустановку можно покрасить алюминиевой пудрой, замешанной на основе олифы.

Рис. 4. Возможные схемы укрепления роторных ветроколес на вертикальном валу:
а, б — карусельные ветроколеса; в — ветроколесо Савониуса.



Рис. 5. Лопасть ветряка, изготовленная из 1/4 бочки и схема раскроя:
1 — отверстие крепления к крестовине, 2 — усиление борта, 3 — контур лопастей.

Электросхема.


Изготавливая своими руками ветрогенератор для дома, проще всего использовать электросистему автомобиля или трактора. Исходя из ее мощности, определяются эксплуатационные возможности ВЭУ. Поэтому необходимо применять электроузлы таких достаточно мощных автомашин, как автобус или трактор. Важно помнить, что использовать подобные узлы необходимо комплектно: аккумулятор, реле-генератор, генератор. Например, для генератора Г 250-Г 1 вполне подойдут реле-регулятор РР 362, а также аккумулятор 6 СТ 75.

Рис. 6. Схема электрооборудования ВЭУ, взятое от автомобильного генератора на 12 В:
1 — генератор, 2 — реле-регулятор, 3 — аккумулятор, 4 — амперметр, 5 — выключатель генератора от разряда аккумулятора в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.
В случае, если ветряк укомплектован автогенератором на 24 В, лучше использовать марку Г-228 с мощностью 1000 Вт. Подобные генераторы имеют более надежное реле напряжения, особенно в сравнении с интегральными регуляторами напряжения марки Я-120. Вместе с тем, постоянное напряжение 12 В, получаемое с автогенератора, не очень удобно для освещения, т.к. необходимо учитывать специфику цоколей автолампы и патронов. Хоть лампочки на 12 В бывают и с обычным цоколем Ц-27, их трудно найти в продаже.

Рис. 7. Схема электрооборудования ВЭУ от автомобильного генератора на 24 В:
1 — генератор Г-288, 2 — регулятор напряжения 11.3702, 3 — аккумуляторы 6СТ75, амперметр АП-170, 4 — амперметр, 5 — выключатель генератора от разряда аккумуляторов в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.
Чтобы перейти от постоянного тока к переменному, нужно изготовить преобразователь напряжения. При необходимости переменный ток без проблем можно превращать в постоянный, используя мостовой выпрямитель.

Преобразователь мощностью 100 Вт позволяет включать две лампочки накала или дневного света по 40 Вт на 220 В. Схема преобразователя довольно проста. Он не требует настройки, достаточно надежен в работе и имеет внушительный КПД (более 80%).
Вы можете ознакомиться с видео, на котором показан пример самодельного ветрогенератора. Так же, Вы можете воспользоваться специальным калькулятором для расчета ветрогенератора.

Ветрогенератор для дома своими руками смастерил тернопольский пенсионер

Несколько лет назад житель Тернополя Ярослав Бендас стал известным на всю Украину благодаря своей мини-электростанции. Однако мало кто знает о ее уникальности и значительном отличии от существующих аналогов. 73-летний изобретатель и сейчас пребывает в поиске рациональных идей, которые сразу же реализует. Одна из последних его работ - фонтан в форме Эйфелевой башни с подачей воды в циклическом замкнутом круге.

Даже при слабом ветре - два-три метра в секунду - домашняя ветроэлектростанция Ярослава Бендаса способна производить энергию. «Чтобы при ураганных ветрах ничего не перегорело, оснастил ветряк специальными тормозами, которые замедляют вращение лопастей до допустимого уровня», - рассказывает пенсионер.

Благодаря четырем специальным подставкам установка не деформирует крышу и не создает никаких вибраций, отмечает разработчик. В свое время на строительство самодельной ВЭС тернопольский рационализатор потратил около 300 долларов.

С тех пор семья изобретателя экономит значительные средства: использование газа в зимние месяцы уменьшилось наполовину - с 400 до 200 кубометров.

О своих интересных изобретениях украинский умелец рассказал изданию "Тернополь вечерний":

- Ярослав Николаевич, в чем основа вашей любви к электронике и вообще к технике. Вы специалист в этом деле или просто любитель?

- Это дело моей жизни. В свое время закончил общетехнический факультет Тернопольского пединститута. Долгое время работал на одном из крупнейших промышленных гигантов нашего края - ВО "Ватра". Последние 16 лет перед выходом на пенсию с этого предприятия продолжал трудовую деятельность в межшкольном учебно-производственном комбинате. Там преподавал детям теорию и практику по электротехнике. Сейчас уже и такого учебно-производственного учреждения нет, а тогда оно играл важную роль в профориентации учащихся. Выйдя на пенсию, занимаюсь любимым делом.

- Вы не только в Тернополе, но и на всю Украину известны своей мини-электростанцией. А до этого мастерили интересные вещи?

- До создания этой установки я придумал много разных приборов, которые были полезными в быту. В свое время занимался аквариумами, электрооборудованием для них, сделал автоматически раздвижные шторы и различные приспособления в собственном доме.

- А как вам пришла идея создать домашнюю мини-электростанцию. Это было потребностью в энергосбережении или предметом рационализаторской мысли?

- В свое время один приятель подарил мне генератор от передвижной киноустановки. Десять лет назад, когда я достраивал свой дом на улице Ломоносова, задумал использовать этот механизм с пользой. Для этого соорудил прочную плоскую крышу, на которой впоследствии установил почти полутонную конструкцию - большой ветряк на трехметровой мачте, оснащенный 8 лопастями с размахом крыльев 2 м 80 см.

Читайте также: Ветрогенератор для дома: особенности, которые нужно обязательно знать владельцу частной электростанции

- Сначала ветряк крутился в горизонтальном положении. Что заставило вас кардинально перестроить ветровую электроустановку?

Действительно, сначала так и было. Я хотел, чтобы электроустановка работала независимо от направления ветра. В таком положении, откуда бы ни дул ветер, лопасти все равно крутятся, но меня не устраивало небольшое количество оборотов и слабая мощность. А чтобы переоборудовать с горизонтального на вертикальное положение, надо было полностью переделать всю конструкцию. Но, как сделать, чтобы установка одновременно поворачивалась к ветру и крутилась? Для этого я приспособил задний мост от «Жигулей». Заглушив одну из полуосей, установил на ее место хвост. А вторую полуось применил для ветряка. Поэтому вертикальная ось идет к тонвалу, который начинает крутить, а передача идет к генератору.

Ваша ветровая электроустановка отличается от тех, что есть в серийном производстве в западных странах?

- Для ветровых установок необходим тихоходный генератор, который имеет небольшое количество оборотов, а у меня он - от кинопередвижки. Если его использовать для освещения, то необходимы аккумуляторы и преобразователи энергии. Для этого надо было затратить немалые средства. Я пошел другим путем. Использовал то, что генератор в зависимости от силы ветра производит электрический ток определенного напряжения. Поставил тэны в обогревательный котел, параллельно использую для отопления дома природный газ и энергию с электроустановки. Если генератор работает, тэны соответственно производят напряжение, температура воды поднимается, и подача газа автоматически выключается. Я только устанавливаю необходимую температуру. Когда пользовался исключительно газом для отопления своего дома, то при сильных морозах использовал почти по 400 кубометров голубого топлива в месяц, а теперь использование газа уменьшилось наполовину. Для семейного бюджета это существенная экономия.

Ярослав Николаевич, то есть вы уже десять лет размышляете над проблемой энергосбережения для отопительных устройств?

- Тогда эта тема не была столь актуальной, но уже намечалось подорожание энергоносителей. И надо было думать, как решить эту проблему в отдельно взятом доме. И выгода от мини-электростанции очевидна. За рубежом, особенно в прибрежных зонах Франции, Нидерландов, Германии, Испании, Португалии - довольно много ветряных мельниц. Поставят их 50 или 100 и работают они как единая энергосистема. Почему наша промышленность не выпускает такие генераторы? Их можно эффективно использовать на дачных участках, в частных домах в городе или в деревне, на различных туристических объектах.

- Сделав уникальную ветровую электроустановку, вы не остановились в поисках рационализаторских идей. Недавно вы смастерили фонтан в виде Эйфелевой башни. Расскажите, пожалуйста, о своем очередном творении?

- Я не могу сидеть без дела. В прошлом году идею создать небольшой фонтан у дома мне подкинула дочь, но потом сама же отказалась от замысла. Мол, для функционирования фонтана необходимо задействовать водопровод, а это большие финансовые затраты. Я решил эту проблему другим способом. Заливаю два ведра воды, которая циркулирует в системе. Когда она частично испаряется, доливаю необходимое количество воды.

- Какой принцип у этой циркуляции?

- Я сделал диафрагменный насос, который под давлением качает воду, забирая ее из бачка и подавая наружу. Подачу через редуктор осуществляет низкоэнергозатратный электрический моторчик. Вода снова стекает в бачок и дальше идет по кругу. Эта конструкция хоть и уже работает более месяца, еще не завершена.

- Что-то планируете в ней доработать?

- Сейчас под водяным напором движется мяч. Хочу, чтобы там крутилось колесо или двигалась какая-то фигурка. Планирую также облагородить это место насаждениями и декоративной травой. Люди, которые проходят мимо моего дома, заглядываются на фонтан. А я хочу, чтобы он радовал их глаз.

- Ярослав Николаевич, ваши родные утверждают, что у вас ненужных вещей не бывает?

- Дочка часто упрекает, зачем мне столько барахла? А я считаю, что рано или поздно из него что-то сделаю полезное. Многие вещи люди просто выбрасывают, не зная, что их еще можно с пользой применить. У меня была незадействованная ванна, которую, наполнив водой, установил на крыше. Подсоединил к водоснабжению и в теплое время есть бесплатный душ. Видеоголовка от старой камеры и различные электронные устройства применил в системе видеонаблюдения за собственным подворьем. Старое электронное оборудование использую как для создания различного напряжения и пайки, так и управления антеннами для телевидения. Каждую вещь можно где-то приспособить и она принесет пользу.

Читайте также: 80-летний украинский инженер сконструировал ветряк по собственному проекту

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

Понравилась статья? Поделитесь ею и будет вам счастье!

Простейший ветрогенератор своими руками - altern-energy.com.ua

Использовать силу ветра в качестве источника энергии человечество начало уже достаточно давно. Да и в нашей стране до коллективизации было огромное количество ветряков, которые мололи зерно и приводили в действие огромные полотна лесопилок. Однако со временем это все сгинуло в неизвестном направлении.

Туристы, путешествующие по просторам стран Западной Европы, всегда удивляются обилию вышек, на которых медленно вращаются лопасти генераторов, приводимых в действие природной силой ветра. И это в государствах, которые трудно заподозрить в экономической бедности и отсталости.

Однако сегодня и в России многие предприниматели, да и просто энтузиасты, начинают обращать внимание на данные нереализованные возможности. Впрочем, выпускаемые современной промышленностью ветрогенераторы достаточно дороги,  особенно если они сделаны за рубежом, а поддержки со стороны государства на сегодняшний день не существует.

 Вот и остается нашим энтузиастам самим засучить рукава и попытаться сделать генератор своими руками. Благо, что этот процесс не представляет собой большой сложности.

Для начала стоит заметить, что самодельный ветрогенератор проще всего соорудить с вертикальной осью вращения лопастей, а не с традиционной горизонтальной. В качестве примера можно использовать классический анемометр, которым ученые измеряют силу ветра.

В качестве лопастей можно предложить использовать тонкостенную металлическую бочку или другую, подобную ей емкость. Они обычно изготовлены из качественного металла, хорошо центрированы и дешевы. Емкость выбирайте исходя из мощности, которую вы собираетесь извлечь из установки.

Для создания из бочки лопастей вам понадобится болгарка, киянка, а также ответный кусок доски, на которой вы будете придавать лопастям генератора нужную форму и угол наклона.

В качестве оси для лопастей можно использовать подходящий кусок арматуры или прочную трубку.

Для съема энергии с устройства можно использовать самые различные механизмы. Это может быть обычная велосипедная цепь, кожаный ремень или же обрезиненный ролик.

Для получения электроэнергии можно применять небольшой электродвигатель на постоянных магнитах, а также вело- или мотогенератор.

Область применения маломощного ветрогенератора достаточно широка. С его помощью можно заряжать аккумуляторы, питать небольшие бытовые приборы, проветривать помещение, подогревать и подавать в нужное место воду, освещать помещение…

Однако помните, что лопасти самодельного ветрогенератора необходимо тщательно обработать напильником и «затупить», так как при сильном ветре они могут нанести человеку ощутимые раны.

Самодельный ветрогенератор. | Каталог самоделок

Из практических типов ветровых турбин в интернете можно найти конструкцию ветрогенератора с дисковым аксиальным генератором. Некоторые называют эту модель «буржуйской», так как соответствующая компоновка генератора начала использоваться как раз на Западе. Ведь там были доступными различные редкие магниты. Сейчас же эта модель часто появляется и в России.

Сначала может показаться, что эта конструкция наиболее доступная. С этим можно согласиться, однако статоры без железа менее эффективны аналогов, содержащих железо. Для подобных генераторов понадобятся более толстые магниты и в гораздо большем количестве.

Теперь перейдём к сути самого проекта. Генератор обладает шестнадцатью парами полюсов. При его создании были использованы неодимовые магниты и 27-миллиметровый диск с высотой в 8 миллиметров. С осторожностью относитесь к этим штукам: неаккуратное обращение с ними может привести к серьёзной травме! В создании предмета использовался трёхфазный генератор и 12 катушек. Соединение – «звезда».

Несмотря на то, что расчёт делался под провод размером в 1,06 миллиметра, при намотке был использован 0.9-миллиметровый провод. Так уж сложилось, что необходимого провода у меня тогда не оказалось. Именно поэтому между катушек осталось небольшое пространство, а генератор не стал выходить на расчётные параметры. Катушки были намотаны на самодельном небольшом станке. Как видим, ничего удивительного.

Конструкцию можно выбрать исходя из собственных предпочтений.


Фанеру выбрал в качестве формы под статор.


Расположил все катушки, после чего форму предварительно обработал вазелином. Это нужно проделать, чтобы можно было с лёгкостью вытащить из формы отлитый статор.

Распайку сделал соответствующим образом.



Развёл эпоксидную смолу, добавив 30 % талька. Наложил стеклянную сетку сверху катушек, а также на дно. Не использовал стеклоткань ввиду сложностей при работе с ней. Начал заливать статор, медленно подливая смолу (должны быть видны выходящие пузырьки, содержащие воздух).

Чтобы притянуть крышку, провёл размещение таким образом, чтобы саморезы прошли через катушечное отверстие (чтобы исключить повреждения). Само же катушечное отверстие залепил пластилином для более качественного охлаждения. Когда пластилин высох, я его удалил. Через некоторое время с лёгкостью из формы извлёк готовый статор. Он был ровный и красивый.

В качестве материала для ротора мне пригодилась задняя ступица, снятая с автомобиля ВАЗ-2108. Она недорогая, но при этом обладает достаточной мощностью. В автосервисе попросил тормозные диски от восьмёрки. У дисков диаметр составлял 24 см., толщина – 1 сантиметр. После шлифовки рабочей поверхности начал наклеивать магниты. Вначале использовал «Суперклей», после чего залил той же эпоксидной смолой.



Провёл сварку ветровой головки, после чего установил на ней генератор. Хвост закреплён качественно, то есть не была выполнена бурезащита.

Лопасти состоят из ПВХ-трубки (диаметр 16 см.). Конструировал также пятилопастные и трёхлопастные варианты, два варианта работали стабильно.

Несколько выводов:

АКБ начинает заряжаться почти сразу же после вращения. Вращается он, кстати, даже от небольшого ветра. Несколько ампер от небольшого дуновения, а при слабых порывах – около пяти ампер. Нормальный ветер же даст целых десять ампер. Итог: идея реализована (АКБ заряжается даже на слабом ветру).

Максимальный показатель на интенсивном ветру – 20 A. Более высоких результатов прибор не выдавал. В настоящее время это устройство уже демонтировано. Несмотря на отсутствие покраски, во время осмотра повреждения отсутствовали. Теперь составляю план будущих испытаний с этим устройством.

Представляю вам те самые ранее упомянутые изощрения.

Собираюсь испытать и другой вариант с использованием старых отожжённых железных опилок в статоре генератора вместо ЭТС. Опилки буду использовать среднего размера.
Результаты получились не очень удовлетворительные: недостаток во времени и десятиградусная температура неблагоприятно сказались на трудовых подвигах. Снова был использован не предназначающийся в этом деле готовый статор. При смешивании опилок использовал не эпоксидную смолу, а уже герметик из силикона. В итоге был получен пластичный материал, с которым, как оказалось, довольно легко работать.

Результаты испытаний такого варианта указаны в таблице.

Вполне вероятно, что если следовать всем условиям при конструировании этого устройства, он может дать весьма неплохие результаты.

Как сделать ветрогенератор своими руками

При росте цен на электроэнергию повсюду идёт поиск и разработка её альтернативных источников. В большинстве регионах страны целесообразно применять ветрогенераторы. Чтобы полностью обеспечить электричеством частный дом, требуется достаточно мощная и дорогостоящая установка.

Ветряной генератор для дома

Если сделать небольшой ветрогенератор, с помощью электрического тока можно подогревать воду или использовать для части освещения, например, хозяйственных построек, садовых дорожек и крыльца. Подогрев воды для хозяйственных нужд или отопления – это простейший вариант использования ветровой энергии без её аккумулирования и преобразования. Здесь вопрос больше заключается в том, достаточно ли мощности будет для отопления.

Перед тем как сделать генератор, сначала следует выяснить особенности ветров в регионе.

Большой ветрогенератор, для многих мест российского климата, мало подходит из-за частой смены интенсивности и направления воздушных потоков. При мощности выше 1 кВт он будет инерционным и не сможет в полной мере раскручиваться, когда меняется ветер. Инерция в плоскости вращения приводит к перегрузкам от бокового ветра, приводящим к его выходу из строя.

С появлением маломощных потребителей энергии имеет смысл применять небольшие самодельные ветрогенераторы не более чем на 12 вольт, чтобы освещать дачу светодиодными светильниками или заряжать телефонные аккумуляторы при отсутствии в доме электричества. Когда в этом нет необходимости, электрогенератор можно применять для нагрева воды.

Тип ветрогенератора

Для безветренной области подходит только парусный ветрогенератор. Чтобы электроснабжение было постоянным, понадобится аккумуляторная батарея не менее чем на 12В, зарядное устройство, инвертор, стабилизатор и выпрямитель.

Изготовить качественный и мощный ветрогенератор своими средствами сложно. Он будет дорого стоить, и вырабатывать не более 3-4 кВт. Здесь нужны другие альтернативные источники электричества.

Для слабоветренных районов можно самостоятельно изготовить вертикальный ветрогенератор, мощностью не более 2-3 кВт. Вариантов есть много и они почти не уступают промышленным образцам. Покупать целесообразно ветряки с парусным ротором. Надёжные модели мощностью от 1 до 100 киловатт выпускаются в Таганроге.

В ветреных регионах можно сделать генератор для дома своими руками вертикальный, если требуемая мощность составляет 0,5-1,5 киловатт. Лопасти можно изготовить из подручных средств, например, из бочки. Более производительные устройства целесообразно купить. Самыми дешёвыми являются «парусники». Вертикальный ветряк стоит дороже, но он надёжней работает при сильных ветрах.

Маломощный ветряк своими руками

В домашних условиях небольшой самодельный ветрогенератор изготовить несложно. Для начала работы в области создания альтернативных источников энергии и накопления в этом ценного опыта как собрать генератор, можно изготовить самостоятельно простое устройство, приспособив мотор от компьютера или принтера.

Ветряной генератор на 12 В с горизонтальной осью

Чтобы сделать своими руками маломощный ветряк, необходимо сначала подготовить чертежи или эскизы.

На скорости вращения 200-300 об./мин. напряжение можно поднять до 12 вольт, а вырабатываемая мощность составит около 3 Вт. С его помощью можно зарядить небольшой аккумулятор. Для других генераторов мощность необходимо увеличивать до 1000 об./мин. Лишь в этом случае они будут эффективны. Но здесь понадобится редуктор, создающий значительное сопротивление и к тому же имеющий высокую стоимость.

Электрическая часть

Чтобы собрать электрогенератор, необходимы комплектующие:

  1. небольшой мотор от старого принтера, дисковода или сканера;
  2. 8 диодов типа 1N4007 для двух выпрямительных мостов;
  3. конденсатор ёмкостью 1000 мкф;
  4. труба ПВХ и пластиковые детали;
  5. алюминиевые пластины.

На рисунке ниже изображена схема генератора.

Шаговый мотор: схема подключения к выпрямителю и стабилизатору

Диодные мосты подключаются к каждой обмотке двигателя, которых две. После мостов подключается стабилизатор LM7805. В результате на выходе получается напряжение, которое обычно подаётся на 12-вольтную батарею.

Большую популярность получили электрогенераторы на неодимовых магнитах с чрезвычайно высокой силой сцепления. Их следует аккуратно использовать. При сильном ударе или нагреве до температуры 80-2500С (в зависимости от вида) у неодимовых магнитов происходит размагничивание.

За основу генератора, изготавливаемого своими руками, можно взять ступицу автомобиля.

Ротор на неодимовых магнитах

На ступицу производится наклейка суперклеем неодимовых магнитов диаметром около 25 мм примерно в количестве 20 шт. Однофазные электрогенераторы делаются с равенством количества полюсов и магнитов.

Магниты, расположенные напротив друг друга, должны притягиваться, т. е. повёрнуты противоположными полюсами. После приклеивания неодимовых магнитов производится их заливка эпоксидной смолой.

Катушки мотают круглыми, а общее количество витков составляет 1000-1200. Мощность генератора на неодимовых магнитах подбирается такой, чтобы его можно было использовать как источник постоянного тока, порядка 6А для зарядки АКБ на 12 В.

Механическая часть

Лопасти делают из пластиковой трубы. На ней рисуют заготовки шириной 10 см и длиной 50 см, а затем вырезают. Изготавливается втулка на вал двигателя с фланцем, к которому винтами крепятся лопасти. Их количество может быть от двух до четырёх. Пластик долго не прослужит, но на первое время его хватит. Сейчас появились достаточно износостойкие материалы, например, карбон и полипропилен. Затем можно изготовить более прочные лопасти из алюминиевого сплава.

Балансировку лопастей производят путём отрезания лишних частей на концах, а угол наклона создают путём их нагрева с изгибом.

Генератор крепится болтами к куску пластиковой трубы с приваренной к нему вертикальной осью. На трубу также соосно устанавливается флюгер из алюминиевого сплава. Ось вставляется в вертикальную трубу мачты. Между ними устанавливается упорный подшипник. Вся конструкция может свободно вращаться в горизонтальной плоскости.

Электрическую плату можно разместить на вращающейся части, а напряжение потребителю передавать через два токосъёмных кольца со щётками. Если плату с выпрямителем установить отдельно, тогда количество колец будет равно шести, сколько выводов имеет шаговый мотор.

Ветряк крепят на высоте 5-8 м.

Если устройство будет эффективно вырабатывать энергию, его можно усовершенствовать, сделав вертикально-осевым, например, из бочки. Конструкция меньше подвержена боковым перегрузкам, чем горизонтальная. На рисунке ниже изображён ротор с лопастями из фрагментов бочки, установлен на оси внутри рамы и на него не действует опрокидывающее усилие.

Ветряк с вертикальной осью и ротором из бочки

Профилированная поверхность бочки создаёт дополнительную жёсткость, за счёт чего можно применять жесть меньшей толщины.

Ветрогенератор мощностью более 1 киловатта

Устройство должно приносить ощутимую пользу и выдавать напряжение 220 В, чтобы можно было включить некоторые электроприборы. Для этого оно должно самостоятельно запускаться и вырабатывать электроэнергию в широком диапазоне.

Чтобы сделать ветрогенератор своими руками, прежде следует определить конструкцию. Она зависит от того, какая сила ветра. Если она слабая, то единственным вариантом может быть парусный вариант ротора. Больше 2-3 киловатт энергии здесь не получить. Кроме того, для него понадобятся редуктор и мощный аккумулятор с зарядным устройством.

Цена всего оборудования высокая, поэтому следует выяснить, будет ли это выгодно для дома.

В районах с сильными ветрами, самодельным ветрогенератором можно получить 1,5-5 киловатт мощности. Тогда его можно подключать в домашнюю сеть на 220В. Аппарат с большей мощностью самостоятельно сделать сложно.

Электрогенератор из двигателя постоянного тока

В качестве генератора можно использовать малооборотный мотор, генерирующий электрический ток при 400-500 об/мин: PIK8-6/2,5 36V 0,3Nm 1600min-1. Длина корпуса 143 мм, диаметр – 80 мм, диаметр вала – 12 мм.

Как выглядит двигатель постоянного тока

Для него нужен мультипликатор с передаточным отношением 1:12. При одном обороте лопастей ветряка электрогенератор сделает 12 оборотов. На рисунке ниже изображена схема устройства.

Схема устройства ветряка

Редуктор создаёт дополнительную нагрузку, но всё же это меньше, чем для автомобильного генератора или стартера, где требуется передаточное отношение как минимум 1:25.

Лопасти целесообразно изготавливать из алюминиевого листа размером 60х12х2. Если на мотор их установить 6 штук, устройство будет не таким быстрым и не пойдёт вразнос при больших порывах ветра. Следует предусмотреть возможность балансировки. Для этого лопасти припаиваются к втулкам с возможностью накручивания на ротор, чтобы можно было их смещать дальше или ближе от его центра.

Мощность генератора на постоянных магнитах из феррита или стали не превышает 0,5-0,7 киловатт. Увеличить её можно только на специальных неодимовых магнитах.

Генератор с не намагниченным статором для работы не годится. При небольшом ветре он останавливается, а после не сможет самостоятельно запуститься.

Для постоянного отопления в холодное время года требуется много энергии, и протопить большой дом — это проблема. Для дачи в этом плане он может пригодиться, когда туда приходится ездить не чаще 1 раза в неделю. Если всё правильно взвесить, система отопления на даче работает всего несколько часов. Остальное время хозяева находятся на природе. Используя ветряк как источник постоянного тока для зарядки АКБ, за 1-2 недели можно накопить электроэнергии для отопления помещений на такой промежуток времени, и таким образом, создать себе достаточный комфорт.

Чтобы сделать генератор из двигателя переменного тока или автомобильного стартера, требуется их переделка. Мотор можно модернизировать под генератор, если ротор изготовить на неодимовых магнитах, проточив на их толщину. Его делают с количеством полюсов, как и у статора, чередуя друг с другом. Ротор на неодимовых магнитах, приклеенных к его поверхности, при вращении не должен залипать.

Типы роторов

Конструкции роторов отличаются разнообразием. Распространённые варианты изображены на рисунке ниже, где указаны значения коэффициента использования энергии ветра (КИЭВ).

Виды и конструкции роторов ветряков

Для вращения ветряки делают с вертикальной или горизонтальной осью. Вертикальный вариант обладает преимуществом в удобстве обслуживания, когда основные узлы расположены внизу. Опорный подшипник выполнен самоустанавливающимся и долго служит.

Две лопасти ротора «Савониуса» создают рывки, что не очень удобно. По этой причине его делают из двух пар лопастей, разнесённых на 2 уровня с поворотом одной относительно другой на 900. В качестве заготовок можно использовать бочки, вёдра, кастрюли.

Ротор «Дарье», лопасти которого делают из упругой ленты, отличается простотой изготовления. Для облегчения раскрутки их количество должно быть нечётным. Движение происходит рывками, из-за чего механическая часть быстро разбивается. Кроме того, лента при вращении вибрирует, издавая рёв. Для постоянного применения подобная конструкция не очень подходит, хотя лопасти иногда делают из звукопоглощающих материалов.
В ортогональном роторе крылья выполняются профилированными. Оптимальное количество лопастей равно трём. Устройство быстроходное, но его необходимо раскручивать при пуске.

Геликоидный ротор имеет высокий КПД за счёт сложной кривизны лопастей, снижающей потери. Его применяют реже других ветряков из-за высокой стоимости.

Горизонтальный лопастный ротор исполнения является наиболее эффективным. Но он требует наличия стабильного среднего ветра, а также для него необходима ураганная защита. Лопасти можно изготовить из пропилена, когда их диаметр меньше 1 м.

Если вырезать лопасти из толстостенной пластиковой трубы или бочки, достичь мощности выше 200 Вт не удастся. Профиль в виде сегмента для сжимаемой газообразной среды не подходит. Здесь нужен сложный профиль.

Диаметр ротора зависит от того, какую мощность требуется получить, а также от количества лопастей. Двухлопастнику на 10 Вт нужен ротор диаметром 1,16 м, а на 100 Вт – 6,34 м. Для четырёх-, и шестилопастника диаметр составит соответственно 4,5 м и 3,68 м.

Если насадить ротор непосредственно на вал генератора, его подшипник долго не протянет, поскольку нагрузка на все лопасти неравномерная. Опорный подшипник для вала ветряка должен быть самоустанавливающимся, с двумя или тремя ярусами. Тогда для вала ротора будут не страшны изгибы и смещения в процессе вращения.

Большую роль в работе ветряка играет токосъёмник, который требуется регулярно обслуживать: смазывать, чистить, регулировать. Возможность его профилактики должна быть предусмотрена, хотя это сложно сделать.

Безопасность

Ветряки, мощность которых превышает 100 Вт, являются шумными устройствами. Во дворе частного дома можно установить промышленный ветродвигатель, если он сертифицирован. Его высота должна быть выше ближайших домов. На крыше нельзя устанавливать даже маломощный ветряк. Механические колебания от его работы могут создать резонанс и привести к разрушению строения.

Высокие скорости вращения ветрогенератора требуют качественного изготовления. Иначе, при разрушении устройства существует опасность, что его детали могут отлететь на большие расстояния и нанести травму человеку или домашним животным. Особенно это следует учитывать при изготовлении ветряка своими руками из подручных материалов.

Видео. Ветрогенератор своими руками.

Применение ветрогенераторов целесообразно не во всех регионах, поскольку зависит от климатических особенностей. Кроме того, изготавливать их своими руками не имеет смысла без определённого опыта и знаний. Для начала можно взяться за создание простой конструкции мощностью несколько ватт и напряжением до 12 вольт с помощью, которой можно зарядить телефон или зажечь энергосберегающую лампу. Применение неодимовых магнитов в генераторе позволяет значительно увеличить его мощность.

Мощные ветровые установки, берущие на себя значительную часть электроснабжения дома, лучше приобретать промышленные, на создание напряжения 220В, тщательно взвесив при этом все за и против. Если совместить их с другими видами альтернативных источников энергии, электричества может хватить на все хозяйственные нужды, включая систему отопления дома.

Оцените статью:

Как я построил ветряную турбину, вырабатывающую электроэнергию: 15 шагов (с изображениями)

Теперь, когда я разобрал все механические части, пришло время перейти к электронной части проекта. Система ветроэнергетики состоит из ветряной турбины, одной или нескольких батарей для хранения энергии, вырабатываемой турбиной, блокирующего диода для предотвращения потери энергии от батарей при вращении двигателя / генератора, вторичной нагрузки для сброса мощности от турбины, когда аккумуляторы полностью заряжены, а контроллер заряда для работы всего.

Есть много контроллеров для солнечных и ветровых систем. Они будут в любом месте, где продаются альтернативные источники энергии. Их также всегда много в продаже на Ebay. Но я решил попробовать построить свой собственный. Итак, мы вернулись к Google за информацией о контроллерах заряда ветряных турбин. Я нашел много информации, в том числе несколько полных схем, что было довольно приятно, и сделало сборку собственного устройства очень простой. Я основал свое устройство на схеме того, что можно найти на этом веб-сайте:

http: // www.fieldlines.com/story/2004/9/20/0406/27488

На этом веб-сайте подробно рассказывается о контроллере, поэтому здесь я буду говорить о нем только в общих чертах. Опять же, хотя я следовал их общему рецепту, я делал некоторые вещи по-другому. Я с детства увлекался электроникой, и у меня уже есть огромный запас электронных компонентов, поэтому мне пришлось покупать совсем немного, чтобы собрать контроллер. Я заменил некоторые детали другими компонентами и немного переработал схему, чтобы я мог использовать детали, которые у меня уже были под рукой.Таким образом, для сборки контроллера мне не пришлось покупать почти ничего. Единственное, что мне пришлось купить, это реле. Я построил свой прототип контроллера заряда, прикрутив все части к куску фанеры, как показано на первой фотографии ниже. Позже я перестроил бы его во всепогодный корпус.

Собираете ли вы собственное или покупаете, вам понадобится какой-то контроллер для вашей ветряной турбины. Общий принцип, лежащий в основе контроллера, заключается в том, что он контролирует напряжение аккумулятора (-ов) в вашей системе и либо отправляет энергию от турбины в батареи для их подзарядки, либо сбрасывает мощность от турбины на вторичную нагрузку, если батареи полностью заряжен (для предотвращения чрезмерной зарядки и разрушения аккумуляторов).Схема и описание на указанной выше веб-странице хорошо объясняют это. Более подробную информацию о сборке контроллера заряда, в том числе более крупные и удобные для чтения схемы, можно найти на моем веб-сайте http://www.mdpub.com/Wind_Turbine/index.html

В процессе работы ветряная турбина подключена к контроллеру. Затем линии идут от контроллера к батарее. Все нагрузки снимаются прямо с АКБ. Если напряжение аккумулятора падает ниже 11,9 В, контроллер переключает мощность турбины на зарядку аккумулятора.Если напряжение аккумулятора повышается до 14 вольт, контроллер переключается на сброс мощности турбины на фиктивную нагрузку. Есть подстроечные регуляторы для регулировки уровней напряжения, при которых контроллер переключается между двумя состояниями. Я выбрал 11,9 В для точки разряда и 14 В для точки полного заряда, основываясь на рекомендациях множества различных веб-сайтов по вопросу правильной зарядки свинцово-кислотных аккумуляторов. Все сайты рекомендовали немного разные напряжения. Я как бы усреднил их и получил свои цифры.Когда напряжение аккумулятора составляет от 11,9 В до 14,8 В, систему можно переключать между зарядкой и сбросом. Пара кнопок позволяет мне переключаться между состояниями в любое время в целях тестирования. Обычно система работает автоматически. Во время зарядки аккумулятора горит желтый светодиод. Когда аккумулятор заряжен и мощность передается на фиктивную нагрузку, горит зеленый светодиод. Это дает мне минимальную обратную связь о том, что происходит с системой. Я также использую свой мультиметр для измерения как напряжения батареи, так и выходного напряжения турбины.Я, вероятно, в конечном итоге добавлю в систему либо панельные измерители, либо автомобильные измерители напряжения и заряда / разряда. Я сделаю это, когда он у меня будет в каком-то корпусе.

Я использовал свой настольный источник питания переменного напряжения, чтобы смоделировать аккумулятор в различных состояниях заряда и разряда, чтобы проверить и настроить контроллер. Я мог установить напряжение источника питания на 11,9 В и настроить подстроечный резистор для точки срабатывания низкого напряжения. Затем я мог поднять напряжение до 14 В и установить подстроечный резистор для подстроечного резистора высокого напряжения.Мне нужно было установить его, прежде чем я возьму его в поле, потому что у меня не было бы возможности настроить его там.

Я на собственном опыте убедился, что в этой конструкции контроллера важно сначала подключить аккумулятор, а затем подключить ветряную турбину и / или солнечные панели. Если вы сначала подключите ветряную турбину, дикие колебания напряжения, исходящие от турбины, не будут сглажены нагрузкой на аккумулятор, контроллер будет вести себя хаотично, реле будет сильно щелкать, а скачки напряжения могут разрушить микросхемы.Поэтому всегда сначала подключайтесь к батарее (-ам), а затем подключайте ветряную турбину. Кроме того, не забудьте сначала отключить ветряную турбину при разборке системы. Отсоединяйте аккумулятор (-ы) в последнюю очередь.

Как построить свою собственную систему ветрогенератора

Система ветрогенератора может быть построена дома, в основном с использованием общедоступных предметов домашнего обихода, для производства электроэнергии. Ветряные генераторы работают, используя силу ветра для вращения лопастей; это круговое движение используется для вращения двигателя, который, в свою очередь, заставляет его вырабатывать электричество.

Для этого ветрогенератора необходимо будет купить двигатель и аккумулятор, так как они очень сложны в изготовлении.

    Изготовить лопасти ветрогенератора. Они будут улавливать ветер, заставляя лопасти вращаться, таким образом вращая двигатель и генерируя электричество.

    Лезвия можно просто изготовить из отрезка ПВХ-трубок, например, используемых для водостоков. Согласно «вашей зеленой мечте», ПВХ-трубка должна быть на 20% шириной и длинной, чтобы обеспечить достаточную прочность на ветру.Длина лопастей зависит от габаритных размеров ветрогенератора. Для базовой домашней ветрогенераторной системы хорошим размером будет примерно 18-20 дюймов в длину.

    Разрежьте эту трубку на четыре равных части по длине, а затем сформируйте каждую из этих четвертей в лезвие, разрезав их пополам по диагонали, чтобы сформировать длинные треугольники.

    Присоедините эти лезвия к ступице, которая может быть сделана из зубца или небольшого круглого куска металла. Убедитесь, что отверстие в середине ступицы подходит для двигателя.

    Лопасти можно привинтить или прикрутить к ступице на равных расстояниях по ее окружности. Отверстие в середине ступицы должно быть проделано на двигателе, чтобы, когда ветер перемещает лопасти, крепление на двигателе вращается и генерируется электричество.

    Присоедините двигатель к одному концу 2x4, примерно 1 ярд длиной. Накройте двигатель пластиковой пленкой, чтобы защитить его от непогоды.

    Прикрепите прямоугольный кусок металла или жесткого пластика к другому концу 2x4; это будет действовать как хвост.Хвост будет захвачен ветром и, таким образом, маневрируйте лопастями ветрогенератора в наиболее эффективном направлении для получения максимальной мощности.

    Просверлите отверстие сразу за двигателем для проводов. Под этим отверстием прикрепите кронштейн для трубы. В этот кронштейн трубы, а также под отверстие вставьте трубу немного меньшего размера. Эта труба должна иметь возможность свободно перемещаться внутри кронштейна, чтобы лопасти, двигатель и хвостовая часть ветрогенератора могли поворачиваться навстречу ветру.Пропустите провода от двигателя вниз по этой трубе.

    Закрепите ветрогенератор на прочном основании, например на большом куске дерева. Ветрогенератору нужно будет оставаться в вертикальном положении при сильном ветре и другой погоде, поэтому его можно прикрепить к земле или другому объекту для дополнительной поддержки.

    Пропустите провода от двигателя в верхней части ветрогенератора в сухое место, например, в сарай. Убедитесь, что провода во всех местах защищены от погодных условий и животных, которые могут их пережевывать.

    Подсоедините провода, идущие от двигателя к аккумулятору. Это позволит хранить произведенную электроэнергию для дальнейшего использования. С этой системой ветрогенератора можно использовать более одной батареи; просто замените батареи, когда одна из них полностью заряжена или используется для питания других устройств.

Самодельные ветряные мельницы для электричества | Sciencing

Альтернативная энергия - постоянная проблема, и для некоторых людей поиск способа использования альтернативных источников электроэнергии становится важной задачей.Кто-то потратит деньги на дорогие солнечные батареи, но тем, у кого больше изобретательности, может оказаться интересным построить собственную ветряную мельницу. На самом деле это намного проще, чем вы думаете.

Получить мотор

Любой маленький мотор можно превратить в ветряк. Лучше всего работают небольшие электродвигатели, которые имеют легкий вес. Электродвигатели вентиляторов отлично подходят для экспериментальных ветряных мельниц. Двигатели промышленных вентиляторов также работают хорошо, и к ним даже прикреплены красивые лопасти из листового металла, но они также очень тяжелые и их трудно поворачивать на ветру.Многие люди используют автомобильные генераторы для создания ветряных мельниц, способных производить больше энергии.

Для тех, кто впервые строит самодельную ветряную мельницу, проще всего работать с мотором беговой дорожки. Эти двигатели имеют свободно движущийся маховик, установленный спереди, что является идеальной платформой для крепления лопастей.

Конструируйте лопасти

Лопасти ветряной мельницы являются важным элементом. Они должны быть достаточно широкими и длинными, чтобы ловить ветер, а также иметь надлежащую кривизну, чтобы превратить их в ветровой парус.К счастью, существует очень простой метод изготовления самодельных лопастей ветряных мельниц, которые не уступают по качеству любым профессионально сконструированным лопастям.

Возьмите кусок 8-дюймовой трубы из ПВХ длиной примерно 2 фута. Эта труба будет иметь идеальную кривизну для лопастей вашей ветряной мельницы. Возможно, вам придется специально заказать трубу в строительном магазине. Разрежьте трубу на полосы, длина которых начинается с 5 дюймов и сужается до 2 дюймов в точке, где они соединяются с двигателем. Скругление краев ленточной шлифовальной машины поможет направить на лезвия больше ветра.

Установите узел

Используйте кусок «алюминиевого канала» размером от 36 до 48 дюймов в качестве рамы для ветряной мельницы. Закрепите двигатель (с прикрепленными лезвиями) к дальнему концу рамы. К противоположному концу прикрепите ветряк. Хвост ветра - это, по сути, большой плоский плавник, который будет вращать мельницу, если ветер дует сбоку. Для этой цели отлично подойдет квадратный кусок листового металла.

Купите стальную трубу длиной 1,5 дюйма, которая будет служить опорой для ветряной мельницы.Присоедините «штуцер» к верхней части столба, а затем прикрепите ветряную мельницу к этому штуцеру. Штуцер для труб позволит ветряной мельнице свободно вращаться по направлению ветра.

Подключение ветряной мельницы к электросети

Электроэнергия, подаваемая ветряными мельницами, непостоянна, поэтому вместо того, чтобы подключать прибор непосредственно к ветряной мельнице, ветряная мельница используется для зарядки группы батарей. Ветряная мельница такого размера способна заряжать 12-вольтовую батарею. Можно использовать автомобильный аккумулятор или две 6-вольтовые батареи для гольф-мобов.

Подсоедините провода от двигателя к выпрямителю, затем подсоедините провода аналогичного размера от выпрямителя к батарее. Выпрямитель поддерживает односторонний ток от ветряной мельницы к батареям, чтобы ваш сок не тратился зря на вращение ветряной мельницы. Следует использовать дополнительный провод для заземления мельницы в качестве меры предосторожности от ударов молнии.

Создайте свою миниатюрную ветряную турбину

Энергия ветра - один из самых быстрорастущих источников энергии в мире.Благодаря этому быстрому проекту Майкла Аркуина из KidWind Project молодые инженеры могут построить работающую турбину всего за пару часов.

1 Создайте свою миниатюрную ветряную турбину

Возобновляемая энергия - это ветер под лопастями наших турбин. За последние несколько лет ветроэнергетика была одним из самых быстрорастущих источников энергии в мире. Узнайте, как уловить порывистую силу воздушного потока с помощью этой прочной конструкции турбины из ПВХ, созданной Майклом Аркином, основателем проекта KidWind.Этот исследовательский проект учит инженерии и моделированию и, чтобы сделать его подходящим для возраста и навыков, может быть увеличен или уменьшен по сложности для получения большего или меньшего количества электроэнергии, а также для демонстрации таких концепций, как преобразование энергии и эффективность лезвий. Будьте готовы быть потрясенными.

Материалы

• Пять диаметром 1 дюйм. Фитинги из ПВХ под углом 90 градусов
• Три диам. Тройники из ПВХ
• Один диаметром 1 дюйм. Муфта из ПВХ
• Шесть диам. Трубы из ПВХ длиной 6 дюймов
• Одна диаметром 1 дюйм.Труба из ПВХ длиной 24 дюйма
• Одна диаметром 1 дюйм. Труба из ПВХ длиной 2 дюйма

• Два зажима типа «крокодил»
• Доска для плакатов для лопастей
• Коробчатый вентилятор 20 дюймов или другой источник ветра
• Скотч
• Горячий клей / пистолет для клея
• Кусачки
• Сверло

Специальные детали (Доступны в магазине. kidwind.org)

• Комплект основных деталей конструкции турбины KidWind
(включает двигатель постоянного тока с проводами, обжимную втулку с 12 отверстиями и 25 дюбелей)
• Мультиметр
• 5-миллиметровая светодиодная лампа
• Звуковая и световая плата

2 Постройте ротор и гондолу

1. Вставьте 2-дюймовый кусок ПВХ-трубы в 90-градусный фитинг.
2. Наденьте муфту из ПВХ на 2-дюймовую трубу, образуя цельную деталь, называемую гондолой.
3. Оберните кусок клейкой ленты шириной 1/2 дюйма и длиной 18 дюймов по периметру двигателя. Это поможет надежно закрепить его в муфте.
4. Проденьте провода, прикрепленные к двигателю постоянного тока, в отверстие муфты, полностью через 90-градусный фитинг из ПВХ.
5. Двигатель должен плотно прилегать к муфте, но не вдавливаться до упора.
6. Затем прикрепите обжимную ступицу к двигателю, надавив на приводной вал.
7. Убедитесь, что поверхность двигателя находится на одном уровне с краем трубы.

3 Постройте базу

1. Используя четыре 90-градусных фитинга из ПВХ, два тройника из ПВХ и четыре 6-дюймовых трубных секций из ПВХ, сконструируйте две стороны основания турбины.
2. Вставьте 6-дюймовую трубу в один конец 90-градусного фитинга. На противоположном конце 6-дюймовой трубы установите тройник из ПВХ, а затем еще 6-дюймовую трубу и 90-градусный фитинг. Повторите то же самое, чтобы сделать вторую ножку основы.

3. Просверлите небольшое отверстие в нижней части последнего тройника из ПВХ.
4. Соедините ножки основания, вставив две оставшиеся 6-дюймовые трубы из ПВХ в тройник из ПВХ на каждой ножке. Соедините ножки основания через просверленную тройник из ПВХ.

4 Прикрепите башню к базе

1. Пропустите провода двигателя по 24-дюймовой трубе из ПВХ; этот длинный участок - башня.
2. Присоедините гондолу к верхней части башни; постучите по нему, чтобы он надежно встал на место.
3. Пропустите провода через центральный тройник из ПВХ и выведите их из просверленного отверстия в основании башни.
4. Закрепите башню на тройнике.
5. Прикрепите зажимы типа «крокодил» к оголенным проводам.

5 Сделать лезвия

1. Изготовьте лезвия из материала диаметром от 6 до 10 дюймов. Мы использовали плакатный картон, но вы можете использовать любой жесткий и легкий материал, например, прочную бумажную тарелку или листы бальзы. (Примечание: напряжение, которое вырабатывает ваша турбина, зависит от крутящего момента и частоты вращения лопастей. Мы обнаружили, что конфигурация из двух или четырех лопастей генерирует много энергии, но не стесняйтесь экспериментировать!)
2. Прикрепите лопасти к дюбеля скотчем или горячим клеем.
3. Вставьте дюбели в отверстия обжимной ступицы.После установки затяните ступицу.

6 Заставьте генератор работать

1. Разместите турбину перед коробчатым вентилятором так, чтобы ветер вращал лопасти; это будет производить электричество.
2. Используйте зажимы типа «крокодил» для подключения к мультиметру для измерения напряжения. (Вам понадобится примерно 2 вольта.)
3. Когда ваши лезвия вырабатывают энергию, вы можете подключить провода светодиодной лампы
или звуковой и световой платы, используя зажимы из крокодила.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Энергия ветра | Otherpower

МЫ ЛЮБИМ ВЕТРОВУЮ СИЛУ! Вы могли заметить это из множества статей о ветроэнергетике на нашем сайте. Мы специализируемся на обучении людей тому, как строить свои собственные ветряные турбины.Но энергия ветра не для всех - у большинства людей недостаточно ветровых ресурсов, чтобы окупить их, или им не разрешают строить башню, достаточно высокую, чтобы добраться до хорошего ресурса. Не дайте себя обмануть продавцам змеиного масла в Интернете! Вместо этого сначала сделайте домашнее задание. И всегда помните - солнечная энергия работает отлично, но это скучно по сравнению с ветром. Мы рекомендуем вам начать с нашей статьи «Итог о ветряных турбинах» и просмотреть больше в меню слева. Но если вы спешите ... В двух словах об основах ветроэнергетики:

  • Скорость ветра критична! Удвойте скорость ветра, увеличьте мощность в 8 раз.У земли и на крышах ветер медленный и резкий. Промышленный стандарт заключается в том, что ветряные турбины должны летать на высоте не менее 30 футов над всем, что находится в пределах 500 футов. Если вы не можете этого сделать, проведите детальное исследование, прежде чем тратить деньги на ветроэнергетическую установку.
  • Размер имеет значение! Удвойте диаметр ротора, увеличьте мощность в 4 раза. Небольшой ротор означает, что вам нужен сильный ветер, чтобы вообще производить сколько-нибудь значительную энергию, а сильные ветры в большинстве мест редки.
  • Ветер действительно светит при установке от сети! Это отличное дополнение к солнечной энергии во многих местах.
  • Змеиное масло везде! Необычные веб-сайты намного дешевле, чем реальное оборудование, и есть множество змей, которые скажут вам только то, что вы хотите услышать. Сделайте домашнее задание, прежде чем приступить к делу.

Мы настоятельно рекомендуем эти книги для серьезного образования в области ветроэнергетики, независимо от того, собираетесь ли вы купить или построить турбину:

  • «Энергия ветра для чайников» от нашего хорошего друга Яна Вуфендена - отличное введение в ветроэнергетику.
  • Постройте свою собственную небольшую ветроэнергетическую систему Кевин Ши и Брайан Кларк Ховард рассматривает ветроэнергетические системы с точки зрения человека, который хочет установить систему самостоятельно, и мы также настоятельно рекомендуем это сделать.

Легко собрать прочную, надежную и тихую ветряную турбину! Именно об этом и посвящены наши веб-страницы (и еще кое-что интересное. Начните здесь:

  • Наша книга «Домашняя ветровая энергия» Дэна Бартманна и Дэна Финка является наиболее полным и подробным справочником о проектировании и строительстве ветряных турбин.Он также доступен в любой библиотеке или книжном магазине по всему миру через их обычные каналы распространения книг.
  • Основы построения ветряной турбины, описанные в нашей книге, по-прежнему доступны бесплатно здесь, на нашем веб-сайте.
  • Книга рецептов ветряных турбин нашего друга Хью Пигготта также является отличным справочником; наши конструкции турбин в значительной степени основаны на его конструкции. Он написал и метрическое издание.
  • В нашем бесплатном Руководстве пользователя ветряной турбины вы узнаете обо всем остальном, что вам нужно для установки и работы вашей самодельной ветряной турбины.
  • Получите практический опыт создания ветряных турбин в одной из наших мастерских! Все наши ветровые классы аккредитованы IREC, ISPQ и NABCEP для получения кредитов для продолжающегося профессионального и образовательного обучения. Мы преподаем по всей территории США и за рубежом каждый год.

Детали и комплекты ветряных турбин Мы предлагаем на продажу большое количество «вещей», необходимых для создания собственной ветряной турбины. Вы можете заказать его целиком или любые отдельные детали, которые вам нужны.

  • Полные комплекты ветряных турбин
  • Комплекты сварного металлического каркаса
  • Комплекты плоских металлических деталей (сварка вместе)
  • Сборные и литые статоры для систем 12, 24 и 48 В
  • Резные лопасти ветряных турбин
  • Магниты
  • Магнитный провод
  • Выпрямители
  • Комплекты ступиц, шпинделя и подшипников
  • Фурнитура из нержавеющей стали
  • И многое другое!

Все это доступно в нашем Интернет-магазине!


Ветряная турбина своими руками - Как построить свой собственный домашний ветрогенератор

Сегодня ветряная энергия считается одним из самых эффективных и экологически устойчивых способов производства энергии, которая требуется практически для всего, от промышленного производства до наших самых собственное человеческое потребление, которое мы все еще принимаем как должное в течение нашей повседневной жизни.Это также один из самых дешевых способов выработки электроэнергии. Но массовое внедрение ветряных турбин все еще находится в зачаточном состоянии, и правительства многих стран не спешат реагировать на этот жизненно важный фактор, способствующий экономии за счет масштаба, несмотря на активное движение к этой чистой, зеленой форме производства энергии. Так что велики шансы, что ваш район или город еще не используют энергию ветра. И твой дом тоже.

Ветряные генераторы относительно легко и просто сделать, и они могут сэкономить вам много денег на счетах за электроэнергию, если вы сможете построить свои собственные.И именно это и будет попытаться сделать эта статья - помочь вам построить свой собственный ветрогенератор путем сбора и сборки относительно распространенных и дешевых компонентов.

Вы можете обеспечить электроэнергией свой дом прямо на собственном заднем дворе

В настоящее время вы обременены растущими и высокими расходами на электроэнергию и газ, как неустойчивых источников энергии, так и вредных выбросов углекислого газа в атмосферу Земли. Атмосфера. Но знаете ли вы, что наличие собственного ветряного генератора сэкономит вам тысячи долларов, если не больше, в течение всей вашей жизни? Чтобы подчеркнуть это, вот три преимущества наличия собственного самодельного генератора.

  • Стоимость - Мы уже упоминали вероятность значительной экономии. Давайте подробнее остановимся на этом. Большинство городских районов по всему миру еще не подключены к этому устойчивому источнику производства электроэнергии через национальную сеть, и это может быть еще через несколько лет. Однако ваш ветрогенератор на вашем собственном заднем дворе также не подключен ни на национальном, ни на местном уровне, поэтому вы не платите по счетам.
  • Экологическая устойчивость - Ветряная мельница остается одним из самых экологически устойчивых энергетических устройств.Его единственным источником энергии остается ветер, и ничего больше.
  • Чистота и эстетика - Небольшой генератор, как и большие турбины, остается чистым источником производства энергии. А поскольку ваш генератор по сути мал, его можно незаметно разместить в саду, накрыть, когда он не используется, и не будет создавать большого шума при использовании.

Компоненты ветряной турбины

Зайдите на любой веб-сайт во вселенной, и вы обнаружите, что существует множество способов делать что-то или создавать их.Но универсальный принцип, если хотите, всегда остается неизменным. Здесь мы перечисляем основные компоненты, которые необходимы для создания собственной небольшой ветряной турбины или генератора для вашего двора и дома.

  • Инструменты
  • Строим тело
  • Важнейшие лопасти
  • Двигатель
  • Центральная ступица
  • Хвост
  • Башня
  • Диод и батареи

Какие процессы влекут за собой

7

Все это на ваше усмотрение, сколько электроэнергии вы собираетесь производить.Но для практических целей обслуживания новичков эти процессы позволяют начать генерировать минимум, но на удивление большую мощность, чем вы могли представить. Кроме того, вы сосредоточены на производстве зеленой энергии, поэтому не будет слишком много внимания или интенсивного использования традиционных розеток. Начнем с первого шага.

Семь шагов, которым нужно следовать

1. Инструменты - При создании вашего ветрогенератора вы собираетесь начать с таких инструментов, как инструменты для зачистки проводов и паяльники.Для самого генератора вы также будете использовать перерабатываемые предметы, такие как двухлитровые пластиковые бутылки из-под газировки, их крышки, легкие, но тонкие полоски металла, эпоксидной смолы и клея. Вам также понадобятся традиционные инструменты, такие как пила, гаечные ключи и электродрель. Самый важный инструмент - это план строительства.

2. Строительство ветрозащитной площадки. - Теперь давайте поговорим о строительных процессах, которым мы будем следовать. Зона улавливания ветра - это, по сути, компонент, который будет улавливать ветер.Для этого компонента нужно отпилить верхушки пластиковых бутылок (ниже горлышка). Как только вы это сделаете, можете переходить к следующему шагу.

3. Создание парных соединений - В качестве дополнения к созданию зоны защиты от ветра вы можете начать с использования эпоксидной смолы для соединения крышек бутылок вместе, фиксируя их вплотную друг к другу, пока не получите четыре соединительных компонента.

4. Создание «вентилятора» - Он не будет использоваться в качестве вентилятора, но механически он будет работать аналогично. Вы будете вырезать X из металлических полос.Он должен быть не менее фута в длину и не менее одного дюйма в ширину. После того, как вы сделали свой вентилятор, вы можете закрепить свои куплеты эпоксидной смолой на новом вентиляторе. Перед тем, как перейти к следующему этапу, дайте эпоксидной смоле затвердеть.

5. Подсоединение ветрозащиты к вентилятору - Это очень просто; при условии, что вы спроектировали и построили свои куплеты точно в соответствии со спецификациями (по вашему собственному плану или где-то еще), все, что вам нужно сделать здесь, это вкрутить крышки бутылок в куплеты.

6. Сложное дело с генератором - После того, как вы собрали вентилятор, вам все равно нужно добавить генератор. Здесь диоды и батарея служат своей цели. Опять же, используйте эпоксидную смолу, чтобы закрепить оба компонента (генератор и вентилятор). Края, если есть, можно закрепить клеем.

7. Ветрогенератору еще нужно где-то стоять. - Для этого можно построить подставку. Это также зависит от того, какой тип двигателя (генератора) вы спроектировали и построили. В конечном итоге подставка будет небольшой, и прямоугольный кусок дерева можно обрезать и строгать, чтобы создать основу.Когда вы построите подставку, надежно прикрепите к ней генератор и вентилятор. Здесь упор делается на закрепление устройства, чтобы оно оставалось устойчивым в случае сильного ветра, который обычно может опрокинуть это световое устройство. Вы можете использовать механизмы взвешивания, чтобы генератор работал быстро.

Знаете ли вы, что здесь можно использовать даже солнечную энергию?

Вместо батарей и диодов для питания генератора вы могли бы использовать двигатели на солнечной энергии, добавив еще один приятный штрих к вашей миссии, чтобы сделать ваш дом максимально экологически устойчивым.Это также будет зависеть от того, сколько энергии вы собираетесь генерировать для своего дома. В ближайшем будущем все еще возможно сделать ваш дом полностью независимым от вашей национальной сети, будь то энергия ветра или солнца, или и то, и другое (в идеале у вас будет и то, и другое). На данный момент вы можете рассматривать это упражнение как ценную практику.

Преимущества собственного ветрогенератора

В начале этой статьи мы уже упоминали три ключевых преимущества. Однако то, как эта небольшая ветряная турбина принесет вам пользу в долгосрочной перспективе, полностью зависит от вас и ваших непосредственных потребностей и целей.На внутреннем уровне и в завершение этого вводного руководства по созданию небольшого ветряного генератора вот несколько идей, над которыми вы пока можете подумать.

  • Портативное использование - На этом этапе ваша маленькая турбина может не иметь мощности для обеспечения энергией всего вашего дома без использования других традиционных и неустойчивых источников энергии. На данный момент, будучи легким портативным устройством, вы можете варьировать потребление энергии и размещать генератор поблизости от того места, где он нужен.
  • Гейзер с горячей водой - Домашний гейзер с горячей водой остается основным и самым дорогим потребителем электроэнергии в вашем доме.Расставив приоритеты по расходам, вы можете подключить генератор к гейзеру.
  • Подача воды - В прошлом ветряные мельницы использовались для перекачивания воды. Нет причин, по которым ты тоже не можешь этого сделать. Ветряную турбину можно использовать для кормления всего вашего сада, особенно вашего органического огорода.
  • Области фокусировки - Воспользуйтесь преимуществами портативности устройства, а также используйте его в качестве измерительного прибора, чтобы увидеть, какая область вашего дома (кроме гейзера) потребляет больше всего энергии.

Мы надеемся, что это руководство вдохновило вас на поиск новых инновационных способов снабжения вашего дома электроэнергией без помощи неустойчивой электросети. Он также показал вам, что вы можете многое сделать с переработанными предметами, вместо того, чтобы выбрасывать их в мусорное ведро.

Ссылки:

DoitYourself

Изображение предоставлено: Мартин Абегглен, Ларри Смит

Наизусть истинный защитник окружающей среды ❤️.Основанная компания Conserve Energy Future с единственным девизом - предоставлять полезную информацию, связанную с нашей быстро разрушающейся окружающей средой. Если вы твердо не верите в идею Илона Маска сделать Марс еще одной обитаемой планетой, помните, что на самом деле во всей этой вселенной нет «Планеты Б».

Ветроэнергетика на крыше может взлетать, используя ключевой принцип полета

Эта статья была первоначально опубликована в Scientific American и переиздана здесь как часть проекта «Покрытие климата сейчас», глобального журналистского сотрудничества, направленного на усиление освещения истории о климате.

Солнечные панели, расположенные на крышах домов и других зданий, становятся все более распространенным явлением в Соединенных Штатах, но ветряные системы на крышах никогда не прижились. Предыдущие попытки уменьшить количество возвышающихся турбин, генерирующих энергию ветра, до чего-то, что могло бы находиться в доме, сопровождались слишком многими техническими проблемами, чтобы сделать такие устройства практичными. Однако теперь новая конструкция может обойти эти проблемы, используя тот же принцип, который создает подъемную силу для крыльев самолета.

В целом за последние годы в США выросло производство электроэнергии из возобновляемых источников, и ветроэнергетика была основным двигателем этой тенденции. На его долю приходится более 40 процентов электроэнергии из возобновляемых источников в США (хотя только 7 процентов от всего производства электроэнергии).

В отличие от солнечных батарей, которые ограничены сбором энергии в светлое время суток, ветряные турбины могут работать всю ночь в любом месте с подходящими условиями, а именно на открытых равнинах или пологих холмах с постоянно достаточной скоростью ветра.Но помимо этих требований, для больших турбин требуется открытое пространство, которое не всегда доступно вблизи больших и больших городов. Установка ветряных систем на крышах домов и городских зданий может помочь использовать больше этого ресурса.

Когда дело доходит до энергии ветра, размер имеет значение. Количество энергии, которое может генерировать отдельная турбина, пропорционально области движения ее лопастей, поэтому устройства, которые достаточно малы, чтобы поместиться на крыше, менее мощны.

«От успеха распределенного ветра мешает то, что большинство систем представляют собой миниатюрные ветряные турбины», - говорит Брент Хоученс, инженер-механик из Sandia National Laboratories.

Устройства меньшего размера не производят достаточно энергии, чтобы быть рентабельными. Кроме того, их быстро вращающиеся лезвия создают шумную вибрацию, а их многие движущиеся части более склонны к поломке. По сравнению с пассивными солнечными панелями на крыше ветряные турбины могут потребовать довольно больших затрат на техническое обслуживание.

Хоученс и его коллеги думают, что они разработали решение, которое преодолевает эти препятствия, заимствуя фундаментальный принцип полета по воздуху. Изогнутая форма крыла самолета, называемая аэродинамическим профилем, изменяет давление воздуха по обе стороны от него и в конечном итоге создает подъемную силу.

Коллега

Хоученса Карстен Вестергаард, президент Westergaard Solutions и инженер-механик из Техасского технологического университета, говорит, что он соединил два аэродинамических профиля вместе, так что «поток от одного профиля усиливает другой профиль, и они становятся более мощными». Расположенные как два крыла самолета, стоящие вертикально на боку, пара аэродинамических профилей обращена прямо к ветру. По мере прохождения ветра между пленками создается низкое давление, которое всасывает воздух через прорези в их частично полых телах.Это движение воздуха вращает небольшую турбину, заключенную в трубку, и вырабатывает электричество.

Устройство, которое исследователи называют AeroMINE, может отбирать энергию ветра с большей площади, чем лопасти турбины сами по себе.

Благодаря такой конструкции устройство, которое исследователи называют AeroMINE («MINE» означает «Неподвижная, интегрированная экстракция»), может извлекать энергию ветра из большей площади (по сути, прямоугольной поверхности AeroMINE), чем лопасти турбины могли бы сами по себе. в традиционной установке.Хушенс сравнивает такие стандартные турбины с формочками для печенья, которые оставляют потраченное впустую тесто. Новое устройство использует весь доступный ветер, позволяя извлекать больше энергии.

AeroMINE также не создают таких же вибраций и шума, как обычные турбины; По словам Вестергаарда, они «менее шумны, чем вентиляторы». Относительная простота их конструкции означает, что меньше движущихся частей выходит из строя. К турбине, которая находится внутри здания, будет легче получить доступ, если она действительно нуждается в ремонте.Такое расположение также защищает лезвия от любого контакта с людьми или дикими животными. Команда разрабатывает систему так, чтобы ее можно было использовать вместе с солнечными панелями на крыше, подключаясь к существующей инфраструктуре для сбора энергии, которую они генерируют.

«Я думаю, что эта технология может стать новаторской» для районов с хорошими ветровыми условиями, - говорит Лучано Кастильо, инженер-механик из Университета Пердью, который не участвует в проекте, но в прошлом работал с Вестергардом.

Он также считает, что простота AeroMINE может сделать их хорошим вариантом для развивающихся стран, потому что новые устройства не требуют специальных деталей или инструментов и их относительно легко исправить. И Кастильо, и Вестергард видят потенциал использования этой конструкции под водой, чтобы использовать приливную энергию.

Джей Апт, содиректор Центра электроэнергетики Карнеги-Меллона, который также не участвует в проекте, согласен с тем, что простота конструкции привлекательна.Но он не уверен, можно ли масштабировать систему для эффективного производства энергии с достаточно низкими затратами в реальных условиях. Хушенс говорит, что при подходящих ветровых условиях он и его коллеги думают, что AeroMINE могут быть конкурентоспособными с нынешней стоимостью солнечной энергии на крышах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *