Производство ветрогенераторов: Россия начала экспортировать лопасти для ветроустановок

Содержание

Производство ветрогенераторов (ветряков) в России

Серийное производство ветрогенераторов, превышающее 50 штук в месяц, в России и странах СНГ на сегодняшний момент так и не налажено в виду отсутствия на них массового спроса, и лишь несколько производителей в нашей стране осуществляют производство ветряков.

Компания ЭнерджиВинд одна из первых в 2003 году начала

производство ветряных электростанций собственной разработки

Это позволило занять выгодную конкурирующую позицию наряду с зарубежными производителями. Мы стали первым в России производством современных моделей тихоходных ветрогенераторов ручной сборки мощностью от 1 до 10 кВт.

В 2005 году цех экспериментального производства стал разрабатывать собственную радиоэлектронную составляющую ветроэлектростанций. На протяжении всего года проводились эксперименты, в которых проводилось разработка, тестирование и улучшение собственного контроллера. Далее мы стали сами разрабатывать и другие технологические продукты. Всё это позволило сократить расходы в 2-3 раза как на производство, так и на конечную стоимость ветрогенераторов. И сейчас мы предлагаем ветрогенераторы

по стоимости в 2 раза дешевле, чем наши зарубежные конкуренты из развитых стран.

К 2007 году мы хорошо изучили направления потребительского спроса и смогли сформировать «базовые» комплекты оборудования с возможностью их модификации под каждого, конкретного потребителя. Данные варианты представлены в разделе «Ветрянные решения».

С 2009 года и по настоящее время наши клиенты имеют возможность приобрести ветрогенераторы российского производства, имеющие следующие преимущества в сравнении с импортируемыми аналогами:

  • значительно ниже по стоимости;
  • высокое качество комплектующих, в отличие от китайских;
  • выполнение гарантийных обязательств перед потребителем;
  • способны обеспечивать потребителей электроэнергией даже в период безветрия за счет питания от аккумуляторов;
  • ручная сборка.

Ветрогенераторы производства России пользуются достаточным успехом, поскольку ввиду отсутствия электромагнитных и инфразвуковых колебаний не вызывают чувство дискомфорта у людей, при достаточно длительном сроке эксплуатации не нуждаются в сервисном обслуживании и способны работать в любых климатических условиях.

Несмотря на большое количество альтернативных источников энергии, существующих в России и в том числе предлагаемых нами производство ветрогенераторов с тех самых – давних времён остаётся сердцем нашей компании. Постепенно наша компания «обросла» внушительным «панцирем» из отделов продаж, логистики, закупок и прочих структурных подразделений, связанных с её ростом многие из которых, выделились в отдельные и дочерние компании и с 2010 года мы превратились в группу компаний… но «сердце» осталось всё то же — это собственное производство, состоящее из нескольких десятков высококвалифицированных профессионалов. Все наши специалисты имеют многолетний опыт по тем производственным процессам, за которые отвечают.  

В отличие от китайских предприятий, на которых производство ветряных электростанций осуществляется тысячными тиражами, наши ветряки выпускаются в ограниченном количестве, следовательно, качество выполнения каждой станции – на высшем уровне.

В 2011 году нашими клиентами по ветроустановкам уже стали известные государственные и частные компании страны:

  • крупнейший Российский оператор сотовой связи О.А.О. «МТС»
  • «Гидрометцентр России».

Выбор таких гигантов российского рынка являлся лучшим уже на тот момент доказательством нашего профессионализма и опыта, накопленного за годы работы нашего предприятия.

С 2014 года мы объединили коммерческие и инженерные усилия наших компаний с Московским заводом по производству инверторов и силовой электроники.

Это позволило значительно расширить предлагаемый нашими компаниями ассортимент продукции. Мы успешно вошли на такие рынки как Солнечные электростанции и системы бесперебойного питания.

К 2018 году наша группа компаний заняла лидирующие позиции на многих рынках, но настоящей гордостью для нас является даже не тот факт что мы это сделали преимущественно с продукцией собственного и отечественного производства…

А тот факт что не смотря на все кризисы и обстановку в стране в предыдущие годы мы сумели не только сохранить, но и приумножить главное для нас, наши «корни» – производство ветрогенераторов… то самое «сердце» теперь уже общее для группы наших компаний.

Наши установки из далеких 2000-x:

Производство:Тихоходный генераторы, ветрогенераторы, Минкро и Мини ГЭС, волновые электростанции

 

Снижаем цены на солнечные батареи. Выгодные скидки, гарантированное качество.

 

 

Началом отсчета работы нашей фирмы можно считать 2005 год. Именно в этот период возникла необходимость электрификации труднодоступных мест нашей страны, используя при этом установки для выработки энергии из альтернативных источников отечественного образца. Наше предприятие взялось за разработку доступных и надежных установок, способных обеспечить должный уровень обеспечения электроэнергией различных организаций, производств и частных домов.

 

Около 10 лет назад наши конструкторы предложили вниманию покупателей лопастные установки мощностью до 500 вт. Новые разработки устройств, постоянный поиск новых материалов, испытания узлов и механизмов предлагаемых установок позволили добиться абсолютной надежности предлагаемых конструкций.

Сегодня вниманию потенциальных клиентов предлагаются различные модели серийных электростанций с вертикальным расположением ротора, мощность которых лежит в пределах от 0,3 кВт до 3кВт.

Надежность, качество, эффективность

Все ветроустановки прошли предварительные испытания, их надежность и производительность подтверждена необходимыми сертификатами. Наши устройства эффективны даже для тех территорий, на которых скорость ветра не превышает 3 м/с.

Мы постоянно работаем с ветроустановками, используя все современные достижения и новые конструкционные материалы, такие, как

  • высокоуглеродистые металлические сплавы
  • композитные материалы
  • стеклопластик
  • АМГ.

Благодаря этому наши устройства обладают сравнительно небольшим весом. В производстве мы применяем только отечественные комплектующие, что значительно снижает себестоимость конструкций. Таким образом, используя новейшие технологии, разработчики добились высокой эффективности ветроустановок, снижая себестоимость производимой электроэнергии.

 

 

Гарантия и сервисное обслуживание

Абсолютная уверенность в надежности наших ветроустановок позволила нашей компании в 2009 году открыть собственный монтажно-сервисный отдел, в обязанности которого входит монтаж и гарантийное и послегарантийное обслуживание конструкций.

За все время существования нашей компании, работу конструкций достойно оценили тысячи частных лиц и компаний. Мы уверенно называем себя профессионалами, которым по плечу самые неординарные задачи, ведь решая их, мы подтверждаем свою квалификацию и способность достигать новых высот. 

 

 

 

 

 

 

Топ-10 производителей ветротурбин в 2017 году. Обзор.

Vestas укрепляет свой статус номер один, а Siemens-Gamesa переходит на второе место после слияния в начале этого года.

Мы взяли данные FTI Consulting за 2016 год, чтобы сформировать рейтинг – десятку лучших производителей (OEM) ветроэнергетического оборудования, выделить новые тенденции, глобальную совокупную емкость и количество рынков, на которых они в настоящее время активны и их оборудование доступно для заказа, с перспективным прогнозом заказов, продуктов и стратегии компании.

Когда имеете дело с цифрами, выясняется, что Vestas является ведущим мировым поставщиком ветровых турбин. Датский производитель, в том числе оффшорное совместное предприятие MHI Vestas (Mitsubishi Heavy Industries – Vestas), установил больше новых мощностей, чем любая другая компания в течение 2016 года, имеет самую большую совокупную долю на рынке и активно работает на самом высокоразвитом мировом рынке. Goldwind на самом деле продал больше турбин в течение года – 3 656, а Vestas – 3 589, – но средняя мощность его машин составляет 1,8 МВт против 2,5 МВт турбин Vestas. Десять OEM изготовителей, рассмотренных здесь, обеспечили более чем 43 ГВт новых ветроэнергетических мощностей в 2016 году, что составляет 76% мирового рынка и составляет почти 20 000 турбин. Их совокупный потенциал в конце прошлого года составил до 380 ГВт, что составляет более трех четвертей всего мира. Мы рассматривали Siemens и Gamesa как одну компанию после их слияния в начале этого года, хотя в 2016 году они все еще работали как отдельные компании.

Рассматривая Gamesa отдельно, FTI разместил ее четвертым в списке сравнения по новой установленной мощности в 2016 году за Vestas, GE и Goldwind, с установленным 4262 МВт и долей рынка 7,5%. Siemens занял шестое место за Enercon с 3204 МВт и 5,6% соответственно.

1 ВЕСТАС, ДАНИЯ

Вид из ффшорной турбины … Первые машины MHI Vestas V164 8MW теперь работают на британском проекте Burbo Bank Extension

Датский производитель настиг Goldwind с точки зрения новой установленной мощности в 2015 году, но это было в значительной степени результатом необычайного роста установленной мощности в Китае в этом году. С более качественным обслуживанием, возобновленным в 2016 году, Vestas вернулся к топовым позициям. По данным FTI Consulting, в прошлом году он установил почти 9 ГВт, заняв 15,8% мирового рынка.

Ключевое слово здесь – «глобальный», потому что Vestas активно работает на 34 рынках с 2016 года, больше, чем любой другой производитель турбин, сообщает FTI Consulting.

В этом году не было срывов, а компания объявила о значительных заказах на поставку турбин в некоторых доселе необычных местах – от Китая и Южной Кореи до России. США поставляет львиную долю в объеме заказов компании, хотя, в основном, моделей для регионов со средней скоростью ветра V100 и V110 2.0MW. Модели для регионов с низким ветром – с диаметром ротора 116 и 120 метров – были анонсированы в апреле и будут выпущены в следующем году. Более ориентированная на Европу платформа 3 МВт модернизируется на номинальную мощность 4,2 МВт с диаметром ротора 117, 136 и 150 метров. Во многом благодаря требованиям конкурсных торгов, особенно в Германии, основное внимание уделяется моделям для среднего и низкого ветра. Но платформа V117, впервые оринтированная на территории с высокой скоростью ветра, открывает для компании прибрежные рынки в Китае, Японии и Вьетнаме. Совместное предприятие по производству ветрогенераторов для оффшорного рынка MHI Vestas (Mitsubishi Heavy Industries – Vestas) достигло зрелости в 2017 году с вводом в эксплуатацию 258 МВт на Burbo Bank Extension для Dong Energy на северо-западном побережьи Англии.
Проект Burbo Bank был первым, на котором была развернута турбина V164-8.0MW, но заказы на нее идут для оффшорных проектов Великобритании, Германии и Нидерландов. Летом был анонсирован вариант турбины V164 с расширением 9,5 МВт, которая уже заказана для проекта Trogon Knoll от 860 МВт компании Innogy в водах Великобритании. Единственными плохими новостями на морском фронте в течение 2017 года были потери в результате пожара первого прототипа V164 мощностью 9,5 МВт, установленного на наземном испытательном полигоне Osterild в Дании. Приобретение Vestas независимых поставщиков услуг UpWind Solutions и Availon принесло дивиденды. По данным компании, заказы на обслуживание выросли с 1,8 млрд. Евро в 2015 году до 10,7 млрд. Евро. Расширение сервисной еятельности является лишь частью стратегии Vestas, выходящей за рамки основной деятельности по изготовлению и продаже ветротурбин. «Мы определенно перестали принимать себя как просто поставщиков турбины», – говорит вице-президент компании Мортен Дырхолм (Morten Dyrholm).
«Мы смотрим на себя все более целостно, как часть более крупной электроэнергетической системы, где разные технологии должны балансировать друг друга». Так же в самом начале находится направление в технологиях небольших гибридных ветро-солнечных и накопительных систем. В сентябре фирма подтвердила, что работает с производителем электромобилей Tesla по решениям хранения энергии. Пилотные проекты в этой сфере запланированы на 2018 год.

Фокус: Сохранение ведущих позиций на оншорном рынке Риск: Медленный рост глобального оффшорного рынка 2 SIEMENS GAMESA, ГЕРМАНИЯ-ИСПАНИЯ Рекордсмен … Siemens Gamesa должна ввести в эксплуатацию самые высокие в мире турбины: 33 G114.2.0 и G114.2.1 на ветропарке Sarahnlom в Таиланде на башнях высотой 153 метра В результате слияния Siemens и Gamesa, завершившегося 3 апреля, был создан новый гигант в производстве ветротурбин – 75 ГВт установленной мощности в 90 странах, 27 000 сотрудников и широкий спектр наземного и морского оборудования. Шесть месяцев спустя, однако, еще пока не ясно, как Siemens Gamesa Renewable Energy (SGRE) будет сливать свои производственные активы и линейки продуктов. Первый “несчастный случай”, не совсем неожиданный, произошел с 8 МВт турбиной Adven компании Areva, которую Gamesa все же отказалась производить, когда атомная компания Areva покинула ветроэнергетику. Замена редукторного ветрогенератора Adwen турбиной SGRE 8 МВт с прямым приводом для первых оффшорных проектов во Франции послужила причиной смерти машины Adwen. Будущее для своего редуктора, построенного дочерней компанией Siemens под названием Winergy, возможно, найдется в будущих проектах морских турбин от других OEM-производителей, но это отнюдь не обязательно. Другой жертвой стали рабочие места, особенно в производстве лопастей, когда заводы в Канаде и Дании были закрыты или сокращено количество сотрудников. В этом году было сокращено около 500 рабочих мест. Для обих компаний слияния 2017 год был трудным. Gamesa снизила темпы в Бразилии и ее постиг внезапный спад в Индии, когда государственные энергетические компании переключились с тарифной системы субсидирования на конкурсные торги. На сверхконкурентном рынке США компания Vestas и GE превосходят Siemens, к тому же он медленно реагирует на новые требования немецкой системы аукционов. Новая компания после слияния нуждалась в большой победе и одержала ее, получив лидирующую позицию в консорциуме, который выиграл заказ 1ГВт в Турции с предложением стоимости электроэнергии всего € 34,8 / МВтч на 12-13 лет. «По этой цене их примут с распростертыми руками», – был ответ одного конкурирующего OEM-участника торгов. Контракт включает в себя обязательство по созданию производственных мощностей и консалтинговых услуг в Турции, где должны получить работу преимущественно местные жители, и 65% местного контента. Портфель турбин выглядит беспорядочно. Gamesa предлагает платформу 2 МВт с диаметром ротора от 80 до 114 метров; семейство 2,5 МВт с диаметром ротора 106 -126 м; и 3,3 МВт машину с диаметром ротора 132 м. Редукторная машина Siemens на платформе 2.3-2.625 MВт имеет ротор 101-120 м. Безредукторное семейство Siemens турбин для наземного базирования составляет 3,2-4,3 МВт с диаметром ротора 101, 108, 113, 120, 130 и 142 метра. Ситуация более ясна на шельфе, где турбина с прямым приводом SWT-154, представленная как модель мощностью 6 МВт, но теперь усовершенствованная до 8 МВт, имеет конкурента только в лице турбины MHI Vestas V164 в секторе 7 МВт-плюс. Эти две турбины, как полагают, будут доминировать на оффшорном рынке Европы в течение следующего десятилетия и имеют хорошие возможности для использования на зарождающемся оффшорном секторе США. Фокус: Рационализация продуктов и производственных активов Риск: Ослабление позиций в США и Германии  3 GE, США Питер МакКейб, генеральный директор подразделения оншорной ветроэнергетики GE Притяжение внутреннего рынка остается сильным для GE, но американский производитель турбин добился значительного прогресса в ряде других стран, особенно в Азиатско-Тихоокеанском регионе. В мае GE объявила о заказе почти 200 МВт для двух проектов в Китае. Июнь увидел сделку с Mainstream Renewable Power для 800 МВт во Вьетнаме. Основные события в течение лета включали контракт на 153 МВт в Пакистане и сделку 453 МВт в Австралии. Но большие возможности для компании в США, а также в бум, связанный с поэтапным отказом от налога на производство (PTC). Согласно анализу Make Consulting, представленному на конференции Американской ассоциации ветроэнергетики в мае, 50GW новой ветровой энергии будут установлены в США к концу 2020 года, плюс еще 7-8GW в замене старых турбин. GE нацеливается на существенный кусочек этого рынка и сделает все от нее зависящее, чтобы получить его. Теперь GE подает в суд США на своего главного конкурента, Вестас, в споре о нарушении патентных прав. Самый большой до сегодняшнего дня заказ был анонсирован в июне – 800 ветрогенераторов мощностью 2,5 МВт для разработанного компанией Invenergy проекта мощностью 2ГВт Wind Catcher в Оклахоме. А еще один крупный заказ по замене менее мощных ветрогенераторов насчитывает около 500 МВт с PacifiCorp в Айдахо. Предприятие GE в оффшорных водах выглядит менее впечатляющим. 6MW турбина Haliade, приобретенная с Alstom, начала свою коммерческую жизнь, вырабатывая электроэнергию на проекте Deepwater Wind 30МВт, участок Block Island, введенном в эксплуатацию в декабре прошлого года. Еще три турбины устанавливаются на демонстрационном проекте в Китае. Кроме того, есть заказы на три французских проекта мощностью 1,5 ГВт, которые пока в судебных спорах, и 396 МВт для немецкого проекта в Северном море. Номинальная мощность ветрогенератора GE Haliade 6MW и 150-метровый диаметр ротора уже значительно отстают в соревновании с MHI Vestas и SGRE, что вызывает сомнения в его долговременном будущем. Эти сомнения появились еще в мае, когда выяснилось, что Европейская комиссия (ЕС) изучает вопрос о поглощении GE компании, производящей лопасти – LM Wind Power, хотя эта сделка была одобрена ЕС двумя месяцами ранее, на том основании, что GE первоначально представила «вводящую в заблуждение информацию». GE якобы сообщила ЕК, что она не планирует разрабатывать оффшорную турбину мощностью 12 МВт, но регуляторы Европейского союза впоследствии нашли доказательства обратного. Следствие продолжается. GE в значительной степени зависела от своих привычных платформ ветротурбин с рабочей мощностью 1,7-1,85 МВт и 2,0-2,5 МВт. Семейство 3,2-3,8 МВт, ориентированное на европейские рынки, особенно на Германию, изо всех сил пыталось добиться успеха в борьбе с конкурентами со стороны Vestas, Enercon и Nordex, которые в настоящее время работают на турбинах мощностью 4 МВт. GE представила некоторые детали новой машины 4.8MW с рекордным диаметром ротора 158 метров на сентябрьской выставке в Husum. Она будет строиться на участках с низким и средним ветром с высотой башни от 101 до 161 метра. Фокус: Максимально использовать окно PTC Риск: Обеспечение роста, когда это окно закроется 4 GOLDWIND, КИТАЙ Экспортный драйв … Goldwind был самым активным OEM-производителем в Китае и на зарубежных рынках, особенно в США Goldwind был ведущим производителем в мире по установленной мощности в 2015 году, его 7,88 ГВт опередили Vestas и GE. Замедление на китайском рынке означало, что он снизился в годовом рейтинге прошлого года до третьего места, а с созданием Siemens Gamesa Renewable Energy (SGRE) в апреле он упал до четвертого. Goldwind сообщил о 10-процентном падении выручки и 21% – ном снижении прибыли до налогообложения в первой половине 2017 года по сравнению с годом ранее, подтверждая опасения, что замедление темпов ветроэнергетики в Китае может иметь свои результаты. Суммарная установленная мощность компании в конце 2016 года составляла чуть более 38 ГВт, но только 1,4 ГВт приходится на зарубежные рынки. В 2016 году компания поставляла турбины на три рынка за пределами Китая – больше, чем любой из его внутренних конкурентов – и в ближайшие годы объем экспорта компании будет расти. Надежда компании в ее международном арсенале – дочерняя компания Goldwind Americas. К концу прошлого года фирма выиграла сделку 1,87GW для многофазного проекта девелопера Viridis Eolia в Вайоминге. Поставка турбин мощностью 2,5 МВт и 3 МВт должна быть осуществлена в периоде от настоящего времени к 2022 году. К тому же летом этого года Goldwind подписал меморандум о взаимопонимании с правительственными агентствами Саудовской Аравии по исследованию инвестиционных возможностей и потенциальных производственных площадок. Компания добавляет тематику хранилищ энергии в свой каталог. В августе Goldwind подписала письмо о намерениях со шведской компанией SaltX по разработке «решения для ветроэнергетики с интегрированным хранением энергии». Goldwind планирует присоединиться к термальной технологии хранения энергии «мегаваттной шкалы» SaltX в Пекине. Еще один, такой же успешный, как был у компании в 2015-ом году может снова повториться для компании, но таких высот можно будет достигнуть, только применив многоцелевую атаку, компания не может своей целью ставить только количесвенные факторы, необходимо делать упор на инновации и разнообразие. Фокус: Диверсификация бизнеса Риск: замедление домашнего рынка 5 ЭНЕРКОН, ГЕРМАНИЯ Компоненты … Стальные башни для турбин Enercon производятся на производственных объектах в Магдебурге, Германия и Мальмё, Швеция. Выступая на выставке Hannover Messe в апреле, управляющий директор Enercon Ханс-Дитер Кеттвиг (Hans-Dieter Kettwig) прогнозирует валовую производительность компании примерно в 5,5 млрд. Евро на 2017 год, при этом ожидается, что объем установки турбин компании достигнет 4 ГВт. Это увеличение с 3.6GW, достигнутого в 2016 году, как сообщает FTI Consulting. Комментарии Кеттвига дают редкое представление о финансовом состоянии Enercon. Будучи независимым конгломератом компаний – обществ с ограниченной ответственностью, он не подвержен давлению ежеквартальной публичной отчетности, в отличие от конкурентов, котирующихся на бирже. По данным FTI, присутствие Enercon на 26 рынках в прошлом году уступало только Vestas, что свидетельствует о работе на небольших рынках, в том числе в Боливии, Коста-Рике, Эстонии, Тайване и Вьетнаме. Исторически сложилось, что компания избегает США и Китая. Столь же примечательно, что его самой популярной турбиной был E115-3MW – все остальные крупнейшие модели самых продаваемых OEM-производителей были 2,4 МВт или меньше. В этом году возобновился приход Enercon на индийский рынок после завершения десятилетнего юридического спора с его бывшим партнером по совместному предприятию в этой стране, который в настоящее время торгует как WindWorld India. Enercon хочет модернизировать 1200 своих турбин на субконтиненте и приступил к заключению соглашений о неисключительном сотрудничестве с независимыми поставщиками услуг для ремонта и обслуживания. Фирма взяла на вооружение 4-мегаваттную революцию в этом году с запуском турбины с прямым приводом мощностью 4,2 МВт в конце 2016 года. С тех пор ее основные конкуренты последовали этому примеру, и только Enercon полностью изменил курс, раскрыв свой радикальный новый модульный подход к платформе 3.5MW в августе. Широкий спектр технологий компании включает в себя все: от самого маленького EP1 (800-900 кВт), далее EP2 (2-2,35 МВт), EP3 (3.05-3.2MW), EP4 (4.2MW) и заканчивая турбиной EP8 (7.58MW) , С добавлением нового модульного дизайна EP3 3.5MW, Enercon признал переход на аукционные системы по всему миру, что требует производительности по более низкой цене, особенно в Германии, где компания пытается удержать свои позиции как лидера рынка даже принимая во внимание, что этот рынок сокращается. Фокус: Новая модульная турбинная платформа Риск: Переход на конкурсные торги 6 NORDEX GROUP, ГЕРМАНИЯ Приобретение … Приобретением Acciona компания Nordex увеличила свое присутствие в Латинской Америке Ларс Бондо Крогсгаард (Lars Bondo Krogsgaard) занимал кресло генерального директора Nordex менее двух лет и ушел в отставку в марте после того, как компания сократила прогнозы выручки на 2017 и 2018 годы, что вызвало резкое падение его цены акций. Его заменил его заместитель и главный исполнительный директор Хосе Луис Бланко (Jose Luis Blanco), бывший генеральный директор Acciona Windpower. Новости компании за первое полугодие были немного более позитивными по сравнению с прошлым годом, поскольку компания во втором квартале зафиксировала € 572 млн. новых заказов, в результате чего общий объем заказов составил 3,6 млрд евро, включая контракты на обслуживание. Сервисное подразделение в настоящее время быстро расширяется, и его обороты в этом году на 24% выше 2016 года, достигая 150 миллионов евро. Но есть еще боль. В сентябре Бланко объявил о том, что группа рассчитывает сократить на 21 миллиард евро от своих материальных ресурсов и эксплуатационных расходов и еще 24 миллиона расходов на персонал, что приведет к потере от 400 до 500 рабочих мест по всей Европе, в основном в Германии. Переход Германии на конкурентные торги вызвал неопределенность на внутреннем рынке для Nordex, а “чистые” игроки, в том числе Enercon и Senvion, изо всех сил пытаются адаптироваться. «Мы реагируем на изменения в объеме бизнеса, увеличивая его стоимость, чтобы поддерживать нашу прибыльность», – сказал Бланко. Главной новостью на продуктовом фронте стало аносирование в сентябре последней разработки платформы Delta 3MW, выпущенной в 2013 году. Новая модель, рассчитанная на низко- и среднескоростные ветровые регионы, имеет номинальную мощность 4-4,5 МВт и диаметр ротора 149 метров. Первый прототип будет установлен осенью 2018 года, а полномасштабное производство начнется в следующем году. Компания также тестировала 134-метровую трубчатую стальную башню диаметром 4,3 метра, которая позволит предолеть немецкие транспортные ограничения. Фокус: Сокращение затрат, вывод 4,5 МВт на рынок Риск: Вытеснение крупными игроками 7 SENVION, ГЕРМАНИЯ Турбина Senvion MM92 в Калифорнии Согласно данным FTI, принадлежащий США производитель турбин с головным офисом в Германии не смог войти в первую десятку в 2016 году по установленной мощности. Но совокупная установленная мощность, международный охват и портфель турбин поднимают компанию его в нашем рейтинге. За последние 18 месяцев компания обнародовала новые модели своей платформы 3MW, инициировала разработку турбины 10MW-плюс для нового оффшорного рынка, объявила о росте доходов на 4,6% в первом полугодии 2017 года и планирует сократить 780 рабочих мест , главным образом на производственных площадках в Германии. Компания переходит на два года в режим «трансформации», пояснил генеральный директор Юрген Гейсфингер (Jürgen Geissinger). Бывший шеф компании Шеффлер (Schaeffler) занимал эту должность почти два года. За это время компания вышла на 6 новых рынков с поставками в Хорватию, Чили, Норвегию, Ирландию, Сербию и Италию (оффшор), а также беспокойное возвращение в Индию после ее продажи от предыдущего владельца Suzlon компании Centerbridge Partners в 2015 году. Портфель Сенвион на оншорном рынке варьируется от серии MM 2-2.05MW, из которых MM92 является бестселлером, до 3.7M144, который был представлен в Husum в сентябре этого года. Эта турбина уже была законтрактована для проекта 429 МВт в Австралии. Фокус: Реструктуризация для обеспечения конкурентоспособности Риск: Усиление конкуренции и консолидаций 8 UNITED POWER, КИТАЙ В Тибете установлена турбина мощностью 1,5 МВт Полностью принадлежащая компании China Guodian Corporation, одного из пяти крупнейших в стране государственных энергогенераторов, United Power ощутила последствия замедления объемов установки ветровых турбин в Китае. Согласно FTI, United Power установила 3.09 ГВт новых мощностей в 2015 году, все это в Китае, что составило 4,9% доли всего мирового рынка. В 2016 году объем снизился до 2,13 ГВт, 3,8%. United Power остается вторым по величине производителем турбин в Китае, хотя и значительно отстает от Goldwind. Продажи компании сосредоточены на турбине мощностью 1,5 МВт с диаметром ветроколеса 86 м, разработанной немецкой консалтинговой компанией Aerodyn Engineering. На европейскую экспертизу компании также повлияла турбина мощностью 2 МВт (97-метровый диаметр ротора) и модель 3 МВт (120 метров). Несколько лет назад был представлен прототип морской турбины 6 МВт с диаметром ротора 136 метров, но в 2016 году United Power не занималась оффшорным бизнесом. Фокус: Выжидание, пока рынок не улучшится Риск: Отставание по технологиям 9 ENVISION ENERGY, КИТАЙ Турбина мощностью 1,5 МВт Envision с диаметром ротора 93 метра Envision изучает новые рынки и новые технологии, чтобы компенсировать относительное замедление отрасли в Китае. Компания установила чуть более 2GW в 2016 году, главным образом на домашнем рынке, но выиграла сделку в 90 миллионов долларов в Мексике и подписала контракты на 185 миллионов долларов в Аргентине. Фирма приобрела французский береговой ветропарк европейского девелопера Velocita Energy Developments, который включает в себя линейку площадок мощностью 500 МВт. Он также сделал “домашнее задание” в Индии, предвосхитив возможный выход на четвертый по величине рынок в мире. В прошлом году европейский консорциум выбрал турбины Envision для оснащения своими сверхпроводниковыми генераторами прямого привода – устройство, которое, как утверждается, способно утроить выработку электроэнергии. В 2016 году фирма представила свою энергетическую аналитическую платформу EnSight и систему EnOS, которая, по ее утверждению, может управлять «всеми видами энергетической инфраструктуры», от ветровых турбин до накопителей и интеллектуальными сетями до бытовых приборов. Технологические гиганты обратили внимание, и в этом году Microsoft и Accenture объединились с Envision для разработки программ для интернета вещей. Фокус: Разработка интеллектуальных программных пакетов Риск: Слабое присутствие на существующих рынках 10 СУЗЛОН, ИНДИЯ Открытый люк … Инженер, проверяющий турбину Сузлон в Индии Ведущий отечественный производитель турбин в Индии входит в первую десятку на фоне своих исторических данных и будущих перспектив своего внутреннего рынка. Он установил 1.14GW в 2016 году, поставивших его на 16 место в таблице ведущих поставщиков ветряных турбин FTI. Но он занимает восьмое место по объему, с 16,8 ГВт турбин, работающих в Северной и Латинской Америке, Европе и Австралии. Амбициозные цели Индии предлагают широкие возможности для роста, не в последнюю очередь в проектах замены турбин, но другие производители смотрят на этот выгодный рынок, и Сузлон должен будет продолжить свою работу на технологическом фронте. Фокус: Увеличение доли рынка в Индии Риск: Ужесточение конкуренции. Источник    

Ветропарки: защита климата в ущерб живой природе? | Анализ событий в политической жизни и обществе Германии | DW

Угольная электрогенерация, фрекинг для добычи природного газа, бурение нефтяных скважин... Такие темы  сегодня все чаще выводят на улицы защитников окружающей среды. Но и возобновляемые источники энергии также могут быть весьма спорными - даже с точки зрения экоактивистов.

Рассказывая о том, что рядом с ее домом планируют вырубить лес под новый ветропарк, Габриэле Нихаус-Юбель (Gabriele Niehaus-Uebel), по ее собственным словам, ощущает бессилие, беспомощность и ярость. Она - лидер гражданской инициативы по борьбе со строительством 20-турбинной ветряной электростанции в федеральной земле Гессен.

Акция в защиту Хамбахского леса

Хотя планы по строительству этого объекта предусматривают вырубку менее двух процентов леса, Габриэль говорит, что это все равно разрушит "ранее нетронутую экосистему". Она сравнивает лесной массив в Гессене с уникальным Хамбахским лесом недалеко от Кельна, уже много лет находящимся под угрозой вырубки: концерн RWE планирует расширить свой угольный карьер. "Экологи и активисты там сражаются за каждое дерево, и об этом постоянно пишут в СМИ. Здесь у нас хотят вырубить 200 квадратных километров - и нигде ни слова об этом не говорят", - возмущается Нихаус-Юбель.

Использование энергии ветра будет расти

Спор по поводу целесообразности строительства ветряных электростанций в Германии идет уже много лет. "У ветроэнергетики всегда было много противников, - говорит генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер (Stefan Gsänger). - И это нормально в условиях любых изменений, происходящих демократическим путем".  

Как говорится на сайте объединения, возглавляемого Нихаус-Юбель, эта группа -  лишь одна из примерно 1000 гражданских инициатив, выступающих против строительства ветропарков. Между тем ветроэнергетика позволяет частично удовлетворить растущий мировой спрос на электроэнергию. По оценкам экспертов, в ближайшие двадцать лет использование этого источника энергии возрастет на 30 процентов, снижая при этом темпы изменения климата.

У ветропарков есть немало противников

Специалисты WWEA утверждают, что ветряные турбины, введенные в эксплуатацию до конца 2018 года, способны удовлетворять около шести процентов мирового спроса на электроэнергию. При этом, как сообщает Международное агентство по возобновляемым источникам энергии, доля производства энергии на возобновляемых источниках вырастет с 25% в 2017 году до 85% к 2050 году - в основном за счет использования энергии солнца и ветра. И учитывая глобальные масштабы этих изменений, недооценивать влияние ветряных электростанций на окружающую среду было бы крайне недальновидно.

Опасность для птиц и летучих мышей

Особую опасность ветровые турбины представляют для птиц и летучих мышей. У хищных птиц, к примеру, при необычайной остроте зрения, есть и "мертвая зона": наклоняя при поиске добычи голову вниз, они не видят того, что находится прямо по курсу, и если птица летит в сторону ветрогенератора, столкновение с его лопастями почти неизбежно. А летучие мыши становятся жертвами ветряка, даже с ним не сталкиваясь: приблизившись к нему менее чем на 100 метров, животные попадают в зону низкого давления и погибают от внутреннего кровоизлияния, вызванного резким расширением легких. 

На юге Испании - в провинции Эстремадура - из-за ошибок на этапе планирования ветропарки были построены на пути миграций огромного количества перелетных птиц через Гибралтар. Этот факт, говорится в докладе испанского отделения орнитологического сообщества SEO BirdLife, может негативно отразиться на популяциях птиц всего северного полушария и угрожать отдельным редким видам, таким, как испанский королевский орел.

В ряде других исследований, впрочем, утверждается, что от столкновения с ветряными турбинами птицы гибнут гораздо реже, чем от других причин, связанных с деятельностью человека. В США, к примеру, чаще всего птицы становятся жертвами домашних кошек, сотни миллионов птиц ежегодно врезаются в окна высотных зданий и лобовые стекла движущихся автомобилей, десятки миллионов гибнут на линиях электропередач.

Однако испанские орнитологи из SEO BirdLife настаивают на том, что подобные исследования несовершенны, поскольку их выводы основаны на небольших размерах выборки. "Нельзя упускать из виду и тот факт, что даже невысокая смертность может иметь решающее значение для видов, находящихся под угрозой исчезновения, или с очень низким уровнем размножения", - говорится в отчете группы.

Как минимизировать опасность от ветряков для живой природы?

За пределами Европы - в Южной Африке - местное отделение орнитологического сообщества BirdLife недавно отпраздновало победу: благодаря его усилиям, в горном массиве Грут Винтерхоек примерно в 120 км от Кейптауна было отменено строительство ветропарка, появление которого могло бы стать угрозой для редких видов птиц. Южноафриканское отделение координирует работу Целевой группы по вопросам энергетики, созданной в соответствии с Конвенцией ООН по сохранению мигрирующих видов диких животных (CMS). Одной из ее задач является определение территорий, где можно строить объекты возобновляемой энергетики без вреда популяциям птиц.

Многие эксперты сходятся во мнении, что правильное расположение ветропарков и технологические усовершенствования в большинстве случаев позволят минимизировать опасность ветрогенераторов для биологического разнообразия. Довольно эффективным, на их взгляд, может стать выборочное отключение турбин в местах массового скопления перелетных птиц.

Выборочное отключение турбин уменьшает вероятность столкновения птиц с лопастями

Исследование 2012 года, опубликованное в ведущем международном журнале в области биологии и охраны природы Biological Conservation, зафиксировало 50-процентное снижение смертности стервятников на 13 ветряных электростанциях в Кадисе, на юге Испании, после того, как турбины стали выключать в момент приближения к ним птиц. Производство электроэнергии при этом снижалось всего на 0,7 процента в год.

Эксперты Американского института изучения природы ветра (AWWI) проанализировали случаи гибели птиц от столкновения с ветряными турбинами и пришли к выводу, что уменьшение скорости вращения лопастей при низкой скорости ветра может сократить число смертельных случаев на 50-87 процентов.

Кому должны принадлежать ветрогенераторы?

И хотя экологам не всегда удается предотвратить строительство ветропарков и свести к нулю их опасность для птиц и летучих мышей, эксперты убеждены в том, что отношение к ним будет более позитивным, если к дискуссиям, связанным с использованием альтернативных источников энергии, привлекать жителей тех регионов, где устанавливаются ветрогенераторы.

Позитивное отношение к ветровой электрогенерации можно сформировать, если "максимально вовлекать к обсуждению этой темы всех, на чью жизнь влияет строительство ветряных электростанций, и изначально гарантировать им максимально возможные права собственности и преимущества", - уверен генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер.

В развивающихся странах, таких, как, к примеру, Мали, возобновляемые источники энергии играют особенно важную роль в преодолении бедности, и передача их в собственность местным общинам может изменить ситуацию к лучшему, убежден Гзенгер. "У людей была бы не только энергия, но и контроль над ней", - объясняет он.

В одном взгляды сторонника строительства ветряных электростанций Штефана Гзенгера и их активного противника Габриэле Нихаус-Юбель сходятся: если ветрогенераторы передать в собственность людям и позволить им принимать участие в решении всех важных вопросов, связанных с эксплуатацией, это поможет уменьшить негативное воздействие ветряных электростанций на окружающую среду. Ведь люди, которым принадлежит земля, любят и ценят ее больше, чем кто-либо другой.

______________

Подписывайтесь на наши каналы о России, Германии и Европе в | Twitter | Facebook | YouTube | Telegram 

 Смотрите также:

  • Альтернативные ландшафты Германии

    Дисен-ам-Аммерзе (Бавария) • На прошлой июльской неделе мы опубликовали этот снимок из Баварии в нашей рубрике "Кадр за кадром" - причем, руководствуясь чисто эстетическими соображениями: не смогли пройти мимо столь живописного ландшафта. Публикация этого пейзажа с солнечными батареями вызвала оживленное обсуждение в соцсетях - о пользе и вреде возобновляемых источников энергии.

  • Альтернативные ландшафты Германии

    Лемвердер (Нижней Саксония) • Поэтому сегодня продолжим тему солнечных панелей и ветряков на немецких просторах. На возобновляемые источники в Германии уже приходится более 40 процентов всего объема вырабатываемой электроэнергии.

  • Альтернативные ландшафты Германии

    Ульм (Баден-Вюртемберг) • При этом официальная немецкая статистика в этих данных учитывает энергию ветра, солнца, воды, а также получаемую разными путями из биомассы и органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Якобсдорф (Бранденбург) • В 2018 году на наземные (оншорные) и морские (офшорные) ветроэнергетические установки и парки в Германии пришлась почти половина всего объема произведенной возобновляемой энергии - 41 % и 8 % соответственно.

  • Альтернативные ландшафты Германии

    Пайц (Бранденбург) • Доля солнечных электростанций в этом возобновляемом энергетическом "коктейле" достигла 20 %.

  • Альтернативные ландшафты Германии

    Юнде (Нижняя Саксония) • Ровно столько же, то есть 20 % пришлось на использование биомассы в качестве альтернативного источника электрической энергии. Еще три процента дает использование органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Хаймбах (Северный Рейн - Вестфалия) • Оставшиеся семь процентов возобновляемой энергии приходятся на ГЭС. Возможности для строительства гидроэлектростанций в Германии ограничены, но используются эти ресурсы уже очень давно. Эту электростанцию в регионе Айфель построили в 1905 году. Оснащенная современными турбинами, она исправно работает до сих пор.

  • Альтернативные ландшафты Германии

    Халлиг Хооге (Шлезвиг-Гольштейн) • Для полноты картины приведем расклад по всем источникам в Германии за 2018 год: АЭС - 13,3 %, бурый уголь - 24,1 %, каменный уголь - 14,0 %, природный газ - 7,4 %, ГЭС - 3,2 %, ветер - 20,2%, солнце - 8,5 %, биомасса - 8,3 %.

  • Альтернативные ландшафты Германии

    Гарцвайлер (Северный Рейн - Вестфалия) • В 2038 году в Германии намерены полностью отказаться от сжигания бурого угля для получения электроэнергии. Последний атомный реактор, согласно решению федерального правительства, должны вывести из эксплуатации в 2022 году. В прошлом году на АЭС и бурый уголь пришлось более 37 %, которые необходимо будет чем-то замещать.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • По данным на конец 2018 года в Германии насчитывалось более 29 тысяч наземных ветроэнергетических турбин. В прибрежных морских водах Германии расположено еще около 1350 ветряков, однако более четырех десятков из них еще не были подключены в энергетическую сеть.

  • Альтернативные ландшафты Германии

    Северное море (Шлезвиг-Гольштейн) • Серьезную проблему представляет необходимость строительства новых энергетических трасс для транспортировки энергии из северных регионов, где ветер дует чаще и сильнее (здесь много таких турбин), к потребителям в западные и южные части Германии.

  • Альтернативные ландшафты Германии

    Лебус (Бранденбург) • Эти планы вызывают протесты жителей в тех густонаселенных регионах, по которым линии электропередач должны проходить. В некоторых местах люди требуют убирать высоковольтные ЛЭП под землю.

  • Альтернативные ландшафты Германии

    Рюген (Мекленбург - Передняя Померания) • Планы установки новых ветроэнергетических турбин в разных регионах все чаще наталкиваются в Германии на сопротивление со стороны населения. Соответствующие судебные иски часто имеют успех, что уже заметно сказывается на годовых показателях роста отрасли - тем более, что подходящие места становится находить все труднее.

  • Альтернативные ландшафты Германии

    Вормс (Рейнланд-Пфальц) • Согласно данным службы Deutsche WindGuard, в 2018 году в Германии было введено в эксплуатацию всего 743 новых ветряка. При этом предыдущий 2017 год оказался рекордным в истории развития этого вида возобновляемой энергии в ФРГ: почти 1849 новых установок.

  • Альтернативные ландшафты Германии

    Дассов (Мекленбург - Передняя Померания) • Всего в Германии сейчас насчитывается около тысячи гражданских инициатив, выступающих против строительства новых ветряков. Их сторонники считают, что эти установки разрушают жизненное пространство птиц и летучих мышей, уродуют ландшафты, а инфразвук и прочий постоянный шум этих установок вредит здоровью людей, живущих по соседству.

  • Альтернативные ландшафты Германии

    Восточная Фризия (Нижняя Саксония) • Эти инициативы требуют, в частности, в качестве альтернативы рассматривать газовые и паровые электростанции, повышать эффективность угольных станций, а также пересмотреть решение парламента и правительства Германии об отказе от атомной энергии.

  • Альтернативные ландшафты Германии

    Зауэрланд (Северный Рейн - Вестфалия) • Представители отрасли обычно указывают на недоказанность негативного влияния инфразвука на здоровье. Что касается гибели птиц из-за ветровых установок, специалисты называют разные цифры, максимум - до 200 тысяч в год в целом по Германии. Для сравнения: в результате столкновений со стеклами окон и фасадов погибает около 18 миллионов птиц в год.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • Летучих мышей гибнет более 100 тысяч в год (по некоторым оценкам, втрое больше) - не только от столкновений с лопастями, но и из-за травм, получаемых в результате завихрений воздуха, когда они пролетают рядом. Много гибнет во время сезонной миграции. Эксперты требуют учитывать эти факторы - в частности, отключать ветряки в часы особой активности летучих мышей.

  • Альтернативные ландшафты Германии

    Бедбург-Хау (Северный Рейн - Вестфалия) • Правила выбора мест для ветряков регулируются земельными законами. Например, в Северном Рейне - Вестфалии минимальное расстояние до жилых построек составляет 1500 метров, в Тюрингии - 750 метров. В Баварии это расстояние вычисляется по формуле "Высота установки х 10", то есть, например, два километра между жилыми зданиями и двухсотметровым ветряком.

  • Альтернативные ландшафты Германии

    Ренцов (Мекленбург - Передняя Померания) • Дискуссии о развитии возобновляемых источников энергии часто ведутся в Германии эмоционально и будут продолжаться в обозримом будущем. Чтобы повысить готовность населения видеть в окрестностях такие установки, предлагается, в частности, отчислять дополнительную часть доходов конкретным регионам на различные нужные и полезные для местных жителей проекты.

    Автор: Максим Нелюбин


В Германии тестируют плавучий ветрогенератор для глубоких морей | Анализ событий в политической жизни и обществе Германии | DW

Сначала озеро, потом Балтийское море, затем тихоокеанское побережье Китая. Таков план испытаний новой технологии для получения возобновляемой энергии с помощью ветра. На севере Германии близ Бремерхафена энергетическая компания EnBW и инженерная фирма Aerodyn Engineering начали тестировать плавучий ветрогенератор. Точнее, его модель в масштабе 1:10. Проект получил название Nezzy2.

EnBW - специалист по морским ветропаркам

EnBW уже имеет немалый опыт в области морской ветроэнергетики. С 2011 года компания эксплуатирует на Балтике первый в Германии коммерческий морской ветропарк, состоящий из 21 ветрогенератора, в 2015 году недалеко от него вошел в строй значительно более крупный парк с 80 ветряками, с января 2020 года еще 87 мощных турбин в двух парках на Северном море обеспечивают "зеленой" электроэнергией статистически 710 тысяч домашних хозяйств.

Канцлер ФРГ Ангела Меркель облетает в 2011 году первый в Германии морской ветропарк Baltic 1

Компания намерена и дальше ускоренно развивать морскую ветроэнергетику, в том числе со своей французской дочерней компанией Valeco, поскольку в Германии на суше установка ветряков все чаще наталкивается на сопротивление местного населения. На море - другая проблема, техническая: ставить на дно ветрогенераторы экономически целесообразно при глубине не более 50 метров. Так что относительно мелкие Балтийское и Северное моря для этих целей подходят, но вот уже на атлантическом побережье Франции с имеющимися технологиями особо не развернешься.     

Значит, нужны не стационарные, а плавучие ветряки. Их разработкой уже около десяти лет занимается созданная в 1997 году в городке Рендсбурге на севере Германии фирма Aerodyn Engineering, специализирующаяся на разработке технических решений для ветряков. Тестирование своего предыдущего проекта Nezzy она провела в 2018 году у глубоких тихоокеанских берегов Японии.

Nezzyбросит якорь в Китае

И вот теперь - проект Nezzy2, состоящий уже из двух соединенных друг с другом ветряков высотой в 18 метров. Они закреплены на плавающем бетонном фундаменте, который находится чуть ниже поверхности воды, так что со стороны видны только три удерживающих его на нужной глубине "поплавка". Фундамент закреплен на дне шестью якорями.

Стоящую на якорях конструкцию Nezzy2 держат на воде три "поплавка"

Два ветрогенератора делают плавучую конструкцию более стабильной, это доказали испытания модели в масштабе 1:36, успешно проведенные в специальной установке с искусственными волнами в Корке в Ирландии. Начавшийся теперь первый этап испытаний 18-метровой модели проходит в Германии на озере глубиной в 10 метров, что в масштабе 1:1 соответствовало бы 100 метрам. Поскольку здесь нет ни волн, ни течения, то тестируется главных образом работа самих ветрогенераторов.

Затем в течение двух с половиной месяцев модель Nezzy2 собираются испытывать в Балтийском море, после чего конструкцию полностью демонтируют, чтобы в конце 2021 года совместно с китайским партнером начать у берегов КНР испытания конечного варианта плавучего ветрогенератора высотой в 180 метров и общей мощностью в 15 МВт. 

Плавучие ветропарки - это уже не фантастика

"Потенциал у новой технологии огромный. Ее можно будет применять в странах и на морских территориях с большими глубинами, что расширит возможности возобновляемой энергетики", - убеждена Ханна Кёниг (Hannah König), возглавляющая в EnBW отдел ветряной и морской техники.

"Мы убеждены, что Nezzy2 позволит мировой ветряной энергетике в будущем производить на море из ветра еще более выгодную электроэнергию", - указывает исполнительный директор Aerodyn Engineering Зёнке Зигфридсен (Sönke Siegfriedsen). Ведь плавучие ветряки будут монтировать на берегу, а потом уже готовую конструкцию просто буксировать на нужную позицию, что существенно дешевле установки посреди моря стационарного ветрогенератора.

Китай активно развивает ВИЭ. Этот морской ветропарк вблизи Шанхая был сооружен более десяти лет назад

Над плавучими ветрогенераторами работают сейчас далеко не только EnBW и Aerodyn Engineering. Наиболее известным проектом является Hywind Scotland - первый в мире плавучий ветропарк из пяти ветряков по 6 МВт, сооруженный в 2017 году в Северном море норвежским энергетическим концерном Equinor у берегов Шотландии. Схожие проекты с разными технологиями имеются в Португалии, Испании, Франции, Японии.

Так что плавающие в относительно глубоких водах Атлантического и Тихого океанов ветряки - это уже не фантастика, а начавшийся завтрашний день. EnBW стремится ускорить его приход, но при этом не забывает про "традиционные" ветропарки. Еще один мощностью в 900 МВт, в котором будет до 100 закрепленных на дне Северного моря башен, компания планирует соорудить к 2025 году. 

Смотрите также:

  • Технологии хранения энергии из возобновляемых источников

    Электростанция из аккумуляторов

    Как хранить в промышленных масштабах излишки электроэнергии, выработанной ветрогенераторами и солнечными панелями? Соединить как можно больше аккумуляторов! В Германии эту технологию с 2014 года отрабатывают в институте общества Фраунгофера в Магдебурге (фото). По соседству, в Шверине, тогда же заработала крупнейшая в Европе коммерческая аккумуляторная электростанция фирмы WEMAG мощностью 10 МВт.

  • Технологии хранения энергии из возобновляемых источников

    Большие батареи на маленьком острове

    Крупнейшие аккумуляторные электростанции действуют в США и странах Азии. А на карибском острове Синт-Эстатиус (Нидерландские Антилы) с помощью этой технологии резко снизили завоз топлива для дизельных электрогенераторов. Днем местных жителей, их около 4 тысяч, электричеством с 2016 года снабжает солнечная электростанция, а вечером и ночью - ее аккумуляторы, установленные фирмой из ФРГ.

  • Технологии хранения энергии из возобновляемых источников

    Главное - хорошие насосы

    Гидроаккумулирующие электростанции (ГАЭС) - старейшая и хорошо отработанная технология хранения электроэнергии. Когда она в избытке, электронасосы перекачивают воду из нижнего водоема в верхний. Когда она нужна, вода сбрасывается вниз и приводит в действие гидрогенератор. Однако далеко не везде можно найти подходящий водоем и нужный перепад высот. В Хердеке в Рурской области условия подходящие.

  • Технологии хранения энергии из возобновляемых источников

    Место хранения - норвежские фьорды

    Оптимальные природные условия для ГАЭС - в норвежских фьордах. Поэтому по такому кабелю с 2020 года подводная высоковольтная линия электропередачи NordLink длиной в 623 километра и мощностью в 1400 МВт будет перебрасывать излишки электроэнергии из ветропарков Северной Германии, где совершенно плоский рельеф, на скалистое побережье Норвегии. И там они будут храниться до востребования.

  • Технологии хранения энергии из возобновляемых источников

    Электроэнергия превращается в газ

    Избытки электроэнергии можно хранить в виде газа. Методом электролиза из обычной воды выделяется водород, который с помощью СО2 превращается в метан. Его закачивают в газохранилища или на месте используют для заправки автомобилей. Идея технологии Power-to-Gas родилась в 2008 году в ФРГ, сейчас здесь около 30 опытно-промышленных установок. На снимке - пилотный проект в Рапперсвиле (Швейцария).

  • Технологии хранения энергии из возобновляемых источников

    Водород в сжиженном виде

    Идея Power-to-Gas дала толчок разработкам в разных направлениях. Зачем, к примеру, превращать в метан полученный благодаря электролизу водород? Он и сам по себе отличное топливо! Но как транспортировать этот быстро воспламеняющийся газ? Ученые университета Эрлангена-Нюрнберга и фирма Hydrogenious Technologies разработали технологию его безопасной перевозки в цистернах с органической жидкостью.

  • Технологии хранения энергии из возобновляемых источников

    В чем тут соль?

    Соль тут в тех круглых резервуарах, которые установлены посреди солнечной электростанции на краю Сахары близ города Уарзазат в Марокко. Хранящаяся в них расплавленная соль выступает в роли аккумуляторной системы. Днем ее нагревают, а ночью используют накопленное тепло для производства водяного пара, подаваемого в турбину для производства электричества.

  • Технологии хранения энергии из возобновляемых источников

    Каверна в роли подземной батарейки

    На северо-западе Германии много каверн - пещер в соляных пластах. Одну из них энергетическая компания EWE и ученые университета Йены превратили в полигон для испытания технологии хранения электроэнергии в соляном растворе, обогащенном особыми полимерами, которые значительно повышают эффективность химических процессов. По сути дела, речь идет о попытке создать гигантскую подземную батарейку.

  • Технологии хранения энергии из возобновляемых источников

    Крупнейший "кипятильник" Европы

    Человечество давно уже использует тепло для производства электроэнергии. Возобновляемая энергетика поставила задачу, наоборот, превращать электричество, в том числе и избыточное, в тепло (Power-to-Heat). Строительство в Берлине крупнейшего "кипятильника" Европы мощностью 120 МВт для отопления 30 тысяч домашних хозяйств компания Vattenfall намерена завершить к концу 2019 года.

  • Технологии хранения энергии из возобновляемых источников

    Накопители энергии на четырех колесах

    Когда по дорогам мира будут бегать миллионы электромобилей с мощными аккумуляторными батареями, они превратятся в еще один крупный накопитель энергии из возобновляемых источников. Этому поспособствуют умные сети энергоснабжения (Smart grid): они будут стимулировать подзарядку по низким ценам в моменты избытка электричества. (На фото - заправка для электромобилей в Китае).

    Автор: Андрей Гурков


 

Завод в Оренбуржье планирует выпускать ветряки собственной разработки для условий Арктики - Экономика и бизнес

ОРЕНБУРГ, 13 июня. /ТАСС/. Тюльганский электромеханический завод (ООО "ТЭМЗ") в Оренбургской области зарегистрировал в государственной информационной системе промышленности технологию изготовления лопастей ветроэнергетической установки с углеволоконным поверхностным слоем. Он необходим для обогрева деталей при использовании ветряка в условиях Арктики, сообщил в субботу ТАСС генеральный директор предприятия Сергей Колесников.

"Несколько лет назад завод получил заказ на поставку ветрогенератора арктического исполнения в город Лабытнанги: требовалось решить серьезную проблему с обледенением лопастей в жестких полярных условиях. Идея использовать углеволокно в качестве источника обогрева лопастей ветрогенератора возникла у главного инженера нашего завода. Данная технология является своего рода ноухау ООО "ТЭМЗ". Возможно, это ранее кто-то уже применял, но нам такие примеры не известны. В настоящий момент на стадии подписания находится договор с одним из государственных заказчиков на поставку ветроэнергетической установки арктического исполнения, эта продукция востребована для работы в условиях Арктики", - сказал Колесников.

Тюльганский электромеханический завод в настоящее время производит электротехническую продукцию для распределительных электрических сетей, а также развивает направление ветроэнергетики. Ветрогенераторы для использования в условиях Крайнего Севера являются перспективным видом продукции компании, отметил Колесников. Отладка серийного производства потребует финансовых вложений и времени, но завод готов к модернизации и увеличению количества рабочих мест в случае появления заказов.

Конкурентное преимущество

Колесников объяснил, что в мире есть признанные лидеры по производству ветрогенераторов, но их ветряки большой мощности и огромных размеров не подходят к применению в условиях Арктики. Их сложно доставить и смонтировать, а вырабатываемая мощность является избыточной для наиболее часто встречающихся на Крайнем Севере объектов - военных, научно-исследовательских, нефтегазодобывающих.

"Арктика нуждается в компактных ветрогенераторах средней мощности, которые будут легко монтироваться и доставляться. Например, наша установка умещается в 20-футовый контейнер вместе с лопастями и башней, которая будет легко разбираться, собираться и подниматься с помощью лебедочного механизма. Конечно, подобные предложения есть от зарубежных стран, но пока мы можем выиграть за счет низкой себестоимости при не уступающем качестве. На данный момент наша продукция более конкурентная по сравнению с установками из США, Дании или Китая", - уточнил Колесников.

Руководитель предприятия считает стратегически важной задачей обеспечить объекты в Арктике ветроустановками именно отечественного производства. Тюльганский электромеханический завод рассчитывает на развитие этого сегмента и появление новых заказов.

"Сейчас арктический Север электроснабжается за счет дизельных станций, которые там установлены, соответственно, необходимо обеспечить подвоз топлива, с чем возникают дополнительные трудности. Это все повышает себестоимость электроэнергии. Наша технология позволяет использовать в условиях Арктики ветрогенераторы, что снизит затраты на электроснабжение и даст импульс для развития этой зоны", - добавил он.

Завод Vestas и РОСНАНО выпустили юбилейную лопасть - Пресс-центр

Стопятидесятая, юбилейная. Завод по производству лопастей для ветроустановок «Вестас» появился в регионе в первом квартале прошлого года. Но уже вышел на серийное производство.

Оно началось именно с выпуска 150-й лопасти. Все технологии освоены, 380 рабочих предприятия планируют увеличивать мощности.

Кимал Юсупов, генеральный директор ООО «Вестас Мэньюфэкчуринг РУС»: «В этом году мы планируем произвести 250 лопастей с дальнейшим увеличением количества. Что касается планов по самому производству, то его достаточно, и оно спланировано для целей текущей программы, действие которой распространяется до 2024 года включительно».

В добрый путь юбилейную лопасть отправили губернатор Сергей Морозов и полпред президента в Приволжском федеральном округе Игорь Комаров, поставив на ней свои росписи. Служить махина размером 12,5 тонны и длиной 62 метра будет в одном из ветропарков Астраханской области или Калмыкии. Туда ее предстоит доставить и по земле, и по воде. Проблем с логистикой на предприятии не возникает. Готовится выход и на заграничные рынки.

Махмуд Буриханов, управляющий директор ООО УК «РОСНАНО»: «Предприятие создало необходимый задел, и мы готовы поставлять продукцию как на внутренний рынок, так и на внешний».

Единственное в России производство компонентов ветрогенераторов создано по специальному инвестиционному контракту между компанией «Вестас», Министерством промышленности и торговли РФ и Ульяновской областью. Специнвестконтракт, заключенный на восемь лет, стал первым в отечественном энергомашиностроении. Уникальные компетенции создают в Ульяновске устойчивую основу для программы поддержки возобновляемой энергетики до 2035 года.

Производство ветроэнергетики и цепочка поставок

Рынок ветроэнергетики США за последние годы существенно вырос и превратился во все более сложную цепочку поставок. В США более 500 производственных предприятий, специализирующихся на компонентах ветра, таких как лопасти, башни и генераторы, а также на сборке турбин по всей стране. Фактически, современные ветряные турбины становятся все более рентабельными, надежными и увеличиваются в размерах до нескольких мегаватт мощности.Повышение производительности турбин поддержало развитие отечественной ветроэнергетики: экспорт ветряных турбин из США вырос с 16 миллионов долларов в 2007 году до более чем 100 миллионов долларов в год. Кроме того, с 1999 года средняя генерирующая мощность турбины увеличилась на 180% до 2 МВт.

Достижения в области композитных материалов, автоматизации и повышения эффективности производственных процессов помогли отечественным производителям значительно повысить производительность за последнее десятилетие. Цепочка ветроэнергетики, которая сложилась в Соединенных Штатах в последние годы, увеличила долю отечественных ветряных турбин, установленных в Соединенных Штатах, при этом более 80% сборки гондол и производства башен приходится на Соединенные Штаты для турбин, установленных здесь.

По мере роста размеров и сложности ветряных турбин растут требования к производственному процессу и затраты на транспортировку компонентов, что, в свою очередь, увеличивает потребность в местных производителях, которые могут решить технические и логистические проблемы. В настоящее время средняя ветряная турбина коммунального масштаба состоит примерно из 8000 деталей, включая лопасти длиной до 75 метров (250 футов) и башни высотой более 80 метров (262 футов), что примерно равно высоте Статуи Свободы. Новые башни делают еще выше, чтобы улавливать более сильный ветер на больших высотах.

На картах потенциальной мощности показаны земельные участки в Соединенных Штатах, которые могут быть подходящими (со средним коэффициентом мощности 35% или больше) для развития ветроэнергетики с использованием новых 110-метровых турбин и планируемых 140-метровых турбин. Необходимо разработать передовые технологии производства и сборки, чтобы энергия ветра могла распространяться на территории с неиспользованным потенциалом ветровых ресурсов.

Часто задаваемые вопросы по ветроэнергетике (FAQ)

Земля окружена атмосферой, состоящей из воздуха.Воздух представляет собой смесь газа, твердых и жидких частиц. Энергия Солнца неравномерно нагревает атмосферу и Землю.

Холодный воздух содержит больше частиц воздуха, чем теплый. Поэтому холодный воздух тяжелее и опускается вниз через атмосферу, создавая зоны с высоким давлением. Теплый воздух поднимается вверх по атмосфере, создавая зоны с низким давлением. Воздух пытается уравновесить области низкого и высокого давления - частицы воздуха перемещаются из областей высокого давления (холодный воздух) в области низкого давления (теплый воздух).Это движение воздуха известно как ветер.

На ветер также влияет движение земли. Когда он вращается вокруг своей оси, воздух не перемещается напрямую из областей с более высоким давлением в области с более низким давлением. Вместо этого воздух выталкивается на запад в северном полушарии и на восток в южном полушарии. Это известно как сила Кориолиса. Щелкните, чтобы увидеть схему того, как движение Земли влияет на ветер.

Поверхность Земли отмечена деревьями, зданиями, озерами, морем, холмами и долинами, которые также влияют на направление и скорость ветра.Например, там, где встречаются теплая земля и прохладное море, разница температур создает тепловые эффекты, которые вызывают местные морские бризы.

Ветер обычно измеряется по его скорости и направлению. Атласы ветра показывают распределение скоростей ветра в широком масштабе, давая графическое представление о средней скорости ветра (для заданной высоты) по территории. Они составляются на основе измерений местной метеорологической станции или других зарегистрированных данных, связанных с ветром.

Традиционно скорость ветра измеряется анемометрами - обычно тремя чашами, которые фиксируют ветер, вращающийся вокруг вертикальной оси (на фото ниже).Направление ветра измеряется с помощью флюгера.

После измерения данных о ветре, по крайней мере, за один год, можно рассчитать среднегодовую скорость ветра. Статистика скорости и направления ветра отображается в виде розы ветров, показывая статистическое распределение скорости ветра по направлению.

Статистика ветра показывает лучшие места для размещения ветряных электростанций в соответствии с лучшими ветровыми ресурсами. Они также предоставляют дополнительную информацию о том, как турбины должны быть расположены по отношению друг к другу и каким должно быть расстояние между турбинами.

Ветряная турбина - это машина, преобразующая кинетическую энергию ветра в механическую или электрическую энергию. Ветряки состоят из фундамента, башни, гондолы и ротора. Фундамент предотвращает падение турбины. Башня поддерживает ротор и гондолу (или коробку).

Гондола содержит крупные основные компоненты, такие как главный мост, редуктор, генератор, трансформатор и система управления. Ротор состоит из лопастей и ступицы, которая удерживает их в нужном положении при вращении.Большинство коммерческих ветряных турбин имеют три лопасти ротора. Длина лопастей может составлять более 60 метров.

Посмотрите, как работает ветряная турбина!

Средний размер береговых турбин, производимых сегодня, составляет около 2,5–3 МВт, с длиной лопастей около 50 метров. Он может обеспечивать электроэнергией более 1 500 домохозяйств в среднем по ЕС.

Средняя оффшорная ветряная турбина мощностью 3,6 МВт может обеспечить электроэнергией более 3312 средних домашних хозяйств в ЕС.

В 1985 году ветряные турбины имели мощность менее 1 МВт с диаметром ротора около 15 метров.
В 2012 году средний размер составляет 2,5 МВт при диаметре ротора 100 метров.

Турбины мощностью 7,5 МВт на сегодняшний день являются самыми крупными турбинами с лопастями длиной около 60 метров - более половины длины ротора диаметром более 120 метров - и длиннее футбольного поля. Планируется, что турбины мощностью 15 МВт, а турбины мощностью 20 МВт считаются теоретически возможными.

Башни в основном трубчатые, из стали или бетона, обычно окрашены в светло-серый цвет. Лезвия изготавливаются из стекловолокна, армированного полиэстера или древесно-эпоксидной смолы.Они светло-серые, потому что незаметны при большинстве условий освещения. Поверхность матовая для уменьшения отраженного света.

При проектировании ветряной электростанции учитывается множество факторов. В идеале площадка должна быть как можно более широкой и открытой в направлении преобладающего ветра, с небольшим количеством препятствий. Необходимо учитывать его визуальное влияние - несколько больших турбин обычно лучше, чем многие меньшие.

Турбины должны быть легко доступны для обслуживания и ремонта, когда это необходимо.Уровни шума можно рассчитать, чтобы ферма соответствовала уровням шума, установленным национальным законодательством. Поставщик турбины определяет минимальное расстояние между турбинами, принимая во внимание влияние, которое одна турбина может оказывать на соседние турбины, - «эффект следа».

Затем необходимо выбрать правильный тип турбины. Это зависит от ветровых условий и особенностей ландшафта местности, местных / национальных правил, таких как высота турбины, уровень шума и охрана природы, риск экстремальных явлений, таких как землетрясения, насколько легко транспортировать турбины на площадку и местная доступность кранов.

Время строительства обычно очень короткое - ветряную электростанцию ​​мощностью 10 МВт можно легко построить за два месяца. Более крупная ветряная электростанция мощностью 50 МВт может быть построена за шесть месяцев.

Стоимость варьируется, но самая большая стоимость - это сама турбина. Это капитальные затраты, которые должны быть оплачены заранее и обычно составляют 75% от общей суммы.

После того, как турбина запущена и работает, нет никаких затрат на топливо и углерод, только затраты на эксплуатацию и техническое обслуживание (O&M), которые минимальны по сравнению с e.грамм. газовая электростанция, где ЭиТО составляет 40-70% общих затрат, а остальная часть затрат - топливо.

Ветровые турбины начинают работать при скорости ветра от 4 до 5 метров в секунду и достигают максимальной выходной мощности со скоростью около 15 метров в секунду. При очень высоких скоростях ветра, то есть при ураганном ветре 25 метров в секунду, ветряные турбины отключаются. Современная ветряная турбина вырабатывает электроэнергию в 70-85% случаев, но вырабатывает разную мощность в зависимости от скорости ветра.

В течение года он обычно дает около 24% от теоретической максимальной производительности (41% на море).Это известно как коэффициент мощности. Коэффициент мощности обычных электростанций составляет в среднем 50% -80%. Из-за остановок для обслуживания или поломок ни одна электростанция не вырабатывает электроэнергию в течение 100% времени.

Оптимальное количество лопастей для ветряной турбины зависит от работы, которую она должна выполнять. Турбины для выработки электроэнергии должны работать на высоких скоростях, но не требуют большого крутящего момента. Эти машины обычно имеют три или два лезвия. С другой стороны, ветряным насосам требуется вращающее усилие, но не большая скорость, и поэтому у них много лопастей.

Большинство современных коммерческих ветряных турбин имеют три лопасти, так как они вырабатывают оптимальную мощность.

Двухлопастные машины дешевле и легче, с более высокими скоростями движения, что снижает стоимость коробки передач, и их легче установить. Они работают почти так же хорошо, как трехлопастные турбины. Однако они могут быть более шумными и не такими визуально привлекательными, выглядя «резкими» при повороте.

Турбины иногда необходимо останавливать для обслуживания, ремонта компонентов или в случае неисправности, которую необходимо проверить.Другой причиной может быть слишком слабый или слишком сильный ветер: если ветер слишком сильный, турбину необходимо остановить, так как она может быть повреждена.

В ветряной электростанции сами турбины занимают менее 1% площади суши. Вокруг них могут развиваться существующие виды деятельности, такие как сельское хозяйство и туризм, и при этом не беспокоить таких животных, как коровы и овцы.

Все больше и больше домовладельцев, сообществ и малых предприятий заинтересованы в выработке собственного электричества с помощью небольших ветряных турбин, установленных на крышах домов или в садах.Если вас интересует, как можно привести в действие свой дом или бизнес с помощью собственной турбины, обратитесь в национальную ассоциацию ветроэнергетики для получения дополнительной информации о том, как это работает в вашей стране.

Щелкните здесь, чтобы найти свою национальную ассоциацию.

Просмотрите наш каталог участников, чтобы увидеть полный список производителей ветряных турбин.

В настоящее время береговая ветроэнергетика более экономична, чем морская разработка. Кроме того, развитие морских ветряных электростанций занимает больше времени, поскольку море по своей природе является более враждебной средой.Поэтому ожидать, что оффшор станет единственной разрешенной формой ветроэнергетики, означало бы обречь нас на невыполнение наших целей в области возобновляемых источников энергии и приверженности делу борьбы с изменением климата.

Однако в ближайшие годы, когда морские турбины будут производиться в более крупных масштабах, цены снизятся, что сделает морскую ветроэнергетику все более конкурентоспособной. Над европейскими морями дует ветер, достаточный для того, чтобы семь раз накачать Европу, что делает морской ветер очень жизнеспособным вариантом для использования.

В 2010 году в ЕС насчитывалось 70 488 наземных ветряных турбин и 1132 морских турбин.По мере развития технологий турбины становятся больше и эффективнее, поскольку выработка того же количества энергии может быть достигнута с помощью меньшего количества машин.

В настоящее время в ЕС установлено 19,5 МВт ветроэнергетической мощности на 1 000 км суши, с самой высокой плотностью в Дании и Германии. Хотя 25 из 27 стран-членов ЕС в настоящее время используют ветроэнергетику, все еще существует значительный объем ветроэнергетических мощностей в таких странах, как Франция, Великобритания и Италия.Более….

Ветряные турбины могут вырабатывать электроэнергию в течение 20-25 лет. В течение своего срока службы они будут непрерывно работать до 120 000 часов. Это сопоставимо с расчетным сроком службы двигателя автомобиля, который составляет от 4000 до 6000 часов.

Лезвия вращаются со скоростью 15-20 оборотов в минуту с постоянной скоростью. Однако все большее количество машин работает с переменной скоростью, при которой скорость ротора увеличивается и уменьшается в зависимости от скорости ветра.

Национальные ветряные часы | Выход промышленной ветряной электростанции

См. Также Wind Watch Wiki: Energy, Capacity factor

Что такое мегаватт или мегаватт-час?

Производители измеряют максимальную или номинальную мощность своих ветряных турбин по выработке электроэнергии в мегаваттах (МВт). Один МВт эквивалентен одному миллиону ватт.

Производство электроэнергии с течением времени измеряется в мегаватт-часах (МВтч) или киловатт-часах (кВтч) энергии. Киловатт - это тысяча ватт.Производство электроэнергии из расчета 1 МВт за 1 час составляет 1 МВтч энергии.

Какова мощность ветряных турбин?

General Electric (GE) выпускает когда-то широко использовавшуюся модель мощностью 1,5 мегаватта. 1,5 МВт - это его номинальная или максимальная мощность, при которой он будет вырабатывать мощность, когда скорость ветра находится в идеальном диапазоне для этой модели, от 27 до 56 миль в час. Турбины сейчас обычно в пределах 2-3 МВт.

От чего зависит, сколько энергии может производить ветровая турбина?

Энергия вырабатывается за счет энергии ветра, поэтому мощность турбины определяется ее способностью улавливать эту энергию и преобразовывать ее во вращающий момент, который может повернуть генератор и подтолкнуть электроны к сети.Более высокая башня обеспечивает доступ к более устойчивым ветрам, а более крупные лопасти улавливают больше энергии ветра. Для более крупного генератора требуются большие лопасти и / или более сильный ветер.

Сколько энергии вырабатывают ветряные турбины?

Каждая ветряная турбина имеет диапазон скоростей ветра, обычно от 30 до 55 миль в час, при котором она будет работать с номинальной или максимальной мощностью. При более низких скоростях ветра производительность резко падает. Если скорость ветра уменьшается вдвое, выработка электроэнергии снижается в восемь раз.Поэтому в среднем ветряные турбины не вырабатывают почти своей мощности. По оценкам отрасли, годовой объем производства составляет 30-40%, но реальный опыт показывает, что годовой объем производства в размере 15-30% от мощности является более типичным.

При коэффициенте мощности 25% турбина мощностью 2 МВт будет производить

2 МВт × 365 дней × 24 часа × 25% = 4380 МВтч = 4380000 кВтч

в год.

Что такое «коэффициент мощности»?

Коэффициент мощности - это фактическая выработка за период времени как доля от максимальной мощности ветряной турбины или установки.Например, если турбина мощностью 1,5 МВт вырабатывает электроэнергию в течение одного года со средней мощностью 0,5 МВт, ее коэффициент мощности составляет 33% для этого года.

Каков типичный коэффициент мощности промышленных ветряных турбин?

Средний коэффициент мощности для 137 ветроэнергетических проектов в США, представленных Агентству энергетической информации самостоятельно, в 2003 г. составил 26,9%. В 2012 году он составил 30,4%. По данным EIA, общий коэффициент использования мощности для стран ЕС-27 в 2007 году составлял 13%.

В чем разница между коэффициентом мощности и доступностью?

Ветряная турбина может быть «доступной» 90% или более времени, по крайней мере, в первые годы эксплуатации, но ее мощность зависит только от ветра.Без ветра это как велосипед, на котором никто не ездит: доступен, но не крутится.

«Коэффициент мощности» турбины - это ее фактическая средняя мощность как часть ее полной мощности. Обычно это от 15% до 35%.

Ветровые турбины работают 30% времени или 90%?

Ни то, ни другое. Первая цифра - это теоретический коэффициент мощности, количество энергии, фактически произведенной за год, как часть максимальной мощности турбин. Вторая цифра - это доступность, количество времени, в течение которого турбина не останавливается.Ни одна из цифр не отражает количество времени, в течение которого ветряная турбина фактически вырабатывает электричество.

Сколько времени ветряные турбины вырабатывают энергию?

Ветровые турбины вырабатывают электроэнергию, когда они не отключены для обслуживания, ремонта или поездок, а скорость ветра составляет от 8 до 55 миль в час. Однако ниже скорости ветра около 30 миль в час количество вырабатываемой энергии очень мало. Ветровые турбины производят со средней скоростью или выше около 40% времени. И наоборот, примерно в 60% случаев они производят мало энергии или не производят ее совсем.

Одинаковы ли коэффициент мощности и эффективность?

Нет. Эффективность - это мера того, какая часть кинетической энергии ветра преобразуется в электрическую. В процессе преобразования неизбежно происходит потеря энергии. Даже когда ветряная турбина вырабатывает электроэнергию на максимальной мощности, вырабатываемая электрическая энергия составляет лишь часть энергии ветра. (В лучшем случае это около 50%, что обычно достигается до выработки на полную мощность.) Эффективность - это вопрос инженерии и ограничений физики и обычно не имеет отношения к нормальному обсуждению.

Коэффициент мощности - это мера фактической мощности ветряной турбины, которая изменяется в зависимости от скорости ветра в течение определенного периода времени.

Сколько домов может приводить в действие ветряная турбина?

Сторонники

часто выражают прогнозируемую мощность как «достаточно для питания домов размером x ». По данным Агентства энергетической информации, среднее домашнее хозяйство в США использует 888 кВтч в месяц или 10 656 кВтч в год. Средняя турбина мощностью 1,5 МВт (коэффициент мощности 26,9%) будет производить столько же электроэнергии, сколько используется почти 332 домохозяйствами в течение года.

Однако следует помнить, что энергия ветра непостоянна и изменчива, поэтому ветряная турбина вырабатывает мощность со среднегодовой скоростью или выше ее только в 40% случаев. То есть в большинстве случаев это , а не , обеспечивающее среднюю мощность для среднего количества домов. И времена сильного ветра редко соответствуют времени фактического спроса в сети.

Следует также помнить, что на бытовое использование приходится только треть нашего общего потребления электроэнергии.

Как изменчивость ветра влияет на надежность ветроэнергетики?

Производство ветряной турбины обычно выражается как среднегодовое значение, что скрывает ее весьма изменчивую мощность. Но поскольку производство резко падает при падении скорости ветра (в восемь раз на каждое уменьшение скорости ветра вдвое), большую часть времени ветряная турбина производит значительно ниже своего среднего уровня. Средняя скорость вывода или более наблюдается только около 40% времени.

Как переменная мощность ветра влияет на сеть?

Ветряная турбина вырабатывает энергию в ответ на ветер, который даже на «лучших» участках резко меняется от часа к часу и от минуты к минуте.Однако сетка должна отвечать требованиям пользователей. Поскольку сетевые диспетчеры не могут контролировать производство энергии ветра больше, чем они могут контролировать спрос пользователей, ветровые турбины в сети не способствуют удовлетворению спроса. Подавая мощность в сеть, они просто добавляют еще один источник колебаний, который сеть должна уравновесить.

См. Также периодичность в FAQ по сетке.

Что такое кредит мощности ветроэнергетики?

Ветровая энергия имеет очень низкий «кредит мощности», то есть ее способность заменять другие источники энергии.Например, в Великобритании, которая может похвастаться самой ветреной страной в Европе, Королевская инженерная академия прогнозирует, что 25000 МВт ветровой энергии сократят потребность в традиционной мощности на 4000 МВт, что составляет 16% кредита на мощность. Два исследования, проведенных в Германии, показали, что 48 000 МВт ветровой энергии позволят снизить обычную мощность всего на 2 000 МВт, что составляет 4% кредита (как описано в «Отчет о ветре за 2005 год», Eon Netz). Аналогичным образом Irish Grid подсчитала, что 3500 МВт энергии ветра могут заменить 496 МВт обычной энергии, что составляет 14% кредита, и что по мере добавления новых ветряных турбин их кредит мощности приближается к нулю.В марте 2005 года Управление энергетических исследований и разработок штата Нью-Йорк обнаружило, что для наземной ветроэнергетики будет предоставлен кредит мощности в размере 10%, исходя из теоретического коэффициента мощности 30%. (См. Некоторые из этих и других документов здесь, в Национальной службе ветра.)

Сколько резервной мощности требуется для ветровой энергии?

По словам Эона Нетца, одного из четырех управляющих сетью в Германии, с установленной на его территории ветроэнергетической мощностью 7 050 МВт в конце 2004 г., объем необходимого резервного питания составил более 80%, что являлось максимальной наблюдаемой мощностью. от всех их ветроэнергетических установок вместе.То есть на каждые 10 МВт ветровой энергии, добавленной к системе, в этом случае также должно быть выделено не менее 8 МВт резервной мощности.

Другими словами, ветру требуется 100% резервирование максимальной мощности.

Разве единица электроэнергии, произведенной ветряными турбинами, не сокращает единицу электроэнергии из другого источника?

Поскольку сеть должна постоянно уравновешивать спрос и предложение, да, она должна сокращать предложение откуда-то еще, когда усиливается ветер, достаточный для начала выработки электроэнергии.

Если в системе присутствует гидроэлектроэнергия, это, скорее всего, источник, который будет сокращен, поскольку его можно включать и выключать наиболее легко.Некоторые газовые установки также могут быстро включаться и выключаться (хотя и за счет повышения эффективности, т. Е. Сжигания большего количества топлива). В противном случае мощность установок сжигания топлива снижается или она переключается с генерации на резерв. В любом случае он по-прежнему сжигает топливо.

Могут ли ветряные турбины помочь избежать отключений электроэнергии?

Нет. Сами ветровые турбины для работы нуждаются в электроэнергии. Их тоже вырубает затемнение. Если они обеспечивали электроэнергию в то время, эта потеря усугубляет эффект затемнения.

В чем разница между большими и маленькими турбинами?

Малые турбины предназначены для непосредственного питания дома или другого здания. Их регулируемая мощность уравновешивается аккумуляторной батареей и дополняется сетью или резервным генератором на месте.

Большие турбины предназначены для питания самой сети. Переменная мощность больших ветряных турбин усложняет балансирование спроса и предложения, поскольку в сети нет крупномасштабного хранилища.

Информационный бюллетень по ветроэнергетике

| Центр устойчивых систем

Ресурсы и потенциал ветра

Примерно 2% солнечной энергии, падающей на поверхность Земли, преобразуется в кинетическую энергию ветра.Ветровые турбины преобразуют кинетическую энергию ветра в электричество без выбросов. 1 Средняя годовая скорость ветра 6,5 м / с или выше на высоте 80 м обычно считается коммерчески выгодной. Однако новые технологии расширяют возможности ветроэнергетики для коммерческих проектов. 3 Менее 3% электроэнергии в США было получено за счет энергии ветра в 2019 году, но мощность ветра быстро растет. 4

  • Высокая скорость ветра дает больше энергии, потому что энергия ветра пропорциональна кубу скорости ветра. 5
  • Скорость ветра ниже у поверхности Земли и выше на больших высотах. Средняя высота ступицы современных ветряных турбин составляет 88 метров. 6 ​​
  • Глобальный потенциал наземной и морской ветроэнергетики на коммерческой высоте ступицы турбины может обеспечить 840 000 ТВтч электроэнергии в год. 7 Общее глобальное потребление электроэнергии из всех источников в 2017 году составило около 22 347 ТВтч. 8 Аналогичным образом, годовой ветровой потенциал континентальной части США в 68 000 ТВтч значительно превышает годовой U.S. потребление электроэнергии 3 896 ТВтч. 4,7
  • Исследование 2015 года, проведенное Министерством энергетики США, показало, что ветер может обеспечивать 20% электроэнергии США к 2030 году и 35% к 2050 году. 9
Ветровые ресурсы США, береговые и морские
2
(ВЫСОТА 80 МЕТРОВ)

Ветровые технологии и воздействия

Ветряные турбины с горизонтальной осью

  • Ветряные турбины с горизонтальной осью (HAWT) являются преобладающей конструкцией турбин, используемых сегодня.Ротор HAWT состоит из лопастей (обычно трех), симметрично установленных на ступице. Ротор через вал соединен с коробкой передач и генератором. Эти компоненты в гондоле размещаются на башне, стоящей на бетонном фундаменте. 10
  • HAWT бывают разных размеров: от 2,5 метров в диаметре и 1 кВт для жилых помещений до 100+ метров в диаметре и 10+ МВт для морских применений.
  • Теоретический максимальный КПД турбины составляет ~ 59%, также известный как предел Беца.Большинство турбин извлекают ~ 50% энергии от ветра, проходящего через область ротора. 9
  • Коэффициент мощности ветряной турбины - это средняя выходная мощность, деленная на ее максимальную мощность. 9 На суше коэффициенты вместимости варьируются от 0,26 до 0,52. 11 Средний коэффициент использования мощности в 2018 г. по проектам, построенным в период с 2014 по 2017 гг., Составил 41,9%. В США средний коэффициент загрузки автопарка составил 35%. 6 ​​
  • Морские ветры обычно сильнее, чем на суше, и коэффициенты мощности в среднем выше (ожидается, что они достигнут 51% к 2022 году для новых проектов), но морские ветряные электростанции дороже в строительстве и обслуживании. 11,12,13 Морские турбины в настоящее время размещаются на глубине до 40-50 м (около 131-164 футов), но технологии плавучих морских ветроэнергетических установок могут значительно расширить потенциал генерации, поскольку 58% всех технических ресурсов ветра в США составляют глубины более 60м. 14,15
Схема ветряной турбины с горизонтальной осью 10,16

Установка, изготовление и стоимость

  • В США установлено более 59 900 ветряных турбин коммунального назначения.С., Суммарной мощностью 107,4 ГВт. В период с 2010 по 2020 год мощность ветроэнергетики в США увеличилась на 166%, что составляет 10% в среднем в год. 17 В период с 2009 по 2019 год глобальная ветровая мощность увеличивалась в среднем на 15% ежегодно, достигнув 651 ГВт в 2019 году. 18
  • Средняя мощность турбин в США в 2018 г. составила 2,43 МВт, что на 5% больше, чем в 2017 г. 2,32 МВт. 6 ​​
  • Средний коэффициент мощности увеличился с менее 25% для проектов, установленных в период с 1998 по 2001 год, до примерно 42% для проектов, построенных в период с 2014 по 2017 год. 6 ​​
  • На основе средневзвешенной мощности стоимость ветроэнергетических проектов снизилась примерно на 3330 долларов США / кВт с начала 1980-х по 2018 год. В 2018 году затраты составили 1470 долларов США / кВт. 6 ​​
  • Установленная стоимость небольшой (<100 кВт) турбины составляет примерно 10850 долларов за кВт в 2017 году. 19
  • В 2017-2018 годах новые контракты на закупку ветровой энергии в среднем составляли 1,3-1,8 / кВтч, в то время как средняя цена на электроэнергию для жилых домов составляла 13,0 / кВтч в 2019 году. 4,6
  • Техас (29 407 МВт), Айова (10 644) и Оклахома (8 173 МВт) являются ведущими штатами по общей установленной мощности ветра. 17 Айова вырабатывала более 40% электроэнергии за счет ветра и занимала третье место в годовой выработке среди всех штатов в 2019 году. 20
  • В ветроэнергетике США на полной ставке работают 120000 человек, а в 2018 году турбины и компоненты были произведены на 530 предприятиях в 43 штатах. 21
  • Для крупных (> 20 МВт) ветроэнергетических проектов требуется ~ 85 акров земли на МВт установленной мощности, но 1% или меньше этой общей площади занято дорогами, фундаментами турбин или другим оборудованием; остаток доступен для других целей. 9
  • Для фермеров ежегодные арендные платежи обеспечивают стабильный доход в размере около 3000 долларов США на МВт турбинной мощности, в зависимости от количества турбин на участке, стоимости произведенной энергии и условий аренды. 9 Ферма площадью 250 акров с доходом от ветра около 55 долларов за акр могла бы иметь годовой доход от аренды ветряков в размере 14 000 долларов. 22
Мощность ветра США
17

Глобальная ветровая мощность, 2019
18

Энергоэффективность и воздействие на окружающую среду

  • Ветровые турбины могут снизить воздействие, связанное с традиционным производством электроэнергии.Использование ветроэнергетических установок в США в 2019 году позволило избежать выбросов CO 2 на 189 миллионов метрических тонн и сократить потребление воды примерно на 103 миллиарда галлонов по сравнению с обычными электростанциями. 17,23
  • Согласно исследованию 2015 года, если к 2050 году 35% электроэнергии в США будет вырабатываться ветром, выбросы парниковых газов в электроэнергетике сократятся на 23%, что приведет к сокращению выбросов CO 2 в год на 510 миллиардов кг, или 12,3 триллиона кг в совокупности с 2013 года. и сокращение водопотребления на 15%. 9
  • Исследование 2013 года показало, что окупаемость инвестиций (EROI) (поставленная энергия / вложенная энергия) для ветроэнергетики составляет 18-20: 1. 24
  • Ежегодная смертность птиц от столкновений с турбинами составляет 0,2 миллиона по сравнению со 130 миллионами смертей из-за линий электропередач и 300-1 000 миллионов из-за зданий. Лучший способ минимизировать смертность - это аккуратное размещение. 9 Смертность летучих мышей от ветряных турбин менее изучена. Исследования показывают, что большой процент столкновений летучих мышей происходит у мигрирующих видов в летние и осенние месяцы, когда они наиболее активны. 9,25 Ветряная промышленность испытывала методы, которые потенциально снижают смертность летучих мышей более чем на 50%. 9
  • Шум в 350 м от типичной ветряной электростанции составляет 35-45 дБ. Для сравнения: в тихой спальне это 35 дБ, а при скорости 40 миль в час на расстоянии 100 м - 55 дБ. 26
  • По состоянию на 2013 год, несколько исследований окончательно определили, что звук, производимый ветряными турбинами, не влияет на здоровье человека. 9

Решения и устойчивые действия

Политика поощрения возобновляемых источников энергии

Политика поддержки ветра и других возобновляемых источников энергии может учитывать внешние факторы, связанные с обычным электричеством, такие как последствия для здоровья от загрязнения, экологический ущерб от добычи ресурсов и долгосрочное хранение ядерных отходов.

  • Стандарты портфеля возобновляемых источников энергии (RPS) требуют, чтобы поставщики электроэнергии получали минимальную долю энергии из возобновляемых источников. 27
  • Зеленые тарифы устанавливают минимальную цену за киловатт-час, выплачиваемую производителям возобновляемой электроэнергии розничными распределителями электроэнергии. 27
  • Чистое измерение, предлагаемое в 39 штатах, округе Колумбия и четырех территориях США, позволяет клиентам продавать излишки электроэнергии обратно в сеть. 28
  • Скидки за мощность - это единовременные авансовые платежи для проектов строительства возобновляемых источников энергии в зависимости от установленной мощности (в ваттах).
  • Федеральный налоговый кредит на производство (PTC) предоставляет льготу 1-2 ¢ / кВтч в течение первых десяти лет эксплуатации ветроэнергетического объекта для проектов, начатых до 31 декабря 2020 года. 29 Небольшие (<100 кВт) установки могут получать налог кредиты на сумму от 22 до 26% от стоимости капитальных и монтажных работ в зависимости от даты начала строительства. 30
  • Квалифицированные облигации энергосбережения (QECB) представляют собой беспроцентные варианты финансирования проектов возобновляемых источников энергии на уровне штата и местного самоуправления. 31
  • Раздел 9006 Закона о сельском хозяйстве - это Программа «Энергия в сельских районах для Америки» (REAP), которая финансирует гранты и гарантии ссуд для сельскохозяйственных производителей и малых предприятий в сельской местности на покупку и установку систем возобновляемой энергии. 32
  • Плата за системные льготы оплачивается всеми потребителями коммунальных услуг для создания фонда для поддержки малообеспеченных, возобновляемых источников энергии, повышения эффективности и проектов НИОКР, которые вряд ли будут реализованы на конкурентном рынке. 33

Что вы можете сделать

  • Сделайте свой образ жизни более эффективным, чтобы уменьшить количество потребляемой энергии.
  • Инвестируйте в инфраструктуру производства неископаемой электроэнергии, покупая «зеленую энергию» у своего коммунального предприятия.
  • Купить сертификаты возобновляемой энергии (REC). РЭУ продаются производителями возобновляемой энергии по цене несколько центов за киловатт-час, клиенты могут приобретать РЭУ, чтобы «компенсировать» потребление электроэнергии и помочь возобновляемой энергии стать более конкурентоспособной. 27
  • Подумайте об установке собственной ветровой системы, особенно если вы живете в штате, который предоставляет финансовые льготы или имеет чистые счетчики.

Возобновляемые источники энергии на внешнем континентальном шельфе

BOEM отвечает за развитие морских возобновляемых источников энергии в федеральных водах. Программа началась в 2009 году, когда Министерство внутренних дел (DOI) объявило окончательные правила программы возобновляемой энергии Внешнего континентального шельфа (OCS), которая была утверждена Законом об энергетической политике 2005 года (EPAct). Эти правила обеспечивают основу для всей деятельности, необходимой для поддержки производства и передачи энергии из источников, отличных от нефти и природного газа.BOEM ожидает дальнейшего развития OCS из следующих общих источников:

Морская ветроэнергетика

Морской ветер - это богатый внутренний источник энергии, расположенный недалеко от основных береговых центров нагрузки. Он представляет собой эффективную альтернативу передаче на большие расстояния или развитию производства электроэнергии в этих регионах с ограниченными земельными ресурсами.

Проектирование и проектирование морских ветроэнергетических установок зависит от конкретных условий площадки, в частности от глубины воды, геологии морского дна и волновой нагрузки.

Все ветряные турбины работают одинаково. Когда дует ветер, он обтекает лопасти ветряных турбин, имеющие форму аэродинамического профиля, в результате чего лопасти турбины вращаются. Лопасти соединены с приводным валом, который вращает электрогенератор для выработки электроэнергии. Новейшие ветряные турбины технологически продвинуты и включают в себя инженерные и механические инновации, которые помогают максимально повысить эффективность и увеличить производство электроэнергии. Для получения дополнительной информации о технологии ветряных турбин см. Документ NREL «Основы ветроэнергетики: как работают ветряные турбины».

Морские ветры имеют тенденцию дуть сильнее и равномернее, чем на суше. Поскольку более высокая скорость ветра может производить значительно больше энергии / электричества, разработчики все больше заинтересованы в освоении морских ветроэнергетических ресурсов. Министерство энергетики США (DOE) предоставляет ряд карт, показывающих данные о средней скорости ветра, на своей странице оценки и характеристики ресурсов и с помощью MapSearch Национальной лаборатории возобновляемых источников энергии (NREL).

Сколько энергии вырабатывает ветряная турбина?

Обновлено 9 ноября 2020 г.

Кевин Ли

Ветровые турбины способны вращать свои лопасти на склонах холмов, в океане, рядом с заводами и над домами.Идея о том, чтобы позволить природе обеспечить ваш дом бесплатной электроэнергией, может показаться привлекательной, но важно научиться рассчитывать мощность ветряной турбины перед ее покупкой - и особенно важно понимать разницу между номинальной мощностью машины и фактической мощностью, которую вы можно ожидать от этого. Проверьте карты ветров, предоставленные Национальной лабораторией возобновляемой энергии, чтобы узнать, делает ли ветровая энергия хорошим выбором для вашего дома скорость ветра и его наличие в вашем районе.

Скорость ветра

Большинство ветряных турбин состоит из установленных на роторе лопастей, напоминающих воздушные винты.Когда через них проходит воздух, они заставляют ротор вращать вал, приводящий в действие электрический генератор. Большинство турбин автоматически отключаются, когда скорость ветра достигает 88,5 километров в час (55 миль в час), чтобы предотвратить механическое повреждение. Это снижает выработку электроэнергии, когда возникает сильный ветер, и людям требуется постоянная энергия ветра. Они также не производят электричество, если ветер дует слишком медленно. Если скорость ветра уменьшается вдвое, выработка электроэнергии снижается в восемь раз.Время, в течение которого ветровые условия являются оптимальными в данном регионе, определяет доступность ветряной турбины. Турбины, расположенные на более высоких позициях, получают больше ветра, что приводит к большей мощности. У каждого есть диапазон скорости ветра - от 30 до 50 миль в час - при котором он работает оптимально.

Рейтинг эффективности

В современных ветряных турбинах используются различные конструкции, предназначенные для более эффективного улавливания ветра. Эффективность - важная ценность, которую нужно знать при оценке ветряной турбины.3} {2}

Площадь указывается в квадратных метрах, плотность воздуха - в килограммах на кубический метр, а скорость ветра - в метрах в секунду.

Важные отличия

Тот факт, что ветряная турбина имеет номинальную мощность 1,5 мегаватт, не означает, что на практике она будет производить такую ​​большую мощность. Ветряные турбины обычно производят значительно меньше номинальной мощности, что является максимальным количеством энергии, которое они могли бы производить, если бы работали все время. Например, ветряная турбина мощностью 1,5 мегаватта с коэффициентом полезного действия 33 процента может производить только пол мегаватта в год - меньше, если ветер не дует надежно.Турбины промышленного масштаба обычно имеют номинальную мощность от 2 до 3 мегаватт. Однако количество фактически произведенной энергии снижается из-за эффективности и наличия ветра - процента времени, в течение которого объект имеет достаточно ветра для движения.

Советы по покупке ветряных турбин

Если вам известны мощность и коэффициенты эффективности установки, вы можете рассчитать ее расчетный годовой объем производства по следующей формуле:

365 \ frac {\ text {days}} {\ text {year} } \ times 24 \ frac {\ text {hours}} {\ text {days}} \ times \ text {максимальная мощность} \ times \ text {capacity factor} = \ text {киловатт-часов в год}

Например, турбина с номинальной мощностью 1.Ожидается, что мощность 5 мегаватт и КПД 25 процентов составит:

365 \ times 24 \ times 1500 \ times 0,25 = 3 285 000 \ text {киловатт-часов в год}

Этот расчет предполагает наличие ветра в течение 24 часов в сутки. круглый год. На практике этого не происходит. Вы можете использовать карты ветров NREL для корректировки цифр времени для получения более точных цифр для конкретного местоположения.

Информация и факты об энергии ветра

Ветер - это движение воздуха из области высокого давления в область низкого давления.На самом деле ветер существует потому, что Солнце неравномерно нагревает поверхность Земли. Когда горячий воздух поднимается, более холодный воздух заполняет пустоту. Пока светит солнце, будет дуть ветер. А ветер издавна служил источником энергии для людей.

Древние мореплаватели ловили ветер парусами. Когда-то фермеры использовали ветряные мельницы для измельчения зерна и перекачивания воды. Сегодня все больше и больше ветряных турбин выжимают из ветра электричество. За последнее десятилетие использование ветряных турбин увеличивалось более чем на 25 процентов в год.Тем не менее, он обеспечивает лишь небольшую часть мировой энергии.

Погода на нашей планете может быть очень суровой - от волн тепла и града до тайфунов и торнадо. Узнайте, что заставляет природу высвободить свою ярость.

Как это работает

Большая часть энергии ветра поступает от турбин, которые могут достигать высоты 20-этажного здания и иметь три лопасти длиной 200 футов (60 метров). Ветер вращает лопасти, которые вращают вал, соединенный с генератором, вырабатывающим электричество.

Самые большие ветряные турбины вырабатывают достаточно электроэнергии в год (около 12 мегаватт-часов) для снабжения около 600 домов в США. Ветряные электростанции имеют десятки, а иногда и сотни таких турбин, выстроенных вместе в особенно ветреных местах. Небольшие турбины, установленные на заднем дворе, могут производить достаточно электроэнергии для одного дома или небольшого предприятия.

Быстро развивающаяся ветроэнергетика

Ветер - это чистый источник возобновляемой энергии, не вызывающий загрязнения воздуха и воды. А поскольку ветер здесь бесплатный, эксплуатационные расходы после установки турбины практически равны нулю.Массовое производство и технический прогресс удешевляют турбины, и многие правительства предлагают налоговые льготы, чтобы стимулировать развитие ветроэнергетики.

К недостаткам относятся жалобы местных жителей на уродливые и шумные ветряные турбины. Медленно вращающиеся лезвия также могут убивать птиц и летучих мышей, но не так много, как автомобили, линии электропередач и высотные здания. Ветер тоже переменчив: если он не дует, электричество не вырабатывается.

Тем не менее, ветроэнергетика процветает.Благодаря глобальным усилиям по борьбе с изменением климата, таким как Парижское соглашение, возобновляемая энергия переживает бум роста, при этом энергия ветра лидирует. С 2000 по 2015 год совокупная ветровая мощность во всем мире увеличилась с 17 000 мегаватт до более чем 430 000 мегаватт. В 2015 году Китай также обогнал ЕС по количеству установленных ветряных турбин и продолжает лидировать в установке.

Эксперты отрасли прогнозируют, что при сохранении таких темпов роста к 2050 году одна треть мировых потребностей в электроэнергии будет удовлетворяться за счет энергии ветра.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *